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Genetic association studies provide a unique tool for identifying candidate causal
links from genes to human traits and diseases. However, it is challenging to determine
the biological mechanisms underlying most associations, and we lack genome-scale
approaches for inferring causal mechanistic pathways from genes to cellular functions

to traits. Here we propose approaches to bridge this gap by combining quantitative
estimates of gene-trait relationships from loss-of-function burden tests' with
gene-regulatory connections inferred from Perturb-seq experiments?in relevant cell
types. By combining these two forms of data, we aim to build causal graphs in which
the directional associations of genes with a trait can be explained by their regulatory
effects on biological programs or direct effects on the trait®. As a proof of concept,
we constructed a causal graph of the gene-regulatory hierarchy that jointly controls
three partially co-regulated blood traits. We propose that perturbation studiesin
trait-relevant cell types, coupled with gene-level effect sizes for traits, can bridge the
gap between genetic association and biological mechanism.

Genome-wide association studies (GWAS) and rare variant burden tests
have identified tens of thousands of reproducible associations for a
wide range of human traits and diseases. These signals have identified
many genes that canserve as therapeutic targets* ®; driven discoveries
of new molecular mechanisms”®, critical cell types® and physiological
pathways of disease risks or traits'®*%; and enabled genetic risk predic-
tion for complex diseases™.

But despite these successes, interpreting the vast majority of asso-
ciationsremains challenging. Aside from coarse-grained analyses such
asidentifying trait-relevant cell types and enriched gene sets, we lack
genome-scale approaches for interpreting the molecular pathways
and mechanisms through which hundreds, if not thousands, of genes
affect a given phenotype.

One challenge forinterpreting genetic associationsis the observation
that many hits actindirectly, via trans-regulation of other genes™ . This
observation is formalized in the omnigenic model*?°, which proposes
that, forany giventrait, only asubset of genes, referred to as core genes,
arelocated within key molecular pathways that act directly onthe trait
of interest. Meanwhile, many more genes affect the trait indirectly, by
regulating core genes through links in gene-regulatory networks. In
this model, we can interpret the effect size of a variantin terms of all
paths through the network by which it affects core genes.

The central role of trans-regulation underlying many GWAS hits
implies that fully understanding the genetic basis of complex traits
requirestools to measure how genetic effects flow through networks.
However, until recently, we have had very limited information about
gene-regulatory networks in any human cell type, with the main

information coming from observational datasuch as trans-expression
quantitative trait locus (trans-eQTL) and co-expression mapping'*'¢.,
However, both approaches have important limitations including low
power?*??and confounding effects of cell-type composition'*in the case
of trans-eQTLs, and ambiguous causality in co-expression analysis??*,

Advancesin genome editing and single-cell RNA sequencing, includ-
ing Perturb-seq, now provide new opportunities to measure causal
gene-regulatory connections at genome scale” 2. In Perturb-seq exper-
iments,apool of cellsis transduced with alibrary of guide RNAs, each of
which causes knockdown (or other perturbation) of asingle gene. After
allowing the cells time to equilibrate, single-cell sequencingis used to
determine whichgenes wereknocked downineach celland measure the
transcriptome of the cell. Critically, Perturb-seq enables measurement
ofthetrans-regulatory effects of each genein a controlled experimental
setting at the genome-wide scale. Recent work has shown that such
approaches are a promising tool for interpreting GWAS data, finding
that GWAS hits are often enriched in specific transcriptional programs
identified by CRISPR perturbations of a subset of genes® >,

Major challenges remain as we aim to move beyond identifying
enriched programsto inferring genome-scale causal cascades of biolog-
icalinformation. Inthis paper, we developed a new systematic approach
to this problem. We demonstrate how, by combining loss-of-function
(LoF) burdenresults with Perturb-seq, we caninfer aninternally coher-
ent graph linking genes to functional programs to traits, and derive
biological insight into the key genes and pathways that control these
traits (Fig.1a). Theresulting graph helps us to understand not only the
trait-relevant pathways but also the functions of genes and programs
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a Study overview
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Fig.1|Study overview and selection of model traits. a, Overview of the
study. The square nodes represent genes, the coloured arrows between genes
representregulatory effectsand the arrows from genes to traits represent
associations.sgRNA, single guide RNA. b, Heritability enrichment of UKB traits
toopenchromatinregionsinK562. Traits are ordered based on the Pvalue
ofenrichment, which was estimated using the Jackknife testin S-LDSC. The
dashed lineindicates the threshold for Bonferronisignificance. ATAC-seq,
assay for transposase-accessible chromatin using sequencing; Cou, count;
HLSR, highlightscatter reticulocyte count; MCV, mean corpuscular volume;

within the graph, to explain why those genes are associated with the
traits. On the basis of our results, we expect that forthcoming efforts
togenerate perturbationdatain awide variety of cell types will provide
acritical interpretative framework for human genetics.

Selection of model traits

To integrate genetic association data with Perturb-seq, our first step
was to evaluate whether there are any traits with high-quality genetic
datawhere the mostrelevant cell type (or types) can be well modelled
by existing Perturb-seq data. At the time of writing, the only published
genome-wide Perturb-seqdataset was collected in aleukemia cell line:
K562 (ref. 2). In that experiment, every expressed gene was knocked
down using CRISPR interference, one gene per cell, before single-cell
RNA sequencing.

To determine which traits could reasonably be modelled in terms
ofthe gene-regulatory networks of K562 cells, we compiled published
GWAS and LoF burden test data for a wide range of traits measured in
the UK Biobank (UKB)**. Of these, we selected 234 quantitative traits
with single-nucleotide polymorphism (SNP) heritability > 0.04 for fur-
ther consideration (Supplementary Table 1) and performed stratified
linkage disequilibriumscore regression (S-LDSC)° across all 234 traits.
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Heritability enrichment pattern in K562
is similar to primary progenitor cells
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MRV, meanreticulocyte volume; MSCV, mean sphered corpuscular volume;
Per, percentage; RBC, red blood cell; Ret, reticulocyte. ¢, Schematic of the
human haematopoietic tree. Traits of interest are annotated near their relevant
celltypes. CLP,common lymphoid progenitor; CMP, common myeloid
progenitor; GMP, granulocyte-monocyte progenitor; HSC, haematopoietic
stem cell; MPP, multipotent progenitor.d, Comparison of heritability
enrichment to UKB traits, between MEP and K562 open chromatin regions.
Pvalues were estimated using the Jackknife testin S-LDSC. The dashed line
indicates the threshold for Bonferronisignificance.

We observed that open chromatinregionsin K562 exhibited significant
heritability enrichment exclusively for traits related to morphology or
quantity of erythroid lineage cells (Fig. 1b).

Thisresultisintuitive, asthe K562 cell line was derived fromerythro-
leukaemia cells, which are a neoplastic form of erythroid progenitors
(Fig.1c),and K562 cells retain multipotency and can differentiate into
erythroid cells®.

We also performed S-LDSC across the same set of traits for various
primary cell types, and found a very similar enrichment for erythroid
traitsin megakaryocyte-erythroid progenitor cells (MEPs), which are
the natural progenitor cells for erythrocytes (Fig. 1c,d and Extended
Data Fig. 1a). The open chromatin regions in MEPs were also more
similar to those in K562 cells than other cell types (Extended Data
Fig.1b). These results support the notion that K562 cells share similar
chromatin features with primary progenitor cells and could serve as
acellular model for studying the gene-regulatory network associated
with erythroid traits.

Amongtheenriched traits, we selected three traits that are relatively
independent, with pairwise genetic correlations ranging from-0.39 to
0.15, for detailed analysis (Extended Data Fig. 1c). We focused primarily
onmean corpuscular haemoglobin (MCH), which measures the mean
amount of haemoglobin per erythrocyte; but, we also analysed red
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Fig.2|Pathway enrichments for blood trait associations. a, Genetic
associationsidentified from UKB GWAS for MCH. Variants located within a
100-kbwindow centred on the transcription startsite of the genesin the gene
setare coloured. ‘Macromolecule synthesis + reg’ refers to the positive
regulation of the macromolecule biosynthetic process. b, Gene associations
with MCH from UKB LoF burden tests. The coloursindicate the same gene sets
aspanela.Labelled genes have FDR < 0.01 and belongto the gene sets. ¢, Pathway

cell distribution width (RDW)—the standard deviation of the size of
erythrocytes per individual—and the immature reticulocyte fraction
(IRF). For these traits, a considerable amount of SNP heritability was
explained by open chromatin regions in the K562 cell line (53%, 44%
and 36% of the total SNP heritability, respectively), further support-
ingthe use of K562 Perturb-seq tointerpret their genetic associations
(Supplementary Table 2).

Pathway enrichment for trait associations
Before attempting to build causal models for these traits, we first
explored the genetic associations for MCH, RDW and IRF with stand-
ard approaches (Fig. 2 and Supplementary Fig. 1). GWAS of MCH in
the UKBidentified 634 independent genome-wide significant signals.
Many of the lead hits fall into a few significantly enriched pathways,
including haem metabolism, haematopoiesis and cell cycle (Fig. 2a,c).
These enriched pathways are crucially involved in the maturation of
erythrocytes. For example, tight control of cell cycle isimportant at
several steps in erythropoiesis® .

Inaddition to GWAS, UKB has also released whole-exome sequenc-
ing data for more than 450,000 participants*’. Here we focused on
the phenotypic effects of LoFs, which are variants such as frameshift

Burden test y, MCH (posterior)

Burden test y, MCH

enrichment of GWAS and LoF burden test top genes. For GWAS, the closest
genes fromtheindependent top variants were used. For the LoF burden test,
geneswere ranked by the absolute posterior effect size from GeneBayes, and
the same number of genes asin GWAS was used. Pvalues are from one-sided
Fisher’sexact test.d, Comparison of LoF burden test effect sizes after
GeneBayes between MCH and RDW. The solid line corresponds to the first
principal component.

and premature stop mutations that are predicted to cause complete
LoF of a gene. To estimate the average effect of different LoF vari-
ants in the same gene on a phenotype, we compared the phenotypic
values for carriers of LoF variantsin a given gene versus non-carriers.
This approach, known as a burden test, generates a score for each
gene that estimates the effect of half loss of gene dosage on the
phenotype.

Previously reported burden test statistics for LoF variants' identi-
fied 90 genes associated with MCH at afalse discovery rate (FDR) = 0.1
(Fig.2b). Although the rankings of top hits differ between GWAS and LoF
burdentests (Extended DataFig. 2a), the lead hits from GWAS and LoF
aregenerally enriched in the same pathways (Fig. 2¢). This is consistent
with the expectationthat commonand rare variants associated witha
traitact throughsimilar biological pathways, but frequently prioritize
different genes**2,

As one might expect, LoF variants in the genes that encode com-
ponents of adult human haemoglobin, HBB, HBAI and HBA2, all show
strong negative effects on MCH (Fig. 2b). Clinically, these mutations
cause a-thalassaemia or 3-thalassaemia, in which adecreasein MCH is
characteristic. This highlights akey feature of burden tests: in addition
to significance testing, they also provide a quantitative, directional
estimate of LoF effects, referred to here as y.

Nature | www.nature.com | 3
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The directions of associations in the burden tests also help us to
interpret the pleiotropic effects of genes. When looking at genes asso-
ciated with MCH and RDW, which have a negative genetic correlation
in GWAS (Extended Data Fig. 1c), the LoF effects for most genes were
associated inopposite directions (r = -0.53; Fig. 2d). However, ahand-
ful of genes had strong same-direction effects on both traits (Fig. 2d).
Forinstance, CAD encodes amultifunctional enzyme of which biallelic
mutations cause megaloblastic anaemia*®, whereas heterozygous LoFs
increase both MCH and RDW (Fig. 2d). One goal of building a causal
mechanistic graph for these traits will be to explain these seemingly
discordant associations.

For many genes, the LoF ys have large standard errors, due to the
low frequency of LoF variants*. To improve estimation of the ys, we
appliedanempirical Bayes framework called GeneBayes that we devel-
oped previously**. Our approach incorporated previous information
aboutgene expression, protein structure and gene constraint to share
information across functionally similar genes (Methods). We found that
the GeneBayes estimates of y are far more reproducible than naive esti-
mates in the independent All of Us cohort* (Extended Data Fig. 2b,c).
Furthermore, we observed greater enrichment of genes associated
with traits in functional pathways even though we did not directly use
that information (Extended Data Fig. 2d,e). These improvements are
important for making full use of the beneficial features of LoF burden
tests while reducing unwanted noise. Therefore, we used the GeneBayes
posterior mean effect sizes in Fig. 2¢,d and for the remainder of the
paper. For further discussion about the choice of prior information
for GeneBayes, see the Supplementary Note.

Generegulation shapes genetic signals

Next, we investigated whether Perturb-seq from K562 could allow us
tointerpret genetic associationsinthe context of the gene-regulatory
network. Perturb-seq estimates the effect of knocking downagenexon
the expression of another gene y, which we denote as j,., (Methods).
B, represents the total effect of xony, including both direct and indi-
rect pathwaysthrough the gene-regulatory network. Previous studies
using perturbations to interpret GWAS have identified enrichment of
hitsin co-regulated gene sets, sometimes referred to as ‘programs™ 3,
but have had limited success at identifying GWAS enrichmentamong
program regulators (Supplementary Note).

As aninitial proof of concept, we focused on the genes encoding
constituents of adult haemoglobin. We focused on the gene HBAI,
whichisthe only one abundantly expressed in K562 cells, and which has
one of the largest LoF effect sizes for MCH (y,;5,, = — 1.5). We reasoned
that if K562 Perturb-seq is relevant for interpreting MCH, then genes
that regulate HBA1 should also be associated with MCH. Moreover,
we should be able to predict the direction of effect on MCH from the
Perturb-seq data: positive regulators of HBAIshould, themselves, have
promoting effects on MCH, and vice versa for negative regulators. (Note
that we refer to genes with negative 8 or negative y from knockdown
or LoF, respectively, as promoting and coloured them red; positive 8
and y are considered repressing and coloured blue).

Aspredicted, wefound thatacrossall 9,498 genes that were perturbed
andalsotestedinthe LoF burden test, the LoF effect of agenexon MCH,
denoted y,, is significantly positively correlated with the knockdown
effects of that gene on HBAI expression, B,.s4; (B-coefficient = 0.052,
P=3x107;Fig. 3a). Of note, among the perturbed genes, of the top
ten genes ranked by LoF effects on MCH, seven had nominally sig-
nificant Perturb-seq effects on HBA1, and for all seven, the sign of the
Perturb-seq S matched what we predicted fromy.

We also attempted a similar analysis for GWAS hits, testing whether
significant GWAS hits were enriched near HBAIregulators (Fig. 3b). We
observed that GWAS hits were enriched (OR = 2.1for the top 200 regu-
lators), but to a lesser extent than for significant LoF burden test hits
(OR =6.3for the top 200 regulators). This cannot be solely explained

4 | Nature | www.nature.com

by inaccurate gene linking, as the same set of GWAS hits showed high
enrichment for some of the gene sets (Fig. 2c and Extended Data Fig. 3a).
This suggests a benefit of LoF burden tests over GWAS for identifying
the trait-relevant regulatory networks.

We were curious whether similar patterns of correlation between
LoF effect and Perturb-seq regulatory effects might be found for other
genes or other traits. Consistent with the central role of HBAIin deter-
mining the MCH phenotype, we found that the correlation of y, with
By, which we call regulator-burden correlation, was the highest for
y=HBAIamongallgenes expressed in K562 cells (Fig. 3¢). Asanegative
control, we also tested for correlations between regulatory effects on
HBAI with LoF effects onunrelated traits. As expected, we only detected
HBAI regulator signals for erythroid traits (Extended Data Fig. 3b).
These HBAI regulator signals for traits were also detected if we used
raw burden effect estimates without applying GeneBayes, but with
weaker significance (Extended DataFig. 2f,g), supporting our approach.

Another key question for Perturb-seq studiesis whether regulatory
relationships learned in one cell type—K562 in this case—are useful
for studying traits that are determined by less-related cell types. To
examine this, we computed the regulator-burden correlation for all
expressed genes, with LoF ys for various traits. For each trait, we visual-
ized the distribution of regulator-burden correlations in atwo-sided
quantile-quantile (QQ)-plot (Fig. 3d).

Starting with our three main erythroid traits, MCH, RDW and IRF,
we saw that all three traits show large excesses of both positive and
negative correlations compared with the null (x =y line), indicating
significant relationships between Perturb-seq and LoF burden tests
for many genes. By contrast, there was minimal correlation between
regulatory effects and y for other blood traits, including lymphocyte
and eosinophil counts (Fig. 3d and Extended Data Fig. 3¢). This sug-
gests that cell types that are not differentiated from MEPs cannot be
modelled well using K562 cells (Fig. 1c). This observation implies the
importance of obtaining Perturb-seq data in trait-relevant cell types.

However, we were surprised to see that some non-erythroid traits,
including serum levels of IGF-1and CRP, as well as body mass index,
did show highly significant correlations of regulatory effects with
y (Extended Data Fig. 3c). The strongest correlations were seen for
insulin-like growth factor 1 (IGF-1), which connects the release of growth
hormoneto cell growth, acting on many cell types*®. Further examina-
tionrevealed that these signals appear to be driven by the regulation of
cellular growth markers, including MKI67. We hypothesize that essential
programs for cellular growth may be broadly shared across cell types
thatregulate IGF-1and other traits that share this signal (Extended Data
Fig.3d). Indeed, with further analysis using Perturb-seq in additional
celllines, we confirmed the broad sharing of regulatory effects on the
essential programs associated with IGF-1 (Extended Data Fig. 10 and
Supplementary Note).

Together, these results confirm the relevance of gene-regulatory
relationships learned from Perturb-seq for interpreting complex traits.
They highlight the role of both cell-type-specific pathways—for which
the cell type used in Perturb-seq must be closely matched to the trait
of interest—and broadly active pathways that may be detectable in
many cell types.

Trait-associated programregulations

We nextaimed to develop amore comprehensive framework to explain
genotype-phenotype associations in terms of the regulatory hierarchy
inferred from Perturb-seq data. In principle, one mightimagine infer-
ring a complete gene-regulatory network from Perturb-seq that con-
tains all causal gene-to-gene edges. However, the inference of accurate
genome-scale causal graphsis extremely challenging, if notinfeasible,
from current Perturb-seq data.

Asamorerobustalternative, we followed previous work by cluster-
ing genes into co-expressed groups, referred to here as programs®.
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Fig.3|Regulatory effectsin Perturb-seq explain genetic association
signals. a, Gene effects on MCH can be predicted by regulatory effects on
HBAI.Genes perturbedin Perturb-seq experiment are ordered by their effect
sizeson MCH from LoF burden test. Perturb-seq Srefers tolog fold change of
HBA1 expression after knockdown of the genes. Significant (P < 0.05) regulatory
associationsinPerturb-seq are connected with arrows. The proteinstructure
of haemoglobin is presented using UCSF ChimeraX®®based on Protein Data
Bankentry1A3N. The Pvalueis fromthelinear regressionandis two-sided.
KD,.,, knockdown of aregulator. b, Enrichment analysis testing whether the top
nHBAIregulators (ranked by Pvalues) are enriched at LoF or GWAS top hits.
GWAS hits are the closest genes to the independently associated variants
(Methods). Pointsindicate the odds ratioin the exact Fisher’s test. Enrichment
was calculated with all the perturbed genesin Perturb-seq as abackground.

Toidentify programs, we applied consensus non-negative matrix fac-
torization (c(NMF)* to the gene expression matrix from Perturb-seq
(Fig. 4a). This allowed us to quantify the activity of each program in
every cell. Similar to ref. 30, we then used the perturbation data to
estimate the causal regulatory effects of knockdown of every gene x
onthe activity of each program P, denoted as .. .

Onthebasis of the preliminary analyses, we chose to model the data
using 60 programs (see Methods; Extended Data Fig. 4a). We found that
alarge fraction of the 60 programs successfully captured biological
pathways (Supplementary Table 3). Using external ENCODE data*$,
we found evidence for coordinated transcriptional control of many
programs: for 49 of the 60 programs at least one transcription factor
showed significant binding site enrichment near program genes and
knockdown of that transcription factor significantly changed program
expression (Extended Data Fig. 4b and Supplementary Table 3).

We next quantified the average effects of programs, and their regu-
lators, on traits (Fig. 4b). To measure program effects, we note that in

Theerrorbarsindicate 95% confidenceintervals. The Pvalues for the enrichment
ofthe top 200 HBAIregulatorsare 9.6 x 10~ for the top 90 LoF hits, 0.65 for the
top 90 GWAS hitsand 0.01for the top 543 GWAS hits. ¢, For every expressed
geneinK562, regulator-burden correlationis plotted against their y for MCH.
Theyaxis shows the -log,,(P) of the regulator-burden correlation, multiplied
by thesign of the correlation. The Pvalues are from the linear regression.
Quadrants withayellow background correspond to ‘concordant’ association,
inwhichthesignofregulator-burden correlation aligns with the sign expected
fromthe yofthe gene.d, Genome-wide QQ-plots for regulator-burden
correlationsamongrepresentative traits. Each dot represents one gene.
Traits without significant signals lie along the dotted line. For other traits,

see Extended DataFig.3c. Pvalues are fromthelinear regression.

NMF, the gene loadings on each program are non-negative by definition.
Thus, a natural measure of the effect of a program on a trait is simply
to compute the average LoF effects (ys) of highly loaded genes as a
measure of the effect of that programon the trait. We refer to thisas the
programburden effect. A positive programburden effectisinterpreted
tomean that the program has arepressing function on the trait; a nega-
tive valueimplies that it is promoting. Significance was determined by
permutations (Methods).

To measure the effects of regulators of program Pon each trait,
we needed to account for the fact that distinct regulators can have
either positive or negative effects on P. Thus, for each program P, we
computed the correlationacross regulators, x, of 8,.,, with y,. We refer
to this measure as the regulator-burden correlation; this measure is
analogous to the measure of regulatory effects used for single genes
above. A positiveregulator-burden correlationisinterpreted to mean
that upregulation of program P promotes the trait; a negative value
suggests that upregulation of P has arepressing effect on the trait.
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Fig.4|Association of programregulation withblood traits. a,b, Overview
of our pipeline for the analysis to find the trait-relevant programs. c-e, Program
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programs, see Supplementary Table 3. The Pvalues for programburden effects
arefromthe permutation testand are two-sided. The Pvalues for regulator-
burden correlations are from the linear regression and are two-sided.

f, Schematic for the concordant and discordant patterns between program

The program effects on each trait are shown in Fig. 4c-e. For MCH,
the haemoglobin synthesis program genes and their regulators were
both significantly enriched, consistent with our single-gene analysis
of HBA1.In addition, five programs associated with the cell cycle were
allenrichedinthe program burden effect axis. This mirrors the enrich-
ment of this pathway from the over-representation analysis of GWAS
and LoF top hits (Fig. 2c), but here we can confirm the enrichment of
bothregulators and program genes for these programs (Fig. 4¢).

For RDW, the program reflecting ATP-dependent activity was
highlighted from both program and regulator axes (Fig. 4d). Iron is
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incorporated into haem in the mitochondria, and its dysregulation
results in high RDW. In extreme cases, mitochondrial dysfunction leads
tosideroblastic anaemia, characterized by high RDW*’. The association
of the ATP activity program with RDW is consistent with this biology.
For IRF, the program representing the maintenance of the erythroid
progenitor population was enriched for both program and regulator
axes (Fig. 4e). This program showed the enrichment of binding sites
for transcription factors that are important for the maintenance of
stem celland progenitor populations, including TAL1, NFIC, MAX and
MNT?°52 (Extended Data Fig. 4b).



Overall, the Perturb-seq data efficiently captured biological pathways
and their regulators, and comparison with gene associations enable us
to identify the pathways relevant to each trait.

Complexinterplay of programs

Although the significant programs in Fig. 4c-e provide insight into
biological controls of these three traits, they also revealed puzzling
inconsistencies. Some programs, including haemoglobin synthesis
for MCH, show consistent directional effects for program genes and
programregulators, but for other programs, the directions of effects
initially appeared to be inconsistent (Fig. 4f). Examination of these
programs revealed important principles about the regulatory archi-
tecture of programs, and design considerations for building regulatory
models of complex traits.

Thefirst principleis revealed by three programs with strong effects
onMCH:the Sand G2/M phase cell-cycle programs, and the autophagy
program. For the G2/M phase, the program and regulator effects have
directionally concordant effects on MCH, but for the S phase, the pro-
gramgenes and their regulatorsimply effects with opposite directions.
In addition, for autophagy, only the regulators—but not the program
genes—show a signal (Fig. 4¢).

One piece of this puzzle is explained by considering patterns of
co-regulation across the three programs: (1) regulators of the S phase
and G2/M phase programs are shared but affect the programs in oppo-
sitedirections (Fig. 4g); and (2) most G2/M and S phase regulators also
affect autophagy, but the knockdown effect on autophagy is almost
always positive (Fig. 4g and Extended Data Fig. 5a). These relation-
ships are intuitive: S phase and G2/M phase are mutually exclusive
components of the cell cycle; meanwhile, autophagy is suppressed
during mitosis, and cell-cycle regulators are known to have a key role
in that suppression®.

To describe these patterns in a simple way, we defined two sets of
regulator genes, denoted R, and R, according to their effects on G2/M
(Fig. 4g). To determine how the regulators of these three programs
affect MCH, we fit their effects jointly in a multiple regression model.
This analysis showed that G2/M and autophagy regulators both have
independent repressive effects on MCH (Extended Data Fig. 5b). The
opposite co-regulation of S and G2/M phase programs explains the
opposite correlation of these regulators with y (Fig. 4c). Asummary
of the joint model of regulator effects is shown in Fig. 4h.

One prediction of this model is that R, regulators should have
stronger (more negative) genetic effects on MCH ys than R; regula-
tors. This is because R, genes have a repressive effect on both G2/M
and autophagy, and both programs have repressive effects on MCH;
whereas for R, the positive regulator effects on G2/M and the nega-
tiveregulator effects on autophagy partially cancel the effects of each
otheron MCH. Indeed, consistent with this model, we saw thatboth R,
and R; have significantly negative ys on average, but R, is much more
strongly negative (Fig. 4i).

These observations emphasize the need for joint modelling of pro-
grams and show that the observed effect sizes of regulators on a trait
can be modelled as sums of regulatory effects mediated through key
pathways. A different form of crosstalk between programs, involving a
negative-feedback loop affecting RDW, as well as the distinct relation-
ships of program genes and their regulators with a trait, is discussed
in detail in the Supplementary Note.

Validation with GWAS and ¢rans-eQTL

Although the enrichment of GWAS hits to regulators was modest
(Fig. 3b), we hypothesized that we might find consistent regulatory
effects of GWAS variants on the core pathways if we take the direction
of effect into account. We utilized trans-eQTL effects in peripheral
blood™ to test the directional regulatory effects of GWAS top hits on

the programsidentified by Perturb-seq (Fig. 4j, Supplementary Fig. 3
and Supplementary Note). Although the size of each trans-eQTL effect
issmall, MCH GWAS hits had directionally consistent regulatory effects
on the haemoglobin synthesis and autophagy programs (P=2x10™
and 2 x107%, respectively). The direction of regulation by GWAS top
alleles was concordant with what we inferred from our Perturb-seq and
LoF burden test model. This indicates that GWAS and the LoF burden
test converge on the regulation of shared core pathways.

Unified graphs from genes to programs to traits

We next aimed to build regulatory maps that link genes, programs and
traitsinto coherent, unified models. Our goalsin doing so are twofold:
(1) we wanted to understand, in compact form, the main molecular pro-
cesses that control asetof traits; and (2) we wanted tointerpret, and even
predict, the directions of effects of important trait-associated genes.

For each trait, we selected the top-ranked programs by program bur-
deneffectsand, separately,inajoint regression model, the top ranked
programs by regulator-burden correlations (Extended Data Fig. 6;
Methods). On the basis of our analysis above, we allowed programs
and program regulators to have independent effects in the model.
After model selection, this procedureresultedinagraphthat, for MCH,
included five programs and three sets of program-regulators, as well
as the inferred direction of effect of each program and regulator set
on MCH (Extended Data Fig. 7).

Asimplified representation of the MCH graphis depicted in Fig. 5a,
showing haemoglobin synthesis, cell cycle and autophagy as critical
controls of MCH. The direction of the genetic association of top genes
on MCH was generally consistent with this model (43 out of 59 predicted
correctly). The overall predictionaccuracy was significantly higher than
expected under anullmodel, using both leave-one-out cross-validation
(P=5x107) and permutation analyses for which we repeated the entire
inference procedure (P <5 x107%; Methods; Extended Data Fig. 8a,b).
This approach allowed us to connect the gene-level top hits, identi-
fied solely from genetic association studies, to their functions in the
pathway regulatory map.

Examining the graph, we were intrigued that SUPT5H, which is
involved in transcriptional elongation®, has regulatory effects on all
three programs. Perturb-seq shows that SUPT5H activates haemoglobin
synthesis, and inhibits autophagy and the G2/M phase cell cycle, all of
whichresultinincreased MCH (Fig. 5a). Thus, our model predicts that
SUPTSHis amaster regulator for MCH, exerting same-direction effects
viathree different pathways. Indeed, the effect sizes of SUPTSH LoFs on
MCH are among the largest of all genes (Fig. 2d), and LoFs in this gene
can cause a thalassaemia phenotype®. Thus, this map can help us to
interpret why genes are associated with a trait.

Inadditionto MCH, we also inferred gene-to-pathway-to-trait maps
for RDW and IRF, revealing both shared and independent pathways of
regulationacross the three traits (Extended Data Fig. 8c-h). There were
four programs whose regulators were significantly and independently
associated with at least one trait (Fig. 5b): progenitor maintenance,
haemoglobin synthesis, autophagy and cell cycle. Previous studies of
haematopoiesis confirmed that all four pathways regulate essential
aspects of erythrocyte maturation®3*%*% (Fig. 5¢).

The multi-trait regulator graph (Fig. 5b) helps us to interpret the
concordance and discordance of genetic associations across the traits.
Genome-wide, MCH and RDW are negatively correlated inboth GWAS
data (r,=—-0.39) and at significant burden loci (Fig. 2d). We can now
interpret these observations as probably driven by opposite direction
effects of bothautophagy and cell cycle on these two traits. Conversely,
RDW and IRF are positively correlated (r,= 0.15; Extended Data Fig. 9a),
atleastinpartbecauseboth traits are positively regulated by progeni-
tor maintenance.

We canalso use the graph to understand how individual genes affect
the different traits. For example, 16 genes in the graph have strong

Nature | www.nature.com | 7



Article

a Gene-to-program-to-trait map

KLF1 Haemoglobin synthesis SUPT5H
NPCT ABCB10  RTIN /
CSTB SLC25A37 | Autoph AP2A1  NIPBL
MCH p————— Autophagy
D HBAT1 TFRC EIFSE RNF20
CALR ——| HBD EIFSF  SPRED2
CBFA2T3 Cell oycle EIF3M TP73
DNAJC24 HSPA9  TRAPPC10
NDUFB7 G2/M phase BPGM MED13L WDFY3
CONF cenaz UBE2D3 MED26

S phase
Sign of effects BRIP1 NUP214
. Positive CLSPN POLE
@ Negative EaF2

b Program regulatory map explains cross-trait relationships

Gene effects (y)

RDW
IRF

Progenitor

maintenance

CAD
MCH vs RDW
concordant CAL

{

QS

7
7

¥

A

Haemoglobin

q synthesis /
MCH vs RDW 7/&
; MED17 X /
discordant — T\_'{ Autophagy /
RDW vs IRF G GTF5C1 / ; Cell cycle

concordant G RBBP6

Fig. 5| Association map of genes to programs to traits. a, Regulatory map
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whose effect directions were concordant with the model are placed onto the
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(sign(y)); red denotes increase MCH with upregulation of the gene. The arrow
with the asterisk was not selected in theinitial programselection process. The
Pvalueis fromthe permutation test and is one-sided. b, Sharing of regulatory

opposite-direction effects on MCH and RDW; our model correctly pre-
dicts opposite signs for 14 out of the 16, including SUPTSH, MED17 and
ATR (Fig. 5b and Extended Data Fig. 9b). For instance, MEDI17 inhibits
both the G2/M phase cell cycle and autophagy; both effects increase
MCH and reduce RDW, with the result that MED17 increases MCH and
reduces RDW.

By contrast, three genes in the graph differ from the genome-wide
pattern, showing large same-direction effects on MCH and RDW. Our
model correctly predicts two of these, and is suggestive for the third
(POLE; Supplementary Note). Specifically, CAD and CALR both have
repressive effects on RDW and MCH. Figure 5b suggests why: unlike
most genes that affect both RDW and MCH through shared pathways,
these genes affect the two traits viaindependent pathways: progeni-
tor maintenance and haemoglobin synthesis. Bothgenesinhibit both
pathways, but regulation of progenitor maintenance affects RDW and
not MCH, whereas haemoglobin synthesis affects MCH but not RDW.

Extension of the model to other traits

Current availability of genome-wide Perturb-seq datain different cell
types and cell conditionsis limited. Nonetheless, we assessed the gen-
eralizability of our model by analysing Perturb-seq experiments with
alimited number of perturbations in multiple additional cell lines—
HepG2, Jurkat and RPE1 (refs. 2,57) (Supplementary Table 4)—along
withadditional complex traits (Extended Data Fig. 10, Supplementary
Figs.4-9 and Supplementary Note). We observed cell-type specificity
of regulator-burden correlations, with burden effects for erythroid
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traits being more enriched in gene-regulatory effects in K562 cells
thanin other cell lines, whereas burden effects for HDL-cholesterol
was more enriched in HepG2 cell-regulatory effects (Extended Data
Fig.10). In addition, we identified trait-specific patterns of regulator
association (Supplementary Fig. 5). These findings, along with others
(Supplementary Note), indicate that with more diverse and detailed
generegulationinformation, we can better understand the biology of
abroad range of traits.

Discussion

Genetic associations serve a unique role in studies of human biology,
as they can establish causal links from variants or genes to human
traits and diseases. Yet, some 20 years after the first GWAS, we still
lack genome-scale approaches for inferring interpretable, quantita-
tive models of the biological pathways that connect genes to cellular
functions to traits. Here we built on previous work in this area® > to
develop the first approach to infer unified graphs linking directional
effects of genes on traits via pathways of regulation and cellular func-
tions. Although our work focuses on blood traits that underlie anaemia
andrelated diseases, we anticipate that the principles learned here can
bebroadly applicable.

One essential feature of this paper is that we built graphs using
quantitative gene effects estimated from LoF burden tests instead of
unsigned enrichment of GWAS hits. We envisage LoFs and GWAS hits as
reflecting the same underlying biological pathways**, but our results
are both more significant, and more interpretable, when using LoFs.



Unlike GWAS hits, LoF effect sizes are inherently directional, they are
automatically linked to the correct genes, and their magnitudes are
comparable across genes. Moreover, compared with common variants
with tiny effects, LoFs are probably more functionally similar to CRISPR
knockdowns, given the widespread non-linear and even non-monotonic
relationships between gene expression and phenotypes®®~.

Although the model presented here is relatively simple, there will
surely be value in future models that add complexity. Future versions
could allow for more complex representations of gene-regulatory
networks, more explicit modelling of regulatory crosstalk between
programs and heterogeneity of gene functions within programs. Many
traits are controlled by multiple cell types, and one can envision models
in which genetic effects on traits are controlled by a superposition of
effects across multiple cell-type-specific networks.

One unexpected result from our model was the finding that the
effects of program regulators on a trait may be strongly discordant
from the effect of program genes on the same trait. We hypothesize
that some programs reflect downstream transcriptional consequences
of cell biological processes, and that the genes within a program do
notalways lie on the causal pathway between the program-regulators
and the trait (Supplementary Note). In such cases, the identification
of genes in the program can provide useful clues about biological
mechanism but the effects of program genes may differ dramatically
from the effects of their regulators. Moreover, it is likely that some
critical processes may not be detected or may not be interpretable
from RNA readouts. Thus, it will be helpful in future analyses to aug-
ment Perturb-seq experiments with other types of cell phenotyping
such as functional tests, protein measurements or cell painting®®,

Finally, one critical challenge for using Perturb-seq to interpret
association studies is how closely we need to match the cells used for
Perturb-seq to the cells that determine trait variation®’. Recent work
has suggested that gene-regulatory relationships are often shared
between closely related cell types, but generally not shared between
more distant cell types®”®*. Consistent with this, our results show that
K562 serves as a suitable, although imperfect, model for erythrocyte
development, but also that K562 is not suitable for modelling traits
related to other blood cell lineages (Fig. 3d). We hypothesize that
in general, Perturb-seq data will need to be closely matched to the
trait-relevant cell types, but the matching does not need to be perfect.

Although our proof of principle here uses experimental data from
K562 cells to model erythrocyte traits, we expect that the next gen-
eration of perturbation studies in cells, organoids and tissues®** will
provide a critical interpretative framework for human genetics.
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Methods

Datasets

GWAS data. We downloaded the publicly available GWAS summary
statistics and SNP heritability estimates for traits in the UKB from Ben
Neale’s laboratory (see the URL section below). We focused on traits
with SNP heritability estimates exceeding 0.04.

LoF data. We used LoF burden test summary statistics from the UKB
with 454,787 participants, as previously reported. Specifically, we
utilized the gene-level aggregated effect estimates from predicted
LoF variants with aminor allele frequency of less than 0.01%. Data were
downloaded from the GWAS Catalog®.

Perturb-seq data. We utilized the genome-wide Perturb-seq data-
setin K562 reported by Replogle et al.2. In this dataset, all expressed
genes (n=9,866) were targeted by a multiplexed CRISPRi sgRNA lib-
raryin K562 cells engineered to express dCas9-KRAB. Single-cell RNA
sequencing was performed to read out the sgRNAs together with the
transcriptome. Only cells with asingle genetic perturbation were used
for the analysis, amounting to amedian of 166 cells per gene perturba-
tion and 11,499 unique molecular identifiers per cell. We downloaded
theraw count datathat the authorsuploadedto figshare (see the URLs
inthe Code availability section).

For additional analyses, we utilized Perturb-seq data for essential
genesinK562, RPE1(ref.2), HepG2 andJurkat® cell lines. Only cells with
asingle genetic perturbation were used for the analysis. The number
of perturbations and the number of cells per perturbation are sum-
marizedin Supplementary Table 4. We downloaded the raw count data
uploaded to figshare (see the URLs in the Code availability section) or
the Gene Expression Omnibus (GSE264667).

ChIP-seq data. We utilized chromatinimmunoprecipitation followed
by sequencing (ChIP)-seq datain K562 for annotating gene programs.
We downloaded 830 transcription factor ChIP-seq narrow peak files
from the ENCODE project website* (see the URL in the Code availability
section). All coordinates were mapped to hgl9 with LiftOver®®,

Linkage disequilibrium score regression

To identify traits whose heritability is enriched in open chromatin
regions in K562, we used S-LDSC’. All GWAS data were preprocessed
withthe ‘munge_sumstats.py’script provided by the developers (see the
URLsinthe Code availability section). Variants in the HLA region were
excluded from the analysis. The assay for transposase-accessible chro-
matin using sequencing (ATAC-seq) replicated narrow peak bed filein
K562 was downloaded from ENCODE*® (GSE170378, ENCFF590CPE), and
the coordinates were mapped to hgl9 using LiftOver®®. Furthermore,
we used narrow ATAC-seq peaks from 18 haematopoietic progenitor,
precursor and differentiated cell populations previously reported®.

For the additional analysis, replicated narrow peak files from
ATAC-seq experiments for HepG2 and CD4" T cells were downloaded
from ENCODE*® (ENCFF439EIO and ENCFF246KRE), and the coordi-
nates were mapped to hg19 using LiftOver®. For RPE1 (ref. 70) and
Jurkat”, as narrow peak files for ATAC-seq experiments were not avail-
able, we downloaded SRA files from the US National Institutes of Health
NCBISequence Read Archive (SRR30621812 for RPE1, and SRR12368304
and SRR12368305 for Jurkat) and called the peaks. Specifically, we
trimmed the adapter sequence with TrimGalore (v0.5.0)7, aligned to
the hg19 reference with Bowtie2 (v2.3.4.1), filtered duplicates with
MACS3 (v3.0.3)* and called narrow peaks with the MACS3 (v3.0.3)
hmmratac command.

Linkage disequilibrium (LD) scores were calculated for each anno-
tation using the 1000 G Phase 3 European population (ref. 75). The
heritability enrichment of each annotation for a given trait was com-
puted by adding the annotation to the baseline LD score model (v1.1)

and regressing against trait chi-squared statistics for HapMap3 SNPs.
These analyses used v1.0.1 of the LDSC package (see the URL in the
Code availability section).

Furthermore, we tested the genetic correlation between specific
trait pairs using European LD scores with the LDSC package (v1.0.1).

Estimation of gene effect sizes with GeneBayes

Method overview. LoF burden tests are not well powered, especially for
shorter or selectively constrained genes, as the likelihood of having LoF
variants in these genes is low. We previously developed GeneBayes*,
anempirical Bayes framework aimed at addressing a similar challenge:
the precise estimation of selective constraint on genes, which can be
particularly challenging for short genes. Within GeneBayes, we used
gene featuresinamachine learning-based empirical Bayes framework
toimprove the accuracy of constraint estimates. Diverse gene features,
such as gene expression patterns and protein structure embeddings,
can enhance the accuracy of these estimates. GeneBayes is a highly
adaptable framework, easily extendable to various applications, as
outlinedinthe original article*. In thisinstance, we utilized it to derive
more precise effect size estimates for LoF burden tests.

To minimize overfitting when applying GeneBayes to LoF burden
test estimates, we first performed feature selection using the BoostRFE
function (boost recursive feature elimination) from the shap-hypetune
package (see the URL in the Code availability section) to fit XGBoost™
models onthesign and magnitude of y, the estimated effect size from
LoF burden test summary statistics. We used the predicted sign and
magnitude as the features for GeneBayes, which we found to perform
better than using the selected features directly; this may be due to
differences in training dynamics between XGBoost and the gradient-
boosted trees fit using GeneBayes.

Subsequently, we implemented the GeneBayes framework as
previously described. Specifically, GeneBayes involves two steps:
(1), learning a prior for the effect size of each gene through the utili-
zation of gradient-boosted trees, as implemented in NGBoost”, and
(2), estimating gene-level posterior estimates of the effect sizes usinga
Bayesian framework. In our application of GeneBayes, we parameterize
the prior as follows:

sign(y) ~ Bernoulli(p)
magnitude(y) - Gamma(a, 0)

The parameter pis the probability that yis positive or negative, and
a, O are the shape and scale parameters of the Gamma distribution,
respectively. We learned the parameters of the prior using the follow-
ing likelihood:

Yly~Normal(y,s.e.(y))

The summary statistics yands.e.(y) are the estimated effect size and
its standard error from the LoF burden tests, respectively.

Gene features. We compiled the following types of gene features from
several sources: selective constraint of genes (Sy...)**, gene expression
across cell types, protein embeddings and gene embeddings.

S referstoareductioninfitness for heterozygous carriers of aLoF
variantinany given gene. We utilized the S, estimated in our previous
work*:. Gene expression across 79 single-cell types was downloaded
from the Human Protein Atlas” (see the URL in the Code availability
section). Protein embeddings were adopted from embeddings
learned by an autoencoder (ProtT5) trained on protein sequences’.
Gene embeddings were derived from GeneFormer, a pretrained
deep learning model for single-cell transcriptomes®. Specifically,
we used the CellxGene Discover census (see the URL in the Code
availability section), and we extracted 1,000 cells per each of the
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celltypes—‘erythroid progenitor cell’,‘'monocyte’, ‘erythrocyte’, ‘fibro-
blast’, ‘T cell’, ‘neutrophil’, ‘B cell’ and ‘haematopoietic stem cell'—and
computed the average embeddings of each gene for the cellular clas-
sifier using the EmbExtractor module (see the URL in the Code avail-
ability section).

Finally, we used the posterior mean of the LoF burden test effect size
as a point estimate for the following analyses.

Traits. As applying GeneBayes to all UKB traits is computationally
intensive, we applied this to a subset of traits including all the blood
cell-associated traits, blood biomarkers and some of anthropomet-
ric traits. A list of traits included in our analyses has been provided in
Supplementary Table 5.

LoF burden test in the All of Us cohort

The All of Us dataset contains whole-genome sequencing together with
various laboratory measurements*. On 5 February 2025, the values for
MCH were reported for 213,787 sequenced individuals after filtering
(UKB data-field 30050, AoU ID 3012030). For individuals with data
from multiple visits, we took the latest visit, and we excluded outliers
(morethan 50 orless than 0 pg). Our previous analysis suggested that
relatedness and population structure have aminimal effect onburden
test results®®. Therefore, we performed our tests onallindividuals that
passed our filtering criteria. We included the top 16 genotype princi-
pal components, which are provided in the data release. In addition,
we generated 20 rare variant principal components using FlashPCA2
(ref. 81) on variants sampled uniformly at random from the rare vari-
ant fraction (minor allele count (MAC) > 20, minor allele frequency
(MAF) <1%). We identified high-confidence LoF sites using the Variant
Effect Predictor in Ensembl®? with the LOFTEE plugin® and restricted
our analyses to variants with MAF <1%.

We performed burden tests using REGENIE®, largely following the
procedure previously described*®, which is based on ref. 1. We used
HapMap SNPs® extracted from the ACAF call set (a set of variants
provided by All of Us filtered on MAC and MAF) to perform the whole-
genomeregression in the first step of REGENIE. We included age, sex,
age-by-sex, age squared, 16 genotyping principal components and 20
rare variant principal components as covariates in both the first and
the second steps. We used the rank-inverse-normal transform on the
phenotypes in both steps. The burden mask aggregated all LoF sites
with MAC >5and MAF <1%into asingle burden genotype for each gene.
We added Gaussian noise to summary statistics generated from fewer
than20individuals to remainin compliance with the All of Us Data User
Code of Conduct. The noise was added to the effect size such that all
burdentests with fewer than20 individuals had the same standard error.

Pathway enrichment analysis of GWAS and LoF top hits
Clumping of GWAS top variants. To identify independently associ-
ated GWAS variants, we used PLINK (v1.90b5.3)%*¢ with the -clump flag, a
P value threshold of 5 x 1078, a linkage disequilibrium threshold of
r*=0.01and a physical distance threshold of 10 Mb. In addition, we
merged SNPs located within 100 kb of each other and selected the
SNP with the minimum P value across all merged lead SNPs to avoid
the false inclusion of genes that have neighbour genes with extremely
large effects. This resulted in 634 independent variants associated
with MCH. For each independent variant, we annotated the near-
est protein-coding gene. To accomplish this, we used the bedtools
(v2.30.0)% closest module to identify genes that overlap with the vari-
antor havetheir transcription start site or transcription end site closest
tothevariant. Furthermore, we excluded genesinthe HLA regiondueto
extensive linkage disequilibrium. Finally, we obtained alist of 543 genes
possibly associated with MCH GWAS signals.

Pathway enrichment analysis. We aimed to compare the pathways
enriched in GWAS and LoF top hits for MCH. As pathways, we utilized

allontology termsin Gene Ontology®® with aminimum of 20 genes and
amaximum of 2,000 genes, as well as MsigDB hallmark genesets® that
include the haem synthesis pathway. We utilized enrichGO and enricher
functions in clusterProfiler®® package in R for the analysis.

Among the enriched pathways, genes in the ‘positive regulation of
macromolecule biosynthetic process’ pathway overlap significantly
with those in the ‘autophagy’ pathway (P=2 x 10°®), and thusits enrich-
ment may reflect the relevance of autophagy pathway.

Enrichment analysis of GWAS and LoF top hits to HBATregulators.
For the evaluation of the enrichment of GWAS top hits related to HBA1
regulators (Fig. 3b), we used the list of 543 closest genes to the inde-
pendent GWAS hits defined above. We ranked the genes based on the
Pvalues of their regulatory effects on HBA1 expression. For each of the
different thresholds for HBAI regulators, we evaluated the enrichment
using a two-sided Fisher’s exact test, using all the genes perturbed in
the Perturb-seqasabackground. Specifically, the columns of the 2 x 2
table for the test correspond to whether the genes are HBAI regulators
ateachthreshold, whereas the rows correspond to whether the genes
are GWAS top hits.

Inaddition, for comparison, we evaluated the enrichment of 90 sig-
nificant genesinthe LoF burdentest (FDR < 0.1) and the genes closest
to the top 90 independent GWAS hits.

Estimation of gene-regulatory effects from Perturb-seq

We aimed to estimate gene-to-gene regulatory effects from
Perturb-seq. We assessed the total effects of gene knockdown ongene
expression by comparing perturbed and non-perturbed cells. After
filtering out cells with fewer than 500 genes expressed and genes
expressed in fewer than 500 cells, we compared the cells with pertur-
bation of every gene versus the cells with non-targeting control gRNAs.
Log-normalized counts of cells were used as input to the limma-trend
pipeline®, while accounting for gel bead-in-emulsion (GEM) group
(batcheffect), number of genes expressed and the percentage of mito-
chondrial gene expression as covariates. We utilized the log, fold
change (logFC) of gene expression in perturbed cells compared with
non-targeting cells as a point estimate of the perturbation effect on
gene expression ([}ﬁy).

Defining gene programs and the regulatory effects of genes
Identification of gene programs with cNMF. From asingle-cell gene
expression matrix, we identified the co-regulated set of genes. Intui-
tively, suchaset of genes can correspond to genes that determine cel-
lular identity or specific cellular processes, which we call programs.
To identify gene programs and their activity in each cell, we applied
the cNMF* method to the single-cell gene expression matrix from
Perturb-seq.

Matrix factorization models the gene expression datamatrix as the
product of two lower rank matrices, one specifying the proportionsin
whichthe programs are combined for each cell, and asecond encoding
therelative contribution of each gene to each program* (Fig. 4a). We
refer to the first matrix as a‘usage’ matrix*. In cNMF, the usage matrix
is normalized so that the usage values for each cell sum to 1. We used
the normalized matrix as a usage of each programin each cell.

In cNMF, ameta-analysis of multiple iterations of NMF was performed
to obtain a‘consensus’ result. In cNMF, the number of programs (K) is
akey model hyperparameter to tune. To determineit, we tested differ-
entvalues of K(30, 60,90 and 120) and decided to proceed with K = 60
based onthe error versus stability comparison (Extended Data Fig. 4a),
as proposed by the authors. In addition, we used density threshold = 0.5
to filter out the outlier programs.

Annotation of programs to biological pathways. From the gene-by-
program matrix produced by cNMF, we can obtain the non-negative
loadings of each gene to the program. We ranked the genes based on



the loadings and utilized the top-ranked genes for each program to
characterize the biological pathways of the program.

Annotating the programs to specific biological processes is amul-
tifaceted task. In this study, for each program, we considered three
orthogonal lines of evidence for annotating biological pathways.
Gene Ontology enrichment of top genes. We examined the enrich-
ment of the top 200 genes in the Gene Ontology categories and
MsigDB hallmark gene sets using the enrichGO and enricher func-
tions in the clusterProfiler®® package in R. To calculate the enrich-
ment, we utilized genes expressed in K562 cells asabackground set to
avoid bias.

We tested different thresholds for determining the top genes (100,
200, 300, 400 and 500). The Gene Ontology enrichment results
were generally consistent, but we observed a trend: as the number of
included genesincreased, more categories were enriched inatleastone
program, with fewer categories specifically enriched for one program
(Supplementary Fig.10).

Capturingawiderange of biological categories, as well as annotating

specific categories to the programs, is important for interpretation.
Thus, we chose to use the top 200 genes for the Gene Ontology enrich-
ment analysis.
Enrichment of transcription factor-binding sites. We can expect
that for some programs, the genes within the same program are coor-
dinately regulated by specific transcription factors. Such transcription
factors can be used to characterize the programs. To this end, we uti-
lized the ChIP-seq experiments of transcription factors in K562 from
the ENCODE project. To convert the information on binding sitesto a
gene-level regulationscore, we calculated the following score for each
transcription factor (i) for each protein-coding gene (), as adopted
fromref. 92:

Si(d)= P yxeurld
k

where P;; denotes the strength of peak k for transcription factor i
(quantified by —log,, g value for each peak, outputted by MACS2), x; ;
denotesthe distance from peak kto the transcription start site of gene
Jj,anddrepresentsthe decay distance. The decay distance indicates the
effective distance for the transcription factor and can vary depending
on the transcription factors. Here we set the value to 1 kb, 5 kb, 10 kb,
50 kb,100 kb, 500 kb or 1 Mb.

To determine which score was useful for the annotation of pro-
grams, we tested the correspondence of the score with differentially
expressed genes (DEGs) after knockdown of the same transcription
factor. Specifically, for each transcription factor, we listed positive
or negative DEGs after knockdown in Perturb-seq (FDR < 0.1) and we
compared the ChIP-seqscore (S;(d)) between DEGs and non-DEGs by
Mann-Whitney U-test.

As anatural consequence, we could annotate each transcription
factorasanactivator or inhibitor, according to the direction of effects
after knockdown. We annotated a transcription factor as an activator
if the downregulated DEGs after knockdown had significantly high
ChIP scores (FDR < 0.05), and as an inhibitor if the upregulated DEGs
after knockdown had significantly high ChIP scores (FDR < 0.05). As
aresult, ChIP scores for 167 transcription factors showed significant
correspondence with their knockdown effects (FDR < 0.05) and were
utilized for the annotation of programs. One best decay distance param-
eterwasselected for each transcription factor based on the significance
inthe overlap with DEGs.

Foreach program, we compared the top 300 loading genes with other
expressed genes in K562 with respect to the 167 ChIP scores using the
Mann-Whitney U-test. This test evaluates the enrichment of binding sites
of the transcription factors to each program genes. Furthermore, we
compared the programactivity of the transcription factor-knockdown
cells with others to see whether the transcription factor had a direct
effect on the activity of the program (Extended Data Fig. 4b).

Co-expression withmarker genes. Inaddition, we manually confirmed
the co-expression of marker genes for predefined cell types or pathways
andthe programactivity of cells in the uniform manifold approximation
and projection (UMAP)® space. Markers for red blood cells, myeloid
cells and the integrated stress response pathway were adopted from
the original Perturb-seq paper. S phase and G2/M phase marker gene
setswere adopted from ref. 94. Markers for erythroid progenitors and
megakaryocytes were determined from single-cell gene expression data
of bone marrow haematopoietic progenitors®, where we ranked the
genesin each corresponding population based on expression specific-
ity (Z-score) compared with other populations and selected the top 50
genes. Thisnumber of genes was determined to be roughly inthe same
range as the number of genes in the other gene sets.

After completing these three tests for each program, we defined the
curated annotation of each program as follows: initially, when the pro-
gram correspondedto specific celltypes, including cellular marker genes
astop-loading genes, it was annotated as the cell type. For the others, we
considered themas programsreflecting cellular pathways. We prioritized
the most significantly enriched Gene Ontology or MsigDB pathways from
the top 10 enriched pathways while avoiding ambiguous pathways for
interpretation (such as the ‘RNA binding’ pathway). In cases in which
multiple programs were enriched for the same category, we attempted
todistinguish them by their enriched transcriptionfactors or colocaliza-
tion with marker gene expression. Finally, we curated one annotation
per program while considering these factors (Supplementary Table 3).

Estimation of the regulatory effects of genes on program activity.
Fromthe cell-by-program matrix produced by cNMF, we obtained the
usage of each program in each cell. To obtain the effect size of each
regulator on the program usage, we standardized the program usage
tomean =0 ands.d. =1, and we compared perturbed cells with cells
withnon-targeting control gRNAs with alinear regression model, while
accounting for GEM group (batch effect), number of expressed genes
and percentage of mitochondrial gene expression as covariates. We
utilized the point estimate of the effect size of perturbationon program
usage as aregulatory effect of agene (8, , ).

Comparison of program regulations with genetic associations
Definition of gene effects on traits and gene regulation. Unless
specified, we utilized the posterior estimate of gene effect sizeona
trait with GeneBayes as the gene effect on a trait (y). For gene-level
regulatory effects, we used the logFC of gene expressionin perturbed
cellscompared with non-targeting cells as a point estimate of the per-
turbation effect on gene expression, as described above (8 | ). For
program-level regulatory effects, we utilized the effect size of pertur-
bationon programusage as aregulatory effect of agene, as described
above (B . ).

Correlation of gene regulatory effects with genetic associations. We
started from asimple modelin which the effect size of a peripheral gene
xwas determined by itsregulatory effects onalimited set of core genes.
In cases in which there was a single or alimited number of core genes
y, the regulatory effect size of the peripheral gene on the core genes
should correlate with the effect size of the peripheral gene on the trait.

We have previously observed a striking correlation between LoF
burden test effect sizes and S,,., on average across traits*.. To avoid
the confounding effects of selective constraint, we included S, as a
covariate in our linear regression model:

) ﬂ,ﬁy +Shetx

where ﬂﬁy corresponds to the regulatory effect of gene x on gene y.
We excluded the effects of gene yitself, thatis, 8 . , from the com-
parisonbecause it does not reflect atrans-regulatory effect. For every
expressed gene y, we evaluated the significance of the coefficient for
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the first term. In some of the plots, the significance level was multiplied
by the sign of the coefficient.

Association of program genes with traits. In the program-level analy-
sis, we quantified the average effects of program genes on traits, which
we call program burden effect. Program burden effects are the average
yofthegenes, whichare representative of the program, as determined
by the loading for the programin cNMF.

Of note, as a feature of cNMF, the loadings of the genes to the pro-
grams are always positive. Thus, the sign of the average y provides
interpretable directional information about the programassociation
with the trait.

As selective constraints are positively correlated with |y|*, highly
conserved programs, such as those essential for cellular survival, could
havelarger programburden effects. To avoid confounding, we divided
the expressed genes in K562 into ten bins based on S;,... We then com-
pared the average y of the top loading genes with a10,000 randomly
chosen sets of the same number of genes, while matching for the S,
bin. Toaccount for the directional association, we converted the rank
of the observed value compared with the random distribution into
two-sided Pvalues, while adding the sign of the average y to calculate
the signed association P values.

Here the sign of program burden effects corresponds to the average
effects of the LoF of program genes on the trait. Thus, positive program
burden effects canbe interpreted as arepressing association between
program Pand the trait.

Theresults were generally not affected by the choice of the number of
top genes (100,200 and 300). However, for some programsincluding the
haemoglobin synthesis program, where the association with MCH was
concentrated onasmallnumber of haemoglobin genes, the association
was more pronounced with a smaller number of top genes. Therefore,
forvisualization of programburden effects and regulator-burden cor-
relation (for example, Fig. 4), we chose 100 for defining the top genes.

Correlation of program regulatory effects with genetic asso-
ciations. Next, we aimed to quantify the correlation of regulatory
effects of genes onthe program with y, which we call regulator-burden
correlation.

We calculated the correlation of regulatory effects with trait associa-
tion signals while accounting for S, in the same way as the gene-level
analysis:

Ye —ﬁx9P + Shet x

where B ,correspondstothe regulatory effect of genexonprogramP.

For every program, we evaluated the significance of the coefficient
for the first term. The significance level was multiplied by the sign of
the coefficient for visualization.

Here thesignof B, , corresponds to the effect of the knockdown
of gene x on the activity of program P. The sign of y, corresponds to
the effect of the LoF of gene x on the phenotype. Thus, a positive
regulator-burden correlation canbe interpreted as a promoting asso-
ciation between program Pand the trait.

Null distribution of burden effects. For visualization of the distri-
bution of burden effects of regulators or program genes (Extended
Data Fig. 5h), the expected distribution of burden effect sizes was
determined by randomly picking up the same number of genes from
non-associated genes 10,000 times and taking their average.

Estimation of causal relationships between programs

While examining the co-regulation patterns across programs, we
noticed an asymmetric pattern of co-regulation between programs;
thatis, the regulators of program A also have effects on program B, but
the regulators of program B do not have effects on program A (Extended

DataFig.5c). Suchasymmetry can be explained by a causal directional
association from one programto the other. Biologically, this one-way
association can be interpreted as positive or negative feedback from
one program to the other.

Asimilar observation—that s, theasymmetric correlation of effects
from explanatory variables between two traits—was reported in the
GWAS literature®. For instance, when LDL cholesterol causally affects
therisk of coronary artery disease, but not vice versa, the effect sizes
forrisk variants of LDL cholesterol show a strong correlation between
the twotraits, whereas those for risk variants of coronary artery disease
do not show such correlation®.

We adapted the analytic framework for causality from a previous
GWAS®® to our case. Specifically, for a pair of programs, P, and P,, we
identified significant regulators (FDR < 0.05) for each. We then calcu-
late p, , the Spearman’s rank correlation of effect sizes for P and P,,
considlering only the regulators of P,. We also calculates Pp, for the
regulators of P,. Next, we modelled

N 1
Zn N [Z /\/3]
1

where Zp = arctanh(ppl) and Np, corresponds to the number of sig-
nificant regulators for P,.

Then, we considered four patterns of association, M1: P, causally
associated with P, (ZP2 =0); M2: P, causally associated with P, (Z,,1 =0);
M3: no relationship between P,and P, (Z,,1 =2Zp,= 0); and M4: correla-
tiondoesnotdepend onhow theregulators were ascertained (Z, = Zp ).

We fit each model by maximizing the corresponding approximate
likelihood. We then selected the model with the smaller Akaike infor-
mation criterion from the two causal models (M1and M2) and from
the two non-causal models (M3 and M4). Finally, we calculated the
relative likelihood of the best non-causal model compared with the
best causal model.

r=exp (Alccausal - /;lcnonfcausalJ

Wetreatedr<0.01asathreshold for causally associated programs. In
the case of programs associated with RDW, the causal association from
the haemoglobin synthesis program to the mitochondrial program
showed r=8.5x107, whereas other pairs of programs had r > 0.05 (also
refer to Supplementary Note).

Validation with GWAS and trans-eQTL

We downloaded full trans-eQTL summary statistics for selected vari-
ants in peripheral blood from the eQTLGen' website (see the URL in
the Code availability section). Here 10,317 trait-associated SNPs were
tested for their effects on 19,960 genes that showed expressioninblood.
Only SNP-gene pairs with a distance greater than 5 Mb were tested. We
selected SNPs with significant associations with MCH (P <5 x1078) in
the UKB, as well as variants with P> 0.05 as control variants.

Using the program genes defined from cNMF in K562 (the top 100
loading genes for each program), we asked whether GWAS hits for MCH
have concordant regulatory effects on the program.

Specifically, for each SNP, we derived the MCH-increasing allele
based on S coefficients from GWAS summary statistics, polarized the
trans-eQTL Z scores of variants on program genes and calculated the
average. We compared the values between GWAS significant variants
and control variants using a two-sided Student’s ¢-test.

Validation of multiple program association with the trait

Totest whether jointly modelling multiple programs can explain more
ofthe genetic association signals than modelling with asingle program,
we conducted a cross-validation analysis. We randomly split 80% of the
genes into a training set and 20% into a test set, and fitted regression
models to explain the gene effects on the trait (y) by gene-regulatory



effects onthe program (or programs) using the training set. We evalu-
ated the variance of y explained by the model using the test set.

We tested this with the set of multiple programs chosen from the
regulator-burden correlationsin gene-to-program-to-trait models for
MCH and RDW, as well as with the same number of randomly chosen
programs, and single program models. The selected multiple program
model explained much more variance than any single program model
orrandom combination of programs for MCH and RDW (Extended Data
Fig. 6a—c). For IRF, only one program was chosen from the regulator-
burden correlation in the gene-to-program-to-trait model, so we did
not perform the comparison.

Construction of the gene-to-program-to-trait model

Prevalent co-regulationacross programs, as well as feedback, suggested
the need to jointly model multiple programs to identify those whose
regulationindependently explains the trait association signals. In addi-
tion, although programburden effects and regulator-burden correla-
tion sometimes converge on the same program, we have observed cases
where either only program content or only regulators are enriched in
trait association signals, as well as cases in which both program con-
tent and regulators are enriched but through different mechanisms.
Therefore, we treated program burden effects and regulator-burden
correlation separately to identify trait-associated programs included
inthe model.

Step 1: selection of programs based on regulator-burden correla-
tions. To select programs whose regulators are enriched for the trait
associationsignals, we conducted astepwise linear regression analysis
using the ‘regsubsets’ function in the ‘leaps’ package® in R. In this
analysis, we included gene-regulatory effects on 60 programs (8, ),
aswell as levels of gene constraint (S,.,; as defined in ref. 44) as poten-
tial explanatory variables, with y, as the dependent variable.

We identified the combination of explanatory variables through
exhaustive search to determine the best subsets for predicting y,ina
multiple linear regression model with the given number of explanatory
variables. Specifically, for MCH, we changed the number of explanatory
variables from1to 6, and for each number of explanatory variables, we
performed an exhaustive search for the combination of programs that
explained the most variance of y.

The number of variables to include in the final model was decided
by assessing the variance explained in the model upon changing the
number of variables (Supplementary Fig. 2a), along with the signifi-
cance of the modelfitin the subsequent permutation test (Supplemen-
tary Fig. 2b). For the MCH model, we opted to include three variables
together with S,..: regulators for autophagy, haemoglobin synthesis
and G2/M phase cell-cycle programs.

Step 2: selection of programs based on program burden effects.
Forselecting programs with enriched contents for the trait association
signals, we followed the following process. First, for each program, we
calculated the program burden effects. That is, we ranked the genes
based ontheirloadingand selected the top 200 genes and calculated
the average of y of these genes. This number was determined by the
following test for the model fit. Then, we compared it with randomly
selected10,000 sets of genes expressed in K562 while matching for 10
bins of S, to calculate two-sided enrichment Pvalues. Subsequently,
we ranked the programs based on these P values. To determine the
number of programstoincludein the final model, we varied the num-
ber of top programsincluded and evaluated the model fitin the subse-
quent permutation test (Supplementary Fig. 2b). Specifically, for the
MCH model, five programs were selected: the haemoglobin synthesis
program and four programs associated with different phases of cell
cycle. These five programs largely corresponded to those that had
significant program burden effects after Bonferroni correction in
the previous test (Fig. 4c).

Step 3: predicting the signs of associations for the regulators and
program genes in the model. After selecting programs from both
regulator and program content associations with the trait, we assigned
the predicted signs of effects to each gene in the model. Specifically,
for regulators, we considered genes that exhibited significant regula-
tory effects onthe selected programs (FDR < 0.05). Incasesin whicha
regulator had regulatory effects on multiple programs, we calculated
thetotal effects of agene on the model by summing the product of the
effect sizes of the selected programs on the traitin the multiple linear
regression model (w,) and the gene effects on the program (g, ,;
Extended Data Fig. 6d). The sign of this product was utilized as the
regulatory direction of the geneto the trait predicted from the model.
For program contents, we assigned the sign of the association of the
program (thatis, the sign of the average y of the top loading genes) to
the top200 loading genes. If agene belongs to both program and regu-
lator genes, although a such case was relatively rare, we assigned the
signfromthe program enrichment test because of the potentially larger
effect sizes of program function on the trait (Supplementary Note).

Step 4: assessing the directional concordance of the associations
of top hits with the model. To assess how well the predicted model
canexplainthe directional genetic associations, we evaluateditintwo
ways: leave-one-out cross-validation and permutation testing.

For leave-one-out cross-validation, we left out one gene at a time,
selected the programs based on program burden effects and regula-
tor-burden correlation using the other genes, and predicted the sign of
theleft-out gene as described above. We then assessed the enrichment
of correctly predicted genes among the top hits (genes with [y| > 0.1),
compared with genes with minimal associations (genes with |y < 0.01),
using Fisher’s exact test. In this test, the enrichment is influenced by
both (1) the enrichment of the top genes among the genes selected
in the model (significant regulators or program genes in the model),
and (2) the accuracy of the predicted signs among the genes in the
model. Our result for the MCH model showed that the top genes were
enrichedinboth (1) selected genes in the model (OR =1.8),and (2) sign
concordance (OR =1.9), with an overall enrichment of P=5x107° and
OR =2.2. Thisresult supported the use of Perturb-seq for predicting
the directed gene associations.

For the permutation test, we created 20,000 sets of permuted y by
permuting gene labels. We then followed the same program selection
and sign assignments processes, while fixing the number of selected
programs from both the program burden effects and the regulator-
burden correlation. In each permutation, we counted the number of top
genes whose sign of association was correctly predicted by the model
and evaluated the enrichment over other genes using Fisher’s exact
test. Finally, we compared the Fisher’s test Pvalue of the observed data
tothose of the permuted sets and calculated the permutation Pvalue
(Extended DataFig. 8b,d,f). Similar to leave- one-out cross-validation,
we observed that the observed genetic association data had many
more concordant genes, along with a higher ratio of concordant to
discordant predicted signs than the permuted data (Extended Data
Fig. 8a,c,e). The permutation test can evaluate the fit of our model to
the genetic association signals.

For the permuted dataset, we slightly modified the way for program
selection. Here, instead of matching for S, we compared the distribu-
tion of y, between the top loading genes and randomly selected genes
expressed in K562 using the Mann-Whitney U-test to calculate enrich-
ment Pvalues. Subsequently, we ranked the programs based on these
Pvalues and selected the same number of top programs. This helps
to greatly speed up the process, although the resulting permutation
Pvalue for the model s potentially conservative.

Weran the permutation tests while differing the parameters for the
modelling. The model fit to the data was robust to the choice of the
number for defining program genes (100,200 or 300) and to different
thresholds for defining high-effect genes (Jy|; Supplementary Fig. 2c).
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Although the enrichment was not very sensitive to the number of top
genes, 200 genes resulted inslightly more stable enrichmentacross a
range of ythresholds. Onthe basis of these results, we chose to use the
top 200 genes for creating the gene-to-program-to-trait map. In addi-
tion, we chose the threshold for |y| to be 0.1 based on the fit of the model.

Step 5: drawing the gene-to-program-to-trait map. Finally, we
aimed todraw amap to interpret the functions of the trait-associated
genes.Here weincludedall the top hits with [y| > 0.1whose direction of
association was concordant with that predicted from the model into
the map (Fig. 5a). Whenregulators have concordant regulatory effects
onmultiple programs, we included all paths in the map.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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aredepicted onthetopright corner.P-valueis fromatwo-sided Fisher’s exact
test.b) Correlation of burden test y with All of Us. Plots are for the top 200
genesranked by absolute values of raw y (left) or GeneBayes posterior (right).
c) Correlation of burden test ywith All of Us with different prior information.
Theresultis for MCH. We ranked the genes based on absolute burden test
effect size in UKB, either with or without applying GeneBayes with various
patterns of priorinformation. d) Enrichment of GO and MsigDb hallmark

pathwaysto top hits for MCH. The enrichment of the top 200 genes from the
LoF burden testand GWAS is compared. For GWAS, the closest genesto the
lead hits were ordered by p-values. For the LoF burden test, whether or not
GeneBayes was applied, genes were ordered by absolute effect sizes. The
GeneBayes posterior from various patterns of priorsis also compared.

e) Enrichment of top 200 genes from GWAS or LoF burden test with or without
applying GeneBayes to representative pathways. Theresultis for MCH.

f) Regulator-burden correlation for MCH is compared with their y for MCH.
Same comparison with Fig. 3c, but this time using y before applying GeneBayes.
Dotted linesindicate the same threshold with Fig. 3c.g) Correlation significance
of HBAIregulatory effects with gene effectsacross avariety of traits. Same
comparisonwith Extended Data Fig.3b, but this time using y before applying
GeneBayes. Dotted lineindicates the same threshold with Extended Data Fig. 3b.
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Extended DataFig. 3 |Relevance of generegulatory effects on trait
associations, related to Fig. 3. a) Enrichment of hemoglobin metabolism
gene set for GWAS and LoF lead hits. Forboth GWAS closest genes and the LoF
burdentest, genes were ranked by association p-values, and top gene enrichment
forthe gene set was assessed using Fisher’s exact test. Error barsindicate 95%
confidenceintervals. b) Correlationsignificance of HBAI regulatory effects
with gene effects (y) across avariety of traits. ¢) Genome-wide QQ-plots for

burden-regulator correlations for awide variety of traits. Each dotindicates
onegene.Blacksolidlineindicates the median across each category of traits.
For serum biomarker traits, 5 traits which showed extensive association with
MKIl67 regulatory effects are plotted separately. d) Correlation significance of
MKl67regulatory effects with gene effectsacross avariety of traits. Dotted line
indicates the threshold for Bonferronisignificance.
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solution stability measured by the Euclidean distance silhouette score of the
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calculate the enrichment (Methods). For significantly enriched TF-program
pairs (FDR < 0.05), we tested the effect of knockdown of the TF on program
activity and marked an asterisk if the KD also had an effectin the expected
direction; thatis, ifthe KD of an activator transcription factor decreased the
programactivity (p < 0.05), we marked it, and vice versa for repressor.
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f) Effects of cell cycle program genes KD on cellular growth. Growth screening
datawere obtained from anindependent experiment using K562 (ref. 99). The
effectsizeisanormalized measure of theimpact of KD on cellular growth
compared towild type, denoted asgammain the original manuscript. g) Effects
of programgenes KD on cellular growth®’. Here, for each program, we created
100,000 sets of control genes matched for S, and compared the mean effects
oncellular growth. h) Distribution of burden test effect sizes for MCH (left) and
RDW (right). The plots show significant regulators of the autophagy program
(FDR<0.05, divided into positive and negative regulators) and the top 100
genes for the autophagy program by loading weights. P-values are from the
regulator-burden correlation test.

Extended DataFig. 5| Association of programs and regulators with traits,
related toFig. 4. a) Co-regulation pattern between S phase and autophagy
programs. Each dotis agene that has significant regulatory effects on S phase
program.b) Correlation of regulatory effects on three programs with MCH yin
the multiple regression model. Error barsindicate 95% Cl. ¢) Co-regulation
patternbetween ATP dependent activity, hemoglobin synthesis and autophagy
programs. Genes with regulatory effects on hemoglobin programactivity also
had effects on ATP activity, but the opposite was not true. d) Correlation of
regulatory effects onthree programs with RDW yin the multiple regression
model. Error barsindicate the 95% CI. Bottom: model that combines the
co-regulation patternand traitassociation of the programs. e) The fraction of
cellsindifferent cell cyclesinthe groups of cells with perturbations (left) and
the model for explaining the cell cycle program association with MCH (right).
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Extended DataFig. 8| Gene to program to trait maps, related to Fig. 5.

a) Number of top hits (ly| > 0.1) for MCH whose direction of associations were
concordantor discordant with that predicted from the model. Grey points and
their density plotare the results from 20,000 permutations. Red point shows
the observed data. b) Distribution of top hits concordance p-valuesin
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top hits concordant with the model and evaluated its enrichment (Methods).
The observed result showed the highest concordance compared to permuted
sets. c-f) Same plots as (a) and (b), for RDW (c,d) and IRF (e, f). g-h) Gene to
programto trait map for RDW (g) and IRF (h).
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

XX XNXNXXX s
OoOoooog

Plants

>
Q
o
c
=
™
S
(@)
=
=
o
=
—
1)
O
(@)
=
>
(@]
wn
c
3
3
Q
<

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
wus applied.

Authentication Describe-any-atithentication-procedures for-each-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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