

A benchmark of expert-level academic questions to assess AI capabilities

<https://doi.org/10.1038/s41586-025-09962-4>

Center for AI Safety*, Scale AI* & HLE Contributors Consortium*

Received: 7 May 2025

Accepted: 25 November 2025

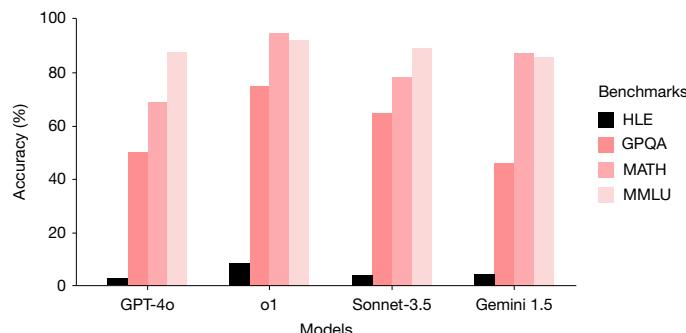
Published online: 28 January 2026

Open access

 Check for updates

Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve more than 90% accuracy on popular benchmarks such as Measuring Massive Multitask Language Understanding¹, limiting informed measurement of state-of-the-art LLM capabilities. Here, in response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be an expert-level closed-ended academic benchmark with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable but cannot be quickly answered by internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a marked gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at <https://lastexam.ai>.

The capabilities of large language models (LLMs) have advanced markedly, exceeding human performance across a diverse array of tasks. To systematically measure these capabilities, LLMs are evaluated on benchmarks: collections of questions that assess model performance on tasks such as math, programming or biology. However, state-of-the-art LLMs^{2–6} now achieve more than 90% accuracy on popular benchmarks such as Measuring Massive Multitask Language Understanding (MMLU)¹, which were once challenging frontiers for LLMs. The saturation of existing benchmarks, as shown in Fig. 1, limits our ability to precisely measure artificial intelligence (AI) capabilities and calls for more challenging evaluations that can meaningfully assess the rapid improvements in LLM capabilities at the frontiers of human knowledge.


To address this gap, we introduce HLE (originally defined as Humanity's Last Exam, although we will use the term HLE for this paper), a benchmark of 2,500 challenging questions from dozens of subject areas, designed to assess LLM capabilities at an expert level in broad academic subjects. HLE is developed by academics and domain experts, providing a precise measure of capabilities as LLMs continue to improve (see section 'Collection'). HLE is multi-modal, featuring questions that are either text-only or accompanied by an image reference and includes both multiple-choice and exact-match questions for automated answer verification. Questions are original, precise, unambiguous and resistant to simple internet lookup or database retrieval. Among the diversity of questions in the benchmark, HLE emphasizes world-class mathematics problems aimed at testing deep reasoning skills broadly applicable across multiple academic areas.

We use a multi-stage review process to thoroughly ensure question difficulty and quality (see section 'Review'). Before submission, each question is tested against state-of-the-art LLMs to verify its difficulty—questions are rejected if LLMs can answer them correctly. Questions submitted are then processed through a two-stage reviewing process: (1) an initial feedback round with multiple graduate-level reviewers and (2) an approval of organizer and expert reviewer, ensuring quality and adherence to our submission criteria. Following the release, we conducted a public review period, welcoming community feedback to correct any points of concern in the dataset.

Frontier LLMs consistently demonstrate low accuracy across all models, highlighting a marked gap between current capabilities and expert-level academic performance (see section 'Evaluation'). Models also provide incorrect answers with high confidence rather than acknowledging uncertainty on these challenging questions, with most models exhibiting root mean square (RMS) calibration errors above 70%.

As AI systems approach human expert performance in many domains, precise measurement of their capabilities and limitations is essential for informing research, governance and the broader public. High performance on HLE would suggest expert-level capabilities on closed-ended academic questions. To establish a common reference point for assessing these capabilities, we publicly release a large number of 2,500 questions from HLE to enable this precise measurement, while maintaining a private test set to assess potential model overfitting.

*Lists of authors and their affiliations appear at the end of the paper.

Fig. 1 | Performance of frontier LLMs on popular benchmarks and HLE.

Compared with the saturation of other popular capability benchmarks, HLE accuracy remains low across several frontier models, demonstrating its effectiveness for measuring advanced, closed-ended, academic capabilities.

unambiguous, solvable and non-searchable, ensuring models cannot rely on memorization or simple retrieval methods. All submissions must be original work or non-trivial syntheses of published information, although contributions from unpublished research are acceptable. Questions typically require graduate-level expertise or test knowledge of highly specific topics (for example, precise historical details, trivia and local customs) and have specific, unambiguous answers accepted by domain experts. When LLMs provide correct answers with faulty reasoning, authors are encouraged to modify question parameters, such as the number of answer choices, to discourage false positives. We require clear English with precise technical terminology, supporting LaTeX notation wherever necessary. Answers are kept short and easily verifiable for exact-match questions to support automatic grading. We prohibit open-ended questions, subjective interpretations, and content related to weapons of mass destruction. Finally, every question is accompanied by a detailed solution to verify accuracy. More details about guidelines for contributors can be found in Supplementary Information section 1.

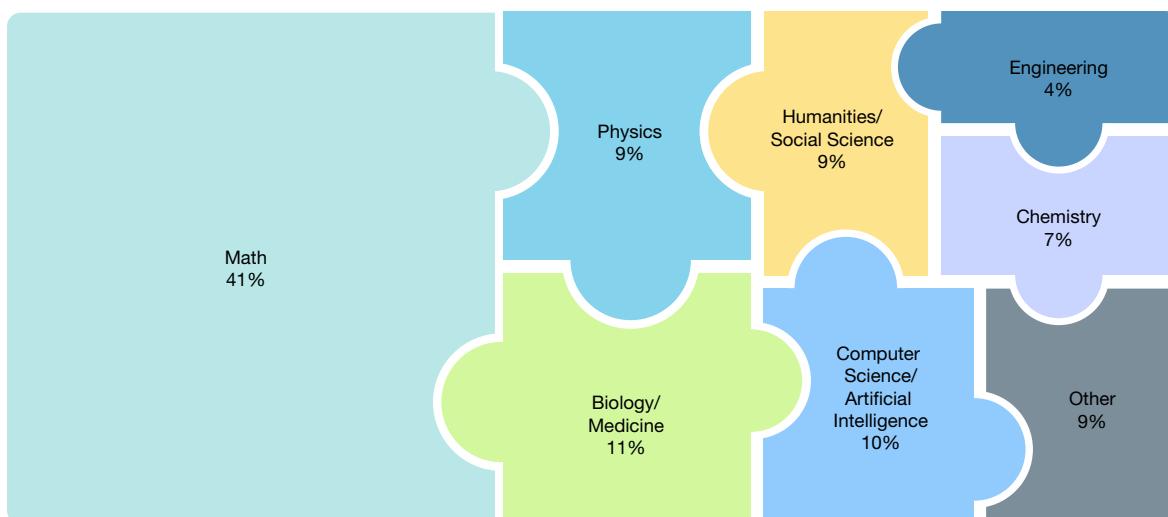
Dataset

Collection

HLE consists of 2,500 challenging questions across over a hundred subjects. A high-level summary is provided in Fig. 2. HLE is a global collaborative effort, with questions from nearly 1,000 subject expert contributors affiliated with more than 500 institutions across 50 countries—comprised mostly of professors, researchers and graduate degree holders. Examples of the diverse and challenging questions submitted to HLE are shown in Fig. 3.

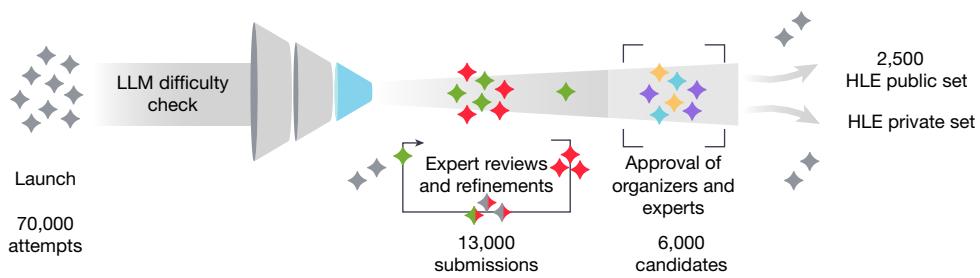
Prize pool. To attract high-quality submissions, we establish a USD\$500,000 prize pool, with prizes of USD\$5,000 for each of the top 50 questions and USD\$500 for each of the next 500 questions, as determined by organizers. This incentive structure, combined with the opportunity for paper co-authorship for anyone with an accepted question in HLE, draws participation from qualified experts, particularly those with advanced degrees or notable technical experience in their fields.

Review


LLM difficulty check. To ensure question difficulty, each question is first validated against several frontier LLMs before submission (Methods). If the LLMs cannot solve the question (or, in the case of multiple choices, if the models on average do worse than random guessing), the question proceeds to the next stage: human expert review. In total, we logged more than 70,000 attempts, resulting in approximately 13,000 questions, which stumped LLMs that were forwarded to expert human review.

Expert review. Our human reviewers possess a graduate degree (for example, master's, PhD and JD) in their fields. Reviewers select submissions in their domain, grading them against standardized rubrics and offering feedback when applicable. There are two rounds of reviews. The first round focuses on iteratively refining submissions, with each question receiving between one and three reviews. The primary goal

Question style. HLE contains two question formats: exact-match questions (models provide an exact string as output) and multiple-choice questions (the model selects one of five or more answer choices). HLE is a multi-modal benchmark, with around 14% of questions requiring comprehending both text and an image; 24% of questions are multiple-choice, with the remainder being exact match.


Each question submission includes several required components: the question text itself, answer specifications (either an exact-match answer or multiple-choice options with the correct answer marked), detailed rationale explaining the solution, academic subject and name of the contributor and institutional affiliation to maintain accountability and accuracy.

Submission format. To ensure question quality and integrity, we enforce strict submission criteria. Questions should be precise,

Fig. 2 | Distribution of HLE questions across categories. HLE consists of 2,500 exam questions in over a hundred subjects, grouped into eight high-level categories.

Fig. 4 | HLE dataset creation pipeline. We accept questions that make frontier LLMs fail, then iteratively refine them with the help of expert peer reviewers. Each question is then manually approved by organizers or expert reviewers

trained by organizers. A private held-out set is kept apart from the public set to assess model overfitting and gaming on the public benchmark.

is to help the question contributors (who are primarily academics and researchers from a wide range of disciplines) better design questions that are closed-ended, robust and of high quality for AI evaluation. In the second round, good and outstanding questions from the first round are identified and approved by organizers and reviewers to be included in the final HLE dataset. Details, instructions and rubrics for both rounds can be found in Supplementary Information section 2. Figure 4 shows our full process.

Evaluation

We evaluate the performance of state-of-the-art LLMs on HLE and analyse their capabilities across different question types and domains. We describe our evaluation setup (see section ‘Setup’) and present several quantitative results on metrics that track model performance (see section ‘Quantitative results’).

Setup

After data collection and review, we evaluated our final HLE dataset on additional frontier multi-modal LLMs. We use a standardized system prompt that structures model responses into explicit reasoning followed by a final answer. As the question–answers are precise and close-ended, we use o3-mini as a judge to verify answer correctness against model predictions while accounting for equivalent formats (for example, decimals compared with fractions or estimations). Evaluation prompts are detailed in the Methods.

Quantitative results

Accuracy. All frontier models achieve low accuracy on HLE (Table 1), highlighting substantial room for improvement in narrowing the gap between current LLMs and expert-level academic capabilities on closed-ended questions. These low scores are partially by design the dataset collection process attempts to filter out questions that existing models can answer correctly. Nevertheless, we notice on evaluation that models exhibit non-zero accuracy. This is due to inherent noise in model inference—models can inconsistently guess the right answer or guess worse than random chance for multiple-choice questions. We notice an elevated accuracy on multiple-choice questions compared with exact-answer questions in Extended Data Table 3. We choose to leave these questions in the dataset as a natural component instead of strongly adversarially filtering. However, we stress that the true capability floor of frontier models on the dataset will remain an open question, and small inflections close to zero accuracy are not strongly indicative of progress.

Calibration error. Given low performance on HLE, models should be calibrated, recognizing their uncertainty rather than confidently provide incorrect answers. To measure calibration, we prompt models to provide both an answer and their confidence from 0% to 100% (Methods), using the setup from⁷. The implementation of

our RMS calibration error is from ref. 8. The stated confidence of a well-calibrated model should match its actual accuracy, for example, achieving 50% accuracy on questions, in which it claims 50% confidence. Table 1 shows poor calibration across all models, reflected in high RMS calibration error scores. Models frequently provide incorrect answers with high confidence on HLE, failing to recognize when questions exceed their capabilities.

Inference time computation. Reasoning models are designed to spend extra compute thinking before answering: they generate intermediate reasoning tokens and then produce the final response, which means substantially more tokens must be decoded at inference time^{5,6}. To shed light on this in our evaluation, we analyse the compute-intensive scaling of output tokens (including reasoning tokens) across several state-of-the-art reasoning models in Fig. 5. Through binning output lengths with a \log_2 scale, we observe a log-linear scaling of accuracy with more reasoning tokens; however, this trend reverses after 2^{14} tokens, highlighting that a larger reasoning budget is not always optimal. The observation that accuracy benefits diminish beyond a certain threshold suggests that future models should improve not only their raw accuracy on HLE but also their computational efficiency.

Discussion

Limitations

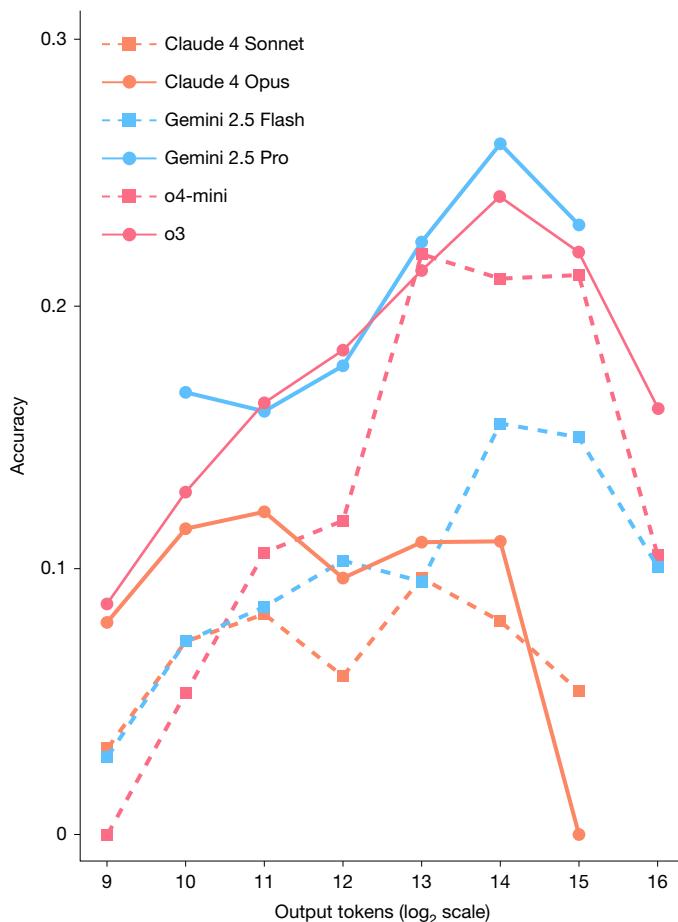

Although present-day LLMs achieve very low accuracy on HLE, recent history shows benchmarks are quickly saturated—with models

Table 1 | Accuracy and RMS calibration error of different models on HLE, demonstrating low accuracy and high calibration error across all models

Model	Accuracy (%) ↑	Calibration error (%) ↓
GPT-4o	2.7 ± 0.6	89
Claude 3.5 Sonnet	4.1 ± 0.8	84
Gemini 1.5 Pro	4.6 ± 0.8	88
o1	8.0 ± 1.1	83
DeepSeek R1 ^a	8.5 ± 1.2	73
Post-release models		
Claude 4 Sonnet	7.8 ± 1.1	75
Gemini 2.5 Pro	21.6 ± 1.6	72
GPT-5	25.3 ± 1.7	50

The most updated evaluations are hosted on <https://lastexam.ai>. Post-release models are released after HLE was open-sourced; we separate them as model builders have access to the HLE dataset. We report a breakdown of the text-only subset and other categories in Extended Data Tables 1 and 2.

^aModel is not multi-modal, evaluated on a text-only subset.

Fig. 5 | Accuracy compared with reasoning token budget. Accuracy binned by the total number of generated output tokens, showing a log-linear increase in accuracy peaking around 2^{14} tokens before reversing.

markedly progressing from near-zero to near-perfect performance in a short timeframe^{9,10}. High accuracy on HLE would demonstrate expert-level performance on closed-ended, verifiable questions and cutting-edge scientific knowledge, but it would not alone suggest autonomous research capabilities or artificial general intelligence¹¹. HLE tests structured academic problems rather than open-ended research or creative problem-solving abilities, making it a focused measure of technical knowledge and reasoning across a diverse range of subjects, albeit with a stronger representation in math and STEM (science, technology, engineering and mathematics) disciplines, as shown in Fig. 2. By pushing the limits of established closed-ended benchmarks, HLE is intended to hasten the transition towards a new class of benchmarks focused on more dynamic and open-ended AI capabilities.

Impact

By providing a clear measure of AI progress, HLE creates a common reference point for scientists and policymakers to assess AI capabilities. This enables more informed discussions about development trajectories, potential risks and necessary governance measures.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at <https://doi.org/10.1038/s41586-025-09962-4>.

1. Hendrycks, D. et al. Measuring massive multitask language understanding. In *Proc. International Conference on Learning Representations (ICLR)* <https://openreview.net/forum?id=d7KBjm3GmQ> (ICLR, 2021).
2. Gemini Team Google. Gemini 1.5: unlocking multimodal understanding across millions of tokens of context. Preprint at <https://arxiv.org/abs/2403.05530> (2024).
3. OpenAI et al. GPT-4 technical report. Preprint at <https://arxiv.org/abs/2303.08774> (2024).
4. *The Claude 3 Model Family: Opus, Sonnet, Haiku* (Anthropic, 2024).
5. OpenAI o1 System Card (OpenAI, 2024).
6. Guo, D. et al. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning. *Nature* **645**, 633–638 (2025).
7. Wei, J. et al. Measuring short-form factuality in large language models. Preprint at <https://arxiv.org/abs/2411.04368> (2024).
8. Hendrycks, D. et al. PixMix: Dreamlike pictures comprehensively improve safety measures. In *Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 16783–16792 (IEEE/CVF, 2022).
9. Rein, D. et al. GPQA: A graduate-level Google-proof Q&A benchmark. In *Proc. First Conference on Language Modeling (COLM)* <https://openreview.net/forum?id=Tl67584b98> (COLM, 2024).
10. Chollet, F., Knoop, M., Kamradt, G. & Landers, B. ARC prize 2024: technical report. Preprint at <https://arxiv.org/abs/2412.04604> (2024).
11. Hendrycks, D. et al. A definition of AGI. Preprint at <https://arxiv.org/abs/2510.18212> (2025).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2026

Center for AI Safety

Long Phan¹✉, Alice Gatti¹, Nathaniel Li¹, Adam Khoja¹, Ryan Kim¹, Richard Ren¹, Jason Hausenloy¹, Oliver Zhang¹, Mantas Mazeika¹ & Dan Hendrycks¹✉

¹Center for AI Safety, San Francisco CA, USA. ✉e-mail: agibenchmark@safe.ai; dan@safe.ai

Scale AI

Ziwen Han², Josephina Hu², Hugh Zhang², Chen Bo Calvin Zhang², Mohamed Shaaban², John Ling², Sean Shi², Michael Choi², Anish Agrawal², Arnav Chopra², Aakaash Nattanmai², Gordon McKellips², Anish Cheraku², Asim Suhail², Ethan Luo², Marvin Deng², Jason Luo², Ashley Zhang², Kavin Jindel², Jay Paek², Kasper Halevy², Allen Baranov², Michael Liu², Advaith Avadhanam², David Zhang², Vincent Cheng², Brad Ma², Evan Fu², Liam Do², Joshua Lass², Hubert Yang², Surya Sunkari², Vishruth Bharath², Violet Ai², James Leung², Rishit Agrawal², Alan Zhou², Kevin Chen², Tejas Kalpathi², Ziqi Xu², Gavin Wang², Tyler Xiao², Erik Maung², Sam Lee², Ryan Yang², Roy Yue², Ben Zhao², Julia Yoon², Xiangwan Sun², Aryan Singh², Clark Peng², Tyler Osbey², Taozhi Wang², Daryl Echeazu², Timothy Wu², Spandan Patel², Vidhi Kulkarni², Vijayakarta Sundarapandian², Andrew Le², Zafir Nasim², Srikanth Yalam², Ritesh Kasamsetty², Soham Samal², David Sun², Nihar Shah², Abhijeet Saha², Alex Zhang², Leon Nguyen², Laasya Nagumalli², Kaixin Wang², Aidan Wu², Anwith Telluri², Summer Yue² & Alexandr Wang²

²Scale AI, San Francisco CA, USA.

HLE Contributors Consortium

Dmitry Dodonov³, Tung Nguyen⁴, Jaeho Lee⁵, Daron Anderson³, Mikhail Doroshenko³, Alun Cennith Stokes³, Mobeen Mahmood⁶, Oleksandr Pokutnyi^{7,8}, Oleg Iskra⁹, Jessica P. Wang¹⁰, John-Clark Levin¹¹, Mstyslav Kazakov¹², Fiona Feng¹³, Steven Y. Feng¹⁴, Haoran Zhao¹⁵, Michael Yu¹⁶, Varun Gangal¹³, Chelsea Zou¹⁴, Zihan Wang¹⁶, Serguei Popov¹⁷, Robert Gerbic¹⁸, Geoff Galgon¹⁹, Johannes Schmitt²⁰, Will Yeadon²¹, Yongki Lee²², Scott Sauras²³, Alvaro Sanchez²³, Fabian Giska³, Marc Roth²⁴, Søren Riis²⁴, Saitje Utpala²⁵, Noah Burns¹⁴, Gashaw M. Goshu², Mohinder Maheshbhai Naiya²⁶, Chidiozie Agu²⁷, Zachary Giboney³, Antrell Cheatom²⁸, Francesca Fournier-Facio¹, Sarah-Jane Crowson²⁹, Lennart Fink²⁰, Zerui Cheng³⁰, Jennifer Zampese³¹, Ryan G. Hoerr³², Mark Nandor³, Hyunwoo Park⁹, Tim Gehringre²⁹, Jiaqi Cai³³, Ben McCarty³⁴, Alexis C. Garretson^{35,36}, Edwin Taylor³, Damien Sileo³⁷, Qiyu Ren³⁸, Usman Qazi^{39,40}, Lianghui Li⁴¹, Jungbae Nam⁴², John B. Wydallis³, Pavel Arkhipov⁴³, Jack Wei Lun Shi⁴⁴, Aras Bacho⁴⁵, Chris G. Willcock²¹, Hangrui Cao⁹, Sumeet Motwani⁴⁶, Emily de Oliveira Santos³⁷, Johannes Veith^{48,49}, Edward Vendrow³³, Doru Cojoc⁵⁰, Kengo Zenitani³, Joshua Robinson⁵¹, Longke Tang³⁰, Yuqi Li⁵², Joshua Vendrow³³, Natanael Wildner Fraga³, Vladyslav Kuchkin⁵³,

Andrey Pupasov Maksimov⁵⁴, Pierre Marion⁴¹, Denis Efremov⁵⁵, Jayson Lynch³³, Kaiqu Liang³⁰, Aleksandar Mikov⁴¹, Andrew Gritsevskiy⁵⁶, Julien Guillod^{57,58}, Gözdenur Demir³, Dakotah Martinez³, Ben Pageler³, Kevin Zhou³⁸, Saeed Soori⁵⁹, Ori Press⁶⁰, Henry Tang⁴⁶, Paolo Rissone⁶¹, Sean R. Green³, Lina Brüssel¹¹, Moon Twayana⁶², Aymeric Dieuleveut⁶³, Joseph Marvin Imperial^{64,65}, Ameya Prabhu⁶⁰, Jinzhou Yang⁶⁶, Nick Crispino⁵⁷, Arun Rao⁶⁸, Dimitri Zvokine^{69,70}, Gabriel Loiseau³⁷, Mikhail Kalinin⁷¹, Marco Lukas⁷², Ciprian Manolescu¹⁴, Nate Stambaugh⁷³, Subrata Mishra⁷⁴, Tad Hogg⁷⁵, Carlo Bosio⁵⁸, Brian P. Coppola⁷⁶, Julian Salazar⁷⁷, Jaehyeok Jin⁵⁰, Rafael Sayous⁶⁹, Stefan Ivanov¹¹, Philippe Schwaller⁴¹, Shaipranesh Senthilkumar⁴¹, Andres M. Bran⁴¹, Andres Algabe⁴⁶, Kelsey Van den Houte^{78,79}, Lynn Van Der Sypt^{78,79}, Brecht Verbeke⁷⁸, David Noever⁸⁰, Alexei Kopylov³, Benjamin Myklebust³, Bikun Li⁸¹, Lisa Schut⁴⁶, Evgenii Zheltonozhskii⁶², Qiaochu Yuan³, Derek Lim³³, Richard Stanley^{33,63}, Tong Yang⁹, John Maar⁸⁴, Julian Wykowski¹¹, Mart Oller¹¹, Anmol Sahu³, Cesare Giulio Ardito⁸⁵, Yuzheng Hu⁸⁶, Ariel Ghislain Kemogne Kamdoum⁶⁷, Alvin Jin³³, Tobias Garcia Vilchis⁸⁸, Yuexuan Zu³³, Martin Lackner⁸⁹, James Koppel¹³, Gongbo Sun⁹⁰, Daniil S. Antonenko⁹¹, Steffi Chern⁹, Bingchen Zhao⁹², Pierrot Arsene⁹³, Joseph M. Cavanagh³⁸, Daofeng Li⁶⁷, Jiawei Shen⁶⁷, Donato Crisostomi⁶¹, Wenjin Zhang⁶⁷, Ali Dehghan³, Sergey Ivanov³, David Perrella⁹⁴, Nurdin Kaparov⁹⁵, Allen Zang⁸¹, Ilia Shulchotsky⁹⁶, Arina Kharlamova⁹⁷, Daniil Orel⁹⁷, Vladislav Poritski³, Shaler Ben-David⁹⁸, Zachary Berger³³, Parker Whitfill³³, Michael Foster³, Daniel Munro¹⁶, Linh Ho³, Shankar Sivarajan⁹⁹, Dan Bar Hava¹⁰⁰, Aleksey Kuchkin³, David Holmes¹⁰¹, Alexandra Rodriguez-Romero³, Frank Sommerhage¹⁰², Anji Zhang³³, Richard Moat¹⁰³, Keith Schneider³, Zakayo Kazibwe¹⁰⁴, Don Clarke¹⁰⁵, Dae Hyun Kim¹⁰⁶, Felipe Meneguetti Dias⁴⁷, Sara Fish¹⁰⁷, Veit Elser¹⁰⁸, Tobias Kreiman³⁸, Victor Efren Guadarrama Vilchis¹⁰⁹, Imma Klose⁵⁰, Ujjwala Anantheswaran¹¹⁰, Adam Zweiger³³, Kaivalya Rawal⁴⁶, Jeffery Li¹³³, Jeremy Nguyen¹¹¹, Nicolas Dala¹², Haline Heidinger^{113,114}, Maksim Radionov¹¹⁵, Václav Rozhoň¹¹⁶, Vincent Ginis^{78,107}, Christian Stump¹¹⁷, Niv Cohen⁹⁶, Rafał Poświatka¹¹⁸, Josef Tkadlec¹¹⁹, Alan Goldfarb³⁸, Chenguang Wang⁶⁷, Piotr Padlewski³, Stanislaw Barzowski³, Kyle Montgomery⁶⁷, Ryan Stendall¹²⁰, Jamie Tucker-Foltz¹⁰⁷, Jack Stack¹²¹, T. Ryan Rogers¹²², Tom Goertzen¹²³, Declan Grabb¹⁴, Abhishek Shukla¹²⁴, Alan Givré¹²⁵, John Arnold Ambay¹²⁶, Archan Sen³⁸, Muhammad Fayed Aziz⁸⁶, Mark H. Inlow¹²⁷, Hao He¹²⁸, Ling Zhang¹²⁸, Younousse Kaddar⁴⁶, Ivar Ängquist¹²⁹, Yanxu Chen¹³⁰, Harrison K. Wang¹⁰⁷, Kalyan Ramakrishnan⁴⁶, Elliott Thorlney⁴⁶, Antonio Terpin²⁰, Hailey Schoelkopf³, Eric Zheng⁹, Avishi Carmi¹³¹, Ethan D. L. Brown¹³², Kelin Zhu⁹⁹, Max Bartolo¹³³, Richard Wheeler⁹², Martin Stehberger³, Peter Bradshaw⁸⁶, JP Heimonen¹⁹, Kaustubh Sridhar¹⁵⁹, Ido Akov¹³⁶, Jennifer Sandlin¹¹⁰, Yury Makarychev¹³⁷, Joanna Tam¹³⁸, Hieu Hoang¹³⁹, David M. Cunningham³, Vladimir Goryachev³, Demosthenes Patramanis⁴⁶, Michael Krause¹⁴⁰, Andrew Redenti⁵⁰, David Aldous³⁸, Jeslyn Lai¹⁴¹, Shannon Coleman³⁹, Jiangnan Xu¹⁴², Sangwon Lee³, Ilias Magoulas¹⁴³, Sandy Zhao³, Ning Tang³⁸, Michael K. Cohen³⁸, Orr Paradise³⁸, Jan Hendrik Kirchner¹⁴⁴, Maksym Ovchynnikov¹⁴⁵, Jason O. Matos¹³⁸, Adithya Shenoy³, Michael Wang³⁵, Yuzhou Nie¹⁴⁶, Anna Sztyber-Betley⁴⁴, Paolo Faraboschi¹⁴⁸, Robin Riblet⁹³, Jonathan Crozier¹⁴⁹, Shiv Halasyamani¹⁵⁰, Shreyas Verma³, Prashant Joshi¹⁵¹, Eli Merit¹⁵², Ziqiang Ma⁷⁶, Jérémie Andréolletti¹⁵⁴, Raghav Singhal⁹⁷, Jacob Platnick¹⁵³, Volodymyr Nevirkovets¹⁵⁴, Luke Basler¹⁵⁵, Alexander Ivanov¹¹⁷, Seri Khoury¹¹⁶, Nils Gustafsson¹²⁵, Marco Piccardo¹⁵⁶, Hamid Mostaghimi⁸⁷, Qijia Chen¹⁰⁷, Virendra Singh¹⁵⁷, Tran Quoc Khánh¹⁵⁸, Paul Rosu¹⁵⁹, Hannah Szlyk⁵⁷, Zachary Brown³³, Himanshu Narayan³, Aline Menezes³, Jonathan Roberts¹, William Alley³, Kunyang Sun³⁸, Arkit Patel^{6,160}, Max Lamparth¹⁴, Anka Reuel¹⁴, Linwei Xin⁸¹, Hanmeng Xu⁹¹, Jacob Loader¹¹, Freddie Martin³, Zixuan Wang³⁰, Andrea Achilleos¹⁶¹, Thomas Preu¹⁶², Tomek Korbak¹⁶³, Ida Bosio¹⁶⁴, Fereshteh Kazemi³, Ziye Chen¹⁶⁵, Biró Bálint³, Eve J. Yo¹⁶⁶, Jiaqi Wang¹⁵, Maria Inés S. Nunes¹⁶⁷, Jeremiah Milbauer⁹, M. Saiful Bari¹⁶⁸, Zihao Wang⁸¹, Behzad Ansarinejad³, Yewen Sun¹⁶⁹, Stephane Durand¹⁷⁰, Hossam Elgarni¹⁷¹, Guillaume Douville³, Daniel Tordera¹⁷², George Balabanian¹³⁵, Hew Wolff³, Lynna Kvistad¹⁷³, Hsiaoyun Milliron¹⁷⁴, Ahmad Sakor⁷², Murat Eron³, D. O. Andrew Favre¹⁷⁵, Shailesh Shah¹⁷⁶, Xiaoxiang Zhou⁴⁸, Firuz Kamalov¹⁷⁷, Sherwin Abdoli³, Tim Santens¹¹, Shaul Barkan¹⁷⁸, Allison Tee¹⁴, Robin Zhang³³, Alessandro Tomasiello¹⁷⁹, G. Bruno De Luca¹⁴, Shi-Zhuo Loo¹⁴⁵, Vinh-Kha Le³⁸, Noam Kolt¹⁷⁸, Jiayi Pan³⁸, Emma Rodman¹⁸⁰, Jacob Drori³, Carl J. Fossum¹⁸¹, Niklas Muennighoff¹⁴, Milind Jagota³⁸, Ronak Pradeep⁹⁸, Honglu Fan¹⁶², Jonathan Eicher³, Michael Chen⁴⁵, Kushal Thaman¹⁴, William Merrill⁹⁶, Moritz Firsching¹⁸³, Carter Harris¹⁸⁴, Stefan Ciobăcă¹⁵, Jason Gross³, Rohan Pandey³, Ily Gusev³, Adam Jones³, Shashank Agnihotri¹⁸⁸, Pavel Zhelnov⁵⁹, Mohammadreza Mofayez¹⁵⁹, Alexander Piperski¹⁸⁷, David K. Zhang⁴¹, Kostyantin Dobarskyi³, Roman Leventov³, Ignat Soroko⁶², Joshua Duersch¹⁸⁸, Vage Taamazyan¹⁸⁹, Andrew Ho¹⁹⁰, Wenjie Ma³⁸, William Held^{14,153}, Ruiheng Xian⁸⁶, Arnel Randy Zebaze³⁷, Mohanad Mohamed¹⁹¹, Julian Noah Leser⁸⁹, Michelle X. Yuan³, Laila Yacar¹²⁵, Johannes Lengler²⁰, Katarzyna Olszewska³, Claudio Di Fratta¹⁹², Edson Oliveira¹⁹³, Joseph W. Jackson¹⁹⁴, Andy Zou¹⁹⁵, Muthu Chidambaram¹⁵⁹, Timothy Manik³, Hector Haffenden³, Dashiell Standter¹⁹⁶, Ali Dasouqi¹⁹⁷, Alexander Shen¹⁹⁸, Bita Golshani³, David Stap¹⁹⁰, Egor Kretov¹⁹⁹, Mikalai Uzhou²⁰⁰, Alina Borisovna Zhdkovskaya²⁰¹, Nick Winter³, Miguel Orbegozo Rodriguez²⁰, Robert Lauff⁸⁴, Dustin Wehr³, Colin Tang⁹, Zaki Hossain¹, Shaun Phillips³, Fortuna Samuelle²⁰², Fredrik Ekström³, Angela Hammon³, Oam Patel¹⁰⁷, Faraz Farhidi²⁰³, George Medley³, Forough Mohammadzadeh³, Madellene Peñafiel²⁰⁴, Haile Kassahun⁶, Alena Friedrich²⁰⁵, Rayner Hernandez Perez³¹, Daniel Pyda²⁰⁶, Taom Sakai¹⁴⁶, Omkar Dhamane²⁰⁷, Ali Khajegili Mirabadi³⁹, Eric Hallman³, Kenchi Okutsu²⁰⁸, Mike Battaglia³, Mohammad Maghsoudi-mehrabani²⁰⁹, Alon Amit²¹⁰, Dave Hulbert³, Roberto Pereira²¹¹, Simon Weber²⁰, Handoko³, Anton Peristy³, Stephen Malina²¹², Mustafa Mehkary^{59,213}, Rami Aly¹¹, Frank Reidegeld³, Anna-Katharina Dick⁶⁰, Cary Friday²¹⁴, Mukhwinder Singh²¹⁵, Hassan Sharoufian²¹⁶, Wanyoung Kim³, Mariana Costa³, Hubeyb Gurdogan⁶⁰, Harsh Kumar²¹⁷, Chiara Ceconello³, Chao Zhuang³, Haon Park^{218,219}, Micah Carroll³⁸, Andrew R. Tawfeek¹, Stefan Steinerberger¹⁵, Daattava Aggarwal¹¹, Michael Kirchhoff⁶⁰, Linjie Dai³³, Evan Kim³⁹, Johan Ferret⁷⁷, Jainam Shah³, Yuzhou Wang¹⁵³, Minghao Yan⁹⁰, Krzysztof Burdzy¹⁵, Lixin Zhang³, Antonio Franca¹¹, Diana T. Pham²²⁰, Kang Yong Loh¹, Joshua Robinson²²¹, Abram Jackson³, Paolo Giordano²²², Philipp Petersen²²², Adrian Coasta²²³, Jesus Colino³, Colin White²²⁴, Jacob Votava³⁰, Vladimir Vinnikov³, Ethan Delaney²²⁵, Petr Spelda²²⁰, Vit Stritecky¹²⁰, Syed M. Shahid²²⁶, Jean-Christophe Mourrat^{70,227}, Lavr Vetoshkin²²⁸, Koen Sponselee²²⁹, Renas Bacho²³⁰, Zheng-Xin Yong⁵, Florencia de la Rosa²³¹, Nathan Cho¹⁴, Xiuyu Li³⁸, Guillaume Malod^{58,232}, Orion Weller¹⁹⁷, Guglielmo Albani²³³, Leon Lang¹³⁰, Julien Laurendeau⁴¹, Dmitry Kazakov¹⁰⁷, Fatimah Adesanya³, Julien Portier¹¹, Lawrence Hollom¹¹, Victor Souza¹¹, Yuchen Anna Zhou²³⁴, Julien Degorre³, Yiğit Yaln²³⁵, Gbenga Daniel Obikoya³, Rai Michael Pokorny²³⁶, Filippo Bigi⁴¹, M. C. Boscá²³⁷, Oleg Shumar³, Kanuar Bacho⁹², Gabriel Recchia²³⁸, Mara Popescu²³⁹, Nikita Shulga²⁴⁰, Ngefor Mildred Tanwiz²⁴¹, Thomas C. H. Lux³, Ben Rank³, Colin Ni⁶⁸, Matthew Brooks³, Alesia Yakimchuk²⁴², Huanxu Quinn Liu²⁴, Stefano Cavalleri³, Olle Häggström²⁴⁴, Emil Verkama¹²⁹, Joshua Newbold²¹, Hans Gundlach⁵³, Leonor Brito-Santana²⁴⁵, Brian Amaro¹⁴, Vivek Vajipej¹⁴, Rynaa Grover¹⁵³, Ting Wang⁶⁷, Yosi Kratish¹⁵⁴, Wen-Ding Li¹⁰⁸, Sivakanth Gopi²⁶, Andrea Caciola¹⁶, Christian Schroeder de Witt¹⁶, Pablo Hernández-Cámar¹⁷², Emanuele Rodola⁶¹, Jules Robins³, Dominic Williamson¹²³, Brad Raynor³, Hao Qi¹⁶⁵, Ben Segev⁵⁰, Jingxuan Fan¹⁰⁷, Sarah Martinson¹⁰⁷, Erik Y. Wang¹⁰⁷, Kaylie Hausknecht¹⁰⁷, Michael P. Brenner¹⁰⁷, Mao Mao¹⁶⁵, Christoph Demian⁴⁸, Peyman Kassani²⁴⁶, Anna Karim¹⁶⁵, David Avagian¹⁸⁶, Eshawn Jessica Scipio²⁴⁷, Alon Ragoler²⁴⁸, Justin Tan¹¹, Blake Sims³, Rebeka Plecnik³, Aaron Kirtland⁵, Omer Faruk Bodur³, D. P. Shinde³, Yan Carlos Leyva Labrador²⁴⁹, Zahra Adoul²⁵⁰, Mohamed Zekry²⁵¹, Ali Karakoc²⁵², Tania C. B. Santos³, Samir Shamselede²⁵³, Loukmame Karim²¹³, Anna Likhovitskai²⁵⁴, Ned Resman²⁵⁵, Nicholas Farina³, Juan Carlos Gonzalez²⁵⁶, Gabe Maayan¹⁶⁵, Earth Anderson²⁵⁷, Rodrigo De Oliveira Pena²⁵⁸, Elizabeth Kelley²⁵⁹, Hodjat Mariji³, Rasoul Pouriamanesh³, Wentao Wu³⁹, Ross Finocchio³, Ismail Alarab²⁵⁰, Joshua Cole²⁶⁰, Danyelle Ferreira³, Bryan Johnson²⁶¹, Mohammad Safradi²⁶², Liangtai Dai⁴⁶, Siriphan Arthorhurusasuk³, Isaac C. McAlister³, Alejandro José Moyano²⁶³, Alexey Pronin²⁶⁴, Jing Fan²³⁹, Angel Ramirez-Trinidad³, Yana Malysheva⁶⁷, Daphny Pottmaier²⁶⁵, Omid Taheri²⁶⁶, Stanley Stepanic²⁶⁷, Samuel Perry³, Luke Askew²⁶⁸, Raúl Adrián Huerta Rodriguez³, Alia M. R. Minissi²⁶⁹, Ricardo Lorena²⁷⁰, Krishnamurthy Iyer³, Arshad Anil Faasiludeen¹, Ronald Clark⁴⁶, Josh Ducey²⁷¹, Matheus Piza²⁷², Maja Somrak³, Eric Vergo³, Juehang Qin²⁷³, Benjamín Bobás²⁷⁴, Eric Chu⁷⁷, Jack Lindsey¹⁴⁴, Antoine Jallon³, I. M. J. McInnis³, Evan Chen³³, Avi Semler⁴⁶, Luk Gloor³, Tej Shah²⁷⁵, Marc Caraleanu²⁷⁶, Pascal Lauer^{277,278}, Tran Duc Huy²⁷⁸, Hossein Shahrtash²⁷⁹, Emilien Duc²⁰, Lukas Lekwark²⁷⁰, Assaf Brown¹⁷⁸, Samuel Albanie³, Brian Weber²⁸⁰, Warren S. Vaz³, Pierre Clavier²⁸¹, Yiyang Fan³, Gabriel Poesia Reis e Silva¹⁴, Long Tony Lian³⁸, Marcus Abramovitch³, Xi Jiang⁸¹, Sandra Mendoza^{282,283}, Murat Islam²⁸⁴, Juan Gonzalez³, Vasilios Mavroudis²⁸⁵, Justin Xu⁴⁶, Pawan Kumar²⁸⁶, Laxman Prasad Goswami¹²⁴, Daniel Bugas³, Nasser Heydari³, Ferenc Jeanplong³, Thorben Jansen²⁸⁷, Antonella Pinto³, Archimedes Apron²⁸⁸, Abdallah Gala²⁸⁹, Ng Ze-An²⁹⁰, Ankit Singh²⁹¹, Tong Jiang¹⁰⁷, Joan of Arc Xavier³, Kanu Priya Agarwal³, Mohammed Berkani²⁸², Gang Zhang³, Zhehang Du¹³⁵, Benedito Alves da Oliveira Junior⁴⁷, Dmitry Malishev³, Nicolas Remy²⁹³, Taylor D. Hartman²⁹⁴, Tim Tarver²⁹⁵, Stephen Mensah³, Gautier Abou Loume²⁴¹, Wiktor Morak³, Farzad Habibi²⁹⁹, Sarah Hoback¹⁰⁷, Will Cai³⁸, Javier Gimenez³, Roselynn Grace Montecillo²⁹⁷, Jakub Łukci²⁹⁰, Russell Campbell²⁹⁸, Asankhaya Sharma²⁹⁹, Khalida Meer³, Shreem Gul³⁰⁰, Daniel Espinosa Gonzalez¹⁴⁶, Xavier Alapont³, Alex Hoover⁸¹, Gunjan Chahbani¹⁵³, Freddie Vargus³⁰¹, Arunim Agarwal¹, Yibo Jiang⁸¹, Deepakumar Patil³⁰², David Outevsky³, Kevin Joseph Scaria¹⁰, Rajat Maheshwari³⁰³, Abdelkader Dendane³, Priti Shukla³, Ashley Cartwright³⁰⁴, Sergei Bogdanov²⁸¹, Niels Mündler²⁰, Sören Möller³⁰⁵, Luca Arnaboldi⁴¹, Kunvar Thaman³⁰⁶, Muhammad Rehan Siddiqi³⁰⁷, Prajiv Saxena³⁰⁸, Himanshu Gupta¹⁰, Tony Fruhauff³, Glen Sherman³, Mátýás Vincze^{309,310}, Siranout Usawasutakorn³¹¹, Dylan Ler³, Anil Radhakrishnan¹⁴⁹, Innocent Enyeukwe³, Sk Md Salauddin³¹², Jiang Muzhen³, Aleksandr Maksapetyan³, Vivien Rossbach³, Chris Harjadi¹⁴, Mohnesh Bahaloohoreh³, Claire Sparrow⁸¹, Jasdeep Sidhu³, Sam Ali³¹, Song Bian⁹⁰, John Lai³, Eric Singer³¹³, Justine Leon Uro³, Greg Bateman³, Mohamed Sayed³, Ahmed Menshawy³¹⁴, Darling Dusclois³¹⁵, Dario Bezz³¹⁶, Yashaswini Jain³¹⁷, Ashley Aaron³, Murat Tiryakioglu³, Sheeshram Siddh³, Keith Krenek³, Imad Ali Shah²²⁵, Jun Jin³, Scott Creighton³, Denis Peskoff³⁰, Zienab El-Wasif²⁶⁹, Raghavendra P V³, Michael Richmond³, Joseph McGowan⁵⁹, Tejal Patwardhan²³⁶, Hao-Yun Sun³¹⁸, Ting Sun⁸⁶, Nikola Zubic¹⁶², Samuele Sala³¹⁹, Stephen Ebert⁶⁸, Jean Kaddour¹⁶¹, Manuel Schottendorf²²⁰, Dianzhao Wang¹⁰⁷, Gerol Petruzzella³², Alex Meiburg^{98,322}, Tilen Medved³²³, Ali ElSheikh¹⁵⁴, S. Ashwin Hebbar³⁰, Lorenzo Vaquero³⁰⁹, Xianjun Yang¹⁴⁶, Jason Poulos³²⁴, Vilém Zouhar²⁰, Sergey Bogdanik³, Mingfang Zhang³²⁵, Jorge Sanz-Ros¹⁴, David Anugraha⁵⁶, Yinwei Dai³⁰, Anh N. Nhu⁸⁹, Xue Wang¹⁹⁷, Ali Ani Demircali³²⁶, Zhibai Jia¹⁰⁸, Yuyin Zhou³²⁷, Juncheng Wu³²⁷, Mike He³⁰, Nitin Chandok³, Aarush Sinha³²⁸, Gaoxiang Luo²³, Long Le⁵¹, Mickael Noye³²⁹, Michael Perelkiewicz¹¹¹, Ioannis Pantidis³³⁰, Tianbo Qi³³¹, Soham Sachin Purohit⁷⁶, Letitia Parcalabescu³³², Thai-Hoa Nguyen³³³, Genta Indra Winata³, Edoardo M. Porti⁹², Hanchen Li³¹, Kaustubh Dhole¹⁴³, Jongee Park³³⁴, Dario Abbondanza³³⁵, Yuanli Wang¹⁶⁵, Anupam Nayak⁹, Diogo M. Caetano²⁷⁰, Antonio A. W. L. Wong³⁹, Maria del Rio-Chanona^{161,336}, Dániel Kondor³³³, Pieter Francois^{46,284}, Ed Chalstrey¹⁶¹, Jakob Zsambok³³⁶, Dan Hoyer³³⁶, Jenny Reddish³³⁶, Jakob Hauser³³⁶, Francisco-Javier Rodrigo-Ginés³³⁷, Suchandra Datta³, Maxwell Shepherd¹⁸⁷, Thom Kamphuis³³⁸, Qizheng Zhang¹⁴, Hyunjun Kim³³⁹, Ruji Sun³⁸, Jianzhu Yao³⁰, Franck Dernoncourt³⁴⁰, Satyapriya Krishna¹⁰⁷, Sina Rismanchian²⁹⁶, Bonan Pu³¹, Francesco Pinto⁸¹, Yingheng Wang¹⁰⁸, Kumar Shridhar²⁰, Kalon J. Overholt³³, Glib Bria³⁴¹, Hieu Nguyen³⁴², David Quod Soler Bartomeu³⁴³, Tony CY Pang^{123,344}, Adam Wecker³, Yifan Xiong²⁵, Fanfei Li²⁶, Lukas S. Huber^{60,345}, Joshua Jaeger³⁴⁵, Romano De Maddalena³⁴⁶, Xing Han Lu⁶, Yuhui Zhang¹⁴, Claas Beger¹⁰⁸, Patrick Tser Jern Kon⁷⁶, Sean Li⁹⁴, Vivek Sanker¹⁴, Ming Yin³⁰, Yihao Liang³⁰, Xinlu Zhang¹⁴⁶, Ankit Agrawal¹⁴⁷, Li S. Yifei¹³⁵, Zechen Zhang¹⁰⁷, Mu Cai¹⁰, Yasin Sonmez²⁸, Costin Cozianu²⁵, Changhao Li³³, Alex Slen¹³, Shoubin Yu^{34,48}, Hyun Kyu Park³⁴⁹, Gabriele Sarti³⁵⁰, Marcin Brianiski³⁵¹, Alessandra Stolfo²⁰, Truong An Nguyen³⁵², Mike Zhang³⁵³, Yotam Perlitz³⁵⁴, Jose Hernandez-Orallo³⁵⁵, Runjia Li⁴⁶, Amin Shabani³⁵⁶, Felix Juefei-Xu³, Shikhar Dhingra³⁵⁷, Orr Zohar¹⁴, My Chiffon Nguyen³, Alexander Pondaven⁴⁶, Abdurrahim Ilymaz³²⁶, Xuandong Zhao³⁸, Chuanyang Jin¹⁹⁷, Muyan Jiang³⁸, Stefan Todoran¹⁵, Xinyao Han³³, Jules Kreuer⁶⁰, Brian Rabern⁹², Anna Plassart¹⁰³, Martino Maggetti³⁵⁸, Luther Yap³⁰, Robert Geirhos⁶⁰, Jonathon Kean³⁵, Dingsu Wang³, Sina Mollaei¹⁴, Chenkai Sun⁸⁶, Yifan Yin¹⁹⁷, Shiqi Wang³³, Rui Li¹, Yaowen Chang⁸⁶, Anjiani Wei¹⁴, Alice Bizeul²⁰, Xiaohan Wang¹⁴, Alexandre Oliveira Arrais³, Kushin Mukherjee¹⁴, Jorge Chamorro-Padial³⁶⁰, Jiachen Liu¹⁶, Xingyu Qu⁹⁷, Junyi Guan⁹⁷, Adam Bouyamour³⁸, Shuyu Wu⁷⁶, Martyna Plomecka¹⁶², Junda Chen¹⁶, Mengze Tang⁹⁰, Jiaqi Deng¹⁵³, Shreyas Subramanian³⁶¹, Haocheng Xi³⁸, Haoxuan Chen¹⁴, Weizhi Zhang²⁸, Yinuo Ren¹⁴,

Haoqin Tu³²⁷, Sejong Kim³³⁹, Yushun Chen³⁶², Sara Vera Marjanović¹²¹, Junwoo Ha³⁶³, Grzegorz Luczyna³, Jeff J. Ma⁷⁶, Zewen Shen⁵⁹, Dawn Song³⁸, Cedegao E. Zhang³³, Zhun Wang³⁸, Gaël Gendron³⁶⁴, Yunze Xiao⁹, Leo Smucker⁵⁹, Erica Weng⁹, Kwok Hao Lee⁴⁴, Zhe Ye³⁸, Stefano Ermon¹⁴, Ignacio D. Lopez-Miguel⁸⁹, Theo Knights⁶¹, Anthony Gitter^{90,365}, Namkyu Park³⁶⁶, Boyi Wei³⁰, Hongzheng Chen¹⁰⁸, Kunal Pai³⁶⁷, Ahmed Elkhany³⁶⁸, Han Lin³⁴⁸, Philipp D. Siedler³³², Jichao Fang²⁹⁴, Ritwik Mishra³⁶⁹, Károly Zsolnai-Fehér³⁷⁰, Xilin Jiang⁵⁰, Shadab Khan³⁷¹, Jun Yuan³⁷², Rishabh Kumar Jain¹⁰⁷, Xi Lin⁷⁶, Mike Peterson³, Zhe Wang³⁷³, Aditya Malusare³⁷⁴, Maosen Tang¹⁰⁸, Isha Gupta¹⁴³, Ivan Fosin⁵, Timothy Kang³, Barbara Dworakowska³²⁶, Kazuki Matsumoto³⁷⁵, Guangyao Zheng¹⁹⁷, Gerben Sewuster³⁷⁶, Jorge Pretel Villanueva³⁷⁷, Ivan Rannev³⁷⁸, Igor Chernyavsky⁹, Jiale Chen¹⁰¹, Deepayan Banik⁵⁹, Ben Racz⁹, Wenchao Dong³⁷⁹, Jianxin Wang¹⁹⁶, Laila Bashmal³, Duarte V. Gonçalves¹⁷, Wei Hu⁸⁶, Kaushik Bar³⁸⁰, Ondrej Bohdal⁹², Atharv Singh Patlan³⁰, Shehzaad Dhuliaawala²⁰, Caroline Geirhos³⁸¹, Julien Wist³⁸², Yuval Kansal³⁰, Bingsen Chen⁹⁶, Kutay Tire³⁸³, Atak Talay Yücel³⁸³, Brandon Christof¹³, Veerupaksh Singla³⁷⁴, Zijian Song³⁶⁷, Sanxing Chen¹⁵⁹, Jiaxin Ge³⁸, Kaustubh Ponske⁹⁷, Isaac Park⁹⁶, Tianneng Shi³⁸, Martin Q. Ma⁹, Joshua Mak³⁸⁴, Sherwin Lai⁴, Antoine Moulin³⁸⁵, Zhuo Cheng⁵, Zhanda Zhu⁵⁹, Ziyi Zhang⁸¹, Vaidhehi Patil³⁴⁸, Ketan Jha³⁸⁶, Qiutong Men⁹⁶, Jiaxuan Wu⁹⁰, Tianchi Zhang⁸¹, Bruno Hebling Vieira¹⁶², Alham Fikri Aji⁹⁷, Jae-Won Chung⁷⁶, Mohammed Mahmoud¹⁶⁰, Ha Thi Hoang³, Marc Sperzel³, Wei Hao⁵⁰, Kristof Meding⁶⁰, Sihan Xu⁷⁶, Vassilis Kostakos³⁸⁷, Davide Manini¹⁶², Yueying Liu⁸⁶, Christopher Toumajian²⁹⁶, Eunmi Yu³⁸⁸, Arif Engin Demircili³⁸⁹, Zhiyi Sun⁷⁶, Ivan Dewege³⁴², Hongsen Qin⁴⁵, Roman Pflugfelder^{390,391}, James Bailey³⁹², Johnathan Morris⁹, Ville Heilala³⁹³, Sybille Rosset³⁹⁴, Zishun Yu²⁸, Peter E. Chen⁶, Woongyeong Yeo³³⁹, Eeshaan Jain⁴¹, Sreekar Chigurupati³⁹⁵, Julia Chernyavsky³, Sai Prajwal Reddy³⁹⁹, Subhashini Venugopalan³⁴², Hunar Batra⁴⁶, Core Francisco Park¹⁰⁷, Hieu Tran⁹⁹, Guilherme Maximiano³, Genghan Zhang¹⁴, Yizhuo Liang⁵¹, Hu Shiyu³⁹⁶, Rongwu Xu¹⁵, Rui Pan³⁰, Siddharth Suresh⁹⁰, Ziqi Liu⁹⁰, Samaksh Gulati¹⁶², Songyang Zhang¹⁵⁹, Peter Turchin³³⁶, Christopher W. Bartlett¹⁶⁹, Christopher R. Scotes¹⁵⁴, Phuong M. Cao⁸⁶, Ben Wu³⁹⁷, Jacek Karwowski¹⁴⁶ & Davide Scaramuzza¹⁶²

³Independent Researcher, <https://lastexam.ai>. ⁴Texas A&M University, College Station, TX, USA. ⁵Brown University, Providence, RI, USA. ⁶McGill University, Montreal Quebec, Canada. ⁷Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine. ⁸Kiev School of Economics, Kyiv, Ukraine. ⁹Carnegie Mellon University, Pittsburgh, PA, USA. ¹⁰RWTH Aachen University, Aachen, Germany. ¹¹University of Cambridge, Cambridge, UK. ¹²Kyiv Polytechnic Institute, Kyiv, Ukraine. ¹³Queen's University, Kingston Ontario, Canada. ¹⁴Stanford University, Stanford, CA, USA. ¹⁵University of Washington, Seattle, WA, USA. ¹⁶University of California San Diego, San Diego, CA, USA. ¹⁷University of Porto, Porto, Portugal. ¹⁸ELTE, Budapest, Hungary. ¹⁹Nimbus AI, Honolulu, HI, USA. ²⁰ETH Zürich, Zürich, Switzerland. ²¹Durham University, Durham, UK. ²²Georgia Southern University, Statesboro, GA, USA. ²³University of Minnesota, Minneapolis, MN, USA. ²⁴Queen Mary University of London, London, UK. ²⁵Microsoft, Redmond, WA, USA. ²⁶Auckland University of Technology, Auckland, New Zealand. ²⁷Alberta Health Services, Edmonton Alberta, Canada. ²⁸University of Illinois Chicago, Chicago, IL, USA. ²⁹Hereford College of Arts, Hereford, UK. ³⁰Princeton University, Princeton, NJ, USA. ³¹University of Canterbury, Christchurch, New Zealand. ³²Metropolitan State University of Denver, Denver, CO, USA. ³³Massachusetts Institute of Technology, Cambridge, MA, USA. ³⁴Accenture Labs, Washington, DC, USA. ³⁵Tufts University, Medford, MA, USA. ³⁶The Jackson Laboratory, Bar Harbor, ME, USA. ³⁷INRIA, Paris, France. ³⁸University of California, Berkeley, Berkeley, CA, USA. ³⁹University of British Columbia, Vancouver British Columbia, Canada. ⁴⁰Ross University School of Medicine, Bridgetown, Barbados. ⁴¹École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. ⁴²Concordia University, Montreal Quebec, Canada. ⁴³Institute of Science and Technology Austria, Klosterneuburg, Austria. ⁴⁴National University of Singapore, Singapore, Singapore. ⁴⁵California Institute of Technology, Pasadena, CA, USA. ⁴⁶University of Oxford, Oxford, UK. ⁴⁷University of São Paulo, São Paulo, Brazil. ⁴⁸Humboldt-Universität zu Berlin, Berlin, Germany. ⁴⁹Charité – Universitätsmedizin, Berlin, Germany. ⁵⁰Columbia University, New York, NY, USA. ⁵¹University of Southern California, Los Angeles, CA, USA. ⁵²C. N. Yang Institute for Theoretical Physics, Stony Brook, NY, USA. ⁵³University of Luxembourg, Luxembourg City, Luxembourg. ⁵⁴Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil. ⁵⁵Rockwell Automation, Milwaukee, WI, USA. ⁵⁶Contramort Research, San Francisco, CA, USA. ⁵⁷École Normale Supérieure, Paris, France. ⁵⁸Sorbonne Université, Paris, France. ⁵⁹University of Toronto, Toronto Ontario, Canada. ⁶⁰University of Tübingen, Tübingen, Germany. ⁶¹Sapienza University of Rome, Rome, Italy. ⁶²University of North Texas, Denton, TX, USA. ⁶³Institut Polytechnique de Paris, Palaiseau, France. ⁶⁴National University Philippines, Manila, The Philippines. ⁶⁵University of Bath, Bath, UK. ⁶⁶Maastricht University, Maastricht, The Netherlands. ⁶⁷Washington University, St Louis, MO, USA. ⁶⁸University of California, Los Angeles, Los Angeles, CA, USA. ⁶⁹Université Paris-Saclay, Gif-sur-Yvette, France. ⁷⁰CNRS, Paris, France. ⁷¹Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany. ⁷²Leibniz University Hannover, Hannover, Germany. ⁷³Diverging Mathematics, Boston, MA, USA. ⁷⁴Indian Institute of Technology Bombay, Mumbai, India. ⁷⁵Institute for Molecular Manufacturing, Palo Alto, CA, USA. ⁷⁶University of Michigan, Ann Arbor, MI, USA. ⁷⁷Google DeepMind, London, UK. ⁷⁸Vrije Universiteit Brussel, Brussels, Belgium. ⁷⁹UZ Brussel, Brussels, Belgium. ⁸⁰PeopleTec, Huntsville, AL, USA. ⁸¹University of Chicago, Chicago, IL, USA. ⁸²Technion – Israel Institute of Technology, Haifa, Israel. ⁸³University of Miami, Coral Gables, FL, USA. ⁸⁴Technische Universität Berlin, Berlin, Germany. ⁸⁵University of Manchester, Manchester, UK. ⁸⁶University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA. ⁸⁷University of Calgary, Calgary Alberta, Canada. ⁸⁸Universidad Iberoamericana, Mexico City, Mexico. ⁸⁹TU Wien, Vienna, Austria. ⁹⁰University of Wisconsin-Madison, Madison, WI, USA. ⁹¹Yale University, New Haven, CT, USA. ⁹²University of Edinburgh, Edinburgh, UK. ⁹³École Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France. ⁹⁴University of Western Australia, Perth Western Australia, Australia. ⁹⁵Snorkel AI, Redwood City, CA, USA. ⁹⁶New York University, New York, NY, USA. ⁹⁷Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE. ⁹⁸University of Waterloo, Waterloo Ontario, Canada. ⁹⁹University of Maryland, College Park, MD, USA. ¹⁰⁰Manhattan School of Music, New York, NY, USA. ¹⁰¹Universiteit Leiden, Leiden, The Netherlands. ¹⁰²Synbionix, Casselberry, FL, USA. ¹⁰³The Open University, Milton Keynes, UK. ¹⁰⁴Corteva Agriscience, Indianapolis, IN, USA. ¹⁰⁵Sanford Burnham Prebys, La Jolla, CA, USA. ¹⁰⁶Yonsei University, Seoul, South Korea. ¹⁰⁷Harvard University, Cambridge, MA, USA. ¹⁰⁸Cornell University, Ithaca, NY, USA. ¹⁰⁹University of Leeds, Leeds, UK. ¹¹⁰Arizona State University, Tempe, AZ, USA. ¹¹¹Swinburne University of Technology, Melbourne Victoria, Australia. ¹¹²KU Leuven, Leuven, Belgium. ¹¹³St Petersburg College, St Petersburg, FL, USA. ¹¹⁴La Molina National Agrarian University, Lima, Peru. ¹¹⁵Brandenburg University of Technology, Cottbus, Germany. ¹¹⁶INSAT, Sofia, Bulgaria. ¹¹⁷Ruhr University Bochum, Bochum, Germany. ¹¹⁸National Information Processing Institute, Warsaw, Poland. ¹¹⁹Charles University, Prague, Czech Republic. ¹²⁰Cranfield University, Cranfield, UK. ¹²¹University of Copenhagen, Copenhagen, Denmark. ¹²²TRR Designs, Fayetteville, AR, USA. ¹²³The University of Sydney, Sydney New South Wales, Australia. ¹²⁴Indian Institute of Technology Delhi, New Delhi, India. ¹²⁵Universidad de Buenos Aires, Buenos Aires, Argentina. ¹²⁶University of Technology Sydney, Sydney New South Wales, Australia. ¹²⁷Indiana State University, Terre Haute, IN, USA. ¹²⁸Australian National University, Canberra Australian Capital Territory, Australia. ¹²⁹KTH Royal Institute of Technology, Stockholm, Sweden. ¹³⁰University of Amsterdam, Amsterdam, The Netherlands. ¹³¹Ben-Gurion University, Beersheba, Israel. ¹³²Donald and Barbara Zucker School of Medicine, Hempstead, NY, USA. ¹³³Coherex, Toronto Ontario, Canada. ¹³⁴Sili Solutions, Helsinki, Finland. ¹³⁵University of Pennsylvania, Philadelphia, PA, USA. ¹³⁶Aalto University, Espoo, Finland. ¹³⁷Toyota Technological Institute at Chicago, Chicago, IL, USA. ¹³⁸Northeastern University, Boston, MA, USA. ¹³⁹Case Western Reserve University, Cleveland, OH, USA. ¹⁴⁰University of Windsor, Windsor, Ontario, Canada. ¹⁴¹St. Jude Children's Research Hospital, Memphis, TN, USA. ¹⁴²Rochester Institute of Technology, Rochester, NY, USA. ¹⁴³Emory University, Atlanta, GA, USA. ¹⁴⁴Anthropic, San Francisco, CA, USA. ¹⁴⁵CERN, Geneva, Switzerland. ¹⁴⁶University of California Santa Barbara, Santa Barbara, CA, USA. ¹⁴⁷Warsaw University of Technology, Warsaw, Poland. ¹⁴⁸Hewlett Packard Enterprise, San Francisco, CA, USA. ¹⁴⁹North Carolina State University, Raleigh, NC, USA. ¹⁵⁰University of Houston, Houston, TX, USA. ¹⁵¹All India Institute of Medical Sciences, New Delhi, India. ¹⁵²Tel Aviv University, Tel Aviv, Israel. ¹⁵³Georgia Institute of Technology, Atlanta, GA, USA. ¹⁵⁴Northwestern University, Evanston, IL, USA. ¹⁵⁵University of Arizona, Tucson, AZ, USA. ¹⁵⁶Universidade de Lisboa, Lisbon, Portugal. ¹⁵⁷Indian Institute of Technology Kharagpur, Kharagpur, India. ¹⁵⁸Posts and Telecommunications Institute of Technology, Hanoi, Vietnam. ¹⁵⁹Duke University, Durham, NC, USA. ¹⁶⁰Mila – Québec AI Institute, Montreal Quebec, Canada. ¹⁶¹University College London, London, UK. ¹⁶²University of Zurich, Zurich, Switzerland. ¹⁶³UK AI Safety Institute, London, UK. ¹⁶⁴University of Padua, Padua, Italy. ¹⁶⁵Boston University, Boston, MA, USA. ¹⁶⁶Royal Veterinary College, London, UK. ¹⁶⁷Instituto Superior Técnico, Lisbon, Portugal. ¹⁶⁸SDAIA, Riyadh, Saudi Arabia. ¹⁶⁹The Ohio State University, Columbus, OH, USA. ¹⁷⁰University of Montreal, Montreal Quebec, Canada. ¹⁷¹Cairo University Specialized Pediatric Hospital, Cairo, Egypt. ¹⁷²Universidad de Valencia, Valencia, Spain. ¹⁷³Monash University, Melbourne Victoria, Australia. ¹⁷⁴Van Andel Institute, Grand Rapids, MI, USA. ¹⁷⁵Larkin Community Hospital, South Miami, FL, USA. ¹⁷⁶The University of Texas at Dallas, Richardson, TX, USA. ¹⁷⁷Canadian University Dubai, Dubai, UAE. ¹⁷⁸The Hebrew University of Jerusalem, Jerusalem, Israel. ¹⁷⁹Università di Milano-Bicocca, Milan, Italy. ¹⁸⁰University of Massachusetts Lowell, Lowell, MA, USA. ¹⁸¹Virginia Tech, Blacksburg, VA, USA. ¹⁸²University of Geneva, Geneva, Switzerland. ¹⁸³Google Research, Mountain View, CA, USA. ¹⁸⁴Cal Poly San Luis Obispo, San Luis Obispo, CA, USA. ¹⁸⁵Alexandru Ioan Cuza University, Iasi, Romania. ¹⁸⁶University of Mannheim, Mannheim, Germany. ¹⁸⁷Stockholm University, Stockholm, Sweden. ¹⁸⁸College of Eastern Idaho, Idaho Falls, ID, USA. ¹⁸⁹Intrinsic Innovation, Mountain View, CA, USA. ¹⁹⁰Ivy Natal, San Francisco, CA, USA. ¹⁹¹King Saud University, Riyadh, Saudi Arabia. ¹⁹²SAMPE Switzerland, Zurich, Switzerland. ¹⁹³CERo Therapeutics Holdings, South San Francisco, CA, USA. ¹⁹⁴University of Tennessee, Knoxville, TN, USA. ¹⁹⁵Gray Swan AI, Pittsburgh, PA, USA. ¹⁹⁶EleutherAI, Washington, DC, USA. ¹⁹⁷Johns Hopkins University, Baltimore, MD, USA. ¹⁹⁸University of Montpellier, Montpellier, France. ¹⁹⁹Fraunhofer IMTE, Lübeck, Germany. ²⁰⁰HomeEquity Bank, Toronto Ontario, Canada. ²⁰¹Materials Platform for Data Science, Tallinn, Estonia. ²⁰²University of Pisa, Pisa, Italy. ²⁰³Georgia State University, Atlanta, GA, USA. ²⁰⁴Polytechnic University of the Philippines, Manila, The Philippines. ²⁰⁵University of Oregon, Eugene, OR, USA. ²⁰⁶Drexel University, Philadelphia, PA, USA. ²⁰⁷University of Mumbai, Mumbai, India. ²⁰⁸Gakushuin University, Tokyo, Japan. ²⁰⁹University of Guelph, Guelph Ontario, Canada. ²¹⁰Intuit, Mountain View, CA, USA. ²¹¹CTTC / CERCA, Castelldefels, Spain. ²¹²Dyno Therapeutics, Watertown, MA, USA. ²¹³The Hospital for Sick Children, Toronto Ontario, Canada. ²¹⁴Temple University, Philadelphia, PA, USA. ²¹⁵Saint Mary's University, Halifax Nova Scotia, Canada. ²¹⁶Cisco, San Jose, CA, USA. ²¹⁷Indian Institute of Technology (BHU), Varanasi, India. ²¹⁸AIM Intelligence, Seoul, South Korea. ²¹⁹Seoul National University, Seoul, South Korea. ²²⁰The University of Texas at Arlington, Arlington, TX, USA. ²²¹The Hartree Centre, Daresbury, UK. ²²²University of Vienna, Vienna, Austria. ²²³POLITEHNICA Bucharest National University of Science and Technology, Bucharest, Romania. ²²⁴Abacus.AI, San Francisco, CA, USA. ²²⁵University of Galway, Galway, Ireland. ²²⁶Eastern Institute of Technology (EIT), Napier, New Zealand. ²²⁷ENS Lyon, Lyon, France. ²²⁸Czech Technical University in Prague, Prague, Czech Republic. ²²⁹University of Hamburg, Hamburg, Germany. ²³⁰CISPA Helmholtz Center for Information Security, Saarbrücken, Germany. ²³¹Universidad de Morón, Morón, Argentina. ²³²Université Paris Cité, Paris, France. ²³³PoliTecnicco di Milano, Milan, Italy. ²³⁴The New School, New York, NY, USA. ²³⁵Max Planck Institute for Software Systems, Saarbrücken, Germany. ²³⁶OpenAI, San Francisco, CA, USA. ²³⁷Universidad de Granada, Granada, Spain. ²³⁸Modulio Research, Cambridge, UK. ²³⁹Heidelberg University, Heidelberg, Germany. ²⁴⁰La Trobe University, Melbourne Victoria, Australia. ²⁴¹University of Yaoundé I, Yaoundé, Cameroon. ²⁴²University of Innsbruck, Innsbruck, Austria. ²⁴³Nabi Technologies, San Francisco, CA, USA. ²⁴⁴Chalmers University of Technology, Gothenburg, Sweden. ²⁴⁵Unidade Local de Saúde de Lisboa Ocidental, Lisbon, Portugal. ²⁴⁶Children's Hospital of Orange County, Orange, CA, USA. ²⁴⁷The Future Paralegals of America, New York, NY, USA. ²⁴⁸Eastlake High School, Sammamish, WA, USA. ²⁴⁹Center for Scientific Research and Higher Education at Ensenada (CICESE), Ensenada, Mexico. ²⁵⁰University of Bradford, Bradford, UK. ²⁵¹Beni Suef University, Beni Suef, Egypt. ²⁵²Bogazici University, Istanbul, Turkey. ²⁵³Mansoura University, Mansoura, Egypt. ²⁵⁴University of Bristol, Bristol, UK. ²⁵⁵University of Oklahoma, Norman, OK, USA. ²⁵⁶Jala University, Honolulu, HI, USA. ²⁵⁷University of Arkansas, Fayetteville, AR, USA. ²⁵⁸Florida Atlantic University, Boca Raton, FL, USA. ²⁵⁹Bournemouth University, Bournemouth, UK. ²⁶⁰University of Warwick, Coventry, UK. ²⁶¹University of Alabama Huntsville, Huntsville, AL, USA. ²⁶²University of Hertfordshire, Hatfield, UK. ²⁶³Oncoprecision, New York, NY, USA. ²⁶⁴Central College, Pella, IA, USA. ²⁶⁵Nottingham Trent University, Nottingham, UK. ²⁶⁶Max Planck Institute for Intelligent Systems, Stuttgart, Germany. ²⁶⁷University of Virginia, Charlottesville, VA, USA. ²⁶⁸Dartmouth College, Hanover, NH, USA. ²⁶⁹Cairo University, Giza, Egypt. ²⁷⁰INESC Microsistemas e Nanotecnologias, Lisbon, Portugal. ²⁷¹James Madison University, Harrisonburg, VA, USA. ²⁷²Instituto Gonçalo Moniz, Salvador, Brazil. ²⁷³Rice University, Houston, TX, USA. ²⁷⁴University of Texas at Austin, Austin, TX, USA. ²⁷⁵University of Arkansas, Fayetteville, AR, USA. ²⁷⁶University of Wyoming, Laramie, WY, USA. ²⁷⁷University of Colorado Boulder, Boulder, CO, USA. ²⁷⁸University of Colorado Denver, Denver, CO, USA. ²⁷⁹University of Colorado Health, Colorado Springs, CO, USA. ²⁸⁰University of Colorado Boulder, Boulder, CO, USA. ²⁸¹University of Colorado Denver, Denver, CO, USA. ²⁸²University of Colorado Health, Colorado Springs, CO, USA. ²⁸³University of Colorado Boulder, Boulder, CO, USA. ²⁸⁴University of Colorado Denver, Denver, CO, USA. ²⁸⁵University of Colorado Health, Colorado Springs, CO, USA. ²⁸⁶University of Colorado Boulder, Boulder, CO, USA. ²⁸⁷University of Colorado Denver, Denver, CO, USA. ²⁸⁸University of Colorado Health, Colorado Springs, CO, USA. ²⁸⁹University of Colorado Boulder, Boulder, CO, USA. ²⁹⁰University of Colorado Denver, Denver, CO, USA. ²⁹¹University of Colorado Health, Colorado Springs, CO, USA. ²⁹²University of Colorado Boulder, Boulder, CO, USA. ²⁹³University of Colorado Denver, Denver, CO, USA. ²⁹⁴University of Colorado Health, Colorado Springs, CO, USA. ²⁹⁵University of Colorado Boulder, Boulder, CO, USA. ²⁹⁶University of Colorado Denver, Denver, CO, USA. ²⁹⁷University of Colorado Health, Colorado Springs, CO, USA. ²⁹⁸University of Colorado Boulder, Boulder, CO, USA. ²⁹⁹University of Colorado Denver, Denver, CO, USA. ³⁰⁰University of Colorado Health, Colorado Springs, CO, USA. ³⁰¹University of Colorado Boulder, Boulder, CO, USA. ³⁰²University of Colorado Denver, Denver, CO, USA. ³⁰³University of Colorado Health, Colorado Springs, CO, USA. ³⁰⁴University of Colorado Boulder, Boulder, CO, USA. ³⁰⁵University of Colorado Denver, Denver, CO, USA. ³⁰⁶University of Colorado Health, Colorado Springs, CO, USA. ³⁰⁷University of Colorado Boulder, Boulder, CO, USA. ³⁰⁸University of Colorado Denver, Denver, CO, USA. ³⁰⁹University of Colorado Health, Colorado Springs, CO, USA. ³¹⁰University of Colorado Boulder, Boulder, CO, USA. ³¹¹University of Colorado Denver, Denver, CO, USA. ³¹²University of Colorado Health, Colorado Springs, CO, USA. ³¹³University of Colorado Boulder, Boulder, CO, USA. ³¹⁴University of Colorado Denver, Denver, CO, USA. ³¹⁵University of Colorado Health, Colorado Springs, CO, USA. ³¹⁶University of Colorado Boulder, Boulder, CO, USA. ³¹⁷University of Colorado Denver, Denver, CO, USA. ³¹⁸University of Colorado Health, Colorado Springs, CO, USA. ³¹⁹University of Colorado Boulder, Boulder, CO, USA. ³²⁰University of Colorado Denver, Denver, CO, USA. ³²¹University of Colorado Health, Colorado Springs, CO, USA. ³²²University of Colorado Boulder, Boulder, CO, USA. ³²³University of Colorado Denver, Denver, CO, USA. ³²⁴University of Colorado Health, Colorado Springs, CO, USA. ³²⁵University of Colorado Boulder, Boulder, CO, USA. ³²⁶University of Colorado Denver, Denver, CO, USA. ³²⁷University of Colorado Health, Colorado Springs, CO, USA. ³²⁸University of Colorado Boulder, Boulder, CO, USA. ³²⁹University of Colorado Denver, Denver, CO, USA. ³³⁰University of Colorado Health, Colorado Springs, CO, USA. ³³¹University of Colorado Boulder, Boulder, CO, USA. ³³²University of Colorado Denver, Denver, CO, USA. ³³³University of Colorado Health, Colorado Springs, CO, USA. ³³⁴University of Colorado Boulder, Boulder, CO, USA. ³³⁵University of Colorado Denver, Denver, CO, USA. ³³⁶University of Colorado Health, Colorado Springs, CO, USA. ³³⁷University of Colorado Boulder, Boulder, CO, USA. ³³⁸University of Colorado Denver, Denver, CO, USA. ³³⁹University of Colorado Health, Colorado Springs, CO, USA. ³⁴⁰University of Colorado Boulder, Boulder, CO, USA. ³⁴¹University of Colorado Denver, Denver, CO, USA. ³⁴²University of Colorado Health, Colorado Springs, CO, USA. ³⁴³University of Colorado Boulder, Boulder, CO, USA. ³⁴⁴University of Colorado Denver, Denver, CO, USA. ³⁴⁵University of Colorado Health, Colorado Springs, CO, USA. ³⁴⁶University of Colorado Boulder, Boulder, CO, USA. ³⁴⁷University of Colorado Denver, Denver, CO, USA. ³⁴⁸University of Colorado Health, Colorado Springs, CO, USA. ³⁴⁹University of Colorado Boulder, Boulder, CO, USA. ³⁵⁰University of Colorado Denver, Denver, CO, USA. ³⁵¹University of Colorado Health, Colorado Springs, CO, USA. ³⁵²University of Colorado Boulder, Boulder, CO, USA. ³⁵³University of Colorado Denver, Denver, CO, USA. ³⁵⁴University of Colorado Health, Colorado Springs, CO, USA. ³⁵⁵University of Colorado Boulder, Boulder, CO, USA. ³⁵⁶University of Colorado Denver, Denver, CO, USA. ³⁵⁷University of Colorado Health, Colorado Springs, CO, USA. ³⁵⁸University of Colorado Boulder, Boulder, CO, USA. ³⁵⁹University of Colorado Denver, Denver, CO, USA. ³⁶⁰University of Colorado Health, Colorado Springs, CO, USA. ³⁶¹University of Colorado Boulder, Boulder, CO, USA. ³⁶²University of Colorado Denver, Denver, CO, USA. ³⁶³University of Colorado Health, Colorado Springs, CO, USA. ³⁶⁴University of Colorado Boulder, Boulder, CO, USA. ³⁶⁵University of Colorado Denver, Denver, CO, USA. ³⁶⁶University of Colorado Health, Colorado Springs, CO, USA. ³⁶⁷University of Colorado Boulder, Boulder, CO, USA. ³⁶⁸University of Colorado Denver, Denver, CO, USA. ³⁶⁹University of Colorado Health, Colorado Springs, CO, USA. ³⁷⁰University of Colorado Boulder, Boulder, CO, USA. ³⁷¹University of Colorado Denver, Denver, CO, USA. ³⁷²University of Colorado Health, Colorado Springs, CO, USA. ³⁷³University of Colorado Boulder, Boulder, CO, USA. ³⁷⁴University of Colorado Denver, Denver, CO, USA. ³⁷⁵University of Colorado Health, Colorado Springs, CO, USA. ³⁷⁶University of Colorado Boulder, Boulder, CO, USA. ³⁷⁷University of Colorado Denver, Denver, CO, USA. ³⁷⁸University of Colorado Health, Colorado Springs, CO, USA. ³⁷⁹University of Colorado Boulder, Boulder, CO, USA. ³⁸⁰University of Colorado Denver, Denver, CO, USA. ³⁸¹University of Colorado Health, Colorado Springs, CO, USA. ³⁸²University of Colorado Boulder, Boulder, CO, USA. ³⁸³University of Colorado Denver, Denver, CO, USA. ³⁸⁴University of Colorado Health, Colorado Springs, CO, USA. ³⁸⁵University of Colorado Boulder, Boulder, CO, USA. ³⁸⁶University of Colorado Denver, Denver, CO, USA. ³⁸⁷University of Colorado Health, Colorado Springs, CO, USA. ³⁸⁸University of Colorado Boulder, Boulder, CO, USA. ³⁸⁹University of Colorado Denver, Denver, CO, USA. ³⁹⁰University of Colorado Health, Colorado Springs, CO, USA. ³⁹¹University of Colorado Boulder, Boulder, CO, USA. ³⁹²University of Colorado Denver, Denver, CO, USA. ³⁹³University of Colorado Health, Colorado Springs, CO, USA. ³⁹⁴University of Colorado Boulder, Boulder, CO, USA. ³⁹⁵University of Colorado Denver, Denver, CO, USA. ³⁹⁶University of Colorado Health, Colorado Springs, CO, USA. ³⁹⁷University of Colorado Boulder, Boulder, CO, USA. ³⁹⁸University of Colorado Denver, Denver, CO, USA. ³⁹⁹University of Colorado Health, Colorado Springs, CO, USA. ⁴⁰⁰University of Colorado Boulder, Boulder, CO, USA. ⁴⁰¹University of Colorado Denver, Denver, CO, USA. ⁴⁰²University of Colorado Health, Colorado Springs, CO, USA. ⁴⁰³University of Colorado Boulder, Boulder, CO, USA. ⁴⁰⁴University of Colorado Denver, Denver, CO, USA. ⁴⁰⁵University of Colorado Health, Colorado Springs, CO, USA. ⁴⁰⁶University of Colorado Boulder, Boulder, CO, USA. ⁴⁰⁷University of Colorado Denver, Denver, CO, USA. ⁴⁰⁸University of Colorado Health, Colorado Springs, CO, USA. ⁴⁰⁹University of Colorado Boulder, Boulder, CO, USA. ⁴¹⁰University of Colorado Denver, Denver, CO, USA. ⁴¹¹University of Colorado Health, Colorado Springs, CO, USA. ⁴¹²University of Colorado Boulder, Boulder, CO, USA. ⁴¹³University of Colorado Denver, Denver, CO, USA. ⁴¹⁴University of Colorado Health, Colorado Springs, CO, USA. ⁴¹⁵University of Colorado Boulder, Boulder, CO, USA. ⁴¹⁶University of Colorado Denver, Denver, CO, USA. ⁴¹⁷University of Colorado Health, Colorado Springs, CO, USA. ⁴¹⁸University of Colorado Boulder, Boulder, CO, USA. ⁴¹⁹University of Colorado Denver, Denver, CO, USA. ⁴²⁰University of Colorado Health, Colorado Springs, CO, USA. ⁴²¹University of Colorado Boulder, Boulder, CO, USA. ⁴²²University of Colorado Denver, Denver, CO, USA. ⁴²³University of Colorado Health, Colorado Springs, CO, USA. ⁴²⁴University of Colorado Boulder, Boulder, CO, USA. ⁴²⁵University of Colorado Denver, Denver, CO, USA. ⁴²⁶University of Colorado Health, Colorado Springs, CO, USA. ⁴²⁷University of Colorado Boulder, Boulder, CO, USA. ⁴²⁸University of Colorado Denver, Denver, CO, USA. ⁴²⁹University of Colorado Health, Colorado Springs, CO, USA. ⁴³⁰University of Colorado Boulder, Boulder, CO, USA. ⁴³¹University of Colorado Denver, Denver, CO, USA. ⁴³²University of Colorado Health, Colorado Springs, CO, USA. ⁴³³University of Colorado Boulder, Boulder, CO, USA. ⁴³⁴University of Colorado Denver, Denver, CO, USA. ⁴³⁵University of Colorado Health, Colorado Springs, CO, USA. ⁴³⁶University of Colorado Boulder, Boulder, CO, USA. ⁴³⁷University of Colorado Denver, Denver, CO, USA. ⁴³⁸University of Colorado Health, Colorado Springs, CO, USA. ⁴³⁹University of Colorado Boulder, Boulder, CO, USA. ⁴⁴⁰University of Colorado Denver, Denver, CO, USA. ⁴⁴¹University of Colorado Health, Colorado Springs, CO, USA. ⁴⁴²University of Colorado Boulder, Boulder, CO, USA. ⁴⁴³University of Colorado Denver, Denver, CO, USA. ⁴⁴⁴University of Colorado Health, Colorado Springs, CO, USA. ⁴⁴⁵University of Colorado Boulder, Boulder, CO, USA. ⁴⁴⁶University of Colorado Denver, Denver, CO, USA. ⁴⁴⁷University of Colorado Health, Colorado Springs, CO, USA. ⁴⁴⁸University of Colorado Boulder, Boulder, CO, USA. ⁴⁴⁹University of Colorado Denver, Denver, CO, USA. ⁴⁵⁰University of Colorado Health, Colorado Springs, CO, USA. ⁴⁵¹University of Colorado Boulder, Boulder, CO, USA. ⁴⁵²University of Colorado Denver, Denver, CO, USA. ⁴⁵³University of Colorado Health, Colorado Springs, CO, USA. ⁴⁵⁴University of Colorado Boulder, Boulder, CO, USA. ⁴⁵⁵University of Colorado Denver, Denver, CO, USA. ⁴⁵⁶University of Colorado Health, Colorado Springs, CO, USA. ⁴⁵⁷University of Colorado Boulder, Boulder, CO, USA. ⁴⁵⁸University of Colorado Denver, Denver, CO, USA. ⁴⁵⁹University of Colorado Health, Colorado Springs, CO, USA. ⁴⁶⁰University of Colorado Boulder, Boulder, CO, USA. ⁴⁶¹University of Colorado Denver, Denver, CO, USA. ⁴⁶²University of Colorado Health, Colorado Springs, CO, USA. ⁴⁶³University of Colorado Boulder, Boulder, CO, USA. ⁴⁶⁴University of Colorado Denver, Denver, CO, USA. ⁴⁶⁵University of Colorado Health, Colorado Springs, CO, USA. ⁴⁶⁶University of Colorado Boulder, Boulder, CO, USA. ⁴⁶⁷University of Colorado Denver, Denver, CO, USA. ⁴⁶⁸University of Colorado Health, Colorado Springs, CO, USA. ⁴⁶⁹University of Colorado Boulder, Boulder, CO, USA. ⁴⁷⁰University of Colorado Denver, Denver, CO, USA. ⁴⁷¹University of Colorado Health, Colorado Springs, CO, USA. ⁴⁷²University of Colorado Boulder, Boulder, CO, USA. ⁴⁷³University of Colorado Denver, Denver, CO, USA. ⁴⁷⁴University of Colorado Health, Colorado Springs, CO, USA. ⁴⁷⁵University of Colorado Boulder, Boulder, CO, USA. ⁴⁷⁶University of Colorado Denver, Denver, CO, USA. ⁴⁷⁷University of Colorado Health, Colorado Springs, CO, USA. ⁴⁷⁸University of Colorado Boulder, Boulder, CO, USA. ⁴⁷⁹University of Colorado Denver, Denver, CO, USA. ⁴⁸⁰University of Colorado Health, Colorado Springs, CO, USA. ⁴⁸¹University of Colorado Boulder, Boulder, CO, USA. ⁴⁸²University of Colorado Denver, Denver, CO, USA. ⁴⁸³University of Colorado Health, Colorado Springs, CO, USA. ⁴⁸⁴University of Colorado Boulder, Boulder, CO, USA. ⁴⁸⁵University of Colorado Denver, Denver, CO, USA. ⁴⁸⁶University of Colorado Health, Colorado Springs, CO, USA. ⁴⁸⁷University of Colorado Boulder, Boulder, CO,

Houston, TX, USA. ²⁷⁴HUN-REN, Budapest, Hungary. ²⁷⁵Rutgers University, New Brunswick, NJ, USA. ²⁷⁶AE Studio, Marina Del Rey, CA, USA. ²⁷⁷Saarland University, Saarbrücken, Germany. ²⁷⁸HUTECH, Ho Chi Minh City, Vietnam. ²⁷⁹Pennsylvania College of Technology, Williamsport, PA, USA. ²⁸⁰Intelligent Geometries, Front Royal, VA, USA. ²⁸¹École Polytechnique, Palaiseau, France. ²⁸²CONICET, Buenos Aires, Argentina. ²⁸³Universidad Tecnológica Nacional, Buenos Aires, Argentina. ²⁸⁴John Crane UK, Slough, UK. ²⁸⁵Alan Turing Institute, London, UK. ²⁸⁶Pondicherry Engineering College, Puducherry, India. ²⁸⁷Leibniz Institute for Science and Mathematics Education, Kiel, Germany. ²⁸⁸Royal Holloway, University of London, Egham, UK. ²⁸⁹Tanta University, Tanta, Egypt. ²⁹⁰University of Malaya, Kuala Lumpur, Malaysia. ²⁹¹Hemwati Nandan Bahuguna Garhwal University, Srinagar, India. ²⁹²University Mohammed I, Oujda, Morocco. ²⁹³LGM, Paris, France. ²⁹⁴Northern Illinois University, DeKalb, IL, USA. ²⁹⁵Bethune-Cookman University, Daytona Beach, FL, USA. ²⁹⁶University of California, Irvine, Irvine, CA, USA. ²⁹⁷Central Mindanao University, Maramag, The Philippines. ²⁹⁸University of the Fraser Valley, Abbotsford British Columbia, Canada. ²⁹⁹Patched Codes, San Francisco, CA, USA. ³⁰⁰Missouri University of Science and Technology, Rolla, MO, USA. ³⁰¹Quotient AI, Boston, MA, USA. ³⁰²CSMSS Chh. Shahul College of Engineering, Aurangabad, India. ³⁰³Genomia Diagnostics Research, New Delhi, India. ³⁰⁴Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK. ³⁰⁵Forschungszentrum Jülich, Jülich, Germany. ³⁰⁶Standard Intelligence, San Francisco, CA, USA. ³⁰⁷RMIT University, Melbourne Victoria, Australia. ³⁰⁸German Research Center for Artificial Intelligence, Kaiserslautern, Germany. ³⁰⁹Fondazione Bruno Kessler, Trento, Italy. ³¹⁰University of Trento, Trento, Italy. ³¹¹Chulalongkorn University, Bangkok, Thailand. ³¹²Aligarh Muslim University, Aligarh, India. ³¹³Happy Technologies LLC, Arlington, VA, USA. ³¹⁴Menoufia University, Shebin El Kom, Egypt. ³¹⁵Instituto Politécnico Nacional, Mexico City, Mexico. ³¹⁶University of Bologna, Bologna, Italy. ³¹⁷Manipal University Jaipur, Jaipur, India. ³¹⁸The University of Texas at Austin, Austin, TX, USA. ³¹⁹Murdoch University, Perth Western Australia, Australia. ³²⁰University of Delaware, Newark, DE, USA. ³²¹Williams College, Williamstown, MA, USA. ³²²Perimeter Institute for Theoretical Physics, Waterloo Ontario, Canada. ³²³University of Maribor, Maribor, Slovenia. ³²⁴Brigham and Women's Hospital, Boston, MA, USA. ³²⁵The University of Tokyo, Tokyo, Japan. ³²⁶Imperial College London, London, UK. ³²⁷University of California Santa Cruz, Santa Cruz, CA, USA. ³²⁸Vellore Institute of Technology, Vellore, India. ³²⁹CHRU de Nancy, Nancy, France. ³³⁰Delft University of Technology, Delft, The Netherlands. ³³¹Scripps Research, La Jolla, CA, USA. ³³²Aleph Alpha, Heidelberg, Germany. ³³³George Mason University, Fairfax, VA, USA. ³³⁴Atılım University, Ankara, Turkey. ³³⁵Leonardo Labs, Rome, Italy. ³³⁶Complexity Science Hub, Vienna, Austria. ³³⁷Universidad Nacional de Educación a Distancia, Madrid, Spain. ³³⁸Saxion University, Enschede, The Netherlands. ³³⁹Korea Advanced Institute of Science and Technology, Daejeon, South Korea. ³⁴⁰Adobe Research, San Jose, CA, USA. ³⁴¹National Aerospace University 'Kharkiv Aviation Institute', Kharkiv, Ukraine. ³⁴²Google, Mountain View, CA, USA. ³⁴³Hexworks, Barcelona, Spain. ³⁴⁴Westmead Hospital, Sydney New South Wales, Australia. ³⁴⁵University of Bern, Bern, Switzerland. ³⁴⁶Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany. ³⁴⁷SUMM AI, Munich, Germany. ³⁴⁸University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. ³⁴⁹Konkuk University, Seoul, South Korea. ³⁵⁰University of Groningen, Groningen, The Netherlands. ³⁵¹Jagiellonian University, Kraków, Poland. ³⁵²Minerva University, San Francisco, CA, USA. ³⁵³Aalborg University, Aalborg, Denmark. ³⁵⁴IBM Research, Givatayim, Israel. ³⁵⁵Universitat Politècnica de Valencia, Valencia, Spain. ³⁵⁶RBC Borealis, Toronto Ontario, Canada. ³⁵⁷Mayo Clinic, Rochester, MN, USA. ³⁵⁸University of Lausanne, Lausanne, Switzerland. ³⁵⁹Dalhousie University, Halifax Nova Scotia, Canada. ³⁶⁰Universitat de Lleida, Lleida, Spain. ³⁶¹Amazon, Seattle, WA, USA. ³⁶²Dell Technologies, Round Rock, TX, USA. ³⁶³University of Seoul, Seoul, South Korea. ³⁶⁴University of Auckland, Auckland, New Zealand. ³⁶⁵Morgridge Institute for Research, Madison, WI, USA. ³⁶⁶Korea University of Technology and Education, Cheonan, South Korea. ³⁶⁷University of California Davis, Davis, CA, USA. ³⁶⁸Baylor College of Medicine, Houston, TX, USA. ³⁶⁹Indraprastha Institute of Information Technology Delhi, New Delhi, India. ³⁷⁰Two Minute Papers, Pécs, Hungary. ³⁷¹ADIA Lab, Abu Dhabi, UAE. ³⁷²New Jersey Institute of Technology, Newark, NJ, USA. ³⁷³Novo Nordisk, Bagsværd, Denmark. ³⁷⁴Purdue University, West Lafayette, IN, USA. ³⁷⁵Gakugei Shuppan-sha, Kyoto, Japan. ³⁷⁶Universiteit Utrecht, Utrecht, The Netherlands. ³⁷⁷T-Systems Iberia, Madrid, Spain. ³⁷⁸University of Klagenfurt, Klagenfurt, Austria. ³⁷⁹Max Planck Institute for Security and Privacy, Bochum, Germany. ³⁸⁰InxiteOut, Bangalore, India. ³⁸¹Goethe Universität Frankfurt, Frankfurt am Main, Germany. ³⁸²Universidad del Valle, Cali, Colombia. ³⁸³Bilkent University, Ankara, Turkey. ³⁸⁴Trinity School, New York, NY, USA. ³⁸⁵Universitat Pompeu Fabra, Barcelona, Spain. ³⁸⁶Brighton Law School, Brighton, UK. ³⁸⁷University of Melbourne, Melbourne, Australia. ³⁸⁸Ankara University, Ankara, Turkey. ³⁸⁹Dr. Siyami Ersek Thoracic, Cardiovascular and Vascular Surgery Training and Research Hospital, Istanbul, Turkey. ³⁹⁰AIT Austrian Institute of Technology, Vienna, Austria. ³⁹¹Technical University of Munich, Munich, Germany. ³⁹²Providence College, Providence, RI, USA. ³⁹³University of Jyväskylä, Jyväskylä, Finland. ³⁹⁴Weizmann Institute of Science, Rehovot, Israel. ³⁹⁵Indiana University, Bloomington, IN, USA. ³⁹⁶Nanyang Technological University, Singapore, Singapore. ³⁹⁷University of Sheffield, Sheffield, UK.

Methods

Related works

LLM benchmarks. Benchmarks are important tools for tracking the rapid advancement of LLM capabilities, including general and scientific knowledge^{1,10,12–15} and mathematical reasoning^{16–21}, code generation^{22–28} and general-purpose human assistance^{7,29–35}. Owing to their objectivity and ease of automated scoring at scale, evaluations commonly include multiple-choice and short-answer questions^{31,36–39}, with benchmarks such as MMLU¹ also spanning a broad range of academic disciplines and levels of complexity.

Saturation and frontier benchmark design. However, state-of-the-art models now achieve nearly perfect scores on many existing evaluations, obscuring the full extent of current and future frontier AI capabilities^{40–43}. This has motivated the development of more challenging benchmarks that test for multi-modal capabilities^{17,22,24,44–50}, strengthen existing benchmarks^{32,44,45,51,52}, filter questions over multiple stages of review^{9,12,19,42,53,54} and use experts to write tests for advanced academic knowledge^{9,12,19,54–56}. HLE combines these approaches: the questions are developed by subject-matter experts and undergo multiple rounds of review, while preserving the broad subject-matter coverage of MMLU. As a result, HLE provides a clear measurement of the gap between current AI capabilities and human expertise on closed-ended academic tasks, complementing other assessments of advanced capabilities in open-ended domains^{57,58}.

Dataset

Submission process. To ensure question difficulty, we automatically check the accuracy of frontier LLMs on each question before submission. Our testing process uses multi-modal LLMs for text-and-image questions (GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet and o1) and adds two non-multi-modal models (o1-mini and o1-preview) for text-only questions. We use different submission criteria by question type: exact-match questions must stump all models, whereas multiple-choice questions must stump all but one model to account for potential lucky guesses. Users are instructed to submit only questions that meet these criteria. We note that due to non-determinism in models and a non-zero floor in multiple-choice questions, further evaluation on the dataset exhibits some low but non-zero accuracy.

Post-release. Late contributions. In response to research community interest, we opened the platform for late contributors after the initial release, resulting in thousands of submissions. Each submission was manually reviewed by organizers. The new questions are of similar difficulty and quality to our initial dataset, resulting in a second held-out private set, which will be used in future evaluations.

Refinement. Community feedback: owing to the advanced, specialized nature of many submissions, reviewers were not expected to verify the full accuracy of each provided solution rationale, instead focusing on whether the question aligns with guidelines. Given this limitation in the review process, we launched a community feedback bug bounty program following the initial release of the dataset to identify and eliminate the main errors in the dataset, namely, label errors and other errors in the statement of the question. Each error report was manually verified by the organizers with feedback from the original author of the question when appropriate.

Searchable questions: a question is potentially searchable if a model with search tools answered correctly, but answered incorrectly without search. Each of these potentially searchable questions was then manually audited, removing any that were easily found using web search. We used GPT-4o mini/GPT-4o search and Perplexity Sonar models in this procedure. We observe that current frontier model performance on HLE after applying this procedure is similar to the performance on HLE before applying this procedure.

Expert disagreement rate. Before release, we conducted two main rounds of auditing, each on a sample of 200 questions. We recruited students from top universities in the United States to fully solve a sample of questions from HLE. Errors flagged were routed between organizers, original question authors and auditors until consensus was reached. We used data from these audits to further refine our dataset. The first round aimed to identify common categories of imprecise questions, such as open-ended formats, reliance on rounded numerical values or submissions from authors with low acceptance rates. Based on these signals, we manually removed or revised potential questions with similar issues before conducting a second audit on a new sample of 200 questions. This iterative process yielded a final estimated expert disagreement rate of 15.4% for the public set. This level of expert disagreement is in line with what is observed in other well-known machine learning benchmarks^{59–62}.

Disagreement rates are often higher in domains such as health and medicine. A targeted peer review on a biology, chemistry and health subset, proposed in ref. 63, found an expert disagreement rate of approximately 18%. This is also observed in other similarly expert-grade work; for example⁶⁴, notes that disagreement among expert physicians is frequent on complex health topics. To aid future community efforts in identifying other potential dataset errors, we outline several key factors that contribute to the complexity of these audits below:

- The need for multiple experts: our multi-reviewer process highlighted the complexity of these questions. In several cases, a reviewer identified an important piece of information, such as a decades-old paper or a foundational concept not immediately apparent to others, that was essential to confirming the validity of an answer. To illustrate, if we were to adopt a single-reviewer methodology in which a question is flagged based on just one dissenting expert, the disagreement rate on the aforementioned health-focused subset jumps from 18% to 25%, which is close to the approximate numbers and method from ref. 63. This discrepancy highlights the importance of a standard peer-review process, complete with multiple reviewers and author rebuttal, for HLE questions.
- Questions from research experience: HLE is intentionally designed to include questions based on insights from the direct, hands-on experiments of its contributors. This design captures knowledge gained from direct research experiences, which is often difficult to verify through standard literature searches or by external reviewers. This was done to test model knowledge beyond what is readily indexed on the internet.
- Understanding question design: designing challenging closed-ended research questions is difficult. Consequently, the objective for some HLE multiple-choice questions is to identify the most plausible answer among the provided options. Some external reviewers, unfamiliar with these design principles, sought to find external sources to support an open-ended answer rather than evaluating the best choice among the given options.

HLE-Rolling. Inspired by these valuable community discussions and researcher interest across disciplines in contributing to the dataset, and as part of our commitment to continual improvement, we will introduce a dynamic fork of the dataset post-release: HLE-Rolling. This version will be regularly updated to address community feedback and integrate new questions. Information about the updates will be made publicly available at <https://lastexam.ai>. Our goal is to provide a seamless migration path for researchers once frontier models begin to hit the noise ceiling performance on the original HLE dataset.

Prompts. We use the following system prompt for evaluating LLMs on HLE questions. For models that do not support a system prompt, we add it as a separate user prompt.

Article

Your response should be in the following format:

Explanation: {your explanation for your answer choice}

Answer: {your chosen answer}

Confidence: {your confidence score between 00% and 100% for your answer}

We use the following system prompt to judge the model answers against the correct answers for our evaluations in Table 1. We used o3-mini-2025-01-31 with structured decoding enabled to get an extracted_final_answer, reasoning, correct, confidence extraction for each output. An example of a structured response using an LLM judge is shown in Extended Data Fig. 1.

Judge whether the following [response] to [question] is correct or not based on the precise and unambiguous [correct_answer] below.

[question]: {question}

[response]: {response}

Your judgement must be in the format and criteria specified below:

extracted_final_answer: The final exact answer extracted from the [response]. Put the extracted answer as 'None' if there is no exact, final answer to extract from the response.

[correct_answer]: {correct_answer}

reasoning: Explain why the extracted_final_answer is correct or incorrect based on [correct_answer], focusing only on if there are meaningful differences between [correct_answer] and the extracted_final_answer. Do not comment on any background to the problem, do not attempt to solve the problem, do not argue for any answer different than [correct_answer], focus only on whether the answers match.

correct: Answer 'yes' if extracted_final_answer matches the [correct_answer] given above, or is within a small margin of error for numerical problems. Answer 'no' otherwise, i.e. if there is any inconsistency, ambiguity, non-equivalency, or if the extracted answer is incorrect.

confidence: The extracted confidence score between 0% and 100% from [response]. Put 100 if there is no confidence score available.

Data availability

The HLE dataset is open-source and available at <https://huggingface.co/datasets/cais/hle>. Important updates to the project and dataset will be announced at <https://lastexam.ai>.

Code availability

The inference script for benchmarking AI systems on HLE is available at GitHub (<https://github.com/centerforaisafety/hle>).

12. Li, N. et al. The WMDP benchmark: measuring and reducing malicious use with unlearning. In Proc. 41st International Conference on Machine Learning (ICML), 28713–28738 (PMLR, 2024).
13. Laurent, J. M. et al. LAB-bench: measuring capabilities of language models for biology research. Preprint at <https://arxiv.org/abs/2407.10362> (2024).
14. Srivastava, A. et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Trans. Mach. Learn. Res.* <https://openreview.net/forum?id=uyTL5Bvosj> (2023).
15. Zhong, W. et al. Agieval: a human-centric benchmark for evaluating foundation models. Preprint at <https://arxiv.org/abs/2304.06364> (2023).
16. Hendrycks, D. et al. Measuring mathematical problem solving with the MATH dataset. In Proc. 35th Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track <https://openreview.net/forum?id=7Bywt2mQsCe> (NeurIPS, 2021).
17. Lu, P. et al. MathVista: Evaluating mathematical reasoning of foundation models in visual contexts. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=KUNzEOMWU7> (ICLR, 2024).
18. Cobbe, K. et al. Training verifiers to solve math word problems. Preprint at <https://arxiv.org/abs/2110.14168> (2021).
19. Glazer, E. et al. FrontierMath: a benchmark for evaluating advanced mathematical reasoning in AI. Preprint at <https://arxiv.org/abs/2411.04872> (2024).
20. He, C. et al. OlympiadBench: A challenging benchmark for promoting AGI with Olympiad-level bilingual multimodal scientific problems. In Proc. 62nd Annual Meeting of the Association for Computational Linguistics (ACL), 3828–3850 (ACL, 2024).
21. Gao, B. et al. Omni-MATH: A universal Olympiad level mathematic benchmark for large language models. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=yaqPfOKAIN> (ICLR, 2025).
22. Chan, J. S. et al. MLE-bench: Evaluating machine learning agents on machine learning engineering. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=6s5uXNWGh> (ICLR, 2025).
23. Zhang, A. K. et al. Cybench: A framework for evaluating cybersecurity capabilities and risks of language models. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=tc90LVOyRl> (ICLR, 2025).
24. Jimenez, C. E. et al. SWE-bench: Can language models resolve real-world Github issues? In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=VTF8yNQM66> (ICLR, 2024).
25. Chen, M. et al. Evaluating large language models trained on code. Preprint at <https://arxiv.org/abs/2107.03374> (2021).
26. Hendrycks, D. et al. Measuring coding challenge competence with APPS. In Proc. 35th Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track <https://openreview.net/forum?id=d93GOzH3i5> (NeurIPS, 2021).
27. Bhatt, M. et al. Purple Llama CyberSecEval: a secure coding benchmark for language models. Preprint at <https://arxiv.org/abs/2312.04724> (2023).
28. Austin, J. et al. Program synthesis with large language models. Preprint at <https://arxiv.org/abs/2108.07732> (2021).
29. Bai, Y. et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. Preprint at <https://arxiv.org/abs/2204.05862> (2022).
30. Perez, E. et al. Discovering language model behaviors with model-written evaluations. In *Findings of the Association for Computational Linguistics: ACL 2023*, 13387–13434 (ACL, 2023).
31. Rajpurkar, P. et al. SQuAD: 100,000+ questions for machine comprehension of text. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2383–2392 (EMNLP, 2016).
32. Rajpurkar, P. et al. Know what you don't know: Unanswerable questions for SQuAD. In Proc. 56th Annual Meeting of the Association for Computational Linguistics (ACL), 784–789 (ACL, 2018).
33. Bajaj, P. et al. MS MACRO: a human generated machine reading comprehension dataset. Preprint at <https://arxiv.org/abs/1611.09268> (2016).
34. Hendrycks, D. et al. What would Jiminy Cricket do? Towards agents that behave morally. In Proc. 35th Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track <https://openreview.net/forum?id=G1muTb5zuO7> (NeurIPS, 2021).
35. Phan, L., Mazeika, M., Zou, A. & Hendrycks, D. Textquests: how good are LLMs at text-based video games? Preprint at <https://arxiv.org/abs/2507.23701> (2025).
36. Wang, A. et al. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=J4km2R5t7> (ICLR, 2019).
37. Wang, A. et al. SuperGLUE: A stickier benchmark for general-purpose language understanding systems. In Proc. Advances in Neural Information Processing Systems (NeurIPS), Vol. 32, 3261–3275 (NeurIPS, 2019).
38. Yang, Z. et al. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2369–2380 (EMNLP, 2018).
39. Dua, D. et al. DROP: a reading comprehension benchmark requiring discrete reasoning over paragraphs. Preprint at <https://arxiv.org/abs/1903.00161> (2019).
40. Ott, S., Barbosa-Silva, A., Blagoev, K., Brauner, J. & Samwald, M. Mapping global dynamics of benchmark creation and saturation in artificial intelligence. *Nat. Commun.* **13**, 6793 (2022).
41. Owen, D. How predictable is language model benchmark performance? Preprint at <https://arxiv.org/abs/2401.04757> (2024).
42. Kiela, D. et al. Dynabench: Rethinking benchmarking in NLP. In Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), 4110–4124 (NAACL, 2021).
43. McIntosh, T. R. et al. Inadequacies of large language model benchmarks in the era of generative artificial intelligence. *IEEE Trans. Artif. Intell.* <https://doi.org/10.1109/TAI.2025.3569516> (2025).
44. Wang, Y. et al. MMLU-Pro: A more robust and challenging multi-task language understanding benchmark. In Proc. Advances in Neural Information Processing Systems (NeurIPS), article no. 3018 (NeurIPS, 2024).
45. Taghanki, S. A., Khani, A. & Khasahmadi, A. MMLU-Pro+: evaluating higher-order reasoning and shortcut learning in LLMs. Preprint at <https://arxiv.org/abs/2409.02257> (2024).
46. Yao, S. et al. τ -bench: A benchmark for tool-agent-user interaction in real-world domains. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=roNSXZpUDN> (ICLR, 2025).
47. Andriushchenko, M. et al. AgentHarm: A benchmark for measuring harmfulness of LLM agents. In Proc. International Conference on Learning Representations (ICLR) <https://openreview.net/forum?id=AC5n7xHuR1> (ICLR, 2025).
48. Kumar, P. et al. Refusal-trained LLMs are easily jailbroken as browser agents. Preprint at <https://arxiv.org/abs/2410.13886> (2024).
49. Yan, F. et al. Berkeley Function Calling Leaderboard https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html (2024).
50. Srinivasan, V. K. et al. NexusRaven: a commercially-permissive language model for function calling. In NeurIPS 2023 Foundation Models for Decision Making Workshop (NeurIPS, 2023).
51. Hosseini, A., Sordoni, A., Toyama, D., Courville, A. & Agarwal, R. Not all LLM reasoners are created equal. Preprint at <https://arxiv.org/abs/2410.01748> (2024).
52. Singhal, K. et al. Large language models encode clinical knowledge. *Nature* **620**, 172–180 (2023).

53. Nie, Y. et al. Adversarial NLI: A new benchmark for natural language understanding. In *Proc. 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 4885–4901 (ACL, 2020).

54. Göttling, J. et al. Virology capabilities test (VCT): a multimodal virology Q&A benchmark. Preprint at <https://arxiv.org/abs/2504.16137> (2025).

55. Phuong, M. et al. Evaluating frontier models for dangerous capabilities. Preprint at <https://arxiv.org/abs/2403.13793> (2024).

56. Anthropic's Responsible Scaling Policy Updates <https://www.anthropic.com/rsp-updates> (Anthropic, 2024).

57. Mazeika, M. et al. Remote labor index: measuring AI automation of remote work. Preprint at <https://arxiv.org/abs/2510.26787> (2025).

58. Patwardhan, T. et al. GDPval: evaluating ai model performance on real-world economically valuable tasks. Preprint at <https://arxiv.org/abs/2510.04374> (2025).

59. Kwiatkowski, T. et al. Natural questions: a benchmark for question answering research. *Trans. Assoc. Comput. Linguist.* **7**, 452–466 (2019).

60. Antol, S. et al. VQA: Visual question answering. In *Proc. IEEE International Conference on Computer Vision (ICCV)*, 2425–2433 (IEEE, 2015).

61. Reddy, S., Chen, D. & Manning, C. D. CoQA: a conversational question answering challenge. *Trans. Assoc. Comput. Linguist.* **7**, 249–266 (2019).

62. Bowman, S. R., Angeli, G., Potts, C. & Manning, C. D. A large annotated corpus for learning natural language inference. In *Proc. 2015 Conference on Empirical Methods in Natural Language Processing* (eds Márquez, L. et al.), 632–642 (ACL, 2015).

63. Skarlinski, M., Laurent, J., Bou, A. & White, A. About 30% of Humanity's Last Exam chemistry/biology answers are likely wrong. *FutureHouse* <https://www.futurehouse.org/research-announcements/hle-exam> (2025).

64. Arora, R. K. et al. HealthBench: evaluating large language models towards improved human health. Preprint at <https://arxiv.org/abs/2505.08775> (2025).

Acknowledgements The research is supported by Center for AI Safety and Scale AI.

Author contributions All authors have contributed to the dataset creation process. The Center for AI Safety and Scale AI consortia jointly designed the dataset premise and pipeline; operated the data collection platform (<https://lastexam.ai>); and provided funding, inference infrastructure for LLMs and review/auditing resources. The authors in the HLE Contributors Consortium contributed to the dataset in various ways, including submitting at least one accepted question to one of the dataset versions, contributing to dataset refinement or assisting with evaluations. In the Center for AI Safety and Scale AI, Long Phan, Alice Gatti, Ziwen Han and Nathaniel Li led the project, and Summer Yue, Alexandre Wang and Dan Hendrycks provided senior supervision.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41586-025-09962-4>.

Correspondence and requests for materials should be addressed to Long Phan or Dan Hendrycks.

Peer review information *Nature* thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at <http://www.nature.com/reprints>.

Article

Structured Judge Response Example

[correct_answer]: $\frac{\cos(\frac{\pi}{n})}{2(1+\cos(\frac{\pi}{n}))}$

[extracted_model_answer]: $\frac{\cot(\frac{\pi}{n})}{2 \cot(\frac{\pi}{2n})}$

[reasoning]: Using the half-angle identity $\tan(\frac{\pi}{2n}) = \frac{\sin(\frac{\pi}{n})}{1+\cos(\frac{\pi}{n})}$ and recalling that $\cot x = \frac{\cos x}{\sin x}$, we express $\cot(\frac{\pi}{n}) = \frac{\cos(\frac{\pi}{n})}{\sin(\frac{\pi}{n})}$ and $\cot(\frac{\pi}{2n}) = \frac{1+\cos(\frac{\pi}{n})}{\sin(\frac{\pi}{n})}$. Forming the quotient $\frac{\cot(\frac{\pi}{n})}{2 \cot(\frac{\pi}{2n})} = \frac{\frac{\cos(\frac{\pi}{n})}{\sin(\frac{\pi}{n})}}{2 \cdot \frac{1+\cos(\frac{\pi}{n})}{\sin(\frac{\pi}{n})}} = \frac{\cos(\frac{\pi}{n})}{2(1+\cos(\frac{\pi}{n}))}$, where the common $\sin(\frac{\pi}{n})$ cancels out. This detailed inline simplification shows that the model answer is equivalent to the correct answer.

[correct]: yes

Extended Data Fig. 1 | Example of a structured response using an LLM judge. Exact-match answers in HLE sometimes require several reasoning steps to compare the AI's final answer with the correct answer; therefore, a capable LLM judge with reasoning capabilities is necessary.

Extended Data Table 1 | Accuracy and RMS Calibration error of frontier LLMs on the text-only questions of HLE

Model	Accuracy (%) ↑	Calibration Error (%) ↓
GPT-4o	2.3 ± 0.6	88
CLAUDE 3.5 SONNET	4.3 ± 0.9	83
GEMINI 1.5 PRO	4.6 ± 0.9	87
GEMINI 2.0 FLASH THINKING	6.6 ± 1.0	82
o1	7.8 ± 1.1	84
DEEPSEEK-R1	8.5 ± 1.2	73
O3-MINI	13.4 ± 1.4	80
Post-Release Models		
LLAMA 4 MAVERICK	5.3 ± 1.0	84
CLAUDE 4 SONNET	7.6 ± 1.1	76
GEMINI 2.5 FLASH	12.6 ± 1.4	81
CLAUDE 4 OPUS	10.8 ± 1.3	73
o4-MINI	18.9 ± 1.7	58
o3	20.6 ± 1.7	36
GEMINI 2.5 PRO	22.1 ± 1.8	72
GPT-5	26.3 ± 1.9	50

Article

Extended Data Table 2 | Category-wise breakdown of frontier LLMs performance on HLE

Model	Text-Only							
	Math	Bio/Med	Physics	CS/AI	Humanities	Chemistry	Engineering	Other
GPT-4O	2.3	5.0	1.5	0.9	2.6	2.0	1.6	2.3
GROK 2	3.2	5.4	4.5	3.6	1.0	1.0	4.8	1.1
CLAUDE 3.5 SONNET	3.8	5.9	4.5	2.2	6.7	5.0	9.7	2.9
GEMINI 1.5 PRO	5.3	5.4	2.0	4.0	3.6	6.0	3.2	3.4
GEMINI 2.0 FLASH THINKING	8.1	7.7	4.5	4.9	6.2	5.0	4.8	2.9
o1	7.4	8.1	6.9	8.4	8.8	10.0	4.8	8.0
DEEPSEEK-R1	9.1	9.0	5.4	7.5	10.4	5.0	14.5	7.4
o3-MINI	18.6	10.0	15.3	8.4	5.2	9.0	6.5	6.9
Post-Release Models								
LLAMA 4 MAVERICK	5.1	5.9	5.9	4.9	6.2	8.9	6.2	2.3
CLAUDE 4 SONNET	8.1	7.2	5.9	7.1	10.9	5.0	14.1	3.4
CLAUDE 4 OPUS	10.8	15.3	8.9	11.2	12.4	5.9	10.9	8.0
GEMINI 2.5 FLASH	14.5	13.1	13.9	8.9	11.4	3.0	10.9	9.1
o4-MINI	24.5	14.0	19.8	19.6	9.8	6.9	10.9	10.2
o3	23.6	17.1	19.3	19.6	17.6	16.8	17.2	16.5
GEMINI 2.5 PRO	26.2	17.1	20.8	17.0	25.4	22.8	15.6	11.4
Full Dataset								
GPT-4O	2.3	6.4	1.7	0.8	3.2	3.6	1.8	2.6
GROK 2	3.0	4.6	3.9	3.3	1.4	2.4	3.6	1.7
CLAUDE 3.5 SONNET	4.0	4.6	3.9	2.5	5.9	4.2	7.2	2.2
GEMINI 1.5 PRO	5.2	5.4	3.0	3.7	4.1	6.1	3.6	3.4
GEMINI 2.0 FLASH THINKING	8.0	8.2	4.8	4.5	6.4	5.5	6.3	3.0
o1	7.4	10.4	7.0	8.2	8.7	9.7	6.3	7.3
Post-Release Models								
LLAMA 4 MAVERICK	5.1	6.1	5.7	5.0	7.3	10.9	6.3	3.0
CLAUDE 4 SONNET	8.3	8.2	6.1	6.6	11.0	6.7	10.8	3.9
CLAUDE 4 OPUS	10.5	15.4	10.0	10.4	12.8	7.3	9.0	8.6
GEMINI 2.5 FLASH	14.3	12.1	13.0	9.1	10.5	6.7	11.7	8.2
o4-MINI	24.1	15.4	18.7	19.5	9.1	8.5	11.7	9.9
o3	23.4	18.9	18.7	20.7	17.8	16.4	17.1	15.9
GEMINI 2.5 PRO	25.8	18.6	20.4	17.0	23.7	23.6	18.0	11.6

Extended Data Table 3 | Accuracy across multi-modal only, exact answer, and multiple-choice splits of HLE

Model	Multi-Modal Only	Exact Match Only	Multiple-Choice Only
GPT-4O	5.3	1.8	5.6
GROK 2	2.3	2.2	5.8
CLAUDE 3.5 SONNET	2.6	3.1	6.9
GEMINI 1.5 PRO	5.0	3.8	7.1
GEMINI 2.0 FLASH THINKING	6.7	5.2	10.8
o1	9.4	6.7	12.0
DEEPSSEEK-R1*	-	6.9	13.8
O3-MINI*	-	12.9	14.6
Post-Release Models			
LLAMA 4 MAVERICK	7.9	4.2	10.5
CLAUDE 4 SONNET	8.8	6.1	13.0
GEMINI 2.5 FLASH	9.1	10.1	17.8
CLAUDE 4 OPUS	10.2	8.4	18.1
O4-MINI	12.9	17.5	19.5
O3	19.0	18.9	24.7
GEMINI 2.5 PRO	19.0	19.6	28.1

*Text-only models.