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Population-scale sequencing resolves 
determinants of persistent EBV DNA
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Fengyuan Hu3, Xueqing Zoe Zou3, Benjamin Hollis3, Margarete A. Fabre3, 
Stewart MacArthur3, Quanli Wang3, Leif S. Ludwig7,8, Kushal K. Dey1, Slavé Petrovski3 ✉, 
Ryan S. Dhindsa6,9,10 ✉ & Caleb A. Lareau1 ✉

Epstein–Barr virus (EBV) is an endemic herpesvirus implicated in autoimmunity, 
cancer and neurological disorders. Although primary infection is often subclinical, 
persistent EBV infection can drive immune dysregulation and long-term complications. 
Despite the ubiquity of infection, the determinants of EBV persistence following 
primary exposure remain poorly understood, although human genetic variation 
partially contributes to this phenotypic spectrum1–3. Here we demonstrate that 
existing whole genome sequencing (WGS) data of human populations can be used to 
quantify persistent EBV DNA. Using WGS and health record data from the UK Biobank 
(n = 490,560) and All of Us (n = 245,394), we uncover reproducible associations 
between blood-derived EBV DNA quantifications and respiratory, autoimmune, 
neurological and cardiovascular diseases. We evaluate genetic determinants of 
persistent EBV DNA via genome association studies, revealing heritability enrichment 
in immune-associated regulatory regions and protein-altering variants in 148 genes. 
Single-cell and pathway level analyses of these loci implicate variable antigen 
processing as a primary determinant of EBV DNA persistence. Further, relevant gene 
programs were enriched in B cells and antigen-presenting cells, consistent with their 
roles in viral reservoir and clearance. Human leukocyte antigen genotyping and 
predicted viral epitope presentation affinities implicate major histocompatibility 
complex class II variation as a key modulator of EBV persistence. Together, our 
analyses demonstrate how re-analysis of human population-scale WGS data can 
elucidate the genetic architecture of viral DNA persistence, a framework generalizable 
to the broader human virome4.

In 1964, Anthony Epstein, Yvonne Barr and Burt Achong observed 
actively replicating viral particles from Burkitt lymphoma, discov-
ering the virus that now bears their names: the Epstein–Barr virus 
(EBV)5. EBV was subsequently recognized as the first known human 
oncogenic virus6, the cause of infectious mononucleosis6, and an 
agent in developing and exacerbating multiple autoimmune dis-
eases7. Despite these wide-ranging pathogenic roles, EBV infection 
is nearly ubiquitous, infecting >90% of adults worldwide, with most 
individuals remaining asymptomatic8. EBV primarily transmits via 
saliva, infecting oral epithelial cells, spreading to B cells and estab-
lishing persistent infections in the human host that can last for a 
lifetime9. Why clinical outcomes of EBV infection—ranging from 
asymptomatic infection to severe disease—vary so widely remains 
poorly understood. The most severe manifestation, EBV-triggered 

cancers, collectively account for 130,000–200,000 annual deaths 
worldwide10. By contrast, immunocompetent individuals may har-
bour latent EBV within peripheral memory B cells, where the virus 
expresses a minimal gene program4,11. As with other herpesvirus 
infections, EBV can reactivate sporadically or in response to acute 
stressors or host immunosuppression, resulting in expanded viral 
reservoirs and potentially lethal clinical complications11,12. This vast 
phenotypic spectrum following acute and chronic infection under-
scores extensive individual variability, which can be partially attrib-
uted to host genetic variation1–3. However, genetic association studies 
of common infections with complex phenotypes such as EBV have 
been underpowered owing to small cohort sizes13, motivating new 
approaches to study infection, viral persistence and host–phenotype  
associations.
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Beyond its role in human disease, EBV has been instrumental in 
advancing human population genetics research. EBV can transform 
primary B lymphocytes from healthy individuals into immortalized 
lymphoblastoid cell lines (LCLs)14, critical resources that historically 
enabled long-term storage and large-scale genetic studies15. Conse-
quently, immortalized LCLs were the primary material used in the  
HapMap16 and 1000 Genomes15 projects to profile genetic variation 
across the globe. These foundational efforts laid the groundwork for 
more expansive population-scale cohorts, such as the UK Biobank 
(UKB)17 and All of Us (AOU)18, which include sequencing and phenotypic 
data from hundreds of thousands of individuals: a scale that can inter-
rogate the genetic underpinnings of complex phenotypes following 
infection.

As modern biobanks perform whole genome sequencing (WGS) 
on peripheral blood rather than on LCLs, we posited that EBV DNA 
reflecting EBV persistence in circulating cells could be captured and 
quantified in these libraries. Building on recent work that quantifies 
viral nucleic acids in petabyte-scale datasets to infer host–virus interac-
tions retrospectively19,20, we sought to develop a scalable computational 
pipeline to estimate individual-level EBV DNA loads. By leveraging 
the inclusion of the EBV genome as a contig in the human reference 
genome, we demonstrate how ordinarily excluded sequencing reads 
can be reanalysed to create a new molecular feature for genome-wide 
and phenome-wide association studies at petabase-scale.

Biobank WGS data harbour EBV DNA
To address the high levels of EBV DNA present in the LCL-derived librar-
ies—including those used in foundational efforts such as the 1000 
Genomes Project15—the EBV genome (chrEBV, NC_007605) was incor-
porated into the human reference genome assembly (as of hg38)21. 

This alternative contig was designated as a sink for viral nucleic acids 
to improve variant calling and interpretation in the human genome21. 
We hypothesized that reads mapping to this contig from blood-derived 
WGS data would reflect persistence of EBV DNA following a primary 
infection. We thus extracted all sequencing reads from the aligned .
cram files that mapped to chrEBV, enabling a quantification of the 
per-individual, per-base EBV DNA coverage across 490,560 individuals 
in the UKB (Fig. 1a,b). In addition to regions with low coverage cor-
responding to poor mappability, we identified two distinct loci with 
disproportionately high read depths, which corresponded to repeti-
tive sequences (Fig. 1b and Methods). As these regions were covered at 
levels that were orders of magnitude higher than the median coverage 
of the viral contig, we reasoned that they would confound EBV DNA 
quantification. As an orthogonal measure of past infection, we used 
EBV serostatus ascertained on a subset of 9,687 individuals from the 
UKB, noting that EBV seropositivity requires sufficient antibody titres 
for at least two of four EBV antigens. We observed a nominal associa-
tion between presence of EBV DNA and seropositivity when includ-
ing these two repetitive regions (Fisher’s exact test odds ratio = 1.2, 
P = 0.03; Fig. 1c and Methods); however, discarding these two repetitive 
regions revealed that >40% of the UKB cohort only had aligned reads in 
these regions, and masking these regions before binarizing individuals 
resulted in a markedly stronger association (Fisher’s exact test odds 
ratio = 14.6, P = 1.7 × 10−26; Fig. 1c). The next strongest association of 
detected EBV DNA with serostatus was for human immunodeficiency 
virus (HIV) 1 (Fisher’s exact test odds ratio = 4.6, P = 0.0023), consistent 
with reports of EBV DNA detection in blood following immunosup-
pression due to HIV 22 (Fig. 1d). Taken together, our sequencing-based 
approach readily scales to hundreds of thousands of individuals: a more 
than a 100-fold increase in sample size compared with serology-based 
association studies13.
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Fig. 1 | Retrospective quantification of EBV DNA in the UKB. a, Schematic  
of the approach. WGS libraries from peripheral blood were aligned to the hg38 
reference genome, which contains an EBV reference contig (chrEBV). Reads 
mapping to chrEBV were extracted for downstream analyses. b, Sum of 
per-base read coverage of high-confidence EBV-mapping reads. Two repetitive 
regions with inflated coverage are noted in red and purple (following IUPAC 
convention: h = A/C/T, y = C/T, m = A/C, r = A/G; subscripts indicate the number 
of repeats). c, Association summary of individual-level serostatus and EBV DNA 
quantification with variable region masking. Statistical test: two-sided Fisher’s 
exact test. Error bars represent 95% confidence intervals for the point effect 

estimate (centre dot). d, Summary of EBV DNA detection with serostatus of  
22 infectious agents. Statistical test: two-sided Fisher’s exact test. HHV-6  
was partitioned into strains HHV-6A and HHV-6B. e, Empirical cumulative 
distribution of detected EBV DNA across the entire cohort (85.7% of individuals 
had no detectable (n.d.) EBV DNA; 0.3% had EBV DNA at a copy number of 1+ EBV 
genome per 1,000 human cells). f, Top 100 individuals on the basis of EBV DNA 
copy number, from the circled population in e. g, Association between EBV 
seropositivity and EBV DNA detection thresholds at variable levels. Statistical 
test: two-sided Fisher’s exact test. Sample size of full UKB cohort: n = 490,560. 
The images in panel a were adapted from ref. 19, Springer Nature Ltd.
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To further interpret our metric, we estimated the EBV DNA copy 
number per 1,000 cells by normalizing read counts between viral 
and host genome sizes. At the extremes of the distribution, 85.7% 
of individuals had no detectable bias-corrected EBV DNA, whereas 
0.3% exhibited EBV DNA copy numbers of at least one viral genome 
per 1,000 human cells, including one individual with at least one EBV 
genome per 100 human cells (Fig. 1e,f). This range—which is derived 
from predominantly healthy individuals—is consistent with past quan-
titative polymerase chain reaction (qPCR)-based measurements of 
EBV DNA copy numbers in healthy populations, which reported upper 
ranges of one copy per 200 cells23 (Methods). Using serostatus as a 
ground truth and accounting for standard covariates, a cutoff of 1.2 
viral genomes per 104 human cells yielded the strongest concordance 
with seropositivity (odds ratio = 82.2, P = 2.2 × 10−16), noting that all 
donors with detectable EBV DNA had at least one positive response 
against the four tested EBV antigens (Fig. 1g, Extended Data Fig. 1b and 
Methods). We classified 47,452 (9.7%) individuals with EBV DNAemia 
(defined as detectable EBV DNA levels >1.2 genomes per 104 cells) for 
subsequent analyses (Extended Data Fig. 1c). As the proportion of indi-
viduals with EBV DNAemia (9.7%) is lower than the seropositivity rate 
(>90%) in the UKB, we interpret our metric as capturing the subset of 
individuals with the highest levels of circulating EBV DNA at the time 
of WGS sampling. Indeed, simulated data from a censored log-normal 
distribution of per-person EBV DNA levels closely approximated the 
empirical distribution (Extended Data Fig. 1d–g and Methods).

Next, we sought to better understand the profile of individuals with 
EBV DNAemia in the UKB cohort (Supplementary Table 1). Annotating 
each individual by birth location, we observed a higher proportion of 
EBV DNAemia in individuals born in more northern latitudes in the 
UK, consistent with previous reports of increased EBV infection fur-
ther from the equator24 (Extended Data Fig. 1h). We also observed a 
sex-biased (higher in male) and age-associated increase in EBV DNAemia 
rates, the latter consistent with EBV serology (Extended Data Fig. 1i). 
EBV DNAemia rates also differed among genetic ancestries and had 
a modest increase among individuals taking immunosuppressive 
medications (Extended Data Fig. 1j,k and Supplementary Table 2). We 
performed parallel analyses in the AOU cohort, spanning 245,394 indi-
viduals with blood-derived WGS (Extended Data Fig. 2a and Methods). 
Results from the independent analyses of AOU replicated key attributes 

of the UKB data, including a clear repetitive region that was similarly 
masked, yielding 11.9% of individuals with EBV DNAemia and consist-
ent associations with age, sex, genetic ancestry and prescription of 
immunosuppressive drugs (Extended Data Fig. 2b–f).

As primary EBV infection occurs earlier in life25, we hypothesized 
that donors with EBV DNAemia probably reflected a previous infection 
that persisted until sampling. Conversely, lytic herpesvirus infection 
would be concomitant with viral transcription, including in peripheral 
blood11,19. As the UKB and AOU collected DNA but not RNA-seq data, 
we reprocessed bulk and single-cell RNA-seq from the OneK1K26 and 
Genotype-Tissue Expression27 consortia to assess for EBV transcription 
in peripheral blood cells (Supplementary Note 1 and Supplementary 
Fig. 1a,f). Across these 1,663 donors, we detected minimal evidence of 
EBV transcripts, suggesting that the vast majority of blood-derived EBV 
DNA from our cohorts probably reflects latent infection, which is con-
cordant with the lack of EBV lytic reactivation gene expression detected 
in peripheral B cells of healthy individuals28 (Supplementary Note 1 
and Supplementary Fig. 1c,g). Furthermore, analysed saliva-derived 
WGS samples for another set of 48,899 AOU participants showed a 
markedly higher rate of EBV DNAemia (50.9%), reflecting a distinct 
environmental and cellular reservoir for EBV (Supplementary Note 2 
and Supplementary Fig. 2a–d). Together, our findings demonstrate that 
EBV DNA can be retrospectively quantified from existing large-scale 
WGS datasets with reproducible signals, including sequences collected 
from different anatomical sites.

Associations with complex traits
Next, we investigated whether our WGS-enabled measure of EBV 
DNAemia could serve as a biomarker of complex disease. To assess 
this, we performed a phenome-wide association study (PheWAS) to 
map systematic outcomes catalogued via International Classifica-
tion of Diseases, 10th revision (ICD-10) codes with EBV DNAemia as 
an exposure (Methods). Using individuals from the UKB of predomi-
nantly non-Finnish European (NFE) genetic ancestry (n = 426,563) as a 
discovery cohort, we tested for the association between EBV DNAemia 
and 13,290 binary phenotypes as well as 1,931 quantitative pheno-
types, following our previously described PheWAS workflow29 (Sup-
plementary Table 3 and Methods). Among binary traits, we observed 
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271 significant (P < 3.3 × 10−6) ICD-10 codes, including well-established 
associations with splenic diseases and Hodgkin lymphoma. We 
also observed significant associations with rheumatoid arthritis11, 
chronic obstructive pulmonary disease (COPD30) and systemic lupus 
erythematosus28, each of which has been previously associated with 
EBV using orthogonal approaches (Fig. 2a). Past case studies have anec-
dotally reported associations between EBV infection and various con-
ditions in small-scale studies relative to our population-scale cohorts. 
Our analyses reinforced evidence for these relationships, including 
chronic ischemic heart disease (odds ratio = 1.19, P = 2.8 × 10−18), 
acute kidney failure (odds ratio = 1.21, P = 1.4 × 10−16), depressive epi-
sodes (odds ratio = 1.19, P = 4.0 × 10−26) and stroke (odds ratio = 1.20, 
P = 6.1 × 10−13). We emphasize that these associations may also reflect a 
general state of immunosuppression, and additional work is required 
to determine which of these associations are causal rather than  
correlational.

Statistically significant quantitative associations (n = 156) included 
leukocyte count, neutrophil percentage, smoking pack years, tel-
omere length and compositions of omega-3 fatty acids, consistent 
with previous observations of lipogenesis induction following EBV 
infection31 (Extended Data Fig. 3a). We also detected an association 
with malaise and fatigue (odds ratio = 1.27, P = 2.06 × 10−10), noting that 
EBV has long been hypothesized as a risk factor for myalgic encepha-
lomyelitis/chronic fatigue syndrome (ME/CFS)32. We also identified 
significant associations with decreased levels of phosphatidylcho-
line (P = 2.9 × 10−9) and total choline (P = 5.9 × 10−9), consistent with 
metabolic studies in patients with ME/CFS33. Our results reinforce a 
potential relationship between EBV and ME/CFS that warrants further 
examination.

We sought to replicate these associations using the AOU cohort 
(Fig. 2b). As the underlying electronic health record data vary between 
cohorts, we focused on 141 significantly associated ICD-10 codes in 
the UKB that had sufficient representation in AOU (minimum n = 24 
cases). Of these, 87 (62%) were replicated in AOU (P < 0.05; odds ratio 
directionally concordant with UKB statistics), resulting in a set of traits 
that we examined more closely (Methods, Supplementary Table 3 and 
Supplementary Note 3). These phenotypes included rheumatoid arthri-
tis, COPD and lung neoplasms, as well as less-established phenotypes 
such as peripheral vascular disease, emphysema and tachycardia, some 
of which may be attributable to the association between smoking and 
EBV reactivation. We also considered two traits that were previously 
linked to EBV but were not significant in either cohort (Methods and 
Extended Data Fig. 3b). For multiple sclerosis, we observed nominal 
associations that did not survive multiple testing corrections (UKB, 
odds ratio = 2.1, P = 0.019; AOU, odds ratio = 0.73, P = 0.0087), consist-
ent with a past report that did not detect a significant association using 
ICD-based viral exposure measures34. For gammaherpesviral mono
nucleosis, a primary manifestation of EBV infection, the association 
was in the expected direction (UKB, odds ratio = 2.55, P = 0.23; AOU, 
odds ratio = 5.86, P = 1.1 × 10−6) but underpowered owing to low sample 
sizes (n = 11 in the UKB, n = 42 in AOU), noting infectious mononucleosis 
primarily affects younger individuals.

In addition to phenotypes that replicated between cohorts, we noted 
instances of neurological conditions that were nominally associated 
with EBV DNAemia in the UKB but lacked sufficient case numbers to 
be assessed in AOU (P < 0.05; Extended Data Fig. 3c). These included 
all-cause dementia (odds ratio = 1.16, P = 6.0 × 10−5); rarer phenotypes 
such as neuromyelitis optica, which is a rare autoimmune disease with 
similar clinical presentation as multiple sclerosis (odds ratio = 6.31, 
P = 2.7 × 10−3); and acute disseminated demyelination (odds ratio = 6.31, 
P = 5.3 × 10−3). Although further work is required to implicate the role 
of EBV in these phenotypes, our scalable approach enables systematic 
association studies across a broad range of conditions, including rare 
diseases for which very large cohorts such as the UKB and AOU are 
essential.

Genetic variation underlies EBV DNAemia
Past studies have established that manifestations of viral infections are 
a polygenic trait controlled by dozens of loci in the human genome13,35. 
Hence, we reasoned that genetic variation would similarly influence 
the variable degree of EBV persistence across the population. We thus 
conducted a genome-wide association study (GWAS) on individuals 
of NFE ancestry (~94% of the UKB cohort) to identify loci associated 
with EBV DNAemia (Methods). Using array-based genotype data fol-
lowed by imputation from 426,563 NFE individuals in the UKB, we 
identified 22 independent loci associated with EBV DNAemia that 
reached genome-wide significance (P < 5 × 10−8; Fig. 3a, Methods and 
Supplementary Table 4). Overall, the single nucleotide polymorphism 
(SNP)-based heritability (h2) determined by LDscore regression (LDSC) 
was 2.21% (± 0.85%) with limited evidence of genomic inflation (λGC = 1.1; 
LDSC intercept = 1.03 ± 0.008; Supplementary Note 4). Partitioned her-
itability analyses showed an enrichment at conserved and non-coding 
loci marked by enhancer and super-enhancer annotations (Extended 
Data Fig. 4a), consistent with other complex trait associations36.

The strongest associations emerged near human leukocyte antigen 
(HLA) genes on chromosome 6 that encode the major histocompat-
ibility complex (MHC) class I and II proteins (Fig. 3a). Major histocom-
patibility complex molecules are critical in differentiating between 
self and non-self proteins and have been widely associated with auto-
immune traits13,37. We conducted an exome-wide association study 
(ExWAS), which included protein-coding variants observed at least six 
times (that is, with a minor allele count of greater than five) in the NFE 
cohort29, to refine association signals at the MHC and other associated 
loci (Methods). Associations at alleles assayed by either technology 
were concordant (Extended Data Fig. 4b). Among the 1,102 variants 
significantly associated with EBV DNAemia (P < 5 × 10−8, cases > 20), 
686 were missense variants spanning 148 genes. These missense vari-
ants facilitated the annotation of putative causal variants at 9 of the 
22 implicated loci (Fig. 3a, Methods and Supplementary Table 4). Con-
sistent with our GWAS results, the protein-coding variants with the 
largest effect sizes were near the MHC locus, where 148 MHC class I, 
113 MHC class II and 7 non-classical HLA protein-altering variants were 
significantly associated with EBV DNAemia (Fig. 3b).

We used the AOU cohort to replicate the biological plausibility and 
pleiotropy of genetic associations in the UKB. Repeating our GWAS 
framework on n = 131,938 people with European (EUR) ancestry in 
AOU for 12,099,305 common variants (1% minor allele frequency), we 
observed concordant associations at implicated loci. Globally, 40,675 
variants were genome-wide significant (P < 5 × 10−8) in the UKB and 
passed quality control filters in AOU, noting that many were from the 
HLA region. Of these genome-wide significant variants, 91.4% of vari-
ants were replicated in the AOU GWAS (nominal P < 0.05; odds ratio 
concordant; Fig. 3c). Further, 12 of the 19 (63%) assayed index GWAS 
variants replicated in the AOU GWAS (nominal P < 0.05, odds ratio 
directionally concordant; Supplementary Table 4). These included 
loci near well-established immune-regulatory genes, including CTLA4, 
EOMES, LNPEP, PTPN22 and SLAMF7 (Supplementary Note 4 and Sup-
plementary Fig. 3c–f). Although these analyses primarily focused on 
individuals of European ancestry, additional meta-analyses from the 
diverse ancestries of the UKB and AOU revealed an additional 23 loci 
surpassing genome-wide significance, including variants near BIM, 
GSDMB, TERT, BCL11A, MYC and CD160 (Supplementary Note 5 and Sup-
plementary Fig. 4a,b). Together, our results indicate that persistence 
of EBV DNA is a polygenic trait that can be quantified from multiple 
population-scale WGS datasets, and loci underlying EBV DNAemia are 
reproducible across continents.

Given the well-described associations between EBV and immune- 
mediated phenotypes, we sought to systematically evaluate simi-
larities between the genomic architectures of EBV DNAemia and 
immune-mediated diseases (IMDs). We used cupcake38, a framework 
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that accounts for the shared components of non-HLA genetic architec-
ture across 13 IMDs using a shrinkage approach to adjust for linkage dis-
equilibrium, allele frequency and differential sample size via principal 
component analysis (PCA), where principal component (PC)1 captures 
an IMD genetic axis characterized by autoantibody seropositivity38. 
Consistent with our PheWAS and past reports of EBV pathogenesis, 
we observed a cupcake PC1 score that reflects a shared component of 
genetic architecture between EBV DNAemia and autoimmune diseases 
such as rheumatoid arthritis, systemic lupus erythematosus and T1D 
from both the UKB (P = 1.3 × 10−5) and AOU (P = 4.8 × 10−7; Fig. 3d). Noting 
that initial EBV infections are most prevalent in adolescence25 and gener-
ally precede onset of autoimmunity39, our data refine a potential model 
in which a component of genetic architecture shared by seropositive 
IMDs may first determine the persistence of EBV after primary infec-
tion that, in turn, may trigger complications characteristic of disease.

As a contrast to our blood-derived EBV DNAemia biomarker, we con-
ducted analogous genome-wide analyses of binarized EBV serology 
(seropositivity) from the UKB40 and saliva-derived EBV DNAemia from 
AOU18. Serostatus from 8,669 individuals of NFE ancestry resulted in 
zero genome-wide significant loci (Supplementary Note 5 and Supple-
mentary Fig. 4c). Furthermore, although we observed markedly higher 
levels of EBV DNA in AOU saliva WGS samples, including 51% DNAemia 
in 32,745 saliva EUR ancestry donors, the only genome-wide significant 
association for these individuals under three different candidate mod-
els was at the MHC locus (Supplementary Note 2 and Supplementary 
Fig. 2f,g). We attribute the disparity in the number of significant loci 

to the underlying biology of EBV DNAemia in peripheral blood, dis-
tinct from the site of transmission11. Whereas EBV serostatus reflects 
a history of any past infection, which is largely independent of genetic 
variation, EBV DNAemia identifies the subset of infected individuals 
with the highest levels of persistent viral DNA.

Cell type and pathway level analyses
To further evaluate the role of EBV DNAemia-associated immuno
modulatory genes, we examined the expression of the 148 genes 
that harboured at least one significant ExWAS variant as a signature 
score in a multi-modal dataset of 211,000 human peripheral blood 
mononuclear cells (PBMCs)41 (Fig. 4a). As expected, the EBV signature 
score was enriched in B cells, consistent with the known viral tropism 
of EBV infection and latency8,9 (Fig. 4b,c). This enrichment was cor-
roborated in the non-coding genome, as genome-wide significant 
variants were enriched in B cell-specific accessible chromatin from 
fluorescent-activated cell-sorting-isolated populations profiled via 
the Assay for Transposase Accessible Chromatin using sequencing42 
(ATAC-seq; Extended Data Fig. 5a and Methods). We also observed a 
similar enrichment in subsets of antigen-presenting cells, particularly 
conventional dendritic cells (Extended Data Fig. 5b,c), although den-
dritic cells are most likely not directly infected by EBV43. To resolve the 
potential biological processes linked to this genetic architecture, we 
performed gene set analyses using the Gene Ontology biological pro-
cesses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
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analyses. Among the Gene Ontology biological-process-enriched 
terms, the top pathways involved antigen processing and presenta-
tion, MHC protein complex and assembly, and regulation of T cells 
(Fig. 4d, Extended Data Fig. 5d and Supplementary Table 5). From the 
KEGG enrichments, we observed disease-associated annotations that 
included viral myocarditis, rheumatoid arthritis, herpes simplex virus 
1 (HSV-1) infection and, reassuringly, EBV infection (Extended Data 
Fig. 5e). As the strong linkage disequilibrium on chromosome 6 could 
drive this association, we refined these enrichments by further remov-
ing all HLA-associated genes or all genes on chromosome 6 (Methods). 
Regardless, antigen processing and presentation remained the most 
enriched term in our Gene Ontology biological processes analyses, 
underscoring the critical role of this pathway in controlling viral infec-
tion and clearance (Fig. 4e,f). Together, these analyses indicate that  
B cells and antigen-presenting cells are the primary cell types affected 
by the genetic architecture of EBV DNAemia, with viral antigen process-
ing and presentation predominantly influencing the emergence and 
persistence of EBV DNA, a characterization consistent with the known 
roles of these immune cells in regulating herpesvirus infections.

HLA-EBV peptide binding predictions
Although the HLA locus is pervasively associated with immune-mediated 
complex traits, these associations are challenging to resolve owing to 
allelic diversity, heterogeneity between human populations and lack of 
well-estimated (auto-) antigens that can mediate complex trait manifes-
tation37. In our setting, the EBV proteome defines the set of candidate 
antigens variably presented by these alleles that would, in turn, vari-
ably yield EBV DNAemia. Hence, we reasoned that explicit modelling 
of HLA variation could refine our understanding of genetic variation 
underlying viral persistence.

To assess this, we first assembled four-digit HLA alleles across all 
donors in the UKB and AOU with NFE or EUR ancestry (Extended Data 

Fig. 6a and Methods). Using these per-donor genotypes and similar 
covariates to our GWAS, we performed a multivariate regression to 
assess whether each HLA allele was associated with variable rates of 
EBV DNAemia (Methods). We identified a total of 42 associated HLA 
alleles, including 18 class I and 24 class II alleles (nominal P < 0.05 in both 
cohorts; Extended Data Fig. 6b,c, Supplementary Table 6 and Methods). 
One of the strongest risk alleles for EBV DNAemia was HLA-A*03:01 
(UKB, P = 0.0060; AOU, P = 9.63 × 10−25), previously linked with increased 
risk of multiple sclerosis44. Conversely, a protective allele against EBV 
DNAemia, HLA-DRB1*12:01 (UKB, P = 4.6 × 10−18; AOU, P = 3.9 × 10−4), has 
been associated with less severe multiple sclerosis45. We also observed 
two other negatively associated HLA alleles, HLA-B*35:01 (UKB, 
P = 1.3 × 10−28; AOU, P = 2.6 × 10−18) and HLA-B*55:01 (UKB, P = 7.3 × 10−29; 
AOU, P = 2.8 × 10−14), that present known immunodominant epitopes 
from the EBV proteome46,47. These results collectively suggest that 
strong peptide presentation may underlie decreased EBV DNAemia.

Motivated by these findings, we hypothesized that systematic predic-
tions of EBV peptide display and processing could further characterize 
variation in population-level EBV DNAemia. We used NetMHC (NetMH-
Cpan and NetMHCIIpan)48 to infer the binding affinity of all potential 
EBV epitopes in the viral proteome with all HLA alleles observed in the 
UKB NFE cohort (Fig. 5a and Methods). Following past works in which 
candidate singular immunodominant epitopes were prioritized49,50, 
we summarized the top-ranking peptide per allele from NetMHC for 
both class I and II alleles. The top-predicted epitopes prioritized by 
NetMHC were corroborated by previously identified EBV antigens in 
the Immune Epitope Database (IEDB)51, including 9 of 83 (10.8%) class 
I peptides and 7 of 110 (6.4%) class II peptides (Fig. 5b, Extended Data 
Fig. 6d and Supplementary Table 7). These overlaps were significantly 
enriched over a random set of peptides for both class I (P = 3.5 × 10−23; 
binomial test) and class II (P = 0.047; binomial test), verifying the capac-
ity for NetMHC to predict viral peptide processing and presentation 
across HLA alleles. We also observed that predicted immunodominant 
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peptides were depleted in latency-associated EBV genes specifically 
for MHC class I peptides, reflecting potential viral evolution to evade 
host immunity during latency52 (Fig. 5c).

Recent work has shown that aggregation of immunodominant 
epitopes of the NetMHC scores via a harmonic mean of the best 
ranked peptide (HBR) is predictive of immune response, including to 
neoantigens in tumours49,50. We reasoned that analogous measures  
could predict the immune processing and recognition of viral epitopes 
and therefore summarized the per-person, per-allele HBR for class I 
and II MHC (Fig. 5d). We developed two heuristics to assess the abi
lity of these HBR scores in predicting EBV DNAemia, using both a 
permutation-based and regression-based framework (Methods). We 
compared the mean difference in HBR for individuals with and without 
EBV DNAemia for 100 permutations. For class I presentation, HLA-A 
(P = 8.3 × 10−6) and HLA-B (P = 0.046), but not HLA-C (P = 0.40), were 
associated with individual persistence of EBV DNA (Fig. 5e). Conversely, 
for class II presentation, each allele was strongly associated (HLA-DP, 
P = 3.0 × 10−162; HLA-DQ, P = 3.8 × 10−49; HLA-DR, P = 3.9 × 10−29), con-
sistent with the role of CD4-mediated immunity of viral infections 
via class II antigen presentation by B cells and dendritic cells53. These 
enrichments were concordant with identical analyses in the AOU EUR 
cohort (Fig. 5e). An orthogonal statistical regression framework that 
accounted for potential confounders, including the full HLA haplotype 
per individual, produced concordant results (Extended Data Fig. 6e–g 
and Methods). Together, these results demonstrate that computational 
modelling of interactions between host alleles and the viral proteome 
is predictive of the incidence of EBV DNAemia and support a model 
where individual genetic variation, predominantly in MHC class II, 
controls EBV DNA persistence in blood (Fig. 5f).

Genetic diversity in EBV genomes
A longstanding hypothesis is that genetic variation in EBV genomes 
could explain the diversity in host responses ranging from tolerance 
to pathogenesis54. However, recent reports have shown that variants in 

EBV previously attributed to oncogenicity were more closely tied to geo-
graphic origin than functional variation55. Distinguishing geographic 
structure from true oncogenic potential is critical, as EBV-driven 
tumours display pronounced regional enrichments, including naso-
pharyngeal carcinoma (NPC), which is prevalent in southeast China, 
northern Africa and other regions in southern Asia. We reasoned that 
our composite measure of the circulating genetic variation of EBV in 
ostensibly healthy individuals could stratify functional EBV variants 
of unknown significance (VUS) in tumour samples (Methods). After 
verifying reproducible viral genetic variation in both biobanks, we 
examined 31 previously reported EBV protein-altering mutations from 
patients with NPC 55 (Extended Data Fig. 7a,b, Supplementary Note 6 
and Methods). We annotated these VUS on the basis of our observed 
EBV allele frequencies in the UKB and AOU. Notably, all but four variants 
were detected in one or both cohorts at an allele frequency of ≥10% 
(Extended Data Fig. 7c and Supplementary Table 8). The other 27 vari-
ants previously detected in NPC genomes are unlikely to be sufficient 
for pathogenesis, based on their prevalence in healthy individuals in the 
UK and USA. Hence, these 27 VUS probably either reflect geographical 
drift or require an epistatic effect for driving malignancy. When assess-
ing the four VUS exceptions, our viral proteome NetMHC workflow 
suggested that these four VUS are unlikely to alter peptide presentation 
(or thereby enable immune evasion), indicating that these variants, if 
indeed functional, may modulate viral-intrinsic functions (Extended 
Data Fig. 7d,e and Methods). In total, our approach of synthesizing 
pieces of viral genomes from excluded WGS reads of hundreds of thou-
sands of individuals provides an alternative to low-throughput ampli-
fication and sequencing of healthy control individuals55,56 to resolve 
potential functional variation in the EBV genome.

Discussion
The exponential rise in population-scale sequencing has transformed 
our understanding of the genetic determinants of complex pheno-
types57. Although these biobanking efforts were originally genotyped 
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using DNA microarrays, more recent exome and whole-genome 
sequencing cohorts have discovered a diversity of rare genetic vari-
ants underlying complex traits17,29. Here we show that these same 
large-scale sequencing libraries contain sufficient EBV nucleic acid 
content to derive a new molecular biomarker, once corrected for low 
complexity and biased regions. Our analyses show that host genetic 
variation significantly contributes to the persistence of EBV DNA fol-
lowing infection, which in turn associates with a variety of both known 
and speculated phenotypic outcomes. Beyond confirming established 
associations between EBV and respiratory and autoimmune diseases, 
analyses of EBV DNAemia nominated various neurological indications, 
including rare conditions that have been anecdotally tied to EBV infec-
tion in past work. Further, we characterize EBV DNAemia as a polygenic 
trait regulated by genetic loci affecting antigen presentation, as well as 
both adaptive and innate immune signalling. We also identify individual 
HLA alleles linked to heterogeneous autoimmune diseases that modu-
late risk of EBV DNAemia, observing an overall trend where predicted 
viral peptide presentation strength was negatively correlated with viral 
persistence. Finally, the aggregate of viral-derived WGS reads reflected 
the circulating EBV strains, enabling studies that contrast the compo-
sition of viral heterogeneity across population-scale cohorts. Collec-
tively, our framework extends evaluations of endogenous HHV-6 that 
have nominated loci in linkage with germline integration58, whereas 
our analyses reveal that acquisition of viral DNA over a lifetime is a trait 
subject to genetic regulation at the population level.

Despite >90% EBV seropositivity among adults in the UK and USA, we 
identify a distinct population of 9.7–11.9% of individuals with detect-
able EBV DNA in peripheral blood, suggesting that past infection is 
necessary but not sufficient for EBV DNAemia. Instead, simulations 
imply that the EBV DNAemia population reflects a tail of exposed indi-
viduals with the highest EBV DNA levels. We hypothesize that others in 
these cohorts are carriers of EBV DNA from past infections, but at levels 
below our limit of detection. Further, as viral DNA levels can fluctuate 
longitudinally59, these WGS measurements represent a snapshot of a 
complex process that marked individuals with potentially transiently 
high levels of EBV DNA.

Our work provides a scalable framework for repurposing population- 
scale WGS to define genetic determinants of viral persistence. Although 
this study focused on EBV in cohorts from the UK and USA, our approach 
may extend to a broad range of viruses including phages and eukary-
otic viruses that comprise the human virome worldwide, including 
viral species from the Polyomaviridae, Adenoviridae, Parvoviridae and 
Anelloviridae families. A limitation of blood-derived WGS is that it only 
detects pathogens that persist in the peripheral circulation. Charac-
terizing host responses for other pathogens, including RNA viruses, 
will require cohorts that integrate DNA- and RNA-sequencing across 
diverse anatomic sites. Equally important will be expanding large-scale 
sequencing to geographic regions with variable persistent viruses, ena-
bling representation of viral diversity that is currently under-sampled. 
Together, these current and future efforts will yield a tissue-resolved 
map of viral reservoirs and infection while clarifying how human genetic 
diversity shapes lifelong interactions with our viromes.
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Methods

Rationale of EBV detection
The 171,823-nucleotide EBV genome (NC_007605.1) was first included 
in December 2013 (hg38 version GCA_000001405.15) as a sink for 
off-target reads that are often present in sequencing libraries, to 
account for pervasive EBV reads present from the immortalization 
of LCLs (as with the 1000 Genomes Project and related consortia). 
Importantly, WGS in the UKB and AOU consortia was performed on 
whole blood18,60, reflecting that EBV reads detected would derive from 
viral DNA from past infections.

WGS data and cohort analyses in the UKB
For the UKB, we obtained per-base abundance of EBV DNA of the 
490,560 WGS libraries by extracting reads aligning to chrEBV in the 
hg38 human genome reference that had a read mapping quality 
(MAPQ) ≥ 30 (q30) via the SAMtools view command61. To quantify 
EBV DNA abundance for each position, we summed the coverage of 
each base in the EBV genome across all libraries (per-base abundance). 
The resulting coverage across the viral contig was approximately flat, 
supporting that EBV DNA detection from WGS reads was real viral DNA, 
with two key exceptions (Fig. 1b). First, a total of 27,692 positions had 
low to no coverage (per-base abundance ≤10) due to low mappability 
of the EBV contig. Second, two regions (positions 36,390–36,514 and 
95,997–96,037) had orders-of-magnitude higher coverage (per-base 
abundance of ≥103 at these 166 positions). On further examination, 
the sequences were highly repetitive. Hence, we reasoned that these 
two regions may confound EBV DNA quantification. To assess this, we 
calculated EBV DNA abundance per person before and after masking, 
by summing MAPQ ≥ 30 coverage either across all J = 171,823 bases, or 
only across the remaining J′ = 143,965 well-covered bases (10 < per-base 
abundance < 103 for each base). The per-individual EBV sum unmasked 
was computed over all J bases, whereas the masking was performed 
over J′ bases.

We then used a two-sided Fisher’s exact test to test for association 
between EBV DNA presence (EBV DNA coverage > 0) and EBV serostatus, 
recorded in the UKB as ‘EBV seropositivity for Epstein–Barr Virus’ (data 
field 23053). Before masking, EBV DNA presence had a weak but insig-
nificant positive association with EBV seropositivity (odds ratio = 1.2, 
P = 0.03). Conversely, after masking these repetitive regions and rec-
omputing donor detection status, the association between EBV DNA 
detection and seropositivity was much stronger (odds ratio = 14.6, 
P = 1.7 × 10−26) (Fig. 1c). These analyses demonstrate that masking highly 
repetitive regions in the viral contig is required to perform valid infer-
ences from whole genome sequencing data, as evidenced by statistical 
overlap with EBV serostatus.

Contig mappability analyses
To confirm that regions of the EBV contig that were not detected 
were attributable to poor mapping quality of those regions, we gen-
erated synthetic reads of length 101 bases by tiling the reference EBV 
contig. Next, each synthetic read was aligned using bowtie2 v.2.5.1  
(ref. 62). We define mappability as the percentage of reads overlapping 
a position with a map quality score exceeding ten. This analysis repro-
duced regions depleted from the pseudobulk abundance (Extended 
Data Fig. 1a), indicating that low detection in these regions was due to 
homology in the hg38 reference rather than variable DNA presence 
from past infection.

EBV DNA copy number estimation, simulation and thresholding
To calculate EBV DNA abundance per person, we summed the cov-
erage over the well-covered, non-biased bases (J′). We normalized 
this value against the effective EBV genome size (143,965 bases) to 
obtain an estimate of the coverage per EBV genome. Next, we used 
the 30× human WGS coverage and accounted for the diploid human 

genome to compute an estimate of EBV DNA copy number per human 
cell, which resulted in approximately 1 in 1,000–10,000 cells in indi-
viduals with detectable EBV DNA (that is, our limit of detection was 
approximately 1 EBV genome per 10,000 cells). To contextualize 
these values, the upper range of EBV copy numbers in healthy indi-
viduals measured using qPCR was 103 EBV genomes per 1 µg DNA, or 
1 EBV genome per 200 cells23. The latter number was estimated with 
the assumption that 105 cells produce 0.5 µg DNA. Although a previ-
ous study similarly used EBV reads in a cohort of ~8,000 donors, this 
analysis did not correct for the repetitive, biased DNA abundances that 
significantly skewed the resulting quantification4. After quantifying 
per-person EBV DNA abundance, 85.7% of individuals in the UKB had 
no detectable EBV DNA.

In the UKB cohort, over 90% of individuals are seropositive, yet only 
14.3% of individuals have non-zero EBV DNA levels detected. Therefore, 
we conducted a simulation study to better characterize the discrepancy. 
Using maximum likelihood estimation, we estimated values for the 
mean and standard deviation of a log-normal distribution to initialize 
the simulation and subsequently modified these values to (1) account 
for a mixture including 10% zeros (representing the individuals who 
were not infected with EBV) and (2) adjust the mean for a round, inter-
pretable number. The final values used in the simulation (Extended Data 
Fig. 1d) were set to zero for 50,000 individuals, whereas the remaining 
450,000 individuals were simulated via a log-normal distribution, with 
a mean of 0.2 EBV genome copies per 10,000 cells, a standard deviation 
of 0.62 and a censored value of 0.71. We emphasize that this simulation 
does not test an explicit statistical question but is designed primarily 
for illustrative purposes, to show that a single underlying component 
can explain many features of the empirical data (rather than requiring 
a second condition).

The extreme skew of the EBV levels distribution (Extended Data 
Fig. 1f) motivated our transformation of EBV DNA copy number to a 
binary trait, which we define as EBV DNAemia, since a quantitative trait 
otherwise assumes a dose-dependent relationship when testing for 
associations. To binarize our data for downstream analyses, we used a 
series of two-sided Fisher’s exact test to survey different cutoffs against 
association with EBV serostatus (Fig. 1g). Our goal was to determine an 
optimal EBV copy number threshold. We observed the most significant 
positive association with a threshold of 1.2 EBV copies per 104 human 
cells (odds ratio = 82.17, P ≈ 0) after accounting for standard covariates 
used in a GWAS analysis (age, sex, age × sex, and ancestry PCs 1–15). 
This corresponded to having a per-person abundance of at least 302 
bases covered on the EBV genome, which in turn corresponded to a full 
paired-end sequencing read (2 × 151 bp) with no soft-clipping. There 
were 47,452 people (9.67%) with EBV copy numbers greater than this 
threshold, which was used for all downstream analyses.

For the 9,607 individuals with both EBV serology and WGS available, 
there were 919 individuals (9.57%) that had EBV DNAemia. Only two 
(0.2%) of these 919 individuals were seronegative. One donor had an 
EBV DNA load of 1.36 EBV genomes per 104 cells ( just above our EBV 
DNAemia cutoff) with a high VCAp18 titre, but low titres for the other 
three EBV antigens. The other donor had an EBV DNA load of 3.34 EBV 
genomes per 104 cells, with a positive titre for EA-D but low titres for 
the other antigens. In other words, among the 347 donors with no sero-
positivity against any antigens, none were annotated as individuals 
with EBV DNAemia (Extended Data Fig. 1b).

EBV DNA detection in AOU
We obtained per-base abundance of EBV DNA for 245,394 people 
in AOU with WGS data similarly by extracting reads that mapped to 
chrEBV in the hg38 human genome reference with MAPQ ≥ 30. To 
quantify EBV DNA abundance per base, we summed the q30 cover-
age of each base in the 171,823 bp EBV genome across all people. We 
again observed an overall uniform coverage; 23,513 positions had 
no coverage (per-base abundance = 0), and four regions (positions 
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36,389–36,516; 52,012–52,034; 95,997–96,037 and 163,596–163,617) 
had abnormally high coverage (per-base abundance of >1,000 at 214 
positions; Extended Data Fig. 2b). The effective EBV genome size was 
the remaining 148,096 bases (>0 but <103 for each base). Although 
the largest repetitive region was the same in both the UKB and AOU, 
differences in the other regions with variable bias could be attributed 
to differences in the alignment software for either cohort, noting that 
all analyses used the existing mappings from either cohort.

We quantified the EBV copy number per person in AOU with a similar 
approach to the one used for the UKB. In brief, we quantified EBV DNA 
loads after masking and normalized them by the effective EBV genome 
size, then by the average genome coverage (30× human WGS) provided 
by AOU metadata. A total of 51,459 people (21%) had detectable EBV 
DNA (Extended Data Fig. 2c). The top EBV DNA load harboured was ~1 
EBV copy per 1.4 cells (or 7,046 EBV copies per 104 cells).

Using the same EBV DNA copy number thresholds as in the UKB, a 
total of 29,249 people (11.9%) had EBV copy numbers greater than the 
threshold of 1.2 EBV copies per 104 human cells (Extended Data Fig. 2c). 
The overall higher EBV loads in AOU compared to in the UKB may be due 
to a difference in the recruitment criteria and demographics of the two 
cohorts: relative to the general population (as in AOU), the UKB shows 
a ‘healthy volunteer bias’ where participants were less likely to have 
self-reported health conditions57. In comparison, the maximum copy 
number described in a previous paper was a few orders of magnitude 
higher (2,404,531 EBV copies per 105 human cells), potentially due to 
our exclusion of abnormally high coverage regions4.

Phenome-wide association studies
We conducted PheWAS using the UKB as a discovery cohort to test for 
the association between EBV DNAemia and 13,290 binary phenotypes 
and 1,931 quantitative phenotypes amongst participants with broadly 
NFE as in the GWAS (refer to the following section). We used logistic 
regression with Firth correction, including sex and age as covariates. 
Using a Bonferroni correction, we defined 0.05/15,221 = 3.3 × 10−6 as 
our significance threshold. To ensure that the PheWAS was not con-
founded by immunosuppressive drugs, we ran a secondary analysis 
in which we included immunosuppressive drug status as an additional 
covariate in the regression. Because a majority of blood samples used 
for WGS were drawn at the time of enrollment, we identified these 
individuals on the basis of medication taken at the time of their initial 
assessment visit (UKB data field 20003). A full list of the 169 medica-
tions used for annotating immunosuppressed individuals is reported 
in Supplementary Table 2.

As validation in AOU, we obtained unique RxNorm codes for 53 of 
the 169 drugs (Supplementary Table 2) and queried for individuals that 
had any of these drug exposures, along with the exposure start and end 
dates. We annotated each individual as immunosuppressed only when 
the biosample collection date for WGS fell between the drug exposure 
start and end dates (or after start dates, if no end date was recorded). 
We observed a positive but not significant association between immu-
nosuppressive drug exposure at the time of WGS collection and EBV 
DNAemia (odds ratio = 1.03, P = 0.54) (Extended Data Fig. 2f).

We replicated PheWAS associations using the AOU cohort of indi-
viduals with European ancestry via Fisher’s exact tests for association 
between EBV DNAemia and each representative ICD-9 or ICD-10CM 
code in AOU. As recommended in the AOU workbench, we defined 
a representative ICD code as a code appearing at least twice in a per-
son and 20 instances across all participants. The top results were 
predominantly being HIV positive, having immunodeficiencies, or 
receiving organ transplants, which we also observed in the UKB. To 
compare effect sizes between hits in the UKB and AOU, we matched 
AOU ICD-10CM codes to a corresponding UKB ICD-10 code by taking 
the first four characters of the ICD-10CM code, as codes >4 characters 
do not exist in the ICD-10 ontology used in UKB. For the two traits linked 
to EBV discussed in the main text, multiple sclerosis was queried using 

the ICD-10CM code ‘G35’ in AOU, and gammaherpesviral mononucleosis 
was queried using the ICD-10CM code ‘B27.00’. 

Genetic associations with EBV DNAemia in the UKB
For UKB individuals of broadly NFE ancestry, array-based imputed 
genotypes with good genome-wide coverage in the common (>5%) 
and low-frequency (1–5%) MAF ranges were available17. Genotyping 
arrays capture genome-wide genetic variations (SNPs and indels) 
within both coding and noncoding regions, allowing imputation of 
genotypes and tests for association between genotypes and a speci-
fied trait. To avoid confounding results due to differences in ances-
tral background, we stratified the cohort across six broad genetic 
ancestries (African, AFR; Hispanic or Latin American, AMR; Ashkenazi 
Jewish, ASJ; East Asian, EAS; non-Finnish European, NFE; and South 
Asian, SAS) before testing for associations between EBV DNAemia and 
UKB-imputed genotypes, which resulted in a total of 450,032 individu-
als with array imputed genotype data available, including 426,563 indi-
viduals of NFE ancestry. We then used REGENIE v.3.5 (ref. 63) to examine 
associations between EBV DNAemia and imputed genotypes, using 
a logistic model with covariates and applying Firth correction: EBV 
DNAemia ~ age + sex + age × sex + age2 + age2 × sex + batch + ancestry 
PCs 1–20, as previously described64. The input to REGENIE includes 
directly genotyped variants (MAF > 1%, MAC > 100, genotyping rate 
per variant >99%, and genotyping rate per individual >80%). We pruned 
these variant sets using PLINK2 (--indep-pairwise 1000 100 0.8) as 
input to REGENIE’s step1 analyses. This step produces a whole genome 
regression model to fit to the binary trait of EBV DNAemia and outputs 
a set of genomic predictions.

For REGENIE step2, we further filtered out SNPs that had 0.99 ‘missing-
ness’, imputation INFO < 0.7, and p.HWE > 1 × 10−5. This step fits a logistic 
model to imputed data, using the genomic predictions from step1. To 
estimate heritability of SNPs and genomic inflation, we performed link-
age disequilibrium score regression (LDSC) by applying the ldsc package 
(v.1.0.1). In brief, we used munge_stats.py on the cleaned summary stats, 
then used ldsc.py to estimate h2 using the supplied 1KG Genomes link-
age disequilibrium score matrices (Supplementary Note 4). Identical 
steps were applied to conduct the EBV serology GWAS on the subset of 
UKB participants for whom EBV serostatus was measured40.

To annotate variant loci, we focused on significant variants 
(P < 5 × 10−8) and created genomic intervals of ±1 Mb around each 
variant. As variants on chromosome 6 often exhibit linkage disequi-
librium with MHC, we created a custom interval (chr6: 25,500,000 to 
34,000,000) for the HLA region. We then combined overlapping inter-
vals using the GenomicRanges reduce function and selected the most 
significant variant per interval as the index variant. In the case of ties, we 
selected the variant closest to the midpoint of the region. We applied 
the reduce function again to ensure we had a set of non-redundant 
index variants. Finally, we annotated each variant by the closest gene, 
using Ensembl v.111 ( Jan 2024) gene annotations and selecting the gene 
whose midpoint was closest to the index variant. For visualization of 
specific loci, we used the canonical hg38 reference genome isoforms. 
Linkage disequilibrium was determined via LDlink65 for the regions 
noted (Supplementary Note 4). Zoom plots were from the array-based 
GWAS associations in the UKB, and the linkage disequilibrium reference 
panel in LDLink65 used all European populations.

We complemented our GWAS with an exome-wide association analy-
ses (ExWAS), leveraging the whole genome sequencing data available in 
the UKB. Specifically, we tested for associations between EBV DNAemia 
and protein-coding variants observed in at least six participants of NFE 
ancestry in the UKB. We applied our previously described protocol to 
generate variant-level statistics29,66. Variants were required to pass the 
following quality control criteria: coverage ≥10x; ≥0.20 of reads with 
the alternate allele for heterozygous genotype calls; binomial test of 
alternate allele proportion departure from 50% in heterozygous state 
P ≥ 1 × 10−6; GQ ≥ 20; Fisher Strand Bias ≤ 200 for indels and ≤ 60 for SNVs; 
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root-mean-square mapping quality (MQ) ≥ 40; QUAL ≥ 30; read position 
rank sum score (RPRS) ≥ −2; mapping quality rank score (MQRS) ≥ −8; 
DRAGEN variant status = PASS; and ≤ 10% of the cohort with missing geno-
types. Additional out-of-sample quality control filters were also imposed 
based on the gnomAD v2.1.1 exomes (GRCh38 liftover) dataset67. The sites 
of all variants were required to have ≥10x coverage in ≥30% of gnomAD 
exomes and, if present, each variant was required to have an allele count 
≥50% of the raw allele count. Variants with missing values for any filter 
were retained unless they failed another metric. Variants failing quality 
control in >20,000 people were also removed. P values were generated 
via Fisher’s exact two-sided test. Three distinct genetic models were stud-
ied for binary traits: allelic (A versus B allele), dominant (AA + AB versus 
BB), and recessive (AA versus AB + BB), where A denotes the alternative 
allele and B denotes the reference allele. ExWAS hits were filtered follow-
ing: P < 5 × 10−8, nCases >20, and protein-altering Most Damaging Effect 
(‘Stop_lost’, ‘Stop_gained’, ‘Start_lost’, ‘Splice_region_variant’, ‘Splice_
donor_variant’, ‘Splice acceptor variant’, ‘Missense_variant’, ‘Frameshift_
variant’, ‘Disruptive_inframe_insertion’,‘Disruptive_inframe_deletion’). 
For functional variant annotation and interpretation, AlphaMissense68 
was executed on all variants that were statistically significant from the 
ExWAS analyses using default parameters. If multiple transcripts were 
associated, only one is reported (the one with the highest AlphaMis-
sense score, if available).

Replication of UKB EBV DNAemia-associated genotypes
To broadly capture variants in individuals with EUR ancestry in AOU, 
we used the variant-level metadata for the SNP and indel variants con-
tained in the short read WGS (srWGS) data dictionary. We filtered for 
variants with an alternative allele frequency (AF) of 0.01 < AF < 0.49 or 
0.51 < AF < 0.99 (gvs_eur_af) and at least 100 individuals containing 
this variant (gvs_eur_sc ≥ 100) in the EUR subpopulation as the input 
SNPlists to step1 and 2 of the REGENIEv3.2.4 pipeline. This resulted in 
16,566,413 variants across chromosomes 1–22. EBV DNAemia was sup-
plied as a binary trait, along with the covariates age, sex, age × sex, and 
ancestry PCs 1–15. There were 133,578 such individuals that had EBV 
DNAemia status determined, of which 131,938 had complete covariate 
data and were included in the analysis, and 12,099,305 total variants 
had GWAS statistics results.

Genomic architecture associations
To holistically evaluate genetic architecture similarities between EBV 
DNAemia and IMDs, we used the R package cupcake38. The package 
was used to define shared components of genetic architecture across 
13 IMDs, applying shrinkage to adjust for linkage disequilibrium, allele 
frequency and differential sample size. Summary statistics of 13 large 
IMD GWASs were used to define a reduced dimension space using PCA, 
which served as a common genetic basis that enabled simultaneous 
comparisons between multiple diseases. The reduced dimension space 
included 566 driver variants and 13 PCs that were defined as orthogo-
nal genetic risk components38. Applying this approach, we extracted 
summary association statistics for these 566 driver variants from our 
UKB NFE EBV DNAemia GWAS. After checking and adjusting the effect 
allele alignment, we used cupcake38 to project these variants onto the 
13 IMD genetic risk bases and assess the significance of association with 
each component. The output from this projection is a score or delta 
(δ) for each PC that quantifies the difference between the projected 
genetic risk for that trait on a particular basis axis and a synthetic con-
trol (which has zero effect sizes for all SNPs). This effectively measures 
how strongly the trait aligns with the risk architecture represented by 
that component. To account for uncertainty, the variance of δ is cal-
culated using the propagation of error from the input GWAS summary 
statistics, adjusted for the same shrinkage weights and allele frequency 
variance as applied in basis construction. With δ and its variance, a 
Z-statistic can be formed for each component, and standard statistical 
inference can be used to compute a P value38.

Pathway and single-cell analyses
To evaluate the gene expression program uncovered by our ExWAS asso-
ciations, we used a high-resolution single-cell cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) dataset of PBMCs 
from eight distinct donors with 210,911 quality-controlled cells41. The 
148 ExWAS-associated genes were input alongside the preprocessed 
Seurat41 object into the AddModuleScore function with default hyper-
parameters. To reduce technical variation, we removed genes mapping 
to the HLA region as well as ribosome-associated genes from the input 
gene list (HLA for genetic polymorphisms; ribosome for cell quality) 
from the module score foreground and background. Downstream 
association analyses of cell type enrichment were performed using 
the pre-supplied labels.

Pathway enrichment analyses were performed using the same 
ExWAS gene set via the clusterProfiler R package69. Gene set analyses 
were performed using the enrichGO (for biological processes) and 
enrichKEGG functions (for pathways) using the set of 148 genes and 
all ENSEMBL human genes as a background set. For analyses with HLA 
(Fig. 4e) and chromosome 6 excluded (Fig. 4f), we removed either HLA 
or chromosome 6 genes from both the foreground (that is, test set) 
and background set for statistical analyses. We used the simplify() 
function in clusterProfiler with a similarity cutoff of 0.7 (the default 
value) to reduce the number of redundant association terms. Hence, 
we note that the labels in panels Fig. 4d–f are not identical in name; 
this result is due to the simplify() function’s selection of a single term 
that is nearly identical to other related terms.

Enrichment analyses for non-coding enrichment in accessible chro-
matin used 18 fluorescent activated cell sorting (FACS)-isolated immune 
and hematopoietic populations that were uniformly reprocessed and 
aggregated using the hg19 reference genome (Extended Data Fig. 5a). 
To compute enrichment scores, we isolated genome-wide significant 
variants from the UKB NFE GWAS, lifted over the hg38 coordinates to 
hg19, and built a RangedSummarizedExperiment object to compute 
the enrichment. For accessible chromatin enrichments, we used an 
approach motivated by the chromVAR statistical testing framework 
adapted for genetic variants. Specifically, 100 background peaks (iden-
tified through the same mean and GC content of the ATAC-seq peak) 
were used as a null distribution, and the mean deviations at peaks vari-
ably containing genome-wide significant variants were computed via 
the abundance of accessible chromatin from each sorted population. 
The background and observed deviations were used to estimate an 
empirical Z-statistic, which was transformed into a P-value using the 
pnorm() R function.

HLA haplotype and EBV peptide presentation
We used the four-digit HLA imputation calls processed in the UKB 
Research Analysis Platform using HLA*IMP:02 (ref. 70). Allele dos-
age values of >0.7 were used to assign donor haplotypes for a specific 
four-digit HLA allele. Homozygotes were determined by alleles with 
values of >1.3. For the AOU cohort, predetermined HLA genotypes 
were not available in the workbench. Hence, we reconstructed the 
HLA calls for all individuals of EUR ancestry using the T1K toolkit71 
(v.1.0.8-r237) by extracting reads aligning to the HLA region, which 
included canonical chr6 HLA region (chr6: 25,500,000 to 34,000,000) 
and all alternative HLA contigs in the hg38 reference. Using a .bed file 
of the HLA region coordinates, these alignments were streamed with 
the GATK PrintReads commands into the T1K genotyper, which was set 
to default parameters. Following T1K toolkit recommendations, the 
donor haplotypes were assigned for alleles called with a quality score 
of >0. Homozygotes were determined by donors with only a single 
allele and with a quality score of >30.

To determine specific HLA associations with EBV DNAemia, we used 
the per-person four-digit HLA alleles for both class I and II as predic-
tors in a logistic regression, with EBV DNAemia as an outcome. Models 



included standard covariates used throughout the paper (age, sex, 
genetic PCs and so on). We performed this regression on the 208 HLA 
class I and 145 HLA class II alleles in UKB NFE individuals. We then 
repeated the same analysis for 175 class I and 132 class II alleles that 
were also present in the AOU EUR cohort (Supplementary Table 7).

The amino acid sequences of all 87 unique EBV protein sequences 
were obtained from the peptide sequence of the nuccore NC_007605. 
The protein .fasta file was input to NetMHCpan, along with all observed 
MHC class I (HLA-A, HLA-B or HLA-C) and class II (HLA-DR, HLA-DP or 
HLA-DQ) alleles in the UKB NFE cohort. Sliding windows of all 8-, 9-, 
10- or 11-mers of the provided protein sequences were generated for 
the prediction of class I allele peptide presentation; sliding windows of 
size 15-mers were used for class II. The binding scores of these peptides 
were determined for all observed UKB NFE MHC alleles that could be 
scored by NetMHCpan4.1 and NetMHCIIpan4.3 (ref. 48).

The NetMHC output reflects the predicted %rank score for each 
peptide and a given allele, which is a measure of the rank of the pre-
dicted affinity of the allele for the peptide compared to a set of 400,000 
random natural peptides. For MHC class I, we computed the HBR score 
per allele by taking the harmonic mean over the two genotyped alleles 
for each of HLA-A, B and C. For homozygotes, the harmonic mean is 
equivalent to any individual observation. For individuals missing a 
single allele, we considered only the genotyped call, and for two miss-
ing alleles, the individual was excluded from the per-allele analysis.

For MHC class II analyses, all HLA-DRB alleles were directly applied 
as input—along with the EBV proteome .fasta file—to generate HLA- 
peptide presentation scores for all possible 15-mer sliding windows. As 
HLA-DQ and HLA-DR alleles exist in pairs of alpha and beta alleles within 
the predictions, we took all HLA-DQ and HLA-DP alleles imputed in the 
UKB NFE cohort and generated all possible combinations of HLA-DQA/
HLA-DQB alleles and all possible combinations of HLA-DPA–HLA-DPB 
allele pairs. These alpha–beta allele combinations were then used as 
inputs to NetMHCIIpan, along with the EBV proteome .fasta file. Again, 
the output file lists each peptide, the protein from which the peptide is 
derived, a given class II allele (pair) and the predicted %rank_EL score, 
which is the percentile rank of the eluted ligand prediction score.  
As HLA-DRA is the only non-variable gene in the population, each  
individual has only two possible HLA-DR heterodimers. Each indi-
vidual can form four possible alpha–beta heterodimers from HLA-DP 
and HLA-DQ (between alpha and beta molecules). Hence, each indi-
vidual may assemble up to ten unique heterodimeric MHC class II  
molecules50.

The per-allele HBR was computed using the harmonic rank of the 
heterodimers for each allele class and rescaled by a factor of 106 when 
computing the final ∆HBR score (shown in Fig. 5). The comparisons were 
only between the NFE/EUR ancestry populations in either cohort. To 
further verify that our effect was linked to class II presentation strength, 
we completed regression analyses using the same set of covariates for 
our genetic association analyses, which verified that other forms of 
confounding (for example, population stratification or sex) did not 
explain the associations between the class II predicted presentation 
strength and EBV DNAemia.

EBV viral sequence analysis
Raw sequencing reads from chrEBV were merged from all participants 
from both cohorts. The aggregated .bam file was transformed into a 
per-base, per-nucleotide count using bam-readcount72. For the type 
1 and 2 strain analyses, we sought to quantify the abundance directly 
from the aligned reads to the chrEBV reference (a type 1 EBV strain). 
Here we performed a multiple-sequence alignment of the EBNA-2 gene 
(the major difference between strains) for nuccore IDs K03333 (type 1) 
and K03332 (type 2) and mapped the MSA coordinates back to the 
chrEBV reference to identify putative regions that would reflect single 
nucleotide variation, which, in turn, would reflect strain-level differ-
ences. We identified nine variants on chrEBV: 36209C>T, 36226T>A, 

36251A>G, 36252A>T, 36258C>A, 36275G>T, 36302A>C, 36312T>A 
and 36320C>T, where the reference allele was type 1-derived and the 
alternate was type 2-derived. These variants were selected on the basis 
of: (1) the combined allele frequency being greater than 99% for the 
reference and alternate alleles and (2) no overlap with the repetitive 
regions (Fig. 1b).

Next, we analysed a set of 31 protein-altering mutations in EBV 
(Extended Data Fig. 7c), which was curated from a recent global-scale 
analyses of EBV genomes55 derived from individuals with EBV+ naso-
pharyngeal carcinomas. Of these 31 EBV VUS, there were four VUS that 
were detected at less than 5% pseudobulk in both cohorts. To assess 
whether these four VUS were potentially involved in immune eva-
sion, we assembled all possible peptides for presentation on both 
classes I and II, and then scored these peptides with all of the NFE/EUR 
observed HLA alleles to compute a NetMHC rank score for both the 
wild-type and mutated forms of the peptides. As both the wild-type and 
mutated peptides generally had similar values, and few were near the 
IEDB-validated thresholds (blue dotted lines; Extended Data Fig. 7d,e), 
we suggest that these VUS—if there is an effect—are probably not 
mediated via immune evasion but instead via altered function of the  
viral protein.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The UKB data are available to qualified researchers (http://www.
ukbiobank.ac.uk/register-apply/). The AOU data are available as a 
featured workspace to registered researchers of the AOU Researcher 
Workbench (https://www.researchallofus.org/). Summary statistics 
from the EBV DNAemia discovery GWAS (UKB NFE individuals) are 
available at https://my.locuszoom.org/gwas/409414/?token=6385c9
0400414f34b8ed17679bf1495b and have been uploaded to the GWAS 
catalogue (GCST90572743).

Code availability
The code to reproduce custom analyses in this manuscript is available 
online at https://github.com/clareaulab/ebv_biobank_gwas.
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Extended Data Fig. 1 | Supporting analyses of EBV DNA detected in WGS 
data from UKB. (a) Mappability of the EBV contig in the hg38 reference.  
(b) Characterization of EBV DNAemia rates stratified by EBV seropositive 
antigen number. Overall EBV seropositivity requires 2+ antigens. (c) Partition 
of UKB participants by EBV DNA detection after accounting for biased regions. 
“Biased only” refers to participants with reads mapping only to the two 
repetitive regions indicated in Fig. 1b. “Valid and low count” have EBV DNA 
detected after masking the two biased regions. “DNAemia” exceeds 1.2 EBV 
copies per 104 human cells. (d) Simulated data of a mixture of 10% 0 EBV and 
90% log-normal EBV. The dotted line indicates the threshold for data censoring. 
(e) Result of data censoring on simulated data. (f) Empirical distribution of 
observed EBV levels. (g) Comparison of donor positivity from simulated and 

observed EBV levels. The threshold of 1.2 EBV copies per 104 human cells was 
chosen in the manuscript. (h) Geographical distribution of participant birth 
location coloured by percent EBV DNAemia, split by UK NUTS2 annotations.  
(i) Percent EBV DNAemia resolved by sex and age in UKB. Statistical test: 
two-sided proportion test comparing sex in the associated age bin. Error  
bars: standard error of the mean. ( j) Percent EBV DNAemia resolved by  
genetic ancestry in UKB. (k) Percent EBV DNAemia resolved by sex and 
immunosuppressive drug use in UKB. Statistical test: two-sided proportion 
test comparing sex in the associated immunosuppressive drug use bin. For 
panels b,i,j,k: center is the mean or point estimate of the proportion; error bars: 
standard error of the mean. Sample size: n = 490,560.
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Extended Data Fig. 2 | Supporting analyses of EBV DNA detected from WGS 
data from AOU. (a) Schematic of AOU chrEBV extraction from blood-based 
WGS. (b) Sum of per-base read coverage of map quality (MAPQ) score ≥30.  
(c) Partition of AOU participants by EBV DNA detection after accounting for 
biased regions, the same as in Extended Data Fig. 1c. (d) Percent EBV DNAemia 
resolved by sex and age in AOU. Statistical test: two-sided proportion test. 
Error bars: standard error of the mean. (e) Percent EBV DNAemia resolved by 

genetic ancestry in AOU. (f) Percent EBV DNAemia resolved by sex and 
immunosuppressive drug use in AOU. Statistical test: two-sided proportion 
test comparing sex in the associated immunosuppressive drug use bin. Error 
bars: standard error of the mean. For panels c,d,e,f: center is the mean or point 
estimate of the proportion; error bars: standard error of the mean. Sample size: 
n = 245,394. The silhouettes in panel a were adapted from ref. 19, Springer 
Nature Ltd.



Extended Data Fig. 3 | Supporting analyses for phenome-wide associations 
for selected traits. (a) Summary of associations between EBV DNAemia and 
quantitative traits in UKB individuals of broadly non-Finnish European 
(NFE) ancestry. The dashed line represents the phenome-wide significant  
P value threshold (3.3 × 10−6). The y-axis is capped at -log10(P) = 50; all 
associations are plotted (n = 1,931), with those exceeding this threshold plotted 
at 50. Selected traits are highlighted based on biological interest. Statistical 
test: Wald test from logistic regression model (two-sided). (b) Focused 

association summary for two ICD-10 codes. (c) Top UKB neurological 
associations, sorted by effect size (odds ratio; OR). Traits were filtered for a 
minimum of 10 cases and a nominal P < 0.05 (logistic regression; two-sided). 
For (b,c), error bars represent the 95% confidence interval of the OR estimate 
from either cohort. Dotted lines at OR = 1 represent null associations. Center 
measurement represents point estimate. Sample size: n = 426,563 UKB NFE 
individuals; n = 133,578 for AOU European (EUR) ancestry individuals.



Article

Extended Data Fig. 4 | Supporting analyses for NFE genetic association 
studies from UKB. (a) Partitioned heritability enrichment via stratified LD 
score regression. Shown are the 9 genomic features with positive heritability 
enrichment at a nominal P < 0.05. Statistical test: two-sided LD score regression 
full model. Center of bar: point estimate; error bars: standard errors of mean. 

Sample size: summary statistics from 426,563 NFE individuals. (b) Concordant 
effect sizes for non-MHC genome-wide suggestive (P < 1 × 10−5; two-sided 
likelihood ratio test) variants assayed in both the GWAS and ExWAS. 
Comparison: 43 genetic variants associated at P < 1 × 10−5 in both the ExWAS  
and the GWAS.



Extended Data Fig. 5 | Enrichment of EBV DNAemia-associated genetic 
variants in immune populations and pathways. (a) Schematic of human 
hematopoietic differentiation, highlighting 18 populations with fluorescent 
activated cell sorting (FACS)-isolated populations profiled via ATAC-seq. 
Color: accessible chromatin enrichment at genome-wide significant 
non-coding loci. Statistical test: empirical permutation test. (b) UMAP 
embedding of 211,000 peripheral blood mononuclear cells. The broad cell type 

annotation (Azimuth level 2) annotates refined cell types. (c) Summary of EBV 
ExWAS signature stratified by Azimuth L2 cell type, sorted by median score. 
Boxplots: center line, median; box limits, first and third quartiles; whiskers, 
1.5× interquartile range. Sample size: 211,000 cells. (d) Summary of GO 
Biological Processes and (e) KEGG gene set analyses. Top pathways based on 
q value and fold enrichment are annotated.
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Extended Data Fig. 6 | Supporting analyses of HLA-specific and 
antigen-binding associations. (a) Summary of four-digit HLA genotype 
frequencies across both UKB and AOU individuals of NFE/EUR ancestry. The 
Pearson correlation of the allele frequency is noted. (b) Results of allele-level 
regression, showing the Z-statistic of the two-sided Wald test for individual 
HLA class I alleles. (c) Same as (b) but for class II alleles. (d) Annotation of the 
strongest predicted peptide per HLA allele for class I (top) and class II (bottom). 

(e) Schematic of logistic regression analyses to assess peptide presentation/
binding scores as a predictor of EBV DNAemia. (f) Correspondence between 
Z-statistic per allele for regression and permutation statistical models for the 
UKB NFE cohort. The Pearson correlation between Z-statistic of the alleles is 
noted. (g) Same as in (d) but for the AOU EUR cohort.  The silhouette in panel 
e was adapted from ref. 19, Springer Nature Ltd.



Extended Data Fig. 7 | Analyses of genetic variation in the EBV genome.  
(a) Summary of 9 selected variants that discriminate between type 1 and type  
2 EBV strains. The observed allele frequency for the reference contig 
(NC_007605; type I EBV) is plotted, and the corresponding type 2 allele is noted 
in parentheses. (b) The Pearson correlation of the two allele frequencies is 
noted. (c) Characterization of EBV variants of unknown significance (VUS)  

from cohorts of nasopharyngeal carcinoma (NPC) tumors55. All but 4 variants 
were detected at ≥10% in one or both cohorts. (d) Comparison of predicted 
peptide presentation strength for all possible peptides and HLA-A/B/C alleles 
containing one of four VUS from (c). (e) Same as (d) but for class II alleles. For (d) 
and (e), dotted blue lines reflect the weakest epitope nominated by NetMHC 
and confirmed to be bound by IEDB for class I and class II.

https://www.ncbi.nlm.nih.gov/nuccore/NC_007605
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Data collection Reads mapping to the chrEBV contig were extracted for the UKB using samtools v1.17 and for the AoU cohort using GATK v4.2.6. Four-digit 
HLA calls were acquired from the UKB RAP web portal. HLA genotypes for AoU were inferred via T1K v1.0.7. For both cohorts, the underlying 
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Data analysis Downstream analyses were performed using bowtie2 v2.5.1, REGENIE v3.2.4 (AoU) and v3.5 (UKB), plink v1.9 (AoU) and 2.0 (UKB), 
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The UK Biobank data are available to qualified researchers (please refer to the details at http://www.ukbiobank.ac.uk/register-apply/). The All of Us data are 
available as a featured workspace to registered researchers of the All of Us Researcher Workbench (https://www.researchallofus.org/). Summary statistics from the 
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which may impact some of the reporting rates in comparison to what could be observed through random sampling from the 
UK population. Fry et al (10.1093/aje/kwx246). Recruitment of the All of Us Research Program was described in detail in "The 
“All of Us” Research Program", NEJM 2019; briefly individuals were recruited through direct participant enrollment or 
recruitment at one of >340 locations at US healthcare provider organizations or federally qualified community health centers.

Ethics oversight The protocols for UK Biobank are overseen by The UK Biobank Ethics Advisory Committee (EAC), for more information see 
https://www.ukbiobank.ac.uk/ethics/ and https://www.ukbiobank.ac.uk/wp-content/up1oads/2011/05/EGF20082.pdf 
Informed consent for the All of Us participants is conducted in person or through an eConsent platform that includes primary 
consent, HIPAA Authorization for Research EHRs, and Consent for Return of Genomic Results. The protocol was reviewed by 
the Institutional Review Board (IRB) of the All of Us Research Program. The All of Us IRB follows the regulations and guidance 
of the NIH Office for Human Research Protections for all studies, ensuring that the rights and welfare of research participants 
are overseen and protected uniformly.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No pre-determined sample size was calculated for these analyses as analyses were retrospective from large cohorts. The sample sizes for 
genetic and phenotypic associations exceeded 490,000 from the UKB (discovery cohort) and 245,000 from AoU (replication cohort) represent 
the largest cohorts to date to study the genetic basis of EBV (a minimum ~50x increase from any past study), meaning our sample size was 
substantially larger than any published analysis to date. 

Data exclusions No data or individuals with successful generation of genome sequencing data were excluded from these analyses. 

Replication The UK Biobank cohort was used for discovery. The All of Us cohort was used for replication studies. The GWAS and PheWAS results showed 
largely concordant results for variants and phecodes that could be analyzed in both cohorts. For PheWAS, 87 of 141 (62%) significant 
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phecodes in UKB that could be remapped to the AoU phecodes replicated in AoU (P < 0.05; OR directionally concordant with UKB statistics). 
For GWAS, 40,675 variants were genome-wide significant (P < 5×10⁻⁸) in UKB and passed quality control filters in AoU, of which 91.4% were 
replicated in AoU (nominal P < 0.05; OR concordant).

Randomization This study is observational. Randomization was not applicable to this study. 

Blinding This study is observational, using coded de-identified data. Blinding was not applicable to this study
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