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Annie Géraut8, Edouard Jyrkov6, Arkadiy Sharaborin6, Nikolai Kirianov10, Natalia Tsydenova11, 
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Yakut communities from northeastern Siberia inhabit some of the coldest 
environments on Earth, preserving an extraordinary archaeological record.  
Their history was profoundly reshaped by the Russian conquest, which introduced 
cereals, pathogens and Christianity beginning in 1632 (refs. 1–5). However, the 
biological impact of these transformations remains unknown. Here we generated 
extensive ancient DNA data to elucidate contemporary changes in Yakut genomic 
diversity and oral microbiomes. We found Yakut origins tracing back to local 
populations that admixed with Trans-Baikal groups migrating as the Great Mongol 
Empire spread. Despite the Russian conquest, the Yakut gene pool and oral 
microbiomes appeared largely stable, although smallpox strains distinct from  
those documented in Europe by approximately 1650 circulated. Marital practices 
generally maintained low consanguinity, with the exception of one female bearing  
the latest markers of traditional shamanism, who was the daughter of second-degree 
relatives.

The Yakuts are the largest Indigenous group in Yakutia, northeastern 
Siberia, with a population of approximately half a million (Supplemen-
tary Information section 1.1). They inhabit one of the coldest regions 
on the planet, where annual thermal fluctuations exceed 100 °C, and 
winter temperatures can drop below −60 °C. Genetic and historical 
evidence suggest that the Yakuts descend from an ancestral popula-
tion that migrated from the Lake Baikal area, possibly following the 
Great Mongol Empire expansion in the thirteenth and fourteenth 
centuries6,7. To survive in this extreme environment, they developed 
specific cultural adaptations, with subsistence strategies centred on 
horse and cattle breeding, which provided transportation, clothing, 
meat and milk8. This contrasts with the reindeer-based economies of 
neighbouring Indigenous groups1 (for discussion of ethnonyms termi-
nology, see Supplementary Information section 1.1.3). Furthermore, the 
Yakuts, along with other northeastern Siberian peoples, traditionally 
practiced shamanism, wherein practitioners intermediate with the 
spirit realms to guide and protect their communities8. The traditional 
lifeways of the Yakuts were dramatically disrupted beginning in 1632, 

when the Russian Empire initiated its conquest, primarily to expand 
its fur-hunting territories9.

The Russian conquest, followed by the development of Chinese 
trade by the late seventeenth century, introduced tobacco, vodka and 
carbohydrate-rich cereals into the region10,11. New exchanges brought 
infectious diseases, including smallpox, tuberculosis and pertussis, 
exposing immunologically naive Indigenous populations to devastat-
ing outbreaks2,12,13. Beyond its impact on diet and health, the Russian 
conquest altered the power dynamics among patrilocal clans, with 
one of them gaining control over hunting grounds and becoming key 
in the lucrative fur trade, accumulating substantial economic wealth3. 
Alongside traders, Christian proselytes increasingly reached the region, 
ultimately converting predominantly animist and shamanic Indigenous 
populations to Christianity3.

The upheavals of this period, combined with an archaeological record 
exceptionally well preserved within permafrost14–16, provide a unique 
opportunity to obtain fine-grained resolution into the biological, medi-
cal and societal consequences of a major lifestyle transition. Here we 

https://doi.org/10.1038/s41586-025-09856-5

Received: 2 August 2024

Accepted: 4 November 2025

Published online: xx xx xxxx

Open access

 Check for updates

1Centre d’Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Faculté de Santé, Université de Toulouse, Toulouse, France. 2Institut Universitaire de France, Faculté de Santé, 
Université de Toulouse, Toulouse, France. 3Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark. 4Institut National de 
Recherches Archéologiques Préventives (INRAP), Paris, France. 5Mission Archéologique Française en Sibérie Orientale (MAFSO), Faculté de Médecine, Toulouse, France. 6North-Eastern Federal 
University, Yakutsk, Russian Federation. 7SAGE Laboratory, CNRS UMR 7363, Strasbourg, France. 8Institut de Médecine Légale, Strasbourg, France. 9BABEL Laboratory, CNRS UMR 8045, Paris, 
France. 10Museum of Arctic Archeology–S.A. Fedoseeva, Yakutsk, Russian Federation. 11Institute for Mongolian, Buddhist and Tibetan Studies of the Siberian Branch of the Russian Academy of 
Sciences (IMBTS SB RAS), Ulan-Ude, Russian Federation. 12Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences (IBPN FEB RAS), Magadan, Russian 
Federation. 13Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France. 14Institute for Humanities Research 
and Indigenous Studies of the North (IHRISN), Siberian Branch of the RAS, Yakutsk, Russian Federation. 15Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics 
Unit, Paris, France. 16Laboratoire d’Anthropologie Sociale, Paris, France. 17Collège de France, Chair of Human Genomics and Evolution, Paris, France. 18These authors contributed equally: Perle 
Guarino-Vignon, Andaine Seguin-Orlando. ✉e-mail: eric.crubezy@utoulouse.fr; ludovic.orlando@utoulouse.fr

https://doi.org/10.1038/s41586-025-09856-5
mailto:eric.crubezy@utoulouse.fr
mailto:ludovic.orlando@utoulouse.fr


2  |  Nature  |  www.nature.com

Article
analyse an extensive collection of human skeletal remains and dental 
calculus from individuals living in Yakutia over the last 2,000 years, 
with a primary focus on approximately 1500–1922. Using extensive 
ancient DNA sequencing, we first reconstruct the historical origins 
of Yakut communities and assess the impact of the Russian conquest 
on their gene pool. We then examine whether associated dietary, life-
style and social transformations influenced oral microbiota, pathogen 
exposure, marital practices and methylomes as potential markers of 
social and economic status.

Dataset and experimental design
Excavations by the Mission Archéologique Française en Sibérie Orien-
tale (MAFSO) between 2002 and 2018 (ref. 5) teaming together Russian 
and French archaeologists, uncovered an outstanding archaeologi-
cal record across four key regions of Yakutia: Central Yakutia and the 
river basins of the western Vilyuy, northern Verkhoyansk (Yana) and 
eastern Indigirka (Fig. 1a,b, Supplementary Information sections 1.2 
and 1.3 and Supplementary Fig. 1_2). The MAFSO expeditions aimed to 
investigate traditional Yakut societies and assess potential transforma-
tions following the Russian conquest3. To focus on Indigenous burial 
practices, excavations avoided Christian cemeteries, although funerary 
assemblages featuring Christian stellae, or yielding Christian crosses 
once unearthed, were included14,16 (Supplementary Information sec-
tion 1.2). The Siberian climate preserved nearly intact human remains, 
textiles16,17 and a whole array of cultural artefacts, including ritual tripod 
or monopod wooden cups called chorons, which were owned by Yakut 
elites and used for drinking fermented horse milk (Fig. 1c,d).

The rich funerary assemblage provided exceptional insights into the 
social status, religious practices and presence of shamanism, among 
the buried individuals, spanning approximately 1500–1922 (Fig. 1c and 
Supplementary Table 1c). This period is divided into four archaeologi-
cal stages, reflecting increasing Russian influence (Extended Data Fig. 1 
and Supplementary Information section 1.2). Stage 1 (approximately 
1500–1689) represents the traditional Yakut society before and dur-
ing the early Russian conquest. Stage 2 (1689–1750) marks the Yakut 
‘Golden Age’, when the Bozekov clan from AtDaban gained control over 
the prosperous fur trade, dealing in sables, martens and squirrels3,15. 
This period saw unprecedented economic, spatial and demographic 
expansion, with the Yakut language emerging as the lingua franca of 
northeastern Siberia. In stage 3 (1750–1800), demographic growth 
continued, whereas Russian influence over belief systems intensified, 
including legal measures against Indigenous spiritual traditions in 
favour of Orthodox Christian religion3. This process culminated in 
stage 4 (1800–1922), with widespread religious conversion campaigns.

To investigate Yakut history and assess the impact of the Russian 
conquest on population structure, marital practices, diet and health, 
we analysed a comprehensive collection of 122 individuals spanning 
stages 1–4. The dataset included 70 petrous bones, 17 long bone frag-
ments, 54 teeth and 78 dental calculi, three lung biopsies and one mus-
cle tissue sample (Supplementary Table 1a,b). Shotgun sequencing of 
44.77 billion DNA templates from 612 libraries yielded genome-scale 
data suitable for downstream analyses in 59 males and 46 females, 
with a median depth of coverage of 2.13-fold (range of 0.017–69.85) 
and nuclear contamination estimates 0.5% or less for males (Supple-
mentary Information sections 2.1–2.6 and Supplementary Figs. 2_1 and 
2_2). Additionally, 74 oral microbiomes were reconstructed (Extended 
Data Fig. 2 and Supplementary Table 1a,b).

To further contextualize our findings, we characterized two more 
human genomes from a tooth of a seventeenth-century male from 
Buryatia (Fig. 1b) and a petrous bone of an Iron Age male from Central 
Yakutia (Mokp; Fig. 1a). The sequence data enabled the characteriza-
tion of 16 methylomes and the imputation of 78.4 million genotypes 
in 90 individuals (Supplementary Information section 2.7 and Sup-
plementary Table 1a). Population genetic analyses were conducted on 

pseudo-haploid data for 1.24 million single-nucleotide polymorphisms 
(SNPs) in the Allen Ancient DNA Resource v.5 (ref. 18) and genotypes 
imputed from the 1000 Genomes Project catalogue19.

Population history and Russian conquest
To contextualize Yakut genetic diversity within a broader human pop-
ulation framework, we performed a principal component analysis 
(PCA), projecting all ancient genomes (Supplementary Table 1d) onto 
the variation observed in modern Eurasian and American genomes 
(Fig. 2a, Extended Data Fig. 3b and Supplementary Table 1e). The first 
principal component separated European from Asian and American 
populations, with both ancient and modern Yakuts clustering with 
Asian populations. The second principal component further refined 
genetic affinities across Asia and the Americas, positioning modern and 
historical (stages 1–4) Yakuts near other Siberian groups, including the 
Evenk and Ulchi from the Russian Far East, as well as the Buryat from 
the Trans-Baikal region (Fig. 2a and Extended Data Fig. 3a).

The genetic makeup of historical Yakuts was remarkably homoge-
neous and closely resembled that of modern Yakuts. This was evident 
in their PCA placement (Fig. 2a, Extended Data Fig. 3b, Supplemen-
tary Information section 2.10 and Supplementary Figs. 2_5 and 2_6), 
ADMIXTURE20 ancestry profiles (Fig. 2b) and fineSTRUCTURE21 cluster-
ing (Fig. 2c and Extended Data Fig. 3c). By contrast, the Iron Age Mokp 
individual exhibited distinct genetic affinities, clustering with modern 
Nganasans and Neolithic-to-Iron-Age individuals from Yakutia22. The 
genetic ancestry component maximized in Mokp was also predominant 
in all these individuals but was diluted in most historical and modern 
Yakuts through admixture with other genetic ancestries, shared with a 
subset of historical populations from the Baikal region (Fig. 2b, Supple-
mentary Information section 2.11 and Supplementary Figs. 2_7 and 2_8).  
These ADMIXTURE patterns align with the fineSTRUCTURE results, 
indicating a greater genetic contribution from eastern and northern 
Asia in Mokp than in all but one historical Yakut (Omouk1; Fig. 2c). 
Combined, these analyses suggest that Yakuts from approximately 
1500 ce onwards were not genetically continuous with the populations 
inhabiting Yakutia until approximately 280 bce (the radiocarbon age 
of Mokp).

The stage 4 Omouk1 female was a clear genetic outlier relative to the 
historical and modern Yakuts in the PCA (Fig. 2a). She also exhibited 
increased Asian haplotype sharing (Fig. 2c) and an ADMIXTURE profile 
resembling that of the modern Trans-Baikal Evenk (Fig. 2b). Notably, 
the Yakut word ‘omuk’ means ‘Tungus’ or stranger, and the associated 
archaeological material reflects Tungus (Evenk) reindeer herding tradi-
tions16. These findings suggest that Omouk1, while buried in Yakutia, 
originated from a different genetic and cultural background than other 
historical and modern Yakuts.

The stage 4 Yakut Omouk3 female also displayed a slightly atypi-
cal genetic profile, including increased European haplotype sharing 
(Fig. 2c). A similar pattern was observed in another stage 4 female 
(Khoumakhtaakh), a stage 2 female (Haras) and a stage 1 male show-
ing cranial deformation characteristic of Tungus groups (Byljasyk3)16. 
Using qpAdm23, their genetic makeup was best modelled with a 
three-way admixture, incorporating an extra western Eurasian source, 
distinct from the two common to all other Yakuts post-1500 (Supple-
mentary Table 1f,g). This extra ancestry could have represented Euro-
pean genetic input during Russian conquest. However, the estimated 
admixture date for Haras (718–1373; Supplementary Table 1h) pre-dates 
Russian expansion, suggesting earlier contact with an already admixed 
population, possibly from the Trans-Baikal region. The European-like 
admixture in Khoumakhtaakh and Omouk3 was dated to 1454–1790 
(Supplementary Table 1h), aligning with both pre-conquest contacts 
and the Russian conquest.

Except for rare outliers (Supplementary Table 1f), the genetic makeup 
of all other stages 1–4 Yakuts could be modelled as a two-way admixture 
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between populations inhabiting Yakutia in the Iron Age and the Baikal 
region from the thirteenth to fifteenth centuries (Baikal_his, 16–38% 
with Yakutia_IA (62–84%) and Baikal_sib, 40–79% with Yakutia_IA 
(21–60%); Supplementary Information section 2.12, Supplementary 

Fig. 2_9 and Supplementary Table 1f). Two-way admixture models 
involving a Western Russian source (Vologda Administrative Region) 
and a Baikal source (Baikal_his or Baikal_sib) were infeasible and/or 
rejected (P ≤ 0.01 and/or admixture proportion estimates ± 2 s.e. fell 
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Fig. 1 | Study area and archaeological material. a, Location of archaeological 
remains. Biological material sampled from 123 individuals spread across 113 
archaeological sites. Those sites located in very close areas were grouped in pie 
charts to improve readability, with colours reflecting time stages. The origins  
of the three individuals positive for smallpox are indicated with a graphical 
representation of the virus. b, Map of Eurasia showing Yakutia and the burial 
location of one seventeenth century individual from Buryatia (black square).  
c, Cultural heat map summarizing the number of archaeological artefacts tracing 
wealth, leadership, shamanism and Christianity (Supplementary Information 
section 2.20) for stages 1–4. The M and F suffixes appended to individual names 
indicate genetic males and females, respectively. d, Typical Yakut artefacts 
reflecting wealth, leadership, shamanism and Christianity. α, Cauldrons, copper 
alloy with horse meat offering in a kytia (wooden pot) (individual Alyy, α1) or iron-
made (Ebuguey2, α2); β, Signet ring (Celysse, β1 + β2; AC1, β3 + β4; Kerdugen,  

β5; Boulgouniakh1 and Boulgouniakh2, β6 + β7; Toutekh, β8; Atakh, β9 + β10);  
χ, Ring (Kureleekh); δ, Solar disk (Sordonokh); ε, Bronze torque necklace, twisted 
with counterweight composed of pearls and metal ornaments (Eletchei2, ε1)  
or flat with counterweight made of silver coins (Sordonokh, ε2); φ, Earrings 
(Lepsei2, φ1; Kyrdjakhastaala, φ2; Bere1, φ3); γ, Batilla, sword with a long wooden 
handle (AtDaban12, γ1; AtDaban11, γ2); η, Copper alloy bracelet (Kureleekh);  
ɩ, Choron, carved wooden monopod or tripod vase (Kerdugen, ɩ1; Bakhtakh3, 
containing an offering of dairy product, ɩ2); σ, Mammoth ivory comb (Eletchei1); 
κ, Pipes (wooden bowl κ1; Bere, with its copper alloy bowl and wooden stem, κ2; 
AC1, mammoth ivory bowl, κ3); λ, Carved wooden spoon (Tottouk1); μ, Iron  
knife (IeralaakhA); ν, Iron curb chain for the harness (Boulgounniakh3);  
ο, Wooden saddle covered with decorative metal plate (Eletchei1); π, Iron stirrup 
(Boulgounniakh1).
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outside the (0, 1) interval; Supplementary Table 1f). Three-way models 
including Yakutia_IA, Baikal_his/Baikal_sib and European sources from 
11 populations representing four language families, including from 
Western Russia, proved infeasible or returned negligeable admixture 
proportions and did not improve statistical fit relative to two-way 
nested models (Supplementary Table 1f,g).

To further explore the genetic impact of the Russian conquest, we cal-
culated D-statistics23 of the form D(Mbuti, European; Yakut_X, Yakut_Y), 
where Yakut_X and Yakut_Y represent various combinations of Yakut 
groups, excluding the previously identified genetic outliers (Extended 
Data Fig. 3d). Compared with stage 1, neither the groups forming each 
subsequent stage nor modern Yakuts showed a statistically signifi-
cant excess of genetic sharedness with Europeans, including Western 
Russians (Extended Data Fig. 3d). Furthermore, no enrichment was 
detected in any given archaeological stage relative to earlier stages  
(Z scores < 3; Extended Data Fig. 3d). Only one of the 100 tested com-
binations showed a slightly higher Western Russian genetic contribu-
tion to modern Yakuts than to stage 2 individuals. Collectively, these 
analyses indicate a marginal genetic impact of the Russian conquest 
on the Yakut groups analysed.

The stable and homogeneous genetic composition of historical 
and modern Yakuts helped refine existing models of their origins. 
DATES24 estimated the admixture time between the two primary 
ancestry sources between approximately 1100 and 1250 (using  
Yakutia_IA + Nganasan and Baikal_sib; see Supplementary Information 
section 2.12 for the rationale; Fig. 2d and Supplementary Table 1h). 
ASCEND analyses25 (Fig. 2d, Supplementary Information section 2.13, 
Supplementary Fig. 2_10 and Supplementary Table 1i) further sug-
gested that the Yakut population emerged shortly after this admixture 
(approximately 1210–1400), following a founder event of relatively mild 
intensity. The associated demographic bottleneck, quantified as the 
ratio between the bottleneck duration and twice the effective size, was 
estimated to 3.0–6.4%. Because HAPROH-based26 estimates indicated 
an already limited effective size throughout stages 1–4 (Ne of approxi-
mately 532–721; Supplementary Table 1j), our analyses support a brief 
bottleneck underlying the foundation of the Yakut population. These 
findings align with oral tradition and historical sources that depict the 
origin of the Yakut people in the aftermaths of the Great Mongol Empire 
expansion from the early thirteenth century6,7.

Oral microbiomes and disease outbreaks
The arrival of Russian settlers introduced new food items, including 
barley, rye and various beverages10,27, into a diet traditionally domi-
nated by meat and fish. To assess the potential impact of these dietary 
changes on the oral microbiome, we analysed the taxonomic and func-
tional composition of 78 dental calculi and 55 teeth belonging to 85 
Yakuts (Supplementary Table 1a,k). A subset of 74 individuals, spanning 
stages 1–4, exhibited typical oral microbial profiles with limited envi-
ronmental contamination (Extended Data Fig. 4a). The most abundant 
bacterial species identified was Actinomyces dentalis, followed by 
other species, such as Desulfomicrobium orale, Desulfobulbus oralis 
and Olsenella sp. oral taxon 80, all known to be prevalent in past oral 
environments and to contribute to dental biofilms and plaque28 (Sup-
plementary Fig. 2_11).

Taxonomic abundance profiles, determined using MetaPhlAn4 
(ref. 29), as well as species-level alpha diversity, did not show significant 
shifts over the course of the Russian conquest (two-sided Wilcoxon 
test; P ≥ 0.66; Fig. 3a and Extended Data Fig. 4b). Similarly, the diver-
sity of functional pathways, assessed through HUMAnN 3.0 (ref. 30), 
UniRef90 (ref. 31) and ChocoPhlAn32, remained stable throughout the 
entire period (Fig. 3b). Both principal coordinate analyses (PCoA) and 
PCA, along with network-based clustering (Supplementary Informa-
tion section 2.14 and Supplementary Fig. 2_14), revealed global overlap 
in taxonomic and functional diversity across archaeological stages.  

This stability was further supported by statistical tests, including analy-
sis of similarities (ANOSIM) (Supplementary Table 1v) and multivariate 
analysis of variance (adonis2; Fig. 4b and Supplementary Table 1v), 
both rejecting greater similarity within archaeological stages than 
between them (0.55 ≤ P ≤ 0.89). Shifting focus to metabolic pathways to 
improve resolution, no statistically significant changes were observed 
in the abundance profiles of carbohydrate and amino acid metabolic 
pathways (Kruskal–Wallis test; P ≥ 0.067; Fig. 3c, Supplementary Infor-
mation section 2.16 and Supplementary Fig. 2_18). Restricting all the 
above analyses on the subset of 66 dental calculi did not alter the con-
clusions (Supplementary Information sections 2.14 and 2.16, Supple-
mentary Figs. 2_13 and 2_19 and Supplementary Table 1m). Combined, 
these results depict a striking stability in oral microbiomes between 
approximately 1500 and 1900, despite the dietary changes introduced 
by the Russian conquest10.

A previous study reported a shift in carbohydrate consumption 
during the Russian conquest33, from pine sapwood flour (dendro-
phagy) to barley and rye, alongside increased risks of dental infection 
linked to smoking, particularly in stage 4 (ref. 10). We investigated 
whether these changes affected oral health by analysing the abun-
dance of five bacterial complexes involved in biofilm formation 
and periodontal disease34 and eight oral pathogens (Supplemen-
tary Information section 2.14). Our analyses revealed no significant 
increase in abundance levels from stages 1 to 4 (Kruskal–Wallis test; 
P ≥ 0.053; Fig. 3d, Extended Data Fig. 4c and Supplementary Fig. 2_12). 
Additionally, strain-level analysis of six oral pathogens or abundant 
oral species, which offer improved resolution into the oral health of 
ancient individuals relative to bacterial complexes35, indicated dif-
ferent strains circulating in Yakutia and the rest of the world, as well 
as no shifts during the Russian conquest (Supplementary Informa-
tion section 2.15 and Supplementary Figs. 2_15–2_17). These findings 
indicate that oral health remained largely unchanged during this 
period, consistent with the low prevalence of dental cavities observed  
archaeologically27.

However, our data revealed the presence of smallpox in three stage 
2 individuals from Central Yakutia (AC1S2, AC1S3 and Rassoloda; Fig. 1, 
Extended Data Fig. 2b, Supplementary Information section 2.17 and 
Supplementary Fig. 2_20), one of whom previously reported poly-
merase chain reaction (PCR)-positive for smallpox12. Sequence data 
were derived from permafrost-preserved lung and bone tissues, as 
well as teeth and dental calculi (Supplementary Table 1p), although 
only limited portions of the smallpox genome could be character-
ized (average depths of coverage of 0.12-fold and 0.15-fold for AC1S2 
and Rassoloda, respectively). Maximum likelihood phylogenetic 
reconstruction indicated that the virus belonged to a strain distinct 
from those previously identified in Scandinavian and western Russian 
individuals from the seventh to tenth centuries36 and the two main 
clusters responsible for the twentieth-century outbreaks worldwide 
(VARV-PI and VARV P-II; Fig. 3e and Supplementary Table 1q). Topologi-
cal tests rejected clustering with the VD21 strain previously detected 
in a seventeenth-century female from Lithuania37, supporting a deeper 
phylogenetic placement (Supplementary Information section 2.18 
and Supplementary Figs. 2_21 and 2_22). This suggests that differ-
ent smallpox strains existed in Eurasia during the seventeenth and 
eighteenth centuries.

Social life of past Yakut communities
Historical and ethnographic sources describe Yakut communities as 
structured around patrilineal and patrilocal clans, with strict exog-
amy38. Mitochondrial diversity was high across stages 1–4, whereas 
the number of Y-chromosomal haplotypes remained markedly limited 
(Fig. 4a). Furthermore, the proportion of long identity-by-descent (IBD) 
segments (greater than 12 cM) in pairs of same-sex adults buried in 
different regions was significantly greater among males than females 
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(Wilcoxon test; P < 0.0001; Extended Data Fig. 5a). These findings are 
consistent with the expectations of patrilocal clans practicing exogamy, 
although we caution that the predominance of males in the sampled 
assemblages may enhance the detection of genetic relatedness among 
males.

Kinship analyses identified 61 individuals genetically related up 
to the third degree, including four cases of first-degree and second- 
degree relatives buried at the same site (AtDaban, Oktiom, Oulakh 
and Arbre Chamanique, which translates to ‘shamanic tree’ in English; 
Fig. 4a, Supplementary Information section 2.8 and Supplementary 
Table 1r–t). At Oulakh, three adult males, all first-degree relatives, 
were buried within a few metres of one another, and at AtDaban, a 
father and his adult son were buried together (Extended Data Fig. 5b), 
consistent with patrilocal practices. However, a grandmother was 
buried with her daughter and two grandchildren at Arbre Chamanique 

(Extended Data Fig. 5b), whereas at Oktiom, a juvenile male was buried 
alongside his sister’s children and their father (Extended Data Fig. 5b). 
Although these findings suggest non-strict patrilocal practices, the 
funerary context of the latter two sites is unique across Yakutia16. It 
shows individuals deposited simultaneously, which is indicative of a 
catastrophic event, such as the smallpox outbreak that decimated peo-
ple buried at Arbre Chamanique (AC1S2 and AC1S3). Further research, 
incorporating genetic analyses of large-scale funerary sites that repre-
sent entire communities, alongside denser sampling across broader 
geographic regions, is needed to assess the prevalence of patrilocal 
residence patterns.

In the present dataset, exogamy was primarily restricted to indi-
viduals within the same geographic region because no first-degree 
or second-degree relatives were identified across different regions 
(Fig. 4a). Accordingly, IBD segment sharing was stronger within pairs 
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Fig. 4 | Marital practices, inbreeding and statistical associations between 
genetic and non-genetic factors. a, Kinship network obtained from two analyses 
(cases in which both analyses disagree are shown reporting both corresponding 
relationships). Mitochondrial and Y-chromosome haplogroups are colour-coded 
and represented by symbols on the right and left sides of each individual. Family 
groups (with first-degree and second-degree relationships) are circled and 
named. b, Heat map of P values for tests of dissimilarity between DNA-based or 
material-based (rows) and non-genetic (columns) factors. Grey means that the 
test was not performed because cultural categories have been defined on the 

material culture. c, Proportion of long and short run of homozygosity (ROH) and 
inbreeding coefficient. d, Key elements of material culture excavated together 
with the individual UsSergue1. From top to bottom and left to right: wood comb; 
ushanka with a bronze solar disk worn by the deceased; choron, traditional pot for 
drinking fermented mare’s milk deposed between the coffin and the chest; 
pendants fixing together the short and virgin belt worn by the deceased; 
bronze stirrup; bridle, snaffle bit and bell representing burial offerings; saddle; 
picture of the skull of the deceased, adorned with her jewellery.
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of individuals buried in the same region compared with those buried 
in different regions (t-test; P < 0.0001; Extended Data Fig. 5c). The 
number of inter-regional third-degree relationships was also mark-
edly lower than expected under panmixia (χ2 test; P < 2.2 × 10−16). Fur-
thermore, analysis of allele-sharing dissimilarity (ASD), microbiome 
composition and DNA methylation profiles, although from a limited 
subset of samples, revealed significant regional clustering (adonis2 
non-parametric permutational multivariate analyses of variance; 
P = 0.0002, 0.0045 and 0.0037, respectively; Fig. 4b and Supplemen-
tary Table 1v). Combined, these results indicate that unions, interac-
tions and microbial exchanges occurred primarily within regional 
boundaries. Although the current sample size and geographic range 
are limited relative to the vast expanse of Yakutia, this pattern contrasts 
with the prevailing archaeological interpretation, which proposed, on 
the basis of the same assemblages, that extensive migration between 
regions was responsible for the striking similarities in the material 
culture15.

Changes in ASD, pairwise distances on the basis of microbial commu-
nities and functional pathways, and DNA methylation (Supplementary 
Information section 2.19 and Supplementary Figs. 2_23–2_27) showed 
no statistical association with archaeological stages, which aligns with 
the observed stability of the Yakut gene pool and microbiome profiles 
over time. Although material culture linked to males and females was 
clearly distinct (adonis2; P = 0.0001; Fig. 4b, Supplementary Infor-
mation section 2.20, Supplementary Fig. 2_28 and Supplementary 
Table 1v), sex did not significantly influence the similarity measured 
between genomes, methylomes or microbiomes (adonis2; P ≥ 0.15; 
Fig. 4b and Supplementary Table 1v). The latter aligns with stable iso-
tope analyses, which reflect no dietary differences between males 
and females4. Furthermore, no associations were found between eco-
nomic wealth, leadership, Christianity or shamanism and biological 
distances, whether estimated by genetic proximity, inbreeding or 
microbiomes (adonis2; P ≥ 0.14; Fig. 4b). This suggests that individuals 
with similar social and spiritual statuses were not necessarily biologi-
cally closer than those with different statuses. The lack of association 
between methylomes and socio-economic factors, such as wealth 
and leadership, further suggests that current approaches for recon-
structing ancient methylomes provide limited resolution into past 
socio-economic status. Finally, the significant association between 
genetic distances and regional affiliation, but not with indicators of 
leadership, suggests that political power was not concentrated in a 
single clan.

Archaeological evidence of shamanic practices was found within 
close kin groups (AC1S2 and ACS3; Fig. 4a). However, shamanism was 
not associated with pairs of individuals close genetically (Pearson’s 
χ2 test; P = 0.33; Fig. 4b), indicating that the practice was not con-
fined to a single genetic familial clan. Although historical inbreeding 
levels were low (Supplementary Information section 2.9), the most 
inbred Yakut (UsSergue1; Fig. 4c and Supplementary Fig. 2_4) also 
happened to be the last individual excavated with clear markers of 
traditional shamanism14,16 (Fig. 4d). She was genetically identified as 
the great-granddaughter of AtDaban6, who was married to Bozekov, 
the most prominent clan leader from the late seventeenth/early eight-
eenth centuries39. Her high inbreeding level suggests mating between 
second-degree relatives. However, it seems unlikely that UsSergue1 had 
access to shamanism because she was the offspring of exceptionally 
close kins, whereas the female buried with the most extensive collec-
tion of shamanic artefacts (KyysOunouoga)16 showed no evidence of 
consanguinity (Fig. 4c).

Discussion
Our study clarifies the genetic origins of the Yakut people; the complex 
interplay between their marital, funerary and spiritual practices; and 
the extent to which these aspects were altered by the Russian conquest.

First, we found that the Yakut gene pool emerged through an admix-
ture between a local population with roots in the Iron Age and another 
group probably from the Trans-Baikal region, which entered the area 
during the expansion of the Great Mongol Empire in the early thirteenth 
century6,7. This timeline, along with the broad connection with the Bai-
kal region, concurs with oral traditions about their origins3. However, 
the persistence of a substantial local genetic component contrasts 
with cultural and linguistic evidence pointing to a predominant central 
Asian Turkic–Mongol influence7. We note, however, that the estimated 
contribution from the local population varies depending on the Baikal 
source considered, underscoring the need for denser sampling across 
the region and time period. Current models rely on population sources 
defined by a limited number of genetically characterized individuals, 
which probably do not capture the full extent of genetic diversity across 
the vast territory of Yakutia at the time of admixture. Despite these 
limitations, our results indicate that the Yakut history represents a 
fusion of a local population with a migrating group, both genetically 
and culturally.

Our analyses also improved previous studies on the basis of unipa-
rental markers indicative of a founder event40,41 by showing that the 
demographic bottleneck preceding the Yakut expansion was rapid, 
occurring shortly after admixture, by no later than 1400. The earliest 
Yakut sequenced in our study (Atlasovka), buried by the late fifteenth/
early sixteenth century, appeared to be a key ancestor in the recon-
structed kinship networks, further supporting her foundational role42. 
Additionally, kinship analysis revealed that although first-degree and 
second-degree relatives could be buried at the same archaeological site, 
they were primarily found in geographically close locations, within a 
maximum of 159 km from one another (median distance of 45 m). This 
strong genetic proximity among burials from the same area remained 
evident even when close kins were excluded. Combined, these findings 
emphasize the deep-rooted connection between the Yakuts and the 
land of their fathers and grandfathers.

Furthermore, our genetic data revealed exceptions to patrilocal-
ity, and, despite the small effective population size, consanguinity 
remained limited. Although further research is required to assess 
how common such practices were, social norms allowed for close-kin 
unions, as shown by the UsSergue1 female, identified as the daughter 
of second-degree relatives. Crucially, she was buried with some funer-
ary objects atypical of the late eighteenth century, reminiscent of the 
earliest Yakut material culture16,43. This female was the most recent 
bearer of traditional shamanic artefacts excavated. She was buried in 
one of the richest tombs identified and descended from the wealthiest 
clan documented39. Because she died right when Christian belief began 
to gain influence in Yakut society, she may be seen as an embodiment 
of a clan’s attempts to preserve its cultural and spiritual traditions.

Finally, the Russian conquest was found to have had marginal genetic 
impact on the Yakut population, at least within the time periods and 
regions investigated in this study. Because the Yakuts traditionally 
deposited their dead on open platforms rather than burying them, 
the extent of Russian admixture within the broader population not 
represented archaeologically remains unknown. However, we note 
that the individuals buried span a wide range of economic and social 
statuses, from small group leaders, shamans and suicides to major 
clan leaders, suggesting minimal sampling bias. Although the extent 
of Russian admixture in Christian cemeteries is also uncharacterized, 
the Yakut genetic pool appears stable throughout all archaeological 
stages and into the present day, indicating limited admixture during 
Russian conquest. Therefore, our study portrays Yakutia as a mid-
dle ground44, where Yakuts and Russians engaged in an economic 
partnership rather than a site of military or demographic conquest. 
Historical sources highlight Yakut peoples as pivotal to the success 
of the then-expanding fur trade11, which not only motivated Russian 
conquest1,9 but also provided prominent Yakut clans with opportu-
nities for considerable wealth and power39. Additionally, the harsh 
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environment, often lethal to European settlers and unsuitable for 
large-scale cereal agriculture, prevented the establishment of large 
Russian settlements (Supplementary Information section 1.1 and Sup-
plementary Fig. 1_1). Consequently, the Russian expansion in Yakutia 
relied heavily on local populations, representing a form of coloni-
alism distinct from the settler colonialism of the Americas, which 
proceeded through Indigenous displacement and eradication45. It 
also diverged from the indirect rule characteristic of colonial India, 
where colonial authority was maintained through local leaders with-
out administrating the territory. By contrast, Russian authorities 
imposed their tax systems on Yakut communities and co-opted Yakut 
elites by granting them citizenship and incorporating them into the 
imperial structure, fundamentally altering traditional Yakut politi-
cal and social organization while making them subjects of a foreign  
empire.

Despite the absence of significant genetic impact, Russian conquest 
profoundly affected Yakut livelihoods and demographics. Russian con-
tact introduced numerous infectious agents, including the smallpox 
identified here and Mycobacterium tuberculosis13, with devastating 
demographic effects on immunologically naive Indigenous popula-
tions. The severe outbreaks documented in historical sources were not 
detected in hapROH, indicating limited but stable and effective popu-
lation sizes. This probably reflects the extremely rapid progression of 
these outbreaks or other factors limiting detection power. Although 
dietary shifts are well-documented10,27, our study failed to identify 
changes in the taxonomic and functional diversity of the Yakut oral 
microbiome. This contrasts with earlier studies that reported major 
changes in Neolithic Europe, alongside a dramatic increase in carbo-
hydrate consumption46. Our findings also conflict with oral microbi-
ome shifts documented in Great Britain (2200 bce–1853 ce), which 
have been linked to lifestyle, hygiene and dietary changes, including 
increased dairy and carbohydrate consumption47. The consistency of 
the Yakut oral microbiome over the short microevolutionary timescale 
investigated here (approximately 1500–1922) may reflect a shift in the 
carbohydrate types consumed (from wood-based flour to cereal flour)33 
rather than a drastically increased intake. Moreover, our findings are 
in agreement with other studies reporting stable oral microbiomes 
over deep phylogenetic scales, including between Neanderthals and 
anatomically modern humans48, and during the Neolithic transition 
from hunting and foraging to farming49. Future research is needed to 
understand the drivers of oral microbiome composition and function; 
the true capacity of dental calculus to capture these dynamics; and 
the broader response of the digestive microbiome to lifestyle, diet 
and health.

The exceptional archaeological record preserved in the Yakut  
permafrost provided a unique opportunity to reconcile evidence 
from material culture with the full spectrum of ancient DNA analysis, 
shedding light on population origins, social practices, health and indi-
vidual status. In doing so, it contributed to the growing body of ancient 
DNA research aimed at capturing the multigenerational life of ancient  
communities.
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Methods

Radiocarbon dating
Radiocarbon dating of the Mokp individual (UCIAMS210906: 
2205 ± 20 BP, 364–197 International Radiocarbon Calibration Curve 
(2020 version, IntCal20) calibrated years bce) was carried out at the 
Keck Laboratory, University of California, Irvine, following the meth-
odology described by Librado et al.50.

Sex and age-at-death estimations of the human remains
Age-at-death determination methods rely on a variety of skeletal indi-
cators, including stages of auricular surface for adults51,52, stages of 
iliac crest or sternal end of the clavicle fusion, measurement of long 
bones for immature individuals53,54 and dental eruption sequences55,56. 
Biological sex is on the basis of genetic data, especially the so-called 
Ry ratio (Y to Y + X sequence coverage)57 (Supplementary Table 1a).

DNA extraction
Samples were processed in the clean laboratory facilities at the Centre 
for Anthropobiology and Genomics of Toulouse (CAGT), University 
of Toulouse, or at the Centre for GeoGenetics (CGG), University of 
Copenhagen, following ancient DNA procedures (Supplementary 
Information section 2.2).

Bone and tooth samples. After gentle surface abrasion, a portion of 
the dense part of the bone samples was collected using a diamond wheel 
(PROXXON or ARGOFILE instruments). For tooth samples, the cemen-
tum was isolated as recommended by Damgaard et al.58. The samples 
were either crushed into smaller fragments using a manual mortar or 
cutting pliers, or pulverized using a Retsch MM200 instrument and then 
placed in 5-ml Eppendorf LoBind tubes. DNA was extracted following a 
silica-column-based method, as described by Librado et al.59, without 
bleach pretreatment (Supplementary Information section 2.2).

Calculus samples. Calculus samples were isolated, as described by 
Sabin and Yates60. Samples labelled as ‘Name_C’ in Extended Data Fig. 4a 
(for example, Eletchei3_C_C_P4) were extracted for DNA following a 
protocol similar to that used for bones and cementum, except that no 
1-h predigestion was performed and the digestion volume was limited 
to 1 ml. Samples labelled as ‘Name_CE’ (for example, Eletchei3_CE_C_P4) 
were subjected to an overnight digestion at 50 °C in 555 µl of a buffer 
consisting of 0.45 M EDTA, 1.8 mg ml−1 of proteinase K and 9 mM dithi-
othreitol. The supernatant was further purified on a QIAGEN MinElute 
column and eluted in 40-µl sterile water.

Soft tissue samples. Fragments of soft tissues (lung and muscle) were 
digested in 1.11 ml of a buffer containing 0.45 M EDTA, 1.8 mg ml−1 of pro-
teinase K and 9 mM dithiothreitol, following an overnight incubation 
at 50 °C with agitation. After 12 min of centrifugation at 8,000 rpm, the 
supernatant was collected and purified on a silica column (MinElute; 
QIAGEN; 40-µl sterile water elution).

USER treatment, DNA library building and indexing
An aliquot of 22.8 µl of each DNA extract was incubated with 7-µl USER 
Enzyme mix (New England Biolabs) for 3 h at 37 °C to limit the impact of 
post-mortem cytosine deamination in downstream analyses by remov-
ing uracil residues. For a few samples, another DNA extract aliquot was 
also directly converted into a sequencing library.

Sequencing libraries were constructed from double-stranded DNA 
molecules by ligation of universal (method by Gamba et al.61, adapted 
from Meyer and Kircher62) or indexed63 blunt-end adaptors. To deter-
mine the optimal number of PCR cycles for amplifying DNA libraries 
and obtaining sufficient material for Illumina sequencing, quantitative 
real-time PCR was performed on 20X dilution aliquots of most of the 
libraries. The libraries were amplified for 5–15 cycles using AccuPrime 

Pfx DNA polymerase (Thermo Fisher Scientific), with 3.5–6.5 µl of unam-
plified DNA library and 0.2 mM of each PCR primer in a total reaction 
volume of 50 µl. One primer of each pair contained an external 6-bp 
index, read during the Illumina Indexing Read. To limit the proportion 
of PCR duplicates, up to six independent amplifications were carried 
out for most DNA libraries. The PCR products were subsequently puri-
fied using either MinElute columns (QIAGEN) or AMPure XP beads 
(Beckman Coulter), eluted in 20 µl or 25 µl of elution buffer (EB) sup-
plemented with 0.05% Tween and quantified on TapeStation 2100/4200 
or Bioanalyzer instruments (Agilent Technologies) and Qubit HS Assay 
(Invitrogen).

Sequencing
DNA library pools were sequenced at CAGT on the Illumina MiniSeq 
instrument; at CGG on Illumina NextSeq, HiSeq2000, HiSeq2500 and 
HiSeq4000 instruments; or at Centre National de Recherche en Génom-
ique Humaine on the Illumina HiSeq X instrument. The vast majority 
of the sequencing data consisted of paired-end reads.

Reads preprocessing
The demultiplexed FASTQ paired reads were processed using 
PALEOMIX64 bam_pipeline (v.1.2). Sequencing adaptors were trimmed 
(-mm 5) as well as poor-quality end, and paired-end reads were collapsed 
using AdapterRemoval 2 (v.2.3.1; ref. 65). All the resulting reads and 
those remaining paired were mapped against the hs37d5 reference 
genome using Bowtie 2 (ref. 66) with local sensitive mapping para
meters. The binary alignment/map (BAM) alignment file was further 
filtered for alignment size superior or equal to 25 bp and mapping 
quality superior to 30. PCR duplicates were removed using Picard Mark-
Duplicates (http://picard.sourceforge.net), and realignment around 
indels was performed using GATK67. Sequencing statistics, as numbers 
of sequencing reads, endogenous DNA content and coverage are pro-
vided in Supplementary Table 1a,b.

All resulting alignments were merged into a single BAM file before 
pseudo-haploidization, with one read randomly sampled at positions 
characterized by one or more alignments. Pseudo-haploid genotypes 
were called using ANGSD (v.0.930; ref. 68) (htslib: 1.9), skipping posi-
tions and/or reads showing base and/or mapping Phred quality scores 
strictly lower than 30 (--doHaploCall 1 -doCounts 1 -minMapQ 30 
-minQ 30 -remove_bads 1 -uniqueOnly 1) and restricting calls for those 
1,233,013 SNP positions forming the 1240K panel18.

Post-mortem damage and error rates
DNA fragmentation and nucleotide misincorporation patterns were 
visualized using mapDamage2 (v.2.0.8; ref. 69), with default parameters 
on a subset of 100,000 random reads. All damage profiles and base 
compositions were aligned with expected profiles, with or without 
USER treatment of DNA extracts70.

Error rates were calculated using ANGSD68 and the methodology 
used in a previous study71 (Supplementary Information section 2.4). 
Overall, the global error rates of each individual genome characterized 
in this study ranged between 0.000262 and 0.002819 substitutions per 
base on average, mostly inflated through transition misincorporations 
(Supplementary Table 1b).

Uniparental markers, contamination estimates and ploidy check
A total of 46 women and 61 men were identified on the basis of Ry ratio 
(Supplementary Table 1a). Mitochondrial haplotypes were called using 
Haplogrep (v.2.266; ref. 72) after aligning reads against the revised 
Cambridge Reference Sequence reference mitogenome (GenBank 
accession no. NC_120920.1) and discarding those shorter than 25 bp, 
with mapping and base qualities below 30 (Supplementary Information 
section 2.5). The resulting variant call format file was then processed 
through Haplogrep72, calculating the best 100 hits. Contamination rates 
on the basis of mitochondrial data were estimated using schmutzi73 and 

http://picard.sourceforge.net
https://www.ncbi.nlm.nih.gov/nuccore/NC_120920.1
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the same base quality threshold as above. Nuclear contamination rates 
were estimated for male individuals, following the methodology by 
Rasmussen et al.74 and implemented in ANGSD68. Transition substitu-
tions and sites covered once or more than 200 times were discarded.

Mitochondrial contamination estimates were assessed within a 0–5% 
confidence range for all individuals but three (Supplementary Informa-
tion section 2.5 and Supplementary Table 1a), which were conservatively 
excluded from those analyses conditioned on archaeological stages. 
Nuclear contamination estimates were found to be limited (median of 
0.24%) and inferior to 0.4% (Supplementary Table 1a). Y-chromosome 
haplotypes were called using the Yleaf statistical package75 (Supple-
mentary Information section 2.5). The ploidy levels of each individual 
were checked following the methodology described by Sehnert et al.76 
(Supplementary Information section 2.6 and Supplementary Fig. 2_3).

Imputation
We imputed a subset of genomes using GLIMPSE2 (ref. 77) and the 
1000G19 panel as reference dataset, following the instructions provided 
by the developers on the software website. To test for the minimal cover-
age needed to obtain accurate imputation, we downsampled the data 
of four high-coverage individuals, imputed the resulting genotypes and 
then assessed imputation accuracy by measuring the squared Pearson 
correlation between original and imputed genotypes (Supplementary 
Information section 2.7). We found that a minimal coverage of 0.35-fold 
was necessary for imputing genotypes represented at MAF of 5% or 
higher. A total of 90 Yakut individuals (coverage of 0.35-fold or higher) 
were then imputed and filtered for MAF of 5% or higher and genotype 
probability of 0.99 or higher for all downstream analyses. The imputed 
individuals were combined with the phased 1000G dataset for all down-
stream analyses, except for those on the basis of fineSTRUCTURE21, 
which required a liftover to the hg38 positions to include the matrix 
of phased genotypes released by Bergström et al.78, which included 20 
modern Yakut individuals.

Kinship analyses
Relatedness between historical Yakuts was assessed on the basis of the 
pseudo-haploid data using a combination of three complementary 
methodologies: READ2 (refs. 79,80), lcMLkin81 and TKGWV2 (ref. 82) 
(Supplementary Information section 2.8 and Supplementary Table 1r–t).  
For READ2 (refs. 80,81) and TKGWV2 (ref. 82), the autosomal positions 
overlapping the 1240K dataset were used, restricting the former to 
MAF of 1% or higher. We disregarded first-degree and second-degree 
relationships if estimated from less than 1,000 and 2,000 SNPs, 
respectively, whereas the default filter of READ2 (refs. 79,80) was 
used for assessing third-degree relationships. Precise genealogies 
were reconstructed using the READ2 (refs. 79,80) results, age-at-death 
estimations, uniparental markers and estimated period of burial of 
each individual (Extended Data Fig. 5b and Supplementary Informa-
tion section 2.8).

Identity-by-descent (IBD) contents were calculated using ancIBD83 
on the direct output of GLIMPSE2 without MAF and genotype prob-
ability filters. As recommended, the Yakut dataset was downsampled 
to 1,240,000 SNPs, for which ancIBD was optimized, and IBD shar-
ing was screened for every pair of imputed individuals (coverage of 
0.35-fold or higher), with default settings83. For population analyses, 
individuals with the least SNPs covered in each pair of first-degree or 
second-degree relatives were removed.

Inbreeding and diversity estimates
The effective population sizes for each stage and region were estimated 
on the 1240K SNP pseudo-haploid panel, restricted to individuals with 
at least 400,000 SNPs covered, using hapROH26 with default parameters 
and 5,008 haplotypes from the 1000G project as a reference panel 
(Supplementary Table 1j). For each archaeological stage, PCA individual 
outliers were removed.

ROH were identified on the imputed dataset using plink84 (--homozyg) 
on set of 1000G biallelic transversions with MAF higher than 5%, remov-
ing any positions not fully covered (--geno 0). Inbreeding scores were 
calculated with plink84 (--het) using transversions only and MAF of 5% 
or higher (Supplementary Information section 2.9 and Supplementary 
Table 1a). To further confirm our results, we performed ROH detection 
using hapROH26 on the pseudo-haploid data for individuals with at least 
400,000 SNPs covered on the 1240K panel (Supplementary Informa-
tion section 2.9 and Supplementary Fig. 2_4).

Principal component analysis
PCA was carried out using the Human Origins reference panel for 
597,573 autosomal genotypes. Genotypes were downloaded from 
the Allen Ancient DNA Resource (v.5) website18. We also included the 
genotypes from those Central Asian individuals with relevant genetic 
ancestry profiles reported by Zhang et al.85. PCA was on the basis of 
pseudo-haploid genotype calls for all the individuals presented in this 
study and carried out using smartPCA from EIGENSOFT (v.7.2.170; 
ref. 86), projecting 913 ancient Eurasian and American individuals and 
106 ancient Yakut individuals (coverage of higher than 0.02-fold) onto 
the principal components obtained from in 2,761 Eurasian modern 
individuals (lsqproject, YES; shrinkmode, YES; Supplementary Informa-
tion section 2.10 and Supplementary Fig. 2_5, where a non-projected 
PCA is shown). Projections on the first two principal components are 
provided in Fig. 2a, whereas PC2 and PC3 are provided in Extended 
Data Fig. 3b. A second PCA was carried out to validate our imputation 
pipeline by confirming similar projections for imputed genotype data 
and pseudo-haploid data (Supplementary Information section 2.10 
and Supplementary Fig. 2_6).

ADMIXTURE
Unsupervised ADMIXTURE (v.1.3.0; ref. 20) analyses were carried out 
to estimate the proportions of genetic ancestries present in Yakuts 
(coverage of 0.03-fold or higher; pseudo-haploid) using autosomal 
positions as part of the 1240K Human Origins panel and a total of 3,639 
Eurasian and American individuals. Sites were thinned for linkage dis-
equilibrium with plink84 (--indep-pairwise 200 25 0.4), resulting in a 
total of 327,582 SNPs. Confidence intervals were estimated from 100 
bootstrap pseudo-replicates. Analyses were repeated ten times using 
ten random seeds to assess convergence (Supplementary Information 
section 2.11 and Supplementary Fig. 2_7). Full ancestry profiles are 
provided in Supplementary Fig. 2_8 for the entire dataset.

FineSTRUCTURE
A fineSTRUCTURE (v.2; ref. 21) analysis was performed on the imputed 
data to explore patterns of haplotype sharedness. Imputed transver-
sion genotypes were converted to hg38 positions with the tool Lifto-
verVcf from the Picard Toolkit 2019 (https://github.com/broadinstitute/ 
picard), and related individuals were removed before merging with 
the phased genotypes from Bergström et al.78. The genotype positions 
showing missingness in at least one individual were removed, and MAF 
of 1% or higher was required, resulting in 1,059,615 autosomal sites. 
The merged dataset was split by chromosome, rephased using SHA-
PEIT (v.2; ref. 87) and transformed into ChromoPainter (v.2; ref. 21) 
format using ‘impute2chromopainter.pl’ and a chromosome-based 
recombination map generated through the ‘makeuniformrecfile.
pl’ script. ChromoPainter (v.2; ref. 21) analyses were on the basis of 
20 expectation–maximization iterations (-s1emits 20 -in -iM), with 
a starting switch rate of 250 (-n 250) and a global mutation rate of 
0.0005 (-M 0.0005). The fineSTRUCTURE Markov chain Monte Carlo 
model was run on the ChromoPainter (v.2) output for 3,000,000 
burn-in iterations and 2,000,0000 sampling iterations with no thin-
ning (-s3iters 5000000 -s3iterssample 2000000 -s3itersburnin 
3000000). The resulting co-ancestry matrix is shown in Extended  
Data Fig. 3c.

https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard


D-statistics
Different combinations of D-statistics were calculated using qpDstat in 
ADMIXTOOLS (v.5.056; ref. 23) to detect gene flow by testing whether 
pairs of modern and ancient Yakuts from each archaeological stage were 
symmetrically related to modern Eurasian populations. Calculations 
were carried out on the pseudo-haploid 1240K dataset using Mbuti 
(N = 10; ref. 78) as outgroup. The topologies investigated were in the 
form of (outgroup, Eurasian modern populations; StageX, StageY/
modern Yakut). The results of the different D-statistics calculations, 
with Z scores corrected for multiple testing (Benjamini–Hochberg), 
are provided in Extended Data Fig. 3d, permuting StageX and StageY 
among the four archaeological stages and modern Yakuts. Positive 
values indicate closer genetic proximity between the modern Eurasian 
population and StageY (or modern Yakuts), relative to StageX.

Admixture modelling and dating
Admixture models for ancient Yakut individuals (coverage of 0.1-fold 
or higher) were assessed using the pseudo-haploid 1240K dataset and 
qpAdm from ADMIXTOOLS (v.5.056; ref. 23), applying the feasibility 
criteria recommended by Flegontova et al.88, that is, coefficient ± 2 s.e. 
within the [0, 1] interval (P ≥ 0.01). The qpAdm models were aimed 
at testing whether the Yakut genomic makeup was compatible with 
a two-way admixture from a local Siberian background (Yakutia_IA, 
N = 2, comprising Mokp and yak03041 because they showed similar 
genetic profiles and PCA placements) and another source, poten-
tially from the Baikal region (Baikal_his (N = 4) or Baikal_sib (N = 11)) 
or Russia (Russian78) (Supplementary Table 1f). Baikal sources were 
defined as Baikal_sib (N = 11) and Baikal_his (N = 4). The former included 
Mongolia_Khuvsgul_LateMedieval89 (N = 2), Mongolia_Dornod_Late
Medieval89 (N = 7) and Mongolia_Khentii_LateMedieval89 individuals 
(N = 2), whereas the latter comprised Russia_AngaraRiver_Medieval.
SG22 (N = 1), Mongolia_Sukhbaatar_Xiongnu (N = 1) and Mongolia_ 
Khuvsgul_MLBALateMedieval89 individuals (N = 2). A full range of 
qpAdm admixture models were tested to identify the best sources 
for Baikal_his and the best western Russian source, including Yakutia_ 
IA, Russia_AngaraRiver_Medieval.SG22 (N = 1), Mongolia_Sukhbaatar_
Xiongnu (N = 1), Mongolia_Khuvsgul_MLBALateMedieval89 individu-
als (N = 2) and Buryat.SG90,91 (N = 4), and extending western sources 
to Polish, Bulgarian, Czech in addition to Russian (accounting for 
Slavic-speaking populations), Adygei, Abkhasian, Chechen, Lezgin 
and North Ossetian groups (accounting for the North Caucasus), 
Mansi (to represent Uralian-speaking populations) and Altaian (Turko–
Mongolic-speaking populations) (Supplementary Information sec-
tion 2.12 and Supplementary Table 1g). This resulted in the exclusion 
of Buryat.SG from the Baikal_his group because almost all of its models 
failed, whereas the other groups tested yielded consistent results. No 
other western sources outperformed the Russian group; therefore, 
we kept it as a proxy for the western source for the final models (Sup-
plementary Information section 2.12 and Supplementary Table 1g). 
The Baikal_sib populations were selected because they exhibited the 
closest ADMIXTURE20 ancestry profiles (Supplementary Information 
section 2.11). Each ancient and modern individual from Yakutia was 
tested for every combination of two or three populations, putting the 
non-used population in the right group92 (Supplementary Table 1f).

We further applied DATES24, using both the pseudo-haploid and 
imputed datasets, to two-way models to estimate the time of the admix-
ture event between the local ancestry source (Yakutia_IA + Nganasan) 
and Baikal populations (Supplementary Information section 2.12 and 
Supplementary Table 1h). Because the confidence intervals using the 
Baikal_sib source were more restrained (Supplementary Table 1h) and 
Baikal_sib covered more individuals, analyses incorporating the Baikal_ 
sib source were preferred (Fig. 3d). The time of admixture between a 
Russian source78 and either a historical Yakut ancestry source (Yakut_
his, comprising all newly sequenced Yakut individuals from the four 

stages, excluding related individuals and genetic outliers; N = 92) or the 
local ancestry source (Nganasan + Yakut_IA; N = 37) was also estimated 
for the imputed genomes of the PCA genetic outliers (Supplementary 
Table 1h). The corresponding weighted linkage disequilibrium decay 
curves are shown in Supplementary Fig. 2_9 and discussed in Supple-
mentary Information section 2.12).

Bottleneck dating
We used ASCEND25 to assess the intensity and estimate the time for 
the bottleneck underlying the foundation of the Yakut gene pool. 
These analyses were first run without specifying an outgroup and then 
repeated by choosing an outgroup (N = 15) randomly from the popula-
tions present in our dataset. Analyses were carried out by considering 
archaeological stages individually or the entire group of ancient Yakuts, 
both for the pseudo-haploid and imputed datasets, with the following 
parameters: binsize, 0.001; mindis, 0.001; maxdis, 0.3; maxpropshar-
ingmissing, 1; minmaf, 0; usefft, YES; qbins, 100 (Supplementary Infor-
mation section 2.13 and Supplementary Table 1i). The allele-sharing 
correlation decay curve together with the fitted exponential model 
from our outgroup tests are shown in Supplementary Fig. 2_10 and 
discussed in Supplementary Information section 2.13).

Microbial profiling
Microbial taxonomic profiles were determined for each individual DNA 
sample, restricting analyses to the fraction of collapsed reads. Reads 
aligned to the human genome (hg37) and the human mitochondrial 
genome were filtered out (Supplementary Information section 2.14). 
Microbial read counts were obtained using MetaPhlAn4 (ref. 29) (Sup-
plementary Table 1l), discarding unclassified and too short reads. We 
applied a minimal read length filter set to the most frequent read length 
value (visually checked) minus ten, with strict boundaries set at less 
than 30 bp and greater than 70 bp (Supplementary Information sec-
tion 2.14). This procedure was repeated on a panel of known sources 
(Supplementary Information section 2.14 and Supplementary Table 1k 
(for details and references)) that were used to assess the proportion of 
oral microbes contributing to each ancient DNA library, using Source-
Tracker2 (ref. 93), conditioning analyses on species level (Extended 
Data Fig. 4a). Samples showing more than 25% of oral sources were 
retained for further analyses because such proportions were observed 
in oral samples previously analysed and identified as authentic48. In 
cases where both tooth and calculus samples from the same individual 
passed filters, the profile maximizing oral microbial sources was kept, 
resulting in a final dataset of 74 individual oral microbiomes.

Bacterial taxa showing abundances lower than 1% were disregarded 
before carrying out composition visualization (Supplementary 
Fig. 2_11) and PCoA on the basis of Bray–Curtis distances (Fig. 3a). Spe-
cies abundances of microbes belonging to different bacterial com-
plexes (red, orange, yellow, green and purple), together with eight 
known oral pathogens, were measured and tested for potential shifts 
across archaeological stages (Kruskal–Wallis test; Fig. 3d, Supplemen-
tary Information section 2.14 and Supplementary Fig. 2_12). These 
analyses were repeated on a dataset restricted to calculus samples 
(Supplementary Information section 2.14 and Supplementary Fig. 2_13).

We also performed two complementary analyses to reveal subtle 
commonalities in the microbial compositions of the different samples 
that may have remained undetected in PCoA (Supplementary Informa-
tion section 2.14). The first analysis followed Quagliariello et al.46 and 
their network and clustering methodology. No association was found 
in the distribution of individuals among clusters and archaeological 
stages (Pearson’s χ2 test; P = 0.92; Supplementary Information sec-
tion 2.14 and Supplementary Fig. 2_14). The second analysis investigated 
strain-level variation in the oral pathogens detected using StrainPhlAn4 
(refs. 29,94), considering the most abundant bacterial species of the 
red complex and eight pathogens. Metagenomic data from dental 
calculus of several individuals, including Neanderthal outgroups and 
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Eurasian individuals who lived within the past 500 years (Supplemen-
tary Table 1n), were accessed through the AncientMetagenomeDir 
(v.24.09; ref. 95) repository. These data were processed similarly to 
Yakut data before running StrainPhlAn4 with default parameters to 
extract species-specific MetaPhlAn markers. We prepared multi-FASTA 
alignments combining those markers together across all individu-
als and reconstructed maximum likelihood phylogenies in IQ-TREE 
(v.1.6.12; ref. 96) to assess whether or not new strains arrived in Yaku-
tia at a specific archaeological stage (Supplementary Information 
section 2.15 and Supplementary Figs. 2_15–2_17). The best substitu-
tion model was estimated using the Akaike information criterion  
(-m MFP), and node support was assessed from 1,000 ultrafast boot-
strap97 pseudo-replicates (UFBoot) (each bootstrap tree optimized 
using a hill-climbing nearest-neighbour interchange search; -bb 1000 
-bnni). When the number of Neanderthal hits was found too limited to 
use them to root, the trees were rooted at midpoint.

The sequence data passing the SourceTracker2 filters described 
above were also subjected to functional analyses using the method-
ology implemented in HUMAnN 3.0 (ref. 30), with default parame-
ters (Supplementary Table 1o). This step generated per-individual 
functional profiles on the basis of the UniRef90 (ref. 31) and Choco
PhlAn ( January 2023; ref. 32) databases, which were further joined by 
pathways, normalized by counts per millions and centred log-ratio 
transformed to deal with compositional values that may arise from 
specific normalization in sequencing data, before conducting PCA 
(Fig. 3b). Selected pathways associated with carbohydrate or amino acid 
metabolism were scrutinized for their relative abundances across indi-
viduals and compared by archaeological stages using a Kruskal–Wallis 
test (P ≥ 0.067; Fig. 3c, Supplementary Information section 2.16 and 
Supplementary Fig. 2_18). These analyses were repeated on a dataset 
restricted to calculus samples (Supplementary Information section 2.16 
and Supplementary Fig. 2_19).

Pathogen screening
Reads aligned to the human genome (hg37) and the revised Cambridge 
Reference Sequence mitochondrial genome were filtered out (Supple-
mentary Information section 2.17). The resulting filtered FASTQ files 
were used for mapping against a selection of reference genomes from 
candidate pathogens (N = 26; Supplementary Information section 2.17 
and Supplementary Fig. 2_20a). This alignment step was carried out 
using PALEOMIX64 bam_pipeline (v.1.2) and bwa-0.6 (ref. 98) (back-
track; MinQuality, 30; no seed; -n, 0.1), which produced high-quality 
BAM alignments that were removed for PCR duplicates. The number of 
aligned reads against each reference genome was counted per sample, 
together with average read-to-reference edit distances. We considered 
a sample positive for the presence of any given pathogen as long as a 
minimal number of 100 high-quality alignments were identified, and 
the average edit distance was equal to or below 0.01. This conservative 
approach resulted in the identification of three individuals positive 
for Variola major, the aetiologic agent of smallpox (AC1S2, AC1S3 and 
Rassoloda; Supplementary Information section 2.17 and Supplemen-
tary Fig. 2_20b).

Smallpox genome analysis
All the sequence data generated for the three smallpox-positive indi-
viduals were realigned against the variola virus (VARV) smallpox refer-
ence genome (accession no. NC_001611.1), using the same procedure as 
above, except that the minimum alignment size was restricted to 30 bp 
instead of 25 bp to maximize potential sequence coverage. Although 
positive, AC1S3 did not provide a sufficient number of reads (N = 199) to 
proceed further with the rest of the analyses (Supplementary Table 1p). 
We next used mapDamage2 (v.2.0.8; ref. 69) with default parameters, 
and genotypes were called using bcftools (v.1.17; ref. 99) mpileup and 
call modules, requiring a maximum depth corresponding to the 99.5th 
percentile of the depth distribution, minimal base and mapping Phred 

qualities of 30 and considering the genome haploid. Low-quality geno-
types (Phred quality score lower than 30), indels and polymorphisms 
within two base pairs of an indel were removed using the bcftools (v.1.17; 
ref. 99) filter.

To place the smallpox strains identified in the smallpox phyloge-
netic tree, we applied the same procedure as above to the raw reads 
previously published for five ancient samples36,37. Additionally, the 
FASTA sequence data corresponding to 45 smallpox genomes from 
the twentieth century previously characterized were downloaded100,101 
(Supplementary Table 1q). The multi-FASTA sequence data, corre-
sponding to the 45 modern viral genome, including the reference 
genome, were further aligned using MAFFT102 and manually corrected 
wherever appropriate. Gaps were added to the six ancient samples 
according to the gaps in the reference genome after the alignment 
procedure, and all FASTA were merged to form a multi-FASTA sequence 
of 52 viral genomes. Positions in which at least 50% of the sequences 
were covered were retained for maximum likelihood reconstruction 
in IQ-TREE (v.1.6.12; ref. 96) (-m MFP). Node support was estimated 
from 1,000 ultrafast bootstrap97 pseudo-replicates (-bb 1000 -bnni).  
A tree was also generated using the same procedure as described above, 
removing the manual correction of the modern genome alignment 
(Supplementary Information section 2.18 and Supplementary Fig. 2_21). 
The position of our sample in the tree obtained was then tested against 
seven alternative tree conformations by running an approximately 
unbiased topology test103 (Supplementary Information section 2.18 
and Supplementary Fig. 2_22).

Ancient DNA methylation values calibration
We used DamMet104 to evaluate DNA methylation levels in the genomes 
of 21 individuals with coverage greater than 9-fold, as a previous study 
established that relatively high coverage thresholds were needed to 
obtain reliable estimates. Overall, we followed the procedure previously 
described by Liu et al.105 to identify the best combination of parameters 
for DamMet104 DNA methylation inference (Supplementary Information 
section 2.19). The average cellular methylation fraction (M) was found to 
have no impact on correlation levels (Supplementary Information sec-
tion 2.19, Supplementary Fig. 2_23 and Supplementary Table 1u); hence, 
a value of 75% was retained. Maximal correlation levels (0.38–0.8) were 
otherwise obtained for a maximum window size of 1 kb, windows of 25 
CpGs and a minimum depth of 400 reads per window. Four individuals 
presented low correlation scores (Spearman correlation; R2 < 0.55) and 
were thus disregarded.

Despite encouraging correlation levels, two DNA methylation cat-
egories associated with scores of 0 and 1 were under-represented in the 
remaining samples (Supplementary Information section 2.19 and Sup-
plementary Fig. 2_24a), in line with the work from Liu et al.105. We there-
fore followed the mitigation procedure developed by those authors to 
improve ancient DNA methylation inference using approximately 27.2 
million CpGs in two modern bones published by Gokhman et al.106 (Sup-
plementary Information section 2.19 and Supplementary Fig. 2_24b).

The validity of the resulting DNA methylation inference was also 
assessed by checking for the presence of well-established patterns 
along the genome (CpG islands, exons and introns and CTCF binding 
site regions), following the method by Hanghøj et al.107 (Supplementary 
Information section 2.19 and Supplementary Figs. 2_25–2_27). The DNA 
methylation profile observed for the Otchugoui individual did not 
align with expectations for CpG islands, exons and introns and CTCF 
binding regions, and it was therefore disregarded.

Statistical associations between cultural and non-cultural data
We generated a presence–absence matrix summarizing the charac-
teristics of each burial (Supplementary Information section 2.20 and 
Supplementary Table 1a) and calculated pairwise Bray–Curtis between 
individuals (Supplementary Information section 2.20 and Supplemen-
tary Fig. 2_28). To test whether the distribution of distances calculated 

https://www.ncbi.nlm.nih.gov/nuccore/NC_001611.1


between pairs of individuals within categories (sex, region and archaeo-
logical stages) was significantly different from random permutations 
of individuals across categories, we used ANOSIM (anosim from the 
vegan package108 in R109) and a permutational multivariate analysis of 
variance (adonis2 from the vegan package108 in R109) (Fig. 4b and Sup-
plementary Table 1v).

Moreover, we binned individuals into four extra categories defining 
wealth, leadership, Christianity and shamanism on the basis of the 
collection of cultural goods found in their burials (Supplementary 
Information section 2.20). To test whether the similarity of the oral 
microbiome between groups in these categories was lower than the 
similarity within each group, we used ANOSIM and permutational mul-
tivariate analysis of variance (Fig. 4b and Supplementary Table 1v). 
These analyses were repeated for taxonomic and functional distances, 
genetic distances (ASD) and DNA methylation distances (Bray–Curtis; 
Fig. 4b and Supplementary Table 1v).

Ethics and inclusion
This study builds upon more than 15 years of archaeological research 
conducted in Yakutia, Sakha Republic, an autonomous region of the 
Russian Federation located in northeastern Siberia (Supplementary 
Information section 1.3). The fieldwork was conducted under the 
MAFSO programme (French Archeological Mission in Eastern Siberia), 
a collaboration between French researchers and local Yakut experts, 
including scholars from North-Eastern Federal University in Yakutsk. 
The programme was approved in June 2012 by the Local Committee for 
Biomedical Ethics of the Federal State Budgetary Institution, known as 
the Yakut Scientific Center of Complex Medical Problems of the Sibe-
rian Branch of the Russian Academy of Medical Sciences. Throughout 
the programme, local experts were fully engaged as equal partners, 
contributing to research design, archaeological excavations, mate-
rial selection for analysis, community outreach, permit acquisition 
and critical feedback on analyses and manuscripts. Their contribu-
tions are reflected in their co-authorships in this study and 21 scientific 
articles and reviews published between 2004 and 2021. The research 
team also implemented a wide array of activities to engage with local 
communities, including fieldwork and student training, and played an 
active role in public outreach through documentaries, press interviews, 
television programs and exhibitions. The programme was supported 
by several inter-university collaborative research agreements, notably 
between Université Paul Sabatier, Krasnoyarsk State Medical Univer-
sity and North-Eastern Federal University in Yakutsk. It also received 
endorsement from the Institute of Ecology and Evolution at CNRS 
through the International Associated Laboratory ‘Coevolution Human–
Environment in Eastern Siberia’. The programme facilitated extensive 
community engagement, highlighted by the 2019 exhibition at the 
Historical Park Rossiya-Moya Istoriya in Yakutsk, which showcased the 
main archaeological discoveries made under MAFSO.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw sequencing data (FASTQ files) and aligned BAM files gener-
ated in this study have been deposited to European Genome-Phenome 
Archive (accession no. EGAS50000001329). Ethical authorization for 
the study was granted in June 2012 for conducting ancient DNA analyses 
from the Local Committee for Biomedical Ethics of the Federal State 
Budgetary Institution (‘Yakut Scientific Center of Comprehensive Medi-
cal Problems’ of the Siberian Branch of the Russian Academy of Medical 
Sciences). This authorization supports analyses aimed at collecting 
information on the evolution of bacteria or viruses identified for the 
period studied (fifteenth to nineteenth centuries), as well as studying 

the influence of socioecological factors on movement, adaptation and 
dynamics of ancient populations. Access to the sequence data of the 
ancient individuals analysed in this study will be granted for investiga-
tions filling these objectives. Decisions will be made upon request by 
the LifeChange Data Access Committee (EGAC50000000713), which 
overviews data access requests for European Genome-Phenome Archive 
study under accession no. EGAD50000001903. Any further information 
required to reanalyse the data reported in this paper is available from the 
lead contacts upon request. Source data are provided with this paper.

Code availability
No original code has been produced. All other software packages used 
in this study were previously published.
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Extended Data Fig. 1 | Main historical events punctuating the four main Archaeological Stages of Yakutia. More extensive discussions about the chronology 
of the various archaeological contexts can be found in Crubézy and Nikolaeva (Crubézy & Nikolaeva 2017).
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Geographic maps of the biological material sampled 
to characterize ancient genomes and oral microbiomes across Yakutia.  
a) Location of the individuals for whom sufficient genomic data could be 
retrieved. b) Location of the individuals for whom sufficient oral microbiome  
data could be retrieved as well as genetic signatures of smallpox strains 

(identified with brown graphical representations of the virus in Central Yakutia). 
Adapted from ©Stadia Maps (https://stadiamaps.com/), ©OpenMapTiles 
(https://openmaptiles.org/), ©OpenStreetMap (https://www.openstreetmap. 
org/copyright) and ©Stamen Design (https://stamen.com/).

http://stadiamaps.com/
http://openmaptiles.org/
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http://www.openstreetmap.org/copyright
http://stamen.com/
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Extended Data Fig. 3 | Genetic homogeneity of the Yakut individuals from 
~1,500. a-b) PCA conducted on 597,573 SNPs for 2,761 modern Eurasian and 
American individuals, with 892 ancient Eurasian and American individuals and 
106 ancient Yakut individuals projected. The percentage indicated on each PC 
reflects the explained fraction of genetic variation. In panel a) PC1 and PC2 are 
zoomed in on the Yakut cluster, with modern Yakut individuals indicated with 
black filled dots. Panel b) shows the placement of ancient individuals, 
including Yakuts, on PC2 and PC3. c) Co-ancestry matrix of modern Eurasian 
individuals, modern Yakuts and imputed ancient Yakuts. The tree was defined 
from fineSTRUCTURE21 clustering. The Yakut gene pool is not structured by time 

period. The three individuals in our dataset clustering within Asia correspond 
to, from top to bottom, the 17th century Buryat (Tungus), the Stage 4 Omouk1 
individual, and the Mokp Iron Age individual. d) D-statistics testing for excess  
of genetic sharedness into Stage 1 to Stage 4 Yakut individuals, disregarding 5 
genetic outliers (Byljasyk3, Haras, Khoumakhtaakh, Omouk1, Omouk3). Z-scores 
are adjusted (Zadj) for multiple testing using Benjamini-Hochberg correction. 
D-statistics are of the form D(Outgroup, Eurasian modern populations; StageX, 
StageY/modern Yakut), where positive values indicate closer genetic proximity 
of modern Eurasian population with StageY or modern Yakuts than with StageX 
individuals. Error bars reflect two times standard error.



Extended Data Fig. 4 | Authentication and analysis of oral microbiome 
sequence data. a) Authentication with Sourcetracker293. The analysis  
included our data plus five published samples of known to be of high quality,  
and three others of low quality, that we used as controls (names in pink). 
Different microbiome sources were used (Supplementary Table 1k): bones as 
environmental controls (N = 10), modern dental calculus (N = 18), subgingival 
plaque (N = 20), skin (N = 10), and gut samples (N = 20). Most of the calculus 
samples and approximately half the tooth samples demonstrated a genuine 

oral profile (with the sum of Modern Calculus and Plaque source contribution 
above 25%). b) Diversity indexes for taxonomic diversity across the four 
archaeological stages. Left: Boxplot of both Shannon (top) and Simpson 
(bottom) diversity indexes for each Stage. Right: Per-individual diversity 
indexes. c) Relative species abundance of three oral pathogens. Boxplots 
represent the 25%, 50% and 75% quantiles, with upper and lower whiskers 
showing values within the 1.5 interquartile range. Horizontal black segments 
indicate the mean value for each species at each stage.
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Extended Data Fig. 5 | Examples of genealogical reconstructions and IBD 
sharing. a) Sum of IBD segments longer than 12 cM shared between pairs of 
adult individuals of the same sex from the same region, or from different 
regions. Y-axis is log-scaled. The p-value of the two-sided Wilcoxon test, with 
Benjamini-Hochberg correction for multiple testing, is shown. b) Genealogy  
of the individuals from AC (Arbre Chamanique), AtDaban and Oktiom burials.  

c) Sum of IBD segments longer than 12 cM shared between pairs of individuals 
from the same region (red), or from different regions (blue). Y-axis is log-scaled. 
The p-value of the two-sided t-test is shown if significant. Boxplots represent 
the 25%, 50% and 75% quantiles, with upper and lower whiskers showing values 
within the 1.5 interquartile range. Horizontal segments indicate the mean value 
for each category.
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