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Causal modelling of gene effects from 
regulators to programs to traits

Mineto Ota1,2,3 ✉, Jeffrey P. Spence1,4,5, Tony Zeng1, Emma Dann1,2, Nikhil Milind1, 
Alexander Marson2,4,6,7,8,9,10 ✉ & Jonathan K. Pritchard1,11 ✉

Genetic association studies provide a unique tool for identifying candidate causal 
links from genes to human traits and diseases. However, it is challenging to determine 
the biological mechanisms underlying most associations, and we lack genome-scale 
approaches for inferring causal mechanistic pathways from genes to cellular functions 
to traits. Here we propose approaches to bridge this gap by combining quantitative 
estimates of gene–trait relationships from loss-of-function burden tests1 with 
gene-regulatory connections inferred from Perturb-seq experiments2 in relevant cell 
types. By combining these two forms of data, we aim to build causal graphs in which 
the directional associations of genes with a trait can be explained by their regulatory 
effects on biological programs or direct effects on the trait3. As a proof of concept,  
we constructed a causal graph of the gene-regulatory hierarchy that jointly controls 
three partially co-regulated blood traits. We propose that perturbation studies in 
trait-relevant cell types, coupled with gene-level effect sizes for traits, can bridge the 
gap between genetic association and biological mechanism.

Genome-wide association studies (GWAS) and rare variant burden tests 
have identified tens of thousands of reproducible associations for a 
wide range of human traits and diseases. These signals have identified 
many genes that can serve as therapeutic targets4–6; driven discoveries 
of new molecular mechanisms7,8, critical cell types9 and physiological 
pathways of disease risks or traits10–12; and enabled genetic risk predic-
tion for complex diseases13.

But despite these successes, interpreting the vast majority of asso-
ciations remains challenging. Aside from coarse-grained analyses such 
as identifying trait-relevant cell types and enriched gene sets, we lack 
genome-scale approaches for interpreting the molecular pathways 
and mechanisms through which hundreds, if not thousands, of genes 
affect a given phenotype.

One challenge for interpreting genetic associations is the observation 
that many hits act indirectly, via trans-regulation of other genes14–19. This 
observation is formalized in the omnigenic model3,20, which proposes 
that, for any given trait, only a subset of genes, referred to as core genes, 
are located within key molecular pathways that act directly on the trait 
of interest. Meanwhile, many more genes affect the trait indirectly, by 
regulating core genes through links in gene-regulatory networks. In 
this model, we can interpret the effect size of a variant in terms of all 
paths through the network by which it affects core genes.

The central role of trans-regulation underlying many GWAS hits 
implies that fully understanding the genetic basis of complex traits 
requires tools to measure how genetic effects flow through networks. 
However, until recently, we have had very limited information about 
gene-regulatory networks in any human cell type, with the main 

information coming from observational data such as trans-expression 
quantitative trait locus (trans-eQTL) and co-expression mapping14,16,21. 
However, both approaches have important limitations including low 
power20,22 and confounding effects of cell-type composition14 in the case 
of trans-eQTLs, and ambiguous causality in co-expression analysis23,24.

Advances in genome editing and single-cell RNA sequencing, includ-
ing Perturb-seq, now provide new opportunities to measure causal 
gene-regulatory connections at genome scale25–28. In Perturb-seq exper-
iments, a pool of cells is transduced with a library of guide RNAs, each of 
which causes knockdown (or other perturbation) of a single gene. After 
allowing the cells time to equilibrate, single-cell sequencing is used to 
determine which genes were knocked down in each cell and measure the 
transcriptome of the cell. Critically, Perturb-seq enables measurement 
of the trans-regulatory effects of each gene in a controlled experimental 
setting at the genome-wide scale. Recent work has shown that such 
approaches are a promising tool for interpreting GWAS data, finding 
that GWAS hits are often enriched in specific transcriptional programs 
identified by CRISPR perturbations of a subset of genes29–33.

Major challenges remain as we aim to move beyond identifying 
enriched programs to inferring genome-scale causal cascades of biolog-
ical information. In this paper, we developed a new systematic approach 
to this problem. We demonstrate how, by combining loss-of-function 
(LoF) burden results with Perturb-seq, we can infer an internally coher-
ent graph linking genes to functional programs to traits, and derive 
biological insight into the key genes and pathways that control these 
traits (Fig. 1a). The resulting graph helps us to understand not only the 
trait-relevant pathways but also the functions of genes and programs 
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within the graph, to explain why those genes are associated with the 
traits. On the basis of our results, we expect that forthcoming efforts 
to generate perturbation data in a wide variety of cell types will provide 
a critical interpretative framework for human genetics.

Selection of model traits
To integrate genetic association data with Perturb-seq, our first step 
was to evaluate whether there are any traits with high-quality genetic 
data where the most relevant cell type (or types) can be well modelled 
by existing Perturb-seq data. At the time of writing, the only published 
genome-wide Perturb-seq dataset was collected in a leukemia cell line: 
K562 (ref. 2). In that experiment, every expressed gene was knocked 
down using CRISPR interference, one gene per cell, before single-cell 
RNA sequencing.

To determine which traits could reasonably be modelled in terms 
of the gene-regulatory networks of K562 cells, we compiled published 
GWAS and LoF burden test data for a wide range of traits measured in 
the UK Biobank (UKB)1,34. Of these, we selected 234 quantitative traits 
with single-nucleotide polymorphism (SNP) heritability > 0.04 for fur-
ther consideration (Supplementary Table 1) and performed stratified 
linkage disequilibrium score regression (S-LDSC)9 across all 234 traits. 

We observed that open chromatin regions in K562 exhibited significant 
heritability enrichment exclusively for traits related to morphology or 
quantity of erythroid lineage cells (Fig. 1b).

This result is intuitive, as the K562 cell line was derived from erythro-
leukaemia cells, which are a neoplastic form of erythroid progenitors 
(Fig. 1c), and K562 cells retain multipotency and can differentiate into 
erythroid cells35.

We also performed S-LDSC across the same set of traits for various 
primary cell types, and found a very similar enrichment for erythroid 
traits in megakaryocyte–erythroid progenitor cells (MEPs), which are 
the natural progenitor cells for erythrocytes (Fig. 1c,d and Extended 
Data Fig. 1a). The open chromatin regions in MEPs were also more 
similar to those in K562 cells than other cell types (Extended Data 
Fig. 1b). These results support the notion that K562 cells share similar 
chromatin features with primary progenitor cells and could serve as 
a cellular model for studying the gene-regulatory network associated 
with erythroid traits.

Among the enriched traits, we selected three traits that are relatively 
independent, with pairwise genetic correlations ranging from −0.39 to 
0.15, for detailed analysis (Extended Data Fig. 1c). We focused primarily 
on mean corpuscular haemoglobin (MCH), which measures the mean 
amount of haemoglobin per erythrocyte; but, we also analysed red 

MCV

MRV

MSCV
HLSRPer
HLSRCou
RetPer
RetCou

0

3

6

9

−
lo

g 10
(P

)

RDW

IRF

MCH RBC traits
Others

UKB traits

IRF

RBC traits MCH
Others

0

3

6

9

0 3 6 9 12

–log10(P), MEP enrichment

–l
og

10
(P

), 
K

56
2 

en
ric

hm
en

t RDW

cb

a

d

Positive association

Negative association

Data source 1: UKB LoF burden test
Directional association of gene

Study overview

Gene features
Protein features
Gene constraint

UKB quantitative traits

Individuals
with LoFs 

Individuals
without LoFs

...

Trait-relevant regulatory network

HSC

MPP

CLP

Lymphocyte

Human haematopoietic tree Heritability enrichment pattern in K562
is similar to primary progenitor cells

Heritability enrichment to K562 ATAC-Seq

Reticulocyte

Erythrocyte

Megakaryocyte

Eosinophil

Basophil

Granulocyte–
monocyte

K562

GMP

CMP

MEP

MCH

RDW

IRF

Positive regulation

Negative regulation

Data source 2: Perturb-seq
Gene-regulatory network

K562 cell line

sgRNA library

dCas9–KRAB

...

Gene
effects () Regulators

Regulators Programs TraitsPrograms

+

−

−

+

+

Trait 1

Trait 2

Trait 3
Trait 1

2
3

GeneBayes

Prior

Fig. 1 | Study overview and selection of model traits. a, Overview of the  
study. The square nodes represent genes, the coloured arrows between genes 
represent regulatory effects and the arrows from genes to traits represent 
associations. sgRNA, single guide RNA. b, Heritability enrichment of UKB traits 
to open chromatin regions in K562. Traits are ordered based on the P value  
of enrichment, which was estimated using the Jackknife test in S-LDSC. The 
dashed line indicates the threshold for Bonferroni significance. ATAC-seq, 
assay for transposase-accessible chromatin using sequencing; Cou, count; 
HLSR, high light scatter reticulocyte count; MCV, mean corpuscular volume; 

MRV, mean reticulocyte volume; MSCV, mean sphered corpuscular volume;  
Per, percentage; RBC, red blood cell; Ret, reticulocyte. c, Schematic of the 
human haematopoietic tree. Traits of interest are annotated near their relevant 
cell types. CLP, common lymphoid progenitor; CMP, common myeloid 
progenitor; GMP, granulocyte–monocyte progenitor; HSC, haematopoietic 
stem cell; MPP, multipotent progenitor. d, Comparison of heritability 
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cell distribution width (RDW)—the standard deviation of the size of 
erythrocytes per individual—and the immature reticulocyte fraction 
(IRF). For these traits, a considerable amount of SNP heritability was 
explained by open chromatin regions in the K562 cell line (53%, 44% 
and 36% of the total SNP heritability, respectively), further support-
ing the use of K562 Perturb-seq to interpret their genetic associations 
(Supplementary Table 2).

Pathway enrichment for trait associations
Before attempting to build causal models for these traits, we first 
explored the genetic associations for MCH, RDW and IRF with stand-
ard approaches (Fig. 2 and Supplementary Fig. 1). GWAS of MCH in 
the UKB identified 634 independent genome-wide significant signals. 
Many of the lead hits fall into a few significantly enriched pathways, 
including haem metabolism, haematopoiesis and cell cycle (Fig. 2a,c). 
These enriched pathways are crucially involved in the maturation of 
erythrocytes. For example, tight control of cell cycle is important at 
several steps in erythropoiesis36–39.

In addition to GWAS, UKB has also released whole-exome sequenc-
ing data for more than 450,000 participants40. Here we focused on 
the phenotypic effects of LoFs, which are variants such as frameshift 

and premature stop mutations that are predicted to cause complete 
LoF of a gene. To estimate the average effect of different LoF vari-
ants in the same gene on a phenotype, we compared the phenotypic  
values for carriers of LoF variants in a given gene versus non-carriers. 
This approach, known as a burden test, generates a score for each 
gene that estimates the effect of half loss of gene dosage on the  
phenotype.

Previously reported burden test statistics for LoF variants1 identi-
fied 90 genes associated with MCH at a false discovery rate (FDR) = 0.1 
(Fig. 2b). Although the rankings of top hits differ between GWAS and LoF 
burden tests (Extended Data Fig. 2a), the lead hits from GWAS and LoF 
are generally enriched in the same pathways (Fig. 2c). This is consistent 
with the expectation that common and rare variants associated with a 
trait act through similar biological pathways, but frequently prioritize 
different genes41,42.

As one might expect, LoF variants in the genes that encode com-
ponents of adult human haemoglobin, HBB, HBA1 and HBA2, all show 
strong negative effects on MCH (Fig. 2b). Clinically, these mutations 
cause α-thalassaemia or β-thalassaemia, in which a decrease in MCH is 
characteristic. This highlights a key feature of burden tests: in addition 
to significance testing, they also provide a quantitative, directional 
estimate of LoF effects, referred to here as γ.
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The directions of associations in the burden tests also help us to 

interpret the pleiotropic effects of genes. When looking at genes asso-
ciated with MCH and RDW, which have a negative genetic correlation 
in GWAS (Extended Data Fig. 1c), the LoF effects for most genes were 
associated in opposite directions (r = −0.53; Fig. 2d). However, a hand-
ful of genes had strong same-direction effects on both traits (Fig. 2d). 
For instance, CAD encodes a multifunctional enzyme of which biallelic 
mutations cause megaloblastic anaemia43, whereas heterozygous LoFs 
increase both MCH and RDW (Fig. 2d). One goal of building a causal 
mechanistic graph for these traits will be to explain these seemingly 
discordant associations.

For many genes, the LoF γs have large standard errors, due to the 
low frequency of LoF variants41. To improve estimation of the γs, we 
applied an empirical Bayes framework called GeneBayes that we devel-
oped previously44. Our approach incorporated previous information 
about gene expression, protein structure and gene constraint to share 
information across functionally similar genes (Methods). We found that 
the GeneBayes estimates of γ are far more reproducible than naive esti-
mates in the independent All of Us cohort45 (Extended Data Fig. 2b,c). 
Furthermore, we observed greater enrichment of genes associated 
with traits in functional pathways even though we did not directly use 
that information (Extended Data Fig. 2d,e). These improvements are 
important for making full use of the beneficial features of LoF burden 
tests while reducing unwanted noise. Therefore, we used the GeneBayes 
posterior mean effect sizes in Fig. 2c,d and for the remainder of the 
paper. For further discussion about the choice of prior information 
for GeneBayes, see the Supplementary Note.

Gene regulation shapes genetic signals
Next, we investigated whether Perturb-seq from K562 could allow us 
to interpret genetic associations in the context of the gene-regulatory 
network. Perturb-seq estimates the effect of knocking down a gene x on 
the expression of another gene y, which we denote as βx→y (Methods). 
βx→y represents the total effect of x on y, including both direct and indi-
rect pathways through the gene-regulatory network. Previous studies 
using perturbations to interpret GWAS have identified enrichment of 
hits in co-regulated gene sets, sometimes referred to as ‘programs’29–33, 
but have had limited success at identifying GWAS enrichment among 
program regulators (Supplementary Note).

As an initial proof of concept, we focused on the genes encoding 
constituents of adult haemoglobin. We focused on the gene HBA1, 
which is the only one abundantly expressed in K562 cells, and which has 
one of the largest LoF effect sizes for MCH (γHBA1 = − 1.5). We reasoned 
that if K562 Perturb-seq is relevant for interpreting MCH, then genes 
that regulate HBA1 should also be associated with MCH. Moreover, 
we should be able to predict the direction of effect on MCH from the 
Perturb-seq data: positive regulators of HBA1 should, themselves, have 
promoting effects on MCH, and vice versa for negative regulators. (Note 
that we refer to genes with negative β or negative γ from knockdown 
or LoF, respectively, as promoting and coloured them red; positive β 
and γ are considered repressing and coloured blue).

As predicted, we found that across all 9,498 genes that were perturbed 
and also tested in the LoF burden test, the LoF effect of a gene x on MCH, 
denoted γx, is significantly positively correlated with the knockdown 
effects of that gene on HBA1 expression, βx→HBA1 (β-coefficient = 0.052, 
P = 3 × 10−7; Fig. 3a). Of note, among the perturbed genes, of the top 
ten genes ranked by LoF effects on MCH, seven had nominally sig-
nificant Perturb-seq effects on HBA1, and for all seven, the sign of the 
Perturb-seq β matched what we predicted from γ.

We also attempted a similar analysis for GWAS hits, testing whether 
significant GWAS hits were enriched near HBA1 regulators (Fig. 3b). We 
observed that GWAS hits were enriched (OR = 2.1 for the top 200 regu-
lators), but to a lesser extent than for significant LoF burden test hits 
(OR = 6.3 for the top 200 regulators). This cannot be solely explained 

by inaccurate gene linking, as the same set of GWAS hits showed high 
enrichment for some of the gene sets (Fig. 2c and Extended Data Fig. 3a). 
This suggests a benefit of LoF burden tests over GWAS for identifying 
the trait-relevant regulatory networks.

We were curious whether similar patterns of correlation between 
LoF effect and Perturb-seq regulatory effects might be found for other 
genes or other traits. Consistent with the central role of HBA1 in deter-
mining the MCH phenotype, we found that the correlation of γx with 
βx→y, which we call regulator–burden correlation, was the highest for 
y = HBA1 among all genes expressed in K562 cells (Fig. 3c). As a negative 
control, we also tested for correlations between regulatory effects on 
HBA1 with LoF effects on unrelated traits. As expected, we only detected 
HBA1 regulator signals for erythroid traits (Extended Data Fig. 3b). 
These HBA1 regulator signals for traits were also detected if we used 
raw burden effect estimates without applying GeneBayes, but with 
weaker significance (Extended Data Fig. 2f,g), supporting our approach.

Another key question for Perturb-seq studies is whether regulatory 
relationships learned in one cell type—K562 in this case—are useful 
for studying traits that are determined by less-related cell types. To 
examine this, we computed the regulator–burden correlation for all 
expressed genes, with LoF γs for various traits. For each trait, we visual-
ized the distribution of regulator–burden correlations in a two-sided 
quantile–quantile (QQ)-plot (Fig. 3d).

Starting with our three main erythroid traits, MCH, RDW and IRF, 
we saw that all three traits show large excesses of both positive and 
negative correlations compared with the null (x = y line), indicating 
significant relationships between Perturb-seq and LoF burden tests 
for many genes. By contrast, there was minimal correlation between 
regulatory effects and γ for other blood traits, including lymphocyte 
and eosinophil counts (Fig. 3d and Extended Data Fig. 3c). This sug-
gests that cell types that are not differentiated from MEPs cannot be 
modelled well using K562 cells (Fig. 1c). This observation implies the 
importance of obtaining Perturb-seq data in trait-relevant cell types.

However, we were surprised to see that some non-erythroid traits, 
including serum levels of IGF-1 and CRP, as well as body mass index, 
did show highly significant correlations of regulatory effects with 
γ (Extended Data Fig. 3c). The strongest correlations were seen for 
insulin-like growth factor 1 (IGF-1), which connects the release of growth 
hormone to cell growth, acting on many cell types46. Further examina-
tion revealed that these signals appear to be driven by the regulation of 
cellular growth markers, including MKI67. We hypothesize that essential 
programs for cellular growth may be broadly shared across cell types 
that regulate IGF-1 and other traits that share this signal (Extended Data 
Fig. 3d). Indeed, with further analysis using Perturb-seq in additional 
cell lines, we confirmed the broad sharing of regulatory effects on the 
essential programs associated with IGF-1 (Extended Data Fig. 10 and 
Supplementary Note).

Together, these results confirm the relevance of gene-regulatory 
relationships learned from Perturb-seq for interpreting complex traits. 
They highlight the role of both cell-type-specific pathways—for which 
the cell type used in Perturb-seq must be closely matched to the trait 
of interest—and broadly active pathways that may be detectable in 
many cell types.

Trait-associated program regulations
We next aimed to develop a more comprehensive framework to explain 
genotype–phenotype associations in terms of the regulatory hierarchy 
inferred from Perturb-seq data. In principle, one might imagine infer-
ring a complete gene-regulatory network from Perturb-seq that con-
tains all causal gene-to-gene edges. However, the inference of accurate 
genome-scale causal graphs is extremely challenging, if not infeasible, 
from current Perturb-seq data.

As a more robust alternative, we followed previous work by cluster-
ing genes into co-expressed groups, referred to here as programs30. 
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To identify programs, we applied consensus non-negative matrix fac-
torization (cNMF)47 to the gene expression matrix from Perturb-seq 
(Fig. 4a). This allowed us to quantify the activity of each program in 
every cell. Similar to ref. 30, we then used the perturbation data to 
estimate the causal regulatory effects of knockdown of every gene x 
on the activity of each program P, denoted as βx→P.

On the basis of the preliminary analyses, we chose to model the data 
using 60 programs (see Methods; Extended Data Fig. 4a). We found that 
a large fraction of the 60 programs successfully captured biological 
pathways (Supplementary Table 3). Using external ENCODE data48, 
we found evidence for coordinated transcriptional control of many 
programs: for 49 of the 60 programs at least one transcription factor 
showed significant binding site enrichment near program genes and 
knockdown of that transcription factor significantly changed program 
expression (Extended Data Fig. 4b and Supplementary Table 3).

We next quantified the average effects of programs, and their regu-
lators, on traits (Fig. 4b). To measure program effects, we note that in 

NMF, the gene loadings on each program are non-negative by definition. 
Thus, a natural measure of the effect of a program on a trait is simply 
to compute the average LoF effects (γs) of highly loaded genes as a 
measure of the effect of that program on the trait. We refer to this as the 
program burden effect. A positive program burden effect is interpreted 
to mean that the program has a repressing function on the trait; a nega-
tive value implies that it is promoting. Significance was determined by 
permutations (Methods).

To measure the effects of regulators of program P on each trait, 
we needed to account for the fact that distinct regulators can have 
either positive or negative effects on P. Thus, for each program P, we 
computed the correlation across regulators, x, of βx→P with γx. We refer 
to this measure as the regulator–burden correlation; this measure is 
analogous to the measure of regulatory effects used for single genes 
above. A positive regulator–burden correlation is interpreted to mean 
that upregulation of program P promotes the trait; a negative value 
suggests that upregulation of P has a repressing effect on the trait.
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The program effects on each trait are shown in Fig. 4c–e. For MCH, 
the haemoglobin synthesis program genes and their regulators were 
both significantly enriched, consistent with our single-gene analysis 
of HBA1. In addition, five programs associated with the cell cycle were 
all enriched in the program burden effect axis. This mirrors the enrich-
ment of this pathway from the over-representation analysis of GWAS 
and LoF top hits (Fig. 2c), but here we can confirm the enrichment of 
both regulators and program genes for these programs (Fig. 4c).

For RDW, the program reflecting ATP-dependent activity was 
highlighted from both program and regulator axes (Fig. 4d). Iron is 

incorporated into haem in the mitochondria, and its dysregulation 
results in high RDW. In extreme cases, mitochondrial dysfunction leads 
to sideroblastic anaemia, characterized by high RDW49. The association 
of the ATP activity program with RDW is consistent with this biology. 
For IRF, the program representing the maintenance of the erythroid 
progenitor population was enriched for both program and regulator 
axes (Fig. 4e). This program showed the enrichment of binding sites 
for transcription factors that are important for the maintenance of 
stem cell and progenitor populations, including TAL1, NFIC, MAX and 
MNT50–52 (Extended Data Fig. 4b).
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Overall, the Perturb-seq data efficiently captured biological pathways 
and their regulators, and comparison with gene associations enable us 
to identify the pathways relevant to each trait.

Complex interplay of programs
Although the significant programs in Fig. 4c–e provide insight into 
biological controls of these three traits, they also revealed puzzling 
inconsistencies. Some programs, including haemoglobin synthesis 
for MCH, show consistent directional effects for program genes and 
program regulators, but for other programs, the directions of effects 
initially appeared to be inconsistent (Fig. 4f). Examination of these 
programs revealed important principles about the regulatory archi-
tecture of programs, and design considerations for building regulatory 
models of complex traits.

The first principle is revealed by three programs with strong effects 
on MCH: the S and G2/M phase cell-cycle programs, and the autophagy 
program. For the G2/M phase, the program and regulator effects have 
directionally concordant effects on MCH, but for the S phase, the pro-
gram genes and their regulators imply effects with opposite directions. 
In addition, for autophagy, only the regulators—but not the program 
genes—show a signal (Fig. 4c).

One piece of this puzzle is explained by considering patterns of 
co-regulation across the three programs: (1) regulators of the S phase 
and G2/M phase programs are shared but affect the programs in oppo-
site directions (Fig. 4g); and (2) most G2/M and S phase regulators also 
affect autophagy, but the knockdown effect on autophagy is almost 
always positive (Fig. 4g and Extended Data Fig. 5a). These relation-
ships are intuitive: S phase and G2/M phase are mutually exclusive 
components of the cell cycle; meanwhile, autophagy is suppressed 
during mitosis, and cell-cycle regulators are known to have a key role 
in that suppression53.

To describe these patterns in a simple way, we defined two sets of 
regulator genes, denoted RA and RB, according to their effects on G2/M 
(Fig. 4g). To determine how the regulators of these three programs 
affect MCH, we fit their effects jointly in a multiple regression model. 
This analysis showed that G2/M and autophagy regulators both have 
independent repressive effects on MCH (Extended Data Fig. 5b). The 
opposite co-regulation of S and G2/M phase programs explains the 
opposite correlation of these regulators with γ (Fig. 4c). A summary 
of the joint model of regulator effects is shown in Fig. 4h.

One prediction of this model is that RA regulators should have 
stronger (more negative) genetic effects on MCH γs than RB regula-
tors. This is because RA genes have a repressive effect on both G2/M 
and autophagy, and both programs have repressive effects on MCH; 
whereas for RB, the positive regulator effects on G2/M and the nega-
tive regulator effects on autophagy partially cancel the effects of each 
other on MCH. Indeed, consistent with this model, we saw that both RA 
and RB have significantly negative γs on average, but RA is much more 
strongly negative (Fig. 4i).

These observations emphasize the need for joint modelling of pro-
grams and show that the observed effect sizes of regulators on a trait 
can be modelled as sums of regulatory effects mediated through key 
pathways. A different form of crosstalk between programs, involving a 
negative-feedback loop affecting RDW, as well as the distinct relation-
ships of program genes and their regulators with a trait, is discussed 
in detail in the Supplementary Note.

Validation with GWAS and trans-eQTL
Although the enrichment of GWAS hits to regulators was modest 
(Fig. 3b), we hypothesized that we might find consistent regulatory 
effects of GWAS variants on the core pathways if we take the direction 
of effect into account. We utilized trans-eQTL effects in peripheral 
blood14 to test the directional regulatory effects of GWAS top hits on 

the programs identified by Perturb-seq (Fig. 4j, Supplementary Fig. 3 
and Supplementary Note). Although the size of each trans-eQTL effect 
is small, MCH GWAS hits had directionally consistent regulatory effects 
on the haemoglobin synthesis and autophagy programs (P = 2 × 10−14 
and 2 × 10−13, respectively). The direction of regulation by GWAS top 
alleles was concordant with what we inferred from our Perturb-seq and 
LoF burden test model. This indicates that GWAS and the LoF burden 
test converge on the regulation of shared core pathways.

Unified graphs from genes to programs to traits
We next aimed to build regulatory maps that link genes, programs and 
traits into coherent, unified models. Our goals in doing so are twofold: 
(1) we wanted to understand, in compact form, the main molecular pro
cesses that control a set of traits; and (2) we wanted to interpret, and even 
predict, the directions of effects of important trait-associated genes.

For each trait, we selected the top-ranked programs by program bur-
den effects and, separately, in a joint regression model, the top ranked 
programs by regulator–burden correlations (Extended Data Fig. 6; 
Methods). On the basis of our analysis above, we allowed programs 
and program regulators to have independent effects in the model. 
After model selection, this procedure resulted in a graph that, for MCH, 
included five programs and three sets of program–regulators, as well 
as the inferred direction of effect of each program and regulator set 
on MCH (Extended Data Fig. 7).

A simplified representation of the MCH graph is depicted in Fig. 5a, 
showing haemoglobin synthesis, cell cycle and autophagy as critical 
controls of MCH. The direction of the genetic association of top genes 
on MCH was generally consistent with this model (43 out of 59 predicted 
correctly). The overall prediction accuracy was significantly higher than 
expected under a null model, using both leave-one-out cross-validation 
(P = 5 × 10−5) and permutation analyses for which we repeated the entire 
inference procedure (P < 5 × 10−5; Methods; Extended Data Fig. 8a,b). 
This approach allowed us to connect the gene-level top hits, identi-
fied solely from genetic association studies, to their functions in the 
pathway regulatory map.

Examining the graph, we were intrigued that SUPT5H, which is 
involved in transcriptional elongation37, has regulatory effects on all 
three programs. Perturb-seq shows that SUPT5H activates haemoglobin 
synthesis, and inhibits autophagy and the G2/M phase cell cycle, all of 
which result in increased MCH (Fig. 5a). Thus, our model predicts that 
SUPT5H is a master regulator for MCH, exerting same-direction effects 
via three different pathways. Indeed, the effect sizes of SUPT5H LoFs on 
MCH are among the largest of all genes (Fig. 2d), and LoFs in this gene 
can cause a thalassaemia phenotype54. Thus, this map can help us to 
interpret why genes are associated with a trait.

In addition to MCH, we also inferred gene-to-pathway-to-trait maps 
for RDW and IRF, revealing both shared and independent pathways of 
regulation across the three traits (Extended Data Fig. 8c–h). There were 
four programs whose regulators were significantly and independently 
associated with at least one trait (Fig. 5b): progenitor maintenance, 
haemoglobin synthesis, autophagy and cell cycle. Previous studies of 
haematopoiesis confirmed that all four pathways regulate essential 
aspects of erythrocyte maturation37,39,55,56 (Fig. 5c).

The multi-trait regulator graph (Fig. 5b) helps us to interpret the 
concordance and discordance of genetic associations across the traits. 
Genome-wide, MCH and RDW are negatively correlated in both GWAS 
data (rg = −0.39) and at significant burden loci (Fig. 2d). We can now 
interpret these observations as probably driven by opposite direction 
effects of both autophagy and cell cycle on these two traits. Conversely, 
RDW and IRF are positively correlated (rg = 0.15; Extended Data Fig. 9a), 
at least in part because both traits are positively regulated by progeni-
tor maintenance.

We can also use the graph to understand how individual genes affect 
the different traits. For example, 16 genes in the graph have strong 
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opposite-direction effects on MCH and RDW; our model correctly pre-
dicts opposite signs for 14 out of the 16, including SUPT5H, MED17 and 
ATR (Fig. 5b and Extended Data Fig. 9b). For instance, MED17 inhibits 
both the G2/M phase cell cycle and autophagy; both effects increase 
MCH and reduce RDW, with the result that MED17 increases MCH and 
reduces RDW.

By contrast, three genes in the graph differ from the genome-wide 
pattern, showing large same-direction effects on MCH and RDW. Our 
model correctly predicts two of these, and is suggestive for the third 
(POLE; Supplementary Note). Specifically, CAD and CALR both have 
repressive effects on RDW and MCH. Figure 5b suggests why: unlike 
most genes that affect both RDW and MCH through shared pathways, 
these genes affect the two traits via independent pathways: progeni-
tor maintenance and haemoglobin synthesis. Both genes inhibit both 
pathways, but regulation of progenitor maintenance affects RDW and 
not MCH, whereas haemoglobin synthesis affects MCH but not RDW.

Extension of the model to other traits
Current availability of genome-wide Perturb-seq data in different cell 
types and cell conditions is limited. Nonetheless, we assessed the gen-
eralizability of our model by analysing Perturb-seq experiments with 
a limited number of perturbations in multiple additional cell lines—
HepG2, Jurkat and RPE1 (refs. 2,57) (Supplementary Table 4)—along 
with additional complex traits (Extended Data Fig. 10, Supplementary 
Figs. 4–9 and Supplementary Note). We observed cell-type specificity 
of regulator–burden correlations, with burden effects for erythroid 

traits being more enriched in gene-regulatory effects in K562 cells 
than in other cell lines, whereas burden effects for HDL-cholesterol 
was more enriched in HepG2 cell-regulatory effects (Extended Data 
Fig. 10). In addition, we identified trait-specific patterns of regulator 
association (Supplementary Fig. 5). These findings, along with others 
(Supplementary Note), indicate that with more diverse and detailed 
gene regulation information, we can better understand the biology of 
a broad range of traits.

Discussion
Genetic associations serve a unique role in studies of human biology, 
as they can establish causal links from variants or genes to human 
traits and diseases. Yet, some 20 years after the first GWAS, we still 
lack genome-scale approaches for inferring interpretable, quantita-
tive models of the biological pathways that connect genes to cellular 
functions to traits. Here we built on previous work in this area29–33 to 
develop the first approach to infer unified graphs linking directional 
effects of genes on traits via pathways of regulation and cellular func-
tions. Although our work focuses on blood traits that underlie anaemia 
and related diseases, we anticipate that the principles learned here can 
be broadly applicable.

One essential feature of this paper is that we built graphs using 
quantitative gene effects estimated from LoF burden tests instead of 
unsigned enrichment of GWAS hits. We envisage LoFs and GWAS hits as 
reflecting the same underlying biological pathways41,42, but our results 
are both more significant, and more interpretable, when using LoFs. 

Fig. 5 | Association map of genes to programs to traits. a, Regulatory map  
of MCH. Programs were selected by genome-wide association patterns of 
regulators or program genes with the trait (Methods). Top hits for MCH (|γ| > 0.1) 
whose effect directions were concordant with the model are placed onto the 
map. The colour of the genes indicate the direction of effects on the trait 
(sign(γ)); red denotes increase MCH with upregulation of the gene. The arrow 
with the asterisk was not selected in the initial program selection process. The 
P value is from the permutation test and is one-sided. b, Sharing of regulatory 

networks across traits. Here the arrows from gene to programs indicate the 
regulatory directions. Programs were selected if their regulators were found to 
be associated with at least one trait in the gene-to-program-to-trait map. The 
arrows from programs to traits were determined based on a joint regression 
model (Extended Data Fig. 9c). Regulatory directions on cell cycle pertain to 
G2/M phase. POLE is also a member of the S phase cell-cycle program. c, Programs 
identified in our model are associated with biological processes that are 
essential for erythrocyte maturation.
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Unlike GWAS hits, LoF effect sizes are inherently directional, they are 
automatically linked to the correct genes, and their magnitudes are 
comparable across genes. Moreover, compared with common variants 
with tiny effects, LoFs are probably more functionally similar to CRISPR 
knockdowns, given the widespread non-linear and even non-monotonic 
relationships between gene expression and phenotypes58,59.

Although the model presented here is relatively simple, there will 
surely be value in future models that add complexity. Future versions 
could allow for more complex representations of gene-regulatory 
networks, more explicit modelling of regulatory crosstalk between 
programs and heterogeneity of gene functions within programs. Many 
traits are controlled by multiple cell types, and one can envision models 
in which genetic effects on traits are controlled by a superposition of 
effects across multiple cell-type-specific networks.

One unexpected result from our model was the finding that the 
effects of program regulators on a trait may be strongly discordant 
from the effect of program genes on the same trait. We hypothesize 
that some programs reflect downstream transcriptional consequences 
of cell biological processes, and that the genes within a program do 
not always lie on the causal pathway between the program–regulators  
and the trait (Supplementary Note). In such cases, the identification 
of genes in the program can provide useful clues about biological 
mechanism but the effects of program genes may differ dramatically 
from the effects of their regulators. Moreover, it is likely that some 
critical processes may not be detected or may not be interpretable 
from RNA readouts. Thus, it will be helpful in future analyses to aug-
ment Perturb-seq experiments with other types of cell phenotyping 
such as functional tests, protein measurements or cell painting60–63.

Finally, one critical challenge for using Perturb-seq to interpret 
association studies is how closely we need to match the cells used for 
Perturb-seq to the cells that determine trait variation30. Recent work 
has suggested that gene-regulatory relationships are often shared 
between closely related cell types, but generally not shared between 
more distant cell types57,64. Consistent with this, our results show that 
K562 serves as a suitable, although imperfect, model for erythrocyte 
development, but also that K562 is not suitable for modelling traits 
related to other blood cell lineages (Fig. 3d). We hypothesize that 
in general, Perturb-seq data will need to be closely matched to the 
trait-relevant cell types, but the matching does not need to be perfect.

Although our proof of principle here uses experimental data from 
K562 cells to model erythrocyte traits, we expect that the next gen-
eration of perturbation studies in cells, organoids and tissues63,65 will 
provide a critical interpretative framework for human genetics.
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Methods

Datasets
GWAS data. We downloaded the publicly available GWAS summary 
statistics and SNP heritability estimates for traits in the UKB from Ben 
Neale’s laboratory (see the URL section below). We focused on traits 
with SNP heritability estimates exceeding 0.04.

LoF data. We used LoF burden test summary statistics from the UKB 
with 454,787 participants, as previously reported1. Specifically, we 
utilized the gene-level aggregated effect estimates from predicted 
LoF variants with a minor allele frequency of less than 0.01%. Data were 
downloaded from the GWAS Catalog67.

Perturb-seq data. We utilized the genome-wide Perturb-seq data-
set in K562 reported by Replogle et al.2. In this dataset, all expressed 
genes (n = 9,866) were targeted by a multiplexed CRISPRi sgRNA lib
rary in K562 cells engineered to express dCas9–KRAB. Single-cell RNA  
sequencing was performed to read out the sgRNAs together with the 
transcriptome. Only cells with a single genetic perturbation were used 
for the analysis, amounting to a median of 166 cells per gene perturba-
tion and 11,499 unique molecular identifiers per cell. We downloaded 
the raw count data that the authors uploaded to figshare (see the URLs 
in the Code availability section).

For additional analyses, we utilized Perturb-seq data for essential 
genes in K562, RPE1 (ref. 2), HepG2 and Jurkat57 cell lines. Only cells with 
a single genetic perturbation were used for the analysis. The number 
of perturbations and the number of cells per perturbation are sum-
marized in Supplementary Table 4. We downloaded the raw count data 
uploaded to figshare (see the URLs in the Code availability section) or 
the Gene Expression Omnibus (GSE264667).

ChIP–seq data. We utilized chromatin immunoprecipitation followed 
by sequencing (ChIP)–seq data in K562 for annotating gene programs. 
We downloaded 830 transcription factor ChIP–seq narrow peak files 
from the ENCODE project website48 (see the URL in the Code availability 
section). All coordinates were mapped to hg19 with LiftOver68.

Linkage disequilibrium score regression
To identify traits whose heritability is enriched in open chromatin 
regions in K562, we used S-LDSC9. All GWAS data were preprocessed 
with the ‘munge_sumstats.py’ script provided by the developers (see the 
URLs in the Code availability section). Variants in the HLA region were 
excluded from the analysis. The assay for transposase-accessible chro-
matin using sequencing (ATAC-seq) replicated narrow peak bed file in 
K562 was downloaded from ENCODE48 (GSE170378, ENCFF590CPE), and 
the coordinates were mapped to hg19 using LiftOver68. Furthermore, 
we used narrow ATAC-seq peaks from 18 haematopoietic progenitor, 
precursor and differentiated cell populations previously reported69.

For the additional analysis, replicated narrow peak files from 
ATAC-seq experiments for HepG2 and CD4+ T cells were downloaded 
from ENCODE48 (ENCFF439EIO and ENCFF246KRE), and the coordi-
nates were mapped to hg19 using LiftOver68. For RPE1 (ref. 70) and 
Jurkat71, as narrow peak files for ATAC-seq experiments were not avail-
able, we downloaded SRA files from the US National Institutes of Health 
NCBI Sequence Read Archive (SRR30621812 for RPE1, and SRR12368304 
and SRR12368305 for Jurkat) and called the peaks. Specifically, we 
trimmed the adapter sequence with TrimGalore (v0.5.0)72, aligned to 
the hg19 reference with Bowtie2 (v2.3.4.1)73, filtered duplicates with 
MACS3 (v3.0.3)74 and called narrow peaks with the MACS3 (v3.0.3) 
hmmratac command.

Linkage disequilibrium (LD) scores were calculated for each anno-
tation using the 1000 G Phase 3 European population (ref. 75). The 
heritability enrichment of each annotation for a given trait was com-
puted by adding the annotation to the baseline LD score model (v1.1) 

and regressing against trait chi-squared statistics for HapMap3 SNPs. 
These analyses used v1.0.1 of the LDSC package (see the URL in the 
Code availability section).

Furthermore, we tested the genetic correlation between specific 
trait pairs using European LD scores with the LDSC package (v1.0.1).

Estimation of gene effect sizes with GeneBayes
Method overview. LoF burden tests are not well powered, especially for 
shorter or selectively constrained genes, as the likelihood of having LoF 
variants in these genes is low. We previously developed GeneBayes44, 
an empirical Bayes framework aimed at addressing a similar challenge: 
the precise estimation of selective constraint on genes, which can be 
particularly challenging for short genes. Within GeneBayes, we used 
gene features in a machine learning-based empirical Bayes framework 
to improve the accuracy of constraint estimates. Diverse gene features, 
such as gene expression patterns and protein structure embeddings, 
can enhance the accuracy of these estimates. GeneBayes is a highly 
adaptable framework, easily extendable to various applications, as 
outlined in the original article44. In this instance, we utilized it to derive 
more precise effect size estimates for LoF burden tests.

To minimize overfitting when applying GeneBayes to LoF burden 
test estimates, we first performed feature selection using the BoostRFE 
function (boost recursive feature elimination) from the shap-hypetune 
package (see the URL in the Code availability section) to fit XGBoost76 
models on the sign and magnitude of γ̂, the estimated effect size from 
LoF burden test summary statistics. We used the predicted sign and 
magnitude as the features for GeneBayes, which we found to perform 
better than using the selected features directly; this may be due to 
differences in training dynamics between XGBoost and the gradient- 
boosted trees fit using GeneBayes.

Subsequently, we implemented the GeneBayes framework as 
previously described. Specifically, GeneBayes involves two steps:  
(1), learning a prior for the effect size of each gene through the utili-
zation of gradient-boosted trees, as implemented in NGBoost77, and  
(2), estimating gene-level posterior estimates of the effect sizes using a 
Bayesian framework. In our application of GeneBayes, we parameterize 
the prior as follows:

γ psign( ) ~ Bernoulli ( )

γ α θmagnitude( ) ~ Gamma( , )

The parameter p is the probability that γ is positive or negative, and 
α, θ are the shape and scale parameters of the Gamma distribution, 
respectively. We learned the parameters of the prior using the follow-
ing likelihood:

γ γ γ γˆ| ~ Normal( ,s.e.( )̂)

The summary statistics γ̂ and γs.e.( )̂ are the estimated effect size and 
its standard error from the LoF burden tests, respectively.

Gene features. We compiled the following types of gene features from 
several sources: selective constraint of genes (Shet)

44, gene expression 
across cell types, protein embeddings and gene embeddings.

Shet refers to a reduction in fitness for heterozygous carriers of a LoF 
variant in any given gene. We utilized the Shet estimated in our previous 
work44. Gene expression across 79 single-cell types was downloaded 
from the Human Protein Atlas78 (see the URL in the Code availability  
section). Protein embeddings were adopted from embeddings 
learned by an autoencoder (ProtT5) trained on protein sequences79. 
Gene embeddings were derived from GeneFormer, a pretrained 
deep learning model for single-cell transcriptomes80. Specifically, 
we used the Cell×Gene Discover census (see the URL in the Code 
availability section), and we extracted 1,000 cells per each of the  
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cell types—‘erythroid progenitor cell’, ‘monocyte’, ‘erythrocyte’, ‘fibro-
blast’, ‘T cell’, ‘neutrophil’, ‘B cell’ and ‘haematopoietic stem cell’—and 
computed the average embeddings of each gene for the cellular clas-
sifier using the EmbExtractor module (see the URL in the Code avail-
ability section).

Finally, we used the posterior mean of the LoF burden test effect size 
as a point estimate for the following analyses.

Traits. As applying GeneBayes to all UKB traits is computationally  
intensive, we applied this to a subset of traits including all the blood 
cell-associated traits, blood biomarkers and some of anthropomet-
ric traits. A list of traits included in our analyses has been provided in  
Supplementary Table 5.

LoF burden test in the All of Us cohort
The All of Us dataset contains whole-genome sequencing together with 
various laboratory measurements45. On 5 February 2025, the values for 
MCH were reported for 213,787 sequenced individuals after filtering 
(UKB data-field 30050, AoU ID 3012030). For individuals with data 
from multiple visits, we took the latest visit, and we excluded outliers 
(more than 50 or less than 0 pg). Our previous analysis suggested that 
relatedness and population structure have a minimal effect on burden 
test results58. Therefore, we performed our tests on all individuals that 
passed our filtering criteria. We included the top 16 genotype princi-
pal components, which are provided in the data release. In addition, 
we generated 20 rare variant principal components using FlashPCA2 
(ref. 81) on variants sampled uniformly at random from the rare vari-
ant fraction (minor allele count (MAC) > 20, minor allele frequency 
(MAF) < 1%). We identified high-confidence LoF sites using the Variant 
Effect Predictor in Ensembl82 with the LOFTEE plugin83 and restricted 
our analyses to variants with MAF < 1%.

We performed burden tests using REGENIE84, largely following the 
procedure previously described58, which is based on ref. 1. We used  
HapMap SNPs85 extracted from the ACAF call set (a set of variants 
provided by All of Us filtered on MAC and MAF) to perform the whole- 
genome regression in the first step of REGENIE. We included age, sex,  
age-by-sex, age squared, 16 genotyping principal components and 20 
rare variant principal components as covariates in both the first and 
the second steps. We used the rank-inverse-normal transform on the 
phenotypes in both steps. The burden mask aggregated all LoF sites 
with MAC > 5 and MAF < 1% into a single burden genotype for each gene. 
We added Gaussian noise to summary statistics generated from fewer 
than 20 individuals to remain in compliance with the All of Us Data User 
Code of Conduct. The noise was added to the effect size such that all 
burden tests with fewer than 20 individuals had the same standard error.

Pathway enrichment analysis of GWAS and LoF top hits
Clumping of GWAS top variants. To identify independently associ-
ated GWAS variants, we used PLINK (v1.90b5.3)86 with the –clump flag, a  
P value threshold of 5 × 10−8, a linkage disequilibrium threshold of 
r2 = 0.01 and a physical distance threshold of 10 Mb. In addition, we 
merged SNPs located within 100 kb of each other and selected the  
SNP with the minimum P value across all merged lead SNPs to avoid 
the false inclusion of genes that have neighbour genes with extremely  
large effects. This resulted in 634 independent variants associated 
with MCH. For each independent variant, we annotated the near-
est protein-coding gene. To accomplish this, we used the bedtools 
(v2.30.0)87 closest module to identify genes that overlap with the vari-
ant or have their transcription start site or transcription end site closest 
to the variant. Furthermore, we excluded genes in the HLA region due to 
extensive linkage disequilibrium. Finally, we obtained a list of 543 genes 
possibly associated with MCH GWAS signals.

Pathway enrichment analysis. We aimed to compare the pathways 
enriched in GWAS and LoF top hits for MCH. As pathways, we utilized 

all ontology terms in Gene Ontology88 with a minimum of 20 genes and 
a maximum of 2,000 genes, as well as MsigDB hallmark genesets89 that 
include the haem synthesis pathway. We utilized enrichGO and enricher 
functions in clusterProfiler90 package in R for the analysis.

Among the enriched pathways, genes in the ‘positive regulation of 
macromolecule biosynthetic process’ pathway overlap significantly 
with those in the ‘autophagy’ pathway (P = 2 × 10−8), and thus its enrich-
ment may reflect the relevance of autophagy pathway.

Enrichment analysis of GWAS and LoF top hits to HBA1 regulators. 
For the evaluation of the enrichment of GWAS top hits related to HBA1 
regulators (Fig. 3b), we used the list of 543 closest genes to the inde-
pendent GWAS hits defined above. We ranked the genes based on the 
P values of their regulatory effects on HBA1 expression. For each of the 
different thresholds for HBA1 regulators, we evaluated the enrichment 
using a two-sided Fisher’s exact test, using all the genes perturbed in 
the Perturb-seq as a background. Specifically, the columns of the 2 × 2 
table for the test correspond to whether the genes are HBA1 regulators 
at each threshold, whereas the rows correspond to whether the genes 
are GWAS top hits.

In addition, for comparison, we evaluated the enrichment of 90 sig-
nificant genes in the LoF burden test (FDR < 0.1) and the genes closest 
to the top 90 independent GWAS hits.

Estimation of gene-regulatory effects from Perturb-seq
We aimed to estimate gene-to-gene regulatory effects from 
Perturb-seq. We assessed the total effects of gene knockdown on gene 
expression by comparing perturbed and non-perturbed cells. After 
filtering out cells with fewer than 500 genes expressed and genes 
expressed in fewer than 500 cells, we compared the cells with pertur-
bation of every gene versus the cells with non-targeting control gRNAs. 
Log-normalized counts of cells were used as input to the limma-trend 
pipeline91, while accounting for gel bead-in-emulsion (GEM) group 
(batch effect), number of genes expressed and the percentage of mito-
chondrial gene expression as covariates. We utilized the log2 fold 
change (logFC) of gene expression in perturbed cells compared with 
non-targeting cells as a point estimate of the perturbation effect on 
gene expression β( )x y→

.

Defining gene programs and the regulatory effects of genes
Identification of gene programs with cNMF. From a single-cell gene 
expression matrix, we identified the co-regulated set of genes. Intui-
tively, such a set of genes can correspond to genes that determine cel-
lular identity or specific cellular processes, which we call programs. 
To identify gene programs and their activity in each cell, we applied 
the cNMF47 method to the single-cell gene expression matrix from 
Perturb-seq.

Matrix factorization models the gene expression data matrix as the 
product of two lower rank matrices, one specifying the proportions in 
which the programs are combined for each cell, and a second encoding 
the relative contribution of each gene to each program47 (Fig. 4a). We 
refer to the first matrix as a ‘usage’ matrix47. In cNMF, the usage matrix 
is normalized so that the usage values for each cell sum to 1. We used 
the normalized matrix as a usage of each program in each cell.

In cNMF, a meta-analysis of multiple iterations of NMF was performed 
to obtain a ‘consensus’ result. In cNMF, the number of programs (K) is 
a key model hyperparameter to tune. To determine it, we tested differ-
ent values of K (30, 60, 90 and 120) and decided to proceed with K = 60 
based on the error versus stability comparison (Extended Data Fig. 4a), 
as proposed by the authors. In addition, we used density threshold = 0.5 
to filter out the outlier programs.

Annotation of programs to biological pathways. From the gene-by- 
program matrix produced by cNMF, we can obtain the non-negative 
loadings of each gene to the program. We ranked the genes based on 



the loadings and utilized the top-ranked genes for each program to 
characterize the biological pathways of the program.

Annotating the programs to specific biological processes is a mul-
tifaceted task. In this study, for each program, we considered three 
orthogonal lines of evidence for annotating biological pathways.
Gene Ontology enrichment of top genes. We examined the enrich-
ment of the top 200 genes in the Gene Ontology categories and 
MsigDB hallmark gene sets using the enrichGO and enricher func-
tions in the clusterProfiler90 package in R. To calculate the enrich-
ment, we utilized genes expressed in K562 cells as a background set to  
avoid bias.

We tested different thresholds for determining the top genes (100, 
200, 300, 400 and 500). The Gene Ontology enrichment results 
were generally consistent, but we observed a trend: as the number of 
included genes increased, more categories were enriched in at least one 
program, with fewer categories specifically enriched for one program 
(Supplementary Fig. 10).

Capturing a wide range of biological categories, as well as annotating 
specific categories to the programs, is important for interpretation. 
Thus, we chose to use the top 200 genes for the Gene Ontology enrich-
ment analysis.
Enrichment of transcription factor-binding sites. We can expect 
that for some programs, the genes within the same program are coor-
dinately regulated by specific transcription factors. Such transcription 
factors can be used to characterize the programs. To this end, we uti-
lized the ChIP–seq experiments of transcription factors in K562 from 
the ENCODE project. To convert the information on binding sites to a 
gene-level regulation score, we calculated the following score for each 
transcription factor (i) for each protein-coding gene (j), as adopted 
from ref. 92:

∑S d P e( ) = ×i j
k

i k
x d

, ,
− /i j k, ,

where Pi,k denotes the strength of peak k for transcription factor i 
(quantified by −log10 q value for each peak, outputted by MACS2), xi,j,k 
denotes the distance from peak k to the transcription start site of gene 
j, and d represents the decay distance. The decay distance indicates the 
effective distance for the transcription factor and can vary depending 
on the transcription factors. Here we set the value to 1 kb, 5 kb, 10 kb, 
50 kb, 100 kb, 500 kb or 1 Mb.

To determine which score was useful for the annotation of pro-
grams, we tested the correspondence of the score with differentially 
expressed genes (DEGs) after knockdown of the same transcription 
factor. Specifically, for each transcription factor, we listed positive 
or negative DEGs after knockdown in Perturb-seq (FDR < 0.1) and we 
compared the ChIP–seq score (Si,j(d)) between DEGs and non-DEGs by 
Mann–Whitney U-test.

As a natural consequence, we could annotate each transcription 
factor as an activator or inhibitor, according to the direction of effects 
after knockdown. We annotated a transcription factor as an activator 
if the downregulated DEGs after knockdown had significantly high 
ChIP scores (FDR < 0.05), and as an inhibitor if the upregulated DEGs 
after knockdown had significantly high ChIP scores (FDR < 0.05). As 
a result, ChIP scores for 167 transcription factors showed significant 
correspondence with their knockdown effects (FDR < 0.05) and were 
utilized for the annotation of programs. One best decay distance param-
eter was selected for each transcription factor based on the significance 
in the overlap with DEGs.

For each program, we compared the top 300 loading genes with other 
expressed genes in K562 with respect to the 167 ChIP scores using the 
Mann–Whitney U-test. This test evaluates the enrichment of binding sites 
of the transcription factors to each program genes. Furthermore, we 
compared the program activity of the transcription factor-knockdown 
cells with others to see whether the transcription factor had a direct 
effect on the activity of the program (Extended Data Fig. 4b).

Co-expression with marker genes. In addition, we manually confirmed 
the co-expression of marker genes for predefined cell types or pathways 
and the program activity of cells in the uniform manifold approximation 
and projection (UMAP)93 space. Markers for red blood cells, myeloid 
cells and the integrated stress response pathway were adopted from 
the original Perturb-seq paper2. S phase and G2/M phase marker gene 
sets were adopted from ref. 94. Markers for erythroid progenitors and 
megakaryocytes were determined from single-cell gene expression data 
of bone marrow haematopoietic progenitors95, where we ranked the 
genes in each corresponding population based on expression specific-
ity (Z-score) compared with other populations and selected the top 50 
genes. This number of genes was determined to be roughly in the same 
range as the number of genes in the other gene sets.

After completing these three tests for each program, we defined the 
curated annotation of each program as follows: initially, when the pro-
gram corresponded to specific cell types, including cellular marker genes 
as top-loading genes, it was annotated as the cell type. For the others, we 
considered them as programs reflecting cellular pathways. We prioritized 
the most significantly enriched Gene Ontology or MsigDB pathways from 
the top 10 enriched pathways while avoiding ambiguous pathways for 
interpretation (such as the ‘RNA binding’ pathway). In cases in which 
multiple programs were enriched for the same category, we attempted 
to distinguish them by their enriched transcription factors or colocaliza-
tion with marker gene expression. Finally, we curated one annotation 
per program while considering these factors (Supplementary Table 3).

Estimation of the regulatory effects of genes on program activity. 
From the cell-by-program matrix produced by cNMF, we obtained the 
usage of each program in each cell. To obtain the effect size of each 
regulator on the program usage, we standardized the program usage 
to mean = 0 and s.d. = 1, and we compared perturbed cells with cells 
with non-targeting control gRNAs with a linear regression model, while 
accounting for GEM group (batch effect), number of expressed genes 
and percentage of mitochondrial gene expression as covariates. We 
utilized the point estimate of the effect size of perturbation on program 
usage as a regulatory effect of a gene β( )x P→ .

Comparison of program regulations with genetic associations
Definition of gene effects on traits and gene regulation. Unless 
specified, we utilized the posterior estimate of gene effect size on a 
trait with GeneBayes as the gene effect on a trait (γ). For gene-level 
regulatory effects, we used the logFC of gene expression in perturbed 
cells compared with non-targeting cells as a point estimate of the per-
turbation effect on gene expression, as described above β( )x y→

. For 
program-level regulatory effects, we utilized the effect size of pertur-
bation on program usage as a regulatory effect of a gene, as described 
above β( )x P→ .

Correlation of gene regulatory effects with genetic associations. We 
started from a simple model in which the effect size of a peripheral gene 
x was determined by its regulatory effects on a limited set of core genes. 
In cases in which there was a single or a limited number of core genes 
y, the regulatory effect size of the peripheral gene on the core genes 
should correlate with the effect size of the peripheral gene on the trait.

We have previously observed a striking correlation between LoF 
burden test effect sizes and Shet on average across traits41. To avoid 
the confounding effects of selective constraint, we included Shet as a 
covariate in our linear regression model:

γ β S~ +x x y x→ het,

where βx y→
 corresponds to the regulatory effect of gene x on gene y. 

We excluded the effects of gene y itself, that is, βy y→
, from the com-

parison because it does not reflect a trans-regulatory effect. For every 
expressed gene y, we evaluated the significance of the coefficient for 
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the first term. In some of the plots, the significance level was multiplied 
by the sign of the coefficient.

Association of program genes with traits. In the program-level analy-
sis, we quantified the average effects of program genes on traits, which 
we call program burden effect. Program burden effects are the average 
γ of the genes, which are representative of the program, as determined 
by the loading for the program in cNMF.

Of note, as a feature of cNMF, the loadings of the genes to the pro-
grams are always positive. Thus, the sign of the average γ provides 
interpretable directional information about the program association 
with the trait.

As selective constraints are positively correlated with |γ|41, highly 
conserved programs, such as those essential for cellular survival, could 
have larger program burden effects. To avoid confounding, we divided 
the expressed genes in K562 into ten bins based on Shet. We then com-
pared the average γ of the top loading genes with a 10,000 randomly 
chosen sets of the same number of genes, while matching for the Shet 
bin. To account for the directional association, we converted the rank 
of the observed value compared with the random distribution into 
two-sided P values, while adding the sign of the average γ to calculate 
the signed association P values.

Here the sign of program burden effects corresponds to the average 
effects of the LoF of program genes on the trait. Thus, positive program 
burden effects can be interpreted as a repressing association between 
program P and the trait.

The results were generally not affected by the choice of the number of 
top genes (100, 200 and 300). However, for some programs including the 
haemoglobin synthesis program, where the association with MCH was 
concentrated on a small number of haemoglobin genes, the association 
was more pronounced with a smaller number of top genes. Therefore, 
for visualization of program burden effects and regulator–burden cor-
relation (for example, Fig. 4), we chose 100 for defining the top genes.

Correlation of program regulatory effects with genetic asso-
ciations. Next, we aimed to quantify the correlation of regulatory  
effects of genes on the program with γ, which we call regulator–burden  
correlation.

We calculated the correlation of regulatory effects with trait associa-
tion signals while accounting for Shet in the same way as the gene-level 
analysis:

γ β S~ +x x P x→ het,

where βx P→  corresponds to the regulatory effect of gene x on program P.
For every program, we evaluated the significance of the coefficient 

for the first term. The significance level was multiplied by the sign of 
the coefficient for visualization.

Here the sign of βx P→  corresponds to the effect of the knockdown  
of gene x on the activity of program P. The sign of γx corresponds to 
the effect of the LoF of gene x on the phenotype. Thus, a positive  
regulator–burden correlation can be interpreted as a promoting asso-
ciation between program P and the trait.

Null distribution of burden effects. For visualization of the distri-
bution of burden effects of regulators or program genes (Extended 
Data Fig. 5h), the expected distribution of burden effect sizes was  
determined by randomly picking up the same number of genes from 
non-associated genes 10,000 times and taking their average.

Estimation of causal relationships between programs
While examining the co-regulation patterns across programs, we 
noticed an asymmetric pattern of co-regulation between programs; 
that is, the regulators of program A also have effects on program B, but 
the regulators of program B do not have effects on program A (Extended 

Data Fig. 5c). Such asymmetry can be explained by a causal directional 
association from one program to the other. Biologically, this one-way 
association can be interpreted as positive or negative feedback from 
one program to the other.

A similar observation—that is, the asymmetric correlation of effects 
from explanatory variables between two traits—was reported in the 
GWAS literature96. For instance, when LDL cholesterol causally affects 
the risk of coronary artery disease, but not vice versa, the effect sizes 
for risk variants of LDL cholesterol show a strong correlation between 
the two traits, whereas those for risk variants of coronary artery disease 
do not show such correlation96.

We adapted the analytic framework for causality from a previous 
GWAS96 to our case. Specifically, for a pair of programs, P1 and P2, we 
identified significant regulators (FDR < 0.05) for each. We then calcu-
late ρP 1

, the Spearman’s rank correlation of effect sizes for P1 and P2, 
considering only the regulators of P1. We also calculates ρP 2

 for the 
regulators of P2. Next, we modelled

Z N Z
N

ˆ ~ ,
1

− 3P P
P

1 1
1


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where Z ρ= arctanh( )P P1 1
 and NP 1

 corresponds to the number of sig-
nificant regulators for P1.

Then, we considered four patterns of association, M1: P1 causally 
associated with P2 (ZP 2

 = 0); M2: P2 causally associated with P1 (ZP 1
 = 0); 

M3: no relationship between P1 and P2 (ZP 1
 = ZP 2

 = 0); and M4: correla-
tion does not depend on how the regulators were ascertained (ZP 1

 = ZP 2
).

We fit each model by maximizing the corresponding approximate 
likelihood. We then selected the model with the smaller Akaike infor-
mation criterion from the two causal models (M1 and M2) and from 
the two non-causal models (M3 and M4). Finally, we calculated the 
relative likelihood of the best non-causal model compared with the 
best causal model.







r = exp

AIC − AIC
2

causal non−causal

We treated r < 0.01 as a threshold for causally associated programs. In 
the case of programs associated with RDW, the causal association from 
the haemoglobin synthesis program to the mitochondrial program 
showed r = 8.5 × 10−7, whereas other pairs of programs had r > 0.05 (also 
refer to Supplementary Note).

Validation with GWAS and trans-eQTL
We downloaded full trans-eQTL summary statistics for selected vari-
ants in peripheral blood from the eQTLGen14 website (see the URL in 
the Code availability section). Here 10,317 trait-associated SNPs were 
tested for their effects on 19,960 genes that showed expression in blood. 
Only SNP–gene pairs with a distance greater than 5 Mb were tested. We 
selected SNPs with significant associations with MCH (P < 5 × 10−8) in 
the UKB, as well as variants with P > 0.05 as control variants.

Using the program genes defined from cNMF in K562 (the top 100 
loading genes for each program), we asked whether GWAS hits for MCH 
have concordant regulatory effects on the program.

Specifically, for each SNP, we derived the MCH-increasing allele 
based on β coefficients from GWAS summary statistics, polarized the 
trans-eQTL Z scores of variants on program genes and calculated the 
average. We compared the values between GWAS significant variants 
and control variants using a two-sided Student’s t-test.

Validation of multiple program association with the trait
To test whether jointly modelling multiple programs can explain more 
of the genetic association signals than modelling with a single program, 
we conducted a cross-validation analysis. We randomly split 80% of the 
genes into a training set and 20% into a test set, and fitted regression 
models to explain the gene effects on the trait (γ) by gene-regulatory 



effects on the program (or programs) using the training set. We evalu-
ated the variance of γ explained by the model using the test set.

We tested this with the set of multiple programs chosen from the 
regulator–burden correlations in gene-to-program-to-trait models for 
MCH and RDW, as well as with the same number of randomly chosen 
programs, and single program models. The selected multiple program 
model explained much more variance than any single program model 
or random combination of programs for MCH and RDW (Extended Data 
Fig. 6a–c). For IRF, only one program was chosen from the regulator– 
burden correlation in the gene-to-program-to-trait model, so we did 
not perform the comparison.

Construction of the gene-to-program-to-trait model
Prevalent co-regulation across programs, as well as feedback, suggested 
the need to jointly model multiple programs to identify those whose 
regulation independently explains the trait association signals. In addi-
tion, although program burden effects and regulator–burden correla-
tion sometimes converge on the same program, we have observed cases 
where either only program content or only regulators are enriched in 
trait association signals, as well as cases in which both program con-
tent and regulators are enriched but through different mechanisms. 
Therefore, we treated program burden effects and regulator–burden 
correlation separately to identify trait-associated programs included 
in the model.

Step 1: selection of programs based on regulator–burden correla-
tions. To select programs whose regulators are enriched for the trait 
association signals, we conducted a stepwise linear regression analysis 
using the ‘regsubsets’ function in the ‘leaps’ package97 in R. In this 
analysis, we included gene-regulatory effects on 60 programs β( )x P→ , 
as well as levels of gene constraint (Shet; as defined in ref. 44) as poten-
tial explanatory variables, with γx as the dependent variable.

We identified the combination of explanatory variables through 
exhaustive search to determine the best subsets for predicting γx in a 
multiple linear regression model with the given number of explanatory 
variables. Specifically, for MCH, we changed the number of explanatory 
variables from 1 to 6, and for each number of explanatory variables, we 
performed an exhaustive search for the combination of programs that 
explained the most variance of γ.

The number of variables to include in the final model was decided 
by assessing the variance explained in the model upon changing the 
number of variables (Supplementary Fig. 2a), along with the signifi-
cance of the model fit in the subsequent permutation test (Supplemen-
tary Fig. 2b). For the MCH model, we opted to include three variables 
together with Shet: regulators for autophagy, haemoglobin synthesis 
and G2/M phase cell-cycle programs.

Step 2: selection of programs based on program burden effects. 
For selecting programs with enriched contents for the trait association 
signals, we followed the following process. First, for each program, we 
calculated the program burden effects. That is, we ranked the genes 
based on their loading and selected the top 200 genes and calculated 
the average of γ of these genes. This number was determined by the 
following test for the model fit. Then, we compared it with randomly 
selected 10,000 sets of genes expressed in K562 while matching for 10 
bins of Shet to calculate two-sided enrichment P values. Subsequently,  
we ranked the programs based on these P values. To determine the 
number of programs to include in the final model, we varied the num-
ber of top programs included and evaluated the model fit in the subse-
quent permutation test (Supplementary Fig. 2b). Specifically, for the 
MCH model, five programs were selected: the haemoglobin synthesis 
program and four programs associated with different phases of cell 
cycle. These five programs largely corresponded to those that had 
significant program burden effects after Bonferroni correction in 
the previous test (Fig. 4c).

Step 3: predicting the signs of associations for the regulators and 
program genes in the model. After selecting programs from both 
regulator and program content associations with the trait, we assigned 
the predicted signs of effects to each gene in the model. Specifically, 
for regulators, we considered genes that exhibited significant regula-
tory effects on the selected programs (FDR < 0.05). In cases in which a 
regulator had regulatory effects on multiple programs, we calculated 
the total effects of a gene on the model by summing the product of the 
effect sizes of the selected programs on the trait in the multiple linear 
regression model (wP) and the gene effects on the program (βx P→ ;  
Extended Data Fig. 6d). The sign of this product was utilized as the 
regulatory direction of the gene to the trait predicted from the model.

For program contents, we assigned the sign of the association of the 
program (that is, the sign of the average γ of the top loading genes) to 
the top 200 loading genes. If a gene belongs to both program and regu-
lator genes, although a such case was relatively rare, we assigned the 
sign from the program enrichment test because of the potentially larger 
effect sizes of program function on the trait (Supplementary Note).

Step 4: assessing the directional concordance of the associations 
of top hits with the model. To assess how well the predicted model 
can explain the directional genetic associations, we evaluated it in two 
ways: leave-one-out cross-validation and permutation testing.

For leave-one-out cross-validation, we left out one gene at a time, 
selected the programs based on program burden effects and regula-
tor–burden correlation using the other genes, and predicted the sign of 
the left-out gene as described above. We then assessed the enrichment 
of correctly predicted genes among the top hits (genes with |γ| > 0.1), 
compared with genes with minimal associations (genes with |γ < 0.01), 
using Fisher’s exact test. In this test, the enrichment is influenced by 
both (1) the enrichment of the top genes among the genes selected 
in the model (significant regulators or program genes in the model), 
and (2) the accuracy of the predicted signs among the genes in the 
model. Our result for the MCH model showed that the top genes were 
enriched in both (1) selected genes in the model (OR = 1.8), and (2) sign 
concordance (OR = 1.9), with an overall enrichment of P = 5 × 10−5 and 
OR = 2.2. This result supported the use of Perturb-seq for predicting 
the directed gene associations.

For the permutation test, we created 20,000 sets of permuted γ by 
permuting gene labels. We then followed the same program selection 
and sign assignments processes, while fixing the number of selected 
programs from both the program burden effects and the regulator–
burden correlation. In each permutation, we counted the number of top 
genes whose sign of association was correctly predicted by the model 
and evaluated the enrichment over other genes using Fisher’s exact 
test. Finally, we compared the Fisher’s test P value of the observed data 
to those of the permuted sets and calculated the permutation P value 
(Extended Data Fig. 8b,d,f). Similar to leave- one-out cross-validation, 
we observed that the observed genetic association data had many 
more concordant genes, along with a higher ratio of concordant to 
discordant predicted signs than the permuted data (Extended Data 
Fig. 8a,c,e). The permutation test can evaluate the fit of our model to 
the genetic association signals.

For the permuted dataset, we slightly modified the way for program 
selection. Here, instead of matching for Shet, we compared the distribu-
tion of γx between the top loading genes and randomly selected genes 
expressed in K562 using the Mann–Whitney U-test to calculate enrich-
ment P values. Subsequently, we ranked the programs based on these 
P values and selected the same number of top programs. This helps 
to greatly speed up the process, although the resulting permutation 
P value for the model is potentially conservative.

We ran the permutation tests while differing the parameters for the 
modelling. The model fit to the data was robust to the choice of the 
number for defining program genes (100, 200 or 300) and to different 
thresholds for defining high-effect genes (|γ|; Supplementary Fig. 2c). 



Article
Although the enrichment was not very sensitive to the number of top 
genes, 200 genes resulted in slightly more stable enrichment across a 
range of γ thresholds. On the basis of these results, we chose to use the 
top 200 genes for creating the gene-to-program-to-trait map. In addi-
tion, we chose the threshold for |γ| to be 0.1 based on the fit of the model.

Step 5: drawing the gene-to-program-to-trait map. Finally, we 
aimed to draw a map to interpret the functions of the trait-associated 
genes. Here we included all the top hits with |γ| > 0.1 whose direction of  
association was concordant with that predicted from the model into 
the map (Fig. 5a). When regulators have concordant regulatory effects 
on multiple programs, we included all paths in the map.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data generated by or processed for this article are available on Zenodo98 
(https://doi.org/10.5281/zenodo.14751877). Public data used in this 
study are accessible via the URLs cited in the Code availability section.

Code availability
The codes used for this article are available on Zenodo98 (https://doi.
org/10.5281/zenodo.14751877). The following URLs can be accessed: 
Neale laboratory UKB data (http://www.nealelab.is/uk-biobank); 
Replogle et al. Perturb-seq data (https://plus.figshare.com/articles/
dataset/_Mapping_information-rich_genotype-phenotype_landscapes_ 
with_genome-scale_Perturb-seq_Replogle_et_al_2022_processed_Perturb- 
seq_datasets/20029387; linkage disequilibrium score regression 
software (https://github.com/bulik/ldsc); the ENCODE database 
(https://www.encodeproject.org/); the shap-hypertune package 
(https://github.com/cerlymarco/shap-hypetune); gene expression 
in single-cell types (https://www.proteinatlas.org/humanproteome/
single+cell+type); the CellxGene Discover census (https://chanzucker-
berg.github.io/cellxgene-census/); the GeneFormer embedding extrac-
tor module (https://geneformer.readthedocs.io/en/latest/geneformer.
emb_extractor.html); and the eQTLGen trans-eQTL data (https://www.
eqtlgen.org/trans-eqtls.html).
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Extended Data Fig. 1 | Analysis of the heritability of multiple traits from 
GWAS, related to Fig. 1. a) Heritability enrichment of UKB traits to 18 primary 
hematopoietic cell types69 and K562. Heritability enrichment was estimated 
with S-LDSC by adding each annotation to the baseline model. Traits associated 
with the morphology or quantity of RBC, monocyte/granulocyte or platelet are 
labeled on top. Both cell types (rows) and traits (columns) are hierarchically 

clustered based on their patterns of enrichment. K562 showed the closest 
similarity to MEP. b) Similarity of open chromatin regions of primary cell types 
to K562. Plotted are Jaccard index, which captures the proportion of open 
chromatin regions that are shared with K562. c) Genetic correlation across 
traits which were enriched to K562 in S-LDSC analysis.
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Extended Data Fig. 2 | Evaluation of GeneBayes, related to Figs. 2 and 3.  
a) Comparison of GWAS and LoF burden test associations for MCH. We took the 
minimum GWAS p-value within an LD block, and the minimum LoF burden test 
p-value for any gene that overlaps the LD block. Dotted lines indicate p = 5 × 10−8 
for GWAS and p = 5 × 10−4, which corresponds to an FDR of 0.1 for the LoF burden 
test. Each dot corresponds to the LD block. Numbers of blocks in each quadrant 
are depicted on the top right corner. P-value is from a two-sided Fisher’s exact 
test. b) Correlation of burden test γ with All of Us. Plots are for the top 200 
genes ranked by absolute values of raw γ (left) or GeneBayes posterior (right). 
c) Correlation of burden test γwith All of Us with different prior information. 
The result is for MCH. We ranked the genes based on absolute burden test 
effect size in UKB, either with or without applying GeneBayes with various 
patterns of prior information. d) Enrichment of GO and MsigDb hallmark 

pathways to top hits for MCH. The enrichment of the top 200 genes from the 
LoF burden test and GWAS is compared. For GWAS, the closest genes to the  
lead hits were ordered by p-values. For the LoF burden test, whether or not 
GeneBayes was applied, genes were ordered by absolute effect sizes. The 
GeneBayes posterior from various patterns of priors is also compared.  
e) Enrichment of top 200 genes from GWAS or LoF burden test with or without 
applying GeneBayes to representative pathways. The result is for MCH.  
f) Regulator-burden correlation for MCH is compared with their γ for MCH. 
Same comparison with Fig. 3c, but this time using γ before applying GeneBayes. 
Dotted lines indicate the same threshold with Fig. 3c. g) Correlation significance 
of HBA1 regulatory effects with gene effects across a variety of traits. Same 
comparison with Extended Data Fig. 3b, but this time using γ before applying 
GeneBayes. Dotted line indicates the same threshold with Extended Data Fig. 3b.



Extended Data Fig. 3 | Relevance of gene regulatory effects on trait 
associations, related to Fig. 3. a) Enrichment of hemoglobin metabolism 
gene set for GWAS and LoF lead hits. For both GWAS closest genes and the LoF 
burden test, genes were ranked by association p-values, and top gene enrichment 
for the gene set was assessed using Fisher’s exact test. Error bars indicate 95% 
confidence intervals. b) Correlation significance of HBA1 regulatory effects 
with gene effects (γ) across a variety of traits. c) Genome-wide QQ-plots for 

burden-regulator correlations for a wide variety of traits. Each dot indicates 
one gene. Black solid line indicates the median across each category of traits. 
For serum biomarker traits, 5 traits which showed extensive association with 
MKI67 regulatory effects are plotted separately. d) Correlation significance of 
MKI67 regulatory effects with gene effects across a variety of traits. Dotted line 
indicates the threshold for Bonferroni significance.
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Extended Data Fig. 4 | Annotation of programs by transcription factor 
binding sites, related to Fig. 4. a) Number of cNMF components against 
solution stability measured by the Euclidean distance silhouette score of the 
clustering, and Frobenius error of the consensus solution, outputted by cNMF. 
b) Enrichment of transcription factor binding sites to program genes. Narrow 
peaks from ChIP-seq of transcription factors (TF) in K562 cells were used to 

calculate the enrichment (Methods). For significantly enriched TF-program 
pairs (FDR < 0.05), we tested the effect of knockdown of the TF on program 
activity and marked an asterisk if the KD also had an effect in the expected 
direction; that is, if the KD of an activator transcription factor decreased the 
program activity (p < 0.05), we marked it, and vice versa for repressor.



Extended Data Fig. 5 | Association of programs and regulators with traits, 
related to Fig. 4. a) Co-regulation pattern between S phase and autophagy 
programs. Each dot is a gene that has significant regulatory effects on S phase 
program. b) Correlation of regulatory effects on three programs with MCH γin 
the multiple regression model. Error bars indicate 95% CI. c) Co-regulation 
pattern between ATP dependent activity, hemoglobin synthesis and autophagy 
programs. Genes with regulatory effects on hemoglobin program activity also 
had effects on ATP activity, but the opposite was not true. d) Correlation of 
regulatory effects on three programs with RDW γ in the multiple regression 
model. Error bars indicate the 95% CI. Bottom: model that combines the 
co-regulation pattern and trait association of the programs. e) The fraction of 
cells in different cell cycles in the groups of cells with perturbations (left) and 
the model for explaining the cell cycle program association with MCH (right). 

Error bar indicates standard error estimated from Jackknife resampling.  
f) Effects of cell cycle program genes KD on cellular growth. Growth screening 
data were obtained from an independent experiment using K562 (ref. 99). The 
effect size is a normalized measure of the impact of KD on cellular growth 
compared to wild type, denoted as gamma in the original manuscript. g) Effects 
of program genes KD on cellular growth99. Here, for each program, we created 
100,000 sets of control genes matched for Shet and compared the mean effects 
on cellular growth. h) Distribution of burden test effect sizes for MCH (left) and 
RDW (right). The plots show significant regulators of the autophagy program 
(FDR < 0.05, divided into positive and negative regulators) and the top 100 
genes for the autophagy program by loading weights. P-values are from the 
regulator-burden correlation test.
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Extended Data Fig. 6 | Multiple program association model. a) We split the 
genes into a training set and a test set, and fitted multiple or single regression 
models to test the association between the gene regulatory effects on the 
program(s) and the gene effects on the trait (γ). We evaluated the variance 
explained by the model using the test gene set. b-c) Variance explained by the 
regression models for MCH (b) and RDW (c). “Programs, selected” refers to  

the programs selected from the regulator-burden correlations in the gene-to- 
program-to-trait map. “Programs, random” refers to the randomly selected 
sets of multiple programs. Single programs shown are the top 5 programs as to 
the variance explained. Error bars indicate 1.96 × standard errors. d) Schematics 
for making multiple program association model.



Extended Data Fig. 7 | Programs selected for modeling MCH associations. 
Programs were selected based on program burden effects (left) or regulator- 
burden correlations (right). For each program, top hits (|γ| > 0.1) for MCH that 
overlap with the top 200 loading genes (for program genes) or regulators 

(FDR < 0.05, for regulator genes) are listed. The color of genes correspond to 
the sign of γ. Genes in parentheses are discordant from the predicted directions 
from the overall model. Some of the genes are associated with multiple programs 
or regulators.
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Extended Data Fig. 8 | Gene to program to trait maps, related to Fig. 5.  
a) Number of top hits (|γ| > 0.1) for MCH whose direction of associations were 
concordant or discordant with that predicted from the model. Grey points and 
their density plot are the results from 20,000 permutations. Red point shows 
the observed data. b) Distribution of top hits concordance p-values in 

permutation tests for MCH. In each permutation, we counted the number of 
top hits concordant with the model and evaluated its enrichment (Methods). 
The observed result showed the highest concordance compared to permuted 
sets. c-f) Same plots as (a) and (b), for RDW (c,d) and IRF (e, f). g-h) Gene to 
program to trait map for RDW (g) and IRF (h).



Extended Data Fig. 9 | Cross-trait comparisons of gene effects, related to 
Fig. 5. a) Comparison of LoF burden test effect sizes after GeneBayes between 
IRF and RDW. The solid line corresponds to the first principal component.  
b) Cross-trait directional relationships of gene effects in the predicted 
gene-to-program-to-trait model and raw data from the LoF burden test. The left 
table shows the comparison between MCH and RDW, while the right table shows 
the comparison between RDW and IRF. For each table, only genes that have 

strong effects in both traits (|γ| > 0.1) and selected in the predicted model for 
both traits are considered. For instance, +1 means that the gene has strong 
effects for both traits in the same direction. MCH and IRF share few genes with 
strong effects and could not be compared. c) Correlation of regulatory effects 
on four programs or Shet with γ. For each trait, correlation coefficients were 
estimated with the multiple regression model. Error bars indicate 95% CI.
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Extended Data Fig. 10 | Regulator-burden correlation of genes in different 
cell lines. Each dot represents one of the genome-wide expressed genes. For 
essential gene Perturb-seq, the correlation between regulatory effects and 

burden effects across essential genes is plotted. For the genome-wide 
Perturb-seq, the correlation across all perturbed genes is plotted.
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