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CD8+ T cells differentiate into diverse states that shape immune outcomes in cancer 
and chronic infection1–4. To define systematically the transcription factors (TFs) 
driving these states, we built a comprehensive atlas integrating transcriptional and 
epigenetic data across nine CD8+ T cell states and inferred TF activity profiles. Our 
analysis catalogued TF activity fingerprints, uncovering regulatory mechanisms 
governing selective cell state differentiation. Leveraging this platform, we focused 
on two transcriptionally similar but functionally opposing states that are critical  
in tumour and viral contexts: terminally exhausted T (TEXterm) cells, which are 
dysfunctional5–8, and tissue-resident memory T (TRM) cells, which are protective9–13. 
Global TF community analysis revealed distinct biological pathways and TF-driven 
networks underlying protective versus dysfunctional states. Through in vivo 
CRISPR screening integrated with single-cell RNA sequencing (in vivo Perturb-seq) 
we delineated several TFs that selectively govern TEXterm cell differentiation. We also 
identified HIC1 and GFI1 as shared regulators of TEXterm and TRM cell differentiation 
and KLF6 as a unique regulator of TRM cells. We discovered new TEXterm-selective TFs, 
including ZSCAN20 and JDP2, with no previous known function in T cells. Targeted 
deletion of these TFs enhanced tumour control and synergized with immune 
checkpoint blockade but did not interfere with TRM cell formation. Consistently, 
their depletion in human T cells reduces the expression of inhibitory receptors  
and improves effector function. By decoupling exhaustion TEX-selective from 
protective TRM cell programmes, our platform enables more precise engineering  
of T cell states, accelerating the rational design of more effective cellular 
immunotherapies.

Cell states are the range of cellular phenotypes arising from a defined 
cell type’s interaction with its environment. Within the immune sys-
tem, T cells possess several differentiation states, particularly as naive 
T cells differentiate into diverse states with different functionalities 
and trafficking patterns in various immune environments, such as 
tumours and virus infections1–4. As transcription factors (TFs) govern 
cell state differentiation14, understanding how TFs shape these states is 
essential for programming beneficial states with therapeutic potential. 
One promising application of cell state engineering is enhancing CD8+ 
T cells for adoptive cell transfer therapy (ACT) of tumour-infiltrating 
lymphocytes (TILs) or chimeric antigen receptor (CAR) T cells. How-
ever, identifying TFs that control CD8+ T cell states is difficult owing 

to substantial heterogeneity and overlapping transcriptomes, even 
between functionally divergent states.

We focused on two transcriptionally similar yet functionally diver-
gent states: the protective functional tissue-resident memory (TRM) cell 
state and the dysfunctional terminally exhausted (TEXterm) cell state. 
Many studies show that TILs with TRM cell characteristics correlate with 
better survival in patients with solid tumours9–13. Conversely, during 
persistent antigen stimulation scenarios such as chronic virus infec-
tion (for example, HIV) or cancer, T cells progressively express diverse 
inhibitory receptors, including PD1, and lose memory potential and 
effector functions. This process is known as T cell exhaustion (TEX)5–8,  
and cells in this trajectory eventually adopt the TEXterm cell state.  
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TEXterm cells express higher levels of diverse inhibitory receptors (for 
example, TIM3 and CD101), lack effector and proliferative capacity, 
and do not respond effectively to immune checkpoint blockade (ICB), 
such as anti-PD1 monoclonal antibody (mAb) blockade15–17. High TEXterm 
cell marker expression often indicates poor prognosis in solid tumours, 
although some markers also correlate with ICB response, highlight-
ing their complex role in tumour immunity18,19. Despite their distinct 
functional effects on cancer outcomes, TEXterm and TRM cells both 
reside preferentially in tissues1,3 and display remarkable similarities 
in their transcriptional profiles, including key regulatory TFs such as 
BLIMP1 (refs. 5,20–22), BHLHE40 (refs. 23,24) and NR4A2 (refs. 9,25,26) 
(Fig. 1a,b and Extended Data Fig. 1a–c). These two cell states even 
exhibit highly correlated open chromatin regions (Extended Data 
Fig. 1d), complicating the precise identification of TFs whose disrup-
tion may selectively inhibit TEXterm cell development while preserving 
TRM cell development. Given that many TFs are expressed commonly 
across different CD8+ T cell states and differentiation trajectories, 
a sophisticated and precise bioinformatics approach is crucial to 
pinpoint the bona fide cell-state-specifying TFs that are essential for  
T cell programming. 

We hypothesized that key TFs controlling selective CD8+ T cell dif-
ferentiation could be identified through systematic comparison of 
TF activity across the differentiation landscape. Accurate prediction 
requires recognizing that TF activity does not necessarily mirror expres-
sion, as it depends on post-translational modifications, cofactors and 
target accessibility27, and that TF effects propagate through genetic 
networks. We therefore developed a multi-omics atlas integrating 
transcriptomic and chromatin accessibility data from nine CD8+ T cell 
states to understand ‘global’ influences of TFs in each cell state and 
to identify ‘selective’ or ‘shared’ TFs. Our atlas-based platform can 
map TF communities and their target genes (‘regulatees’), guiding 
state-specific differentiation.

Multi-omics atlas maps of CD8+ T cell TFs
Our initial objective was to create a comprehensive catalogue of TF 
activity across diverse CD8+ T cell states by integrating our TF activ-
ity analysis pipeline, Taiji28–30, with comparative statistical analysis. In 
Taiji, the gene regulatory network (GRN) is a weighted, directed net-
work that models regulatory interactions between TFs and their target 
genes. In this GRN, each node corresponds to a gene, and its weight is 
proportional to the gene’s expression level. Each edge represents a 
regulatory interaction and is weighted on the basis of a combination 
of factors: the predicted binding affinity of the TF to the target gene, 
chromatin accessibility at the target gene’s locus and the expression 
levels of both the TF and the target gene28,29 (Fig. 1c). To determine the 
global influence of each TF within the network, Taiji applies a person-
alized PageRank algorithm, which assigns an ‘importance’ score to 
each node that is based on both the quantity and quality of incoming 
connections. This approach yields a measure of TF activity that reflects 
the influence of each TF in the broader regulatory landscape, account-
ing for upstream regulators, downstream targets and feedback loops 
through iterative computation.

With Taiji, we previously identified TFs involved in pan-immune 
lineage commitment, including natural killer cells, dendritic cells, 
B cells and γδ T cells30. Although earlier studies provided foundational 
insights into cell differentiation, a more refined analysis within CD8+ 
T cells is needed to achieve higher resolution of TF roles. Therefore, 
leveraging the improved statistical filtering, we aimed to quantify the 
global influence of TFs across all CD8+ T cell states.

To begin, we analysed assay for transposase-accessible chroma-
tin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) 
datasets from 121 CD8+ T cell samples spanning nine distinct states, 
using both previously published and newly generated datasets from 
well-characterized acute and chronic lymphocytic choriomeningitis 

virus (LCMV) infections3,9,17,22,31–35 (Extended Data Fig. 1e and Supple-
mentary Table 1). In acute LCMV–Armstrong infections, CD8+ T cells dif-
ferentiate into memory precursor (MP), terminal effector (TE), effector 
memory (TEM), central memory (TCM) and TRM states. In chronic LCMV–
Clone 13 infections, they adopt heterogeneous exhaustion cell states, 
including progenitors of exhaustion (TEXprog), effector-like exhaustion 
(TEXeff) and TEXterm states (Fig. 1a).

Next, we conducted an unbiased comparative analysis using sta-
tistical filtering to understand the specificity of TF activity across 
the CD8+ T cell states (Extended Data Fig. 2a and Supplementary 
Table 2). This identified TF genes, of which 136 were predominantly 
‘single-state’ TF genes, with each cell state selectively containing 12–19 
unique TF genes (Fig. 1d and Extended Data Fig. 2b). This category 
included new TF genes such as Hoxa7 in naive T cells, Snai1 in TRM, 
Hey1 in TEXprog, Sox8 in TEXeff, and Zscan20 and Jdp2 in TEXterm cells. 
By contrast, 173 TFs, including Tcf7 and Tbx21, were key regulators in 
more than one cell state, termed ‘multi-state’ TF genes (Fig. 1e). TCF7 
is a known driver of naive, MP and TEXprog states, all of which are multi-
potent with high proliferative capacity3,17. Genes encoding multi-state 
TFs such as Vax2, Batf, Irf8 and Stat1 were more enriched within the 
exhaustion-associated cell states (TEXprog, TEXeff and TEXterm). Consistent 
with the similarity between TEXterm and TRM cells (Fig. 1b and Extended 
Data Fig. 1b–d), these two cell states share the most TF genes compared 
with other cell states (for example, Egr2, Crem and Prdm1; Extended  
Data Fig. 2c).

Although Taiji provides a statistically grounded approach for infer-
ring TF activity (Extended Data Fig. 2a), there is no absolute thresh-
old for defining cell state specificity, and some misclassification is 
expected, particularly for TFs with overlapping functions or modest 
differences in activity. Still, Taiji is useful to highlight TFs with activity 
patterns enriched in specific cell states. For instance, although Eomes 
is classified as a TEXterm single-state TF gene herein, it also functions in 
effector, TEM, TCM and TRM cell differentiation36,37. This illustrates that 
more accurate classifications require further investigation and resolu-
tion, as performed herein for several TFs.

TF state selectivity in TEXterm and TRM cells
Despite the strong transcriptional overlap between TEXterm and TRM 
cells, our Taiji pipeline predicted TFs as being selectively active in either 
of these two cell states. This could aid in developing better immuno-
therapies, in which one can engineer T cells away from exhaustion 
and towards more functional effector cell states without negatively 
affecting TRM cell formation in tissues and tumours. On the basis of 
statistical criteria (Extended Data Fig. 2a), we identified 20 and 34 
TFs as single-state TFs of TRM and TEXterm cells, respectively, and 30 
multi-state TFs that were active in both (Fig. 1f–h, Extended Data Fig. 2a 
(blue boxes) and Supplementary Table 3). TEXterm single-state TF genes 
included those for many previously unreported TFs, such as Zscan20, 
Jdp2, Zfp324, Zfp143, Zbtb49 and Arid3a (Fig. 1f). TRM single-state 
TF genes included Fosb, Zfp692, Atf4, Pbx4, Junb and Klf6 (Fig. 1g). Of 
the TEXterm and TRM multi-state TF genes, some, such as Nr4a2 (ref. 12), 
Bhlhe40 (ref. 23) and Prdm1 (refs. 22,31), were well known to function 
in the development of both cell states, whereas others, such as Hic1  
(ref. 38) and Gfi1 (ref. 39), were not, identifying them as new multi-state 
TFs to consider (Fig. 1h). We analysed previously reported TFs such 
as cJUN, BATF/BATF3 and TFAP4 that were identified from functional 
screening of CD8+ T cells40–43 based on limited phenotypic readouts. 
These previous screens tended to identify broadly active, multi-state 
TFs (Fig. 1). By contrast, our platform enabled a computationally 
guided, multi-state screen that identified TFs predicted to have greater 
state-selective activity (Extended Data Fig. 2d).

To evaluate the TFs that were predicted to govern selective T cell 
differentiation, we identified dynamic activity patterns of TF groups, 
termed ‘TF waves’ (Extended Data Fig. 3). TF waves reveal possible 
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Fig. 1 | Transcriptional and epigenomic atlas of CD8+ T cell differentiation 
states and TF identification pipeline. a, Diagram summarizing CD8+ T cell 
trajectories during acute and chronic infection or tumour, highlighting 
differentiation into various effector, memory and exhaustion states, including 
parallel TRM and TEXterm lineages with overlapping tissue localization. b, Pearson 
correlation matrix of batch-effect-corrected RNA-seq datasets. Both colour 
intensity and circle size indicate correlation strength, with red denoting the 
highest correlation. c, Workflow of the integrative Taiji analysis. Matched 
RNA-seq and ATAC-seq datasets3,9,17,22,31–35 were used to construct a regulatory 
network and calculate TF activity scores using PageRank. Downstream  
analysis included identification of single- and multi-state TFs, TF ‘waves’ and 
network communities. d–h, TFs (rows) and samples (columns) are displayed as 

z-normalized PageRank heatmaps. Each column corresponds to a dataset.  
d,e, PageRank scores of genes encoding 136 single-state TFs (d) and 173 
multi-state TFs (e). f–h, Bubble plots show normalized TF PageRank scores and 
expression for genes encoding TEXterm-selective (f), TRM -selective (g) and multi- 
state (h) TFs that are active in both cell states. Circle colour represents the 
normalized PageRank score (red, high) and circle size indicates log mRNA 
expression across five datasets. TFs are ordered by P value; validated TF genes 
are highlighted in grey. i,j, TF ‘waves’ associated with exhaustion (i) or TRM 
cell differentiation ( j), indicating coordinated activity of TF groups during  
cell state transitions. Sample sizes and statistical details for cell state 
definitions and TF selection criteria are provided in Extended Data Figs. 1e  
and 2a, respectively.
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combinations of TFs that coordinate trajectories. Seven TF waves 
linked to specific biological pathways were identified, such as the TRM 
TF wave (Fig. 1i), which includes genes encoding several members of 
the AP-1 family (for example, Atf3, Fosb and Jun) that are associated 

uniquely with the TGFβ response pathway (Extended Data Fig. 4e). 
The TEX TF wave, which involves Irf8, Jdp2, Nfatc1 and Vax2, cor-
relates with PD1 and senescence pathways (Fig. 1j and Extended  
Data Fig. 3e).
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TF community analysis of TRM versus TEXterm cells
To uncover transcriptional programmes governing TRM or TEXterm 
cell differentiation, we constructed TF–TF association networks 
capturing functional relationships between TFs (Fig. 2a). Analysis of 
regulatee-based adjacency matrices (that is, predicted TF–target gene 
circuits) revealed shared and distinct patterns of TF collaboration across 
the two states. Single-state TFs displayed strong intra-state connectiv-
ity. TEXterm TFs (ZSCAN20, JDP2, ZFP324, IRF8) formed dense networks 
within TEXterm cells (Fig. 2b and Extended Data Fig. 4a), whereas TRM TFs 
(FOSB, SNAI1, KLF6) interacted mainly within TRM networks (Extended 
Data Fig. 4b). Multi-state TFs (HIC1, PRDM1, FLI1, GFI1) that were active in 
both states and previously reported TFs (cJUN, BATF and TFAP4) formed 
distinct partnerships in each cell state, reflecting context-specific regu-
latory architectures (Fig. 2c and Extended Data Fig. 4c).

We next grouped the TF–TF association networks into distinct ‘TF 
neighbour communities’ in TRM and TEXterm cells (Supplementary 
Table 5), and each community was linked to specific biological pro-
cesses (Fig. 2d–f). Although multi-state TFs shaped overall community 
topology, single-state TFs drove unique interaction patterns specific to 
TRM or TEXterm cells within each community. Pathway analysis revealed 
divergent programmes in each state—for instance, TRM community-3 
was associated with cell adhesion and TGFβ response (Fig. 2e,g,h), 
whereas TEXterm community-3 was linked to apoptosis (Fig. 2f–h). 
Community-1 in TRM cells controlled RNA metabolism (Fig. 2e,g,h), 
whereas in TEXterm cells, it was tied to catabolism, proteolysis and 
autophagy (Fig. 2f–h).

To assess the functional relevance of state-enriched pathways, we 
focused on the proteasome pathway, which emerged as a prominent but 
previously unrecognized feature of TEXterm cells (Fig. 2g,h). Proteasome 
gene signatures were enriched in TEXterm-like CD8+ T cells from patients 
with non-small cell lung cancer (NSCLC)44 and mouse MCA-205 TILs 
(Extended Data Fig. 5a,b). Consistently, proteasome activity—measured 
by a validated fluorescent probe45—was highest in TEXterm cells from 
chronic LCMV (Fig. 2i) and in tumour-specific TILs (Fig. 2j,k) relative to 
bystander OT-1 cells (Fig. 2k). To test whether high proteasome activity 
correlates with dysfunction, we sorted OT-1 cells by proteasome activ-
ity probe intensity and adoptively transferred them into B16F10-OVA 
tumour-bearing mice. Proteasomehigh cells showed reduced tumour 
control compared with proteasomelow cells (Fig. 2l)—a trend also seen 
in endogenous TILs (Extended Data Fig. 5c). These findings support the 
TF–TF network and pathway predictions and identify the proteasome 
pathway as a functional hallmark of TEXterm cells.

In vivo CRISPR screens of TEXterm TFs
The Taiji pipeline enabled comparative analysis of TF activity and 
curated sets of single-state TFs specific to TRM versus TEXterm cells 
(Fig. 1f–h). To assess its accuracy, Perturb-seq, combining in vivo 
CRISPR screening with single-cell RNA-seq (scRNA-seq), was performed 
in two animal models for TRM or TEXterm differentiation (Figs. 3a and 

4a). Our Perturb-seq guide RNA (gRNA) library targeted 19 TF genes, 
including 7 encoding TEXterm and TRM multi-state TFs and 12 encoding 
TEXterm single-state TFs. The TEXterm TF genes included one known TF 
(Nfatc1) and 11 others that had high specificity scores but were not 
previously linked to TEXterm differentiation (grey boxes; Fig. 1f,h). The 
multi-state TF genes included two positive controls (Nr4a2, Prdm1) 
and unvalidated multi-state TF genes (Nfil3, Hic1, Gfi1, Ikzf3, Stat3). To 
ensure comprehensive screening, four gRNAs per target were expressed 
in two dual-gRNA retroviral vectors (Extended Data Fig. 6a), along with 
two control vectors with scramble gRNAs (gScramble). This created a 
library of 40 dual-gRNA vectors, with 76 TF-gRNAs and four gScramble 
controls (Supplementary Table 6).

Cas9+ P14 CD8+ T cells were transduced with this library and trans-
ferred into mice infected with LCMV–Clone-13—a model of chronic 
infection and CD8+ T cell exhaustion (recipient mice also expressed 
Cas9 to prevent rejection of donor cells). Droplet-based sequencing 
was performed 18 or more days post-transfer to assess sgRNA and tran-
scriptomes of each spleen-derived donor Cas9+ P14 CD8+ T cell (Fig. 3a), 
analysing 17,257 cells with unique gRNA expression.

To determine which TF genes impaired TEXterm cell differentiation, 
we first used uniform manifold approximation and projection (UMAP). 
Four primary clusters were identified: TEXprog, TEXeff and TEXterm cells 
and those in cell cycle (Fig. 3b and Extended Data Fig. 6b,c). All clus-
ters expressed Tox and Pdcd1—key exhaustion markers—and TEXprog 
cells were identified by Tcf7, Slamf6 and Sell expression. TEXeff cells 
expressed effector markers, including Cx3cr1, Klrd1, Klrk1, Klf2 and Zeb2 
(ref. 2), whereas TEXterm cells expressed high inhibitory receptors and 
well-established exhaustion markers such as Cd101, Cd7, Cd38, Cd39, 
Cxcr6 and Nr4a2. The cell cycle cluster was noted for its expression 
of Birc5, Mki67, Stmn1 and Tuba1b.

Next, we evaluated the impact of individual TF depletion by analys-
ing the distribution of gRNA+ cells across exhaustion states (Fig. 3c,d). 
CRISPR knockout (KO) of most of the 19 TEXterm-driving TF genes led 
to a reduction in TEXterm cell frequency. Notably, KOs of multi-state 
TF genes such as Hic1, Stat3, Prdm1 and Ikzf3 (which encodes AIOLOS) 
resulted in a profound reduction of approximately 90% in TEXterm dif-
ferentiation. Depletion of new TEXterm single-state TF genes—including 
Zfp324, Zscan20 and Jdp2—reduced TEXterm differentiation significantly, 
by 78%, 54% and 43%, respectively (Fig. 3d, bold). Other new candidates, 
such as Etv5, Arid3a, Zfp410, Foxd2 and Prdm4, also reduced TEXterm 
representation by 25–40%, although some did not reach statistical 
significance. This Perturb-seq analysis highlights the platform’s abil-
ity to identify TFs that regulate the TEXterm state, with most tested TFs 
influencing exhaustion to varying degrees.

To further assess how KO of TEXterm-driving TF genes affect CD8+ 
T cell exhaustion, we used flow cytometry and scRNA-seq to analyse 
TF KO cells during LCMV–Clone 13 infection (Fig. 3e–i and Extended 
Data Fig. 6). We tested six TF KOs, including known control (Prdm1) and 
five newly identified TF genes (Zscan20, Jdp2, Zfp324, Stat3, Hic1) that 
impaired TEXterm state differentiation in Perturb-seq. Disrupting these 
TFs reduced TEXterm cell (PD1+CX3CR1−SLAMF6−) frequency by around 

Fig. 2 | Global analysis of TF networks in TEXterm and TRM cell states. a, Overview 
of TF–TF network analysis encompassing association and community-level 
organization of TRM and TEXterm regulatory landscapes. b,c, TF–TF association 
networks focused on the TEXterm single-state TF ZSCAN20 (b) and the multi-state 
TF HIC1 (c), depicting predicted context-specific interactions in TRM (green)  
or TEXterm (brown) cells. d–f, Clustering of TF–TF associations identified five 
distinct TF communities in TRM and TEXterm networks. Shared TFs (grey) shape 
overall community topology (d), whereas TRM- or TEXterm-specific interactions 
are represented as green (e) or brown (f) edges, respectively. g, Summary  
of shared and unique biological pathways enriched within TRM and TEXterm 
communities. Line thickness reflects −log10 (P value). Pathway gene sets in 
Supplementary Table 8. h, Gene set enrichment analysis (GSEA) comparing 
TEXterm versus TRM cell pathways using batch-effect corrected LCMV  

bulk RNA-seq3,9,17,22,31–35 and human pan-cancer scRNA-seq data sets44,55,61.  
i–k, Flow cytometry analysis of proteasome activity showing the highest 
activity in TEXterm cells during LCMV–Clone-13 infection (i) and MCA-205 
tumours ( j). In dual transfer experiments, antigen-specific (P14) and bystander 
(OT-1) CD8+ T cells analysed from B16-GP33 tumours (k) show elevated 
proteasome activity in TEXterm-like populations. l, Functional impact of 
proteasome activity on tumour growth. Tumour-bearing C57BL/6 mice were 
infused with proteasomehigh or proteasomelow OT-1 cells pre-stimulated with 
B16F1-OVA tumour cells for 7 days. Proteasomehigh OT-1 cells exhibit reduced 
tumour control. Data are shown as mean ± s.e.m. Ordinary one-way analysis of 
variance (ANOVA) (i–k) and two-way ANOVA Tukey’s multiple comparison test (l) 
were performed. i–l, n ≥ 6. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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recognizing the LCMV epitope GP33–41 were transduced with retrovirus- 
expressing gRNA libraries, adoptively transferred into mice infected previously 
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b, UMAP showing TEXprog, TEXeff, TEXterm and cell cycle clusters; marker expression 
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e, Representative flowplots showing phenotyping of the TF KOs in LCMV–
Clone 13-infected mice. f, Quantification of TEXterm (PD1+SLAMF6−CX3CR1−) 
frequencies in donor CD8+ T cells. g, Differential expression analysis of TEXterm, 
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50% (Fig. 3e,f) and decreased expression of inhibitory receptors such 
as CD101, CD39 and CD38 (Extended Data Fig. 6d,e). All 19 TEXterm-TF 
gene KOs exhibited a marked decrease in TEXterm-signature genes46, 
including Cd7, Cxcr6, Nr4a2 and Entpd1 (Fig. 3g).

Finally, the TEXterm-driving TF gene KOs were grouped according 
to their effects on TEXprog (PD1+CX3CR1−SLAMF6+; Fig. 3h) or TEXeff 
(PD1+CX3CR1+; Fig. 3i) state differentiation. Loss of Prdm1 and Stat3 
markedly increased the frequency of TEXprog cells and upregulated 
TEXprog signature genes (Fig. 3g,h) whereas loss of Hic1, Zscan20, Zfp324 
or Jdp2 expanded primarily the TEXeff cell population and effector 

signature genes (Fig. 3g,i,j). Deletion of the Zscan20 and Jdp2 signifi-
cantly enhanced effector cytokine production (for example, interferon 
gamma (IFNγ) and tumour necrosis factor (TNF)) and reduced viral 
loads in recipient mice (Fig. 3k,l).

Deleting TEXterm TFs preserves TRM fate
A principal goal of this work was to identify TFs that selectively repress 
TEXterm cell differentiation without affecting TRM differentiation, thereby 
enabling more precise programming of CD8+ T cell states. As nearly 
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represent three replicates; mean ± s.e.m. Statistical analysis, two-way ANOVA 
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all the predicted TEXterm single-state TFs impaired TEXterm differentia-
tion to some degree (Fig. 3), the next step was to evaluate their effects 
on TRM differentiation to confirm their selective activity. We used the 
same Perturb-seq library as before, but this time included only the 
eight TEXterm single-state TFs and seven multi-state TFs that impaired 
TEXterm state development by more than 25% in chronic LCMV infection 
(Fig. 3d). To assess their impact on memory CD8+ T cell development, we 
isolated retrovirus-transduced Cas9+ P14 CD8+ T cells from the spleen 

and small intestine of mice 18 days after acute LCMV–Armstrong infec-
tion. We then analysed 15,211 cells using scRNA-seq to determine how 
these perturbations affected the formation of intestinal TRM cells, as 
well as circulating splenic TCM and TEM cells (Fig. 4a).

The UMAP analysis identified four primary clusters containing cells 
with features of TCM (Il7r, Tcf7, Sell and S1pr1), TEM (Cx3cr1, Klrg1 and 
Klf2) and TRM cells (Cd69, Cd160 and Itgae (encoding CD103)) as well 
as a small TRM cell population with lower Itgae but higher Ifng and Irf1 
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expression designated TRM-Itgaelow (refs. 22,47) (Fig. 4b,c and Extended 
Data Fig. 7a,b). Examination of the gRNA+ cells revealed that none of 
the eight TEXterm single-state TF gene KOs (Zfp324, Irf8, Zfp410, Nfatc1, 
Zscan20, Jdp2, Arid3a and Etv5) negatively affected TRM formation sig-
nificantly (bold gene names in Fig. 4d,e). In fact, KO of Etv5 tended to 
increase the frequency of TRM cells. To evaluate the specificity of the 
TEXterm single-state TF genes, we also examined the expression of the 
TRM gene signatures9,31 in the entire population of gRNA+ cells for each 
TF tested (Fig. 4f). With the exception of Etv5 and Arid3a, KO of which 
increased TRM-signature gene expression (Fig. 4f and Extended Data 
Fig. 7c), perturbation of the TEXterm single-state TFs did not substantially 
alter TRM-signature gene expression. The platform also predicted new 
multi-state TFs, including those encoded by Hic1 and Gfi1. Disruption of 
these multi-state TFs significantly reduced TRM cell frequency (Fig. 4e) 
and TRM-signature gene expression (Fig. 4f and Extended Data Fig. 7c), 
mirroring the effects of disruption of Prdm1, which encodes a known 
multi-state TF for TRM and TEXterm cells.

To further validate the Perturb-seq data, we depleted the TEXterm 
single-state TF genes Zscan20 and Jdp2 and the multi-state TF gene 
Prdm1 individually in Cas9+ P14 CD8+ T cells, transferred them adop-
tively into LCMV–Armstrong infected animals, and assessed their dif-
ferentiation into TCM, TEM and TRM cells using flow cytometry (Fig. 4g,h). 
Deletion of Zscan20 and Jdp2 did not alter the formation of any mem-
ory cell subtypes, whereas perturbation of Prdm1 reduced TRM and 
increased TCM formation significantly, as expected. Altogether, this 
multi-omics pipeline predicted TEXterm single-state TFs that drive TEXterm 
differentiation without affecting TRM cell formation and multi-state TFs 
that influence both cell states. These results demonstrate the accuracy 
and predictive power of our approach for pinpointing single-state and 
multi-state TFs.

Klf6 overexpression expands TRM cells without 
exhaustion
To further demonstrate the utility of our cell-state selective TF identi-
fication pipeline in discovering new TRM-associated TFs, we evaluated 
Klf6, which was identified through our Taiji analysis as a TRM single-state 
TF gene (Fig. 1g). We considered whether overexpressing Klf6 (Klf6-OE) 
would enhance TRM formation during acute viral infection without 
worsening terminal exhaustion in chronic infection. Our results con-
firmed this suggestion. When empty-vector control and Klf6-OE P14 
CD8+ T cells were co-transferred, Klf6-OE cells robustly outcompeted 
control cells, resulting in 15-fold enrichment in the small intestine com-
pared with controls (Fig. 4i). Furthermore, there werearound 42 times 
more CD69+CD103+ double-positive TRM-like cells in Klf6-OE than in 
control donor cells, indicating that Klf6-OE markedly increased TRM 
development in the small intestine (Fig. 4j). Klf6-OE did not increase 
terminal exhaustion during chronic infection (Fig. 4k and Extended 

Data Fig. 7d). This work not only identifies KLF6 as a new TRM-driving 
TF but also confirms its selectivity.

New TEXterm-TF loss improves tumour control
This platform predicted cell-state-selective TF activity and identified 
TEXterm single-state TFs as targets for engineering T cells that resist 
exhaustion yet retain effector and memory functions—offering new 
strategies to improve immunotherapy efficacy. Given that TRM cells 
are associated with better clinical outcomes in solid tumours9–12, we 
hypothesized that KO of exhaustion-selective TF genes such as Zscan20 
could be more effective than targeting TRM and TEXterm multi-state 
TF genes such as Hic1. Using an ACT model, we transferred TF gRNA 
retrovirus-transduced Cas9+ P14 CD8+ T cells into mice with established 
melanoma tumours expressing GP33–41 (Fig. 5a). Unlike depletion of 
the multi-state TF gene Hic1, depleting the TEXterm single-state TF gene 
Zscan20 resulted in improved tumour control (Fig. 5a). Moreover, 
Zscan20 gRNA+ cells more readily formed TEXprog cells than TIM3+ 
or CD39+ TEXterm cells (Extended Data Fig. 8a–d). To control for 
inter-mouse variability in antigen load, we co-transferred Zscan20 
or Hic1 KO cells with control P14 CD8+ T cells into the same B16-GP33 
tumour-bearing mice (Fig. 5b–d and Extended Data Fig. 8e–i). Both KOs 
significantly increased the frequency of PD1+SLAMF6+TIM3− cells and 
decreased the frequency of TIM3+ exhausted cells and the TEXterm cell 
state (PD1+SLAMF6−CX3CR1−) compared with controls (Fig. 5c and 
Extended Data Fig. 8f–h), consistent with their predicted activity in 
TEXterm cells (Fig. 1f,h). However, Zscan20 KO robustly enhanced effec-
tor marker expression (CX3CR1), granzyme B and cytokine production 
in TILs, whereas Hic1 KO did not seem to improve effector function to 
the same degree (Fig. 5d and Extended Data Fig. 8i). Thus, despite their 
similar effects on suppressing TEXterm cell differentiation in tumours, 
differences in their ability to promote functional effector-like states 
may underlie the differential tumour control observed. Given that HIC1 
functions as a multi-state TF and ZSCAN20 as a single-state TF, these 
findings support the general rationale for targeting state-specific TFs 
to enable more selective programming of T cell differentiation.

State-selective TFs conserved across species
To evaluate the relevance of our mouse findings in human T cells—
particularly for applications in immunotherapy—we conducted 
cross-species validation using publicly available single-cell multi-omics 
and scRNA-seq datasets from human tumour-infiltrating CD8+ T cells 
(Fig. 5e, Extended Data Fig. 9a and Supplementary Table 1). Leveraging 
the Taiji TF analysis platform, we mapped mouse TEXterm-associated 
and TRM-associated TF genes onto a curated human pan-cancer CD8+ 
T cell atlas encompassing six tumour types48–55 (glioblastoma (GBM), 
head and neck squamous cell carcinoma (HNSCC), basal cell carcinoma 

Fig. 5 | Targeting TEXterm single-state TFs enhances tumour control.  
a, Experimental design and tumour outcomes from adoptive transfer of P14 
CD8+ T cells carrying CRISPR KOs of Zscan20 (TEXterm single-state TF gene) or 
Hic1 (multi-state TF gene active in TEXterm and TRM cells) into B16-GP33 melanoma- 
bearing mice. Tumour volumes and terminal weights are shown. b, Co-transfer 
design mixing Zscan20-KO or Hic1-KO Cas9+ P14 cells with scramble controls 
before transfer. c,d, Quantification of PD1+SLAMF6−TIM3+ exhausted subsets (c) 
and CX3CR1+ and GZMB+ effector populations (d) in Zscan20-KO and Hic1-KO 
cells. e, Human pan-cancer single-cell multi-omics and scRNA-seq datasets48–55 
were integrated to assess TF expression and activity across CD8+ T cell states 
using scTaiji. BC, breast cancer; CHOL, cholangiocarcinoma; ESCA, oesophageal 
cancer; FTC, follicular thyroid cancer; MM, multiple myeloma; OV, ovarian 
cancer; PACA, pancreatic cancer; THCA, thyroid cancer; UCEC, uterine corpus 
endometrial carcinoma. f, Paired scRNA-seq and scATAC-seq were used to build 
regulatory networks and compute PageRank TF activity scores. Shown are 
normalized scores for TEXterm single-state TF genes (Fig. 1f) with conserved 

DNA-binding motifs in humans. g, mRNA expression of TEXterm TF genes across 
TEXterm and TRM clusters in human tumours; cross-species conserved TF genes 
are in bold. h, Human peripheral blood mononuclear cell (PMBC) KO design. 
ZSCAN20-KO or JDP2-KO CD8+ T cells were stimulated with anti-CD3/CD28 
beads for 18 days to model chronic activation. i,j, Flow cytometry analysis  
of CCR7 (memory-like and stem-like) (i) and the inhibitory receptors LAG3,  
PD1 and TIM3 ( j) in KO versus control cells. k, Frequencies of IFNγ+TNF+ and 
interleukin-2 (IL-2)+ cells. l, Polyfunctionality analysis of cytokine-producing 
cells. m, Schematic of adoptive transfer and anti-PD1 treatment testing synergy 
with TEXterm TF gene KO. Cas9+ P14 cells (±TF KO) were transferred into B16-GP33 
tumours and treated with anti-PD1 or IgG2a. D7, day 7; D25, day 25. n,o, Tumour 
growth and weights for Zscan20-KO (n) and Jdp2-KO (o) versus controls.  
Data are mean ± s.e.m.; n ≥ 6 from at least two biological replicates. Statistics, 
two-way ANOVA with Tukey’s (tumour volume in a, n, o); one-way ANOVA with 
Dunnett’s (i–k, tumour weights in a, n, o); paired t-tests (c, d); two-way ANOVA 
with Dunnett’s (l). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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(BCC), hepatocellular carcinoma (HCC), renal cell carcinoma (RCC) 
and clear cell renal cell carcinoma (ccRCC)). Human CD8+ T cells were 
clustered into heterogeneous cell states, including TRM and TEXterm clus-
ters (Fig. 5e and Extended Data Fig. 9b). Taiji analysis revealed strong 
cross-species conservation: TEXterm TF genes such as JDP2, ZNF410 and 
FOXD2 exhibited higher activity in TEXterm clusters than in TRM-like cells 
(Fig. 5f). Of 34 mouse TEXterm single-state TF genes, 19 showed con-
served activity patterns in human TEXterm cells. Similarly, TRM-specific 
TF genes (for example, NR4A1, KLF6 and FOSB) displayed enriched activ-
ity in the human TRM cluster (Extended Data Fig. 9c). Furthermore, 22 of 
the 30 mouse TF genes that were active in both TEXterm and TRM states 
showed similar activity profiles in human datasets (Extended Data 
Fig. 9d). A few TF genes—such as ZSCAN20—could not be assessed in the 
Taiji analysis because of missing DNA-binding motifs, but comparative 
RNA profiling across 15 tumour types supported their relevance, with 
24 of 34 mouse TEXterm single-state TF genes, including ZSCAN20 and 
JDP2, showing higher expression in human TEX cells (Fig. 5g).

Given these correlations between species, we perturbed ZSCAN20 
and JDP2 to assess the relevance of TEXterm single-state TFs in human 
T cells (Extended Data Fig. 10a,b). Following repeated CD3/CD28 stimu-
lation over 18 days to simulate chronic activation (Fig. 5h), ZSCAN20- or 
JDP2-deficient CD8+ T cells exhibited increased expression of CCR7 
(naive/stem cell memory/TCM marker) and decreased levels of inhibi-
tory receptors, including LAG3, PD1 and TIM3 (Fig. 5i,j). These KO cells 
also produced higher levels of effector cytokines (Fig. 5k,l), indicating 
that ZSCAN20 and JDP2 contribute to exhaustion-associated features 
in human CD8+ T cells.

ICB synergy with Zscan20 and Jdp2 KOs
Tumours with high TEXterm cell infiltration often exhibit poor responses 
to ICB therapy16. We considered whether targeting TEXterm single-state 
TFs could enhance ICB efficacy. Among the TEXterm-associated TF genes, 
Zscan20 and Jdp2 were prioritized for their conservation and functional 
relevance in human T cells (Fig. 5e–l). To test synergy with ICB, treat-
ment began 1 day after adoptive transfer of TF-depleted P14 CD8+ T cells 
(Fig. 5m). The combination of Zscan20 or Jdp2-KO with anti-PD1 therapy 
significantly reduced tumour burden (Fig. 5n,o) and improved survival 
(Extended Data Fig. 10c,d). These findings suggest that selectively 
disrupting TEXterm single-state TFs represents a promising strategy 
to enhance T cell therapy by minimizing dysfunctional states while 
preserving beneficial T cell phenotypes. Overall, our cross-species 
multi-omics and functional perturbation approach underscores the 
translational potential of Taiji-identified TFs for improving ACT.

Discussion
Our study introduces a powerful platform for identifying TFs that 
are pivotal in guiding specific CD8+ T cell state differentiation during 
viral infections and tumour progression. Leveraging our comprehen-
sive transcriptional and epigenetic atlas from nine distinct CD8+ T cell 
states, we developed a detailed map of TF activity, creating a unique TF 
fingerprint for each context. Furthermore, we developed TaijiChat, a 
web interface for natural language queries of our datasets and literature 
(Supplementary Methods).

Focusing on two critical cell states TEXterm and TRM T cells, we exam-
ined similarities and differences of TF activity and their networks in 
both states and engineered T cells to resist exhaustion while retaining 
functionality of TRM cells. Using in vivo Perturb-seq, we validated TF 
activity for TEXterm and TRM cells in both acute and chronic infection 
models. Although recent CRISPR screenings in CD8+ T cells have identi-
fied TFs that are important in cytotoxicity, memory formation40–42, cell 
enrichment56 and exhaustion57, a systematic and context-dependent 
understanding of TF roles across several contexts has been lacking. 
Our study addresses this gap by generating an accurate catalogue of 

CD8+ T cell state-defining TF genes, enabling cost-effective validation 
of predicted TF activity and selectivity using Perturb-seq. Furthermore, 
our study offers broader and new insight into context-dependent TF 
regulation. Previously, differential TF cooperation in different contexts 
was reported25,42,43. We extend this by analysing global TF associations 
across cell states, revealing how TF communities regulate T cell-specific 
pathways, including protein catabolism in T cell exhaustion, which 
aligns with previous research on protein homoeostasis45,58,59. These 
TF networks reveal how various cellular processes are controlled dif-
ferentially between TRM and TEXterm cells, providing a rationale for their 
different functional capabilities within tissues.

One of the key outcomes of this study was the identification of new 
TFs, including ZSCAN20 and JDP2, as TEXterm single-state TFs and KLF6 
as a TRM single-state TF, and of newly uncovered roles for multi-state 
TFs such as HIC1 and GFI1. Perturbing TEXterm single-state TFs not only 
prevented T cell exhaustion but also preserved the ability of these cells 
to differentiate into effector and memory states. This led to significant 
improvements in tumour control.

To evaluate the clinical importance of the newly discovered TFs and 
the catalogue of TFs with TEXterm and TRM selectivity, we confirmed 
cross-species conservation of a substantial number of TFs using Taiji 
analysis of a human pan-cancer multi-omics atlas, along with com-
parative expression analysis across pan-cancer scRNA-seq datasets. 
Furthermore, we demonstrated enhanced human T cell function 
following perturbation of the TEXterm single-state TFs ZSCAN20 and 
JDP2. Depletion of these TFs shows synergistic effects with ICB therapy, 
leading to significant tumour regression. These findings highlight 
a promising strategy for enhancing antitumour immunity through 
precise cell-state programming.

Our TF atlas-guided platform can offer optimized ‘TF recipes’ for 
cell programming with increased precision, robustness and durability. 
Future strategies could integrate enforced expression of TFs that pro-
mote favourable states, such as KLF6 for TRM differentiation or other TFs 
identified through systematic gain-of-function screenings40–42,60 with 
targeted depletion of TEXterm TFs. Such recipes can be refined with AI 
models. In summary, although our study focuses on CD8+ TEXterm and 
TRM cell differentiation, the pipeline for identifying single-state TFs 
and ‘TF recipes’ can be adapted for other cell types, expanding cell 
therapy applications.
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Article
Methods

Dataset acquisition for mouse CD8+ T cell state multi-omics atlas
CD8+ T cell samples were collected from ten datasets, including those 
generated in this study (Extended Data Fig. 1e). In total, we analysed 121 
experiments, comprising 52 ATAC-seq and 69 RNA-seq datasets, which 
were integrated to generate paired samples and served as input for 
the Taiji pipeline. The samples encompassed nine distinct CD8+ T cell 
subtypes: naive, TE, MP, TRM, TEM, TCM, TEXprog, TEXeff and TEXterm. Cell 
states were defined on the basis of established surface marker com-
binations and LCMV-specific tetramers, including IL7R, KLRG1, PD1, 
SLAMF6, CD101, Tim3, CD69, CD103, H2-Db LCMV GP33–41 and H2-Db 
LCMV GP276–286 or congenic markers for P14 (T cell receptor (TCR) 
specific for the LCMV GP33–41 peptide CD8+ T cells), in the context of 
either acute (LCMV–Armstrong) or chronic (LCMV–Clone 13) infection 
models. A complete summary of dataset sources, accession numbers, 
infection conditions and corresponding cell state definitions (sorting 
gates) is provided in Supplementary Table 1 and Extended Data Fig. 1e.

TF regulatory networks construction and visualization
To perform integrative analysis of RNA-seq and ATAC-seq data, we devel-
oped Taiji v.2.0, which allows visualization of several downstream analy-
sis–TF wave, TF–TF association and TF community analysis. Epitensor 
was used for the prediction of chromatin interactions. Putative TF 
binding motifs were curated from the latest CIS-BP database61. In this 
analysis, 695 TF genes were identified as having binding sites centred 
around ATAC-seq peak summits. The average number of nodes (genes) 
and edges (interactions) of the genetic regulatory networks across 
CD8+ T cell states were 15,845 and 1,325,694, respectively, including 
695 (4.38%) TF nodes. On average, each TF regulated 1,907 genes, and 
each gene was regulated by 22 TFs.

Identification of single-state and multi-state TF genes
We first identified universal TF genes with mean PageRank across nine 
cell states ranked as top 10% and coefficients of variation less than 
0.5. In total, 54 universal TF genes were identified (Supplementary 
Table 1). The remaining 641 TF genes were candidates for single-state 
TF genes. To identify single-state TF genes, we divided the samples into 
two groups: target and background. The target group included all sam-
ples belonging to the cell state of interest, and the background group 
comprised the remaining samples. We then performed the normality 
test using Shapiro-Wilk’s method to determine whether the two groups 
were distributed normally, and we found that the PageRank scores of 
most (90%) samples followed a log-normal distribution. On the basis 
of the log-normality assumption, an unpaired t-test was used to calcu-
late the P value. A P value cut-off of 0.05 and log2 fold change (log2FC) 
cut-off of 0.5 were used for calling lineage-specific TFs. In total, 255 
specific TF genes were identified (Supplementary Table 2). Depending 
on whether the TF gene appeared in several cell states, they could be 
divided further into multi-state TF genes (Fig. 1e and Supplementary 
Table 2) and 136 single-state exclusive TF genes (Fig. 1d and Supple-
mentary Table 2). Out of 255 single-state TF genes, 84 appear in TEXterm 
or TRM cells. To identify the truly distinctive TF genes between TEXterm 
and TRM, we performed a second round of unpaired t-tests, between 
only TEXterm and TRM cells (Supplementary Table 3). The same cut-offs, 
that is, P value of 0.05 and log2FC of 0.5, were applied to select TEXterm 
single-taskers and TRM single-taskers. Out of 84 TF genes that did not 
pass the cut-off, 30 were identified as TEXterm and TRM multi-taskers. 
The full workflow is summarized in Extended Data Fig. 2a.

Identification of transcriptional waves
Combined with previous knowledge of the T cell differentiation path, 
TF waves are combinations of TFs that are particularly active in cer-
tain differentiation stages, revealing possible mechanisms of how TF 
activities are coordinated during differentiation. To be more specific, 

we clustered the TFs based on the normalized PageRank scores across 
samples. First, we performed principal component analysis (PCA) for 
dimensionality reduction of the TF score matrix. We retained the 
first ten principal components for further clustering analysis, which 
explained more than 70% of the variance (Extended Data Fig. 3b; left 
panel). We used the k-means algorithm for clustering analysis. To find 
the optimal number of clusters and similarity metric, we performed 
Silhouette analysis to evaluate the clustering quality using five distance 
metrics: Euclidean distance, Manhattan distance, Kendall correlation, 
Pearson correlation and Spearman correlation (Extended Data Fig. 3b; 
right panel). Pearson correlation was the most appropriate distance 
metric, as the average Silhouette width was highest of all five distance 
metrics. On the basis of these analyses, we identified seven distinct 
dynamic patterns of TF activity during immune cell development. We 
further performed functional enrichment analysis to identify gene 
ontology (GO) terms for these clusters.

TF–TF collaboration network analysis and visualization
To build the TF–TF association networks, we first defined a set of 
relevant TFs for each context (TEXterm and TRM) by combining cell 
state-important and single-state TF genes, resulting in 159 TFs for 
TEXterm and 170 for TRM cells. The analysis was based on a TF–regulatee  
network derived from Taiji, where we first consolidated sample net-
works by averaging the edge weights for each TF–regulatee pair. To 
reduce noise, regulatees with low variation across all TFs (s.d. ≤ 1) were 
removed. Subsequently, a TF–TF correlation matrix was generated by 
calculating the Spearman’s correlation of edge weights for each TF pair 
across their common regulatees. From this matrix, we constructed a 
graphical model using the R package ‘huge’62, which uses the Graphi-
cal Lasso algorithm and a shrunken empirical cumulative distribu-
tion function estimator. An edge between two TFs was established if 
their correlation was deemed significant by the model, controlled by 
a lasso penalty parameter (lambda) of 0.052. This value was chosen as 
it represents a local minimum on the sparsity lambda curve, resulting 
in approximately 15% of TF–TF pairs being connected. To validate this 
method, we estimated the false discovery rate by generating a null 
model through random shuffling of the TF–regulatee edge weights. 
Applying our algorithm to this null data identified zero interactions, 
confirming that our approach has a very low false discovery rate.

TF community construction and visualization
Following construction of TF–TF association networks, we identified 
functionally related TF communities within each network. We applied 
the Leiden algorithm63, using modularity as the objective function 
and setting the resolution parameter to 0.9, as this value achieved the 
highest clustering modularity in our analysis. This procedure identified 
five distinct communities for each context (TEXterm and TRM). The final 
networks, with their detected communities, were visualized using the 
Fruchterman–Reingold layout algorithm64 to spatially represent the 
TF–TF association structure.

Pathway enrichment analysis
The enriched functional terms in this study were analysed by the R 
package clusterProfiler v.4.0.5. We used the GO database, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database and the Molecu-
lar Signatures Database for annotation. For GSEA, the genes were first 
ranked by the mean edge weight in corresponding samples and H, C5, C6 
and C7 collections from the Molecular Signatures Database were used 
for annotation. A cut-off of P < 0.05 was used to select the significantly 
enriched GO terms and KEGG pathways.

Heuristic score calculation through integration of the TF 
regulatory network and perturb-seq
We reasoned that (1) log2FC in expression due to TF KO and (2) TF–
gene regulatory edge weights could be combined to provide heuristic 



scores for the regulatory effect of a TF on a target gene. For each guide 
RNA KO, Seurat’s FindMarkers() function was used to quantify log2FC 
in the expression of a gene with respect to the gScramble condition. 
Heuristic scores were calculated for each TF–gene pair by multiplying 
the gene log2FC with the corresponding edge weight from the Taiji 
analysis. Regulatees of a TF were annotated as high-confidence if the 
magnitude log2FC of the regulate exceeded 0.58 (corresponding to a 
fold change of 1.5 or its reciprocal) and if the edge weight belonged to 
the upper quantile of all edge weights attributed to the TF. The sign of 
the log2FC was used to determine whether the TF activated or repressed 
each target gene.

Human TF activity and cell-state selectivity analysis
Taiji-based analysis of human multi-omic datasets. TF activity was 
inferred using the Taiji pipeline applied to matched scRNA-seq and 
scATAC-seq datasets from various human cancers, including ccRCC 
(n = 2; PRJNA768891, GSE240822), GBM (GSE240822), BCC (GSE123814, 
EGAS00001006141), HNSCC (GSE139324, EGAS00001006141), 
HCC (GSE125449, EGAS00001006141) and RCC (PMID: 30093597; 
EGAS00001006141). Cell types were annotated using canonical marker 
gene expression and categorized into six main CD8+ T cell states: TEX, 
TEXProg (progenitor exhausted), TEff (effector), TRM, TCM/naive and pro-
liferating. PageRank scores derived from Taiji were log-transformed, 
averaged within each T cell category, and then standardized using 
z-score normalization. Results were visualized with a focus on TF gene 
activity in TRM and TEX populations.

TF gene expression comparison across human CD8+ T cell states. 
To assess TF gene expression across diverse T cell states, raw count 
matrices from a published pan-cancer CD8+ T cell atlas (GSE156728) 
were reprocessed using Seurat’s standard workflow. The dataset en-
compassed T cells from 11 tumour types, including BC, BCL, CHOL, 
ESCA, FTC, MM, OV, PACA, RC, THCA and UCEC. Cell type annotations 
provided by the original study were retained and mapped to the follow-
ing broad categories: TRM, TEX, TEM (effector memory), TM (memory), 
naive and TK (cycling). Seurat’s AverageExpression function was used 
to compute average logCPM expression for each TF gene in each T cell 
category, followed by z-score normalization. Data visualization em-
phasized comparisons between TRM and TEX subsets.

Mice and infections
C57BL/6/J, OT-1 (C57BL/6-Tg(TcraTcrb)1100Mjb/J), B6.Cg-Rag2tm1.1Cgn/J 
and CD45.1 (B6.SJL-PtprcaPepcb/BoyJ) mice were purchased from Jack-
son Laboratories. P14 mice have been described previously. Cas9 P14 
mice were generated by crossing P14 mice with B6(C)-Gt(ROSA)26So
rem1.1(CAG-cas9*,-EGFP)Rsky/J ( Jackson Laboratories). Animals were 
housed in specific-pathogen-free facilities at the Salk Institute and 
University and at the University of North Carolina at Chapel Hill. All 
animal experiments were approved by the Institutional Animal Care 
and Use Committee. Mice were infected with 2 × 105 plaque-forming 
units (PFU) LCMV–Armstrong by intraperitoneal injection or 2 × 106 
PFU LCMV Clone-13 by retro-orbital injection under anaesthesia.

Viral titres
LCMV fluorescence focus unit titration was performed seeding Vero 
cells at a density of 30,000 cells per 100 µl in a 96-well flat-bottom 
plate in DMEM + 10% fetal bovine serum (FBS) + 2% HEPES + 1% 
penicillin-streptomycin. On the next day, tissues were homogenized 
on ice, spun down at 1,000g for 5 min at 4 °C and supernatants or serum 
were diluted in tenfold steps. Diluted samples were added to Vero cells 
and incubated at 37 °C, 5% CO2 for around 20 h. Subsequently, inocula 
were aspirated and wells were incubated with 4% paraformaldehyde for 
30 min at room temperature before washing with PBS. VL-4 antibody 
(BioXCell) was conjugated using the Invitrogen AF488 conjugation 
kit and added to the wells in dilution buffer containing 3% BSA and 

0.3% Triton (ThermoFisher Scientific) in PBS. Cells were incubated at 
4 °C overnight before washing with PBS and counting foci under the 
microscope. The number of focus forming units was calculated using 
the formula: focus forming units per millilitre = number of plaques/
(dilution× volume of diluted virus added to the plate).

Cell isolation
Spleens were dissociated mechanically with 1-ml syringe plungers 
over a 70-µm nylon strainer. Spleens were incubated in ammonium 
chloride potassium buffer for 5 min. For isolation of small intestinal 
intraepithelial lymphocytes, Peyer’s patches were first removed by 
dissection. Intestines were cut longitudinally and then into 1-cm pieces 
and washed in PBS. Pieces were incubated in 30 ml HBSS with 10% FBS, 
10 mM HEPES and 1 mM dithioerythritol with vigorous shaking at 37 °C 
for 30 min. Supernatants were collected, washed and isolated further 
using 40%/67% discontinuous Percoll density centrifugation for 20 min 
at room temperature with no brake.

Cell lines and in vitro cultures
B16-GP33 melanoma cell lines were cultured in DMEM (Invitrogen) with 
10% FBS, 1% penicillin-streptomycin and 250 μg ml−1 G418 (Invitrogen, 
catalogue no. 10131027). The MCA-205 tumour line (Sigma) was main-
tained in RPMI supplemented with 10% FBS, 300 mg l−1 l-glutamine, 
100 U ml−1 penicillin, 100 mM sodium pyruvate, 100 μM non-essential 
amino acids, 1 mM HEPES, 55 μM 2-mercaptoethanol and 0.2% plas-
mocin mycoplasma prophylactic (InvivoGen). All the tumour cell lines 
were used for experiments when in the exponential growth phase. For 
in vitro T cell culture, splenocytes were activated in RPMI 1640 medium 
(Invitrogen) containing 10% FBS and 1% penicillin-streptomycin, 2 mM 
l-glutamine, 0.1 mg ml−1 GP33, beta-mercaptoethanol 50 mM and 
10 U ml−1 IL-2.

Tumour engraftment and treatment of tumour-bearing mice
A total of 3 × 105 B16-GP33 (Fig. 5a), 5 × 105 B16-GP33 tumour cells 
(Fig.  5n,o) were injected subcutaneously in 100 μl PBS. Around 
0.5–1 × 106 Cas9+ P14 T cells with CD45.1 markers were transferred 
to tumour on day 7 without pre-radiation of tumour-bearing mice. 
Tumours were measured every 2–3 days post-tumour engraftment 
for indicated treatments and sizes calculated. Tumour volume was 
calculated as volume = (length × width2)/2. For antibody-based treat-
ment, tumour-bearing mice were treated with anti-PD1 antibody 
(200 µg per injection, clone RMP1-14, BioXcell) twice per week from 
day 7 post-tumour implantation. Tumour growth was measured twice 
per week with calipers. Survival events were recorded each time a 
mouse reached the endpoint (tumour volume greater than or equal 
to 1,500 mm3). Tumour weights were measured on day 23 for Fig. 5a and 
on day 25 for Fig. 5m–o. All experiments were conducted according to 
the Salk Institute Animal Care and Use Committee and the University of 
North Carolina at Chapel Hill Animal Care and Use Committee.

Tumour digestion and cell isolation
For the data shown in Fig. 5, tumours were minced into small pieces in 
RPMI containing 2% FBS, DNase I (0.5 µg ml−1; Sigma-Aldrich), and col-
lagenase (0.5 mg ml−1; Sigma-Aldrich) and kept for digestion for 30 min 
at 37 °C with 70-µm cell strainers (VWR). Filtered cells were incubated 
with ammonium chloride potassium lysis buffer (Invitrogen) to lyse 
red blood cells, mixed with excess RPMI 1640 medium (Invitrogen) 
containing 10% FBS and 1% penicillin-streptomycin, and centrifuged 
at 400g for 5 min to obtain a single-cell suspension.

Proteasome activity analysis
For experiments involving the Proteasome Activity Probe (R&D sys-
tems), cells of interest were incubated with the probe at concentra-
tion of 2.5 mM for 2 h at 37 °C in PBS. Samples were washed and then 
stained with Zombie NIR viability dye (Biolegend) in PBS at 4 °C for 
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15 min. Samples were then stained with some variation of the follow-
ing antibodies for 30 min in fluorescence-activated cell sorting (FACS) 
buffer on ice: CD45-BV510 (BD Biosciences), CD45.2-BV510 (Biolegend), 
CD45.1-PE-Cy7 (Invitrogen), CD4-APC Fire 810 (Biolegend), CD11b-Alexa 
Fluor 532 (Invitrogen), CD8-Spark NIR 685 (Biolegend), CD44-Brilliant 
Violet 785 (Biolegend), CD62L-BV421 (BD Biosciences), PD1-BB700 
(BD Biosciences), TIM3-BV711 (Biolegend), LAG3-APC-eFluor 780 
(Invitrogen), SlamF6-APC (Invitrogen), CD39-Superbright 436 (Invit-
rogen), CX3CR1-PE/Fire 640 (Biolegend), CD69-PE-Cy5 (Biolegend), 
GITR-BV650 (BD Biosciences) and CD27-BV750 (BD Biosciences). Sam-
ples were collected on a Cytek Northern Lights and analysed using 
Cytek SpectraFlo software.

Tumour experiment for proteasome assay
For the data shown in Fig. 2, MCA-205 fibrosarcomas (2.5 × 105) were 
established by subcutaneous injection into the right flank of C57BL/6 
mice. After 12–14 days of tumour growth, spleens, draining lymph nodes 
and tumours from groups of mice were collected and tumours were 
processed using the Mouse Tumor Dissociation Kit and gentleMACS 
dissociator (Miltenyi Biotec) according to the manufacturer’s proto-
col. For purification experiments, samples were pre-enriched using 
the EasySep Mouse CD8+ T Cell Isolation Kit (Stemcell Technologies) 
according to the manufacturer’s protocol, stained with Live-or-Dye PE 
Fixable Viability Stain (Biotium) and CD8a-APC (Invitrogen) and live 
CD8+ cells were sorted using the FACSAria II cell sorter. CD8+ spleen and 
pooled TIL samples were washed in PBS and frozen for RNA-seq analysis. 
For adoptive cellular therapy experiments, B16-GP33 melanomas were 
established subcutaneously by injecting 5.0 × 105 cells into the right 
flank of CD45.1 mice and tumour-bearing hosts were irradiated with 5 Gy 
24 h before T cell transfer. By contrast, mice used in the experiments 
shown in Fig. 5 were not irradiated before T cell transfer. After 7 days of 
tumour growth, 1.5 × 106 CD45.2 OT-1 T cells and 1.5 × 106 CD45.1/CD45.2 
P14 T cells were infused in 100 μl PBS into the tail vein in tumour-bearing 
mice. Tumours were collected 14 days after adoptive cell transfer and 
CD8 TILs were analysed for proteasome activity. All experiments were 
conducted in accordance with the guidelines of the University of North 
Carolina at Chapel Hill Animal Care and Use Committee.

Proteasomehigh/proteasomelow T cell adoptive transfer experiment
For the adoptive transfer experiment involving proteasomehigh and 
proteasomelow tumour-specific OT-1 T cells (Fig. 2l), whole splenocytes 
from OT-1 mice were activated with 1 μg ml−1 OVA_257–264 peptide and 
expanded for 7 days in the presence of 200 U ml−1 rhIL-2 (NCI). On day 7, 
OT-1 cells were FACS-sorted based on proteasome activity to isolate 
proteasomehigh and proteasomelow OT-1 populations. A total of 2.5 × 105 
sorted OT-1 cells were injected into C57BL/6 mice bearing B16F1-OVA 
melanomas. Tumours were established by subcutaneous injection of 
3 × 105 B16F1-OVA cells into the right flank 7 days before T cell transfer. 
Recipient mice were preconditioned with 5 Gy total body irradiation 
24 h before adoptive transfer. Tumour growth was measured every 
other day with calipers.

For Extended Data Fig.  5c, MCA-205 fibrosarcomas (2.5 × 105) 
were established by means of subcutaneous injection into the 
right flank of C57BL/6 mice. After 14 days of tumour growth, live 
CD45+CD8+CD44+PD1+ T cells were sorted from tumours on the basis of 
proteasome activity (high versus low) using the FACSAria II cell sorter. A 
total of 2.5 × 104 cells were then injected into the 2-day MCA-205-bearing 
RAG2−/− hosts (n = 5 per group) and tumour growth was monitored 
every other day starting on day 4. All experiments were conducted in 
accordance with the guidelines of the University of North Carolina at 
Chapel Hill Animal Care and Use Committee.

Retrovirus transduction and adoptive transfer
For overexpression of the gRNA retrovirus vector, 293T cells were trans-
fected with the Eco-helper and MSCV gRNA vectors. At 48 h and 72 h 

later, supernatant containing retroviral particles was ready for trans-
duction. Donor P14 splenocytes were activated in vitro by 0.1 mg ml−1 
GP33 and 10 U ml−1 IL-2 at 37 °C for 24 h, then spin-transduced (1,500g) 
with fresh retrovirus supernatant from 293T cells for 90 min at 30 °C 
in the presence of 5 μg ml−1 polybrene.

CRISPR–Cas9/RNP nucleofection
Naive CD8+ T cells were enriched from spleen using the EasySep 
Mouse CD8+ T cell Isolation Kit (Stemcell Technologies). sgRNAs 
targeting Zscan20, Jdp2, Etv5, Prdm1 and Hic1 genes or the mouse 
or human genome non-targeting scramble (control) were obtained 
from Synthego, Integrated DNA technologies (IDT) and GeneScript 
(Supplementary Table 5). Cas9 RNP was prepared immediately before 
experiments by incubating 1 µl sgRNA (stock, 3 nmol in 10 µl water), 
0.6 µl Cas9 nuclease (IDT; stock, 62 µM) and 3.4 µl RNase-free water 
at room temperature for 10 min. Nucleofection of naive CD8+ T cells 
was performed using a Lonza P3 primary cell kit and program DN100 
with 4D-Nucleofector (Lonza Bioscience) for mouse and EO115 for 
human stimulated T cells. Each nucleofection reaction consisted of 
approximately 5–10 × 106 cells in 20 µl of nucleofection reagent and 
mixed with 5 µl of RNP:Cas9 complex. After electroporation, 100 µl 
of T cell culture medium was added to the well to transfer the cells to 
1.5 ml Eppendorf tubes. The cells were rested at 37 °C for 3 min. For 
in vivo adoptive transfer, cells were resuspended in PBS at the desired 
concentration and transferred adoptively into recipient mice.

CRISPR gene editing validation by Sanger sequencing
Genomic DNA was isolated from both KO-induced CD8+ T cells and 
control cells using a Quick-DNA MicroPrep Kit (Zymo). Genomic DNA 
concentrations were quantified using a NanoDrop One spectropho-
tometer (ThermoFisher Scientific). Following isolation, PCR ampli-
fication was performed with 2× Phusion Plus Green PCR Master Mix 
(ThermoFisher Scientific) and the respective validation primers under 
the following conditions: 98 °C for 5 min; 35× 98 °C for 10 s, 69 °C for 
20 s, 72 °C for 20–30 s kb−1; 72 °C for 2 min; hold at 10 °C). The PCR 
products were resolved on a 2% agarose gel with SYBR Safe DNA Gel 
Stain (Invitrogen), and the appropriate bands on the gel were extracted 
and purified with a Gel DNA Recovery Kit (Zymo). Concentrations of 
purified amplicon samples were measured and then sent for sequencing 
with primers designed using Benchling’s Primer3 tool. The samples with 
KOs were compared with wild-type controls using EditCo’s Ice Analy-
sis software, providing the indel percentages, KO score and the indel 
distributions used to assess editing efficiency. Indel percent ranged 
from 56% to 97%, and the KO score throughout experiments ranged  
from 32 to 74.

Flow cytometry, cell sorting and antibodies
Both single-cell suspensions were incubated with Fc receptor-blocking 
anti-CD16/32 (BioLegend) on ice for 10 min before staining. Cell suspen-
sions were first stained with Red Dead Cell Stain Kit (ThermoFisher) 
for 10 min on ice. Surface proteins were then stained in FACS buffer 
(PBS containing 2% FBS and 0.1% sodium azide) for 30 min at 4 °C. To 
detect cytokine production ex vivo, cell suspensions were resuspended 
in RPMI 1640 containing 10% FBS, stimulated by 50 ng ml−1 phorbol 
12-myristate 13-acetate and 3 μM ionomycin in the presence 2.5 μg ml−1 
Brefeldin A (BioLegend, catalogue no. 420601) for 4 h at 37 °C. Cells 
were processed for surface marker staining as described above. For 
intracellular cytokine staining, cells were fixed in BD Cytofix/Cytoperm 
(BD, catalogue no. 554714) for 30 min at 4 °C, then washed with 1× per-
meabilization buffer (Invitrogen, catalogue no. 00-8333-56). For tran-
scription factor staining, cells were fixed in FOXP3/transcription factor 
fixation/permeabilization buffer (Invitrogen, catalogue no. 00-5521-
00) for 30 min at 4 °C, then washed with 1× permeabilization buffer. 
Cells were then stained with intracellular antibodies for 30 min at 4 °C. 
Samples were processed on an LSR-II flow cytometer (BD Biosciences) 



and data were analysed with FlowJo v.10 (TreeStar). Cells were sorted 
either on a FACSAria III sorter or a Fusion sorter (BD Biosciences). 
The following antibodies (clone nos.) against mouse proteins were 
used: anti-CD8a (53-6.7), anti-PD1 (29F.1A12), anti-CX3CR1 (SA011F11), 
anti-SLAMF6 (13G3), anti-CD38 (90), anti-CD39 (24DMS1), anti-CD101 
(Moushi101), anti-KRLG1 (2F1), anti-CD69 (H1.2F3), anti-CD103 (M290), 
anti-CD62L (MEL-14), anti-TIM3 (RMT3-23), anti-Ly5.1 (A20), anti-Ly5.2 
(104), anti-IFNγ (XMG1.2) and anti-TNF (MP6-XT22). The following 
antibodies (clone nos.) against human proteins were used: anti-CD8a 
(RPA-T8), anti-CD4 (SK3), anti-CD45RA (H100), anti-CD45RO (UCHL1), 
anti-CCR7 (G043H7), anti-CD62L (DREG-56), anti-CD69 (FN50), 
anti-CD103 (Ber-ACT8), anti-CXCR6 (K041E5), anti-PD1 (EH12.2H7), 
anti-CD38 (HIT2), anti-CD39 (A1), anti-LAG3 (11C3C65), anti-TIM3 
(F38-2E2), anti-TIGIT (A15153G), anti-IFNγ (4S.B3), anti-TNF (MAb11), 
anti-IL-2 ( JES6-5H4), anti-GZMB (QA16A02) and anti-G4S Linker 
(E7O2V). Antibodies were purchased from Invitrogen, Biolegend, Cell 
Signaling or eBiosciences.

In vivo individual TF KO phenotyping
To assess the functional impact of individual TF gene KOs in CD8+ 
T cells, we used Cas9-expressing P14 donor cells (LCMV-specific TCR 
transgenic mice, CD45.1 congenic) transduced with green fluores-
cent protein (GFP)-expressing retroviral vectors encoding individual 
gRNAs. Transductions were performed on the day of adoptive transfer 
without previous sorting. Without sorting, transduced donor cells 
(0.5–1 × 105) were transferred immediately into congenically distinct 
Cas9-expressing wild-type recipient mice (CD45.2) infected 1 day previ-
ously with either LCMV–Clone 13 or LCMV–Armstrong strains. At least 
day 20 post-infection, spleens from the Clone 13 model and spleens and 
small intestines from the Armstrong model were collected. Single-cell 
suspensions were prepared and analysed by flow cytometry. Live, sin-
gle cells were first gated on CD8+ cells, followed by gating on CD45.1+ 
P14 donor CD8+ T cells. Successfully transduced (gRNA+) cells were 
identified by GFP expression, which ranged from 10% to 70% of P14 
CD8+ T cells across experiments. Because of variability in the num-
ber of GFP+ donor P14 CD8+ T cells obtained from different experi-
ments, all phenotypic analyses were performed in the GFP+(gRNA+)
CD45.1+CD8+ population. PD1 positive and negative cells, exhaustion 
subsets (TEXterm:PD1+SLAMF6−CX3CR1− and TEXprog:PD1+SLAMF6+C
X3CR1−, TEXeff:PD1+CX3CR1+) or expression of phenotypic markers 
was reported as a percentage within the gRNA+(GFP+) P14 CD8+ T cell 
population to ensure consistency across samples.

Co-transfers of control and TF gene KO/overexpression P14 CD8+ 
T cells in infection or tumour models
Naive CD8+ T cells were isolated from the spleens and lymph nodes of 
Cas9-expressing LCMV TCR transgenic (Cas9 P14) or P14 mice using 
an EasySep Mouse CD8+ T Cell Isolation Kit (STEMCELL Technologies). 
Purified P14 cells were activated for about 24 h on plates coated with 
goat anti-hamster IgG (ThermoFisher), followed by 1 μg ml−1 hamster 
anti-mouse CD3 and 1 μg ml−1 hamster anti-mouse CD28 antibod-
ies (ThermoFisher), in complete T cell medium (RPMI 1640 supple-
mented with 10% FBS (HyClone), 55 μM 2-mercaptoethanol, 100 IU ml−1 
penicillin-streptomycin and 1% HEPES). After activation, cells were 
transduced with retroviruses encoding Klf6 overexpression or gRNAs 
targeting Hic1 or Zscan20 and cultured with 20 IU ml−1 IL-2, 2.5 ng ml−1 
IL-7 and 2.5 ng ml−1 IL-15 (PeproTech). At 48 h post-transduction, 
reporter expression was confirmed by flow cytometry. Donor cell mixes 
were prepared using control versus Klf6-overexpressing cells (Fig. 4) 
or gScramble versus gHic1/gZscan20 cells (Fig. 5). For LCMV infection 
studies, 1.5 × 105 transduced P14 CD8+ T cells were transferred into 
recipient mice, followed by infection with either 2 × 105 PFU LCMV–Arm-
strong (acute infection, intraperitoneal) or 2 × 106 PFU LCMV–Clone-13 
(persistent infection, intravenous). For tumour studies, 5 × 105 to 1  × 106 
transduced T cells (gScramble versus gTF) were transferred on day 7 

after B16-GP33 tumour implantation. All experiments were conducted 
according to guidelines of the University of North Carolina at Chapel 
Hill Animal Care and Use Committee.

Perturb-seq screening using the retroviral transcriptional 
factor library
Dual-guide direct-capture retroviral sgRNA vector. To generate 
a dual-guide sgRNA vector (MSCV-hU6-mU6-SV40-EGFP), we replaced 
the hU6 RNA scaffold region of the previously described retroviral 
sgRNA vector MG-guide65 with an additional scaffold66 and the mouse 
U6 promoter.

Dual-guide direct-capture retroviral library construction. For the 
curated gene list containing 21 TF genes, a total of four gRNA sequences 
distributed on two individual constructs were designed for each gene. 
To construct the library, a customized double-strand DNA fragment 
pool containing 80 oligonucleotides targeting those 19 TF genes and 
four scramble gRNAs (each oligonucleotide contains two guides target-
ing the same gene) (Supplementary Table 5) was ordered from IDT. The 
dual-guide library was generated using an In-Fusion (Takara) reaction. 
In brief, the gRNA containing DNA fragment pool was combined in 
MG-guide vector linearized with BpiI (ThermoFisher). The construct 
was then transformed into Stellar competent cells (Takara) and ampli-
fied, and the resulting intermediate, individual, construct was assessed 
for quality using Sanger sequencing. Individual dual-gRNA vectors 
were then combined. For quality control, sgRNA skewing was meas-
ured using the MAGeCKFlute67 to monitor how closely sgRNAs are 
represented in a library.

In vivo screening. Retrovirus was generated by co-transfecting HEK293 
cells with the dual-guide, direct-capture retroviral TF library and the 
packaging plasmid pCL-Eco. Supernatants were collected at 48 h and 
72 h post-transfection then stored at −80 °C. Cas9-expressing P14 CD8+ 
T cells were transduced with the viral supernatant to achieve a trans-
duction efficiency of 20–30%. To ensure sufficient representation of 
control cells in downstream analysis, 50% of the viral mixture consisted 
of retrovirus encoding a non-targeting control gRNA vector. For in vivo 
experiments, 5 × 104 transduced P14 cells were transferred intrave-
nously into Cas9-expressing, puromycin-resistant C57BL/6 recipient 
mice infected 1 day previously with either LCMV–Clone-13 or LCMV–
Armstrong strain. A total of 25 LCMV–Clone-13-infected mice were 
used for five biological replicates and ten LCMV–Armstrong-infected 
mice were used for three biological replicates. Each biological replicate 
was labelled using hashtag antibodies (BioLegend, TotalSeq-C) to en-
able sample demultiplexing and statistical analysis. At least 18 days 
post-infection, donor-derived P14 CD8+ T cells were sorted and pooled 
for Perturb-seq analysis. Preliminary tests indicated that T cells ex-
pressing gRNA in vivo exhibit a greater tendency for gRNA silencing 
over extended periods compared with ex vivo cultured cells, despite 
initial successful KOs. To mitigate gRNA barcode silencing, we col-
lected tissue between days 18 and 23. Sorted EGFP+ P14 CD8+ T cells 
were resuspended and diluted in 10% FBS RPMI at a concentration 
of 1 × 106 cells ml−1. Both the gene expression library and the CRISPR 
screening library were prepared using a Chromium Next GEM Single 
Cell 5′ kit with Feature Barcode technology for CRISPR Screening (10x 
Genomics). In brief, the single-cell suspensions were loaded onto the 
Chromium Controller according to their respective cell counts to gener-
ate 10,000 single-cell gel beads in emulsion per sample. Each sample 
was loaded into four separate channels. Chromium Next GEM Single 
Cell 5′ Kit v.2 (catalogue no. 1000263), Chromium 5′ Feature Barcode 
Kit (catalogue no. 1000541), 5′ CRISPR Kit (catalogue no. 1000451), 
Chromium Next GEM Chip K Single Cell Kit (catalogue no. 1000287), 
Dual Index Kit TT Set A (catalogue no. 1000215), Dual Index Kit TN Set 
A (catalogue no. 1000250) (10x Genomics) in total were used for each 
reaction. The resulting libraries were quantified and quality checked 
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using TapeStation (Agilent). Samples were diluted and loaded onto a 
NovaSeq (Illumina) using a 100 cycle kit to obtain a minimum of 20,000 
paired-end reads (26 × 91 bp) per cell for the gene expression library 
and 5,000 paired-end reads per cell for the CRISPR screening library, 
yielding an average of 42,639; 36,739 and 53,413 reads aligned from 
cells from in vivo LCMV–Clone-13, in vivo LCMV–Armstrong infection 
and in vitro donor respectively.

Data analysis
Alignments and count aggregation of gene expression and sgRNA reads 
were completed using Cell Ranger (v.7.0.1). Gene expression and sgRNA 
reads were aligned using the Cell Ranger multi count command with 
default settings. Gene expression reads were aligned to the mouse 
genome (mm10 from ENSEMBL GRCm38 loaded from 10x Genomics). 
The median average of four, two and 33 unique molecular identifiers 
(UMIs) were detected from cells from in vivo LCMV–Clone 13 and LCMV–
Armstrong infection, and in vitro donor, respectively. Droplets with 
sgRNA UMI passing of default Cell Ranger CRISPR analysis Protospacer 
UMI threshold were used in further analysis. The filtered feature matri-
ces were imported into Seurat68 (v.4.3.0) to create assays for a Seurat 
object containing both gene expression and CRISPR guide capture 
matrices. Cells detected with sgRNAs targeting two or more genes were 
then removed to avoid interference from multi-sgRNA-transduced 
cells. Low-quality cells with fewer than 200 detected genes, more than 
10% mitochondrial reads and less than 5% ribosomal reads were dis-
carded. A total of 17,257 cells (Clone-13) and 15,211 cells (Armstrong) 
were passed through quality filtering and were used for downstream 
analysis. Count data were normalized by a global-scaling normalization 
method and linear transformed69. Cluster-specific genes were identi-
fied using the FindAllMarkers function of Seurat. We used Nebulosa70 
to recover signals from sparse features in single-cell data and made 
gRNA density plots with scCustomize71 based on kernel density esti-
mation. In each biological replicate (Clone-13, n = 5; Armstrong, n = 3), 
the percentage cluster distribution of cells with each TF gRNA vector 
was calculated. Among two gRNA vectors per target TF, the gRNA vec-
tor with higher TEXterm reduction was shown in Fig. 3d and used for 
Perturb-seq in LCMV–Armstrong infection (Supplementary Table 5). 
Two-way ANOVA with Fisher’s LSD test was performed to determine 
statistical significance. Differentially expressed genes were identified 
using the MAST model72; the results were then used as inputs for GSEA 
to evaluate the effect on selected pathways. Genes with P value < 0.05 
were considered as differentially expressed genes.

UMAP plots were generated by calculating UMAP embeddings using 
Seurat and then plotting them as scatter plots using ggplot2. Kernel 
density calculations for each gRNA were performed on UMAP embed-
dings using the MASS package using the kde2d function. The kernel 
density results were plotted as a raster layer with ggplot2 over the 
UMAP scatter plots. Finally, density contour lines were added using 
ggplot2’s built-in two-dimensional kernel density contour geom 
(geom_density_2d).

ATAC-seq library preparation and sequencing
ATAC-seq was performed as described previously73. In brief, 5,000–
50,000 viable cells were washed with cold PBS, collected by centrifuga-
tion, then lysed in resuspension buffer (RSB) (10 mM Tris-HCl, pH 7.4, 
10 mM NaCl, 3 mM MgCl2) supplemented with 0.1% NP40, 0.1% Tween-
20 and 0.01% digitonin. Samples were incubated on ice for 3 min, then 
washed out with 1 ml RSB containing 0.1% Tween-20. Nuclei were pel-
leted by centrifugation at 500g for 10 min at 4 °C then resuspended in 
50 μl transposition mix (25 μl 2× TD buffer, 2.5 μl transposase (100 nM 
final), 16.5 μl PBS, 0.5 μl 1% digitonin, 0.5 μl 10% Tween-20, 5 μl H2O) and 
incubated at 37 °C for 30 min in a thermomixer with 1,000 rpm mixing. 
DNA was purified using a Qiagen MinElute PCR cleanup kit, then ampli-
fied by PCR using indexed oligos. The optimal number of amplification 
cycles for each sample was determined by quantitative PCR. Libraries 

were size-selected using AmpureXP beads and sequenced using an 
Illumina NextSeq500 for 75-bp paired-end reads.

ATAC-seq analysis
Paired-end 42-bp or paired-end 75-bp reads were aligned to the 
Mus musculus mm10 genome using Burrow–Wheeler aligner74,75 with 
parameters ‘bwa mem -M -k 32’. ATAC-seq peaks were called using the 
MACS2 (ref. 76) program using parameters ‘callpeaks -qvalue 5.0e-2 –
shift -100 –extsize 200’. Differentially accessible regions were identified 
using DESeq2 (ref. 77). Batch effect was removed using limma78. Heat-
map visualization of ATAC-seq data was performed using pheatmap.

scRNA-seq metadata analysis
Analysis was performed primarily in R (v.3.6.1) using the package Seu-
rat68,79 (v.3.1), with the package tidyverse80 (v.1.2.1) used to organize 
data and the package ggplot2 (v.3.2.1) to generate figures. scRNA-seq 
data from GSE10898, GSE99254, GSE98638, GSE199565 and GSE181785 
were filtered to keep cells with a low percentage of mitochondrial 
genes in the transcriptome (less than 5%) and between 200 and 3,000 
unique genes to exclude poor quality reads and doublets. Cell cycle 
scores were regressed when scaling gene expression values and TCR 
genes were regressed during the clustering process, which was per-
formed with the Louvain algorithm within Seurat and visualized with 
UMAP. To quantify the gene expression patterns, we used Seurat’s 
module score feature to score each cluster based on its per cell expres-
sion of TFs.

To obtain Extended Data Fig. 5a, raw single-cell count data and cell 
annotation data were downloaded from NCBI GEO44 (GSE99254). Count 
data were normalized and transformed by derivation of the residuals 
from a regularized negative binomial regression model for each gene 
(SCT normalization method in Seurat68, v.4.1.1), with 5,000 variable fea-
tures retained for downstream dimensionality reduction techniques. 
Integration of data was performed on the patient level with Canonical 
Correlation Analysis as the dimension reduction technique81. PCA and 
UMAP dimension reduction were performed, with the first 50 principal 
components used in UMAP generation. Cells were clustered using the 
Louvain algorithm with multi-level refinement. The data was subset to 
CD8+ T cells, which were identified using the labels provided by Guo 
et al.65. Cell type labels were confirmed by (1) SingleR82 (v.1.8.1) anno-
tation using the ImmGen83 database obtained through celda (v.1.10), 
(2) cluster marker identification and (3) cell type annotation with the 
ProjecTILs T cell atlas7 (v.2.2.1). After sub-setting to CD8+ T cells, cells 
were again normalized using SCT normalization, with 3,000 variable 
features retained for dimension reduction. Owing to the low number 
of cells on the per-patient level, HArmstrongony84 (v.1.0) rather than 
Seurat was used to integrate data at the patient level. PCA and UMAP 
dimensionality reduction were performed as above.

Statistical analyses
Statistical tests for flow cytometry data were performed using 
Graphpad Prism v.10. P values were calculated using either two-tailed 
unpaired Student’s t-tests, one-way ANOVA or two-way ANOVA as 
indicated in each figure. Linear regressions were performed using the 
ordinary least squares method in R (v.3.6.1). All data were presented as 
the mean ± s.e.m. P values were represented as follows: ****P < 0.0001, 
***P < 0.001, **P < 0.01 and *P < 0.05.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
ATAC-seq data from this paper will be deposited in the GEO database 
(GSE279498). Taiji v.2.0 output of this study (TF activity atlas, TF–TF 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10898
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99254
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98638
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199565
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181785
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99254
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE279498


interaction maps and TF activity on genome browser view) will be avail-
able at our CD8+ T cell TF atlas portal (https://wangweilab.shinyapps.io/
Tcellstates/) and interactive interface for TF atlas exploration (https://
huggingface.co/spaces/taijichat/chat). All other raw data are available 
from the corresponding author upon request. Source data are provided 
with this paper.

Code availability
All scripts and the Taiji v.2.0 package are available at GitHub (https://
github.com/Wang-lab-UCSD/Taiji2).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Parallel differentiation of TRM and TEXterm and their 
transactional and epigenetic similarity. a, UMAP of scRNA-seq data of T cells 
from blood, tumor, and adjacent normal tissues of CRC85, NSCLC44, and HCC86 
patients. Unbiased clustering identified multiple T cell states consistent  
with those observed murine LCMV infection and tumors. b, TRM marker genes 
show higher expression in TEXterm cluster from Pan-cancer scRNA-seq in a.  

c, Both TRM and TEXterm clusters upregulate exhaustion-8 and TRM
31-associated 

gene signatures. d, Pearson correlation matrix of batch-corrected ATAC-seq 
datasets3,9,33,34. Color and size are both proportional to correlation strength.  
e, A total of 121 experiments across multiple data sets3,9,17,22,31–35 were utilized to 
generate an epigenetic and transcriptional atlas of CD8+ T cells under chronic 
and acute antigen exposure.
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Extended Data Fig. 2 | Cataloging key TFs across CD8+ T cell states. a, Logic 
flow of the unbiased PageRank comparison to classify single-state/multi-state 
TFs. b, Number of TFs catalogued in each cell state. c, Venn Diagrams showing 
overlap of TFs with the TRM cell state. d, TF activity score (normalized 

PageRank) of previously reported TEXterm-preventing TFs (TFAP4, JUN, BATF3, 
and BATF), newly identified TEXterm single-state TFs (JDP2, ZFP324, ZBTB49, 
ZFP143, ZSCAN20), and NFATC1, a known TEXterm-associated TF.



Extended Data Fig. 3 | TF wave analysis. a, Schematic of the analysis pipeline. 
b, Selection of algorithms and parameters for TF wave analysis. The Pearson 
correlation was chosen for the distance metric, with k = 7 chosen as the optimal 
cluster number. c, Seven TF waves. Circles represent specific cell states. Red 

color indicates normalized PageRank scores. d, List of TF members in each 
wave. e, Heatmap of biological pathways enriched in each TF wave. Red-blue 
color scale indicates the p-value.



Article

Extended Data Fig. 4 | TF–TF association network in TEXterm and TRM cell 
states. a–c, TF–TF associations of (a) TEXterm single-state TFs (JDP2, ZFP324, 
and IRF8); (b) TRM single-state TFs (FOSB, SNAI1, and KLF6); (c) multi-state TFs 
shared by TEXterm and TRM (PRDM1, FLI1, and GFI1); and (d) previously reported 

TFs whose OE prevent TEXterm–JUN, TFAP4, and BATF. Line color indicates 
state specificity: TRM (green) or TEXterm (brown) state. Line thickness represents 
interaction intensity. Line color indicates state specificity: TRM (green) or 
TEXterm (brown) state. Line thickness represents interaction intensity.



Extended Data Fig. 5 | TF network analysis reveals proteasome pathway 
enrichment in TEXterm state with diminished tumor control function.  
a, Pseudotime analysis of CD8+ TIL scRNA-seq data from NSCLC patients (n = 14), 
showing a positive correlation between proteasome gene scores (KEGG: 
M10680) and T cell exhaustion. b, Gene set enrichment analysis (GO:0043161, 
Proteasome-mediated ubiquitin-dependent protein catabolic process) of 

RNA-seq from CD8+ splenocytes (black) and TILs (purple), n = 3 each. c, Tumor 
growth of Rag2−/− mice bearing MCA-205 sarcomas infused with proteasomehigh 
or proteasomelow CD8+ TILs isolated from C57BL/6 mice bearing MCA-205 
tumors. n = 5 per group. Two-way ANOVA Tukey’s multiple comparison test 
were performed. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.

https://www.ncbi.nlm.nih.gov/nuccore/M10680
http://amigo.geneontology.org/amigo/term/GO:0043161
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Extended Data Fig. 6 | In vivo Perturb-seq with dual-guide RNA in LCMV 
chronic infection and individual validation. a, Retroviral vector design for 
dual-gRNA delivery. b, Feature plot of differentiation markers (Pan-exhaustion: 
red, TEXprog: pink, TEXeff: blue, Cell cycle: purple, TEXterm: brown). c, Heatmap of 
marker gene expression across cell state clusters identified by Seurat’s Find 

Markers() function. d, Frequency of PD1+SLAMF6−CD101+ cells (d). Frequency of 
CD38+CD39+ double-positive cells (e). Statistical analysis: Ordinary one-way 
ANOVA with Dunnett’s multiple comparisons test versus gScramble (n ≥ 5 from 
≥2 biological replicates). Data are presented as mean ± s.e.m. ****P < 0.0001; 
***P < 0.001; **P < 0.01; *P < 0.05.



Extended Data Fig. 7 | Single-cell transcriptomic profiling of CD8+ T cells 
from Perturb-seq in acute LCMV infection and validation of the selectivity 
of TRM single-state TF, Klf6 overexpression. a, Feature plots of differentiation 
marker genes (TCM: yellow, TEM: blue, TRM-Itgaelow: dark blue, TRM: green).  
b, Heatmap of differentially expressed genes between TRM-Itgaelow and TRM 
clusters. c, Volcano plots of differentially expressed genes in Cas9+ P14 CD8+ 
T cells expressing gEtv5, gArid3a, gHic1, or gGfi1. d, TRM single-state TF, Klf6 

overexpression does not accelerate T cell exhaustion. Experimental setup: 
Klf6-RV or control-RV transduced P14 CD8+ T cells co-transferred into mice 
infected with chronic LCMV-Clone-13, Quantification of the frequency of PD1+, 
TEXprog (PD1+SLAMF6+CX3CR1−), TEXeff (PD1+SLAMF6−CX3CR1+) and TEXterm 
(PD1+SLAMF6−CX3CR1−) populations. Paired t-tests (n ≥ 6 from ≥2 biological 
replicates). Data are presented as mean ± s.e.m. ****P < 0.0001, ***P < 0.001, 
**P < 0.01, *P < 0.05.
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Extended Data Fig. 8 | Depletion of TEXterm-single state TF, Zscan20 and 
TEXterm and TRM multi-state TF, Hic1 reduces T cell exhaustion. a, Experiment 
design. b, Representative flow plots of PD1+ P14 cells stained for SLAMF6  
and TIM3. c, quantification of TEXprog (PD1+SLAMF6+TIM3−) and exhausted 
(PD1+SLAMF6−TIM3+) subsets. d, Frequency of PD1+CD39+ double-positive cells. 
e, Co-transfer of Cas9+ P14 CD8+ T cells transduced with RV-gZscan20 or RV-gHic1, 

mixed with gRNA control RV transduced cells into B16-GP33 tumor-bearing 
mice. f, Representative flow plots of PD1+ P14 CD8+ T cells stained for SLAMF6 
and CX3CR1. g-i, Quantification of (g) TEXprog (PD1+SLAMF6+TIM3−), (h) TEXterm 
(PD1+SLAMF6−TIM3+), and (i) IFNγ+TNF+ population. Paired t-tests (n ≥ 6 from ≥2 
biological replicates). Data are presented as mean ± s.e.m. ****P < 0.0001, 
***P < 0.001, **P < 0.01, *P < 0.05.



Extended Data Fig. 9 | Conservation of single- and multi-state TFs in human 
pan-cancer TEXterm and TRM cell states. a, Human pan-cancer datasets utilized 
in this study48–55. b, Cluster-specific marker mRNA expression across integrated 
pan-cancer single-cell multi-omics datasets. c, TF activity analysis using Taiji 
on matched matched scRNA-seq and scATAC-seq datasets from various human 
cancers, including ccRCC, GBM, BCC, HNSCC, HCC, and RCC. CD8+ T cell  
states were annotated using canonical marker gene expression. PageRank 
scores derived from Taiji were log-transformed, averaged per state, and z-score 
normalized. Results were visualized with a focus on TF activity TRM and TEXterm 

cell states. d, mRNA expression of TFs were compared across human CD8+ T cell 
states. The dataset encompassed T cells from 15 tumor types. Cell type 
annotations provided by the original study were retained and mapped to the 
following broad categories of clusters: TRM, TEXterm, TEM, Memory, Naive, and 
cell cycle. Seurat’s AverageExpression function was used, followed by z-score 
normalization. Data visualization emphasized comparisons between TRM and 
TEXterm cell states. Cell-state-selectivity conserved TFs in humans and mice are 
highlighted in bold (c, d).
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Extended Data Fig. 10 | CRISPR validation of TEXterm single-state TF KO in 
human PBMCs and antitumor activity of TF-deficient T cells in mice. Indel 
frequencies, representative Sanger sequencing traces, and indel distributions 

for (a) ZSCAN20 and (b) JDP2 KOs. c, Survival of B16-GP33 bearing mice receiving 
Zscan20 KO or control P14 CD8+ T cells, followed by anti-PD1 or isotype IgG2a 
treatment. d, Survival of tumor-bearing mice with Jdp2 KO P14 CD8+ T cell transfer.
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