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CDS8'T cells differentiate into diverse states that shape immune outcomes in cancer
and chronicinfection'™*. To define systematically the transcription factors (TFs)
driving these states, we built a comprehensive atlas integrating transcriptional and
epigenetic dataacross nine CD8" T cell states and inferred TF activity profiles. Our
analysis catalogued TF activity fingerprints, uncovering regulatory mechanisms
governing selective cell state differentiation. Leveraging this platform, we focused
ontwo transcriptionally similar but functionally opposing states that are critical

in tumour and viral contexts: terminally exhausted T (TEX,.,) cells, which are
dysfunctional®®, and tissue-resident memory T (Tg,,) cells, which are protective® =,
Global TF community analysis revealed distinct biological pathways and TF-driven
networks underlying protective versus dysfunctional states. Throughin vivo
CRISPR screening integrated with single-cell RNA sequencing (in vivo Perturb-seq)
we delineated several TFs that selectively govern TEX,.,, cell differentiation. We also
identified HIC1and GFI1 as shared regulators of TEX,,, and Ty, cell differentiation
and KLF6 as aunique regulator of Ty, cells. We discovered new TEX,,,-selective TFs,
including ZSCAN20 and JDP2, with no previous known functionin T cells. Targeted
deletion of these TFs enhanced tumour control and synergized withimmune
checkpoint blockade but did not interfere with Ty, cell formation. Consistently,
their depletionin human T cells reduces the expression of inhibitory receptors
and improves effector function. By decoupling exhaustion Ty-selective from
protective Ty, cell programmes, our platform enables more precise engineering

of T cell states, accelerating the rational design of more effective cellular
immunotherapies.

Cellstates are the range of cellular phenotypes arising from a defined
cell type’s interaction with its environment. Within the immune sys-
tem, T cells possess several differentiation states, particularly as naive
T cells differentiate into diverse states with different functionalities
and trafficking patterns in various immune environments, such as
tumours and virus infections' ™. As transcription factors (TFs) govern
cellstate differentiation™, understanding how TFs shape these states is
essential for programming beneficial states with therapeutic potential.
One promising application of cell state engineering is enhancing CD8"
T cells for adoptive cell transfer therapy (ACT) of tumour-infiltrating
lymphocytes (TILs) or chimeric antigen receptor (CAR) T cells. How-
ever, identifying TFs that control CD8" T cell states is difficult owing

to substantial heterogeneity and overlapping transcriptomes, even
between functionally divergent states.

We focused on two transcriptionally similar yet functionally diver-
gentstates: the protective functional tissue-resident memory (Tg,,) cell
state and the dysfunctional terminally exhausted (TEX,.,.,) cell state.
Many studies show that TILs with Ty, cell characteristics correlate with
better survival in patients with solid tumours® ™. Conversely, during
persistent antigen stimulation scenarios such as chronic virus infec-
tion (for example, HIV) or cancer, T cells progressively express diverse
inhibitory receptors, including PD1, and lose memory potential and
effector functions. This process isknown as T cell exhaustion (TEX)* 8,
and cells in this trajectory eventually adopt the TEX,, cell state.

A list of affiliations appears at the end of the paper.
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TEXrm cells express higher levels of diverse inhibitory receptors (for
example, TIM3 and CD101), lack effector and proliferative capacity,
and do not respond effectively toimmune checkpoint blockade (ICB),
suchasanti-PD1monoclonal antibody (mAb) blockade® . High TEX ¢/,
cellmarker expression oftenindicates poor prognosisin solid tumours,
although some markers also correlate with ICB response, highlight-
ing their complex role in tumour immunity'®', Despite their distinct
functional effects on cancer outcomes, TEX,.,, and Ty, cells both
reside preferentially in tissues** and display remarkable similarities
in their transcriptional profiles, including key regulatory TFs such as
BLIMP1 (refs. 5,20-22), BHLHE4O (refs. 23,24) and NR4A2 (refs. 9,25,26)
(Fig. 1a,b and Extended Data Fig. 1a-c). These two cell states even
exhibit highly correlated open chromatin regions (Extended Data
Fig.1d), complicating the precise identification of TFs whose disrup-
tion may selectively inhibit TEX,.,, cell development while preserving
Tru cell development. Given that many TFs are expressed commonly
across different CD8" T cell states and differentiation trajectories,
a sophisticated and precise bioinformatics approach is crucial to
pinpoint the bona fide cell-state-specifying TFs that are essential for
T cell programming.

We hypothesized that key TFs controlling selective CD8" T cell dif-
ferentiation could be identified through systematic comparison of
TF activity across the differentiation landscape. Accurate prediction
requiresrecognizing that TF activity does not necessarily mirror expres-
sion, asit depends on post-translational modifications, cofactors and
target accessibility?, and that TF effects propagate through genetic
networks. We therefore developed a multi-omics atlas integrating
transcriptomic and chromatin accessibility datafrom nine CD8" T cell
states to understand ‘global’ influences of TFs in each cell state and
to identify ‘selective’ or ‘shared’ TFs. Our atlas-based platform can
map TF communities and their target genes (‘regulatees’), guiding
state-specific differentiation.

Multi-omics atlas maps of CD8" T cell TFs

Our initial objective was to create a comprehensive catalogue of TF
activity across diverse CD8" T cell states by integrating our TF activ-
ity analysis pipeline, Taiji?®*°, with comparative statistical analysis. In
Taiji, the gene regulatory network (GRN) is a weighted, directed net-
work that models regulatory interactions between TFs and their target
genes. Inthis GRN, each node corresponds to a gene, and its weight is
proportional to the gene’s expression level. Each edge represents a
regulatory interaction and is weighted on the basis of a combination
of factors: the predicted binding affinity of the TF to the target gene,
chromatin accessibility at the target gene’s locus and the expression
levels of both the TF and the target gene®? (Fig. 1c). To determine the
globalinfluence of each TF within the network, Taiji applies a person-
alized PageRank algorithm, which assigns an ‘importance’ score to
each node that is based on both the quantity and quality of incoming
connections. Thisapproach yields ameasure of TF activity that reflects
theinfluence ofeach TFinthe broader regulatory landscape, account-
ing for upstream regulators, downstream targets and feedback loops
throughiterative computation.

With Taiji, we previously identified TFs involved in pan-immune
lineage commitment, including natural killer cells, dendritic cells,
B cellsand yS T cells*. Although earlier studies provided foundational
insights into cell differentiation, a more refined analysis within CD8"
T cellsis needed to achieve higher resolution of TF roles. Therefore,
leveraging theimproved statistical filtering, we aimed to quantify the
globalinfluence of TFs across all CD8" T cell states.

To begin, we analysed assay for transposase-accessible chroma-
tin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq)
datasets from 121 CD8' T cell samples spanning nine distinct states,
using both previously published and newly generated datasets from
well-characterized acute and chronic lymphocytic choriomeningitis
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virus (LCMV) infections®>*”?2*"3 (Extended Data Fig. 1e and Supple-
mentary Table1).Inacute LCMV-Armstrong infections, CD8" T cells dif-
ferentiateinto memory precursor (MP), terminal effector (TE), effector
memory (Tg,), centralmemory (T¢y) and Ty, states. In chronic LCMV-
Clone 13infections, they adopt heterogeneous exhaustion cell states,
including progenitors of exhaustion (TEX ,.,), effector-like exhaustion
(TEX,) and TEX,,, States (Fig. 1a).

Next, we conducted an unbiased comparative analysis using sta-
tistical filtering to understand the specificity of TF activity across
the CD8" T cell states (Extended Data Fig. 2a and Supplementary
Table 2). This identified TF genes, of which 136 were predominantly
‘single-state’ TF genes, with each cell state selectively containing 12-19
unique TF genes (Fig. 1d and Extended Data Fig. 2b). This category
included new TF genes such as Hoxa7 in naive T cells, Snail in Ty,
Heyl'in TEX,,g, S0x8in TEX ¢, and Zscan20 and Jdp2 in TEX,n, cells.
By contrast, 173 TFs, including Tc¢f7 and Tbx21, were key regulators in
more than one cell state, termed ‘multi-state’ TF genes (Fig. 1e). TCF7
isaknowndriver of naive, MP and TEX,,,. States, all of which are multi-
potent with high proliferative capacity*”. Genes encoding multi-state
TFs such as Vax2, Batf, Irf8 and Statl were more enriched within the
exhaustion-associated cell states (TEX g, TEX.rand TEX ). Consistent
with the similarity between TEX,,, and Ty cells (Fig.1b and Extended
DataFig.1b-d), these two cell states share the most TF genes compared
with other cell states (for example, Egr2, Crem and Prdm1I; Extended
DataFig.2c).

Although Taiji provides a statistically grounded approach for infer-
ring TF activity (Extended Data Fig. 2a), there is no absolute thresh-
old for defining cell state specificity, and some misclassification is
expected, particularly for TFs with overlapping functions or modest
differencesinactivity. Still, Taiji is useful to highlight TFs with activity
patterns enriched in specific cell states. For instance, although Eomes
is classified as a TEX,., Single-state TF gene herein, it also functionsin
effector, Ty, Tow and Ty cell differentiation®*. This illustrates that
more accurate classifications require further investigation and resolu-
tion, as performed herein for several TFs.

prog

TF state selectivity in TEX,,,,, and Ty, cells

Despite the strong transcriptional overlap between TEX ., and Tyy
cells, our Taiji pipeline predicted TFs as being selectively active in either
of these two cell states. This could aid in developing better immuno-
therapies, in which one can engineer T cells away from exhaustion
and towards more functional effector cell states without negatively
affecting Tgy, cell formation in tissues and tumours. On the basis of
statistical criteria (Extended Data Fig. 2a), we identified 20 and 34
TFs as single-state TFs of Ty, and TEX,.,, cells, respectively, and 30
multi-state TFsthat were active inboth (Fig. 1f-h, Extended Data Fig. 2a
(blue boxes) and Supplementary Table 3). TEX.,., single-state TF genes
included those for many previously unreported TFs, such as Zscan20,
Jdp2, Zfp324, Zfp143, Zbtb49 and Arid3a (Fig. 1f). Ty, single-state
TF genes included Fosb, Zfp692, Atf4, Pbx4, Junb and KIf6 (Fig. 1g). Of
the TEX ., and Tgy, multi-state TF genes, some, such as Nr4a2 (ref.12),
Bhlhe40 (ref.23) and Prdm] (refs. 22,31), were well known to function
in the development of both cell states, whereas others, such as Hicl
(ref.38) and (Gfil (ref.39), were not, identifying them as new multi-state
TFs to consider (Fig. 1h). We analysed previously reported TFs such
as cJUN, BATF/BATF3 and TFAP4 that were identified from functional
screening of CD8' T cells*** based on limited phenotypic readouts.
These previous screens tended to identify broadly active, multi-state
TFs (Fig. 1). By contrast, our platform enabled a computationally
guided, multi-state screen thatidentified TFs predicted to have greater
state-selective activity (Extended Data Fig. 2d).

To evaluate the TFs that were predicted to govern selective T cell
differentiation, we identified dynamic activity patterns of TF groups,
termed ‘TF waves’ (Extended Data Fig. 3). TF waves reveal possible



a
L
Blood Eeripheral
. tissues or
°8° tumour ¢
%!
Memory
path
Exhaustion
path
% Cytokines ' Inhibitory receptors
d Single-state TFs
@ & e S
&8 & wrese GG

- Myc
., Sox4
~ Tet3
- Mynn
\ Egr3
- Zeb1
- Gata2

- \ Hoxb4
— Nréa1

, Nfia
= Pou2f2

s Yyl

— Amntl

- Smad3

N Rix3

- Hes1

" Sox7

 Cux1
Poubf1

7 Dmrsatl

/ Nfkb1

~ Bach1
— Ppard

i
I I
Wi

o 10 |
LTINS
il

~ Snait

~ Nr3c2
N
Nfkb2
— Cebpd
Six5
/ Statsb
=25

:

> Sox8
" m e |~ Zfo184
~ Mxi1

~ Ovol2
~ Rix4

- Zscan20

- © Zip143
= \ Zbtb49
_ Zbtb3
—~ Thrb

2 1 0
e

Fig.1| Transcriptional and epigenomic atlas of CD8" T cell differentiation
statesand TFidentification pipeline. a, Diagram summarizing CD8' T cell
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correlation matrix of batch-effect-corrected RNA-seq datasets. Both colour
intensity and circle size indicate correlation strength, withred denoting the
highest correlation. c, Workflow of the integrative Taiji analysis. Matched
RNA-seqand ATAC-seq datasets>*"***35 were used to constructaregulatory
network and calculate TF activity scores using PageRank. Downstream
analysisincluded identification of single-and multi-state TFs, TF ‘waves’ and
network communities. d-h, TFs (rows) and samples (columns) are displayed as
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Line thickness: TF-TF correlation intensity

—— TF-TF interaction exclusively in TEX,,,
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Fig.2|See next page for caption.
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combinations of TFs that coordinate trajectories. Seven TF waves
linked to specific biological pathways were identified, such as the Tgy
TF wave (Fig. 1i), which includes genes encoding several members of
the AP-1family (for example, Atf3, Fosb and Jun) that are associated

DataFig. 3e).
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uniquely with the TGFf3 response pathway (Extended Data Fig. 4e).
The TEX TF wave, which involves Irf8, Jdp2, Nfatcl and Vax2, cor-
relates with PD1 and senescence pathways (Fig. 1j and Extended



Fig.2|Global analysis of TF networks in TEX.,, and Ty cell states.a, Overview
of TF-TF network analysis encompassing association and community-level
organization of Tyy and TEX,.,, regulatory landscapes.b,c, TF-TF association
networks focused on the TEX,, single-state TF ZSCAN20 (b) and the multi-state
TFHIC1(c), depicting predicted context-specificinteractionsin Ty (green)

or TEX,em (brown) cells. d-f, Clustering of TF-TF associationsidentified five
distinct TF communities in Ty and TEX,.,, networks. Shared TFs (grey) shape
overallcommunity topology (d), whereas Tyy- or TEX..n-specificinteractions
arerepresented as green (e) or brown (f) edges, respectively.g, Summary
ofshared and unique biological pathways enriched within Tpy, and TEX ¢,
communities. Line thickness reflects -log,, (Pvalue). Pathway gene setsin
Supplementary Table 8. h, Gene set enrichment analysis (GSEA) comparing
TEX,erm Versus Tgy cell pathways using batch-effect corrected LCMV

bulk RNA-seq**"7?>335 and human pan-cancer scRNA-seq data sets**>>¢!,

i-k, Flow cytometry analysis of proteasome activity showing the highest
activity in TEX,, cells during LCMV-Clone-13 infection (i) and MCA-205
tumours (j). Indual transfer experiments, antigen-specific (P14) and bystander
(OT-1) CD8' T cells analysed from B16-GP33 tumours (k) show elevated
proteasomeactivity in TEX,.,-like populations.1, Functional impact of
proteasomeactivity on tumour growth. Tumour-bearing C57BL/6 mice were
infused with proteasome"" or proteasome'® OT-1 cells pre-stimulated with
B16F1-OVA tumour cells for 7 days. Proteasome"" OT-1 cells exhibit reduced
tumour control. Dataare shown as mean + s.e.m. Ordinary one-way analysis of
variance (ANOVA) (i-k) and two-way ANOVA Tukey’s multiple comparison test (I)
were performed. i-1,n>6.***P<0.0001,***P<0.001,**P<0.01,*P< 0.05.

TF community analysis of T, versus TEX,.,, cells

To uncover transcriptional programmes governing Tgy OF TEX ¢/
cell differentiation, we constructed TF-TF association networks
capturing functional relationships between TFs (Fig. 2a). Analysis of
regulatee-based adjacency matrices (thatis, predicted TF-target gene
circuits) revealed shared and distinct patterns of TF collaboration across
the two states. Single-state TFs displayed strong intra-state connectiv-
ity. TEX;em TFs (ZSCAN20,JDP2, ZFP324, IRF8) formed dense networks
within TEX., cells (Fig.2b and Extended Data Fig. 4a), whereas Ty, TFs
(FOSB, SNAI1, KLF6) interacted mainly within T, networks (Extended
DataFig.4b). Multi-state TFs (HIC1, PRDM], FLI1, GFI1) that were active in
bothstates and previously reported TFs (cJUN, BATF and TFAP4) formed
distinct partnershipsineachcell state, reflecting context-specific regu-
latory architectures (Fig. 2c and Extended Data Fig. 4¢).

We next grouped the TF-TF association networks into distinct ‘TF
neighbour communities’ in Tgy and TEX,,., cells (Supplementary
Table 5), and each community was linked to specific biological pro-
cesses (Fig. 2d-f). Although multi-state TFs shaped overall community
topology, single-state TFs drove unique interaction patterns specific to
Trum OF TEX i cells within each community. Pathway analysis revealed
divergent programmes in each state—for instance, Try,, community-3
was associated with cell adhesion and TGF3 response (Fig. 2e,g,h),
whereas TEX,,» community-3 was linked to apoptosis (Fig. 2f-h).
Community-1in Tgy, cells controlled RNA metabolism (Fig. 2e,g,h),
whereas in TEX,.., cells, it was tied to catabolism, proteolysis and
autophagy (Fig. 2f-h).

To assess the functional relevance of state-enriched pathways, we
focused onthe proteasome pathway, whichemerged as a prominentbut
previously unrecognized feature of TEX ., cells (Fig. 2g,h). Proteasome
genesignatures were enriched in TEX.,,-like CD8" T cells from patients
with non-small cell lung cancer (NSCLC)** and mouse MCA-205 TILs
(Extended DataFig. 5a,b). Consistently, proteasome activity—measured
by a validated fluorescent probe*—was highest in TEX,., cells from
chronicLCMV (Fig. 2i) and in tumour-specific TILs (Fig. 2j,k) relative to
bystander OT-1cells (Fig. 2k). To test whether high proteasome activity
correlateswith dysfunction, we sorted OT-1cells by proteasome activ-
ity probe intensity and adoptively transferred them into BI6F10-OVA
tumour-bearing mice. Proteasome"e" cells showed reduced tumour
control compared with proteasome' cells (Fig. 21)—atrend also seen
inendogenous TILs (Extended DataFig. 5c). These findings support the
TF-TF network and pathway predictions and identify the proteasome
pathway as a functional hallmark of TEX,, cells.

Invivo CRISPR screens of TEX,.,, TFs

The Taiji pipeline enabled comparative analysis of TF activity and
curated sets of single-state TFs specific to Tgy versus TEX., cells
(Fig. 1f-h). To assess its accuracy, Perturb-seq, combining in vivo
CRISPRscreening with single-cell RNA-seq (scRNA-seq), was performed
in two animal models for Ty, or TEX,,, differentiation (Figs. 3a and

4a). Our Perturb-seq guide RNA (gRNA) library targeted 19 TF genes,
including 7 encoding TEX,, and Tg,, multi-state TFs and 12 encoding
TEX,em Single-state TFs. The TEX,.,, TF genes included one known TF
(Nfatcl) and 11 others that had high specificity scores but were not
previously linked to TEX,,, differentiation (grey boxes; Fig. 1f,h). The
multi-state TF genes included two positive controls (Nr4a2, Prdm1I)
and unvalidated multi-state TF genes (Nfil3, Hicl, Gfil, Ikzf3, Stat3). To
ensure comprehensive screening, four gRNAs per target were expressed
intwo dual-gRNAretroviral vectors (Extended Data Fig. 6a), along with
two control vectors with scramble gRNAs (gScramble). This created a
library of 40 dual-gRNA vectors, with 76 TF-gRNAs and four gScramble
controls (Supplementary Table 6).

Cas9" P14 CD8" T cells were transduced with this library and trans-
ferred into mice infected with LCMV-Clone-13—a model of chronic
infection and CD8" T cell exhaustion (recipient mice also expressed
Cas9 to prevent rejection of donor cells). Droplet-based sequencing
was performed 18 or more days post-transfer to assess sgRNA and tran-
scriptomes of each spleen-derived donor Cas9* P14 CD8" T cell (Fig. 3a),
analysing 17,257 cells with unique gRNA expression.

To determine which TF genes impaired TEX,, cell differentiation,
we first used uniform manifold approximation and projection (UMAP).
Four primary clusters were identified: TEX g, TEX.¢rand TEX ., cells
and those in cell cycle (Fig. 3b and Extended Data Fig. 6b,c). All clus-
ters expressed Tox and Pdcdi—key exhaustion markers—and TEX o,
cells were identified by Tcf7, Slamf6 and Sell expression. TEX cells
expressed effector markers, including Cx3crl1, Kird1, Kirk1, Kif2and Zeb2
(ref. 2), whereas TEX.,, cells expressed high inhibitory receptors and
well-established exhaustion markers such as Cd101, Cd7, Cd38, Cd39,
Cxcré6 and Nr4a2. The cell cycle cluster was noted for its expression
of Birc5, Mki67, Stmnl and Tubalb.

Next, we evaluated the impact of individual TF depletion by analys-
ingthedistribution of gRNA" cells across exhaustion states (Fig. 3c,d).
CRISPR knockout (KO) of most of the 19 TEX,,-driving TF genes led
to areductionin TEX,., cell frequency. Notably, KOs of multi-state
TF genessuchas Hicl, Stat3, Prdm1 and lkzf3 (which encodes AIOLOS)
resulted in a profound reduction of approximately 90% in TEX,.,, dif-
ferentiation. Depletion of new TEX,, single-state TF genes—including
Zfp324,Zscan20 and Jdp2—reduced TEX,,, differentiation significantly,
by 78%, 54% and 43%, respectively (Fig. 3d, bold). Other new candidates,
such as EtvS, Arid3a, Zfp410, Foxd2 and Prdm4, also reduced TEX ¢/
representation by 25-40%, although some did not reach statistical
significance. This Perturb-seq analysis highlights the platform’s abil-
ity toidentify TFs that regulate the TEX,,, state, with most tested TFs
influencing exhaustion to varying degrees.

To further assess how KO of TEX.,,-driving TF genes affect CD8*
T cell exhaustion, we used flow cytometry and scRNA-seq to analyse
TF KO cells during LCMV-Clone 13 infection (Fig. 3e-i and Extended
DataFig. 6). We tested six TF KOs, including known control (PrdmI) and
five newly identified TF genes (Zscan20,Jdp2, Zfp324, Stat3, Hicl) that
impaired TEX.,, State differentiationin Perturb-seq. Disrupting these
TFsreduced TEX,., cell (PDI'CX3CR1 SLAMF6°) frequency by around
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Fig.3|Invivo Perturb-seqvalidation of TEX,,,,,-driving TFs. a, Schematic
oftheinvivo Perturb-seqstrategy. Cas9‘P14* TCR transgenic CD8 T cells
recognizing the LCMV epitope GP33-41were transduced with retrovirus-
expressing gRNA libraries, adoptively transferred into mice infected previously
(1day earlier) with LCMV-Clone-13, and analysed 18-23 days later by scRNA-seq.
b, UMAP showing TEX,,,og, TEX s, TEX,ernand cell cycle clusters; marker expression
isin Extended DataFig. 6b,c. c,d, Kernel density plots (c) and distributions of
gRNA" cells (d) across clusters. TEX,.,, single-state TF genes are inbold. Data
represent five pooled replicates from threeindependent experiments; values
areshown as mean +s.e.m. Statistical analysis: two-way ANOVA with Fisher’s
least significant difference (LSD) test compared with the gScramble control;
results for TEX e, and TEX,,, clusters are shown; with full comparisonsin
Supplementary Table 7; ****P < 0.0001, ***P< 0.001, **P< 0.01, *P < 0.05.
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e, Representative flowplots showing phenotyping of the TF KOs in LCMV-
Clone13-infected mice. f, Quantification of TEX,.,, (PDI'SLAMF6 CX3CR1")
frequenciesindonor CD8'T cells. g, Differential expression analysis of TEX e,
TEX, g and TEXrgene signatures*® (Supplementary Table 8) across each
TFKO.h,i, Frequencies of TEX,,.; (PDI'SLAMF6°CX3CRI) (h) and TEX,
(PD1'CX3CRY') (i) subsets.j, GSEA showing enrichment of effector-associated
genesetsin TF KOs versus control. k,I, Functional validation: cytokine
production (IFNy, TNF) and viral titres in mice receiving TF KO versus control
CD8' T cells. Statistical analysis for f, h, i, k, I, mean + s.e.m., ordinary one-way
ANOVA with Dunnett’s multiple comparison versus gScramble (f-k,n> 8,
atleast three biological replicates; i, n > 4, atleast two biological replicates).
***p<(0.001,**P<0.01,*P<0.05.
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Fig.4 |Functional validation of TFs with distinctroles in TEX ., and Tgy,
differentiation. a, Schematic of in vivo Perturb-seq screening duringacute
LCMV-Armstronginfectionto assessmemory CD8" T cell differentiation.
Transduced donor Cas9*P14'CD8" T cells were analysed for Tgy, Teyand Tey
statesin the smallintestine and spleen.b, UMAP embedding of 15,211 cells
identifying Ty, (IL7r, Tcf7, Sell, Siprl), Ty (Cx3crl, Kirgl, KIf2), Ty, (Cd69, Itgae,
Cd160) and Ty~ Itgae"" clusters. ¢, Differential distribution of cells across
tissues. d, Kernel density map of gRNA" cellsin UMAP space. e, Cluster
distribution for each TF gRNA; TEX,.,, single-state TF genes arein bold. Data
representthreereplicates; mean + s.e.m. Statistical analysis, two-way ANOVA
with Fisher’s LSD versus gScramble. ****P< 0.0001, ***P< 0.001,**P< 0.01,
*P<0.05; Supplementary Table 5. f, Normalized expression of Ty, ‘up’and

50% (Fig. 3e,f) and decreased expression of inhibitory receptors such
as CD101, CD39 and CD38 (Extended Data Fig. 6d,e). All 19 TEX o, -TF
gene KOs exhibited a marked decrease in TEX,,-Signature genes*®,
including Cd7, Cxcr6, Nr4a2 and Entpd1 (Fig. 3g).

Finally, the TEX,,,-driving TF gene KOs were grouped according
to their effects on TEX ;. (PDI'CX3CR1"SLAMF67; Fig. 3h) or TEX
(PD1'CX3CR1*; Fig. 3i) state differentiation. Loss of PrdmI and Stat3
markedly increased the frequency of TEX,,., cells and upregulated
TEX,.oy signature genes (Fig. 3g,h) whereas loss of Hicl, Zscan20, Zfp324
or Jdp2 expanded primarily the TEX; cell population and effector

‘down’ genesignatures®* ineach KO versus control. g,h, Phenotypic validation.

Ratio of gRNA* cellsinsmallintestine to spleen (g) and frequency of splenic
Tem (CD62L'KLRGIY) and Ty, (CD62L'KLRGIY) cells (h).i,j, Overexpression (OE)
ofthe Ty single-state TF gene KIf6 enhances Ty, formation. P14'CD8" T cells
transduced with KIf6 or empty vector were co-transferred (approximately 1:1)
intoLCMV-Armstrong-infected mice.i, Representative plots pre-and post-
transfer.j, Quantification of donor CD69°CD103" Ty, cells in the smallintestine.
k, Quantification of the frequency of TEX,. cells. Statistical tests, ordinary
one-way ANOVA with Dunnett’s multiple comparison versus gScramble (g,h),
paired t-tests (i,j); n =4 (g,h) or n> 6 (i-k) from at least two biological replicates.
Data, mean+s.e.m.**P<0.001,**P<0.01,*P<0.05.

signature genes (Fig. 3g,i,j). Deletion of the Zscan20 and Jdp2 signifi-
cantly enhanced effector cytokine production (for example, interferon
gamma (IFNy) and tumour necrosis factor (TNF)) and reduced viral
loads in recipient mice (Fig. 3k,1).

Deleting TEX.,., TFs preserves Ty, fate

Aprincipal goal of this work was to identify TFs that selectively repress
TEX .. cell differentiation without affecting Ty, differentiation, thereby
enabling more precise programming of CD8" T cell states. As nearly

Nature | www.nature.com | 7



Article

@  B16-GP33  Caso*Pi4 + TF gRNA b c d
tumour v
D7 —> o *k . NS ** NS
Day 23 = 804 [ 80 40 404 204 1 204 —
B16-GP33 Co-transfer =
o o 60 60 S 30 30 =15 15
NS = L s k'
—e— gScramble ]E . 1.0 — g + e
b4 '
2,000 -| = gHicT EIE &F oo £ <0 04, B2 20 2 10 10 Z><:
— —e— gZscan20 B 08 & G§ & S 3 —s N
£ = DO ops O 7} S}
£ 15001 % s FE  FVs P20 20 g;, 10 10 8’?‘}\ 5 59
[ o
8 3 o o—3
@ 00 5 04 0 ——1— 01— O—T—71-0 0 0
5 1,000 @ o0 2 QO @ 2 QO @ o0 ° QO
g 5 B16-GP33 tumour & & SRS & & & & @ O
5 ~ 0.2 R &9 & &9 <& &9
F 500 & § § & ¢ ¢ ¢
0
e A0
0 g T T ,§° &‘0 og&
0 5 10 15 o &6
Days post-implantation S
e f TF activity
Human pan-cancer multi-omics curation Human CD8* T cell states TF activity score
calculation
Six tumour types beoudonulk _e- Human TEX,, cluster
Paired scRNA and " I
_ scTaiji processing .@ | Human Tj,, cluster
SCATAC-seq o ’()0 RM
. Normalized PageRank I |
Plus nine tumour types -15 -05 0.
scRNA-seq
Total 15 tumour types PageRank
° ® oo o 4 in each cell state G RNA expression
} L F£E
F S AONE 0 F §
L & S LS
& ¥
TF average 6\‘\“ &« e
expression in Qk \b Normalization Human TEXlem\ cluster
defined clusters of
ach datas. [ N ]
each dataset Iy ® e B Human Tx,, cluster
© QFQ & &L ™
AT AT
HEg
Z-score -
-1 0 1 2
h i i k [
Number of cytokine
% % co-expression
In vitro exhaustion g 50 * 50 . E « IFNYTNFAL-2/GZMB
— *
PBMC g 4 % % = b v B e
40 04 ™5 [ <
aCD3/CD28 3 = 2
e o = = Q S S 60 5
plate activation Q X x Q§ =20 < 40 — O
D2 2 e =30 z 8 L g iy
i~ & < +
> ST £ 5 3 5 3 = g & 40 S
-« N < N + % 4 o
©140.9 315 O ° 5 10 = 20 = c
" Anti-cD3/ 262 520 10 10 = = 20 £
< CD28 N o T
%Scr:r’gzls < stimulation % 0 0 % 0 ! ! 0 : °
as! > @ O o e O 2 ¢ N ¢ N @
! &P OO A & LI & LS & L
g 6“@ o N @0@ F 5 . %d\'” %0‘? N %‘}'o C"Q‘? N & 60» N
18 o & S [ I—» & S & &
LAG3 TIM3
m n —e— gScramble/control tx 7, Day 25 B16-GP33 o —&- gScramble/control tx Day 25 B16-GP33
-e~ gZscan20/control tx ] I P 4 M ]: -
—e— gScramble/anti-PD1 tx — }E ¥ p— —- gScramble/anti-PD1 tx |
B16-GP33 J - 08 xex
*xk 8
2,000 - 089 1 2,500
= 06
o7 < 1,500 - B 06+ * g 2000 z
L’; £ £ ) < 1500 2
° g , (7]
5 1,000 4 2 04 8 2 04+
P14 o < 4 3
3 5 1,000 2
g - g o B
= 500 0.2 4 = 024
= - £ 500
D25
0-4 0 - 0 0-!
0 5 10 15 20 25 F & 0 5 10 15 20 25 FoF
SR SN EN
. ) > NN
Days post-implantation (\\é" (\\«0\ QO L Days post-implantation 064‘0 (‘\‘@&\52 ,\,QO
& & & CHRCHFSIPS
& $%e o PP o g
& & S oY ¥
& P o ¥ & q)
of &s & >0 e
S I v &

Fig.5|See next page for caption.

all the predicted TEX ., single-state TFs impaired TEX,, differentia-
tion tosome degree (Fig. 3), the next step was to evaluate their effects
on T, differentiation to confirm their selective activity. We used the
same Perturb-seq library as before, but this time included only the
eight TEX,., single-state TFs and seven multi-state TFs that impaired
TEXm State development by more than 25% in chronic LCMV infection
(Fig.3d). Toassess theirimpact on memory CD8' T cell development, we
isolated retrovirus-transduced Cas9* P14 CD8" T cells from the spleen
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and smallintestine of mice 18 days after acute LCMV-Armstrong infec-
tion. We then analysed 15,211 cells using scRNA-seq to determine how
these perturbations affected the formation of intestinal Ty, cells, as
well as circulating splenic Ty and Ty, cells (Fig. 4a).

The UMAP analysisidentified four primary clusters containing cells
with features of Tqy, (/L7r, Tcf7, Sell and S1prl), Ty (Cx3crl, Klrgl and
Klf2) and Ty, cells (Cd69, Cd160 and Itgae (encoding CD103)) as well
as a small Ty, cell population with lower /tgae but higher Ifng and Irf1



Fig. 5| Targeting TEX.,, single-state TFs enhances tumour control.

a, Experimental design and tumour outcomes from adoptive transfer of P14
CD8' T cells carrying CRISPR KOs of Zscan20 (TEX ., Single-state TF gene) or
Hicl (multi-state TF gene active in TEX e, and Tgy, cells) into B16-GP33 melanoma-
bearing mice. Tumour volumes and terminal weights are shown. b, Co-transfer
design mixing Zscan20-KO or HicI-KO Cas9* P14 cells with scramble controls
before transfer. ¢,d, Quantification of PDI'SLAMF6 TIM3* exhausted subsets (c)
and CX3CR1"and GZMB' effector populations (d) in Zscan20-KO and HicI-KO
cells. e, Human pan-cancer single-cell multi-omics and scRNA-seq datasets*®°
wereintegrated to assess TF expressionand activity across CD8" T cell states
using scTaiji. BC, breast cancer; CHOL, cholangiocarcinoma; ESCA, oesophageal
cancer; FTC, follicular thyroid cancer; MM, multiple myeloma; OV, ovarian
cancer; PACA, pancreatic cancer; THCA, thyroid cancer; UCEC, uterine corpus
endometrial carcinoma. f, Paired scRNA-seq and scATAC-seq were used to build
regulatory networks and compute PageRank TF activity scores. Shown are
normalized scores for TEX,.,, single-state TF genes (Fig. 1f) with conserved

DNA-binding motifs in humans. g, mRNA expression of TEX,.,, TF genesacross
TEXermand Tgy, clustersin human tumours; cross-species conserved TF genes
areinbold. h, Human peripheral blood mononuclear cell (PMBC) KO design.
ZSCAN20-KO or /JDP2-KO CDS8* T cells were stimulated with anti-CD3/CD28
beads for18 days to model chronicactivation.i,j, Flow cytometry analysis

of CCR7 (memory-like and stem-like) (i) and the inhibitory receptors LAG3,
PD1and TIM3 (j) in KO versus control cells. k, Frequencies of IFNY*TNF* and
interleukin-2 (IL-2)* cells. 1, Polyfunctionality analysis of cytokine-producing
cells.m, Schematic of adoptive transfer and anti-PD1 treatment testing synergy
With TEXe,m TF gene KO. Cas9* P14 cells (TF KO) were transferred into B16-GP33
tumours and treated with anti-PD1or IgG2a. D7, day 7; D25, day 25.n,0, Tumour
growth and weights for Zscan20-KO (n) and Jdp2-KO (o) versus controls.
Dataaremean +s.e.m.; n > 6 fromat least two biological replicates. Statistics,
two-way ANOVA with Tukey’s (tumour volumeina, n, 0); one-way ANOVA with
Dunnett’s (i-k, tumour weightsina, n, 0); paired t-tests (c, d); two-way ANOVA
with Dunnett’s (I). ****P < 0.0001, ***P < 0.001, **P< 0.01,*P< 0.05.

expression designated Tgy-ltgae’ (refs. 22,47) (Fig. 4b,c and Extended
Data Fig. 7a,b). Examination of the gRNA" cells revealed that none of
the eight TEX,.,,, Single-state TF gene KOs (Zfp324, Irf8, Zfp410, Nfatcl,
Zscan20,)dp2, Arid3a and EtvS) negatively affected Ty, formation sig-
nificantly (bold gene names in Fig. 4d,e). In fact, KO of Etv5 tended to
increase the frequency of Ty, cells. To evaluate the specificity of the
TEX,.m Single-state TF genes, we also examined the expression of the
Trvgenesignatures®in the entire population of gRNA" cells for each
TF tested (Fig. 4f). With the exception of Etv5 and Arid3a, KO of which
increased Tgy-signature gene expression (Fig. 4f and Extended Data
Fig.7c), perturbation of the TEX,.,, single-state TFs did not substantially
alter Tyy-signature gene expression. The platformalso predicted new
multi-state TFs, including those encoded by Hicl and Gfil. Disruption of
these multi-state TFs significantly reduced Tgy, cell frequency (Fig. 4€)
and Tyy-signature gene expression (Fig. 4f and Extended DataFig. 7¢c),
mirroring the effects of disruption of Prdmi, which encodes a known
multi-state TF for Tyy and TEX ., cells.

To further validate the Perturb-seq data, we depleted the TEX ¢/,
single-state TF genes Zscan20 and Jdp2 and the multi-state TF gene
Prdm1individually in Cas9* P14 CD8" T cells, transferred them adop-
tively into LCMV-Armstrong infected animals, and assessed their dif-
ferentiationinto Ty, Tryand Tgy, cells using flow cytometry (Fig. 4g,h).
Deletion of Zscan20 and Jdp2 did not alter the formation of any mem-
ory cell subtypes, whereas perturbation of PrdmI reduced Tgy and
increased T, formation significantly, as expected. Altogether, this
multi-omics pipeline predicted TEX ., single-state TFs that drive TEX ¢,
differentiation without affecting Ty, cell formation and multi-state TFs
thatinfluence both cell states. These results demonstrate the accuracy
and predictive power of our approach for pinpointing single-state and
multi-state TFs.

KIf6 overexpression expands Ty, cells without
exhaustion

To further demonstrate the utility of our cell-state selective TF identi-
fication pipelinein discovering new Tgy-associated TFs, we evaluated
Klf6, whichwasidentified through our Taiji analysis as a Ty single-state
TF gene (Fig. 1g). We considered whether overexpressing Klf6 (Kif6-OE)
would enhance Ty, formation during acute viral infection without
worsening terminal exhaustion in chronic infection. Our results con-
firmed this suggestion. When empty-vector control and Klf6-OE P14
CD8'T cells were co-transferred, KIf6-OE cells robustly outcompeted
control cells, resulting in15-fold enrichment in the small intestine com-
pared with controls (Fig. 4i). Furthermore, there werearound 42 times
more CD69'CD103"* double-positive Tgy-like cells in KIf6-OE than in
control donor cells, indicating that KIf6-OE markedly increased Ty
development in the small intestine (Fig. 4j). KIf6-OE did not increase
terminal exhaustion during chronic infection (Fig. 4k and Extended

Data Fig. 7d). This work not only identifies KLF6 as a new Tyy-driving
TF but also confirms its selectivity.

New TEX,.,-TF loss improves tumour control

This platform predicted cell-state-selective TF activity and identified
TEX.rm Single-state TFs as targets for engineering T cells that resist
exhaustion yet retain effector and memory functions—offering new
strategies to improve immunotherapy efficacy. Given that Tgy, cells
are associated with better clinical outcomes in solid tumours® ™2, we
hypothesized that KO of exhaustion-selective TF genes such as Zscan20
could be more effective than targeting Ty, and TEX.,, multi-state
TF genes such as Hicl. Using an ACT model, we transferred TF gRNA
retrovirus-transduced Cas9* P14 CD8" T cells into mice with established
melanoma tumours expressing GP33-41 (Fig. 5a). Unlike depletion of
the multi-state TF gene Hicl, depleting the TEX,.,, Single-state TF gene
Zscan20 resulted in improved tumour control (Fig. 5a). Moreover,
Zscan20 gRNA' cells more readily formed TEX,,., cells than TIM3*
or CD39" TEX,.,, cells (Extended Data Fig. 8a-d). To control for
inter-mouse variability in antigen load, we co-transferred Zscan20
or Hicl KO cells with control P14 CD8" T cells into the same B16-GP33
tumour-bearing mice (Fig. 5b-d and Extended Data Fig. 8e-i). Both KOs
significantly increased the frequency of PDI'SLAMF6'TIM3 cells and
decreased the frequency of TIM3* exhausted cells and the TEX,., cell
state (PD1'SLAMF6 CX3CR1") compared with controls (Fig. 5c and
Extended Data Fig. 8f-h), consistent with their predicted activity in
TEXerm cells (Fig. 1f,h). However, Zscan20 KO robustly enhanced effec-
tor marker expression (CX3CR1), granzyme B and cytokine production
in TILs, whereas Hic1 KO did not seem to improve effector function to
the same degree (Fig. 5d and Extended Data Fig. 8i). Thus, despite their
similar effects on suppressing TEX,.,, cell differentiation in tumours,
differences in their ability to promote functional effector-like states
may underlie the differential tumour control observed. Given that HIC1
functions as a multi-state TF and ZSCAN20 as a single-state TF, these
findings support the general rationale for targeting state-specific TFs
to enable more selective programming of T cell differentiation.

State-selective TFs conserved across species

To evaluate the relevance of our mouse findings in human T cells—
particularly for applications in immunotherapy—we conducted
cross-species validation using publicly available single-cell multi-omics
and scRNA-seq datasets from human tumour-infiltrating CD8" T cells
(Fig.5e, Extended DataFig. 9aand Supplementary Table 1). Leveraging
the Taiji TF analysis platform, we mapped mouse TEX,,-associated
and Tyy-associated TF genes onto a curated human pan-cancer CD8"
T cell atlas encompassing six tumour types** > (glioblastoma (GBM),
head and neck squamous cell carcinoma (HNSCC), basal cell carcinoma
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(BCC), hepatocellular carcinoma (HCC), renal cell carcinoma (RCC)
and clear cell renal cell carcinoma (ccRCC)). Human CD8' T cells were
clusteredinto heterogeneous cell states, including Ty and TEX ., clus-
ters (Fig. 5e and Extended Data Fig. 9b). Taiji analysis revealed strong
cross-species conservation: TEX., TF genes such as /DP2, ZNF410 and
FOXD2exhibited higher activity in TEX.,, clusters thanin Ty,-like cells
(Fig. 5f). Of 34 mouse TEX,,., single-state TF genes, 19 showed con-
served activity patterns in human TEX,, cells. Similarly, Ty\-specific
TF genes (for example, NR4A1, KLF6 and FOSB) displayed enriched activ-
ityinthe human Ty cluster (Extended DataFig. 9c). Furthermore, 22 of
the 30 mouse TF genes that were active in both TEX,.,,, and Ty states
showed similar activity profiles in human datasets (Extended Data
Fig.9d). Afew TF genes—such as ZSCAN20—could not be assessed in the
Taiji analysis because of missing DNA-binding motifs, but comparative
RNA profiling across 15 tumour types supported their relevance, with
24 of 34 mouse TEX,.,, single-state TF genes, including ZSCAN20 and
JDP2, showing higher expression in human TEX cells (Fig. 5g).

Given these correlations between species, we perturbed ZSCAN20
and/DP2to assess the relevance of TEX,, single-state TFs in human
T cells (Extended DataFig.10a,b). Following repeated CD3/CD28 stimu-
lation over 18 days to simulate chronic activation (Fig. 5h), ZSCAN20- or
JDP2-deficient CD8" T cells exhibited increased expression of CCR7
(naive/stem cell memory/T.,, marker) and decreased levels of inhibi-
toryreceptors,including LAG3, PD1and TIM3 (Fig. 5i,j). These KO cells
also produced higher levels of effector cytokines (Fig. 5k,I), indicating
that ZSCAN20 andJDP2 contribute to exhaustion-associated features
inhuman CD8' T cells.

ICB synergy with Zscan20 and Jdp2 KOs

Tumours with high TEX,.,,, cell infiltration often exhibit poor responses
toICB therapy'®. We considered whether targeting TEX,.,, single-state
TFs could enhance ICB efficacy. Among the TEX,.,-associated TF genes,
Zscan20 and Jdp2were prioritized for their conservation and functional
relevance in human T cells (Fig. Se-1). To test synergy with ICB, treat-
mentbegan1day after adoptive transfer of TF-depleted P14 CD8 T cells
(Fig.5m). The combination of Zscan20 or Jdp2-KO with anti-PD1therapy
significantly reduced tumour burden (Fig. 5n,0) and improved survival
(Extended Data Fig. 10c,d). These findings suggest that selectively
disrupting TEX .., Single-state TFs represents a promising strategy
to enhance T cell therapy by minimizing dysfunctional states while
preserving beneficial T cell phenotypes. Overall, our cross-species
multi-omics and functional perturbation approach underscores the
translational potential of Taiji-identified TFs for improving ACT.

Discussion

Our study introduces a powerful platform for identifying TFs that
are pivotal in guiding specific CD8" T cell state differentiation during
viralinfections and tumour progression. Leveraging our comprehen-
sive transcriptional and epigenetic atlas from nine distinct CD8" T cell
states, we developed adetailed map of TF activity, creatingaunique TF
fingerprint for each context. Furthermore, we developed TaijiChat, a
web interface for natural language queries of our datasets and literature
(Supplementary Methods).

Focusing on two critical cell states TEX,.,m, and Ty T cells, we exam-
ined similarities and differences of TF activity and their networks in
bothstatesand engineered T cells to resist exhaustion while retaining
functionality of Ty, cells. Using in vivo Perturb-seq, we validated TF
activity for TEX,.,, and Tgy, cells in both acute and chronic infection
models. Although recent CRISPR screeningsin CD8" T cells have identi-
fied TFs thatareimportant in cytotoxicity, memory formation***, cell
enrichment® and exhaustion®, a systematic and context-dependent
understanding of TF roles across several contexts has been lacking.
Our study addresses this gap by generating an accurate catalogue of
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CDS8'T cell state-defining TF genes, enabling cost-effective validation
of predicted TF activity and selectivity using Perturb-seq. Furthermore,
our study offers broader and new insight into context-dependent TF
regulation. Previously, differential TF cooperation in different contexts
wasreported™*>**, We extend this by analysing global TF associations
across cell states, revealing how TF communities regulate T cell-specific
pathways, including protein catabolismin T cell exhaustion, which
aligns with previous research on protein homoeostasis**®*°, These
TF networks reveal how various cellular processes are controlled dif-
ferentially between Ty, and TEX.,, cells, providing arationale for their
different functional capabilities within tissues.

One of the key outcomes of this study was the identification of new
TFs, including ZSCAN20 andJDP2, as TEX,.,r, single-state TFsand KLF6
as a Ty, single-state TF, and of newly uncovered roles for multi-state
TFssuchasHICl1and GFIL. Perturbing TEX,,., single-state TFs notonly
prevented T cell exhaustionbut also preserved the ability of these cells
to differentiate into effector and memory states. This led to significant
improvements in tumour control.

Toevaluate the clinicalimportance of the newly discovered TFs and
the catalogue of TFs with TEX., and Tgy, selectivity, we confirmed
cross-species conservation of a substantial number of TFs using Taiji
analysis of a human pan-cancer multi-omics atlas, along with com-
parative expression analysis across pan-cancer scRNA-seq datasets.
Furthermore, we demonstrated enhanced human T cell function
following perturbation of the TEX,,, single-state TFs ZSCAN20 and
JDP2.Depletion of these TFs shows synergistic effects with ICB therapy,
leading to significant tumour regression. These findings highlight
a promising strategy for enhancing antitumour immunity through
precise cell-state programming.

Our TF atlas-guided platform can offer optimized ‘TF recipes’ for
cell programming withincreased precision, robustness and durability.
Future strategies could integrate enforced expression of TFs that pro-
mote favourable states, such as KLF6 for Ty differentiation or other TFs
identified through systematic gain-of-function screenings*®**¢° with
targeted depletion of TEX,.,, TFs. Such recipes can be refined with Al
models. In summary, although our study focuses on CD8" TEX,,,, and
Tru cell differentiation, the pipeline for identifying single-state TFs
and ‘TF recipes’ can be adapted for other cell types, expanding cell
therapy applications.
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Methods

Dataset acquisition for mouse CD8* T cell state multi-omics atlas
CDS8'T cell samples were collected from ten datasets, including those
generated in this study (Extended DataFig. 1e). Intotal, we analysed 121
experiments, comprising 52 ATAC-seq and 69 RNA-seq datasets, which
were integrated to generate paired samples and served as input for
the Taiji pipeline. The samples encompassed nine distinct CD8" T cell
subtypes: naive, TE, MP, Ty, Tems Tews TEXrogs TEXer@nd TEX pr. Cell
states were defined on the basis of established surface marker com-
binations and LCMV-specific tetramers, including IL7R, KLRG1, PD1,
SLAMF6,CD101, Tim3,CD69,CD103, H2-Db LCMV GP33-41and H2-Db
LCMV GP276-286 or congenic markers for P14 (T cell receptor (TCR)
specific for the LCMV GP33-41peptide CD8" T cells), in the context of
either acute (LCMV-Armstrong) or chronic (LCMV-Clone 13) infection
models. Acomplete summary of dataset sources, accession numbers,
infection conditions and corresponding cell state definitions (sorting
gates) isprovided in Supplementary Table1and Extended Data Fig. 1e.

TF regulatory networks construction and visualization

To performintegrative analysis of RNA-seq and ATAC-seq data, we devel-
oped Taijiv.2.0, which allows visualization of several downstream analy-
sis-TF wave, TF-TF association and TF community analysis. Epitensor
was used for the prediction of chromatin interactions. Putative TF
binding motifs were curated from the latest CIS-BP database®. In this
analysis, 695 TF genes were identified as having binding sites centred
around ATAC-seq peak summits. The average number of nodes (genes)
and edges (interactions) of the genetic regulatory networks across
CDS8' T cell states were 15,845 and 1,325,694, respectively, including
695 (4.38%) TF nodes. On average, each TF regulated 1,907 genes, and
each gene was regulated by 22 TFs.

Identification of single-state and multi-state TF genes

Wefirstidentified universal TF genes with mean PageRank across nine
cell states ranked as top 10% and coefficients of variation less than
0.5. In total, 54 universal TF genes were identified (Supplementary
Table1). The remaining 641 TF genes were candidates for single-state
TF genes. Toidentify single-state TF genes, we divided the samplesinto
two groups: target and background. The target group included all sam-
plesbelonging to the cell state of interest, and the background group
comprised the remaining samples. We then performed the normality
test using Shapiro-Wilk’s method to determine whether the two groups
were distributed normally, and we found that the PageRank scores of
most (90%) samples followed a log-normal distribution. On the basis
ofthelog-normality assumption, an unpaired ¢-test was used to calcu-
late the P value. A Pvalue cut-off of 0.05 and log, fold change (log,FC)
cut-off of 0.5 were used for calling lineage-specific TFs. In total, 255
specific TF genes were identified (Supplementary Table 2). Depending
on whether the TF gene appeared in several cell states, they could be
divided further into multi-state TF genes (Fig. 1e and Supplementary
Table 2) and 136 single-state exclusive TF genes (Fig. 1d and Supple-
mentary Table 2). Out of 255 single-state TF genes, 84 appear in TEX
or Tgy cells. To identify the truly distinctive TF genes between TEX
and Ty, we performed a second round of unpaired t-tests, between
only TEX,., and Ty, cells (Supplementary Table 3). The same cut-offs,
thatis, Pvalue of 0.05 and log,FC of 0.5, were applied to select TEX ¢/
single-taskers and Ty, single-taskers. Out of 84 TF genes that did not
pass the cut-off, 30 were identified as TEX,,, and Ty, multi-taskers.
The full workflow is summarized in Extended Data Fig. 2a.

Identification of transcriptional waves

Combined with previous knowledge of the T cell differentiation path,
TF waves are combinations of TFs that are particularly active in cer-
tain differentiation stages, revealing possible mechanisms of how TF
activities are coordinated during differentiation. To be more specific,

we clustered the TFs based on the normalized PageRank scores across
samples. First, we performed principal component analysis (PCA) for
dimensionality reduction of the TF score matrix. We retained the
first ten principal components for further clustering analysis, which
explained more than 70% of the variance (Extended Data Fig. 3b; left
panel). We used the k-means algorithm for clustering analysis. To find
the optimal number of clusters and similarity metric, we performed
Silhouette analysis to evaluate the clustering quality using five distance
metrics: Euclidean distance, Manhattan distance, Kendall correlation,
Pearson correlationand Spearman correlation (Extended Data Fig. 3b;
right panel). Pearson correlation was the most appropriate distance
metric, asthe average Silhouette width was highest of all five distance
metrics. On the basis of these analyses, we identified seven distinct
dynamic patterns of TF activity duringimmune cell development. We
further performed functional enrichment analysis to identify gene
ontology (GO) terms for these clusters.

TF-TF collaboration network analysis and visualization

To build the TF-TF association networks, we first defined a set of
relevant TFs for each context (TEX, and Tyy) by combining cell
state-important and single-state TF genes, resulting in 159 TFs for
TEX,rmand 170 for Ty, cells. The analysis was based ona TF-regulatee
network derived from Taiji, where we first consolidated sample net-
works by averaging the edge weights for each TF-regulatee pair. To
reduce noise, regulatees with low variation across all TFs (s.d. < 1) were
removed. Subsequently, a TF-TF correlation matrix was generated by
calculatingthe Spearman’s correlation of edge weights for each TF pair
across their common regulatees. From this matrix, we constructed a
graphical model using the R package ‘huge®?, which uses the Graphi-
cal Lasso algorithm and a shrunken empirical cumulative distribu-
tion function estimator. An edge between two TFs was established if
their correlation was deemed significant by the model, controlled by
alasso penalty parameter (lambda) of 0.052. This value was chosen as
itrepresents alocal minimum on the sparsity lambda curve, resulting
inapproximately 15% of TF-TF pairs being connected. To validate this
method, we estimated the false discovery rate by generating a null
model through random shuffling of the TF-regulatee edge weights.
Applying our algorithm to this null data identified zero interactions,
confirming that our approach has a very low false discovery rate.

TF community construction and visualization

Following construction of TF-TF association networks, we identified
functionally related TF communities within each network. We applied
the Leiden algorithm®, using modularity as the objective function
and setting the resolution parameter to 0.9, as this value achieved the
highest clustering modularity in our analysis. This procedure identified
five distinct communities for each context (TEX ., and Tgy,). The final
networks, with their detected communities, were visualized using the
Fruchterman-Reingold layout algorithm®* to spatially represent the
TF-TF association structure.

Pathway enrichment analysis

The enriched functional terms in this study were analysed by the R
package clusterProfiler v.4.0.5. We used the GO database, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and the Molecu-
lar Signatures Database for annotation. For GSEA, the genes were first
ranked by the mean edge weightin corresponding samplesandH, C5,C6
and C7 collections from the Molecular Signatures Database were used
forannotation. A cut-off of P < 0.05 was used to select the significantly
enriched GO terms and KEGG pathways.

Heuristic score calculation through integration of the TF
regulatory network and perturb-seq

We reasoned that (1) log,FC in expression due to TF KO and (2) TF-
generegulatory edge weights could be combined to provide heuristic



scores for theregulatory effect ofa TF on atarget gene. For each guide
RNAKO, Seurat’s FindMarkers() function was used to quantify log,FC
in the expression of a gene with respect to the gScramble condition.
Heuristic scores were calculated for each TF-gene pair by multiplying
the gene log,FC with the corresponding edge weight from the Taiji
analysis. Regulatees of a TF were annotated as high-confidence if the
magnitude log,FC of the regulate exceeded 0.58 (corresponding to a
fold change of 1.5 oritsreciprocal) and if the edge weight belonged to
the upper quantile of alledge weights attributed to the TF. The sign of
thelog,FCwasused to determine whether the TF activated or repressed
each target gene.

Human TF activity and cell-state selectivity analysis

Taiji-based analysis of human multi-omic datasets. TF activity was
inferred using the Taiji pipeline applied to matched scRNA-seq and
SCATAC-seq datasets from various human cancers, including ccRCC
(n=2;PRJNA768891, GSE240822), GBM (GSE240822), BCC (GSE123814,
EGAS00001006141), HNSCC (GSE139324, EGAS00001006141),
HCC (GSE125449, EGAS00001006141) and RCC (PMID: 30093597;
EGAS00001006141). Cell types were annotated using canonical marker
gene expression and categorized into six main CD8'T cell states: TEX,
TEX;,o¢ (progenitor exhausted), Tg (effector), Try, Tew/naive and pro-
liferating. PageRank scores derived from Taiji were log-transformed,
averaged within each T cell category, and then standardized using
z-score normalization. Results were visualized with afocuson TF gene
activity in Ty and TEX populations.

TF gene expression comparison across human CD8" T cell states.
To assess TF gene expression across diverse T cell states, raw count
matrices from a published pan-cancer CD8" T cell atlas (GSE156728)
were reprocessed using Seurat’s standard workflow. The dataset en-
compassed T cells from 11 tumour types, including BC, BCL, CHOL,
ESCA,FTC,MM, OV, PACA, RC, THCA and UCEC. Cell type annotations
provided by the original study were retained and mapped to the follow-
ing broad categories: Ty, TEX, Ty, (effector memory), Ty, (memory),
naive and T (cycling). Seurat’s AverageExpression function was used
to compute average log.p, expression for each TF geneineach T cell
category, followed by z-score normalization. Data visualization em-
phasized comparisons between Ty and TEX subsets.

Mice and infections

C57BL/6/), 0T-1(C57BL/6-Tg(TcraTerb)1100Mjb/)), B6.Cg-Rag2™-&"/)
and CD45.1 (B6.SJL-PtprcaPepcb/Boy)) mice were purchased fromJack-
son Laboratories. P14 mice have been described previously. Cas9 P14
mice were generated by crossing P14 mice with B6(C)-Gt(ROSA)26So
rem1.1(CAG-cas9*,-EGFP)Rsky/J (Jackson Laboratories). Animals were
housed in specific-pathogen-free facilities at the Salk Institute and
University and at the University of North Carolina at Chapel Hill. All
animal experiments were approved by the Institutional Animal Care
and Use Committee. Mice were infected with 2 x 10° plaque-forming
units (PFU) LCMV-Armstrong by intraperitoneal injection or 2 x 10°
PFULCMV Clone-13 by retro-orbital injection under anaesthesia.

Viral titres

LCMV fluorescence focus unit titration was performed seeding Vero
cells at a density of 30,000 cells per 100 plin a 96-well flat-bottom
plate in DMEM +10% fetal bovine serum (FBS) + 2% HEPES + 1%
penicillin-streptomycin. On the next day, tissues were homogenized
onice,spundownat1,000gfor 5 minat4 °Cand supernatants or serum
were dilutedin tenfold steps. Diluted samples were added to Vero cells
andincubatedat37 °C, 5% CO, for around 20 h. Subsequently, inocula
were aspirated and wells were incubated with 4% paraformaldehyde for
30 min at room temperature before washing with PBS. VL-4 antibody
(BioXCell) was conjugated using the Invitrogen AF488 conjugation
kit and added to the wells in dilution buffer containing 3% BSA and

0.3% Triton (ThermoFisher Scientific) in PBS. Cells were incubated at
4 °C overnight before washing with PBS and counting foci under the
microscope. The number of focus forming units was calculated using
the formula: focus forming units per millilitre = number of plaques/
(dilutionx volume of diluted virus added to the plate).

Cellisolation

Spleens were dissociated mechanically with 1-ml syringe plungers
over a 70-um nylon strainer. Spleens were incubated in ammonium
chloride potassium buffer for 5 min. For isolation of small intestinal
intraepithelial lymphocytes, Peyer’s patches were first removed by
dissection. Intestines were cut longitudinally and theninto1-cmpieces
andwashed in PBS. Pieces wereincubated in 30 ml HBSS with 10% FBS,
10 mM HEPES and 1 mM dithioerythritol with vigorous shaking at 37 °C
for 30 min. Supernatants were collected, washed and isolated further
using 40%/67% discontinuous Percoll density centrifugation for 20 min
atroom temperature with no brake.

Celllines and in vitro cultures

B16-GP33 melanoma cell lines were cultured in DMEM (Invitrogen) with
10% FBS, 1% penicillin-streptomycin and 250 pg ml™ G418 (Invitrogen,
catalogue no.10131027). The MCA-205 tumour line (Sigma) was main-
tained in RPMI supplemented with 10% FBS, 300 mg I L-glutamine,
100 U mI™ penicillin, 100 mM sodium pyruvate, 100 pM non-essential
amino acids, 1 mM HEPES, 55 pM 2-mercaptoethanol and 0.2% plas-
mocin mycoplasma prophylactic (InvivoGen). All the tumour cell lines
were used for experiments wheninthe exponential growth phase. For
invitroT cell culture, splenocytes were activated in RPMI11640 medium
(Invitrogen) containing 10% FBS and 1% penicillin-streptomycin, 2 mM
L-glutamine, 0.1 mg ml™ GP33, beta-mercaptoethanol 50 mM and
10U mI?IL-2.

Tumour engraftment and treatment of tumour-bearing mice

A total of 3 x 10° B16-GP33 (Fig. 5a), 5 x 10° B16-GP33 tumour cells
(Fig. 5n,0) were injected subcutaneously in 100 pl PBS. Around
0.5-1x10°Cas9* P14 T cells with CD45.1 markers were transferred
to tumour on day 7 without pre-radiation of tumour-bearing mice.
Tumours were measured every 2-3 days post-tumour engraftment
for indicated treatments and sizes calculated. Tumour volume was
calculated as volume = (length x width?)/2. For antibody-based treat-
ment, tumour-bearing mice were treated with anti-PD1 antibody
(200 pg per injection, clone RMP1-14, BioXcell) twice per week from
day 7 post-tumour implantation. Tumour growth was measured twice
per week with calipers. Survival events were recorded each time a
mouse reached the endpoint (tumour volume greater than or equal
t01,500 mm?). Tumour weights were measured on day 23 for Fig. 5aand
onday 25for Fig. 5m-o. Allexperiments were conducted according to
the Salk Institute Animal Care and Use Committee and the University of
North Carolina at Chapel Hill Animal Care and Use Committee.

Tumour digestion and cell isolation

Forthe datashowninFig. 5, tumours were minced into small piecesin
RPMI containing 2% FBS, DNase 1 (0.5 pg ml™; Sigma-Aldrich), and col-
lagenase (0.5 mg ml™; Sigma-Aldrich) and kept for digestion for 30 min
at37 °Cwith70-umcell strainers (VWR). Filtered cells were incubated
with ammonium chloride potassium lysis buffer (Invitrogen) to lyse
red blood cells, mixed with excess RPMI 1640 medium (Invitrogen)
containing 10% FBS and 1% penicillin-streptomycin, and centrifuged
at400g for 5 min to obtain a single-cell suspension.

Proteasome activity analysis

For experiments involving the Proteasome Activity Probe (R&D sys-
tems), cells of interest were incubated with the probe at concentra-
tion of 2.5 mM for 2 h at 37 °C in PBS. Samples were washed and then
stained with Zombie NIR viability dye (Biolegend) in PBS at 4 °C for
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15 min. Samples were then stained with some variation of the follow-
ingantibodies for 30 minin fluorescence-activated cell sorting (FACS)
buffer onice: CD45-BV510 (BD Biosciences), CD45.2-BV510 (Biolegend),
CD45.1-PE-Cy7 (Invitrogen), CD4-APC Fire 810 (Biolegend), CD11b-Alexa
Fluor 532 (Invitrogen), CD8-Spark NIR 685 (Biolegend), CD44-Brilliant
Violet 785 (Biolegend), CD62L-BV421 (BD Biosciences), PD1-BB700
(BD Biosciences), TIM3-BV711 (Biolegend), LAG3-APC-eFluor 780
(Invitrogen), SlamF6-APC (Invitrogen), CD39-Superbright 436 (Invit-
rogen), CX3CR1-PE/Fire 640 (Biolegend), CD69-PE-Cy5 (Biolegend),
GITR-BV650 (BD Biosciences) and CD27-BV750 (BD Biosciences). Sam-
ples were collected on a Cytek Northern Lights and analysed using
Cytek SpectraFlo software.

Tumour experiment for proteasome assay

For the data shown in Fig. 2, MCA-205 fibrosarcomas (2.5 x 10°) were
established by subcutaneousinjection into theright flank of C57BL/6
mice. After 12-14 days of tumour growth, spleens, draining lymph nodes
and tumours from groups of mice were collected and tumours were
processed using the Mouse Tumor Dissociation Kit and gentleMACS
dissociator (Miltenyi Biotec) according to the manufacturer’s proto-
col. For purification experiments, samples were pre-enriched using
the EasySep Mouse CD8" T Cell Isolation Kit (Stemcell Technologies)
accordingto the manufacturer’s protocol, stained with Live-or-Dye PE
Fixable Viability Stain (Biotium) and CD8a-APC (Invitrogen) and live
CD8" cellswere sorted using the FACSAria Il cell sorter. CD8" spleen and
pooled TIL samples were washed in PBS and frozen for RNA-seq analysis.
For adoptive cellular therapy experiments, B16-GP33 melanomas were
established subcutaneously by injecting 5.0 x 10° cells into the right
flank of CD45.1 mice and tumour-bearing hosts wereirradiated with 5 Gy
24 hbefore T cell transfer. By contrast, mice used in the experiments
showninFig.5werenotirradiated before T cell transfer. After 7 days of
tumour growth,1.5x10°CD45.2OT-1T cellsand 1.5 x 10° CD45.1/CD45.2
P14 T cellswereinfused in100 pl PBSinto the tail veinin tumour-bearing
mice. Tumours were collected 14 days after adoptive cell transfer and
CD8TILswere analysed for proteasome activity. All experiments were
conductedinaccordance withthe guidelines of the University of North
Carolina at Chapel Hill Animal Care and Use Committee.

Proteasome"&"/proteasome'™ T cell adoptive transfer experiment
For the adoptive transfer experiment involving proteasome™®" and
proteasome™ tumour-specific OT-1T cells (Fig. 21), whole splenocytes
from OT-1mice were activated with1 pg mI™ OVA_257-264 peptide and
expanded for 7 days in the presence 0200 U ml™ rhIL-2 (NCI). Onday 7,
OT-1cells were FACS-sorted based on proteasome activity to isolate
proteasome™®"and proteasome'® OT-1 populations. A total of 2.5 x 10°
sorted OT-1cells were injected into C57BL/6 mice bearing B16F1-OVA
melanomas. Tumours were established by subcutaneous injection of
3 x10°B16F1-OVA cellsinto the right flank 7 days before T cell transfer.
Recipient mice were preconditioned with 5 Gy total body irradiation
24 h before adoptive transfer. Tumour growth was measured every
other day with calipers.

For Extended Data Fig. 5¢, MCA-205 fibrosarcomas (2.5 x 10°)
were established by means of subcutaneous injection into the
right flank of C57BL/6 mice. After 14 days of tumour growth, live
CD45'CD8'CD44'PD1'T cells were sorted from tumours on the basis of
proteasome activity (high versus low) using the FACSAria Il cell sorter. A
total of 2.5 x 10* cells were then injected into the 2-day MCA-205-bearing
RAG2" hosts (n =5 per group) and tumour growth was monitored
every other day starting on day 4. All experiments were conducted in
accordance with the guidelines of the University of North Carolina at
Chapel Hill Animal Care and Use Committee.

Retrovirus transduction and adoptive transfer
For overexpression of the gRNA retrovirus vector, 293T cells were trans-
fected with the Eco-helper and MSCV gRNA vectors. At48 hand 72 h

later, supernatant containing retroviral particles was ready for trans-
duction. Donor P14 splenocytes were activated in vitro by 0.1 mg ml™
GP33and10 U mIIL-2at 37 °C for 24 h, then spin-transduced (1,500g)
with fresh retrovirus supernatant from 293T cells for 90 min at 30 °C
in the presence of 5 ug ml” polybrene.

CRISPR-Cas9/RNP nucleofection

Naive CD8" T cells were enriched from spleen using the EasySep
Mouse CD8" T cell Isolation Kit (Stemcell Technologies). sgRNAs
targeting Zscan20, Jdp2, EtvS, Prdm1 and Hicl genes or the mouse
or human genome non-targeting scramble (control) were obtained
from Synthego, Integrated DNA technologies (IDT) and GeneScript
(Supplementary Table 5). Cas9 RNP was prepared immediately before
experiments by incubating 1 pl sgRNA (stock, 3 nmol in 10 pl water),
0.6 pl Cas9 nuclease (IDT; stock, 62 pM) and 3.4 pl RNase-free water
at room temperature for 10 min. Nucleofection of naive CD8" T cells
was performed using a Lonza P3 primary cell kit and program DN100
with 4D-Nucleofector (Lonza Bioscience) for mouse and EO115 for
human stimulated T cells. Each nucleofection reaction consisted of
approximately 5-10 x 10° cells in 20 pl of nucleofection reagent and
mixed with 5 pl of RNP:Cas9 complex. After electroporation, 100 pl
of T cell culture medium was added to the well to transfer the cells to
1.5 ml Eppendorftubes. The cells were rested at 37 °C for 3 min. For
invivo adoptive transfer, cells were resuspended in PBS at the desired
concentration and transferred adoptively into recipient mice.

CRISPR gene editing validation by Sanger sequencing

Genomic DNA was isolated from both KO-induced CD8' T cells and
control cells using a Quick-DNA MicroPrep Kit (Zymo). Genomic DNA
concentrations were quantified using a NanoDrop One spectropho-
tometer (ThermoFisher Scientific). Following isolation, PCR ampli-
fication was performed with 2x Phusion Plus Green PCR Master Mix
(ThermoFisher Scientific) and the respective validation primers under
the following conditions: 98 °C for 5 min; 35x 98 °C for 10 s, 69 °C for
20s,72°Cfor20-30skb™; 72 °C for 2 min; hold at 10 °C). The PCR
products were resolved on a 2% agarose gel with SYBR Safe DNA Gel
Stain (Invitrogen), and the appropriate bands on the gel were extracted
and purified with a Gel DNA Recovery Kit (Zymo). Concentrations of
purified amplicon samples were measured and then sent for sequencing
with primers designed using Benchling’s Primer3 tool. The samples with
KOs were compared with wild-type controls using EditCo’s Ice Analy-
sis software, providing the indel percentages, KO score and the indel
distributions used to assess editing efficiency. Indel percent ranged
from 56% to 97%, and the KO score throughout experiments ranged
from32to 74.

Flow cytometry, cell sorting and antibodies

Bothsingle-cell suspensions were incubated with Fcreceptor-blocking
anti-CD16/32 (BioLegend) onice for 10 min before staining. Cell suspen-
sions were first stained with Red Dead Cell Stain Kit (ThermoFisher)
for 10 min on ice. Surface proteins were then stained in FACS buffer
(PBS containing 2% FBS and 0.1% sodium azide) for 30 min at 4 °C. To
detect cytokine production ex vivo, cell suspensions were resuspended
in RPMI11640 containing 10% FBS, stimulated by 50 ng ml™ phorbol
12-myristate 13-acetate and 3 pMionomycinin the presence 2.5 ug ml™
Brefeldin A (BioLegend, catalogue no. 420601) for 4 h at 37 °C. Cells
were processed for surface marker staining as described above. For
intracellular cytokine staining, cells were fixed in BD Cytofix/Cytoperm
(BD, catalogue no.554714) for 30 min at 4 °C, then washed with 1x per-
meabilization buffer (Invitrogen, catalogue no. 00-8333-56). For tran-
scription factor staining, cells were fixed in FOXP3/transcription factor
fixation/permeabilization buffer (Invitrogen, catalogue no. 00-5521-
00) for 30 min at 4 °C, then washed with 1x permeabilization buffer.
Cells were then stained withintracellular antibodies for 30 minat4 °C.
Samples were processed on an LSR-I flow cytometer (BD Biosciences)



and data were analysed with FlowJo v.10 (TreeStar). Cells were sorted
either on a FACSAria lll sorter or a Fusion sorter (BD Biosciences).
The following antibodies (clone nos.) against mouse proteins were
used: anti-CD8a (53-6.7), anti-PD1 (29F.1A12), anti-CX3CR1 (SAO11F11),
anti-SLAMF6 (13G3), anti-CD38 (90), anti-CD39 (24DMS]I), anti-CD101
(Moushil01), anti-KRLG1 (2F1), anti-CD69 (H1.2F3), anti-CD103 (M290),
anti-CD62L (MEL-14), anti-TIM3 (RMT3-23), anti-Ly5.1 (A20), anti-Ly5.2
(104), anti-IFNy (XMG1.2) and anti-TNF (MP6-XT22). The following
antibodies (clone nos.) against human proteins were used: anti-CD8a
(RPA-T8), anti-CD4 (SK3), anti-CD45RA (H100), anti-CD45RO (UCHLI),
anti-CCR7 (GO43H7), anti-CD62L (DREG-56), anti-CD69 (FN50),
anti-CD103 (Ber-ACT8), anti-CXCR6 (K041ES5), anti-PD1 (EH12.2H7),
anti-CD38 (HIT2), anti-CD39 (A1), anti-LAG3 (11C3C65), anti-TIM3
(F38-2E2), anti-TIGIT (A15153G), anti-IFNy (4S.B3), anti-TNF (MAb11),
anti-IL-2 (JES6-5H4), anti-GZMB (QA16A02) and anti-G4S Linker
(E702V). Antibodies were purchased from Invitrogen, Biolegend, Cell
Signaling or eBiosciences.

Invivo individual TF KO phenotyping

To assess the functional impact of individual TF gene KOs in CD8*
T cells, we used Cas9-expressing P14 donor cells (LCMV-specific TCR
transgenic mice, CD45.1 congenic) transduced with green fluores-
cent protein (GFP)-expressing retroviral vectors encoding individual
gRNAs. Transductions were performed on the day of adoptive transfer
without previous sorting. Without sorting, transduced donor cells
(0.5-1x10°) were transferred immediately into congenically distinct
Cas9-expressing wild-type recipient mice (CD45.2) infected 1 day previ-
ously with either LCMV-Clone 13 or LCMV-Armstrong strains. At least
day 20 post-infection, spleens from the Clone 13 model and spleens and
smallintestines from the Armstrong model were collected. Single-cell
suspensions were prepared and analysed by flow cytometry. Live, sin-
gle cells were first gated on CD8" cells, followed by gating on CD45.1"
P14 donor CD8" T cells. Successfully transduced (gRNA") cells were
identified by GFP expression, which ranged from 10% to 70% of P14
CD8'" T cells across experiments. Because of variability in the num-
ber of GFP* donor P14 CD8' T cells obtained from different experi-
ments, all phenotypic analyses were performed in the GFP*(gRNA")
CD45.1'CD8" population. PD1 positive and negative cells, exhaustion
subsets (TEXn:PDI'SLAMF6 CX3CR1™ and TEX,,,,:PDI'SLAMF6°C
X3CRI, TEX.PD1'CX3CRI") or expression of phenotypic markers
was reported as a percentage within the gRNA"(GFP*) P14 CD8" T cell
population to ensure consistency across samples.

Co-transfers of control and TF gene KO/overexpression P14 CD8*
T cellsininfection or tumour models

Naive CD8" T cells were isolated from the spleens and lymph nodes of
Cas9-expressing LCMV TCR transgenic (Cas9 P14) or P14 mice using
anEasySep Mouse CD8' T Cell Isolation Kit (STEMCELL Technologies).
Purified P14 cells were activated for about 24 h on plates coated with
goat anti-hamster IgG (ThermoFisher), followed by 1 pg mI™ hamster
anti-mouse CD3 and 1 pg ml™ hamster anti-mouse CD28 antibod-
ies (ThermoFisher), in complete T cell medium (RPMI1640 supple-
mented with10% FBS (HyClone), 55 pM 2-mercaptoethanol, 100 IU mI™
penicillin-streptomycin and 1% HEPES). After activation, cells were
transduced with retroviruses encoding KIf6 overexpression or gRNAs
targeting Hicl or Zscan20 and cultured with 20 IU mI™IL-2,2.5 ng ml™?
IL-7 and 2.5 ng mI™ IL-15 (PeproTech). At 48 h post-transduction,
reporter expression was confirmed by flow cytometry. Donor cell mixes
were prepared using control versus KIf6-overexpressing cells (Fig. 4)
orgScramble versus gHicl/gZscan20 cells (Fig.5). For LCMVinfection
studies, 1.5 x 10° transduced P14 CDS8" T cells were transferred into
recipient mice, followed by infection with either 2 x 10° PFULCMV-Arm-
strong (acute infection, intraperitoneal) or 2 x 10 PFULCMV-Clone-13
(persistentinfection, intravenous). For tumour studies, 5 x10°to1 x 10°
transduced T cells (gScramble versus gTF) were transferred on day 7

after B16-GP33 tumour implantation. All experiments were conducted
according to guidelines of the University of North Carolina at Chapel
Hill Animal Care and Use Committee.

Perturb-seq screening using the retroviral transcriptional
factorlibrary

Dual-guide direct-capture retroviral sgRNA vector. To generate
adual-guide sgRNA vector (MSCV-hU6-mU6-SV40-EGFP), we replaced
the hU6 RNA scaffold region of the previously described retroviral
sgRNA vector MG-guide® with an additional scaffold®® and the mouse
U6 promoter.

Dual-guide direct-capture retroviral library construction. For the
curated gene list containing 21 TF genes, a total of four gRNA sequences
distributed on two individual constructs were designed for each gene.
To construct the library, a customized double-strand DNA fragment
pool containing 80 oligonucleotides targeting those 19 TF genes and
four scramble gRNAs (each oligonucleotide contains two guides target-
ingthe same gene) (Supplementary Table 5) was ordered from IDT. The
dual-guidelibrary was generated using an In-Fusion (Takara) reaction.
In brief, the gRNA containing DNA fragment pool was combined in
MG-guide vector linearized with Bpil (ThermoFisher). The construct
was then transformed into Stellar competent cells (Takara) and ampli-
fied, and the resulting intermediate, individual, construct was assessed
for quality using Sanger sequencing. Individual dual-gRNA vectors
were then combined. For quality control, sgRNA skewing was meas-
ured using the MAGeCKFlute® to monitor how closely sgRNAs are
representedinalibrary.

In vivo screening. Retrovirus was generated by co-transfecting HEK293
cells with the dual-guide, direct-capture retroviral TF library and the
packaging plasmid pCL-Eco. Supernatants were collected at 48 h and
72 hpost-transfection thenstored at—-80 °C. Cas9-expressing P14 CD8*
T cells were transduced with the viral supernatant to achieve a trans-
duction efficiency of 20-30%. To ensure sufficient representation of
control cellsindownstream analysis, 50% of the viral mixture consisted
of retrovirus encoding a non-targeting control gRNA vector. Forin vivo
experiments, 5 x 10* transduced P14 cells were transferred intrave-
nously into Cas9-expressing, puromycin-resistant C57BL/6 recipient
mice infected 1day previously with either LCMV-Clone-13 or LCMV-
Armstrong strain. A total of 25 LCMV-Clone-13-infected mice were
used for five biological replicates and ten LCMV-Armstrong-infected
mice were used for three biological replicates. Each biological replicate
was labelled using hashtag antibodies (BioLegend, TotalSeq-C) to en-
able sample demultiplexing and statistical analysis. At least 18 days
post-infection, donor-derived P14 CD8" T cells were sorted and pooled
for Perturb-seq analysis. Preliminary tests indicated that T cells ex-
pressing gRNA in vivo exhibit a greater tendency for gRNA silencing
over extended periods compared with ex vivo cultured cells, despite
initial successful KOs. To mitigate gRNA barcode silencing, we col-
lected tissue between days 18 and 23. Sorted EGFP* P14 CD8" T cells
were resuspended and diluted in 10% FBS RPMI at a concentration
of 1 x10° cells ml™. Both the gene expression library and the CRISPR
screening library were prepared using a Chromium Next GEM Single
Cell 5’ kit with Feature Barcode technology for CRISPR Screening (10x
Genomics). In brief, the single-cell suspensions were loaded onto the
Chromium Controlleraccordingto their respective cell countsto gener-
ate 10,000 single-cell gel beads in emulsion per sample. Each sample
was loaded into four separate channels. Chromium Next GEM Single
Cell 5 Kit v.2 (catalogue no.1000263), Chromium 5’ Feature Barcode
Kit (catalogue no.1000541), 5’ CRISPR Kit (catalogue no. 1000451),
Chromium Next GEM Chip K Single Cell Kit (catalogue no.1000287),
DualIndex Kit TT Set A (catalogue no.1000215), Dual Index Kit TN Set
A (catalogue no.1000250) (10x Genomics) in total were used for each
reaction. The resulting libraries were quantified and quality checked
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using TapeStation (Agilent). Samples were diluted and loaded onto a
NovaSeq (Illumina) using a100 cycle kit to obtain aminimum of 20,000
paired-end reads (26 x 91 bp) per cell for the gene expression library
and 5,000 paired-end reads per cell for the CRISPR screening library,
yielding an average of 42,639; 36,739 and 53,413 reads aligned from
cellsfrominvivo LCMV-Clone-13, in vivo LCMV-Armstrong infection
andinvitro donor respectively.

Data analysis

Alignments and count aggregation of gene expression and sgRNA reads
were completed using Cell Ranger (v.7.0.1). Gene expression and sgRNA
reads were aligned using the Cell Ranger multi count command with
default settings. Gene expression reads were aligned to the mouse
genome (mm10 from ENSEMBL GRCm38 loaded from 10x Genomics).
The median average of four, two and 33 unique molecular identifiers
(UMIs) were detected from cells frominvivo LCMV-Clone 13and LCMV-
Armstrong infection, and in vitro donor, respectively. Droplets with
sgRNA UMl passing of default Cell Ranger CRISPR analysis Protospacer
UMIthreshold were used in further analysis. The filtered feature matri-
ces were imported into Seurat®® (v.4.3.0) to create assays for a Seurat
object containing both gene expression and CRISPR guide capture
matrices. Cells detected with sgRNAs targeting two or more genes were
then removed to avoid interference from multi-sgRNA-transduced
cells. Low-quality cells with fewer than 200 detected genes, more than
10% mitochondrial reads and less than 5% ribosomal reads were dis-
carded. A total 0f 17,257 cells (Clone-13) and 15,211 cells (Armstrong)
were passed through quality filtering and were used for downstream
analysis. Count datawere normalized by aglobal-scaling normalization
method and linear transformed®. Cluster-specific genes were identi-
fied using the FindAlIMarkers function of Seurat. We used Nebulosa™
to recover signals from sparse features in single-cell data and made
gRNA density plots with scCustomize” based on kernel density esti-
mation. Ineachbiological replicate (Clone-13, n = 5; Armstrong, n=3),
the percentage cluster distribution of cells with each TF gRNA vector
was calculated. Among two gRNA vectors per target TF, the gRNA vec-
tor with higher TEX,,,, reduction was shown in Fig. 3d and used for
Perturb-seq in LCMV-Armstrong infection (Supplementary Table 5).
Two-way ANOVA with Fisher’s LSD test was performed to determine
statistical significance. Differentially expressed genes were identified
using the MAST model™; the results were then used as inputs for GSEA
to evaluate the effect on selected pathways. Genes with P value < 0.05
were considered as differentially expressed genes.

UMAP plots were generated by calculating UMAP embeddings using
Seurat and then plotting them as scatter plots using ggplot2. Kernel
density calculations for eachgRNA were performed on UMAP embed-
dings using the MASS package using the kde2d function. The kernel
density results were plotted as a raster layer with ggplot2 over the
UMAP scatter plots. Finally, density contour lines were added using
ggplot2’s built-in two-dimensional kernel density contour geom
(geom_density 2d).

ATAC-seq library preparation and sequencing

ATAC-seq was performed as described previously”. In brief, 5,000-
50,000 viable cells were washed with cold PBS, collected by centrifuga-
tion, then lysed in resuspension buffer (RSB) (10 mM Tris-HCI, pH 7.4,
10 mM NaCl, 3 mM MgCl,) supplemented with 0.1% NP40, 0.1% Tween-
20 and 0.01% digitonin. Samples were incubated onice for 3 min, then
washed out with 1 mI RSB containing 0.1% Tween-20. Nuclei were pel-
leted by centrifugation at 500g for 10 min at4 °C thenresuspendedin
50 pltransposition mix (25 pl 2x TD buffer, 2.5 pltransposase (100 nM
final),16.5 pl PBS, 0.5 pl 1% digitonin, 0.5 pl 10% Tween-20, 5 plH,0) and
incubated at37 °Cfor 30 mininathermomixer with1,000 rpm mixing.
DNAwas purified using a Qiagen MinElute PCR cleanup kit, then ampli-
fied by PCR using indexed oligos. The optimal number of amplification
cycles for each sample was determined by quantitative PCR. Libraries

were size-selected using AmpureXP beads and sequenced using an
Illumina NextSeq500 for 75-bp paired-end reads.

ATAC-seq analysis

Paired-end 42-bp or paired-end 75-bp reads were aligned to the
Mus musculus mm10 genome using Burrow-Wheeler aligner’™7” with
parameters ‘bwa mem -M -k 32”. ATAC-seq peaks were called using the
MACS?2 (ref. 76) program using parameters ‘callpeaks -qvalue 5.0e-2 -
shift-100 -extsize 200’. Differentially accessible regions were identified
using DESeq2 (ref. 77). Batch effect was removed using limma’®. Heat-
map visualization of ATAC-seq data was performed using pheatmap.

scRNA-seq metadata analysis

Analysis was performed primarily in R (v.3.6.1) using the package Seu-
rat®®”® (v.3.1), with the package tidyverse®® (v.1.2.1) used to organize
dataandthe package ggplot2 (v.3.2.1) to generate figures. scRNA-seq
datafrom GSE10898, GSE99254, GSE98638, GSE199565 and GSE181785
were filtered to keep cells with a low percentage of mitochondrial
genesinthetranscriptome (less than 5%) and between 200 and 3,000
unique genes to exclude poor quality reads and doublets. Cell cycle
scores were regressed when scaling gene expression values and TCR
genes were regressed during the clustering process, which was per-
formed with the Louvain algorithm within Seurat and visualized with
UMAP. To quantify the gene expression patterns, we used Seurat’s
module score feature to score each cluster based oniits per cell expres-
sion of TFs.

To obtain Extended Data Fig. 5a, raw single-cell count data and cell
annotation datawere downloaded from NCBIGEO** (GSE99254). Count
data were normalized and transformed by derivation of the residuals
fromaregularized negative binomial regression model for each gene
(SCT normalization method in Seurat®®, v.4.1.1), with 5,000 variable fea-
tures retained for downstream dimensionality reduction techniques.
Integration of datawas performed on the patient level with Canonical
Correlation Analysis as the dimension reduction technique®. PCA and
UMAP dimensionreduction were performed, with the first 50 principal
componentsusedin UMAP generation. Cells were clustered using the
Louvainalgorithm with multi-level refinement. The data was subset to
CDS8' T cells, which were identified using the labels provided by Guo
etal.®%, Cell type labels were confirmed by (1) SingleR®? (v.1.8.1) anno-
tation using the ImmGen®® database obtained through celda (v.1.10),
(2) cluster marker identification and (3) cell type annotation with the
ProjecTILs T cell atlas’ (v.2.2.1). After sub-setting to CD8" T cells, cells
were again normalized using SCT normalization, with 3,000 variable
features retained for dimension reduction. Owing to the low number
of cells on the per-patient level, HArmstrongony®* (v.1.0) rather than
Seurat was used to integrate data at the patient level. PCA and UMAP
dimensionality reduction were performed as above.

Statistical analyses

Statistical tests for flow cytometry data were performed using
Graphpad Prismv.10. P values were calculated using either two-tailed
unpaired Student’s ¢t-tests, one-way ANOVA or two-way ANOVA as
indicatedineachfigure. Linear regressions were performed using the
ordinary least squares method inR (v.3.6.1). Alldata were presented as
themean + s.e.m. P values wererepresented as follows: ****P < 0.0001,
**P<0.001,**P<0.01and *P< 0.05.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

ATAC-seq data from this paper will be deposited in the GEO database
(GSE279498). Taiji v.2.0 output of this study (TF activity atlas, TF-TF
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interaction mapsand TF activity on genome browser view) will be avail-
ableatour CD8'T cell TF atlas portal (https://wangweilab.shinyapps.io/
Tcellstates/) and interactive interface for TF atlas exploration (https://
huggingface.co/spaces/taijichat/chat). All other raw data are available
fromthe corresponding author uponrequest.Source dataare provided
with this paper.

Code availability

All scripts and the Taiji v.2.0 package are available at GitHub (https://
github.com/Wang-lab-UCSD/Taiji2).
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Extended DataFig.1|Parallel differentiation of T,y and TEX,.,, and their
transactional and epigenetic similarity.a, UMAP of scRNA-seq data of T cells
fromblood, tumor, and adjacent normal tissues of CRC®,NSCLC*, and HCC?®
patients. Unbiased clusteringidentified multiple T cell states consistent

with those observed murine LCMVinfection and tumors. b, T, marker genes
show higher expressionin TEX,,, cluster from Pan-cancer scRNA-seqina.

¢, Both Ty and TEX,,, clusters upregulate exhaustion-® and Ty, *-associated
genesignatures. d, Pearson correlation matrix of batch-corrected ATAC-seq
datasets*>>3*, Color and size are both proportional to correlation strength.
e, Atotal of 121 experiments across multiple data sets**7?** were utilized to
generate anepigenetic and transcriptional atlas of CD8" T cells under chronic
and acute antigen exposure.
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overexpression does not accelerate T cell exhaustion. Experimental setup:
KIf6-RV or control-RV transduced P14 CD8" T cells co-transferred into mice
infected with chronic LCMV-Clone-13, Quantification of the frequency of PDT",
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normalized. Results were visualized with a focus on TF activity Tpy and TEX erm

Normalized PageRank
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been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
(for example, race or ethnicity should not be used as a proxy for socioeconomic status).
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Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)

Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|Z| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size is indicated in the figure legends and was determined based on prior studies from our lab. No statistical methods were used to
predetermine sample sizes but our samples sizes are similar to those reported in prior publications.

Data exclusions  No data were excluded.

Replication All mouse experiments were successfully repeated >2 times and where possible quantification and statistics were run on combined replicate
experiments.

Randomization | In all experiments age and sex-matched mice were randomly assigned to experimental groups. All experiments involved control samples and
the respective treatment conditions.

Blinding No blinding was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq

Eukaryotic cell lines

Palaeontology and archaeology

|:| |Z| Flow cytometry

|Z |:| MRI-based neuroimaging
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Antibodies used TCF1, PacificBlue, C63D9, Cell Signaling, 9066S;
CX3CR1, PerCP/Cyanine5.5, SAO11F11, Biolegend, 149010;
CX3CR1, APC/Fire™ 750, SAO11F11, Biolegend, 149040;
Tim3, APC, RMT3-23, Biolegend, 119721;

Tim3, BV421, RMT3-23, Biolegend, 119723;

PD-1, BV785, 29F.1A12, Biolegend, 135225;
Thy1.1, A488, OX-7, Biolegend, 202506;

Thy1.2, PerCP-Cy5.5, 30-H12, Biolegend, 105322;
Ly5.1, BUV737, A20, Biolegend, 110708;

Ly5.2, BUV395, A20, Biolegend, 110708;

CD101, PE, Moushi101, Invitrogen, 12-1011-82;
CD101, PeCy7, Moushil01, eBioscience, 25-1011-80;
SLAMF6, BV605, 13G3, BD, 745250;

CD39, Pe-Cy7, 24DMS1, eBioscience, 25-0391-82;
CD38, PerCP-Cy5.5, 24DMS]1, eBioscience, 25-0391-82;
CXCR6, PE, SAO51D1, Biolegend, 151104;

KLRG1, PeCy7, 2F1, Biolegend, 138416;

KLRG1, FITC,2F1/KLRG1, Biolegend, 138410;
KLRG1, APC/Cy7,2F1/KLRG1, Biolegend, 138426;
CD127, BV421, A7R34, Biolegend, 135024;

CD8a, BUV395, 53-6.7, BD, 565968;

CD8a, BV711, 53-6.7, Biolegend, 100747;

CD69, PE-Cy7, H1.2F3, Biolegend 104512;
CD103, APC, M290, BD, 562772;

IFNg, PE-Cy7, XMG1.2, Biolegend, 505826;

TNF, BV421, MP6-XT22, Biolegend, 506328;

TOX, €660, TXRX10, Thermo Fisher Scientific, 50-6502-82;
TruStain FcX™ (anti-mouse CD16/32), Biolegend, 101320;
CD8, BUV395, RPA-T8, BD, 563796;

CD8, AF700, RPA-T8, Biolegend, 301028;

CD8, BUV496, RPA-T8, BD, 612942;

CD4, BUV737, SK3, BD, 612748;

CD4, BV711, SK3,;

CD45RA, FITC, H100, Biolegend, 304106;
CD45RA, BV785, H100, Biolegend, 304140;
CD45RO0, PE, UCHL1, Biolegend, 304206;
CD45RO0, BV711, UCHLI, Biolegend, 304236;
CD45RO0, BV605, UCHLI, Biolegend, 304238;
CCR7, APC/Cy7, GO43H7, Biolegend, 353212;
CD62L, PE, DREG-56, Biolegend, 304805;

CD69, FITC, FN50, Biolegend, 310904;

CD69, APC/Cy7, FN50, Biolegend, 310913;
CD103, APC, Ber-ACTS, Biolegend, 350216;
CD103, BV421, Ber-ACTS8,,;

CXCR6, PCP/Cy5.5, KO41ES, Biolegend, 356010;
PD1, BV421, EH12.2H7, BD, 562516;

PD1, FITC, EH12.2H7, Biolegend, 329904;

PD1, BUV737, EH12.2H7, BD, 612791;

CD39, BV605, Al, BD, 567691;

CD39, PCP/Cy5.5, A1, Biolegend, 328218;

LAG3, PE/Cy7, 11C3C65, Biolegend, 369310;
LAG3, Spark Plus UV395, 11C3C65, Biolegend, 369354;
TIM3, BV711, F38-2E2, Biolegend, 345024;

TIGIT, APC, A15153G, Biolegend, 372706;

TIGIT, PE, A15153G, Biolegend, 372704;

IFN-y, PE, 4S.B3, Biolegend, 502509;

IFN-y, BV605, 4S.B3, Biolegend, 506542;

TNF-a, BV785, MAb11, Biolegend, 502948;




Validation

TNF-a, APC, MAb11, Biolegend, 502913;

IL 2, FITC, MQ1-17H12, Biolegend, 500304;

IL 2, RB780, MQ1-17H12, Biolegend, 569130;

GZMB, APC, QA16A02, Biolegend, 372204;

GZMB, AF700, QA16A02, Biolegend, 372222;

GA4S Linker, PE, E702V, Cell Signaling, 38907S;

G4S Linker, AF594, E702V, Cell Signaling, 39614S;

G4S Linker, Pacific Blue, E702V, Cell Signaling, 44962S;
CD56, BUV563, NCAM16.2, BD, 612929;

All antibodies were acquired from commercial sources and have been validated by the vendors. Validation data are available on the
manufacturer's website.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

HEK293T cells, B16-GP33 cells

None of the cell lines were authenticated.

Mycoplasma contamination All cell lines tested negative for mycoplasma by PCR prior to use.

Commonly misidentified lines No commonly misidentified lines were used in this study.

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

C57BL/6J mice were purchased from Jackson Laboratories and UNC Animal Models Core. P14+ mice have been previously described
(Pircher, Nature 1989). P14+ Thy1.1, P14+ Ly5.1, P14+ Cas9 Ly5.1 were breed in house. Animals were housed in specific-pathogen-
free facilities at the Salk Institute and UNC Chapel Hill. All experimental studies were approved and performed in accordance with
guidelines and regulations implemented by the Salk Institute Animal Care and Use Committee and University of North Carolina at
Chapel Hill Animal Care and Use Committee.

This study did not involve wild animals.
Both male and female mice between 6-12 weeks of age were used.
This study did not involve field-collected samples.

All experimental studies were approved and performed in accordance with guidelines and regulations implemented by the Salk
Institute and UNC Chapel Hill Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. . )
Describe-any-atthentication-procedures foreachseed stock-tised-ornovel-genotype-generated.—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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Flow Cytometry

Plots
Confirm that:

|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software
Cell population abundance

Gating strategy

Single-cell suspensions of splenocytes were prepared by mechanically disaggregating spleens through a 70 um cell strainer
(VWR), followed by red blood cell lysis using ACK lysis buffer (KD Medical). Intraepithelial lymphocyte (IEL) cells were isolated
from the small intestine, after removing Peyer’s patches, by incubating the tissue in HEPES buffer containing FBS and DTT
solution. IELs were then purified using a Percoll gradient, 21 days post-LCMV Armstrong infection.

Tumor-infiltrating T cells were harvested 21 days after tumor implantation. Tumor tissue was minced using razor blades in a
cell culture dish and digested with a dissociation buffer. The dissociation buffer (10x) was composed of 40 ml RPMI/DMEM
(Gibco), 1% Pen/Strep (Gibco), 1 mM sodium pyruvate (Gibco), 25 mM HEPES (Lonza), 400 mg Collagenase IV (Sigma), 400
mg Soybean Trypsin Inhibitor (Thermo Scientific), 50 mg Dispase Il (Sigma), and 20 mg DNase (Sigma). The digestion was
performed for 30 minutes at 37°C. After digestion, the samples were passed through a 70 um cell strainer, centrifuged at 420
rcf for 4 minutes at 4°C, and resuspended in RPMI supplemented with 10% fetal bovine serum prior to staining.

Data acquisition was performed on a LSR Il (BD), Cytek Aurora, Cytek Northern light, and analysis was performed using Flowjo
software (TreeStar). All sorting was performed on BD Aria or BD Influx.

FlowJo v10 (FlowJo LLC, USA) was used for analysis of cytometric data.
The purity of sorted samples was typically >95%. To check purity, an aliquot of sorted cells was analyzed.
Cells were gated in FSCxSSC for lymphocytes, followed by two singlet discrimination gates and exclusion of dead cells using

live/dead dye. P14+ cells were identified based on congenics, endogenous antigen-specific cells were identified based on
tetramer positivity. Transduced cells were gated on GFP.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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