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Glasses-free three-dimensional (3D) displays provide users with animmersive visual
experience without the need of any wearable devices". To achieve high-quality 3D
imaging, adisplay should have both large linear dimensions and a wide viewing angle.
However, the trade-off between spatial extent and bandwidth of optical systems, the
space-bandwidth product, conventionally constrains the simultaneous maximization
of the two. The two most common approaches to 3D displays are holographic** and
automultiscopic™™®, which, respectively, sacrifice either scale or viewing angle.
Recently, some implementations enhanced by artificial intelligence have shown
directions to mitigate these constraints, but they still operate within a set space-
bandwidth product™. As aresult, it remains challenging to fabricate large-scale
wide-angle 3D displays’. Here we report the realization of a large-scale full-parallax 3D
display with seamless viewing beyond 100°, maintained at over 50 Hzand 1,920 x 1,080
resolution on alow-cost light-field delivery setup. This device, called EyeReal, is realized
by accurately modelling binocular view and combining it with a deep-learning real-time
optimization, enabling the generation of optimal light-field outputs for each of the
eyes. Our device could potentially enable applications in educational tools, 3D design
and virtual reality'®™,

Delivering a three-dimensional (3D) sensation experience without
additional wearable devices, known as glasses-free 3D or autostereo-
scopic display, can revolutionize human interaction with the digital
world"*”. This aligns with the vision of the ‘ultimate display’*", in which
light fields are reproduced at natural ranges with awide viewing angle
and large imaging size. Achieving this vision has been fundamentally
constrained by the space-bandwidth product (SBP), aphysical quantity
that encapsulates the inherent coupling between spatial resolution
and angular diversity in optical systems, and is ultimately bounded
by the Lagrange invariant®.

The development of autostereoscopic display technologies has
highly progressed through two complementary paths, focusing
either on compact, updatable holography*”**8 or automultiscopic
architectures with preset views**"">*, The former enables precise
light-field control but remainsrestricted to centimetre-scale displays
(Fig.1a). Conversely, automultiscopic displays scale to desktop dimen-
sions but sacrifice continuity or adaptability beyond preset views
(Fig. 1b,c). These approaches, alongside decades of exploration into
diverse display technologies’, have advanced the state-of-the-art while
exposingtheintrinsic challenges posed by passive, limited SBP utiliza-
tion. Recent efforts”®'”* have extended these technologies through
deep-learning-based algorithms, striving to mitigate architectural
constraints and optimize display outcomes. However, these advances
largely remain within existing frameworks and continue to rely on this
static and partial use of available SBP. This intrinsic limitation shows
a persistent inability to achieve both scalability and fidelity at once,

forcingtrade-offs across display size, viewing angle and parallax com-
pleteness. Although previous developments have advanced the field,
these constraints underscore the need to rethink SBP utilization and
explore new models for desirable autostereoscopic displays.

Here we present EyeReal, the first proactive solution that, to our
knowledge, optimally exploits the limited SBPinreal timeto achievea
desktop-monitor-scale full-parallax glasses-free 3D display with seam-
less ultrawide viewing ranges. Powered by a deep-learning engine that
dynamically uses SBP around the eyes (Fig. 1d), EyeReal preserves a
holography-level angular range while enlarging the display size by more
than10® times. The visual field extends well beyond 100° viewing and
supports omnidirectional seamlessimaging transitions, demonstrated
through aprototype that can deliver real light-field outputs. This stems
from the computational approach that combines physically accurate
binocular modelling and artificial intelligence (Al) to enable real-time
quality optimizationaround the eyes, whereas light-field hardware can
serve as a platform for this effective and continuous SBP utilization.
EyeReal delivers a full-parallax 3D experience, that is, stereo parallax,
motion parallax and focal parallax, meeting all criteria for standard
autostereoscopic displays®. The real-time light-field synthesis for any
binocular viewing runs at more than 50 Hz with 1,920 x 1,080 spatial
resolution on consumer-grade liquid-crystal display (LCD) stacks, elimi-
nating the mandatory need for specialized optics such as spatial light
modulators or lens arrays. This groundbreaking SBP-use exploration,
realizing seamless, ultrawide large-scale 3D with low-cost hardware,
lays a practical foundation for next-generation displays and unlocks
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Fig.1|Schematic comparison of display outcomes across various
autostereoscopic models and EyeReal under their use of limited SBP. Each
colour represents an effectual viewpoint. Considering that several models lack
certain parallax typesin other dimensions, we select the horizontal dimension
forillustration.a, Holographic displays, representative of small-scale 3D
displays, offer wide and continuous 3D viewing angles within a near-eye range
because of extreme space compression. The display scaleis limited to the square
centimetre level and not suitable for natural human viewing, often requiring
close, monocular observation. b, View-segmented automultiscopic models,
with tailored optics, artificially scatter SBP into effectual viewpointindividuals
oncommondisplay sizes. Each viewpointis reused across segments, piecing

transformative applications in digital entertainment, smart education,
training and industrial design'®*%.

Dynamic SBP utilization

We start with our paradigm shift in real light-field generation, which
serves as the physical foundation for SBP-utilization maximization that
accurately aggregates optimal information around the eyes over time.
Asestablishedin Fourier optics, SBP describes the information capac-
ity of an optical display system® and is mathematically expressed as®

A

S= ?6), = 4Aux,maxuy,max (1

whereAdenotesarea, §,and 6, are the pixel dimensions, u, . and u;, .«
arethebandwidth limits along the x-axis and y-axisin accordance with
the Nyquist sampling theorem. For a system resolution of N, x N, and
areal, x L, thissimplifiestoS=N,N,. Considering the one-dimensional
scenario, for alight field with maximum bandwidth u,,,, and wavelength
A, the field of view (FOV) is given by>°

FOV;p=2arcsin(Au,,,) @

High-resolution imaging indicates high spatial frequencies?®,
resulting in a tiny cross-sectional area of optical information flux, in
turn, leading to a narrow viewing angle in 3D displays. For instance,
a24-inch1,920 x 1,080 display with 2.1 million SBP yields a tiny FOV
of about 0.1° x 0.1° at 532 nm green light wavelength. An entire light

togetherabroadbutdiscrete viewing range. ¢, View-dense automultiscopic
models prioritize realism by gathering scarce SBP into a fixed, farther viewing
zone withlocal continuity. The trade-offis an extremely narrow, effectual
imaging range, nearlyimmovable for the viewer. d, EyeReal revolutionizes SBP
utilization by dynamically maximizingits use, precisely to where they are most
needed ateach moment, and transmits the limited optical informationinto the
neighbourhood of eyes through real-time optimal light-field generation. Powered
by the combination of physically accurate binocular modelling and artificial
intelligence, EyeReal generically accommodates arbitrary, continuous viewing
across an ultrawide range, requiring no customized optics.

field with only 20 cm x 20 cm would require 565G SBP, far exceed-
ing the limits of current display technologies, even with advanced
light-emitting diodes (LEDs) capped at gigapixel resolutions®. Despite
efforts®>*®, progress to enlarge SBP remains minimal compared with
its astronomical requirements, and recent studies®** still declare its
inadequacy for practical applications.

Given this, to sustain the optimal use of inherently scarce SBP, we
exploit theresponse interval of the human brain to perspective switch-
ing, optimizing the optical information flux around both eyes in real
time. We proactively aggregate the limited, clearest region of a light
fieldinto the binocular centres together with their neighbourhoods at
eachtimestamp. Accordingly, to adapt this strategy to arbitrary view-
ingdirections over an extensive physical range, it requires the precise
formulation of authentic stereo parallaxes in full spatial dimensions
(horizontal, vertical and radial), aligned with binocular demands. The
key lies in enabling optical aggregation to match the actual frustum
field (the perspective viewing volume defined by the eye or virtual
camera’®; see schematic in Extended Data Fig. 1), rather than relying
onidealized parallel-eye translation disparities commonly assumedin
modern light-field displays®>**. This requires physically accurate bin-
ocular geometric modelling together with Al featuring robust, arbitrary
generalization and real-time computation abilities, enabling light-field
outputadaptation for arbitrary binocular positions (see the Methods
for more analysis and discussion).

In practice, under the actual viewing geometry, we establish both
eyes as pinhole cameramodels oriented towards the light-field centre
and parallel to the ground plane (Fig. 2a and Extended Data Fig. 2).
Six-dimensional (6D) pose matrices are then derived to establish the

Nature | Vol 648 | 4 December 2025 | 77



Article

Ye

€ Emitted lights in

ocular frustum é
/ : = .-':

Pixel phase ZN

Binocular
views

Liquid-crystal layer

Light source

d Eye-light-field correspondence

Light field

Horizontal polarizer

Human eyes at a certain position

Light source

Vertical polarizer

Liquid-crystal panels

RGB-D sensor i

3D content

A -
H e-—_—‘--;‘"'
! /
ﬁ:ﬂ 3
- % n W
<«-- 1

6D poses Eye camera imaging

Q

Structured optical |
loss optimization ) 1
1

1

Malus’s law polarization /

e

within binocular frustum °

Down
blocks

Neural network

Up
blocks

Learnable phase decomposition

Fig.2|EyeReal approachtolight-field generation. a, Setup diagram for the
real-world ocular modelling in light-field space. This setup follows the general
principles governing how humans perceive objectslocated at the centre of the
light field. b, The display prototype of EyeReal for a light-field delivery setup.
Itsimply features astacked array of liquid-crystal panels without additional
tailored or complex optics. Each panel includes a colour filter, aliquid-crystal
layer and a thin-film transistor. The entire stack with an RGB-D sensor is
positioned between orthogonally oriented polarizers and illuminated by a
whitelight source. For clarity, the in-device 3D content is shown separately.

¢, Optical modulation based on multilayer liquid-crystal phase control. The
polarized light passes through multiple liquid-crystal layers, eachintroducing
apixel-specific phase computed by EyeReal. The final emitted intensity follows

correspondences between the light field and the binocular imaging
planes through the pinhole imaging and perspective transforma-
tion (Fig. 2d; see Methods and Supplementary Information for more
geometry, computation and calibration details). This will serve as the
physical modelling basis for the ocular geometric encoding for any
binocular viewing. Through the physical simulation that conforms to
biological principles, the light-field variations induce geometrically
consistent binocular parallax, forming the computational basis for
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Decomposed phase patterns

Malus’s law, enabling controlled light modulationin the ocular frustum.
Here, we omitted the orthogonally oriented polarizers for simplicity. d, We
reconstruct the spatial correspondence between human eyes and the light field
under real-world viewing conditions. This enables precise characterization of
binocular geometricinformation and extraction of the target visual imagery
fordisplay. e, Theretinalimages from eye cameraimaging are decomposed
into layered phase patterns by alightweight fully convolutional network with
multi-scale skip connections. Binocular poses are embedded using ocular
geometric encoding. Trained with structured losses, the network outputs
precise phase patterns and their frustum aggregation under Malus’s law yields
the expected display results. Model of arabbit created by Stanford University
Computer Graphics Laboratory and adapted with permission.

generating continuous motion parallax across an extensive spatial
range.

Light-field generation

We adopted alight-field delivery setup as the display prototype (Fig.2b
and Supplementary Fig. 1) for practical validation of the proposed
SBP-utilization solution. Leveraging the formulation for real-time



optimal light-field computation, EyeReal shifts the display function-
ality primarily onto the computational load of the algorithm, freeing
the hardware from excessive burden. Its prototype requires only a
multilayer light-field display structure that deliversrealistic light fields
aligned with natural perspective cues, without the need for additional
complex or custom optical components. Here, we use the phase varia-
tionto encode the optical information within different depth regions
ofthelight field, whichis more optically efficient compared with inten-
sity modulation because of its multiplicative attenuation?. Following
Malus’s law (Fig. 2c), the luminous intensity / of the emitted light field,
after backlighting the liquid-crystal stack positioned between polar-
izers, canbe represented as

=

le{f N dy}

1D sinz{ Y (pd} (3)

deD

where d,denotes the nearest planar depth and F, the current frustum
field; [ represents an emitted light ray in the frustum field, and /,(/) is
the original intensity of [ produced by the backlight through the rear
polarizer; D is the set of all depth samples; and ¢, is the intersection
phase of [and the optical pattern at depth d.

We develop the optimal light-field computation based on the bin-
ocular viewingas alearnable phase decomposition model with ocular
geometric encoding (Fig.2e). Theretinalimage through the crystalline
lens is situated in the pixel coordinate system of the eye, which is not
the most direct physical information for depth planes in the light-field
coordinate system. The ocular geometricencodingintroduces areverse
perspective transformation through the 6D ocular pose to uniform
binocular images as geometrically normalized planar warpings (see
mathematical details in the Supplementary Information), which facili-
tates the subsequent learnable decomposition by this geometric prior
and embodies the system with a view-agnostic capability for dynamic
display. Then we train a lightweight convolutional neural network to
efficiently compute optical patterns based on the planar warpings, opti-
mized by structured optical loss functions (Extended Data Fig. 3; see
the Methods for more architecture, optimization and training details).

Experimental results

A desirable autostereoscopic display hinges on several essential per-
ceptual attributes, including stereopsis (which naturally engages con-
vergence), movement support and accommodation?. Among these,
ideal movement support corresponds to continuous motion paral-
lax, enabling seamless transitions for immersive 3D perception. We
first assessed the ability of EyeReal to generate binocular parallax by
acquiring multi-scale light-field datasets and evaluating the resulting
autostereoscopic effects. For computer-generated content, we evalu-
atedbothobject-level (Extended DataFig.4a,b) and scene-level (Fig. 3a)
reconstructions. A comparable assessment on real-world captures
covered similar scales, from everyday scenes (Fig. 3b and Extended
DataFig.5a-d) towide-arealandmarks (Extended Data Fig. 6a,b). The
consistent high-quality binocular outputs across all scenarios indi-
cate the effective parallax synthesis ability of EyeReal, unrestricted by
specific viewpoints and positions. Beyond basic binocular synthesis,
we assessed the ability of EyeReal to generate the full spatial range of
stereo parallax dimensions necessary for perceptually complete 3D
viewing. Whereas existing large-scale autostereoscopic solutions have
tosacrifice certain parallax dimensions due toinherent SBP constraints,
EyeReal sustains consistent output across motion directions and spatial
trajectories. Under diverse multi-directional inputs, it exhibits highly
stable, view-consistent predictions (Fig. 3c and Supplementary Videos1
and2), covering horizontal, vertical and radial dimensions. These out-
puts are generated in real time (Fig. 4e and Supplementary Video 4),
enabling fluid motion adaptation across arbitrary spatial directions.
The focal stack results under the same aperture (Fig. 3d) show that

EyeReal supports focal parallax with depth-dependent presentation
across different focal distances. The full-parallax support with real-time
computational responsiveness suggests the suitability of the proposed
Al-enabled dynamic SBP-utilization method for enabling glasses-free
3Ddisplays under natural viewing conditions across broad spatial and
content ranges.

Beyond algorithmic simulations, the practical 3D display abilities of
EyeReal were evaluated through a case-specific experimental valida-
tion, in which a concrete light field was reproduced using the display
prototype (see Methods and Extended Data Fig. 7 for physical hard-
ware setup). A comprehensive series of photographs was captured to
characterize all aspects of the 3D display performance within a uni-
fied scenario, enabling a holistic assessment. The left and right eye
views demonstrated discernible visual separation and clear structural
delineation on the physical device (Fig. 3e, left, and Supplementary
Videos1and 2). For omnidirectional viewing, view consistency and
fidelity remain stable under multi-dimensional spatial motions in the
visual fields (Fig. 3e, right, and Supplementary Video 3). The physi-
cal focal evaluation showed clear depth selectivity, with front focus
(Fig. 3f, left) sharpening proximal objects and blurring the background,
whereas rear focus (Fig. 3f, right) brought distant elements into clar-
ity while softening near ones. These results indicate that the display
of EyeReal exhibits genuine focal discrimination (Supplementary
Fig. 2) instead of depth-agnostic virtualization, helping to mitigate
vergence-accommodation conflict (VAC)*?%,a common concernin
extended reality. Moreover, we demonstrated real-time rendering of
dynamic content (Supplementary Video 4), reflecting the superior
speed enabled by Al-empowered computation and showcasing its
promising application potential. These real-world demonstrations
using merely consumer-grade components substantiate the theo-
retical advantages of EyeReal in physical practice and its feasibility
for practical application.

Benchmarking

The inherent scarcity and passive use of SBP have confined modern
glasses-free 3D displays toaccommodating effectual viewpoints under
specific controls, with these controls manifesting across multiple spa-
tial granularity. Although small-scale solutions, such as holographic
displays, seemimpractical for real-world applications, this fundamen-
tal constraint persists in large-scale displays, regardless of whether
adopting a view-segmented or view-dense automultiscopic choice.
Achieving consistent performance across both locally and globally
varying scales remains an important benchmark for enabling ideal,
unrestricted 3D viewing. Modern view-segmented automultiscopy
uses optical-path alterations with tailored flat panels, yielding mul-
tiple viewpoint-reused segments. This shared interval projection, as
characteristic of flat-panel displays, marginally extends the viewing
angle butintroduces view inconsistency. In detail, each eye has only
one effectual viewpoint within its tiny proximity, and other regions
must approximate parallaxes through perspective transformations
ofthat viewpoint. This approximationis observed to be highly limited
(Fig. 4aleft), withahigh-quality range (<20 mm) even smaller than the
eye diameter (approximately 25 mm). These displays with predefined
viewing segments are prone to mismatches between the preset eye
position of the system and the actual interpupillary distance (IPD),
causing noticeable visual inconsistencies and distortion-induced
discomfort®*° (the large bluish area in Fig. 4a, left). Notably, this also
explains why typical tracking-based directional displays* suffer from
the sameissue, as their effectivenessis confined to the instantaneously
tracked viewpoint rather than the broader neighbourhood of eyes,
leaving them fragile to detection errors and natural eye movements.
By contrast, by optimizing the light-field generation around the eyes,
EyeReal ensures high-quality consistency and variable-motion toler-
ance over awide area surrounding the eyes (Fig. 4aright), providing a

Nature | Vol 648 | 4 December 2025 | 79



Article

a Left eye

Right eye

Prediction

Ground truth

Details(LR) b

Right eye

=

Right «— Horizontal motion— Left

Right eye

Fig.3|Full-parallax autostereoscopic demonstrations of EyeReal.

a, Autostereoscopicresults of asynthetic large-scale cityscape*®. The magnified
insetsonthe far right highlight specificbinocular details. L, lefteye; R, right eye.
b, Autostereoscopicresults of areal-world captured scene, ashoerack with
commonly placed household items on top*. ¢, Predicted views of a3D object
with hot dogs over all kinds (horizontal, vertical and radial) of spatial motion
ranges. d, Focal results of a3D scene with orchids*® under different depth

robust foundation forimmersive 3D viewing. EyeReal further remains
robust on unseen scenes and new head poses, sustaining stable render-
ing quality across viewing variations (Fig. 4b).

Symmetrically, the view-dense model uses SBP in a fixed, narrow
viewing zone, in which the effectual viewpoint densification ensures
smoothness and realism within this confined area. This approximation
relies on the overly idealized assumption of parallel eyes that simpli-
fies binocular parallax to mere shifts but becomes highly challenged
where parallax effects feature non-negligible rotational deformations,
such as closer viewing distances or over-oblique directions. Existing
approaches based on layered light-field displays with different com-
putational techniques, including iterative-based view-dense (IVD)
methods>?*? based on non-negative tensor factorization (NTF)*?
and neural-based view-dense (NVD) advances®?, fail to generalize
beyond their specialized viewing scenarios (Fig. 4c,d), particularly in
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focuses. e,f, Case-specific experimental validation of the physical device of
autostereoscopic display. All photographic documentation was captured by a
Sony a6300 mirrorless camera. Binocular viewing of ared car (e) captured ata
specific time point (left) with perspective-indicating marks, and sequential
display shots of this car (right) under varying spatial positions. The focal
demonstration of this car (f), illustrating front focus (left) and rear focus (right)
with depth-specificclarity in magnified insets.

closer viewing ranges. By comparison, EyeReal, with precise physical
modelling of any binocular viewing, demonstrates superior perfor-
manceacross all ranges of the visual field. This indicates that, without
altering the optical design or introducing additional computational
mechanisms compared with the above approaches, the observed
advancements of EyeReal stem from the proposed effective use of
SBP.Moreover, EyeReal achieves real-time runtime speed while main-
taining high performance, yielding aspeed improvement of one to two
orders of magnitude in sub-second ranges compared with previous
representatives (Fig. 4e). The average frame rate of the model plus
binocular imaging without whistles and bells such as quantization
and specialized-operator acceleration was found to be 50.2 frames
per second. This combination of local-global consistency in high per-
formance and low latency validates the effectiveness of the proposed
SBP-utilization solution. Beyond the spatial performance characterized
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Fig.4 |Multi-level consistent performance evaluation of EyeReal and
passive SBP-utilizationmodelsinlarge-scale displays. a, Local-scale

spatial performance comparison of EyeReal and modern view-segmented
automultiscopy across binocular surroundings. b, Cross-scene and cross-pose
generalization evaluation of EyeReal. It maintains robustness with high-quality
rendering on previously unseen scenes and adaptability acrossawide range

of newhead poses. Error barsrepresent the standard error of the mean with
6,000 samples. ¢, Global-scale spatial performance comparison of EyeReal and
theiterative view-denserepresentative based on NTF with up to 50 iterations
(iter.) across different visual-field ranges. NTF beyond 50 iterations was
excluded because of speeds below1Hz (see e). Error bars show the standard
deviation.d, Global-scale spatial performance comparison of EyeReal and the
NVD representative®. As neural methods are trained on fixed views under
predefined distances and directions, we compare multiple distance-direction

atbothlocaland globalscales, the depth perceptual continuity of Eye-
Real was further evaluated by measuring focal discrimination across
various depths, which are not limited to the optical layer planes and
showing smooth transitions with clear peaks at their corresponding
focal depths (Fig. 4f). At adeeper level, we quantitatively any-view per-
formance across the entire visual field (Fig. 4g) by randomly sampling
extremely dense point clouds, emphasizing horizontal breadth, with
vertical and radial dimensions analogous. The almost highlighted per-
formance distribution indicates the computational ability of EyeReal

combinations to highlight the differences. Error bars denote standard deviation.
e, Runtime comparison of EyeReal, NTF and NVD within a sub-second-level
timeframe. Except for the performanceinb and ¢, EyeReal achieves real-time
capability thatis one to two orders of magnitude faster. f, Focal discrimination
curvesacross uniformly sampled depths under the same aperture, from
foreground to background. Each region shows smooth transitionsin clarity
withapeakatits corresponding depth. F-Mregion, aspecific regionbetween
the foreground and midground; M-Bregion, aspecific region between the
midground and background. g, PSNR point-cloud heatmap across the visual
field. Each pointrepresentsarandomly sampled viewpoint, with around
600,000 samplesintotal. Sampling at larger radial distances is omitted
because of consistently high PSNR in those regions. PSNR, peak signal-to-noise
ratio; SSIM, structural similarity index measure.

forarbitrary viewpoints, numerically validating our SBP optimization
solutionwith anultrawide viewing angle well beyond 100° and seamless
motion range that enables completely natural unrestricted content
viewing in large display sizes.

Discussion

The methodology of EyeReal integrates physical principles with an
Al-based mathematical model for dynamically optimal SBP utilization,
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using a neural network with ocular geometric encoding to compute
the optimal light field around the eyes in real time. Although modern
3D display technologies are fundamentally constrained by limited
optical capacity, hindering the concurrent expansion of image scale
and viewing range, EyeReal maximizes the effective use of available
optical information through continuous computational optimization,
thereby enabling a practical coexistence of large imaging size and wide
viewing angles within existing physical limits.

In pursuing wider viewing angles for glasses-free 3D experiences,
prevailing solutions either rely on near-eye devices or adopt complex
optical architectures within mainstream autostereoscopic systems.
By contrast, EyeReal uses an Al-driven strategy in which wide-angle
support is achieved computationally rather than through additional
hardware complexity, enabling direct compatibility with conven-
tional LCD panels and easing deployment on consumer-grade display
and computing platforms. This offers a practical and cost-efficient
pathway towards next-generation glasses-free 3D applications with
both commercial and academic relevance. Notably, the reconstruc-
tion of real light fields of EyeReal with optimized quality around the
eyes and focal parallax eliminates IPD mismatches and VAC, which
are the two primary causes of discomfort in modern extended reality
systems.

The SBP-utilization scheme developed by EyeReal offers a univer-
sal and effective scientific perspective. We believe that this model
of dynamically optimal light-field presentation under limited SBP
remains valid and scalable for achieving large-scale glasses-free 3D
displays within the current optical system capability. Although Eye-
Real currently focuses on optimizing SBP utilization to conceptually
validate a desirable glasses-free 3D display for individual binocular
viewing, the methodology also holds the potential for multi-user
adaptation by integrating techniques such as time multiplexing>**
and directional backlighting"* to address associated challenges.
Although the current-layered display prototype allows for viewing
under ambientlight conditions, integrating field sequential colour?*¢
or mini-LEDs* could further enhance optical efficiency and contrast
for practical deployment. More broadly, the proposed SBP-utilization
solution also shows promise for other light-field display technologies,
such as updatable holography at large scales. This dynamic genera-
tion of optimal light fields ensures a balanced coexistence between
alarge imaging space, high spatial frequency across wide viewing
angles and depth cue perception, despite all within the limited SBP
availability.

The dynamic SBP-utilization solution in combination with physical
principlesand Al-enabled optical computation enables, to our knowl-
edge, the firstlarge-scale demonstration of a real-time 3D display with
seamless ultrawide viewing range, opening an avenue for truly natural
viewing glasses-free 3D displays.
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Methods

SBP-utilization analysis

Owing to inherent SBP scarcity, existing 3D display approaches have
been forced into static compromises, each emphasizing specific
aspects at the expense of others in their display outcomes (see Sup-
plementary Table 1and Supplementary Information for more analysis
and comparison details). Holographic displays, for instance, preserve
complete 3D reconstruction by significantly compressing the dis-
played light field to centimetre-scale regions (about1-2 cm?), ensuring
wide-angle, high-quality optical content but becoming practically
unscalable®. By contrast, automultiscopic displays maintain com-
mon display sizes (about 0.1-0.2 m?) more suitable for natural view-
ing scenarios but must limit their effectual viewing angles. Within
this category, view-dense solutions use multilayer architectures to
provide continuous and realistic optical generation at the cost of
highly restricted viewing zones. Alternatively, view-segmented solu-
tions achieve broad, horizontal viewing angles using single-panel
optics®**152 to discretely spread out available SBP, sacrificing the
stereo parallax across vertical and radial dimensions, as well as the
focal parallax, although this loss of full parallax inevitably compromises
immersion and visual comfort®*°,

Fundamentally, the limited practicality of these existing approaches
arises from their passive use of scarce SBP, attempting to statically
accommodate various viewing scenarios simultaneously. These static
approximations inherently conflict with the extreme scarcity of SBP
itself, and this remains unaltered even with Al enhancement (Supple-
mentary Table 2). Recognizing this scientific constraint, it becomes
clear that a proactive, dynamic use of limited SBP is necessary, that
is, using optical resources precisely where they are most crucially
needed at each moment. In practice, this means reconstructing accu-
rate binocular light fields around target eye positions, as binocular
parallax is the essential basis for human depth perception. Notably,
thisdynamic model does not rely on eye tracking to synthesize virtual
disparities asis commonly done in conventional eye-tracked systems,
as these systems respond only to instantaneous viewpoint positions,
with responses typically exhibiting significant errors due to tracking
noise and random eye movements. Instead, the rational and effective
solution here requires the accurate and consistent generation of real
physical light fields for both binocular viewpoints and their neigh-
bourhoods, with eye tracking primarily serving to guide directional
delivery rather than generating virtual content severely dependent on
tracking precision. Although SBP, in principle, supports this localized
generation, it remains challenging to precisely adapt optical output to
arbitrary and extensive views within the neighbourhood of the eyes.
To address this, we develop a physically accurate binocular geometric
modelling and adeep-learning-based mathematical model that enable
real-time computation of light-field outputs. To this end, EyeReal pre-
cisely adapts optical output to arbitrary binocular positions within
an extensive viewing range, validated by a light-field delivery setup
featuring large-scale imaging, wide-angle viewing and full-parallax
attributes. This dynamic SBP-utilization strategy thereby realizes the
possibility of achieving the long-desired glasses-free 3D display.

Eye camera modelling and calibration

Givenanocular positionin the light-field coordinate system, we use the
pinhole camera model (Supplementary Fig. 3) to simulate the retinal
imaging process of the light field. In general, we align the centre of the
screenwith the centre of the light field where the object is located, and
by default, the eye is directed towards the centre of the light field, which
is the origin of the coordinate system. For standardization, we define
the z-axis of the cameramodel to be opposite to the direction of sight.
Moreover, to simulate normal viewing conditions, we stipulate that
the x-axis of the camerais parallel to the ground on which the object is
situated, consistent with the relative position of the observer and the

object in the same world. Consequently, the y-axis of the eye camera
isthe normal to the plane formed by the z- and x-axes.

We initially get the relative ocular positions captured by the RGB-D
camera. Inthe process of transferring eye positionsinto the light-field
coordinate system, we first obtain their two-dimensional (2D) pixel
coordinates by using alightweight face detector. Combining the inher-
ent camera intrinsic parameters and the detected pixel-level depth
information, we can obtainthe 3D coordinates of the eyesinthe camera
coordinate system. For one eye, this process can be formulated by

-1
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where u.and v, are the pixel-wise positions of the eye; (c,, ¢,) is the opti-
cal centre of the image, which represents the projection coordinates
oftheimage plane centrein the camera coordinate system; f,andf, are
the focal lengths of the camera in the x-axis and y-axis directions; and
X.,Y.and z. represent the transformed camera coordinates.

Then comes the alignment from the real-world eye coordinates to
the digital light-field world. Given the fixed spatial configuration
between the camera and the display setup, this alignment reduces to
estimating a projection matrix M.=[At.] € R***, which transforms
coordinates from the camerato thelight field. Based on the character-
isticof autostereoscopy, we designasimple and convenient calibration
methodbased onthe characteristic of reversible light paths (Extended
DataFig.1). We select N calibration pointsin the light-field coordinate
system, whichalso meet the visual field of the RGB-D camera. We replace
thelight-field images corresponding to the viewpoints with calibration
marks (Supplementary Fig. 4) and provide them as input to the neural
network to generate the corresponding layered patterns. Because the
patterns can form only the best stereo effect at the input viewpoint,
conversely, when the viewer sees the completely overlapping (the
superposed colour is also the thickest at this time) rectangle with one
eyeatacertainangle onthescreen ofthe hardware device, the current
3D eye camera coordinates c; € R® captured by the camera and the
world coordinates w; € R of the calibration points form an one-to-
one correspondence. We solve for M, using least squares regression
(Supplementary Fig. 5) based on K pairs of corresponding calibration
points

K
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where c; € R*and w; € R*denote the ith calibration pointin the camera
and light-field coordinate systems, respectively. Once M. is obtained,
the eye position in the light-field coordinate system, P,, is computed
by homogeneous transformation
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Eye-light-field correspondence

According to the geometric conventions of the above eye camera
model, we can calculate the projection matrix M, = [R.|t.] from the
constructed eye camera coordinate systemto the light-field coordinate
system. As shown in Extended Data Fig. 2a, the centre of the screen is
the origin O of the light-field coordinate system. For general cases, we
assume that all the coordinate systems are right-handed and the ground
plane is parallel to the xOy plane. We can get a pair of trivial vectors
r,andr,alongthe z-axis and x-axis, respectively, based on their special



position relation. In detail, the z-axis of the eye camera coordinate
system is the OP, direction, and the x-axis is parallel to the xOy plane
of the light-field coordinate system

r,=0F, r=0zxr, r,=r,Xr, 7)

Therotation matrix fromthelight-field coordinate systemto the eye
cameracan be constructed from the unit vectors of these three trivial
vectors as its column vectors

T
r r r
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Here ||-||,denotes the £, vector norm applied to these trivial vectors.
And the translation matrix is the vector of eye position

t.=OF.=r, 9

Then we project the light-field images corresponding to the bin-
ocular viewing onto each layer plane (Supplementary Fig. 6). Under
the predefined FOV of the eye camera with a H x W pixel-size imaging
plane, we can first derive the focal length £, in pixel measurement

max(H, W)

Jox = 2tan(FoV/2) (10)

The screen planar positions P, := {(x;, ., z)}|, are hyperparame-
trized. For convenience, we define the dimension of depth to be para-
llel to some axis of the light field, which is the x-axis shown in Fig. 2b,
so that we can determine x; by

n-1

= m(dnear - dfar) + dfar

X (11)

wheretheindexof patternplanesn e i, ..., N}; d,.,.and d;,, denote the
nearest and farthest depth of the light field, respectively. We can deter-
mine the relative coordinates Py, := {(x/, )/, z/)}|i-; at each eye camera
corresponding to the four corner points of each pattern plane:
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Based on equation (4), their pixel coordinates are calculated as
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Here, we compensate for the minus sign for the opposite x-axis
direction of two coordinate systems and let ¢, = W/2 and ¢, = H/2 for
general cases. The 2D differences from the new corner coordinates
Q= 1{(u, u/)}|t, denote the imaging offsets compared with the orig-
inal positions Q, := {(0, 0), (W, 0), (W, H), (0, H)}. In this way, we can
establish the equations of the eight unknowns of the perspective trans-
formation based on these four corner pairs. The solved transformation
matrix represents the 2D correspondences from the patterns to the
eyes.

Neural network architecture

The ocular geometric encoding warps the view images from each eye
camera onto multilayer screens based on binocular poses, establish-
ing geometrically unified normalized projections. The network input
is this set of normalized planar warpings at multilayer depths. Each
warping represents the expectation of luminousintensity solely under
asingle viewpoint. The network decomposes into phase values at each
depththroughthe expectation space of binocular views, which canbe

regarded as theinverse process of equation (3) during a single period.
As the backlight source is uniformly illuminated, the light-field varia-
tion can be mapped to a finite integral of phases within a period. This
makes itsinverse decomposition equivalent to a differentiable hidden
space by successively applying a set of learned 3 x 3 convolutional
kernels, satisfying the fact that the pixel-level phase arrangement not
only meets the expectation through a viewpoint but also isindependent
across the binocular viewpoints. The nonlinear activation used in the
network (thatis, rectified linear unit or ReLU) further filters out nega-
tive phase components through intermediate non-negative screening
during the forward propagation.

For the specific design, the network is a fully convolutional archi-
tecture. It comprises an initial input layer, followed by five down-
sampling blocks and five corresponding upsampling blocks and
concludes with a final output layer. Each block consists of two con-
volutional layers, all using uniform 3 x 3 convolution kernels. Dur-
ing downsampling, max pooling is applied to expand the receptive
field, whereas bilinear interpolation is used in the upsampling stage
to restore spatial resolution. To enable residual learning, skip con-
nections are established between convolutional layers of matching
spatial dimensions across the downsampling and upsampling paths.
The input layer is configured to accept binocular RGB images, result-
ing in a six-channel input. To maintain computational efficiency, the
number of channels at the input layer is set to 32, with the channel
widthincreasing progressively in the downsampling layers according to
the formula 32 x 2/, where i denotes the index of the downsampling
block. By capitalizing on the swift advancements in graphics processing
unit (GPU) computing, the neural architecture embedded with these
lightweight elements can execute computations orders of magnitude
faster.

Structured loss optimization

In spite of the proposed physics-based mathematical model, the
optimization objectives of this Al model are supposed to be elabo-
rated for the accurate light-field approximation. We divide the struc-
tured loss designinto three parts for multi-faceted constraints. The
basicloss functionis used to gauge the consistency of the aggregated
image formed by the superposition of light paths from each viewpoint
based onthe predicted hierarchical phase maps. Here, we model the
data fidelity by ¢, norm, whose sparsity aids in recovering high-
frequency phase details at the edges and contours of the light field,
whereas its outlier insensitivity helps prevent overfitting to specific
viewpoints®?. In detail, we calculate the element-wise difference
between the aggregated result /” € R%*Cfrom the predicted patterns
and the expected ocular light intensity / € R%*¢, where C means
the RGB channel, and we use S, for simplicity to denote the value of
the emitted cross-sectional area F,n d,. The basic loss can be formu-
lated as

1
Lintensity = ? z ||.0' _P||1 (14)
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where ||-||,denotes the £, vector norm applied on the pixel-wise lumi-
nous intensity vector p’ € R¢ and its matching ground truth p.

The normalized planar warpings as inputs reflect only perspective
light intensities from individual viewpoints, and merely enforcing
intensity consistency with ground truth cannot effectively constrain
the mutual exclusivity between the binocular views. View-specific
information fromone eye inevitably leaks into the other as noise, which
can be mitigated through mutual-exclusion constraints. Following the
structural assessment for image quality>, the second loss function
physically considers the local contrast and structure of the emitted
light field and sets their product as the whole mutual-exclusion meas-
urement, which should be approximated to 1. This second 10SS £, ex
can be formulated by
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which establishes aconnection between the variances g;,, g;and covar-
iance gy, of the aggregated result and the target image. Here, pand q
represent the relative importance of contrast and structure, respec-
tively. We make them both equal to 1, arguing that these two aspects
should be considered equally. fisasystematic error that prevents the
computation of 0. For simplicity, we assume & = 2§, = £. By constraining
the differencesin the pixel distribution and fluctuation trendsinlocal
regions of bothimages, the phase approximation for the current view-
point will be attentive to the noise artefacts coming from the other
viewpoints and will smooth and erase them.

Owingtothe periodicity of the light phase, there are infinitely many
trivial but not generalized solutions in model training because of the
possibility of falling into local optimal fitting. Therefore, in the early
stage of model training, we calculate the frustum element-wise differ-
ence Ly,yireq from pure black patterns, which is the starting point of
thefirst positive period, forcing the model to converge within the low-
est frequency representation space, so that the phase diagram of
layered patterns also conforms to the RGB distribution. The auxiliary
loss function can be listed as

a
Llowfreq=k— z Z ”¢d”1

(16)
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Here, @ represents the total phase set of all light paths in the inter-
section area of the current frustum field F,and the planar depth d.
The auxiliary regularization term will be multiplied by a factor a that
decays exponentially with training time as

1-4
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where yis the proportion of the currentiteration to the total. This will
beOatapresetearlier step for the complete elimination of suppression
so that they will not be affected in the middle and late stages of model
training convergence.

Ablation studies of these optimization components with visualiza-
tions are conducted to further understand how EyeReal functions in
optical display and its underlying behaviours. The basic loss empha-
sizing basic intensity consistency proves crucial for maintaining
fidelity, whereas the exclusivity measure loss enhances structural
consistency by improving the noise resistance from the other view-
point Extended Data Fig. 3a. Additionally, we visualized the ablation
results of the low-frequency regularization loss Extended Data Fig. 3b,
showinssgits effectivenessin guiding the network to focus on universal
phase distributions rather than counterintuitive overfitting patterns.
Further visualization of the network-computed phase patterns at vari-
ous depths shows distinct depth-aligned highlights in each pattern
Extended DataFig.3c. These attentive areas show that the neural net-
work with structured optimization has accurately learnt an effective
representation of local depth information, which is consistent with
the physical depth structure of the light field.

Light-field dataset construction

A key requirement for a light-field dataset suitable for realistic view-
inglies in the inclusion of stereo camera pairs captured from varying
viewpoints while focusing on the same spatial point. However, these
data characteristics are not directly available in existing public light-
field datasets, as their multi-view data are limited to pixel-level differ-
ence, which fails to adequately simulate the way human eyes perceive
scenes. To ensure the robust generalization and effectiveness of our
learning-based mathematical model across diverse real-world view-
ing scenarios, we have meticulously developed a large-scale dataset

characterized by complexity and diversity. For the generalization
basis, the foundational component of our dataset focuses on captur-
ingabroad spectrum of object geometries and appearances. We have
incorporated alarge assortment of geometrically richand uncommon
objects from uCO3D* for its distinctive variety of object collections.
We curated a collection of 3,000 diverse objects and generated 500
stereo image pairs per object, as the generalized priority is the num-
ber of scenes involving different objects rather than the number of
viewpoints. This part serves as a robust basis for ensuring diversity in
colour, texture and shape. To further enrich the complexity and scale
of the dataset, we integrated the additional selected representative
scenes fromrelevant studies**°*¢"*°and online resources, each com-
prising thousands of stereo image pairs. These supplemental scenes
highly broaden the environmental complexity and spatial scales of the
dataset, covering scenarios ranging from synthetic virtual environ-
ments to real-world captures. The scenes vary substantially in scale,
encompassing intricate room-level interiors and expansive city-level
landscapes. Moreover, they exhibit diverse lighting conditions and
reflective materials, including indoor artificial illumination, out-
door natural lighting and scenarios with dim or subdued illumina-
tion. Experimental results validate that the model trained with this
rigorously constructed dataset achieves remarkable generalization
ability, including various unseen scenes and unknown head poses,
maintaining inference speed and output quality without any notable
compromise.

We develop adata preparation approach for light fields to achieve a
more appropriate viewing simulation, and we use the polar coordinate
system in 3D space to facilitate data configuration. For general cases,
people stand facing the screen for viewing, ensuring that the line con-
necting their eyes remains parallel to the ground, thus perpendicular
to the shorter side of the screen. As shown in Extended Data Fig. 2b,
we define the screen-to-eye direction as the x-axis, sample multiple
depth planes alongthis axis, and designate the horizontal and vertical
axes as the y-axis and z-axis, respectively. We initiate a front viewpoint
cloud shaped like a truncated frustum, in which each point signifies the
midpoint between the eyes. The distance from the centre to each eye
isdenoted as R, the angle from the midpoint to the z-axis as ¢ and the
angle to the y-axis as 6. Thus, assuming the interpupillary distance is
d, we can derive the coordinates for each point in the Cartesian coor-
dinate system as follows:

r=.(Rsing)®+(d/2)?, 6:arctanﬁ (18)
x,=rsin(0-6), x;=rsin(0+0) 19)

). =rcos(6-6), y=rcos(6+6) (20)
z,=z=Rcos@ (21)

Owing to scenario-specific variations in dataset acquisition and
inconsistencies in the spatial dimensions of light-field display sub-
jects,boththe scaling factor that maps the physical world to the digital
light-field domain and the longitudinal thickness of the light-field vol-
ume exhibit significant variability. Specifically, we denote the scaling
factor as s, which converts the physical screen width of the light field
toits corresponding digital representation, and the physical depth
extentofthe light field as d,; ., which varies with subject distance across
scenes (Supplementary Table 3). Before this, we applied acompensa-
tion matrix M,,,, to each scene to standardize the orientation of the
reconstructed light fields (Supplementary Table 4). This transforma-
tionrealigns the originally unstructured coordinate systems such that
the principal viewing axis of the target object consistently faces the
positive x-direction.



Training and implementation details

Thenetworkwastrained on our constructed light-field dataset using 32
NVIDIA TeslaA800 GPUs for 40 epochs. Alearning rate warm-up strat-
egyisused duringthefirstepoch, followed by a cosine decay schedule
for the remaining training period. The batch size is set to eight, com-
prising four object-level and four scene-level samples in each batch to
preserve abalanced learning signal across both fine-grained and global
spatial contexts. Given the relatively smaller size of the scene-level
dataset, itis cyclically reused once fully traversed to ensure continued
exposure and a balanced contribution to the optimization process.

To capture the diversity of real-world 3D structures and enhance
the ability of the generalization of the model, we construct a training
corpus that integrates both object-level and scene-level data under
heterogeneous geometric and photometric conditions. Specifically,
werandomly sample 3,000 object-level scenes from the uCO3D dataset
andinclude15additional scene-level environments reconstructed from
publicly available sources. The validation set comprises 150 unseen
object-level instances and 2 unseen scene-level environments. For
the training dataset, each object-level scene is rendered into 500 ste-
reo image pairs from diverse, randomly sampled viewpoints. Each
scene-level environment contributes 1,500 stereo pairs, resulting in
awide coverage of spatial configurations and view-dependent visual
appearances. In the validation dataset, each object-level instance is
rendered into 20 stereo pairs, whereas each scene-level environment
contributes 1,500 pairs, yielding a total of 6,000 stereo images for
evaluation.

Forthe ablation study, we curated a training set of 6,000 stereo pairs
spanning 150 object-levelinstances with 20 pairs each and 6 scene-level
environments with 500 pairs each. We trained three model variants,
each using only the intensity loss, only the mutual-exclusion loss and
acombination of both, and evaluated them quantitatively on the vali-
dation set. To evaluate generalizability, we constructed equivalent
datasets fromidentical scenes but with perturbed head poses. Random
perturbations of up to +10° were applied independently across yaw,
pitch and roll axes, introducing pose diversity to simulate realistic
viewing variations. For global-scale spatial performance compari-
son, we constructed animage dataset with 3,000 pairs across multiple
distance-orientation combinations. For the IVD benchmark, we sam-
pled 1,400 pairs at 20 cmintervals from 10 cm to 150 cm. For the NVD
benchmark, we categorized 1,600 pairs by viewing angles, including
frontal and oblique perspectives and distances across four intervals
spanning 30-130 cm. We designated 30-70 cm as the near range and
90-130 cm as the far range.

Forhuman eyes, the part beyond 30° from the fixation pointis called
the peripheral vision, commonly known as the afterglow of the eye,
whichisactually therange that the humaneyeisinsensitive. Therefore,
whenwebuild the eye cameramodel, we setits FOVto40°toachievea
better sense of visual presence. We set ¢ € [60°,120°], 0 € [40°, 140°]
and R €[0.3,1.5] in metres to adapt to the normal viewing situation.
We use an efficient neural rendering approach® to generate abundant
training data from 3D targets. For the binocular localization part, we
use the lightweight face detector® built in OpenCV to obtain each
eye position. The variation constant £ of the mutual-exclusion loss
that avoids system errors caused by denominators of zero is formu-
lated as €= (kL)?, where k = 0.003 and L denotes the dynamic range of
pixels, which is normalized as 1. The suppression cancellation time
ratio of rin the low-frequency loss is set to 0.3. All experiments are
evaluated on inputs with a resolution 0f 1,920 x 1,080 pixels, and we
use a single NVIDIA RTX 4090 as the algorithm execution GPU for
practical inference.

Hardware design of the display system
The display prototype for real-world demonstration (Extended Data
Fig.7) uses a BOE TFT-LCD with aresolution of 1,080 x 1,920 as the

screen used for light-field display, and the pitch of one LCD pixel is
0.27 mm. The effective physical imaging area is 518.4 mm x 324 mm,
andtheactual physical size is 528 mm x 337.9 mm, with amanufacturing
error of £0.7 mm. We attached orthogonally oriented polarizing films
tothe front of the frontmost screen and the back of the rearmostscreen
togenerateapolarized light field. The screen uses a white light source
asthebacklight source. The RGB-D camera we use is the Microsoft Xbox
Kinect V2. Its colour camera has aresolution 0f1,920 x 1,080, and the
depth camerahasaresolution of 512 x 424 with adepth measurement
range of 0.5-4.5 m. For the hardware, we use acrylic plates 5 mm thick
tofixandalign eachscreen, and aluminium profiles as theload-bearing
structure. The conceptual display for demonstration use N=3 LCD
screens witha3-cmlayeredinterval distance and transmit theimaging
information using the HDMI (high-definition multimedia interface)
interface protocol, run on asingle NVIDIARTX 4090 GPU.

Data availability

All data generated during this study, including the main results and
the training/testing procedures, are available in the paper and its Sup-
plementary Information. Figures were generated and processed using
Python, Matplotlib, Microsoft PowerPoint and Adobe Photoshop. Our
light-field dataset is available at GitHub (https://github.com/Weijie-
Max/EyeReal). Publicly available datasets or models were used for the
following figures and supplementary materials: Fig. 2a, https://graph-
ics.stanford.edu/data/3Dscanrep; Fig. 2b, https://www.thingiverse.
com/thing:2494680; Fig. 3a, Extended Data Fig. 3c and Supplemen-
tary Videos 1 and 2, https://www.fab.com/listings/4898e707-7855-
404b-afOe-a505ee690e68; Fig. 3b, https://drive.google.com/drive/
folders/1lvhOmSI7v29yaGsxleadcj-LCZOE_WEWSB; Fig. 3¢, https://
blendswap.com/blend/23962; Fig. 3d and Extended Data Fig. 3b,
https://drive.google.com/drive/folders/1cK3UDIJqKAAmM7zyrxRYVF
JOBRMgrwhh4; Fig. 3e,f, Supplementary Videos 3 and 4 and Supple-
mentary Fig. 6, https://blendswap.com/blend/17994; Extended Data
Fig. 4a, https://blendswap.com/blend/23125; Extended Data Fig. 4b,
https://blendswap.com/blend/8261; Extended DataFig. 6a,d, https://
github.com/Phog/DeepBlending; Extended DataFig. 6b, https:/www.
tanksandtemples.org; and Extended DataFig. 6c, https://github.com/
google-research/multinerf.

Code availability

The computer code supporting the findings of this study is available
at GitHub (https://github.com/WeijieMax/EyeReal). Code related to
Fig. 3a, Extended Data Fig. 3c and Supplementary Videos 1and 2 is
available at GitHub (https://github.com/city-super/MatrixCity).
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View-dependent calibration marks

Light-field
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the corresponding pointinlight-field space.

RGB-D coordinate

6’ Coincident position

Extended DataFig.1|The frustum-guided calibration design. We leveragea
frustumin 3D vision for calibration guidance, since it denotes the perspective
viewing volume and describes the direction and extent of visible 3D space.
Calibrationis achieved when a precise alignment is observed, marked by the
lines appearing darkest and thickest, indicating the ocular position aligns with
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Extended DataFig.2|Detailed ocular geometry of our light-field setting.

a, Geometricrelationship between the eye-camera and light-field coordinate

systems, with the screen center O as the origin. The z-axis of the eye-camera
system points to P, and its x-axis is parallel to the xOy plane of the light-field
system. b, Geometricillustration of constructing the light-field dataset based

Left eye

ona.Withaconstantinterpupillary distance, the eye positions are uniquely
defined by the midpoint of their connecting line. A polar coordinate systemis
used to model natural viewing configurations, forming a truncated

spherical-cone point cloud.
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Extended DataFig.3|Physicalinterpretability and visualization ofEyeReal.  L,,,;.,.C, Visualization of computed layered phase patterns. Theresultsreveal
clearlayer separation, with each layer concentrating depth information from

a, b, Ablation study of EyeReal’s physics-based loss functions. ashows the
itssurrounding depth neighborhood.

contribution of eachloss component. Error bars mean the standard deviation.
bvisualizes the phase pattern with (w/) and without (w/o) the application of
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Extended DataFig. 4 |Evaluation of EyeReal on additional computer-rendered scenes. a, Autostereoscopicresults ofanindoor ficus tree with overlapping
stems. b, Autostereoscopicresults of anantique chair with layered armrests.
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Extended DataFig. 5| Evaluation of EyeReal on additional real-world ¢, Autostereoscopic results of atoy dozer onadining table withintricately
captured scenes. a, Autostereoscopic results of acomputer deskina child’s textured placemats®®. d, Autostereoscopicresults of aroom floor scattered
roomalongside abookshelf filled with vividly colored children’s books*. with colorful educational toys and furniture®.

b, Autostereoscopic results of a truck parked on an outdoor street™.
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Extended DataFig. 6 | Evaluation of EyeReal on large-scale real-world captured scenes. a, b, Autostereoscopic results of the Wukang Mansion and the China
ArtMuseum, twoiconic landmarks in Shanghai.
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Extended DataFig.7| The physical device of autostereoscopic display prototype. The white-light sourceisanLED array enclosed within the device,and
orthogonal polarizer films are applied to on the front of the top screen and the back of the bottom screen in the LCD-panel stack.
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