
76  |  Nature  |  Vol 648  |  4 December 2025

Article

Glasses-free 3D display with ultrawide 
viewing range using deep learning

Weijie Ma1,2,3, Zhangrui Zhao2,4, Canyu Zhao5, Wanli Ouyang2,6 ✉ & Han-Sen Zhong2,3 ✉

Glasses-free three-dimensional (3D) displays provide users with an immersive visual 
experience without the need of any wearable devices1,2. To achieve high-quality 3D 
imaging, a display should have both large linear dimensions and a wide viewing angle. 
However, the trade-off between spatial extent and bandwidth of optical systems, the 
space–bandwidth product, conventionally constrains the simultaneous maximization 
of the two. The two most common approaches to 3D displays are holographic3,4 and 
automultiscopic1,5,6, which, respectively, sacrifice either scale or viewing angle. 
Recently, some implementations enhanced by artificial intelligence have shown 
directions to mitigate these constraints, but they still operate within a set space–
bandwidth product7,8. As a result, it remains challenging to fabricate large-scale 
wide-angle 3D displays9. Here we report the realization of a large-scale full-parallax 3D 
display with seamless viewing beyond 100°, maintained at over 50 Hz and 1,920 × 1,080 
resolution on a low-cost light-field delivery setup. This device, called EyeReal, is realized 
by accurately modelling binocular view and combining it with a deep-learning real-time 
optimization, enabling the generation of optimal light-field outputs for each of the 
eyes. Our device could potentially enable applications in educational tools, 3D design 
and virtual reality10,11.

Delivering a three-dimensional (3D) sensation experience without 
additional wearable devices, known as glasses-free 3D or autostereo-
scopic display, can revolutionize human interaction with the digital 
world1,2,7. This aligns with the vision of the ‘ultimate display’11,12, in which 
light fields are reproduced at natural ranges with a wide viewing angle 
and large imaging size. Achieving this vision has been fundamentally 
constrained by the space–bandwidth product (SBP), a physical quantity 
that encapsulates the inherent coupling between spatial resolution 
and angular diversity in optical systems, and is ultimately bounded 
by the Lagrange invariant13.

The development of autostereoscopic display technologies has 
highly progressed through two complementary paths, focusing 
either on compact, updatable holography3,7,14–18 or automultiscopic 
architectures with preset views1,5,6,19–24. The former enables precise 
light-field control but remains restricted to centimetre-scale displays 
(Fig. 1a). Conversely, automultiscopic displays scale to desktop dimen-
sions but sacrifice continuity or adaptability beyond preset views 
(Fig. 1b,c). These approaches, alongside decades of exploration into 
diverse display technologies9, have advanced the state-of-the-art while 
exposing the intrinsic challenges posed by passive, limited SBP utiliza-
tion. Recent efforts7,8,17,25 have extended these technologies through 
deep-learning-based algorithms, striving to mitigate architectural 
constraints and optimize display outcomes. However, these advances 
largely remain within existing frameworks and continue to rely on this 
static and partial use of available SBP. This intrinsic limitation shows 
a persistent inability to achieve both scalability and fidelity at once, 

forcing trade-offs across display size, viewing angle and parallax com-
pleteness. Although previous developments have advanced the field, 
these constraints underscore the need to rethink SBP utilization and 
explore new models for desirable autostereoscopic displays.

Here we present EyeReal, the first proactive solution that, to our 
knowledge, optimally exploits the limited SBP in real time to achieve a 
desktop-monitor-scale full-parallax glasses-free 3D display with seam-
less ultrawide viewing ranges. Powered by a deep-learning engine that 
dynamically uses SBP around the eyes (Fig. 1d), EyeReal preserves a 
holography-level angular range while enlarging the display size by more 
than 103 times. The visual field extends well beyond 100° viewing and 
supports omnidirectional seamless imaging transitions, demonstrated 
through a prototype that can deliver real light-field outputs. This stems 
from the computational approach that combines physically accurate 
binocular modelling and artificial intelligence (AI) to enable real-time 
quality optimization around the eyes, whereas light-field hardware can 
serve as a platform for this effective and continuous SBP utilization. 
EyeReal delivers a full-parallax 3D experience, that is, stereo parallax, 
motion parallax and focal parallax, meeting all criteria for standard 
autostereoscopic displays26. The real-time light-field synthesis for any 
binocular viewing runs at more than 50 Hz with 1,920 × 1,080 spatial 
resolution on consumer-grade liquid-crystal display (LCD) stacks, elimi-
nating the mandatory need for specialized optics such as spatial light 
modulators or lens arrays. This groundbreaking SBP-use exploration, 
realizing seamless, ultrawide large-scale 3D with low-cost hardware, 
lays a practical foundation for next-generation displays and unlocks 
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transformative applications in digital entertainment, smart education, 
training and industrial design10,11,27.

Dynamic SBP utilization
We start with our paradigm shift in real light-field generation, which 
serves as the physical foundation for SBP-utilization maximization that 
accurately aggregates optimal information around the eyes over time. 
As established in Fourier optics, SBP describes the information capac-
ity of an optical display system28 and is mathematically expressed as29

S
A

δ δ
Au u= = 4 (1)

x y
x y,max ,max

where A denotes area, δx and δy are the pixel dimensions, ux,max and uy,max 
are the bandwidth limits along the x-axis and y-axis in accordance with 
the Nyquist sampling theorem. For a system resolution of Nx × Ny and 
area Lx × Ly, this simplifies to S = NxNy. Considering the one-dimensional 
scenario, for a light field with maximum bandwidth umax and wavelength 
λ, the field of view (FOV) is given by30

λuFOV = 2 arcsin( ) (2)1D max

High-resolution imaging indicates high spatial frequencies28,  
resulting in a tiny cross-sectional area of optical information flux, in 
turn, leading to a narrow viewing angle in 3D displays. For instance,  
a 24-inch 1,920 × 1,080 display with 2.1 million SBP yields a tiny FOV  
of about 0.1° × 0.1° at 532 nm green light wavelength. An entire light 

field with only 20 cm × 20 cm would require 565G SBP, far exceed-
ing the limits of current display technologies, even with advanced 
light-emitting diodes (LEDs) capped at gigapixel resolutions31. Despite 
efforts32,33, progress to enlarge SBP remains minimal compared with 
its astronomical requirements, and recent studies34,35 still declare its 
inadequacy for practical applications.

Given this, to sustain the optimal use of inherently scarce SBP, we 
exploit the response interval of the human brain to perspective switch-
ing, optimizing the optical information flux around both eyes in real 
time. We proactively aggregate the limited, clearest region of a light 
field into the binocular centres together with their neighbourhoods at 
each timestamp. Accordingly, to adapt this strategy to arbitrary view-
ing directions over an extensive physical range, it requires the precise 
formulation of authentic stereo parallaxes in full spatial dimensions 
(horizontal, vertical and radial), aligned with binocular demands. The 
key lies in enabling optical aggregation to match the actual frustum 
field (the perspective viewing volume defined by the eye or virtual 
camera36; see schematic in Extended Data Fig. 1), rather than relying 
on idealized parallel-eye translation disparities commonly assumed in 
modern light-field displays5,8,25. This requires physically accurate bin-
ocular geometric modelling together with AI featuring robust, arbitrary 
generalization and real-time computation abilities, enabling light-field 
output adaptation for arbitrary binocular positions (see the Methods 
for more analysis and discussion).

In practice, under the actual viewing geometry, we establish both 
eyes as pinhole camera models oriented towards the light-field centre 
and parallel to the ground plane (Fig. 2a and Extended Data Fig. 2). 
Six-dimensional (6D) pose matrices are then derived to establish the 
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Fig. 1 | Schematic comparison of display outcomes across various 
autostereoscopic models and EyeReal under their use of limited SBP. Each 
colour represents an effectual viewpoint. Considering that several models lack 
certain parallax types in other dimensions, we select the horizontal dimension 
for illustration. a, Holographic displays, representative of small-scale 3D 
displays, offer wide and continuous 3D viewing angles within a near-eye range 
because of extreme space compression. The display scale is limited to the square 
centimetre level and not suitable for natural human viewing, often requiring 
close, monocular observation. b, View-segmented automultiscopic models, 
with tailored optics, artificially scatter SBP into effectual viewpoint individuals 
on common display sizes. Each viewpoint is reused across segments, piecing 

together a broad but discrete viewing range. c, View-dense automultiscopic 
models prioritize realism by gathering scarce SBP into a fixed, farther viewing 
zone with local continuity. The trade-off is an extremely narrow, effectual 
imaging range, nearly immovable for the viewer. d, EyeReal revolutionizes SBP 
utilization by dynamically maximizing its use, precisely to where they are most 
needed at each moment, and transmits the limited optical information into the 
neighbourhood of eyes through real-time optimal light-field generation. Powered 
by the combination of physically accurate binocular modelling and artificial 
intelligence, EyeReal generically accommodates arbitrary, continuous viewing 
across an ultrawide range, requiring no customized optics.
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correspondences between the light field and the binocular imaging 
planes through the pinhole imaging and perspective transforma-
tion (Fig. 2d; see Methods and Supplementary Information for more 
geometry, computation and calibration details). This will serve as the 
physical modelling basis for the ocular geometric encoding for any 
binocular viewing. Through the physical simulation that conforms to 
biological principles, the light-field variations induce geometrically 
consistent binocular parallax, forming the computational basis for 

generating continuous motion parallax across an extensive spatial  
range.

Light-field generation
We adopted a light-field delivery setup as the display prototype (Fig. 2b 
and Supplementary Fig. 1) for practical validation of the proposed 
SBP-utilization solution. Leveraging the formulation for real-time 
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Fig. 2 | EyeReal approach to light-field generation. a, Setup diagram for the 
real-world ocular modelling in light-field space. This setup follows the general 
principles governing how humans perceive objects located at the centre of the 
light field. b, The display prototype of EyeReal for a light-field delivery setup.  
It simply features a stacked array of liquid-crystal panels without additional 
tailored or complex optics. Each panel includes a colour filter, a liquid-crystal 
layer and a thin-film transistor. The entire stack with an RGB-D sensor is 
positioned between orthogonally oriented polarizers and illuminated by a 
white light source. For clarity, the in-device 3D content is shown separately.  
c, Optical modulation based on multilayer liquid-crystal phase control. The 
polarized light passes through multiple liquid-crystal layers, each introducing 
a pixel-specific phase computed by EyeReal. The final emitted intensity follows 

Malus’s law, enabling controlled light modulation in the ocular frustum. 
Here, we omitted the orthogonally oriented polarizers for simplicity. d, We 
reconstruct the spatial correspondence between human eyes and the light field 
under real-world viewing conditions. This enables precise characterization of 
binocular geometric information and extraction of the target visual imagery 
for display. e, The retinal images from eye camera imaging are decomposed 
into layered phase patterns by a lightweight fully convolutional network with 
multi-scale skip connections. Binocular poses are embedded using ocular 
geometric encoding. Trained with structured losses, the network outputs 
precise phase patterns and their frustum aggregation under Malus’s law yields 
the expected display results. Model of a rabbit created by Stanford University 
Computer Graphics Laboratory and adapted with permission.
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optimal light-field computation, EyeReal shifts the display function-
ality primarily onto the computational load of the algorithm, freeing 
the hardware from excessive burden. Its prototype requires only a 
multilayer light-field display structure that delivers realistic light fields 
aligned with natural perspective cues, without the need for additional 
complex or custom optical components. Here, we use the phase varia-
tion to encode the optical information within different depth regions 
of the light field, which is more optically efficient compared with inten-
sity modulation because of its multiplicative attenuation22. Following 
Malus’s law (Fig. 2c), the luminous intensity I of the emitted light field, 
after backlighting the liquid-crystal stack positioned between polar-
izers, can be represented as


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where dk denotes the nearest planar depth and Ft the current frustum 
field; l represents an emitted light ray in the frustum field, and I0(l) is 
the original intensity of l produced by the backlight through the rear 
polarizer; D is the set of all depth samples; and ϕd is the intersection 
phase of l and the optical pattern at depth d.

We develop the optimal light-field computation based on the bin-
ocular viewing as a learnable phase decomposition model with ocular 
geometric encoding (Fig. 2e). The retinal image through the crystalline 
lens is situated in the pixel coordinate system of the eye, which is not 
the most direct physical information for depth planes in the light-field 
coordinate system. The ocular geometric encoding introduces a reverse 
perspective transformation through the 6D ocular pose to uniform 
binocular images as geometrically normalized planar warpings (see 
mathematical details in the Supplementary Information), which facili-
tates the subsequent learnable decomposition by this geometric prior 
and embodies the system with a view-agnostic capability for dynamic 
display. Then we train a lightweight convolutional neural network to 
efficiently compute optical patterns based on the planar warpings, opti-
mized by structured optical loss functions (Extended Data Fig. 3; see 
the Methods for more architecture, optimization and training details).

Experimental results
A desirable autostereoscopic display hinges on several essential per-
ceptual attributes, including stereopsis (which naturally engages con-
vergence), movement support and accommodation26. Among these, 
ideal movement support corresponds to continuous motion paral-
lax, enabling seamless transitions for immersive 3D perception. We 
first assessed the ability of EyeReal to generate binocular parallax by 
acquiring multi-scale light-field datasets and evaluating the resulting 
autostereoscopic effects. For computer-generated content, we evalu-
ated both object-level (Extended Data Fig. 4a,b) and scene-level (Fig. 3a) 
reconstructions. A comparable assessment on real-world captures 
covered similar scales, from everyday scenes (Fig. 3b and Extended 
Data Fig. 5a–d) to wide-area landmarks (Extended Data Fig. 6a,b). The 
consistent high-quality binocular outputs across all scenarios indi-
cate the effective parallax synthesis ability of EyeReal, unrestricted by 
specific viewpoints and positions. Beyond basic binocular synthesis, 
we assessed the ability of EyeReal to generate the full spatial range of 
stereo parallax dimensions necessary for perceptually complete 3D 
viewing. Whereas existing large-scale autostereoscopic solutions have 
to sacrifice certain parallax dimensions due to inherent SBP constraints, 
EyeReal sustains consistent output across motion directions and spatial 
trajectories. Under diverse multi-directional inputs, it exhibits highly 
stable, view-consistent predictions (Fig. 3c and Supplementary Videos 1 
and 2), covering horizontal, vertical and radial dimensions. These out-
puts are generated in real time (Fig. 4e and Supplementary Video 4), 
enabling fluid motion adaptation across arbitrary spatial directions. 
The focal stack results under the same aperture (Fig. 3d) show that 

EyeReal supports focal parallax with depth-dependent presentation 
across different focal distances. The full-parallax support with real-time 
computational responsiveness suggests the suitability of the proposed 
AI-enabled dynamic SBP-utilization method for enabling glasses-free 
3D displays under natural viewing conditions across broad spatial and 
content ranges.

Beyond algorithmic simulations, the practical 3D display abilities of 
EyeReal were evaluated through a case-specific experimental valida-
tion, in which a concrete light field was reproduced using the display 
prototype (see Methods and Extended Data Fig. 7 for physical hard-
ware setup). A comprehensive series of photographs was captured to 
characterize all aspects of the 3D display performance within a uni-
fied scenario, enabling a holistic assessment. The left and right eye 
views demonstrated discernible visual separation and clear structural 
delineation on the physical device (Fig. 3e, left, and Supplementary 
Videos 1 and 2). For omnidirectional viewing, view consistency and 
fidelity remain stable under multi-dimensional spatial motions in the 
visual fields (Fig. 3e, right, and Supplementary Video 3). The physi-
cal focal evaluation showed clear depth selectivity, with front focus 
(Fig. 3f, left) sharpening proximal objects and blurring the background, 
whereas rear focus (Fig. 3f, right) brought distant elements into clar-
ity while softening near ones. These results indicate that the display 
of EyeReal exhibits genuine focal discrimination (Supplementary 
Fig. 2) instead of depth-agnostic virtualization, helping to mitigate 
vergence-accommodation conflict (VAC)37,38, a common concern in 
extended reality. Moreover, we demonstrated real-time rendering of 
dynamic content (Supplementary Video 4), reflecting the superior 
speed enabled by AI-empowered computation and showcasing its 
promising application potential. These real-world demonstrations 
using merely consumer-grade components substantiate the theo-
retical advantages of EyeReal in physical practice and its feasibility 
for practical application.

Benchmarking
The inherent scarcity and passive use of SBP have confined modern 
glasses-free 3D displays to accommodating effectual viewpoints under 
specific controls, with these controls manifesting across multiple spa-
tial granularity. Although small-scale solutions, such as holographic 
displays, seem impractical for real-world applications, this fundamen-
tal constraint persists in large-scale displays, regardless of whether 
adopting a view-segmented or view-dense automultiscopic choice. 
Achieving consistent performance across both locally and globally 
varying scales remains an important benchmark for enabling ideal, 
unrestricted 3D viewing. Modern view-segmented automultiscopy 
uses optical-path alterations with tailored flat panels, yielding mul-
tiple viewpoint-reused segments. This shared interval projection, as 
characteristic of flat-panel displays, marginally extends the viewing 
angle but introduces view inconsistency. In detail, each eye has only 
one effectual viewpoint within its tiny proximity, and other regions 
must approximate parallaxes through perspective transformations 
of that viewpoint. This approximation is observed to be highly limited 
(Fig. 4a left), with a high-quality range (<20 mm) even smaller than the 
eye diameter (approximately 25 mm). These displays with predefined 
viewing segments are prone to mismatches between the preset eye 
position of the system and the actual interpupillary distance (IPD), 
causing noticeable visual inconsistencies and distortion-induced 
discomfort39,40 (the large bluish area in Fig. 4a, left). Notably, this also 
explains why typical tracking-based directional displays41 suffer from 
the same issue, as their effectiveness is confined to the instantaneously 
tracked viewpoint rather than the broader neighbourhood of eyes, 
leaving them fragile to detection errors and natural eye movements. 
By contrast, by optimizing the light-field generation around the eyes, 
EyeReal ensures high-quality consistency and variable-motion toler-
ance over a wide area surrounding the eyes (Fig. 4a right), providing a 
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robust foundation for immersive 3D viewing. EyeReal further remains 
robust on unseen scenes and new head poses, sustaining stable render-
ing quality across viewing variations (Fig. 4b).

Symmetrically, the view-dense model uses SBP in a fixed, narrow 
viewing zone, in which the effectual viewpoint densification ensures 
smoothness and realism within this confined area. This approximation 
relies on the overly idealized assumption of parallel eyes that simpli-
fies binocular parallax to mere shifts but becomes highly challenged 
where parallax effects feature non-negligible rotational deformations, 
such as closer viewing distances or over-oblique directions. Existing 
approaches based on layered light-field displays with different com-
putational techniques, including iterative-based view-dense (IVD) 
methods5,21,42 based on non-negative tensor factorization (NTF)43 
and neural-based view-dense (NVD) advances8,25, fail to generalize 
beyond their specialized viewing scenarios (Fig. 4c,d), particularly in 

closer viewing ranges. By comparison, EyeReal, with precise physical 
modelling of any binocular viewing, demonstrates superior perfor-
mance across all ranges of the visual field. This indicates that, without 
altering the optical design or introducing additional computational 
mechanisms compared with the above approaches, the observed 
advancements of EyeReal stem from the proposed effective use of 
SBP. Moreover, EyeReal achieves real-time runtime speed while main-
taining high performance, yielding a speed improvement of one to two 
orders of magnitude in sub-second ranges compared with previous 
representatives (Fig. 4e). The average frame rate of the model plus 
binocular imaging without whistles and bells such as quantization 
and specialized-operator acceleration was found to be 50.2 frames 
per second. This combination of local-global consistency in high per-
formance and low latency validates the effectiveness of the proposed 
SBP-utilization solution. Beyond the spatial performance characterized 
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specific time point (left) with perspective-indicating marks, and sequential 
display shots of this car (right) under varying spatial positions. The focal 
demonstration of this car (f), illustrating front focus (left) and rear focus (right) 
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Nature  |  Vol 648  |  4 December 2025  |  81

at both local and global scales, the depth perceptual continuity of Eye-
Real was further evaluated by measuring focal discrimination across 
various depths, which are not limited to the optical layer planes and 
showing smooth transitions with clear peaks at their corresponding 
focal depths (Fig. 4f). At a deeper level, we quantitatively any-view per-
formance across the entire visual field (Fig. 4g) by randomly sampling 
extremely dense point clouds, emphasizing horizontal breadth, with 
vertical and radial dimensions analogous. The almost highlighted per-
formance distribution indicates the computational ability of EyeReal 

for arbitrary viewpoints, numerically validating our SBP optimization 
solution with an ultrawide viewing angle well beyond 100° and seamless 
motion range that enables completely natural unrestricted content 
viewing in large display sizes.

Discussion
The methodology of EyeReal integrates physical principles with an 
AI-based mathematical model for dynamically optimal SBP utilization, 
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the foreground and midground; M–B region, a specific region between the 
midground and background. g, PSNR point-cloud heatmap across the visual 
field. Each point represents a randomly sampled viewpoint, with around 
600,000 samples in total. Sampling at larger radial distances is omitted 
because of consistently high PSNR in those regions. PSNR, peak signal-to-noise 
ratio; SSIM, structural similarity index measure.
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using a neural network with ocular geometric encoding to compute 
the optimal light field around the eyes in real time. Although modern 
3D display technologies are fundamentally constrained by limited 
optical capacity, hindering the concurrent expansion of image scale 
and viewing range, EyeReal maximizes the effective use of available 
optical information through continuous computational optimization, 
thereby enabling a practical coexistence of large imaging size and wide 
viewing angles within existing physical limits.

In pursuing wider viewing angles for glasses-free 3D experiences, 
prevailing solutions either rely on near-eye devices or adopt complex 
optical architectures within mainstream autostereoscopic systems. 
By contrast, EyeReal uses an AI-driven strategy in which wide-angle 
support is achieved computationally rather than through additional 
hardware complexity, enabling direct compatibility with conven-
tional LCD panels and easing deployment on consumer-grade display 
and computing platforms. This offers a practical and cost-efficient 
pathway towards next-generation glasses-free 3D applications with 
both commercial and academic relevance. Notably, the reconstruc-
tion of real light fields of EyeReal with optimized quality around the 
eyes and focal parallax eliminates IPD mismatches and VAC, which 
are the two primary causes of discomfort in modern extended reality  
systems.

The SBP-utilization scheme developed by EyeReal offers a univer-
sal and effective scientific perspective. We believe that this model 
of dynamically optimal light-field presentation under limited SBP 
remains valid and scalable for achieving large-scale glasses-free 3D 
displays within the current optical system capability. Although Eye-
Real currently focuses on optimizing SBP utilization to conceptually 
validate a desirable glasses-free 3D display for individual binocular 
viewing, the methodology also holds the potential for multi-user 
adaptation by integrating techniques such as time multiplexing5,44 
and directional backlighting1,45 to address associated challenges. 
Although the current-layered display prototype allows for viewing 
under ambient light conditions, integrating field sequential colour22,46 
or mini-LEDs47 could further enhance optical efficiency and contrast 
for practical deployment. More broadly, the proposed SBP-utilization 
solution also shows promise for other light-field display technologies, 
such as updatable holography at large scales. This dynamic genera-
tion of optimal light fields ensures a balanced coexistence between 
a large imaging space, high spatial frequency across wide viewing 
angles and depth cue perception, despite all within the limited SBP  
availability.

The dynamic SBP-utilization solution in combination with physical 
principles and AI-enabled optical computation enables, to our knowl-
edge, the first large-scale demonstration of a real-time 3D display with 
seamless ultrawide viewing range, opening an avenue for truly natural 
viewing glasses-free 3D displays.
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Methods

SBP-utilization analysis
Owing to inherent SBP scarcity, existing 3D display approaches have 
been forced into static compromises, each emphasizing specific 
aspects at the expense of others in their display outcomes (see Sup-
plementary Table 1 and Supplementary Information for more analysis 
and comparison details). Holographic displays, for instance, preserve 
complete 3D reconstruction by significantly compressing the dis-
played light field to centimetre-scale regions (about 1–2 cm2), ensuring 
wide-angle, high-quality optical content but becoming practically 
unscalable30. By contrast, automultiscopic displays maintain com-
mon display sizes (about 0.1–0.2 m2) more suitable for natural view-
ing scenarios but must limit their effectual viewing angles. Within 
this category, view-dense solutions use multilayer architectures to 
provide continuous and realistic optical generation at the cost of 
highly restricted viewing zones. Alternatively, view-segmented solu-
tions achieve broad, horizontal viewing angles using single-panel 
optics21,23,51,52 to discretely spread out available SBP, sacrificing the 
stereo parallax across vertical and radial dimensions, as well as the 
focal parallax, although this loss of full parallax inevitably compromises 
immersion and visual comfort37,40.

Fundamentally, the limited practicality of these existing approaches 
arises from their passive use of scarce SBP, attempting to statically 
accommodate various viewing scenarios simultaneously. These static 
approximations inherently conflict with the extreme scarcity of SBP 
itself, and this remains unaltered even with AI enhancement (Supple-
mentary Table 2). Recognizing this scientific constraint, it becomes 
clear that a proactive, dynamic use of limited SBP is necessary, that 
is, using optical resources precisely where they are most crucially 
needed at each moment. In practice, this means reconstructing accu-
rate binocular light fields around target eye positions, as binocular 
parallax is the essential basis for human depth perception. Notably, 
this dynamic model does not rely on eye tracking to synthesize virtual 
disparities as is commonly done in conventional eye-tracked systems, 
as these systems respond only to instantaneous viewpoint positions, 
with responses typically exhibiting significant errors due to tracking 
noise and random eye movements. Instead, the rational and effective 
solution here requires the accurate and consistent generation of real 
physical light fields for both binocular viewpoints and their neigh-
bourhoods, with eye tracking primarily serving to guide directional 
delivery rather than generating virtual content severely dependent on 
tracking precision. Although SBP, in principle, supports this localized 
generation, it remains challenging to precisely adapt optical output to 
arbitrary and extensive views within the neighbourhood of the eyes. 
To address this, we develop a physically accurate binocular geometric 
modelling and a deep-learning-based mathematical model that enable 
real-time computation of light-field outputs. To this end, EyeReal pre-
cisely adapts optical output to arbitrary binocular positions within 
an extensive viewing range, validated by a light-field delivery setup 
featuring large-scale imaging, wide-angle viewing and full-parallax 
attributes. This dynamic SBP-utilization strategy thereby realizes the 
possibility of achieving the long-desired glasses-free 3D display.

Eye camera modelling and calibration
Given an ocular position in the light-field coordinate system, we use the 
pinhole camera model (Supplementary Fig. 3) to simulate the retinal 
imaging process of the light field. In general, we align the centre of the 
screen with the centre of the light field where the object is located, and 
by default, the eye is directed towards the centre of the light field, which 
is the origin of the coordinate system. For standardization, we define 
the z-axis of the camera model to be opposite to the direction of sight. 
Moreover, to simulate normal viewing conditions, we stipulate that 
the x-axis of the camera is parallel to the ground on which the object is 
situated, consistent with the relative position of the observer and the 

object in the same world. Consequently, the y-axis of the eye camera 
is the normal to the plane formed by the z- and x-axes.

We initially get the relative ocular positions captured by the RGB-D 
camera. In the process of transferring eye positions into the light-field 
coordinate system, we first obtain their two-dimensional (2D) pixel 
coordinates by using a lightweight face detector. Combining the inher-
ent camera intrinsic parameters and the detected pixel-level depth 
information, we can obtain the 3D coordinates of the eyes in the camera 
coordinate system. For one eye, this process can be formulated by
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where ue and ve are the pixel-wise positions of the eye; (cx, cy) is the opti-
cal centre of the image, which represents the projection coordinates 
of the image plane centre in the camera coordinate system; fx and fy are 
the focal lengths of the camera in the x-axis and y-axis directions; and 
xc, yc and zc represent the transformed camera coordinates.

Then comes the alignment from the real-world eye coordinates to 
the digital light-field world. Given the fixed spatial configuration 
between the camera and the display setup, this alignment reduces to 
estimating a projection matrix RM A t= [ ] ∈c c c

3×4 , which transforms 
coordinates from the camera to the light field. Based on the character-
istic of autostereoscopy, we design a simple and convenient calibration 
method based on the characteristic of reversible light paths (Extended 
Data Fig. 1). We select N calibration points in the light-field coordinate 
system, which also meet the visual field of the RGB-D camera. We replace 
the light-field images corresponding to the viewpoints with calibration 
marks (Supplementary Fig. 4) and provide them as input to the neural 
network to generate the corresponding layered patterns. Because the 
patterns can form only the best stereo effect at the input viewpoint, 
conversely, when the viewer sees the completely overlapping (the 
superposed colour is also the thickest at this time) rectangle with one 
eye at a certain angle on the screen of the hardware device, the current 
3D eye camera coordinates Rc ∈i

3 captured by the camera and the 
world coordinates Rw ∈i

3 of the calibration points form an one-to- 
one correspondence. We solve for Mc using least squares regression 
(Supplementary Fig. 5) based on K pairs of corresponding calibration  
points
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3R  denote the ith calibration point in the camera 
and light-field coordinate systems, respectively. Once Mc is obtained, 
the eye position in the light-field coordinate system, Pe, is computed 
by homogeneous transformation
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Eye–light-field correspondence
According to the geometric conventions of the above eye camera 
model, we can calculate the projection matrix Me = [Re|te] from the 
constructed eye camera coordinate system to the light-field coordinate 
system. As shown in Extended Data Fig. 2a, the centre of the screen is 
the origin O of the light-field coordinate system. For general cases, we 
assume that all the coordinate systems are right-handed and the ground 
plane is parallel to the xOy plane. We can get a pair of trivial vectors 
rz and rx along the z-axis and x-axis, respectively, based on their special 



position relation. In detail, the z-axis of the eye camera coordinate 
system is the OPe direction, and the x-axis is parallel to the xOy plane 
of the light-field coordinate system

r OP r Oz r r r r= , = × , = × (7)z x z y z xe

The rotation matrix from the light-field coordinate system to the eye 
camera can be constructed from the unit vectors of these three trivial 
vectors as its column vectors
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Here ∥⋅∥p denotes the ℓp vector norm applied to these trivial vectors. 
And the translation matrix is the vector of eye position

OP rt = = (9)ze e

Then we project the light-field images corresponding to the bin-
ocular viewing onto each layer plane (Supplementary Fig. 6). Under 
the predefined FOV of the eye camera with a H × W pixel-size imaging 
plane, we can first derive the focal length fpix in pixel measurement

f
H W

=
max( , )

2 tan(FOV/2)
(10)pix

The screen planar positions x y z{( , , )}n i i i i=1
4≔ ∣P  are hyperparame

trized. For convenience, we define the dimension of depth to be para
llel to some axis of the light field, which is the x-axis shown in Fig. 2b, 
so that we can determine xi by
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where the index of pattern planes n ∈ {1, …, N}; dnear and dfar denote the 
nearest and farthest depth of the light field, respectively. We can deter-
mine the relative coordinates ≔ ∣x y z′ {( ′, ′, ′)}n i i i i=1

4P  at each eye camera 
corresponding to the four corner points of each pattern plane:
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Based on equation (4), their pixel coordinates are calculated as

u
f x

z
W

v
f y

z
H

′ = −
′

′
+

2
, ′ =

′

′
+

2
(13)i

i

i
i

i

i

pix pix

Here, we compensate for the minus sign for the opposite x-axis  
direction of two coordinate systems and let cx = W/2 and cy = H/2 for 
general cases. The 2D differences from the new corner coordinates 

u v′ {( ′, ′)}n i i i=1
4Q ≔ ∣  denote the imaging offsets compared with the orig-

inal positions Q ≔ W W H H{(0, 0), ( , 0), ( , ), (0, )}n . In this way, we can 
establish the equations of the eight unknowns of the perspective trans-
formation based on these four corner pairs. The solved transformation 
matrix represents the 2D correspondences from the patterns to the 
eyes.

Neural network architecture
The ocular geometric encoding warps the view images from each eye 
camera onto multilayer screens based on binocular poses, establish-
ing geometrically unified normalized projections. The network input 
is this set of normalized planar warpings at multilayer depths. Each 
warping represents the expectation of luminous intensity solely under 
a single viewpoint. The network decomposes into phase values at each 
depth through the expectation space of binocular views, which can be 

regarded as the inverse process of equation (3) during a single period. 
As the backlight source is uniformly illuminated, the light-field varia-
tion can be mapped to a finite integral of phases within a period. This 
makes its inverse decomposition equivalent to a differentiable hidden 
space by successively applying a set of learned 3 × 3 convolutional 
kernels, satisfying the fact that the pixel-level phase arrangement not 
only meets the expectation through a viewpoint but also is independent 
across the binocular viewpoints. The nonlinear activation used in the 
network (that is, rectified linear unit or ReLU) further filters out nega-
tive phase components through intermediate non-negative screening 
during the forward propagation.

For the specific design, the network is a fully convolutional archi-
tecture. It comprises an initial input layer, followed by five down-
sampling blocks and five corresponding upsampling blocks and 
concludes with a final output layer. Each block consists of two con-
volutional layers, all using uniform 3 × 3 convolution kernels. Dur-
ing downsampling, max pooling is applied to expand the receptive 
field, whereas bilinear interpolation is used in the upsampling stage 
to restore spatial resolution. To enable residual learning, skip con-
nections are established between convolutional layers of matching 
spatial dimensions across the downsampling and upsampling paths. 
The input layer is configured to accept binocular RGB images, result-
ing in a six-channel input. To maintain computational efficiency, the 
number of channels at the input layer is set to 32, with the channel 
width increasing progressively in the downsampling layers according to  
the formula 32 × 2i, where i denotes the index of the downsampling 
block. By capitalizing on the swift advancements in graphics processing 
unit (GPU) computing, the neural architecture embedded with these 
lightweight elements can execute computations orders of magnitude  
faster.

Structured loss optimization
In spite of the proposed physics-based mathematical model, the 
optimization objectives of this AI model are supposed to be elabo-
rated for the accurate light-field approximation. We divide the struc-
tured loss design into three parts for multi-faceted constraints. The 
basic loss function is used to gauge the consistency of the aggregated 
image formed by the superposition of light paths from each viewpoint 
based on the predicted hierarchical phase maps. Here, we model the 
data fidelity by ℓ1 norm, whose sparsity aids in recovering high- 
frequency phase details at the edges and contours of the light field, 
whereas its outlier insensitivity helps prevent overfitting to specific 
viewpoints53. In detail, we calculate the element-wise difference 
between the aggregated result I ′ ∈ S C×kR  from the predicted patterns 
and the expected ocular light intensity RI ∈ S C×k , where C means  
the RGB channel, and we use Sk for simplicity to denote the value of 
the emitted cross-sectional area Ft ∩ dk. The basic loss can be formu-
lated as

∑S
ρ ρ=

1
′ − (14)

k ρ I ρ I
intensity

′ ∈ ′, ∈
1L ∥ ∥

where ∥⋅∥p denotes the ℓp vector norm applied on the pixel-wise lumi-
nous intensity vector Rρ′ ∈ C and its matching ground truth ρ.

The normalized planar warpings as inputs reflect only perspective 
light intensities from individual viewpoints, and merely enforcing 
intensity consistency with ground truth cannot effectively constrain 
the mutual exclusivity between the binocular views. View-specific 
information from one eye inevitably leaks into the other as noise, which 
can be mitigated through mutual-exclusion constraints. Following the 
structural assessment for image quality54, the second loss function 
physically considers the local contrast and structure of the emitted 
light field and sets their product as the whole mutual-exclusion meas-
urement, which should be approximated to 1. This second loss mutexL  
can be formulated by
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which establishes a connection between the variances σ σ,I I′  and covar-
iance σII ′ of the aggregated result and the target image. Here, p and q 
represent the relative importance of contrast and structure, respec-
tively. We make them both equal to 1, arguing that these two aspects 
should be considered equally. ξ is a systematic error that prevents the 
computation of 0. For simplicity, we assume ξ1 = 2ξ2 = ξ. By constraining 
the differences in the pixel distribution and fluctuation trends in local 
regions of both images, the phase approximation for the current view-
point will be attentive to the noise artefacts coming from the other 
viewpoints and will smooth and erase them.

Owing to the periodicity of the light phase, there are infinitely many 
trivial but not generalized solutions in model training because of the 
possibility of falling into local optimal fitting. Therefore, in the early 
stage of model training, we calculate the frustum element-wise differ-
ence lowfreqL  from pure black patterns, which is the starting point of 
the first positive period, forcing the model to converge within the low-
est frequency representation space, so that the phase diagram of  
layered patterns also conforms to the RGB distribution. The auxiliary 
loss function can be listed as

L ∑ ∑α

S
ϕ=

∑
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Here, Φd represents the total phase set of all light paths in the inter-
section area of the current frustum field Ft and the planar depth d.  
The auxiliary regularization term will be multiplied by a factor α that 
decays exponentially with training time as

≔α
γ r

r γ
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where γ is the proportion of the current iteration to the total. This will 
be 0 at a preset earlier step for the complete elimination of suppression 
so that they will not be affected in the middle and late stages of model 
training convergence.

Ablation studies of these optimization components with visualiza-
tions are conducted to further understand how EyeReal functions in 
optical display and its underlying behaviours. The basic loss empha-
sizing basic intensity consistency proves crucial for maintaining 
fidelity, whereas the exclusivity measure loss enhances structural 
consistency by improving the noise resistance from the other view-
point Extended Data Fig. 3a. Additionally, we visualized the ablation 
results of the low-frequency regularization loss Extended Data Fig. 3b, 
showinssg its effectiveness in guiding the network to focus on universal 
phase distributions rather than counterintuitive overfitting patterns.  
Further visualization of the network-computed phase patterns at vari-
ous depths shows distinct depth-aligned highlights in each pattern 
Extended Data Fig. 3c. These attentive areas show that the neural net-
work with structured optimization has accurately learnt an effective 
representation of local depth information, which is consistent with 
the physical depth structure of the light field.

Light-field dataset construction
A key requirement for a light-field dataset suitable for realistic view-
ing lies in the inclusion of stereo camera pairs captured from varying 
viewpoints while focusing on the same spatial point. However, these 
data characteristics are not directly available in existing public light- 
field datasets, as their multi-view data are limited to pixel-level differ-
ence, which fails to adequately simulate the way human eyes perceive 
scenes. To ensure the robust generalization and effectiveness of our 
learning-based mathematical model across diverse real-world view-
ing scenarios, we have meticulously developed a large-scale dataset 

characterized by complexity and diversity. For the generalization 
basis, the foundational component of our dataset focuses on captur-
ing a broad spectrum of object geometries and appearances. We have 
incorporated a large assortment of geometrically rich and uncommon 
objects from uCO3D55 for its distinctive variety of object collections. 
We curated a collection of 3,000 diverse objects and generated 500 
stereo image pairs per object, as the generalized priority is the num-
ber of scenes involving different objects rather than the number of 
viewpoints. This part serves as a robust basis for ensuring diversity in 
colour, texture and shape. To further enrich the complexity and scale 
of the dataset, we integrated the additional selected representative 
scenes from relevant studies48–50,56–60 and online resources, each com-
prising thousands of stereo image pairs. These supplemental scenes 
highly broaden the environmental complexity and spatial scales of the 
dataset, covering scenarios ranging from synthetic virtual environ-
ments to real-world captures. The scenes vary substantially in scale, 
encompassing intricate room-level interiors and expansive city-level 
landscapes. Moreover, they exhibit diverse lighting conditions and 
reflective materials, including indoor artificial illumination, out-
door natural lighting and scenarios with dim or subdued illumina-
tion. Experimental results validate that the model trained with this 
rigorously constructed dataset achieves remarkable generalization 
ability, including various unseen scenes and unknown head poses, 
maintaining inference speed and output quality without any notable  
compromise.

We develop a data preparation approach for light fields to achieve a 
more appropriate viewing simulation, and we use the polar coordinate 
system in 3D space to facilitate data configuration. For general cases, 
people stand facing the screen for viewing, ensuring that the line con-
necting their eyes remains parallel to the ground, thus perpendicular 
to the shorter side of the screen. As shown in Extended Data Fig. 2b, 
we define the screen-to-eye direction as the x-axis, sample multiple 
depth planes along this axis, and designate the horizontal and vertical 
axes as the y-axis and z-axis, respectively. We initiate a front viewpoint 
cloud shaped like a truncated frustum, in which each point signifies the 
midpoint between the eyes. The distance from the centre to each eye 
is denoted as R, the angle from the midpoint to the z-axis as φ and the 
angle to the y-axis as θ. Thus, assuming the interpupillary distance is 
d, we can derive the coordinates for each point in the Cartesian coor-
dinate system as follows:

r R φ d δ
d

R φ
= ( sin ) + ( /2) , = arctan

2 sin
(18)2 2

x r θ δ x r θ δ= sin( − ), = sin( + ) (19)r l

y r θ δ y r θ δ= cos( − ), = cos( + ) (20)r l

z z R φ= = cos (21)r l

Owing to scenario-specific variations in dataset acquisition and 
inconsistencies in the spatial dimensions of light-field display sub-
jects, both the scaling factor that maps the physical world to the digital 
light-field domain and the longitudinal thickness of the light-field vol-
ume exhibit significant variability. Specifically, we denote the scaling 
factor as s, which converts the physical screen width of the light field 
to its corresponding digital representation, and the physical depth 
extent of the light field as dthick, which varies with subject distance across 
scenes (Supplementary Table 3). Before this, we applied a compensa-
tion matrix Mcomp to each scene to standardize the orientation of the 
reconstructed light fields (Supplementary Table 4). This transforma-
tion realigns the originally unstructured coordinate systems such that 
the principal viewing axis of the target object consistently faces the 
positive x-direction.



Training and implementation details
The network was trained on our constructed light-field dataset using 32 
NVIDIA Tesla A800 GPUs for 40 epochs. A learning rate warm-up strat-
egy is used during the first epoch, followed by a cosine decay schedule 
for the remaining training period. The batch size is set to eight, com-
prising four object-level and four scene-level samples in each batch to 
preserve a balanced learning signal across both fine-grained and global 
spatial contexts. Given the relatively smaller size of the scene-level 
dataset, it is cyclically reused once fully traversed to ensure continued 
exposure and a balanced contribution to the optimization process.

To capture the diversity of real-world 3D structures and enhance 
the ability of the generalization of the model, we construct a training 
corpus that integrates both object-level and scene-level data under 
heterogeneous geometric and photometric conditions. Specifically, 
we randomly sample 3,000 object-level scenes from the uCO3D dataset 
and include 15 additional scene-level environments reconstructed from 
publicly available sources. The validation set comprises 150 unseen 
object-level instances and 2 unseen scene-level environments. For 
the training dataset, each object-level scene is rendered into 500 ste-
reo image pairs from diverse, randomly sampled viewpoints. Each 
scene-level environment contributes 1,500 stereo pairs, resulting in 
a wide coverage of spatial configurations and view-dependent visual 
appearances. In the validation dataset, each object-level instance is 
rendered into 20 stereo pairs, whereas each scene-level environment 
contributes 1,500 pairs, yielding a total of 6,000 stereo images for 
evaluation.

For the ablation study, we curated a training set of 6,000 stereo pairs 
spanning 150 object-level instances with 20 pairs each and 6 scene-level 
environments with 500 pairs each. We trained three model variants, 
each using only the intensity loss, only the mutual-exclusion loss and 
a combination of both, and evaluated them quantitatively on the vali-
dation set. To evaluate generalizability, we constructed equivalent 
datasets from identical scenes but with perturbed head poses. Random 
perturbations of up to ±10° were applied independently across yaw, 
pitch and roll axes, introducing pose diversity to simulate realistic 
viewing variations. For global-scale spatial performance compari-
son, we constructed an image dataset with 3,000 pairs across multiple 
distance–orientation combinations. For the IVD benchmark, we sam-
pled 1,400 pairs at 20 cm intervals from 10 cm to 150 cm. For the NVD 
benchmark, we categorized 1,600 pairs by viewing angles, including 
frontal and oblique perspectives and distances across four intervals 
spanning 30–130 cm. We designated 30–70 cm as the near range and 
90–130 cm as the far range.

For human eyes, the part beyond 30° from the fixation point is called 
the peripheral vision, commonly known as the afterglow of the eye, 
which is actually the range that the human eye is insensitive. Therefore, 
when we build the eye camera model, we set its FOV to 40° to achieve a 
better sense of visual presence. We set φ ∈ [60°, 120°], θ ∈ [40°, 140°] 
and R ∈ [0.3, 1.5] in metres to adapt to the normal viewing situation. 
We use an efficient neural rendering approach59 to generate abundant 
training data from 3D targets. For the binocular localization part, we 
use the lightweight face detector61 built in OpenCV to obtain each 
eye position. The variation constant ξ of the mutual-exclusion loss 
that avoids system errors caused by denominators of zero is formu-
lated as ξ = (kL)2, where k = 0.003 and L denotes the dynamic range of 
pixels, which is normalized as 1. The suppression cancellation time 
ratio of r in the low-frequency loss is set to 0.3. All experiments are 
evaluated on inputs with a resolution of 1,920 × 1,080 pixels, and we 
use a single NVIDIA RTX 4090 as the algorithm execution GPU for 
practical inference.

Hardware design of the display system
The display prototype for real-world demonstration (Extended Data 
Fig. 7) uses a BOE TFT-LCD with a resolution of 1,080 × 1,920 as the 

screen used for light-field display, and the pitch of one LCD pixel is 
0.27 mm. The effective physical imaging area is 518.4 mm × 324 mm, 
and the actual physical size is 528 mm × 337.9 mm, with a manufacturing 
error of ±0.7 mm. We attached orthogonally oriented polarizing films 
to the front of the frontmost screen and the back of the rearmost screen 
to generate a polarized light field. The screen uses a white light source 
as the backlight source. The RGB-D camera we use is the Microsoft Xbox 
Kinect V2. Its colour camera has a resolution of 1,920 × 1,080, and the 
depth camera has a resolution of 512 × 424 with a depth measurement 
range of 0.5–4.5 m. For the hardware, we use acrylic plates 5 mm thick 
to fix and align each screen, and aluminium profiles as the load-bearing 
structure. The conceptual display for demonstration use N = 3 LCD 
screens with a 3-cm layered interval distance and transmit the imaging 
information using the HDMI (high-definition multimedia interface) 
interface protocol, run on a single NVIDIA RTX 4090 GPU.

Data availability
All data generated during this study, including the main results and 
the training/testing procedures, are available in the paper and its Sup-
plementary Information. Figures were generated and processed using 
Python, Matplotlib, Microsoft PowerPoint and Adobe Photoshop. Our 
light-field dataset is available at GitHub (https://github.com/Weijie-
Max/EyeReal). Publicly available datasets or models were used for the 
following figures and supplementary materials: Fig. 2a, https://graph-
ics.stanford.edu/data/3Dscanrep; Fig. 2b, https://www.thingiverse.
com/thing:2494680; Fig. 3a, Extended Data Fig. 3c and Supplemen-
tary Videos 1 and 2, https://www.fab.com/listings/4898e707-7855-
404b-af0e-a505ee690e68; Fig. 3b, https://drive.google.com/drive/
folders/1vh0mSl7v29yaGsxleadcj-LCZOE_WEWB; Fig. 3c, https://
blendswap.com/blend/23962; Fig. 3d and Extended Data Fig. 3b, 
https://drive.google.com/drive/folders/1cK3UDIJqKAAm7zyrxRYVF
J0BRMgrwhh4; Fig. 3e,f, Supplementary Videos 3 and 4 and Supple-
mentary Fig. 6, https://blendswap.com/blend/17994; Extended Data 
Fig. 4a, https://blendswap.com/blend/23125; Extended Data Fig. 4b, 
https://blendswap.com/blend/8261; Extended Data Fig. 6a,d, https://
github.com/Phog/DeepBlending; Extended Data Fig. 6b, https://www.
tanksandtemples.org; and Extended Data Fig. 6c, https://github.com/
google-research/multinerf.

Code availability
The computer code supporting the findings of this study is available  
at GitHub (https://github.com/WeijieMax/EyeReal). Code related to  
Fig. 3a, Extended Data Fig. 3c and Supplementary Videos 1 and 2 is 
available at GitHub (https://github.com/city-super/MatrixCity).
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Extended Data Fig. 1 | The frustum-guided calibration design. We leverage a 
frustum in 3D vision for calibration guidance, since it denotes the perspective 
viewing volume and describes the direction and extent of visible 3D space. 
Calibration is achieved when a precise alignment is observed, marked by the 
lines appearing darkest and thickest, indicating the ocular position aligns with 
the corresponding point in light-field space.
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Extended Data Fig. 2 | Detailed ocular geometry of our light-field setting.  
a, Geometric relationship between the eye-camera and light-field coordinate 
systems, with the screen center O as the origin. The z-axis of the eye-camera 
system points to Pe, and its x-axis is parallel to the xOy plane of the light-field 
system. b, Geometric illustration of constructing the light-field dataset based 

on a. With a constant interpupillary distance, the eye positions are uniquely 
defined by the midpoint of their connecting line. A polar coordinate system is 
used to model natural viewing configurations, forming a truncated 
spherical-cone point cloud.



Extended Data Fig. 3 | Physical interpretability and visualization of EyeReal. 
a, b, Ablation study of EyeReal’s physics-based loss functions. a shows the 
contribution of each loss component. Error bars mean the standard deviation. 
b visualizes the phase pattern with (w/) and without (w/o) the application of 

Llowfreq. c, Visualization of computed layered phase patterns. The results reveal 
clear layer separation, with each layer concentrating depth information from 
its surrounding depth neighborhood.
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Extended Data Fig. 4 | Evaluation of EyeReal on additional computer-rendered scenes. a, Autostereoscopic results of an indoor ficus tree with overlapping 
stems. b, Autostereoscopic results of an antique chair with layered armrests.



Extended Data Fig. 5 | Evaluation of EyeReal on additional real-world 
captured scenes. a, Autostereoscopic results of a computer desk in a child’s 
room alongside a bookshelf filled with vividly colored children’s books56.  
b, Autostereoscopic results of a truck parked on an outdoor street57.  

c, Autostereoscopic results of a toy dozer on a dining table with intricately 
textured placemats58. d, Autostereoscopic results of a room floor scattered 
with colorful educational toys and furniture56.
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Extended Data Fig. 6 | Evaluation of EyeReal on large-scale real-world captured scenes. a, b, Autostereoscopic results of the Wukang Mansion and the China 
Art Museum, two iconic landmarks in Shanghai.



Extended Data Fig. 7 | The physical device of autostereoscopic display prototype. The white-light source is an LED array enclosed within the device, and 
orthogonal polarizer films are applied to on the front of the top screen and the back of the bottom screen in the LCD-panel stack.
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