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Protected area management has significant 
spillover effects on vegetation

Graeme S. Cumming1,2 ✉

The Kunming–Montreal Global Biodiversity Framework calls for rapid global 
expansion of protected areas in response to ongoing biodiversity loss and ecosystem 
degradation1. One of its strongest selling points is the benefits protected areas 
provide to adjacent human communities2,3. However, little attention has been paid  
to how policy and management can support such benefits. Here, to address this gap,  
I explored influences on the effect sizes of vegetation spillovers from a candidate 
12,513 Australian protected areas, defining spillovers as the difference in vegetation 
outside a protected area that occurs as a consequence of the existence of the 
protected area4. In 2020, 71% (2,189) out of the 3,063 protected areas for which full 
analysis was possible had a positive spillover effect of 0.1 or greater on at least 1 of 10 
vegetation cover classes. Many protected area types were significant predictors of 
spillover magnitude. The covariance explained by protected area type with local  
and contextual variables was 14%, suggesting that internal management moderates 
adjacent locations. These findings highlight the potential to include spillover effects 
explicitly in global policy frameworks and suggest a pathway to an empirical basis for 
monitoring and accounting schemes that support biodiversity conservation and 
ecosystem service provision adjacent to protected areas.

Under current global trends of loss and degradationof natural habitats, 
protected areas are critical for conserving biodiversity and maintain-
ing the ecosystem goods and services that human societies depend 
on5,6. Although we typically focus on what protected areas conserve, 
many of their benefits and costs occur beyond their boundaries7,8. 
These spillover effects span social, ecological and economic spheres, 
and may include such critical benefits as water provisioning, pollina-
tion, pest control, forest regeneration, flood and storm protection, 
increased amenity and land prices, and revenue generation through 
tourism4,9–11. Protected areas may also impose costs on adjacent human  
populations—for example, by increasing human–wildlife conflict12, pro-
viding reservoirs for pathogens13 and restricting access to resources14.

Global conservation policies, such as the push for an increase in 
conserved land under the Kunming–Montreal Global Biodiversity 
Framework1, recognize that protected areas bring local and regional 
benefits and costs. However, spillover effects are largely excluded 
from policy and legislation despite extensive evidence of their impor-
tance6,9,10,15,16. Landscape planning has tended to divide landscapes into 
human-dominated or natural systems, although most ecosystem ser-
vices are delivered locally at the interface between people and nature. 
People benefit directly from daily access to clean air and water, shade 
trees, flowers and fruits, and other ecosystem contributions17,18. In 
both rural and urban environments, many of nature’s contributions 
to people are supported by adjacent protected areas19.

One of the barriers faced by landscape planners is that conservation 
science has focused more on ecosystems inside protected areas than 
those outside9. At present we cannot reliably predict the conditions 

under which beneficial spillovers from protected areas will occur. Even 
for relatively well-studied ecological spillovers, such as the movement 
of seeds from forests or fishes from marine protected areas, a lack of 
standardized methods and integrative conceptual frameworks together 
with a tendency to focus on single-variable outcomes (for example, 
forest/non-forest or fish biomass) means that the findings of the few 
meta-analyses of spillover effects across different locations15,20 are 
difficult to apply to protected area planning21.

Bringing spillovers into the global policy debate will require broaden-
ing the spatial and temporal scales of spillover analyses and improving 
understanding of their causes. To address this need, I analysed ecologi-
cal spillover effects from terrestrial protected areas using data on woody 
and herbaceous vegetation within and adjacent to 12,513 protected 
areas across the continent of Australia, excluding its small offshore 
islands, at the beginning and end of a 32-year time period (1988–2020). 
Vegetation spillovers are defined here as a type of ecological spillover 
through which vegetation outside a protected area remains or becomes 
more similar than expected to vegetation inside the protected area. My 
findings support the hypothesis that protected area management type 
influences vegetation spillovers to the surrounding landscape, suggest-
ing potential for deliberate incorporation of spillover management in 
biodiversity conservation policy, planning and actions.

Continental patterns of vegetation cover
Spillover effects from protected areas are modulated by adjacent land 
cover and land use22–24. Where human population density is very low, 
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as in central Australia, ecological exchanges across protected area 
boundaries may be balanced; adjacent ecosystems are structurally and 
functionally intact, and no detectable spillover occurs. At the other 
extreme, organisms leaving a protected area may die if the surrounding 
landscape is hostile25. Within this spectrum is a wide variety of situa-
tions over which the ecological or socioeconomic effects of protected 
areas may occur at different rates and magnitudes.

To provide context for the spillover analysis, I first used R software26 
to analyse natural vegetation cover information from a classified 
vegetation map27,28 at 25 × 25 m resolution using 2,636,333 circular 

sampling polygons of diameter 150 m (for details, see Supplementary 
Information, Section 2 and Supplementary Fig. 1). Across the entire 
dataset, the most abundant natural woody vegetation class across 
Australia was 40–65% tree cover (class X28), and the most abundant 
natural herbaceous class was 15–40% cover (class X34). Mean values 
for all woody cover types except the most forested class (canopy >65%; 
class X27) have increased since 1988, whereas mean values for all her-
baceous classes have decreased (Fig. 1). Owing to the geography of 
Australia, small proportional changes in area may still indicate a high 
percentage loss of a specific vegetation type. For example, despite 
its limited extent, loss of mature forest in Australia over the past 30 
years has been proportionally extensive (and sufficient to endan-
ger species of high conservation interest, such as koalas and sugar  
gliders)29,30.

Across all sampling polygons, 31.4% of sampling polygons showed 
no net change in any vegetation type (n = 827,625 polygons). Although 
natural vegetation cover has thus been stable since 1988 across approxi-
mately one-third of the land area of Australia, some vegetation types 
are particularly dependent on protection for their persistence.

Hypothesis testing for spillovers
Clarity on how spillovers are defined and measured is critical for inter-
preting these results. ‘Spillover’ is used here to describe an effect of a 
protected area on adjacent vegetation. Spillover occurs if a protected 
area has more (positive spillover) or less (negative spillover) adjacent 
vegetation of a given type than expected, based on comparison of the 
observed data to a prediction from a carefully constructed counter-
factual or null model. I have used a risk difference threshold of 0.1 or 
greater to determine whether any spillover occurs; nuances in conclu-
sions relative to this threshold are explored later in the Article. Positive 
and negative are used throughout to describe the sign of the spillover 
effect and should not be confused with normatively ‘good’ or ‘bad’ 
conservation outcomes. Testing for spillovers involves comparisons 
between three different areas (Fig. 2).

The most important comparison in establishing spillover presence 
or absence is the contrast between the spillover zone (group B) and 
the independent zone (group C) (Fig. 2). However, establishing the 
presence of a positive or negative spillover also requires understanding 
the similarities or differences between the protected area (group A) 
and the spillover zone (group B). Rigorous spillover confirmation thus 
requires that two criteria are met, rather than just a single criterion. If 
both are met, then the value from Contrast 2 quantifies the magnitude 
of the spillover effect.

Although this analysis uses data from 1988 and 2020, I present an 
analysis of landscape pattern rather than landscape change; thus, the 
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Fig. 1 | Vegetation cover over time and relative to protected area boundaries. 
a, Mean proportions of different natural vegetation classes as a percentage  
of total sampled area within 2,636,333 sampling polygons. This plot shows  
the proportions per sampling polygon of the ten different vegetation types 
considered in the analysis, in 1988 and 2020. Data are mean + s.d. (n = 2,636,333 
independent sampling polygons, each of 150 m diameter). The full names for 
vegetation classes are given in Supplementary Table 2. On average, woody 
vegetation has increased through time across all classes except X27 (woody 
closed, canopy cover >65%) and herbaceous vegetation has decreased.  
b, Mean proportions of different vegetation types in protected and unprotected 
areas across all sampling polygons in the 2020 dataset. Data are mean + s.d. 
(n = 2,636,333 independent sampling polygons, each of 150 m diameter). 
Woody vegetation is disproportionally represented inside protected areas.  
For example, the mean percentage of forest (X27) in sampling polygons inside 
protected areas (9.32%) is just over nine times the mean in sampling polygons 
outside protected areas (1.03%), suggesting a critically important role for 
protected areas in the conservation of trees.
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two different years are analysed independently rather than using the 
difference between them. The primary reason for doing so was that 
protected area effects were relatively consistent between 1988 and 
2020, supporting evidence from other research31 that implies that 
spillovers in Australian vegetation are outcomes of relatively long, 
slow processes.

Frequency and magnitude of spillovers
The Collaborative Australian Protected Areas Database (CAPAD)32 con-
tains data for 14,205 terrestrial protected areas. Some are on remote 
offshore islands, and many are too small or too tightly clustered to 
analyse cleanly. A total of 12,513 protected areas (88% of the total; Fig. 3; 
for further details see Methods and Supplementary Information, sec-
tion 8 and Supplementary Fig. 5) was thus considered. Sample sizes 
varied with vegetation types, but for 2020 a total of 7,512 protected 
areas (60% of candidate areas or 53% of all Australian protected areas) 
met the minimum sample size requirement for inclusion in reported 
analyses for at least one of the contrasts described in Fig. 2.

Most previous spillover analyses of terrestrial vegetation have ana-
lysed a single vegetation type, typically closed canopy forest. I instead 
considered a full range of different vegetation densities, initially ana-
lysing each vegetation type independently. As a result, positive effect 
sizes for one type of vegetation (more vegetation of that type in the 
spillover zone than expected based on the independent zone) were 
often balanced against negative effect sizes for another vegetation 
type (less of that vegetation type than expected). For example, as grass-
lands recover from over-grazing, herbaceous cover increases and may  
cross the 65% cover threshold from open to closed herbaceous cover 
(class X33 to class X32). This would lead to a net gain in class X32 and a 

net loss in class X33, yielding positive and negative effect sizes, respec-
tively. If gains in class X32 were faster or more consistent adjacent to a 
protected area, meaningful differences might arise between the spillo-
ver zone and the independent zone. Unbalanced positive and negative 
spillovers imply either loss of natural land cover types or reclamation 
of pixels that were originally classified as non-natural or unvegetated, 
such as agricultural or peri-urban land.

Matching methods were used to correct for the potentially con-
founding influences of local biophysical conditions and protected 
area placement in spillover estimation, as described in Methods and 
Supplementary Information, section 8. Counterfactuals used only 
points for which the focal protected area was the nearest protected 
area, or that were more than 100 km from any protected area. I first 
evaluated aggregated data from the entire analysis for the year 2020, 
using only the first spillover band (0–5 km) to represent the spillover 
zone. These results (Table 1) consider all vegetation types and protected 
areas to show the numbers of meaningful outcomes (effect size >0.1) 
in each of the different contrasts, as summarized in Fig. 2.

These findings must be interpreted carefully in light of available 
sample sizes. Totals of 2,129 individual protected areas in 1988 and 
2,189 protected areas in 2020 were confirmed as having both a 
non-meaningful effect size for Contrast 1 (comparison of the interior 
of the protected area to the spillover zone) and a meaningful effect size 
for Contrast 2 (comparison of the spillover zone to the independent 
zone) in any vegetation category (that is, both A = B and B ≠ C; Fig. 2). 
This total represents 17.5% of all candidate protected areas across  
Australia. However, generalization of this result is more accurately done 
in light of the actual number of protected areas included in both years 
in Contrast 1 (n = 3,063), Contrast 2 (n = 3,768), Contrast 3 (n = 6,068) 
and across all contrasts (n = 7,152). Thus, 71% (2,189 out of 3,063) of 

A ≠ CA ≠ B

Positive/similar spillover

A = CA = B

Group A: samples inside PA

Group B: samples in potential zone
of PA in�uence (spillover zone);
includes different distance bands

Group C: samples are independent of
protected area in�uence AND closer to
this PA than any other PA

A

B

C

Contrast 1: group A vs group B
Effect of PA relative to spillover
zone(s)

Contrast 3: group A vs group C
Effect of PA relative to broader
landscape

Contrast 2: group B vs group C
Effect of spillover zone relative to
broader landscape

Negative/dissimilar spillover

No spillover

Outcomes consistent with different spillover
conclusions

Positive spillover: ecological
variable in zone B is more similar
to PA contents than expected

Negative spillover: ecological
variable is less similar than
expected.

B = C B ≠ C

Contrast 1 Contrast 2 Contrast 3

Fig. 2 | Testing spillover hypotheses using data from a single time step. Top 
left, a hypothetical landscape consisting of a protected area (A), a potential 
spillover zone (B) and an area that is independent of protected area effects (C). 
Top right, comparisons that contrast samples from each of these areas can  
be used to support or refute hypotheses about the presence or absence of 
spillovers. The criteria assume that: (1) an ineffective protected area is one  
that does not make a difference to ecosystems within its boundaries; and  
(2) protected areas will produce spillovers only if PAs are effective (A makes a 
difference relative to C). I focus on hypothesis-separating diagnostic measures 

(the green ticks that are circled in red). The focal question is whether area A 
affects area B. To establish this, we need to also consider area C, which is free  
of the effects of A. We expect that positive or similar spillovers, in which 
vegetation in area B is more like that of the protected area than expected by 
chance, will lead to differences between samples in both A versus C and B 
versus C, and similarity between samples from A and B (that is, no effect of 
treatment A, or a weak effect, relative to area B). A lack of difference between A 
and B can also be consistent with other hypotheses, such as an ineffective or 
‘unnecessary’ protected area that has no spillover. PA, protected area.
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analysed protected areas in 2020 had a spillover effect over 0.1 on at 
least one vegetation type. This proportion was 1.5% lower for 1988, at 
69.5%. Numbers and proportions of spillovers thus showed very little 
change across a 32-year period. In 2020, an additional 705 individual 

protected areas had spillover zones in the 0–5 km band with meaningful 
effects in Contrast 2, but could not be confirmed as showing spillovers 
owing to sample size issues in Contrast 1. Proportionally, around 501 
(71% of 705) of these should also show meaningful spillovers.

N

2,000 km

10° S

15° S

25° S

35° S

20° S

30° S

40° S

110° E 120° E 130° E

5 km

140° E 150° E 160° E

Maximum effect size

0
2.5
5.0
7.5
10.0
12.5

a

b

Fig. 3 | Spillover effect sizes across Australia. a, Variation in spillover effect 
sizes across Australia. The map shows the locations of protected areas and 
their effect size on the 0–5 km band, for positive effect sizes greater than 0.1. 
Each point marks the centroid of a protected area (shown behind in the same 
colour as the centroid; for smaller PAs, only the centroid is visible). Locations 
with higher positive spillovers are shown in red or dark blue. Smaller protected 
areas are clustered nearer to the coasts; no other obvious geographic pattern  
is immediately evident in spillover effect sizes. b, An example of spillover for  
an isolated protected area. Mount Armour Nature Refuge in Queensland  

(about 500 km west of Brisbane, Queensland, indicated approximately by the 
red star in the inset map of Australia) shows positive vegetation spillover (more 
forest than expected by chance) for class X27 in the 0–5 km band, relative to a 
counterfactual based on data from sampling polygons more than 50 km from 
the protected area boundary. Vegetation in class X27 is coloured green; all 
other land cover classes are coloured pale yellow. The pink circle is the centroid 
of the protected area, as depicted in panel a, and the protected area is drawn 
with a black boundary and cross-hatched fill. The pale blue buffer line indicates 
the edge of the 5 km spillover zone.
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Protected areas that were entirely excluded from the analysis for 
statistical reasons were either too small to support the sample size 
requirements for the analysis, were located in areas with very little 
surrounding natural vegetation (for example, urban parks), or were 
members of tightly grouped clusters of protected areas with small 
potential spillover zones. The distribution of terrestrial protected 
areas across Australia is clearly biased, with smaller protected areas 
clustered near the coasts (Fig. 3).

I used data within the 0–5 km distance band from protected area 
boundaries to examine trade-offs between protected area spillover 
effects. Comparison by vegetation category of the summed frequencies 
of positive and negative spillover effects of magnitude over 0.1 (using 
data in Table 1) gave a Pearson’s correlation of r = 0.71 (t = 2.9, P < 0.02, 
d.f. = 8), providing evidence of trade-offs between different vegeta-
tion types. Similarly, comparing vegetation types across all individual 
protected areas, in 2020 the spillover zones appear to facilitate shifts 
between open woodland (X28) and forest (X27) (r = −0.22, P < 0.001, 
n = 3,501), consistent with either reforestation or light deforestation 
adjacent to protected areas (further detail in Supplementary Informa-
tion, Section 11 and Supplementary Fig. 8). There was little evidence 
for synergies between vegetation types, which would yield stronger 
positive correlations.

Management influence on spillovers
Spillover effects are driven by a variety of factors that can vary both 
inside and outside a protected area33. A critical question for including 

spillovers in conservation planning and policy is whether manage-
ment inside a protected area can make a difference to ecosystems 
and social-ecological systems outside its boundaries34. Management 
activities are influenced by biophysical, social, political and economic 
variables35,36. For example, using prescribed burns to thin woody 
vegetation in protected areas may depend on vegetation type, the 
economic capacity of management, available infrastructure for access-
ing and controlling fires, and the social acceptability of burning near  
private lands37.

I used management attribute data for each protected area from the 
CAPAD dataset to test for an influence of management type on the 
effect size of protected area spillovers. To avoid the statistical effects 
of sample size inflation from locations that could not be tested for 
spillover effects, I used data for 2020 from the 3,441 protected areas 
that showed non-zero spillovers based on Contrast 2 and had full 
management information available. I again focused on the 0–5 km 
sampling band where spillover effects should be strongest. To avoid 
double-counting, while still comparing protected areas in different 
habitat types (for example, woodland and grassland), I used the largest 
observed spillover effect across the ten vegetation categories. I ran this 
analysis separately for positive and negative spillovers, using a square 
root transform on the absolute values to normalize the data prior to 
analysis and setting the value to zero in rows where there were either 
no positive or no negative spillovers.

I focused first on the International Union for Conservation of Nature 
(IUCN) categories. For positive spillovers, mean untransformed effect 
sizes and their s.d. by category were, in decreasing order, category V 

Table 1 | Aggregated results across all protected areas and vegetation types

Contrast 1
group A vs group B
(PA vs spillover)

Contrast 2
group B vs group C
(spillover vs independent)

Contrast 3
group A vs group C
(PA vs independent)

Vegetation class A ≠ B
Positive

A ≠ B
Negative

A = B
None

B ≠ C
Positive

B≠C
Negative

B = C
None

A ≠ C
Positive

A ≠ C
Negative

A = C
None

X27: Woody closed (>65%) 609 482 498 738 1,690 1,267 2,157 1,942 2,633

(%) 38.33 30.33 31.34 19.97 45.74 34.29 32.04 28.85 39.11

X28: Woody open (40–65%) 1,495 655 561 1,699 1,439 617 4,103 1,720 964

(%) 55.15 24.16 20.69 45.25 38.32 16.43 60.45 25.34 14.2

X29: Woody open (15–40%) 1,462 459 888 1,129 1,362 1,264 3,249 1,394 2,152

(%) 52.05 16.34 31.61 30.07 36.27 33.66 47.81 20.52 31.67

X30: Woody sparse (4–15%) 146 103 656 240 150 3,321 663 328 5,765

(%) 16.13 11.38 72.49 6.47 4.04 89.49 9.81 4.85 85.33

X31: Woody scattered (1–4%) 64 29 379 67 90 3,473 227 241 6,202

(%) 13.59 6.16 80.47 1.85 2.48 95.67 3.4 3.61 92.98

X32: Herbaceous closed (>65%) 60 88 577 250 2 487 134 157 6,311

(%) 8.28 12.14 79.59 33.83 0.27 65.9 2.03 2.38 95.59

X33: Herbaceous open (40–65%) 626 920 890 1,467 1,307 976 1,715 2,628 2,442

(%) 25.7 37.77 36.54 39.12 34.85 26.03 25.28 38.73 35.99

X34: Herbaceous open (15–40%) 1,330 949 641 1,803 1,640 325 3,096 2,829 882

(%) 45.55 32.5 21.95 47.85 43.52 8.63 45.48 41.56 12.96

X35: Herbaceous sparse (4–15%) 667 797 972 1,151 1,828 789 2,346 2,796 1,665

(%) 27.38 32.72 39.9 30.55 48.51 20.94 34.46 41.08 24.46

X36: Herbaceous scattered (1–4%) 293 232 914 407 1,422 1,933 941 1,672 4,181

(%) 20.38 16.13 63.56 10.82 37.8 51.38 13.85 24.61 61.54

Results were aggregated for comparisons using sampling polygons inside the protected area (area A), in the 0–5 km spillover zone (area B) and beyond 50 km from the protected area (area C).  
For each vegetation type, the observed frequency of meaningful effects is given in the row labelled with the vegetation class. Effects are classed as ‘positive’, ‘negative’ or ‘none’. ‘None’ indicates 
that effect sizes were measured but fell between −0.1 and 0.1 and thus were not considered meaningful. Although the candidate sample of protected areas for inclusion was 12,513 in all cases, 
these reported frequencies and percentages do not include protected areas for which effect sizes could not be estimated. Sample sizes of protected areas differed for each contrast, owing to 
either an insufficient number of sampling polygons or the absence of a particular vegetation type. The row below each vegetation type expresses the frequency as a percentage of the  
total number of protected areas for which that particular contrast could be successfully run. For example, 1,589 protected areas were included in estimates of the class X27 (canopy >65%) for 
Contrast 1 and 3,695 were included in Contrast 2. The corresponding data for 1988 are presented in Supplementary Table 3.
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(2.46 ± 1.68), category II (2.35 ± 1.61), category IV (2.27 ± 1.84), category 
VI (2.12 ± 1.50), category III (1.89 ± 1.61), category Ib (1.79 ± 1.43) and 
category Ia (1.79 ± 1.64). For negative spillovers, the order of means 
by effect size magnitude were similar to those from positive spillo-
vers: category IV (−1.67 ± 1.66), category V (−1.61 ± 1.48), category II 
(−1.53 ± 1.57), category Ib (−1.56 ± 1.43), category VI (−1.47 ± 1.43), 
category III (−1.36 ± 1.21) and category Ia (−1.35 ± 1.16). An ANOVA by 
IUCN protected area designation on the positive spillovers indicated a  
highly significant difference in effect sizes between IUCN manage-
ment designations (F = 17.28, P < 2 × 10−16, d.f. = 6, n = 3,434). By contrast, 
treating the negative spillovers in the same manner gave a result that 
was only statistically significant to P < 0.1 (F = 1.88, P < 0.08, n = 3,434). 
Thus, management designation appears to strongly affect positive 
spillovers while only weakly affecting negative spillovers.

For positive spillovers, Tukey’s honest significant difference test 
gave significant differences between seven different contrasts in the 
IUCN categories (Fig. 4). With the larger mean effect first in each pair 
of comparisons, these were IV–Ia, II–Ia, IV–III, II–III (P < 0.001), IV–VI 
(P < 0.01), V–Ia and II–VI (P < 0.05). Differences in management designa-
tion between protected area types therefore had potentially important 
consequences for positive spillovers. Categories V, II and IV had the 
highest mean values and all featured prominently in significant dif-
ferences from other categories. Category II contains strictly protected 
wilderness areas and categories IV and V contain protected habitat or 
species management areas and protected landscapes, respectively. 
Conversely, protected areas with the lowest identified spillover effects 
were in categories Ia (strict nature reserves) and III (natural monuments 
or features).

These results highlight the many nuances that arise in understanding 
influences on spillover outcomes. The difference between category I 
and category II areas was surprising, but is consistent within the data 
as shown by the independently measured similarities between results 
for IUCN categories Ia and Ib. It may relate to the locations in which 
these areas are typically placed, if wilderness areas in category II are 
surrounded by other less human-impacted areas while category I areas 
more frequently act as islands of natural habitat where agriculture and 
ranching pressures are higher. The apparently high spillovers from class 
IV and V areas may reflect broader initiatives to manage landscapes at 
scale, potentially leading to higher levels of natural vegetation adja-
cent to their borders despite net habitat loss in the broader landscape.

The results might superficially be interpreted as implying that class 
VI protected areas offer lower ecological benefits to people beyond 
their boundaries, but it is important to note that many sustainable use 
areas in Australia are on Indigenous lands in sparsely populated areas. 
In light of known mechanisms and the contrasts presented in Fig. 2, the 
lower spillover effects from areas in class VI are more likely to indicate 
that these protected area types retain intact natural habitats on both 
sides of their boundaries and beyond, not a gradient of habitat loss 
extending from the boundary.

Analysis of positive spillovers using a more detailed breakdown 
of protected area types (Fig. 4) confirmed that protected area des-
ignation influences spillover effects (F = 7.82, P < 2 × 10−16, d.f. = 46). 
Post hoc Tukey’s test identified 54 statistically significant differences 
between different management classes (Supplementary Information, 
section 11.2, Supplementary Table 4). For negative spillovers, the man-
agement effect remained highly significant (F = 2.95, P < 1.5 × 10−10, 
d.f. = 46) but the Tukey’s test suggested that only four management 
classes were significantly different from each other (abbreviations 
defined in Fig. 4): RR versus ACCP (P < 0.048), NFR versus HA (P < 0.001), 
RR versus HA (P < 0.001) and RR versus NCR (P < 0.004). The sequence 
of untransformed mean negative effect sizes for these classes was RR 
(−2.5 ± 2.7), CC (−1.17 ± 1.0), NFR (−1.7 ± 1.5), HA (−1.2 ± 1.1) and NCR 
(−1.17 ± 1.2). RR featured in three of the four significant class differ-
ences with the more negative effect size. This management category 
is used primarily in Tasmania and South Australia as a tool to balance 

conservation with resource utilization, suggesting that the negative 
spillovers identified by this analysis do not reflect normatively positive 
conservation outcomes. However, the five management types in this 
dataset with both a substantial sample size and higher mean positive 
spillover effects were (in decreasing order) RA (4.6 ± 2.3), S5G (3.9 ± 2.4), 
WP (3.7 ± 1.4), RR (3.5 ± 2.4) and SP (3.2 ± 1.8). RR may thus be either:  
(1) supporting the replacement of one vegetation class by another, lead-
ing to high positive spillover in one vegetation type and high negative 
spillover in the category it replaces; or (2) sufficiently diverse that they 
function as effective conservation tools in some areas but not in others.

Considering the other management types highlighted by the positive 
spillover analysis, RAs are kept interference-free for use as monitoring 
baselines and seem more likely to be surrounded by intact ecosystems 
that buffer human impacts. S5G areas are specific to Western Australia; 
they are areas of land held by the Conservation and Parks Commission 
that are not in one of the other designated reserve types. WP areas are 
large, pristine areas with a strong protection status. However, both SR 
and RR areas may be used for a range of activities.

The protected area management types with reasonable sample  
sizes that were least likely to show positive spillovers were generic 
protected area (1.3 ± 0.96), CR (1.4 ± 1.4), REP (1.4 ± 0.7), S5H (1.5 ± 1.5) 
and NR (1.5 ± 1.5). These categories again show a mix of different man-
agement approaches and there is also considerable variance in their 
effect sizes, particularly within the larger samples (for example, NR 
areas have many outliers with effect sizes over 5). NR was the most 
sampled of this group and their relatively low overall mean spillover 
effect may be partially owing to being frequently located in areas where 
they are surrounded by less human-impacted habitats. Alternatively, 
many NR areas in Australia also target the conservation of indigenous 
marsupials, and these areas may be fenced for predator control and 
surrounded by firebreaks and roads.

This analysis provides, to my knowledge, the first evidence that pro-
tected area management affects the kind and magnitude of spillover 
effects across terrestrial Australian protected areas. It leaves many 
questions open for further research. More detailed comparison 
between results of the different contrasts outlined in Fig. 2, as well as 
exploration of the influences of local and regional policies on spillover 
effects, should yield a clearer and more nuanced explanation of why, 
where and when different management types support spillover effects. 
Despite these complexities, it is clear that management and use pat-
terns inside protected areas can predictably affect the likelihood of 
spillover effects occurring on vegetation beyond their borders; and 
that further research on this theme may provide valuable tools and 
recommendations for increasing the net provision of ecosystem ser-
vices outside protected area boundaries.

Having confirmed that differences in spillover effect sizes occur 
between management types, I used variance partitioning to compare 
management effects and habitat effects. The response variable for this 
analysis was spillover effect size as measured by Contrast 2 (that is, a 
matrix of data with 10 columns, corresponding to effect sizes from 
the 0–5 km spillover zone for all vegetation types relative to an area 
independent of protected area effects). It compared the explanatory 
power of protected area management types to explanatory matrices of 
data for local variables (rainfall, temperature, elevation, soils, elevation, 
slope, evapotranspiration and the count of pixels of each vegetation 
type occurring within the protected area), context-related variables 
(x and y coordinates of the protected area bounding box top left and 
bottom right, protected area extent, distance to nearest large town, 
distance to coast, distance to any road and distance to main road), and 
protected area gazettement date.

Gazettement date was subsequently dropped from the analysis 
owing to its low explanatory power (less than 1% of variance). The 
results showed that management and its indirect interactions with 
other variables can explain just over 16% of the variance in spillover 
effect size (Fig. 5). Although 65% of variance is unexplained, it was 
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Fig. 4 | Influence of management on spillovers. Box plots of effect size 
according to IUCN protected area category (a) and Australian management 
type (b), showing median and s.d. of positive spillover effect sizes (Contrast 2: 
spillover zone versus independent zone) by management type for 3,510 
protected areas (blue dots), both with two outliers excluded. Australian 
protected area types are shaded by IUCN category. In box plots, central 
horizontal lines are medians; edges delineate 25th and 75th percentiles; and 
whiskers extend to smallest and largest values within 1.5 times the interquartile 
range of the relevant percentile. Brackets above bars in a indicate pairs  
that exhibit a significant difference based on ANOVA and Tukey’s honest 
significant difference test; *P < 0.05, ***P < 0.001. III versus IV: P = 0.023;  
III versus V: P = 0.014; I1 versus V: P = 1.61 × 10−4; Ia versus VI: P = 3.64 × 10−6;  
Ia versus IV: P = 1.05 × 10−6; II versus III: P = 2.06 × 10−7; Ia versus II: P = 1.20 × 10−9. 
Sub-categories for CAPAD: ACCP, Conservation Covenant; CA, Conservation 
Area; CCA, Coordinated Conservation Area; CAZ1, CA Zone 1 National Park; 

CAZ3, CA Zone 3 State Conservation Area; COR, Coastal Reserve;  
CP, Conservation Park; CR, Conservation Reserve; FLR, Flora Reserve; FR,  
Forest Reserve; GR, Game Reserve; HA, Heritage Agreement; HIR, Historical 
Reserve; HR, Heritage Reserve; IPA, Indigenous Protected Area; KCR, Karst 
Conservation Reserve; MA, Management Area; NAP, Nature Park; NCA, Natural 
Catchment Area; NCR, Nature Conservation Reserve; NFR, Natural Features 
Reserve; NP, National Park; NPA, National Park Aboriginal; NPC, National Park 
(Commonwealth); NR, Nature Reserve; NRA, Nature Recreation Area; NREF, 
Nature Refuge; NRS, Addition - Gazettal in Progress; NS, National Park (Scientific); 
OCA, Other Conservation Area; PNR, Private Nature Reserve; PS, Private 
Sanctuary; RA, Reference Area; RCP, Recreation Park; REP, Regional Park;  
RNA, Remote and Natural Area; RR, Regional Reserve; RSR, Resource Reserve; 
S5G, 5(1)(g) Reserve; S5H, 5(1)(h) Reserve; SCA, State Conservation Area; SP, 
State Park; WP, Wilderness Park; WPA, Wilderness Protection Area. Unrepresented 
protected area types did not show measurable non-zero spillover effects.
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unexpected that a simple categorical measure of protected area type 
explains so much of the total variance, given probable differences 
within management types between districts, states and biomes. I inter-
pret this result as suggesting that although protected area manage-
ment may not be able to overcome local or regional constraints, it has 
an important influence on spillover magnitude within the envelope 
defined by those constraints.

The results suggest that it is possible to make useful predictions 
about protected area vegetation spillover effect sizes from manage-
ment information and a relatively small set of other readily measured 
variables. This finding is important because being able to estimate 
spillover likelihoods for an existing or potential set of protected areas 
would provide a quantitative tool for formally incorporating assump-
tions about spillover effects in conservation policy and planning, and 
for quantifying the associated uncertainties in potential outcomes.

To explore the predictability of vegetation spillovers, I used the 
2020 data to develop a regression model to predict positive spillover 
magnitudes from all protected areas. I focused on positive spillovers 
(increases in vegetation of a given type) as being more predictable and 
potentially of higher conservation relevance. I used as the response 
variable the (square root-transformed) largest positive spillover effect 
across all vegetation types, including all 3,510 rows of data and using 
the variables included in the matrices described above. These varia-
bles included all of the continuous predictors, the additional contextual 
variables, and all management categories (noting that each manage-
ment category is coded as a separate binary variable during regression). 
This analysis gave a significant overall regression model fit with an 
adjusted r2 value of 0.26 (P < 2.2 × 10−16, F = 14.1, with degrees of free-
dom = 96 and 3,413; for more detail, see Supplementary Information, 

section 11.5 and Supplementary Table 6). This result is consistent with 
the results from variance partitioning.

After fitting, the model was used to predict positive spillover effects 
across the full sample of protected areas. Analysis of the results sug-
gested that around 82 ± 0.26% of protected areas should produce a 
positive spillover effect over 0.1 within 5 km of their boundary. Repeat-
ing the regression analysis independently using different effect sizes 
across different distance bands relative to the protected area boundary 
offered a way to correct for the influence of differences in sample size 
from different sampling bands (Fig. 6). Calculations of benefits and 
costs to society from protected areas would need to consider how 
many protected areas are likely to provide beneficial spillovers, how 
large these benefits might be, and how far they might extend. These 
estimates thus provide potentially useful insights for decision-making 
at regional scales. Providing an effect size profile also offers a critical 
step towards the capacity to consider trade-offs—for example, con-
trasting the value of expanding existing protected areas with that of 
creating new protected areas.

Discussion
I estimated that at least 71% of 3,063 measured Australian terrestrial 
protected areas consistently provided meaningful vegetation spillovers 
(effect size >0.1) in the 0–5 km band and predicted that the true propor-
tion across 12,513 candidate protected areas was 82%. The number of 
protected areas exhibiting spillover effects declined with increasing 
distance from the protected area boundary; positive and negative 
spillover effects occurred together across different vegetation classes. 
Notably, the effect sizes of vegetation spillovers differed significantly 
between different protected area management types and could be 
predicted from a combination of readily measurable management, 
biophysical, vegetation and geographic gradient-related variables. 
Thus, this broad-scale statistical analysis strongly supports the findings 
of more mechanistic analyses38,39, which suggest that with the addi-
tion of more specific and detailed information about protected area 
management practices, landscape arrangement, and location along 
spatial gradients relative to human activities, statistical models that 
can accurately predict vegetation spillover effect size from protected 
areas to adjacent lands are a plausible goal.

Although the findings strongly support the hypothesis that the type 
of a protected area makes a significant difference to its contributions 
to surrounding landscapes, understanding exactly how and why will 
need more intensive analyses of the nuances of different protected 
area types. For instance, a systematic review of spillover influences on 
(mainly) tropical forest cover data from 3,398 protected areas15 con-
cluded that there was no effect of IUCN category on spillover magni-
tude. Further research is needed to understand whether the differences 
in our respective findings are due to differences in the nature of the 
included protected areas and countries, selection bias in previous 
studies for deforestation hotspots, or differing methods.

The results of this terrestrial analysis do not initially appear to 
strongly reflect what has been described for marine protected areas, 
where no-take and no-entry zones have been shown to offer the greatest 
benefits to adjacent fisheries and to have an important role in seascape 
connectivity20,40,41. Nonetheless, there are some parallels: I found some 
evidence for the value of landscape management, and similar conclu-
sions have also been reached for seascapes40.

The scale of vegetation spillover effects that emerged from these 
data seems large, with some effects being detectable more than 45 km 
from the protected area boundary (although this is not without prec-
edent24). It is unclear what mechanism—whether ecological or socioeco-
nomic—might produce spillovers at this scale. It might be explained by 
large farm sizes in rural Australia, low population density in the interior, 
and/or efforts to maintain vegetated corridors along riparian zones and 
between protected areas. Relatively few terrestrial locations in Australia 
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Fig. 5 | Proportional contributions of management. The results of variance 
partitioning using absolute values of protected area spillover effect sizes as  
the response matrix and local, contextual and gradient-related variables as 
explanatory influences. The total proportions of variance explained uniquely 
by each variable independently were respectively 12% (local), 1% (context) and 
2% (management). Inclusion of all covariance effects for each variable increased 
these proportions to 32% (local), 15% (context) and 16% (management). Together 
these variables explained 35% of the variance in spillover effects. Running the 
same analysis using all effect size data (Contrasts 1, 2 and 3) increased total 
explained variance to 45%, with cumulative totals being 43% (local), 17% (context) 
and 19% (management).
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are further than 150 km from any protected area (Supplementary Infor-
mation, section 9 and Supplementary Fig. 6). Clarity on causality is 
critical for understanding spillovers42,43, and this scale of effect might 
not apply to other continents. Finding an effect extending so far from 
protected area boundaries highlights the importance of careful calibra-
tion of spillover effect sizes in future analyses of spillovers. For example, 
in forest spillover studies it is common to assume a spillover zone of up 
to 10 km from the protected area boundary44–46, and spillovers are often 
measured at much smaller distances47–49. When estimating the potential 
costs and benefits of protected area spillovers, using a 0–10 km zone for 
analysis may lead to a significant underestimate of the impacted area.

Statistical prediction of spillover effects has potentially valuable 
applications in assessing where new protected areas might make the 
greatest contributions to their surrounding landscapes and in develop-
ing counterfactuals against which the management effectiveness of 
protected areas for spillovers can be evaluated50. For example, compari-
son of actual protected area spillover effects to predicted effects could 
identify locations where management is over- or under-performing and 
the reasons why this occurs51. Consistent determination of the form, 
magnitude, timing and extent of spillovers will be crucial if spillovers 
are to be rigorously included in environmental accounting and land use 
planning and policy3. In the broader context of global goals for nature 
protection and the need to both reverse the decline of biodiversity and 
restore or reclaim natural areas, protected area spillovers will be vitally 
important for the resilience and ecological restoration of degraded 
landscapes and seascapes52–54.

Defining the properties and underlying causes of spillover effects 
from protected areas is critical for both maximizing their benefits to 

society and protecting people from any associated costs. Quantify-
ing spillover effects will also be central to any attempts to measure 
the full costs and benefits of protected areas to society34. Failure to 
include spillovers in accounting exercises can lead to under-reporting 
of the benefits of protected areas, negatively impacting their social 
licence. Conversely, naive assumptions about likely spillover benefits 
and costs can inflate expectations and create other kinds of social 
and political problems for protected area creation and persistence. 
The proof of concept of spillover predictability presented here sug-
gests that with more refinement, we can develop consistent policies 
that support protected area spillovers for regional social-ecological 
sustainability14,34.
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Methods

Data
All land cover and protected area datasets used in the analysis (see Sup-
plementary Information, ‘Data sets’ and Supplementary Tables 1 and 2) 
are publicly available. I measured vegetation patterns using the Digital 
Earth Australia (DEA) 1:250,000 Land Cover Map (https://maps.dea.
ga.gov.au)27,28,56. The DEA Land Cover Map was created using the global 
standard of the Food and Agriculture Organization’s (FAO) Land Cover 
Classification System (LCCS) Taxonomy Version 257,58. The dataset 
combines quantitative reflectance data from the Landsat satellite and 
qualitative environmental descriptions to measure Australian vegeta-
tion cover and type at a grain of 25 × 25 m over the period 1988–2020. 
Although annual data are available, for this analysis I focused on the 
first and last years of the publicly available time series.

The DEA Land Cover Map distinguishes between cultivated and 
natural terrestrial vegetation, and between terrestrial and aquatic 
vegetation. I used the natural terrestrial vegetation data because of its 
higher value than cultivated land for biodiversity conservation. Natural 
vegetation in the DEA Land Cover Map describes areas that “have all or 
most of the characteristics of natural or semi-natural herbaceous or 
woody vegetation (based primarily on floristics, structure, function 
and dynamics)”27,28,56. In Australia, natural or semi-natural vegetation 
may include areas that are grazed by domestic livestock to keep grassy 
areas open and reduce fire risk. Areas classified as naturally vegetated 
have a greater fraction of photosynthetic or non-photosynthetic veg-
etation than the bare soil fraction for at least two consecutive months. 
By contrast, vegetation classified as cultivated terrestrial vegetation 
occurs in areas “where management practices aimed at cultivation 
(including for grass production) are actively performed during the 
year being shown… [they] include crop planting and harvesting, fer-
tilization and ploughing”59.

A few details of the classification scheme are particularly relevant 
to interpretation of the findings of this analysis. Managed plantations 
and orchards are difficult to distinguish from natural vegetation and 
may be misclassified as described by the DEA Land Cover Map authors; 
and in some locations, in northern Australia in particular, variability 
in natural vegetation growth and fire management patterns can result  
in natural woodlands being misclassified as cultivated land. Similarly, in 
arid and semi-arid regions, natural terrestrial vegetation may transition 
into the natural surface class (naturally bare ground or rock) during dry 
periods. Finally, in urban areas, vegetated pixels are classified as natu-
ral only if the pixel is at least 30% vegetated. Although some years are 
singled out by DEA as being more likely to include classification errors 
(for example, 2010 as an unusually wet year and 2015 as an unusually 
dry year), the two years included in this analysis, 1988 and 2020, were 
both relatively ‘normal’59. Although these details are unlikely to affect 
the overall conclusions drawn from this analysis, they may affect spe-
cific instances of findings about spillover effects. Note that to avoid 
confusion with other numeric information, X is used throughout the 
manuscript as a prefix to indicate a vegetation land cover class.

Data for potentially confounding variables (that is, variables that 
describe influences on vegetation cover other than protection) were 
assembled from a variety of sources. Variables were based initially on 
the findings of Joppa and Pfaff60 and a list of established predictors 
described in related publications15,61,62. The 14 biophysical variables for 
initial consideration included the following (described in more detail in 
the Supplementary Information and Supplementary Table 2): elevation, 
slope63, BIO1 (annual mean temperature), BIO5 (maximum temperature 
in warmest month), BIO6 (minimum temperature in coldest month), 
BIO7 (temperature annual range), BIO9 (mean temperature of dri-
est quarter), BIO12 (mean annual precipitation), BIO15 (precipitation 
seasonality (coefficient of variation))64, SoilDES (soil depth in cm), 
Soil BDW0_5 and soil BDW5_1565,66 (soil bulk density, measured using 
dry mass per volume, at depths of 0–5 cm and 5–15 cm), AET (actual 

evapotranspiration)67, and agricultural capability68. This list includes 
well-established influences on plant growth patterns, the climatic and 
soil variables identified by Bennett et al.61 as being most correlated with 
forest biomass, representative measures of the soil–plant interface, 
and a human perspective (agricultural potential) on the capacity of 
locations to support agriculture.

To correct for biases due to the placement of protected areas I also 
included four location-related measures: distance to town of >250,000 
people, distance to coast, distance to major road, and distance to  
any road. I initially included human population density, but replaced 
this with ‘distance to town of >250,000 people’ because large areas of  
Australia have such low population densities that using actual human 
population density provided very little benefit in distinguishing 
between most locations and resulted a large number of missing data 
values that hindered statistical analyses. Note that although these vari-
ables will also correlate with land clearing processes, they are intended 
to correct for protected area position rather than to measure land 
clearing. Thus, the dates of the coverages used to generate these vari-
ables need only to align with the relatively slow process of protected 
area gazettement, rather than with any recent changes in land use or 
population expansion.

Extraction from these datasets to create attributes for each sam-
pling polygon was undertaken in Google Earth Engine. The number of 
included covariates was constrained by the need to avoid overfitting 
in matching and regression analyses by maintaining a working ratio 
of at least five independent sampling points per predictor variable. 
I used variance partitioning and then principal components analysis 
to reduce the number of matching covariates (see Supplementary 
Information, section 7.4, for full details and related statistics). The 
first five principal components explained over 83% of the variance in 
the environmental data. The variance partitioning analysis indicated 
that these components explained ~18% of the variance in vegetation 
composition across all sampling polygons in both 1988 and 2020, with 
additional components explaining just over 1%.

Judging that the inclusion of additional components was not worth 
either the resulting loss of data from the larger analysis or (alterna-
tively) the risks of overfitting regression models for protected areas 
where available sample sizes of sampling polygons were small, I ran the 
matching analysis using the first five principal components to correct 
for environmental confounding variables. Using principal components 
also has the added advantages that: (1) the components themselves 
were normally distributed, although slightly skewed in a few cases; 
and (2) the components were entirely uncorrelated with each other. 
Thus, the components fully meet textbook assumptions of regression 
analysis and related techniques.

Data on the management categories, gazettement dates, and other 
attributes of protected areas across Australia are provided in the CAPAD 
2020 dataset. Some correction of minor errors in this dataset was 
required prior to use (details in Supplementary Information, section 1).

Data processing
A full set of data processing methods is provided in the Supplementary 
Information, sections 2–13. All coverages used in the analysis were 
reprojected into the Australian Albers (equal area) projection to ensure 
undistorted calculations of areas. The use of small, standardized sam-
pling polygons in spillover analysis offers several advantages over most 
published alternatives (such as varying buffer or control area with pro-
tected area size69,70 and large polygons71, or aggregation of pixels within 
distance bands62,72) by offering a fine-resolution but highly standardized 
unit of analysis that can be easily aggregated or disaggregated without 
creating additional issues of autocorrelation, overlapping areas, or 
differences in area between data that are compared. Analyses that use 
single pixel values (for example, forest/non-forest) inevitably have to 
use counts or proportions of forested pixels for statistical analysis. 
Besides the problems created by different pixel trajectories over time, 
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aggregation of pixels means that there are often different numbers of 
pixels per distance band from a protected area in such analyses because 
the areas of bands of a standard width increase with distance from the  
protected area boundary. The use of sampling polygons avoids these 
issues while also offering the advantage that their distance to the near-
est protected area boundary is calculated as a continuous variable, 
meaning that re-analysis across multiple scales is simple. They also have 
the potential for use in a more advanced matching analysis approach 
that would use a continuous treatment variable (rather than the current 
standard of treatment/no treatment) if/when appropriate statistical 
tools for large-sample analysis of continuous treatments have been 
developed.

To create sampling points, I first used the ‘random points in poly-
gons’ command in QGIS (not to be confused with the ‘inside polygons’ 
command) with the option of 50 points per polygon and a minimum 
spacing of 300 m to generate random points inside each of the CAPAD 
polygons. This generated 235,332 points inside protected areas (PAs; 
the ‘treatment’ sample). I used gBuffer in the R package rgeos73 to add 
a 50 m buffer around each point, creating a set of circles of 50 m radius 
as the treatment sampling units for analysis. With a 50 m radius, each 
sampling polygon has an area of 7,854 m2 (0.78 Ha).

I went through several iterations of running analyses and then 
creating more sampling polygons and adding them to the dataset to 
support greater inclusivity of protected areas. The first step included 
approximately 481,000 sampling points outside PAs and >300 m 
apart. I buffered these using gBuffer and merged the inside-PA and 
outside-PA data layers to create a single file with 716,171 50m-radius 
sampling polygons, of which approximately 1/3 were inside PAs and 
the rest were outside. I added a third set of points to the analysis by 
creating a 55 km merged buffer around all protected areas and using 
‘random points in polygons’ in QGIS, with a minimum separation of 
300 m, to add another 400,000 points distributed randomly inside 
these potential spillover zones. After converting these points to sam-
pling polygons I used a spatial join with the existing sampling layer to 
identify and then remove all new polygons that were within 200 m of 
an existing sampling point. Finally, deciding that the sample size was 
still not sufficient, I relaxed the between-sampling polygon boundary 
constraint to 50 m and added another ~1.5 million sampling polygons, 
bringing the total up to 2,636,333 after removing overlapping or adja-
cent polygons. Due to the file sizes involved, later additions were run 
separately through the same processing steps as the other sampling 
points to add attributes and then merged with them prior to running 
the matching analysis.

Attributes from CAPAD were added to the sampling polygon cover-
age using a spatial join, which also added the distance of each sampling 
point to its closest PA. This distance was set to zero for points inside a 
PA. I imported the resulting file as a feature collection asset into Google 
Earth Engine and used a custom script to extract the number of pixels 
of each Land Cover class in the DEA vegetation map into a table for 
each image (year) in the dataset, from 1988–2020 (see Supplementary 
Information for all scripts). The overlay approach was inclusive of any 
overlap, rather than just using pixel centroids, meaning that values 
from 16 different 25 × 25 m land cover pixels were captured in each 
sampling polygon.

Land cover change characterization
To set the stage for the spillover analysis, I generated some simple visu-
alizations and statistical tests exploring the amount and proportion of 
each vegetation type in 1988 and 2020 across all sampling polygons. 
The descriptive analysis is presented using a bar chart with error bars 
indicating a standard deviation from the mean. I used paired t-tests in 
base R to determine whether there was a higher average area of vegeta-
tion of different classes inside protected areas than outside.

Under natural conditions at least two vegetation types would usu-
ally change together (for example, closed canopy changes to open 

woodland, or vice-versa, leading to shifts in two vegetation cover types 
rather than one). Locations in which only one vegetation class changed 
will generally have entered a non-vegetated or non-natural cover type 
(for example, agriculture, built environment, bare soil, or water).  
I briefly explored uncorrected patterns by plotting histograms of the 
distance of each sampling polygon from the protected area boundary, 
for all polygons and by vegetation type (see Supplementary Information 
and Supplementary Fig. 2). This preliminary analysis showed that sam-
pling points (and hence, the land mass of Australia) were lognormally 
distributed relative to protected area boundaries, with relatively few 
points further than about 150 km from any protected area.

Statistical analysis of spillover effects
All code used in these analyses is provided in the Supplementary Infor-
mation, sections 2–13 and the associated code archive on Figshare.  
I used the Pawsey supercomputer (Setonix) to run matching analysis 
individually on each combination of PA × distance zones × land cover 
types × geographic contrast × year (see Supplementary Information, 
section 8). Statistical analysis for spillovers involves comparing a treat-
ment (the PA) to a control or untreated location (areas outside PAs that 
are independent of spillovers from other PAs). Marginal effect sizes 
(treatment relative to control) were calculated individually for each 
PA and its surrounding zones. This two-step process involved (step 1)  
using propensity score matching in the R package MatchIt74 to pro-
duce a balanced dataset; and then (step 2) estimating the magnitude 
of the treatment effect. Step 1 used generalized full matching with an 
underlying logistic regression model fitted to the binary (treatment/
control) data. Note that this procedure produces an output that is 
continuous, not binary. In step 2, I followed the steps recommended 
by Greifer75 and Chatton, et al.76, using avg_comparisons (including 
the original covariates in the fitted model for the outcome) in the  
R package marginaleffects75 to run a g-computation procedure with a 
cluster-robust standard error estimator to account for pair member-
ship. This procedure estimates the risk difference (RD) as a measure 
of effect size for the ‘average effect of treatment for those who receive 
treatment’ (ATT). It uses the results from step 1 and includes the same 
covariates, but because it uses the continuous outputs from step 1 it is 
underpinned by a Gaussian distribution rather than the original logistic 
link. The output from step 2 was a set of statistics for each PA including 
the estimated RD for the treatment, its probability, and associated 
standard errors and confidence intervals.

I used effect size rather than the significance of the regression model 
to determine whether and where spillovers occurred. Risk difference, 
as a measure of absolute rather than relative effect, is considered one 
of the best measures for assessing the effectiveness of interventions77. 
In this context it describes the degree to which the existence of a PA 
increases (positive values) or decreases (negative values) vegetation 
cover of the type under consideration, relative to the counterfactual. 
For example, for a comparison of the high forest canopy land cover type 
inside and outside a given PA, an RD value of 0.1 would indicate that a 
10% risk increase (improvement in adjacent forest canopy cover) can 
be ascribed to the PA. RD is usually reported with a SE and confidence 
interval, but these could not feasibly be reported in the main manu-
script for each PA due to the volume of protected areas in the analysis. 
They are given for each PA in the on-line version of the data. Effect sizes 
are generally classified as low, medium, or high; where threshold values 
must be selected for analytical reasons, effect sizes large enough to be 
of interest to the analyst are termed meaningful rather than significant. 
I used a threshold value of 0.1 for meaningful where decisions about the 
inclusion or exclusion of effects was necessary, and demonstrate the 
implications of varying the choice of threshold value in Fig. 6.

The number of individual attempts to estimate effect sizes across 
different parameter combinations (10 vegetation types × 10 dis-
tances × 12,500 PAs × 2 years × 2 full between-zone contrasts and one 
contrast (inside-PA versus independent from PA) that did not include 



all distance bands) made it unfeasible to individually check group bal-
ance for each PA after weighting. To check that the matching approach 
was effective, I saved the standardized mean difference (SMD) for each 
protected area for both the original dataset and the matched dataset 
generated by the matchit routine in the MatchIt package. The code is 
written in such a way that matching attempts that do not yield valid 
statistics will generate NA (not available) values in the output table 
that exclude those estimates from consideration. The mean SMD for 
the matched dataset across all protected areas was less than 0.01 for all 
six environmental variables used in the regression analysis, indicating 
that outputs from propensity score matching were suitably balanced, 
and lower than the control SMD for all variables. Histograms show-
ing the shift in SMD before and after matching (that is, a large-sample 
version of the love plot) are provided in Supplementary Information, 
section 12 and Supplementary Fig. 11.

Individual PAs were dropped from a specific analysis if sample sizes 
were too small, and/or if the model failed to adequately converge for 
any reason. There were three main reasons why these situations arose:  
(1) one or more vegetation categories were either absent from the sam-
pled location, or their abundance was too low in the area to support 
valid statistical comparisons; (2) the PA was too small to permit multiple 
sampling polygons in its interior; or (3) in areas with dense coverage of 
PAs, the sampling regime did not yield sufficiently many independent 
points at a given distance from a given PA to provide an adequate sample 
size for spillover analysis. Exact numbers of PAs included in each set 
of tests were therefore variable. Importantly, no subjective decisions 
were made about the inclusion or exclusion of PAs beyond the sampling 
and model-fitting criteria described briefly above and in considerable 
detail in the Supplementary Information, section 8.

After obtaining estimates of effect sizes for individual PAs as 
described above, I explored their relationships as described in the main 
text using standard statistical techniques in the software program R.  
I used the aov and TukeyHSD commands in base R to run the ANOVA 
and Tukey’s honest significant difference test to explore the relative 
contributions of different protected area management types to effect 
sizes. Variance partitioning, which offers an approach for comparing 
matrices of predictor variables to a matrix of response variables, was 
implemented using the vegan package78. The advantage of variance 
partitioning over most alternative statistical approaches is that it allows 
the user to work with an entire matrix of response variables (which in 
my case was the full set of vegetation responses, across all categories, 
in the 0–5 km band) instead of losing information by reducing matri-
ces to a single metric such as diversity or largest effect size. Finally, 
I used lm in base R to run the a multiple regression described in the 
main text and apply the model that was generated for each individual 
distance threshold to make predictions about the full dataset of all 
protected areas.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The code is provided in the Supplementary Information, sections 2–13 
and the primary datasets are all publicly available. Full copies of all 
derived datasets with accompanying metadata, including the sampling 

polygons and the results of the spillover analyses, are available from 
Figshare at https://doi.org/10.6084/m9.figshare.30244648 (ref. 79).
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), and 
sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or 
other socially relevant 

Population characteristics

Recruitment

Ethics oversight
Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study used GIS to explore vegetation patterns relative to protected area boundaries

Research sample A candidate 12,513 protected areas and 2,636,333 sampling polygons

Sampling strategy Stratified random

Data collection via GIS

Timing and spatial scale Time, two different years (1988, 2020); extent, the whole of Australia, excluding small offshore islands; grain, circles of 150m diameter

Data exclusions Protected areas that were too small or too clustered could not be analysed

Reproducibility 100% reproducible using supplied code

Randomization none
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Blinding none needed

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions
NA

Location

Access & import/export

Disturbance

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/
a

Involved in the study
Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/
a

Involved in the study
ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used NA

Validation

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) NA

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC  register)

Palaeontology and Archaeology

Specimen provenance NA

Specimen deposition

Dating methods

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight
Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in Research
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Laboratory animals NA

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight
Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NA

Study protocol

Data collection

Outcomes

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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Novel plant genotypes
NA

Seed stocks NA

Authentication
NA

Plants

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.

NA

Files in database submission

Genome browser session
(e.g. UCSC )

Methodology
Replicates

Sequencing depth

Antibodies

Peak calling parameters

Data quality

Software

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

https://www.ncbi.nlm.nih.gov/geo/
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https://genome.ucsc.edu/index.html
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Design specifications

Behavioral performance measures

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI Used Not used

Preprocessing
Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

Statistical modeling & inference
Model type and settings

Effect(s) tested

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016 )

Correction

Models & analysis
n/
a

Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Graph analysis

Multivariate modeling and predictive analysis

This checklist template is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are 
included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/
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