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The leading cause of human pregnancy loss is aneuploidy, often tracing to errorsin
chromosome segregation during female meiosis". Although abnormal crossover
recombination is known to confer risk for aneuploidy**, limited data have hindered
understanding of the potential shared genetic basis of these key molecular phenotypes.

To address this gap, we performed retrospective analysis of pre-implantation genetic
testing datafrom 139,416 in vitro fertilized embryos from 22,850 sets of biological
parents. By tracing transmission of haplotypes, we identified 3,809,412 crossovers, as
well as 92,485 aneuploid chromosomes. Counts of crossovers were lower in aneuploid
versus euploid embryos, consistent with their role in chromosome pairing and
segregation. Our analyses further revealed that acommon haplotype spanning the
meiotic cohesin SMCIBis associated significantly with both crossover count and
maternal meiotic aneuploidy, with evidence supporting a non-coding cis-regulatory
mechanism. Transcriptome- and phenome-wide association tests also implicated
variation in the synaptonemal complex component C14orf39 and crossover-regulating
ubiquitin ligases CCNB1/P1 and RNF212in meiotic aneuploidy risk. More broadly,
variants associated with aneuploidy often showed secondary associations with
recombination, and several also exhibited associations with reproductive ageing traits.
Our findings highlight the dual role of recombination in generating genetic diversity,
while ensuring meiotic fidelity.

Despite their critical role in encoding genetic information, chromo-
somes frequently mis-segregate during human meiosis, producing
abnormalities in chromosome number—a phenomenon termed ane-
uploidy. Aneuploidy is the leading cause of human pregnancy loss,
as well as the cause of genetic conditions such as Klinefelter, Turner
and Down syndromes'? It is estimated that only approximately half
of human conceptions survive to birth, primarily because of the abun-
dance of aneuploidies that are inviable in early gestation®®.

Work in humans and model organisms has established that one risk
factor for aneuploidy involves variationin the number and location of
meiotic crossover recombination events, especially in the female ger-
mline**. Notably, female meiosis initiates in fetal development, when
replicated homologous chromosomes (homologues) pair and establish
crossovers, which, together with cohesion between sister chromatids,
hold homologues togetherina‘bivalent’ configuration. Homologues
segregate (meiosis I) upon ovulation after the onset of puberty, whereas
sister chromatids segregate (meiosis II) after fertilization. The physical
linkages formed by meiotic crossovers help stabilize paired chromo-
somes during this prolonged period of female meiotic arrest’. Cohesin
complexes, loaded in developing fetal oocytes, link sister chromatids
and are crucial for chromosome synapsis and crossover formation®’.
Failure to formbivalents due to lack of crossovers'© or their suboptimal
placement®, as well as age-related cohesin deterioration®, canlead to
premature separation of sister chromatids and the related phenomenon

of reverse segregation, which together represent the predominant
mechanisms of maternal meiotic aneuploidy®.

Although producing sex-specific recombination maps and revealing
associations with crossover phenotypes at meiosis-related genes, the
largest studies of crossoversin living human families lacked aneuploid
participants and only speculated about such relationships***. Much of
currentknowledge about the connection between human recombina-
tion and aneuploidy, as well as their genetic bases, thus comes from
smaller samples of people living with survivable aneuploidies, limiting
statistical power. By contrast, recent advancesin single-cell sequencing
have enabled simultaneous discovery of crossovers and aneuploidies
insperm and eggs, but are typically relegated to small numbers of
gametes (in the case of oocytes) or small numbers of donors, hindering
understanding of variability and potential shared genetic architecture
of these phenotypes™® ™,

Clinical genetic data from pre-implantation genetic testing (PGT) of
in vitro fertilized (IVF) embryos help overcome these limitations and
offeranideal resource for characterizing aneuploidy and mapping mei-
oticcrossovers atscale. Here we used single nucleotide polymorphism
(SNP) array-based PGT data from 139,416 blastocyst-stage embryo
biopsies and 22,850 sets of biological parents to (1) map recombina-
tion and aneuploidy, (2) test their relationship quantitatively and (3)
discover geneticfactors that modulate theirincidence and features. Our
analysis revealed an overlapping genetic basis of female recombination
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Fig.1|Datafrom PGT of IVF embryos offer insight into crossover
recombination and aneuploidy. Coloursindicate maternal (purple) versus
paternal (blue) datafeatures.a, Datacomprise SNP microarray genotyping of
trophectoderm biopsies from sibling embryos, as well as DNA from parents.

b, Tracing transmission of parental haplotypes from parents to embryos reveals
evidence of crossovers, as well as aneuploidies. ¢, Aneuploidies primarily
involve gain or loss of maternal homologues and are enriched on particular
chromosomes. Complex aneuploidies (more than five affected chromosomes)
and genome-wide ploidy abnormalities (for example, triploidy) are excluded
(Extended DataFig.1).d, Aneuploidies affecting maternal homologuesincrease

and aneuploidy formation involving common variation in key meiotic
machinery. Together, our work offers a more complete view of the
sources of variation in the fundamental molecular processes that gen-
erate genetic diversity while impacting human fertility.

Meiotic aneuploidy is commonin embryos

Seekinginsight into meiotic crossover recombination and the origins
of aneuploidies, we performed retrospective analysis of data from
PGT. Specifically, these datacomprised SNP microarray genotyping of
bulk (approximately six cells) trophectoderm biopsies from 156,828
blastocyst-stage embryos (5 days post-fertilization), as well as DNA iso-
lated from buccal swabs or blood fromboth biological parents (24,788
patient-partner pairs) (Fig. 1a and Supplementary Figs. 1and 2; Sup-
plementary Methods). We developed a hidden Markov model (HMM),
called karyoHMM, to trace the transmission of parental haplotypes to
sampled embryos and thereby identify aneuploidies and crossover
recombination events. Specifically, we modelled transitions between
the haplotypes transmitted from the same parent as crossovers and
inferred the chromosome copy number that best explained theembryo
data (Fig. 1b and Supplementary Fig. 3; Supplementary Methods).
Applying this method to a dataset where low-quality samples were
removed (139,416 remaining embryos; Supplementary Methods),
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with maternal age, whereas aneuploidies affecting paternal homologues
exhibit nosignificantrelationship with paternal age. e, Maternal crossovers
exceed paternal crossovers. Embryos with crossover counts outside of 3 s.d.
fromthe sex-specific meanare excluded. f, Crossover counts differ between
disomic chromosomes of euploid (n =46,856) and aneuploid (n =34,542)
embryos containing atleast a single maternal crossover (two-sided Poisson
GLMM), but the proportion of crossovers occurring within hotspots does not
(two-sided Gamma GLMM). Error bars indicate 95% confidence intervals.
Illustrationinaadapted from NIH BioArt Source (https://bioart.niaid.nih.gov/
bioart/209) under a Public Domain licence CCO1.0.

we identified 41,480 (29.8%) embryos with at least one aneuploid
chromosome (92,485 aneuploid chromosomes; Extended Data Fig. 1).
Trisomies exceeded monosomies (57,974 trisomies, 34,511 monoso-
mies; ratio, 0.626; 95% confidence intervals, 0.624, 0.630; two-sided
binomial test, P <1x107'%°), indicative of selection before blastocyst
formation®. However, trisomies and monosomies of all individual auto-
somes and sex chromosomes were detected within the sample (Fig. 1c).
Aneuploidieslargely involved gain or loss of maternal versus paternal
homologues (84,044 maternal:8,441 paternal; ratio, 0.909; 95% confi-
denceintervals, 0.907,0.911; two-sided binomial test, P < 1x 10™°°) and
were strongly enriched for chromosomes 15,16, 21 and 22, replicating
previous literature®.

We also replicated the association between maternal age and the
incidence of aneuploidies affecting maternal homologues (binomial
generalized linear mixed model (GLMM), ﬁ =0.235,s..=2.19x1073,
P<1x107%;Supplementary Table1)". The data were well fit by amodel
with a quadratic term for maternal age (Fig. 1d, Supplementary Fig. 4
and Supplementary Table 1; Supplementary Methods). Positive asso-
ciations with maternal age were also significant when stratifying
the phenotype to maternal meiotic aneuploidy of individual chromo-
somes (Supplementary Table1). Further supporting selection against
meiotic aneuploidies, per patient rates of maternal meiotic aneuploidy
were inversely associated with per-cycle embryo counts, even when


http://bioart.niaid.nih.gov/bioart/209
http://bioart.niaid.nih.gov/bioart/209
http://creativecommons.org/public-domain/

controlling for maternal age (binomial GLMM, 8 =-0.030,s.e. = 6.88 x
103,P=1.29 x107°). Despite the statistical power afforded by the large
sample size, we observed no significant association between paternal
age and aneuploidies affecting paternal homologues (binomial GLMM,
ﬁ =-1.06 x1073,s.e. = 0.013, P= 0.936; Fig. 1d and Supplementary
Table 1), consistent with previous findings®. The absence of paternal
age association also held for the sex chromosomes, where paternal
meioticaneuploidies were relatively more common (binomial GLMM,

B =2.14x1073,s.e.= 0.020, P=0.914; Supplementary Table 1).

Aneuploid embryos possess fewer crossovers

Previous studies have shown that abnormal number or placement of
crossovers confers risk for meiotic aneuploidy™*. These include stud-
ies of survivable trisomies?*?, gametes***” and embryos'®*?, which
broadly demonstrated that aneuploid chromosomes are depleted
of crossovers compared with corresponding disomic chromosomes.

Across 46,861 euploid embryos (and requiring at least three sibling
embryos; Supplementary Methods), weidentified 2,310,257 maternal-
and 1,499,155 paternal-origin autosomal crossovers (3,809,412 total)
atamedian resolution of 99.43 kilobase pairs (kbp) (Fig. 1e). The mean
counts of sex-specific crossovers per meiosis (49.30 maternal, 31.99
paternal), as well as their genomic locations (Spearman correlation
(r) at100-kbp resolution: 0.96 maternal, 0.98 paternal), were consist-
entwith previous pedigree-based studies of living human cohorts™".
We also observed substantial proportions of chromosomes that
lack detected crossovers fromagiven parent (maternal =1.67-35.56%,
paternal = 7.83-51.77%), particularly among short chromosomes such
aschromosomes 21and 22 where aneuploidies are common (Extended
Data Fig. 2). Acknowledging the limited resolution of the genotyping
array at chromosome ends, these estimates conform with observations
from living human pedigrees™.

Previous literature offers conflicting evidence about the relationship
between counts of meiotic crossovers and maternal age, with some
studies reporting a positive association'*>* and others reporting a
negative association®. As those studies focused largely onliving fam-
ilies, positive associations were interpreted typically as evidence of
selection against aneuploid embryos, which possess fewer crossovers
on average and increase in frequency with maternal age. Within our
sample, we observed no significant association between maternal age
and number of maternal crossovers (Poisson GLMM, ﬁA =-2.62x107,
s.e.=1.68 x107%, P=0.988). This observation held even when restrict-
ing analysis to euploid embryos (Poisson GLMM, ﬁ =512x107",
s.e.=1.43x107, P=0.721), offering a point of evidence against the
hypothesis that embryonic aneuploidy explains previously reported
age associations with crossovers.

We used these crossover datato perform genome-wide association
studies (GWAS) across four phenotypes: mean count of autosomal
crossovers across euploid embryos (crossover count); fraction of
crossovers within recombination hotspots based on published genetic
maps (hotspot occupancy); mean timing of DNA replication at crosso-
ver sites (replication timing); and mean guanine-cytosine content
+500 bp around crossover sites (GC content; Supplementary Methods).
We identified 15 unique association signals achieving genome-wide
significance (P <5 x1078), all of which replicated previous findings***
(Supplementary Table 2 and Extended Data Figs. 3-6), including a
haplotype spanning RNF212 with opposing directions of association
withmaternal versus paternal recombinationrates (lead SNP rs3816474;
maternal B =-0.089 +0.013 s.e., P=1.84 x10; paternal
B =0.186 £ 0.013 s.e., P=1.76 x 10~¥; Extended Data Fig. 3). Comple-
menting these GWAS, we performed transcriptome-wide association
studies (TWAS) to associate predicted gene expression across several
tissues® with recombination phenotypes, identifying 35 unique genes
significantly associated with at least one recombination phenotype
(P<3.0x107% Supplementary Table 3; Supplementary Methods).

Prominent hits included the synaptonemal complex component
C140rf39 (also known as SIX60SI)¥ and crossover-regulating ubiquitin
ligase CCNB1IPI (also known as HEI10)*, implying that previously
reported genetic associations at these loci could be driven by non-
coding regulatory mechanisms™.

To examine the relationship between crossovers and aneuploidies,
we contrasted patterns of crossovers between aneuploid and euploid
embryos. One technical limitation for direct detection of crossovers
using genetic data from trisomic chromosomes is that crossovers can
be missed when both reciprocal products of a single crossover event
are transmitted to the embryo'. To overcome this concern, we instead
contrasted counts of crossovers on disomic chromosomes of aneuploid
embryos (with aneuploidy affecting a different chromosome) to cor-
responding disomic chromosomes of euploid embryos. This com-
parison relies on the previous observation that crossover counts
positively covary across chromosomes within meiocytes®®—a phenom-
enonthatwereplicated for euploid embryos within our dataset (intra-
class correlation coefficient = 0.176; 95% confidence intervals, 0.11,
0.3; P<1x107°° maternal; intraclass correlation coefficient = 0.088;
95% confidence intervals, 0.05, 0.16; P <1x 107%° paternal; Extended
DataFig.7; Supplementary Methods). Asinput to our test, we identified
1,505,107 maternal- and 1,007,176 paternal-origin crossovers on
disomic chromosomes across 34,542 embryos with at least one ane-
uploid chromosome (and requiring at least three sibling embryos).
Using a Poisson GLMM (Supplementary Methods), we found that the
number of crossovers was significantly lower on the disomic chromo-
somes of aneuploid embryos relative to euploid embryos (E =0.105
differencein marginal means + 6.923 x10s.e.; P=4.64 x 10™°; Fig. 1f).
Theseresults are consistent with the understanding that reductionin
crossovers—and absence of crossovers, in particular'®—confers risk
for meiotic aneuploidy.

SMCIB variants associate with aneuploidy

Previous studies have suggested that the incidence of female meiotic
aneuploidy may be individual-specific, even after accounting for mater-
nal age®. To test this hypothesis, we fit a quasi-binomial generalized
linear model (GLM) to the per patient counts of embryos affected versus
unaffected with maternal meiotic-origin aneuploidy, including mater-
nal age as a quadratic covariate (Supplementary Methods). Compared
with a simulated binomial null distribution, the observed incidence
of meiotic aneuploidy was significantly overdispersed across female
patients, controlling for maternal age (dispersion parameter (¢) = 1.15,
P<0.01; Supplementary Fig. 5). Overdispersion was also apparent
when stratifying analysis to maternal meiotic aneuploidies affecting
individual chromosomes (Supplementary Table 4). These observations
of overdispersion suggest arole of genetic and environmental factors
beyond age in observed variation in maternal meiotic aneuploidy.

To investigate the genetic component, we scanned for variation in
maternal genomes associated with the incidence of maternal meiotic
aneuploidy. Weimplemented these association tests using a binomial
GLMM, controlling for covariatesincluding maternal age (Supplemen-
tary Methods). Wefirst tested for cis-genetic effects on aneuploidy risk
by associating incidence of aneuploidy affecting eachindividual chro-
mosome with maternal genotypesrestricted to that chromosome, but
we identified no associations achieving genome-wide significance
(P<5x107%). Proceeding to agenome-wide analysis considering mater-
nal meiotic aneuploidies affecting any chromosome, we discovered
two genome-wide significantassociations (Fig. 2a and Supplementary
Fig. 6). The first hit (lead SNP rs9351349, ﬁ =0.078, s.e.=0.014,
P=2.93x107%)lies within anintergenic region of chromosome (Chr.) 6
but did not replicate in a held-out test set comprising 15% of female
patients (ﬁ =0.021,s.e.=0.033, P=0.529). The second hit (lead SNP
rs6006737, B =0.066, s.e.=0.012, P=2.21x107%) lies on Chr. 22 and
replicated in the held-out test set (B =0.059,s.e.=0.028, P=0.033).
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Fig.2|Variantsdefiningahaplotype spanning SMCIB are associated with
incidence of maternal meiotic aneuploidy. a, Results of GWAS tests of maternal
meiotic aneuploidy and maternal genotype (two-sided binomial GLMM).

The dotted lineindicates the threshold for genome-wide significance
(P=5x107%). b, Fitted relationship between maternal age and incidence of

The minor (C) allele of rs6006737 within our sample is globally com-
mon, segregating at high frequencies (gnomAD allele frequency
(AF) =0.78) in African populations but at lower frequencies in European
(gnomAD AF = 0.35) and other non-African populations®. The effect s
additive, whereby for a40-year-old patient, each copy of therisk allele
confers an estimated 1.65% additional average risk of aneuploidy
(Fig.2b). We also detected evidence of asmall but statistically significant
interaction between maternal age and genotype (likelihood ratio test,
x*(1)=4.24,P=0.040), indicating that the effect of genotype increases
withincreasing maternal age (ﬁ =0.026,s.e.=0.013, P= 0.045). Nota-
bly, the size and direction of the main effect of genotype is relatively
consistent for aneuploidies of allindividual autosomes (Extended Data
Fig. 8), suggesting general, genome-wide impacts on meiotic fidelity.

The associated haplotype spans approximately 120 kbp, encompass-
ing four genes: UPK3A, FAM118A, RIBC2 and SMCIB (Fig. 2c). SMCIB
encodes a component of the ring-shaped cohesin complex (Fig. 3a),
withintegralrolesinsister chromatid cohesionand homologousrecom-
bination during meiosis***. Smc1b-deficient mice of both sexes are
sterile, and female mice exhibit meiotic abnormalities including reduc-
tion in crossovers, incomplete chromosome synapsis, age-related
premature loss of sister chromatid cohesion and chromosome mis-
segregation®>*, Previous work in humans demonstrated associations
between aless common (gnomAD global AF = 0.06) SMC1B missense
variant (rs61735519; r*> with GWAS lead SNP rs6006737 = 0.089,
D’=0.943) and recombination phenotypes™. Although imputed with
moderate accuracy (dosage r* = 0.80), this missense variant exhibits
only modest association with aneuploidy within our sample (ﬁ =0.112,
s.e.=0.040, P=4.80 x 10%). Meanwhile, the more common aneuploidy-
associated haplotype tagged by GWAS lead variant rs6006737 lacks
amino acid altering variation (> < 0.1 for all SMCIB nonsynonymous
variants), motivating us to explore potential regulatory mechanisms
driving the observed phenotype.

Associated haplotype is an SMCIB expression
quantitative trait locus

Querying the GWAS lead variant (rs6006737) in data from the Genotype
Tissue Expression (GTEx) Project?, we observed that the aneuploidy
riskalleleis associated significantly with reduced expression of SMCIB
across diverse tissues. Although invaluable, GTEx largely includes
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Chr. 22 position (Mbp)

aneuploidy, stratified by maternal genotype at aneuploidy-associated lead SNP
rs6006737. c. Regional Manhattan plot depicting the associated locus on

Chr. 22, with points coloured based on pairwise linkage disequilibrium with the
lead SNPrs6006737 (diamond). Mbp, megabase pairs.

participants of European ancestries, limiting resolution for fine-map-
ping of causal expression-altering variants. To address this limitation,
we also queried the GWAS lead variant in MAGE, which includes RNA
sequencing datafrom lymphoblastoid cell lines from 731 people from
26 globally diverse populations®. Consistent with GTEx, rs6006737 is
astrong expression quantitative trait locus (eQTL) of SMCI1B in MAGE
(B =-0.429,s.e.= 0.048, P = 4.68 x 105 Fig. 3b). Fine-mapping within
MAGE decomposes the eQTL signals for SMCIB into two credible sets
containing candidate causal variants (coverage = 0.95) (Fig. 3c,d).
Whereas one credible setincludes nine variants distributed throughout
the upstream region of SMCI1B, the other is defined by a single SNP
(rs2272804; posterior inclusion probability > 0.99), 144 bp upstream
of the SMCIB transcription start site.

Theregulatory potential and accessibility of the putative promoter
CpGisland sequence within which rs2272804 resides is supported by
published epigenomic and ATAC-seq (assay for transposase-accessible
chromatin using sequencing) data from human ovaries®?¢ (Fig. 3d).
We further noted that the SNP lies within a predicted binding motif
of ATF1—a transcription factor expressed in female germ cells*” and
inferred previously to regulate paralogue SMCIA based on chroma-
tin immunoprecipitation sequencing data®. Binding of ATF1to the
SNP-encompassing locus is also supported by high-confidence chro-
matinimmunoprecipitation sequencing peaks ininduced pluripotent
stem cells (WTC11) assayed by the ENCODE Project®®. By performing
anelectrophoretic mobility shift assay, we found that a DNA construct
containing the alternative allele of rs2272804 had more than three-
fold lower binding affinity (dissociation constant, K) for purified
human ATF1in vitro than a construct containing the reference allele
(Student’s t-test, mean reference K, = 56.62 nM + 4.65 s.d., mean vari-
ant K, =173.39 nM +15.24 s.d., P=2.60 x 107*), consistent with the
observed eQTL effect (Extended Data Fig. 9). Taken together, these
results suggest a potential non-coding regulatory mechanismunderly-
ing the observed genetic association with maternal meiotic aneuploidy.

TWAS reveals new links to meiosis genes

Motivated by our observations at SMCIB, we next sought to examine
whether other cis-regulatory effects on expression could influence ane-
uploidy risk. We therefore used TWAS to test whether predicted gene
expression across tissues is associated with incidence of aneuploidy


http://www.ncbi.nlm.nih.gov/snp/?term=rs6006737
https://www.ncbi.nlm.nih.gov/snp/?term=rs61735519
https://www.ncbi.nlm.nih.gov/snp/?term=rs6006737
https://www.ncbi.nlm.nih.gov/snp/?term=rs6006737
https://www.ncbi.nlm.nih.gov/snp/?term=rs6006737
https://www.ncbi.nlm.nih.gov/snp/?term=rs6006737
https://www.ncbi.nlm.nih.gov/snp/?term=rs2272804
https://www.ncbi.nlm.nih.gov/snp/?term=rs2272804
https://www.ncbi.nlm.nih.gov/snp/?term=rs2272804
https://www.ncbi.nlm.nih.gov/snp/?term=rs6006737
https://www.ncbi.nlm.nih.gov/snp/?term=rs6006737

a R T
LCL gene expression 0 0.250.500.751.00
. (n=731) D' TS
2
L rs6006737 HEEEEEEEE GWAS lead SNP
rs2272804 eQTL credible set 1
SMC3 sMCc1B § 2 2° rs112587279
25 rs9614467
£o rs9306476
g7 244
59 rs2142661
Qg rs2142662 eQTL credible set 2
s OE 2| rs9614663
!ﬁ? 587? rs9614664
*x % rs5845710 [ ]
| | 4 20 4 rs9614666 [ ] [ ]
L REC8 >~ STAG3 A ONO-N®YO©
T cmo cie RPIILT8E888K S
OANTONNT IO
rs6006737 BNREBTTobd o
genotype BUCBRVLRBED
K2
d
Ovary (14 weeks)
ATAC-seq [ | | (.
404 }
0
TssAFInk
Ovary (30 years) i
Roadmap ChromHMM ~\
1 Ladl 1 A 3 b
) I" 1 l L| H | § r
SMC1B RIBC2
T T T T T T
45,410 kb 45,415 kb 45,420 kb 45,425 kb 45,430 kb 45,435 kb

Fig.3|Theaneuploidy risk haplotypeis associated withlower expression of
SMCIB, driven by two independent causal signals. a, Schematic of the meiotic
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reduced expression of SMCIBin humanlymphoblastoid cell lines (LCLs; n=731)
fromdiverse populations. Barsrepresent the first and third quartiles of the
data, white pointsrepresent the second quartile (median) and whiskers are

(Supplementary Methods). Across 16,685 protein-coding genes,
we identified two hits achieving transcriptome-wide significance
(P<3x107% Extended DataFig.10). Althoughled by adjacent gene RIBC2
(P=2.19 x107), the peak on Chr. 22 includes SMCIB (P=7.63 x107®),
replicating our findings from GWAS and downstream functional dis-
section. We hypothesize that RIBC2represents asecondary, noncausal
association, whereby the same haplotype (and potentially the same
causal variant®) co-regulates expression of both genes, driving their
correlation (Supplementary Fig. 7). The second peak lies on Chr. 14
andisled by C14orf39 (P=1.65 x107), which encodes a component of
the synaptonemal complex, which mediates synapsis, recombination
and segregation of homologous chromosomes during meiosis?. Previ-
ous studies have linked rare C14orf39 variants to human infertility*>*
and demonstrated associations between common CI4orf39 variants
and recombination phenotypes™?. Our results connect these findings
and show that both rare and common variation influencing female
fertility phenotypes can converge on the same meiosis-related genes.
Although notachieving transcriptome-wide significance, a third peak,
on Chr. 12, includes NCAPD2 (P =2.16 x 107°), which encodes a regula-
tory subunit of the condensin I complex, involved in chromosome
condensation during both meiotic and mitotic prophase*?. Together,
our findings highlight the role of common non-coding cis-regulatory
variationinfluencing expression of meiosis-related genes in modulating
risk of maternal meiotic aneuploidy (Extended Data Fig. 10).

Pleiotropic effects on fertility traits

Giventherelationship between crossovers and aneuploidies, we next
aimed to contextualize our association findings and examine the

boundtol.5x theinterquartile range. c, Pairwise linkage disequilibrium
betweenaset of SNPsincluding GWAS lead SNP rs6006737 and variants
defining fine-mapped eQTL credible sets for SMCIB. d, Fine-mapped eQTL
rs2272804 (credible set1) lies within a putative promoter sequence within
open chromatin, while variants defining asecond credible set are distributed
throughout the upstreamregion of SMCIB.

potential shared genetic basis with other fertility-related traits. To this
end, weidentified thelead variant from each genome-wide significant
peakinfemale recombination and aneuploidy GWAS and queried their
associations with all recombination and aneuploidy phenotypes, as
well as published GWAS of female reproductive ageing and infertility
traits (that is, phenome-wide association). Our analysis revealed that
therisk allele of the aneuploidy-associated lead SNP rs6006737 is also
associated with lower rates of female recombination within our data
(B =-0.033,s.e.= 0.011, P= 0.002), consistent with the known role of
SMCIB variation in this phenotype®. Extending to published GWAS
data****, we observed that the aneuploidy risk allele is additionally
associated with greater age at menarche (ﬁ =0.021, s.e.=0.003,
P=3.82x1072) and lesser age at menopause (8 = -0.047, s.e. = 0.013,
P=2.06 x10™*) and thus ashorter female reproductive timespan (Fig. 4).

Strikingly, three of the genome-wide significant hits for female
recombination rate (Supplementary Table 2) also exhibited nominal
associations with aneuploidy in consistent direction. The first hit
(lead SNP rs4365199; aneuploidy = 0.056,s.e.= 0.012, P=5.58 x 10°5;
gnomAD global AF = 0.39) comprises a 175-kbp haplotype spanning
synaptonemal complex component CI40rf39, consistent with our pre-
vious TWAS results. The second hit (lead SNP rs12588213; aneuploidy
B =0.037,s.e.=0.012, P=1.46 x10%; gnomAD global AF = 0.42) com-
prises a15-kbp haplotype spanning CCNB1IP1, encoding an E3 ubiqui-
tin ligase demonstrated as essential for crossover maturation and
fertility in mice?. Thelast hit (lead SNP rs3816474; aneuploidy B = 0.041,
s.e.=0.014, P=5.04 x107%; gnomAD global AF = 0.22) comprises
a59-kbp haplotype spanning the E3 ubiquitin ligase RNF212, encod-
ing an essential regulator of meiotic recombination that interacts
with CCNB1IPI and helps to designate sites of crossovers versus
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Number of children ever born —
Childlessness -

Idiopathic female infertility by inclusion —
Idiopathic female infertility by exclusion —
Anatomical female infertility -
Anovulatory female infertility —

Female infertility of all causes -

Age at menopause

Age at menarche -

Coefficient of variation in number of crossovers —
Crossover location: GC content —

Crossover location: hotspot occupancy -
Crossover location: replication timing -

Number of crossovers -

Maternal meiotic aneuploidy

Fig.4|Aneuploidy, recombinationand female reproductive ageing traits
share an overlapping geneticbasis. The lead SNP from each peak from GWAS
of aneuploidy and recombination was queried for association with other
fertility-related phenotypes (two-sided linear or logistic model from respective
GWAS study). Darkness indicates significance of association (P value), while

non-crossovers®. Several of these recombination and aneuploidy-
associated variants also exhibited secondary associations with ages
at menarche and menopause (Fig. 4). Whereas previous studies have
reported links between DNA damage response and reproductive age-
ing*** theinconsistenciesin directions of effectsin our dataimply
thattherelationship with aneuploidy may be more complex. Moreover,
none of the aneuploidy-associated variants exhibited even nominal
associations with various definitions of female infertility*S, potentially
reflecting the multifactorial nature of clinical infertility.

Despite our discoveries of several genome- and transcriptome-wide
significant loci, the proportion of variance in maternal meiotic aneu-
ploidy explained by genotyped SNPs (that is, SNP heritability) was
negligible (W%, = 0.023 + 0.024 s.e.; Supplementary Table 5), although
SNP heritability of female recombination rate was moderately higher
(M%gnp = 0.112 £ 0.042s.€). These estimates are in line with low reported
SNP heritabilities of female fertility phenotypes*® and the sizeable
contribution of environmental factors to maternal aneuploidy risk.
Giventhese observations, we hypothesized that environmental factors
and/or rare genetic variation contribute to residual variance in aneu-
ploidy rates, including by effects on meiotic recombination. In support
of this hypothesis, individual-specific rates of recombination were
inversely associated with aneuploidy, even after controlling for mater-
nal age and all genetic associations (binomial GLMM, ﬁ =-0.763,
s.e.=0.14, P=8.15x107%; Supplementary Methods), again supporting
abroad, protective effect of crossovers on aneuploidy risk.

Evolution of the SMC1Brisk allele

The discovery of acommon aneuploidy-associated haplotype at SMCIB
poses an evolutionary paradox, as alleles that reduce fitness should be
subject to negative natural selection. To understand the evolution of
aneuploidy-associated alleles, we examined empirical signatures of
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colourindicates direction of association. SNPs are polarized such that the
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containing ACYP2and TSPYL6, where nosuch candidateis apparent.

natural selection and explored the theoretical parameter space that
would allow us to reconcile these observations.

One potential model for explaining the maintenance of deleterious
variation is positive or balancing selection targeting the same haplo-
type. Given that linkage disequilibrium between causal variants and
tagging variants differs across populations and over time, we focused
our empirical analyses on the putative causal expression-altering
SNP, rs2272804, that we previously characterized. The (A) allele of
rs2272804, associated with lower SMCIB expression and higher ane-
uploidy risk, is globally common (gnomAD global AF = 0.44), with
higher frequencies among African populations (gnomAD AF = 0.71).
Inference of the historical frequency trajectory of the derived risk
allele based on the ancestral recombination graph (Supplementary
Methods) also suggests ahigher frequency withinan ancestralhuman
population, modestly declining outside of Africawithin thelast1,000
generations (Fig. 5a). While the putative ancestral (C) allele appears
fixed among extant non-human great ape populations, the variant is
polymorphic across high-coverage Neanderthal genomes (Supple-
mentary Methods), and coalescence-based methods estimate that
the derived allele originated 910,650 years ago (95% confidence inter-
vals, 825,825-1,004,175)*. These patterns of frequency differentiation
and coalescence are unremarkable and broadly conform to neutral
expectations for a variant at such intermediate frequencies®. Simi-
larly, haplotype-based tests for balancing selection revealed no outlier
signal in the region of SMCIB (Supplementary Fig. 8; Supplementary
Methods). Although we cannot formally exclude the possibility of more
complex histories or subtle signatures of positive or balancing selec-
tion at this locus, we next considered a theoretical model of negative
selection.

Specifically, we formulated a mathematical model (Supplemen-
tary Note 1) that integrates over the maternal reproductive timespan
and contrasts the potential lifetime production of chromosomally
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Fig.5|Evolutionary modelling of maternal meiotic aneuploidy risk
haplotype. a, Estimated allele frequency trajectory of the derived (C) allele at
rs2272804 inferred from100 posterior samples of the ancestral recombination
graphatthe SMCIBlocus. Posterior meanallele frequenciesands.e. were
computed withinlog-spaced timebins, and error barsindicate +2s.e.around the
posterior mean. b, Relationship between the scaling factor (a) relating fitness to
thefitness proxy (number of embryos lacking maternal meiotic aneuploidies)

normal embryos between carriers and non-carriers of the aneuploidy
risk allele. The ratios of these proxies for relative fitness can be used
to derive a proxy for the selection coefficient (s,,,). Based on this
model, we estimated that for a historical maternal reproductive window
between 18 and 35 years of age, s,,.,, = 0.01 and increases moderately
upon increasing the upper bound of maternal age (Fig. 5b and Sup-
plementary Fig. 9). For ahuman effective population size (N,) on the
order of 10%, a selection coefficient of 0.01is much greater than the
theoretical threshold of ZIIV ,implying that the allele should be subject
to negative selection. ¢

However, although the number of euploid embryos a woman can
produceis presumably correlated with fitness, it may constitute only
aweak proxy, asrealized fitness is also determined by stochastic, envi-
ronmental and behavioural factors largely independent of genotype.
Moreover, pregnancy, childbirth and miscarriage caninfluence fitness
in complex ways, including through impacts on maternal survival,
future fertility and parental/grandparental care*®. We observed that
toreach the theoretical threshold for evading negative selection, the
selection coefficient (s) must be scaled by a factor (a) < 0.01, relative
t0 S,oxy (Supplementary Note 1). Although the historical relationship
between fitness and the fitness proxy is unknown, their weak correlation
in contemporary populations is evidenced by the lack of association
between the aneuploidy risk variant and fertility phenotypes such as
number of children ever born and childlessness™ (Fig. 4). These results
highlight the inadequacy of simplistic proxies of fitness—a limitation
long appreciated in the field of life history theory*>~while reconciling
the observation of acommon aneuploidy-associated allele.

Discussion

Pregnancy loss is common in humans®and often traces to aneuploidy
originating in the maternal germline’. Notably, female meiosis initiates
infetal development, when homologous chromosomes pair and estab-
lish crossovers, but arrests for decades until ovulation and fertilization.
Abnormal number or placement of crossovers predisposes oocytes to
chromosome mis-segregation upon meiotic resumption*'. Despite this
understanding, the role of common genetic variation in modulating
theseimportant molecular processesin humans has remained poorly
understood. Through retrospective analysis of large-scale PGT data
from human IVF embryos, we mapped genetic variants associated
with crossover and aneuploidy phenotypes, revealing an overlapping
genetic basis involving key meiosis genes.

Although we measured overdispersion in the age-adjusted rate of
aneuploidy per patient and identified genome- and transcriptome-wide

Scaling factor (&)

and the selection coefficient (s) for twoillustrative female reproductive time
windows (Supplementary Note 1). Shaded areas denote 95% confidence intervals
ofthe estimated effect of the haplotype tagged by GWAS lead variant rs6006737
ontheresultant meanscaling factor. The horizontal dashed lineindicates the
theoretical threshold for neutral evolution ( ﬁ)’ assuming ahuman effective
populationsize of 10*.

significant associations, we were intrigued to find that the SNP her-
itability of aneuploidy was negligible. This finding aligns with low
reported SNP heritabilities of female infertility phenotypes*:, as well
as potential outsize contributions of environmental and rare genetic
variation influencing this trait. Nevertheless, given that common and
rare variation often converge on the same genes and mechanisms®,
our results may help inform sequencing-based studies of aneuploidy
phenotypes. Supporting a model of mechanistic convergence, rare
loss-of-function mutations in several of the genes implicated here
have also been linked to meiotic defects and reproductive disorders
insmaller clinical cohorts*®**. Itis also plausible that a fraction of phe-
notypic variance for aneuploidy risk could trace to common genetic
variation thatis inaccessible to genotyping arrays and/or short-read
sequencing, for example within technically challenging loci such as
large segmental duplications, telomeres or centromeres. Recent work
offered preliminary evidence that particular centromeric haplotypes
areenriched among cases of Trisomy 21 (ref. 55). Future applications of
long-read sequencing in PGT may enable validation of this hypothesis
and extension to inviable aneuploidies.

The observation that alleles associated with lower rates of recombi-
nationare associated with higher rates of aneuploidy raises interesting
questions about the evolutionary forces that shape recombination
and aneuploidy withinand between species. Inaddition to generating
new combinations of alleles, recombination may also induce point
mutations and structural variation near hotspots of double-strand
breaks™*¢. This suggests amodel of stabilizing selection, whereby rates
of recombination may be constrained on the lower and upper ends
to limit aneuploidy and other deleterious mutations, respectively.
More comprehensive models of recombination rate evolution must
also consider mechanical constraints such as crossover interference,
which reduces occurrence of nearby crossovers, as well as the role of
crossoversin facilitating adaptation. By examining divergence across a
mammalian phylogeny, arecent study reported signatures of pervasive
positive selection on all meiotic components of the cohesin complex
(SMC1B,RAD21L1,REC8and STAG3), which the authors speculated could
be explained by intragenomic conflict”. Although the asymmetry of
female meiosis is susceptible to meiotic drive, the role of meiotic drivein
the origins of human aneuploidy remains animportant open question.

Morebroadly, the observation that common genetic variants modu-
late key reproductive phenotypes such as aneuploidy and recombina-
tion poses anintriguing evolutionary paradox, astheory predicts that
variation that strongly reduces fitness should be subject to negative
selection. We present a theoretical model of negative selection that
interprets GWAS effects in terms of potential lifetime production of
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viable embryos. Our model places an upper bound on the strength of
the relationship between this fitness proxy and realized fitness that
would allowrisk alleles to evade negative selection and reach intermedi-
ate frequencies by genetic drift. This framework could be generalized
to guide expectations for future studies examining the genetic archi-
tecture of aneuploidy and other fertility-related traits.

In summary, our work provides amore complete understanding of
common genetic factors thatinfluencerisk of aneuploidy—the leading
cause of human pregnancy loss. These findings highlight the interplay
among the forces of mutation, recombination and natural selection
that operate before birth to shape human genetic diversity.
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Extended DataFig.1|Distribution of aneuploid chromosomes across abnormalities affecting multiple chromosomes, including 1.08% exhibiting
embryos. Of all tested embryos, 70.25% were called as euploid, 20.49% exhibited ~ whole-genome gain and 0.23% exhibiting whole-genome loss or genome-wide
aneuploidy affecting asingle chromosome, and 9.26% exhibited more complex uniparental isodisomy.
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Sample size All available samples (after quality control) were used in the study to maximize statistical power.
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(encoded as an overdispersed binomial quantitative trait), controlling for covariates such as maternal age, genotype principal components,
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