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Epstein-Barr virus (EBV) is an endemic herpesvirus implicated in autoimmunity,

cancer and neurological disorders. Although primary infection is often subclinical,
persistent EBVinfection can driveimmune dysregulation and long-term complications.
Despite the ubiquity of infection, the determinants of EBV persistence following
primary exposure remain poorly understood, although human genetic variation
partially contributes to this phenotypic spectrum’~3. Here we demonstrate that
existing whole genome sequencing (WGS) data of human populations can be used to
quantify persistent EBV DNA. Using WGS and health record data from the UK Biobank
(n=490,560) and All of Us (n = 245,394), we uncover reproducible associations
between blood-derived EBV DNA quantifications and respiratory, autoimmune,
neurological and cardiovascular diseases. We evaluate genetic determinants of
persistent EBV DNA via genome association studies, revealing heritability enrichment
inimmune-associated regulatory regions and protein-altering variants in 148 genes.
Single-cell and pathway level analyses of these loci implicate variable antigen
processing as a primary determinant of EBV DNA persistence. Further, relevant gene
programswere enriched in B cells and antigen-presenting cells, consistent with their
rolesinviral reservoir and clearance. Human leukocyte antigen genotyping and
predicted viral epitope presentation affinities implicate major histocompatibility
complex class Il variation as a key modulator of EBV persistence. Together, our
analyses demonstrate how re-analysis of human population-scale WGS data can
elucidate the genetic architecture of viral DNA persistence, aframework generalizable
to the broader human virome*.

In 1964, Anthony Epstein, Yvonne Barr and Burt Achong observed
actively replicating viral particles from Burkitt lymphoma, discov-
ering the virus that now bears their names: the Epstein-Barr virus
(EBV)®. EBV was subsequently recognized as the first known human
oncogenic virus®, the cause of infectious mononucleosis®, and an
agent in developing and exacerbating multiple autoimmune dis-
eases’. Despite these wide-ranging pathogenic roles, EBV infection
is nearly ubiquitous, infecting >90% of adults worldwide, with most
individuals remaining asymptomatic®. EBV primarily transmits via
saliva, infecting oral epithelial cells, spreading to B cells and estab-
lishing persistent infections in the human host that can last for a
lifetime®. Why clinical outcomes of EBV infection—ranging from
asymptomatic infection to severe disease—vary so widely remains
poorly understood. The most severe manifestation, EBV-triggered

cancers, collectively account for 130,000-200,000 annual deaths
worldwide'™. By contrast, immunocompetent individuals may har-
bour latent EBV within peripheral memory B cells, where the virus
expresses a minimal gene program*™, As with other herpesvirus
infections, EBV can reactivate sporadically or in response to acute
stressors or host immunosuppression, resulting in expanded viral
reservoirs and potentially lethal clinical complications™2, This vast
phenotypic spectrum following acute and chronic infection under-
scores extensive individual variability, which can be partially attrib-
uted to host genetic variation' >, However, genetic association studies
of common infections with complex phenotypes such as EBV have
been underpowered owing to small cohort sizes™, motivating new
approachesto study infection, viral persistence and host-phenotype
associations.
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Fig.1|Retrospective quantification of EBVDNA in the UKB. a, Schematic
oftheapproach. WGS libraries from peripheral blood were aligned to the hg38
reference genome, which contains an EBV reference contig (chrEBV). Reads
mappingto chrEBV were extracted for downstream analyses. b, Sum of
per-base read coverage of high-confidence EBV-mapping reads. Two repetitive
regions withinflated coverage are noted inred and purple (following IUPAC
convention:h=A/C/T,y=C/T,m=A/C,r=A/G;subscriptsindicate the number
of repeats). ¢, Association summary of individual-level serostatus and EBV DNA
quantification with variable region masking. Statistical test: two-sided Fisher’s
exact test. Error barsrepresent 95% confidence intervals for the point effect

Beyond its role in human disease, EBV has been instrumental in
advancing human population genetics research. EBV can transform
primary B lymphocytes from healthy individuals into immortalized
lymphoblastoid cell lines (LCLs)™*, critical resources that historically
enabled long-term storage and large-scale genetic studies”. Conse-
quently, immortalized LCLs were the primary material used in the
HapMap'® and 1000 Genomes" projects to profile genetic variation
across the globe. These foundational efforts laid the groundwork for
more expansive population-scale cohorts, such as the UK Biobank
(UKB)Y and All of Us (AOU)*, which include sequencing and phenotypic
datafrom hundreds of thousands of individuals: ascale that caninter-
rogate the genetic underpinnings of complex phenotypes following
infection.

As modern biobanks perform whole genome sequencing (WGS)
on peripheral blood rather than on LCLs, we posited that EBV DNA
reflecting EBV persistence in circulating cells could be captured and
quantified in these libraries. Building on recent work that quantifies
viralnucleicacids in petabyte-scale datasets toinfer host-virusinterac-
tions retrospectively’*, we sought to develop a scalable computational
pipeline to estimate individual-level EBV DNA loads. By leveraging
the inclusion of the EBV genome as a contig in the human reference
genome, we demonstrate how ordinarily excluded sequencing reads
canbereanalysedto create anew molecular feature for genome-wide
and phenome-wide association studies at petabase-scale.

Biobank WGS data harbour EBV DNA

Toaddressthe high levels of EBV DNA presentin the LCL-derived librar-
ies—including those used in foundational efforts such as the 1000
Genomes Project—the EBV genome (chrEBV, NC_007605) was incor-
porated into the human reference genome assembly (as of hg38).
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donors ranked per 10,000 human cells

estimate (centre dot).d, Summary of EBV DNA detection with serostatus of
22infectious agents. Statistical test: two-sided Fisher’s exact test. HHV-6

was partitioned into strains HHV-6A and HHV-6B. e, Empirical cumulative
distribution of detected EBV DNA across the entire cohort (85.7% of individuals
had nodetectable (n.d.) EBVDNA; 0.3% had EBV DNA at acopy number of 1+ EBV
genome per1,000 human cells). f, Top 100 individuals on the basis of EBV DNA
copy number, from the circled populationine.g, Association between EBV
seropositivity and EBV DNA detection thresholds at variable levels. Statistical
test: two-sided Fisher’s exact test. Sample size of full UKB cohort: n=490,560.
Theimagesinpanelawere adapted fromref.19, Springer Nature Ltd.

This alternative contig was designated as a sink for viral nucleic acids
toimprove variant calling and interpretation in the human genome?.
We hypothesized that reads mapping to this contig from blood-derived
WGS data would reflect persistence of EBV DNA following a primary
infection. We thus extracted all sequencing reads from the aligned .
cram files that mapped to chrEBV, enabling a quantification of the
per-individual, per-base EBV DNA coverage across 490,560 individuals
in the UKB (Fig. 1a,b). In addition to regions with low coverage cor-
responding to poor mappability, we identified two distinct loci with
disproportionately high read depths, which corresponded to repeti-
tive sequences (Fig. 1b and Methods). As these regions were covered at
levels that were orders of magnitude higher than the median coverage
of the viral contig, we reasoned that they would confound EBV DNA
quantification. As an orthogonal measure of past infection, we used
EBV serostatus ascertained on a subset of 9,687 individuals from the
UKB, noting that EBV seropositivity requires sufficient antibody titres
for at least two of four EBV antigens. We observed a nominal associa-
tion between presence of EBV DNA and seropositivity when includ-
ing these two repetitive regions (Fisher’s exact test odds ratio=1.2,
P=0.03; Fig.1cand Methods); however, discarding these two repetitive
regions revealed that >40% of the UKB cohort only had aligned reads in
theseregions, and masking these regions before binarizing individuals
resulted in a markedly stronger association (Fisher’s exact test odds
ratio =14.6, P=1.7 x 107%; Fig. 1c). The next strongest association of
detected EBV DNA with serostatus was for human immunodeficiency
virus (HIV) 1 (Fisher’s exact test odds ratio = 4.6, P=0.0023), consistent
withreports of EBV DNA detection in blood following immunosup-
pression due to HIV# (Fig.1d). Taken together, our sequencing-based
approachreadily scales to hundreds of thousands of individuals: amore
thanal00-fold increase in sample size compared with serology-based
association studies®.
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Fig.2|EBVDNAis abiomarker of complex traits.a, Summary of associations
between EBV DNAemiaand binary phenotypictraitsin the UKB, with individuals
of broadly NFE ancestry. The horizontal dashed line represents the phenome-
wide significant P-value threshold (3.3 x10°%). The y axis is capped at

-log,,(P) =50, with those exceeding this threshold plotted at 50. Union
phenotypesare plotted to reduce redundancy. Selected traits are highlighted

To further interpret our metric, we estimated the EBV DNA copy
number per 1,000 cells by normalizing read counts between viral
and host genome sizes. At the extremes of the distribution, 85.7%
ofindividuals had no detectable bias-corrected EBV DNA, whereas
0.3% exhibited EBV DNA copy numbers of at least one viral genome
per 1,000 human cells, including one individual with at least one EBV
genome per 100 human cells (Fig. 1e,f). This range—which is derived
from predominantly healthy individuals—is consistent with past quan-
titative polymerase chain reaction (QPCR)-based measurements of
EBV DNA copy numbersin healthy populations, which reported upper
ranges of one copy per 200 cells*® (Methods). Using serostatus as a
ground truth and accounting for standard covariates, a cutoff of 1.2
viralgenomes per 10* human cells yielded the strongest concordance
with seropositivity (odds ratio = 82.2, P=2.2 x10™), noting that all
donors with detectable EBV DNA had at least one positive response
against the four tested EBV antigens (Fig. 1g, Extended Data Fig.1band
Methods). We classified 47,452 (9.7%) individuals with EBV DNAemia
(defined as detectable EBV DNA levels >1.2 genomes per 10* cells) for
subsequent analyses (Extended DataFig.1c). Asthe proportion of indi-
viduals with EBV DNAemia (9.7%) is lower than the seropositivity rate
(>90%) in the UKB, we interpret our metric as capturing the subset of
individuals with the highest levels of circulating EBV DNA at the time
of WGS sampling. Indeed, simulated data from a censored log-normal
distribution of per-person EBV DNA levels closely approximated the
empirical distribution (Extended Data Fig. 1d-g and Methods).

Next, we sought to better understand the profile of individuals with
EBV DNAemiainthe UKB cohort (Supplementary Table 1). Annotating
eachindividual by birth location, we observed a higher proportion of
EBV DNAemia in individuals born in more northern latitudes in the
UK, consistent with previous reports of increased EBV infection fur-
ther from the equator® (Extended Data Fig. 1h). We also observed a
sex-biased (higherin male) and age-associated increasein EBV DNAemia
rates, the latter consistent with EBV serology (Extended Data Fig. 1i).
EBV DNAemia rates also differed among genetic ancestries and had
amodest increase among individuals taking immunosuppressive
medications (Extended Data Fig. 1j,k and Supplementary Table 2). We
performed parallel analysesin the AOU cohort, spanning 245,394 indi-
viduals with blood-derived WGS (Extended Data Fig. 2aand Methods).
Results fromtheindependentanalyses of AOUreplicated key attributes

based onbiologicalinterest. Statistical test: Wald test from logistic regression
model (two-sided). b, Effect sizes for matching ICD-10 codes between the
UKBand AOU, with individuals of Europeanancestry in AOU. Dotted lines at
oddsratio =1represent null associations. Sample size:n = 426,563 UKB NFE
individuals; n=133,578 for AOU European ancestry individuals. The colours
arethesameasina.

of the UKB data, including a clear repetitive region that was similarly
masked, yielding 11.9% of individuals with EBV DNAemia and consist-
ent associations with age, sex, genetic ancestry and prescription of
immunosuppressive drugs (Extended Data Fig. 2b-f).

As primary EBV infection occurs earlier in life*>, we hypothesized
that donors with EBV DNAemia probably reflected a previous infection
that persisted until sampling. Conversely, lytic herpesvirus infection
would be concomitant withviral transcription, including in peripheral
blood" ", As the UKB and AOU collected DNA but not RNA-seq data,
we reprocessed bulk and single-cell RNA-seq from the OneK1K?® and
Genotype-Tissue Expression® consortia to assess for EBV transcription
in peripheral blood cells (Supplementary Note 1and Supplementary
Fig.1a,f). Across these 1,663 donors, we detected minimal evidence of
EBV transcripts, suggesting that the vast majority of blood-derived EBV
DNA from our cohorts probably reflects latent infection, whichis con-
cordant with thelack of EBV lytic reactivation gene expression detected
in peripheral B cells of healthy individuals®® (Supplementary Note 1
and Supplementary Fig. 1c,g). Furthermore, analysed saliva-derived
WGS samples for another set of 48,899 AOU participants showed a
markedly higher rate of EBV DNAemia (50.9%), reflecting a distinct
environmental and cellular reservoir for EBV (Supplementary Note 2
and Supplementary Fig.2a-d). Together, our findings demonstrate that
EBV DNA can be retrospectively quantified from existing large-scale
WGS datasets with reproducible signals, including sequences collected
from different anatomical sites.

Associations with complex traits

Next, we investigated whether our WGS-enabled measure of EBV
DNAemia could serve as a biomarker of complex disease. To assess
this, we performed a phenome-wide association study (PheWAS) to
map systematic outcomes catalogued via International Classifica-
tion of Diseases, 10th revision (ICD-10) codes with EBV DNAemia as
an exposure (Methods). Using individuals from the UKB of predomi-
nantly non-Finnish European (NFE) genetic ancestry (n =426,563) asa
discovery cohort, we tested for the association between EBV DNAemia
and 13,290 binary phenotypes as well as 1,931 quantitative pheno-
types, following our previously described PheWAS workflow? (Sup-
plementary Table 3 and Methods). Among binary traits, we observed
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271significant (P <3.3 x107%) ICD-10 codes, including well-established
associations with splenic diseases and Hodgkin lymphoma. We
also observed significant associations with rheumatoid arthritis",
chronic obstructive pulmonary disease (COPD*°) and systemic lupus
erythematosus?®, each of which has been previously associated with
EBV using orthogonal approaches (Fig. 2a). Past case studies have anec-
dotally reported associations between EBV infection and various con-
ditionsinsmall-scale studies relative to our population-scale cohorts.
Our analyses reinforced evidence for these relationships, including
chronic ischemic heart disease (odds ratio =1.19, P=2.8 x107%%),
acute kidney failure (odds ratio =1.21, P=1.4 x 10), depressive epi-
sodes (odds ratio =1.19, P=4.0 x 1072®) and stroke (odds ratio =1.20,
P=6.1x107). We emphasize that these associations may alsoreflect a
general state ofimmunosuppression, and additional workis required
to determine which of these associations are causal rather than
correlational.

Statistically significant quantitative associations (n =156) included
leukocyte count, neutrophil percentage, smoking pack years, tel-
omere length and compositions of omega-3 fatty acids, consistent
with previous observations of lipogenesis induction following EBV
infection® (Extended Data Fig. 3a). We also detected an association
withmalaise and fatigue (odds ratio = 1.27, P=2.06 x 107°), noting that
EBV has long been hypothesized as a risk factor for myalgic encepha-
lomyelitis/chronic fatigue syndrome (ME/CFS)*. We also identified
significant associations with decreased levels of phosphatidylcho-
line (P=2.9 x107) and total choline (P=5.9 x 107°), consistent with
metabolic studies in patients with ME/CFS®, Our results reinforce a
potential relationship between EBV and ME/CFS that warrants further
examination.

We sought to replicate these associations using the AOU cohort
(Fig.2b). Asthe underlying electronic healthrecord data vary between
cohorts, we focused on 141 significantly associated ICD-10 codes in
the UKB that had sufficient representation in AOU (minimum n =24
cases). Of these, 87 (62%) were replicated in AOU (P < 0.05; odds ratio
directionally concordant with UKB statistics), resultingin a set of traits
that we examined more closely (Methods, Supplementary Table 3 and
Supplementary Note 3). These phenotypes included rheumatoid arthri-
tis, COPD and lung neoplasms, as well as less-established phenotypes
suchasperipheral vascular disease, emphysema and tachycardia, some
of which may be attributable to the association between smoking and
EBV reactivation. We also considered two traits that were previously
linked to EBV but were not significant in either cohort (Methods and
Extended Data Fig. 3b). For multiple sclerosis, we observed nominal
associations that did not survive multiple testing corrections (UKB,
oddsratio=2.1,P=0.019; AOU, odds ratio = 0.73, P= 0.0087), consist-
entwithapast reportthat did not detect asignificant association using
ICD-based viral exposure measures**. For gammaherpesviral mono-
nucleosis, a primary manifestation of EBV infection, the association
was in the expected direction (UKB, odds ratio = 2.55, P=0.23; AOU,
oddsratio =5.86, P=1.1x107°) but underpowered owing to low sample
sizes (n=11inthe UKB, n =42in AOU), noting infectious mononucleosis
primarily affects younger individuals.

Inadditionto phenotypes that replicated between cohorts, we noted
instances of neurological conditions that were nominally associated
with EBV DNAemia in the UKB but lacked sufficient case numbers to
be assessed in AOU (P < 0.05; Extended Data Fig. 3¢). These included
all-cause dementia (oddsratio =1.16, P= 6.0 x 107%); rarer phenotypes
such as neuromyelitis optica, whichis arare autoimmune disease with
similar clinical presentation as multiple sclerosis (odds ratio = 6.31,
P=2.7x107%);and acute disseminated demyelination (odds ratio = 6.31,
P=5.3x107). Although further work is required to implicate the role
of EBVinthese phenotypes, our scalable approach enables systematic
association studies across a broad range of conditions, including rare
diseases for which very large cohorts such as the UKB and AOU are
essential.
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Genetic variation underlies EBV DNAemia

Past studies have established that manifestations of viral infections are
apolygenictrait controlled by dozens of lociin the human genome',
Hence, we reasoned that genetic variation would similarly influence
the variable degree of EBV persistence across the population. We thus
conducted a genome-wide association study (GWAS) on individuals
of NFE ancestry (-94% of the UKB cohort) to identify loci associated
with EBV DNAemia (Methods). Using array-based genotype data fol-
lowed by imputation from 426,563 NFE individuals in the UKB, we
identified 22 independent loci associated with EBV DNAemia that
reached genome-wide significance (P <5 x 107%; Fig. 3a, Methods and
Supplementary Table 4). Overall, the single nucleotide polymorphism
(SNP)-based heritability (h%) determined by LDscore regression (LDSC)
was 2.21% (+ 0.85%) with limited evidence of genomicinflation (A;c = 1.1;
LDSCintercept =1.03 + 0.008; Supplementary Note 4). Partitioned her-
itability analyses showed an enrichment at conserved and non-coding
loci marked by enhancer and super-enhancer annotations (Extended
Data Fig. 4a), consistent with other complex trait associations™®.

The strongest associations emerged near human leukocyte antigen
(HLA) genes on chromosome 6 that encode the major histocompat-
ibility complex (MHC) class Iand Il proteins (Fig. 3a). Major histocom-
patibility complex molecules are critical in differentiating between
self and non-self proteins and have been widely associated with auto-
immune traits'>*. We conducted an exome-wide association study
(EXWAS), whichincluded protein-coding variants observed at least six
times (that is, witha minor allele count of greater than five) in the NFE
cohort?, to refine association signals at the MHC and other associated
loci (Methods). Associations at alleles assayed by either technology
were concordant (Extended Data Fig. 4b). Among the 1,102 variants
significantly associated with EBV DNAemia (P <5 x 1078, cases > 20),
686 were missense variants spanning 148 genes. These missense vari-
ants facilitated the annotation of putative causal variants at 9 of the
22implicatedloci (Fig.3a, Methods and Supplementary Table 4). Con-
sistent with our GWAS results, the protein-coding variants with the
largest effect sizes were near the MHC locus, where 148 MHC class |,
113MHC class Iland 7 non-classical HLA protein-altering variants were
significantly associated with EBV DNAemia (Fig. 3b).

We used the AOU cohort to replicate the biological plausibility and
pleiotropy of genetic associations in the UKB. Repeating our GWAS
framework on n=131,938 people with European (EUR) ancestry in
AOU for12,099,305 common variants (1% minor allele frequency), we
observed concordant associations atimplicated loci. Globally, 40,675
variants were genome-wide significant (P <5 x 1078) in the UKB and
passed quality control filters in AOU, noting that many were from the
HLA region. Of these genome-wide significant variants, 91.4% of vari-
ants were replicated in the AOU GWAS (nominal P < 0.05; odds ratio
concordant; Fig. 3c). Further, 12 of the 19 (63%) assayed index GWAS
variants replicated in the AOU GWAS (nominal P < 0.05, odds ratio
directionally concordant; Supplementary Table 4). These included
locinear well-established immune-regulatory genes, including CTLA4,
EOMES, LNPEP, PTPN22 and SLAMF7 (Supplementary Note 4 and Sup-
plementary Fig. 3c-f). Although these analyses primarily focused on
individuals of European ancestry, additional meta-analyses from the
diverse ancestries of the UKB and AOU revealed an additional 23 loci
surpassing genome-wide significance, including variants near B/IM,
GSDMB, TERT, BCL11A, MYCand CD160 (Supplementary Note 5and Sup-
plementary Fig. 4a,b). Together, our results indicate that persistence
of EBV DNA is a polygenic trait that can be quantified from multiple
population-scale WGS datasets, and loci underlying EBV DNAemia are
reproducible across continents.

Given the well-described associations between EBV and immune-
mediated phenotypes, we sought to systematically evaluate simi-
larities between the genomic architectures of EBV DNAemia and
immune-mediated diseases (IMDs). We used cupcake®, a framework
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Fig.3|Geneticarchitecture of EBVDNAemia.a, Manhattan plot summarizing
the genome-wide association statistics for EBV DNAemia for 426,563 individuals
of predominantly NFE ancestry in the UKB. Genes proximal to genome-wide
significantassociations (P<5x107%) are annotated. Statistical test: likelihood
ratiotest fromlogistic regression model (two-sided). b, Summary of protein-
altering variantsin HLA genes. ¢, Replication of UKB-associated variantsin the

thataccounts for the shared components of non-HLA genetic architec-
tureacross 13 IMDs using ashrinkage approach to adjust for linkage dis-
equilibrium, allele frequency and differential sample size via principal
componentanalysis (PCA), where principal component (PC)1 captures
an IMD genetic axis characterized by autoantibody seropositivity>®.
Consistent with our PheWAS and past reports of EBV pathogenesis,
we observed a cupcake PClscore that reflects ashared component of
geneticarchitecture between EBV DNAemia and autoimmune diseases
such as rheumatoid arthritis, systemic lupus erythematosus and T1ID
fromboththe UKB (P=1.3 x10°) and AOU (P =4.8 x 107; Fig. 3d). Noting
thatinitial EBV infections are most prevalentin adolescence? and gener-
ally precede onset of autoimmunity®, our datarefine a potential model
in which a component of genetic architecture shared by seropositive
IMDs may first determine the persistence of EBV after primary infec-
tion that, in turn, may trigger complications characteristic of disease.

Asacontrastto our blood-derived EBV DNAemia biomarker, we con-
ducted analogous genome-wide analyses of binarized EBV serology
(seropositivity) from the UKB** and saliva-derived EBV DNAemia from
AOU, Serostatus from 8,669 individuals of NFE ancestry resulted in
zero genome-wide significantloci (Supplementary Note 5 and Supple-
mentary Fig.4c). Furthermore, although we observed markedly higher
levels of EBV DNA in AOU saliva WGS samples, including 51% DNAemia
in32,745salivaEUR ancestry donors, the only genome-wide significant
association for these individuals under three different candidate mod-
els was at the MHC locus (Supplementary Note 2 and Supplementary
Fig. 2f,g). We attribute the disparity in the number of significant loci

erythematosus

AOU European ancestry cohort. The Pearson correlation coefficient of variant
effectsizesis noted.d, PCA and projection of EBV summary statistics on
compleximmune-mediated diseases viacupcake®. An asterisk indicates a
significant PC projection score after multiple testing correction. Statistical
test: Z-test (two-sided).

to the underlying biology of EBV DNAemia in peripheral blood, dis-
tinct from the site of transmission®. Whereas EBV serostatus reflects
ahistory of any pastinfection, whichislargely independent of genetic
variation, EBV DNAemia identifies the subset of infected individuals
with the highest levels of persistent viral DNA.

Cell type and pathway level analyses

To further evaluate the role of EBV DNAemia-associated immuno-
modulatory genes, we examined the expression of the 148 genes
that harboured at least one significant EXWAS variant as a signature
score in a multi-modal dataset of 211,000 human peripheral blood
mononuclear cells (PBMCs)* (Fig. 4a). As expected, the EBV signature
score was enriched in B cells, consistent with the known viral tropism
of EBV infection and latency®’ (Fig. 4b,c). This enrichment was cor-
roborated in the non-coding genome, as genome-wide significant
variants were enriched in B cell-specific accessible chromatin from
fluorescent-activated cell-sorting-isolated populations profiled via
the Assay for Transposase Accessible Chromatin using sequencing*
(ATAC-seq; Extended Data Fig. 5a and Methods). We also observed a
similar enrichmentin subsets of antigen-presenting cells, particularly
conventional dendritic cells (Extended Data Fig. 5b,c), although den-
dritic cells are most likely not directly infected by EBV*:. To resolve the
potential biological processes linked to this genetic architecture, we
performed gene set analyses using the Gene Ontology biological pro-
cesses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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Fig.4 | EBVDNAemiagene associations at celland pathway resolutions.

a, Uniform manifold approximation and projection (UMAP) embedding of
211,000 PBMCs. The broad cell type label (Azimuth L1; ref. 41) annotates major
populations. NK, naturalkiller; cDC, conventional dendritic cells. b, Module
score of EBV EXWAS associations, highlighting populations with the highest
enrichment. c, Summary of EBV EXWAS scores in major populations.
***Indicates statistical significance (P< 2.2 x 10 " relative to held-out cell

analyses. Among the Gene Ontology biological-process-enriched
terms, the top pathways involved antigen processing and presenta-
tion, MHC protein complex and assembly, and regulation of T cells
(Fig. 4d, Extended Data Fig. 5d and Supplementary Table 5). From the
KEGG enrichments, we observed disease-associated annotations that
included viral myocarditis, rheumatoid arthritis, herpes simplex virus
1 (HSV-1) infection and, reassuringly, EBV infection (Extended Data
Fig.5e). Asthe strong linkage disequilibrium on chromosome 6 could
drivethis association, we refined these enrichments by further remov-
ing allHLA-associated genes or all genes on chromosome 6 (Methods).
Regardless, antigen processing and presentation remained the most
enriched term in our Gene Ontology biological processes analyses,
underscoringthe critical role of this pathway in controlling viral infec-
tion and clearance (Fig. 4e,f). Together, these analyses indicate that
B cellsand antigen-presenting cells are the primary cell types affected
by the genetic architecture of EBV DNAemia, with viral antigen process-
ing and presentation predominantly influencing the emergence and
persistence of EBV DNA, a characterization consistent with the known
roles of these immune cells in regulating herpesvirus infections.

HLA-EBYV peptide binding predictions
AlthoughtheHLAlocusis pervasivelyassociated withimmune-mediated
complextraits, these associations are challenging to resolve owing to
allelic diversity, heterogeneity between human populations and lack of
well-estimated (auto-) antigens that can mediate complex trait manifes-
tation®. In our setting, the EBV proteome defines the set of candidate
antigens variably presented by these alleles that would, in turn, vari-
ably yield EBV DNAemia. Hence, we reasoned that explicit modelling
of HLA variation could refine our understanding of genetic variation
underlying viral persistence.

To assess this, we first assembled four-digit HLA alleles across all
donorsinthe UKB and AOU with NFE or EUR ancestry (Extended Data

6 | Nature | www.nature.com

Enrichment z-score

T T
10 15
Enrichment z-score

1‘0 20 0 5
types; P-value threshold reflects machine precision; one-sided Wilcoxon
rank-sumtest; n=211,000 cells). Boxplots: centre line, median; box limits, first
and third quartiles; whiskers, 1.5x interquartile range.d, Summary of the top
five enriched Gene Ontology biological process termsidentified by gene set
enrichmentanalysis of EBV DNAemia-associated genes. e, Same as d except
excludingannotated HLA genes. f, Same as d but excluding all genes mapping
tochromosome 6.

Fig. 6a and Methods). Using these per-donor genotypes and similar
covariates to our GWAS, we performed a multivariate regression to
assess whether each HLA allele was associated with variable rates of
EBV DNAemia (Methods). We identified a total of 42 associated HLA
alleles, including 18 class Iand 24 class Il alleles (nominal P< 0.05inboth
cohorts; Extended DataFig. 6b,c, Supplementary Table 6 and Methods).
One of the strongest risk alleles for EBV DNAemia was HLA-A*03:01
(UKB, P=0.0060; A0OU, P=9.63 x 107%), previously linked with increased
risk of multiple sclerosis**. Conversely, a protective allele against EBV
DNAemia, HLA-DRB1*12:01 (UKB, P= 4.6 x 1078 AOU,P=3.9 x10™), has
been associated with less severe multiple sclerosis*’. We also observed
two other negatively associated HLA alleles, HLA-B*35:01 (UKB,
P=1.3x10"%;A0U,P=2.6 x107®) and HLA-B*55:01 (UKB, P=7.3 x10™%;
AOU, P=2.8 x10™), that present known immunodominant epitopes
from the EBV proteome***. These results collectively suggest that
strong peptide presentation may underlie decreased EBV DNAemia.
Motivated by these findings, we hypothesized that systematic predic-
tions of EBV peptide display and processing could further characterize
variationin population-level EBV DNAemia. We used NetMHC (NetMH-
Cpan and NetMHClIpan)*® to infer the binding affinity of all potential
EBV epitopesinthe viral proteome with allHLA alleles observed in the
UKB NFE cohort (Fig. 5aand Methods). Following past works in which
candidate singularimmunodominant epitopes were prioritized*>*,
we summarized the top-ranking peptide per allele from NetMHC for
both class I and Il alleles. The top-predicted epitopes prioritized by
NetMHC were corroborated by previously identified EBV antigens in
the Immune Epitope Database (IEDB)*, including 9 of 83 (10.8%) class
I peptides and 7 of 110 (6.4%) class Il peptides (Fig. 5b, Extended Data
Fig.6d and Supplementary Table 7). These overlaps were significantly
enriched over arandom set of peptides for both class 1 (P=3.5x107%;
binomial test) and class 11 (P = 0.047; binomial test), verifying the capac-
ity for NetMHC to predict viral peptide processing and presentation
across HLA alleles. We also observed that predicted immunodominant
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peptides were depleted in latency-associated EBV genes specifically
for MHC class [ peptides, reflecting potential viral evolution to evade
host immunity during latency** (Fig. 5¢).

Recent work has shown that aggregation of immunodominant
epitopes of the NetMHC scores via a harmonic mean of the best
ranked peptide (HBR) is predictive of immune response, including to
neoantigens in tumours***°, We reasoned that analogous measures
could predict theimmune processing and recognition of viral epitopes
and therefore summarized the per-person, per-allele HBR for class |
and Il MHC (Fig. 5d). We developed two heuristics to assess the abi-
lity of these HBR scores in predicting EBV DNAemia, using both a
permutation-based and regression-based framework (Methods). We
compared the mean difference in HBR for individuals with and without
EBV DNAemia for 100 permutations. For class I presentation, HLA-A
(P=8.3x10"%) and HLA-B (P=0.046), but not HLA-C (P= 0.40), were
associated withindividual persistence of EBV DNA (Fig. 5e). Conversely,
for class Il presentation, each allele was strongly associated (HLA-DP,
P=3.0x107"% HLA-DQ, P=3.8 x10™*; HLA-DR, P=3.9 x107%), con-
sistent with the role of CD4-mediated immunity of viral infections
via class Il antigen presentation by B cells and dendritic cells*>. These
enrichments were concordant with identical analysesinthe AOU EUR
cohort (Fig. 5e). An orthogonal statistical regression framework that
accounted for potential confounders, including the full HLA haplotype
perindividual, produced concordantresults (Extended Data Fig. 6e-g
and Methods). Together, these results demonstrate that computational
modelling of interactions between host alleles and the viral proteome
is predictive of the incidence of EBV DNAemia and support a model
where individual genetic variation, predominantly in MHC class II,
controls EBV DNA persistence in blood (Fig. 5f).

Genetic diversity in EBV genomes

Alongstanding hypothesis is that genetic variation in EBV genomes
could explain the diversity in host responses ranging from tolerance
to pathogenesis®*. However, recent reports have shown that variantsin

forthe four gene classes tested. Statistical test: two-sided Fisher’s exact test.
d,Schematic of HBR per HLA allele, which is used as input for downstream
analyses. e, Summary of the change in comparingindividuals with and
without EBV DNAemia. Pvalues are the result of apermutation test (n =100
permutations; two-sided). f, Overview of aninferred model of antigen
processingand presentation viaMHC, resulting in persistence or clearance
of EBVDNA following infection. Theimagesin panelsd,fwere adapted from
ref.19, Springer Nature Ltd.

EBV previously attributed to oncogenicity were more closely tied to geo-
graphic origin than functional variation®. Distinguishing geographic
structure from true oncogenic potential is critical, as EBV-driven
tumours display pronounced regional enrichments, including naso-
pharyngeal carcinoma (NPC), which is prevalent in southeast China,
northern Africa and other regions in southern Asia. We reasoned that
our composite measure of the circulating genetic variation of EBV in
ostensibly healthy individuals could stratify functional EBV variants
of unknown significance (VUS) in tumour samples (Methods). After
verifying reproducible viral genetic variation in both biobanks, we
examined 31 previously reported EBV protein-altering mutations from
patients with NPC ** (Extended Data Fig. 7a,b, Supplementary Note 6
and Methods). We annotated these VUS on the basis of our observed
EBVallele frequenciesin the UKB and AOU. Notably, all but four variants
were detected in one or both cohorts at an allele frequency of >10%
(Extended DataFig.7c and Supplementary Table 8). The other 27 vari-
ants previously detected in NPC genomes are unlikely to be sufficient
for pathogenesis, based on their prevalencein healthy individualsinthe
UKand USA. Hence, these 27 VUS probably either reflect geographical
drift or require an epistatic effect for driving malignancy. When assess-
ing the four VUS exceptions, our viral proteome NetMHC workflow
suggested that these four VUS are unlikely to alter peptide presentation
(or thereby enable immune evasion), indicating that these variants, if
indeed functional, may modulate viral-intrinsic functions (Extended
Data Fig. 7d,e and Methods). In total, our approach of synthesizing
pieces of viral genomes from excluded WGS reads of hundreds of thou-
sands of individuals provides analternative to low-throughput ampli-
fication and sequencing of healthy control individuals®* to resolve
potential functional variation in the EBV genome.

Discussion

The exponential rise in population-scale sequencing has transformed
our understanding of the genetic determinants of complex pheno-
types®. Although these biobanking efforts were originally genotyped
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using DNA microarrays, more recent exome and whole-genome
sequencing cohorts have discovered a diversity of rare genetic vari-
ants underlying complex traits'”?, Here we show that these same
large-scale sequencing libraries contain sufficient EBV nucleic acid
content to derive anew molecular biomarker, once corrected for low
complexity and biased regions. Our analyses show that host genetic
variation significantly contributes to the persistence of EBV DNA fol-
lowinginfection, whichinturn associates with avariety of both known
and speculated phenotypic outcomes. Beyond confirming established
associations between EBV and respiratory and autoimmune diseases,
analyses of EBV DNAemianominated various neurological indications,
including rare conditions that have been anecdotally tied to EBV infec-
tionin past work. Further, we characterize EBV DNAemiaas a polygenic
trait regulated by genetic loci affecting antigen presentation, as well as
bothadaptive andinnateimmunessignalling. We also identify individual
HLA alleles linked to heterogeneous autoimmune diseases that modu-
late risk of EBV DNAemia, observing an overall trend where predicted
viral peptide presentation strength was negatively correlated with viral
persistence. Finally, the aggregate of viral-derived WGS reads reflected
the circulating EBV strains, enabling studies that contrast the compo-
sition of viral heterogeneity across population-scale cohorts. Collec-
tively, our framework extends evaluations of endogenous HHV-6 that
have nominated loci in linkage with germline integration®, whereas
our analyses reveal that acquisition of viral DNA over alifetimeis a trait
subject to genetic regulation at the population level.

Despite >90% EBV seropositivity among adultsin the UKand USA, we
identify a distinct population of 9.7-11.9% of individuals with detect-
able EBV DNA in peripheral blood, suggesting that past infection is
necessary but not sufficient for EBV DNAemia. Instead, simulations
imply that the EBV DNAemia populationreflects a tail of exposed indi-
viduals with the highest EBV DNA levels. We hypothesize that othersin
these cohorts are carriers of EBV DNA from past infections, but at levels
below our limit of detection. Further, as viral DNA levels can fluctuate
longitudinally®’, these WGS measurements represent a snapshot of a
complex process that marked individuals with potentially transiently
high levels of EBV DNA.

Ourwork provides ascalable framework for repurposing population-
scale WGS to define genetic determinants of viral persistence. Although
thisstudy focused on EBVin cohorts from the UKand USA, our approach
may extend to a broad range of viruses including phages and eukary-
otic viruses that comprise the human virome worldwide, including
viral species from the Polyomaviridae, Adenoviridae, Parvoviridae and
Anelloviridaefamilies. Alimitation of blood-derived WGSis thatit only
detects pathogens that persist in the peripheral circulation. Charac-
terizing host responses for other pathogens, including RNA viruses,
will require cohorts that integrate DNA- and RNA-sequencing across
diverse anatomicsites. Equallyimportant will be expanding large-scale
sequencing to geographicregions with variable persistent viruses, ena-
bling representation of viral diversity thatis currently under-sampled.
Together, these current and future efforts will yield a tissue-resolved
map of viral reservoirs and infection while clarifying how human genetic
diversity shapes lifelong interactions with our viromes.
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Methods

Rationale of EBV detection

The171,823-nucleotide EBV genome (NC_007605.1) was firstincluded
in December 2013 (hg38 version GCA_000001405.15) as a sink for
off-target reads that are often present in sequencing libraries, to
account for pervasive EBV reads present from the immortalization
of LCLs (as with the 1000 Genomes Project and related consortia).
Importantly, WGS in the UKB and AOU consortia was performed on
wholeblood®*, reflecting that EBV reads detected would derive from
viral DNA from past infections.

WGS data and cohort analyses in the UKB

For the UKB, we obtained per-base abundance of EBV DNA of the
490,560 WGS libraries by extracting reads aligning to chrEBV in the
hg38 human genome reference that had a read mapping quality
(MAPQ) =30 (q30) via the SAMtools view command®. To quantify
EBV DNA abundance for each position, we summed the coverage of
eachbaseinthe EBV genomeacrossall libraries (per-base abundance).
The resulting coverage across the viral contig was approximately flat,
supporting that EBV DNA detection from WGS reads was real viral DNA,
with two key exceptions (Fig. 1b). First, a total of 27,692 positions had
low to no coverage (per-base abundance <10) due to low mappability
of the EBV contig. Second, two regions (positions 36,390-36,514 and
95,997-96,037) had orders-of-magnitude higher coverage (per-base
abundance of >10° at these 166 positions). On further examination,
the sequences were highly repetitive. Hence, we reasoned that these
two regions may confound EBV DNA quantification. To assess this, we
calculated EBVDNA abundance per person before and after masking,
by summing MAPQ > 30 coverage either across all/=171,823 bases, or
onlyacross the remaining/’ = 143,965 well-covered bases (10 < per-base
abundance < 10*for eachbase). The per-individual EBV sum unmasked
was computed over all/bases, whereas the masking was performed
over/ bases.

We then used a two-sided Fisher’s exact test to test for association
between EBV DNA presence (EBV DNA coverage > 0) and EBV serostatus,
recordedinthe UKB as ‘EBV seropositivity for Epstein-Barr Virus’ (data
field 23053). Before masking, EBV DNA presence had aweak but insig-
nificant positive association with EBV seropositivity (odds ratio=1.2,
P=0.03). Conversely, after masking these repetitive regions and rec-
omputing donor detection status, the association between EBY DNA
detection and seropositivity was much stronger (odds ratio =14.6,
P=1.7 x107%) (Fig. 1c). These analyses demonstrate that masking highly
repetitive regionsin the viral contigis required to performvalid infer-
ences fromwhole genome sequencing data, as evidenced by statistical
overlap with EBV serostatus.

Contig mappability analyses

To confirm that regions of the EBV contig that were not detected
were attributable to poor mapping quality of those regions, we gen-
erated synthetic reads of length 101 bases by tiling the reference EBV
contig. Next, each synthetic read was aligned using bowtie2 v.2.5.1
(ref. 62). We define mappability as the percentage of reads overlapping
aposition witha map quality score exceeding ten. This analysis repro-
duced regions depleted from the pseudobulk abundance (Extended
DataFig.1a), indicating that low detection in these regions was due to
homology in the hg38 reference rather than variable DNA presence
from past infection.

EBV DNA copy number estimation, simulation and thresholding
To calculate EBV DNA abundance per person, we summed the cov-
erage over the well-covered, non-biased bases (/). We normalized
this value against the effective EBV genome size (143,965 bases) to
obtain an estimate of the coverage per EBV genome. Next, we used
the 30x human WGS coverage and accounted for the diploid human

genome to compute an estimate of EBV DNA copy number per human
cell, which resulted in approximately 1in 1,000-10,000 cells in indi-
viduals with detectable EBV DNA (that is, our limit of detection was
approximately 1 EBV genome per 10,000 cells). To contextualize
these values, the upper range of EBV copy numbers in healthy indi-
viduals measured using qPCR was 10° EBV genomes per 1 ug DNA, or
1EBV genome per 200 cells?. The latter number was estimated with
the assumption that 10° cells produce 0.5 pg DNA. Although a previ-
ous study similarly used EBV reads in a cohort of ~-8,000 donors, this
analysis did not correct for the repetitive, biased DNA abundances that
significantly skewed the resulting quantification®. After quantifying
per-person EBV DNA abundance, 85.7% of individuals in the UKB had
no detectable EBV DNA.

Inthe UKB cohort, over 90% of individuals are seropositive, yet only
14.3% of individuals have non-zero EBV DNA levels detected. Therefore,
we conducted asimulationstudy to better characterize the discrepancy.
Using maximum likelihood estimation, we estimated values for the
mean and standard deviation of alog-normal distribution to initialize
the simulationand subsequently modified these values to (1) account
for a mixture including 10% zeros (representing the individuals who
were notinfected with EBV) and (2) adjust the mean for around, inter-
pretable number. The final values used in the simulation (Extended Data
Fig.1d) were setto zero for 50,000 individuals, whereas the remaining
450,000 individuals were simulated viaalog-normal distribution, with
amean of 0.2 EBV genome copies per 10,000 cells, astandard deviation
of 0.62and a censored value of 0.71. We emphasize that this simulation
does not test an explicit statistical question but is designed primarily
forillustrative purposes, to show that asingle underlying component
can explain many features of the empirical data (rather thanrequiring
asecond condition).

The extreme skew of the EBV levels distribution (Extended Data
Fig. 1f) motivated our transformation of EBV DNA copy number to a
binary trait, which we define as EBV DNAemia, since a quantitative trait
otherwise assumes a dose-dependent relationship when testing for
associations. Tobinarize our data for downstream analyses, we used a
series of two-sided Fisher’s exact test to survey different cutoffs against
association with EBV serostatus (Fig.1g). Our goal was to determine an
optimal EBV copy number threshold. We observed the most significant
positive association with a threshold of 1.2 EBV copies per 10* human
cells (odds ratio = 82.17, P= 0) after accounting for standard covariates
used in a GWAS analysis (age, sex, age x sex, and ancestry PCs 1-15).
This corresponded to having a per-person abundance of at least 302
bases covered onthe EBV genome, whichinturn corresponded toafull
paired-end sequencing read (2 x 151 bp) with no soft-clipping. There
were 47,452 people (9.67%) with EBV copy numbers greater than this
threshold, which was used for all downstream analyses.

Forthe 9,607 individuals withboth EBV serology and WGS available,
there were 919 individuals (9.57%) that had EBV DNAemia. Only two
(0.2%) of these 919 individuals were seronegative. One donor had an
EBV DNA load of 1.36 EBV genomes per 10* cells (just above our EBV
DNAemia cutoff) with a high VCAp18titre, but low titres for the other
three EBV antigens. The other donor had an EBV DNA load of 3.34 EBV
genomes per 10* cells, with a positive titre for EA-D but low titres for
the other antigens. In other words, among the 347 donors with no sero-
positivity against any antigens, none were annotated as individuals
with EBV DNAemia (Extended Data Fig. 1b).

EBV DNA detectionin AOU

We obtained per-base abundance of EBV DNA for 245,394 people
in AOU with WGS data similarly by extracting reads that mapped to
chrEBV in the hg38 human genome reference with MAPQ > 30. To
quantify EBV DNA abundance per base, we summed the q30 cover-
age of each base in the 171,823 bp EBV genome across all people. We
again observed an overall uniform coverage; 23,513 positions had
no coverage (per-base abundance = 0), and four regions (positions
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36,389-36,516; 52,012-52,034; 95,997-96,037 and 163,596-163,617)
had abnormally high coverage (per-base abundance of >1,000 at 214
positions; Extended Data Fig. 2b). The effective EBV genome size was
the remaining 148,096 bases (>0 but <10° for each base). Although
the largest repetitive region was the same in both the UKB and AOU,
differencesinthe other regions with variable bias could be attributed
todifferencesin the alignment software for either cohort, noting that
all analyses used the existing mappings from either cohort.

We quantified the EBV copy number per personin AOU with a similar
approachtothe oneused for the UKB. In brief, we quantified EBV DNA
loads after masking and normalized them by the effective EBV genome
size, then by the average genome coverage (30x human WGS) provided
by AOU metadata. A total of 51,459 people (21%) had detectable EBV
DNA (Extended Data Fig. 2c). The top EBV DNA load harboured was -1
EBV copy per 1.4 cells (or 7,046 EBV copies per 10* cells).

Using the same EBV DNA copy number thresholds as in the UKB, a
total 0f 29,249 people (11.9%) had EBV copy numbers greater than the
threshold of 1.2 EBV copies per 10* human cells (Extended Data Fig. 2c).
The overall higher EBVIoadsin AOU compared toin the UKB may be due
toadifferenceintherecruitment criteriaand demographics of the two
cohorts: relative to the general population (asin AOU), the UKB shows
a‘healthy volunteer bias’ where participants were less likely to have
self-reported health conditions®. In comparison, the maximum copy
number described in a previous paper was a few orders of magnitude
higher (2,404,531 EBV copies per 10° human cells), potentially due to
our exclusion of abnormally high coverage regions*.

Phenome-wide association studies

We conducted PheWAS using the UKB as a discovery cohort to test for
the associationbetween EBV DNAemia and 13,290 binary phenotypes
and 1,931 quantitative phenotypes amongst participants with broadly
NFE as in the GWAS (refer to the following section). We used logistic
regression with Firth correction, including sex and age as covariates.
Using a Bonferroni correction, we defined 0.05/15,221=3.3 x 10 as
our significance threshold. To ensure that the PheWAS was not con-
founded by immunosuppressive drugs, we ran a secondary analysis
inwhichweincluded immunosuppressive drugstatus as an additional
covariateintheregression. Because amajority of blood samples used
for WGS were drawn at the time of enrollment, we identified these
individuals on the basis of medication taken at the time of their initial
assessment visit (UKB data field 20003). A full list of the 169 medica-
tions used for annotatingimmunosuppressed individualsis reported
in Supplementary Table 2.

As validation in AOU, we obtained unique RxNorm codes for 53 of
the 169 drugs (Supplementary Table 2) and queried for individuals that
had any of these drug exposures, along with the exposure start and end
dates. We annotated each individual asimmunosuppressed only when
the biosample collection date for WGS fell between the drug exposure
start and end dates (or after start dates, if no end date was recorded).
We observed a positive but not significant association betweenimmu-
nosuppressive drug exposure at the time of WGS collection and EBV
DNAemia (odds ratio =1.03, P= 0.54) (Extended Data Fig. 2f).

We replicated PheWAS associations using the AOU cohort of indi-
viduals with European ancestry via Fisher’s exact tests for association
between EBV DNAemia and each representative ICD-9 or ICD-10CM
code in AOU. As recommended in the AOU workbench, we defined
arepresentative ICD code as a code appearing at least twice in a per-
son and 20 instances across all participants. The top results were
predominantly being HIV positive, having immunodeficiencies, or
receiving organ transplants, which we also observed in the UKB. To
compare effect sizes between hits in the UKB and AOU, we matched
AOU ICD-10CM codes to a corresponding UKB ICD-10 code by taking
thefirst four characters of the ICD-10CM code, as codes >4 characters
donotexistinthe ICD-10 ontology used in UKB. For the two traits linked
to EBV discussed inthe main text, multiple sclerosis was queried using

the ICD-10CM code ‘G35’ in AOU, and gammaherpesviral mononucleosis
was queried using the ICD-10CM code ‘B27.00".

Genetic associations with EBV DNAemia in the UKB

For UKB individuals of broadly NFE ancestry, array-based imputed
genotypes with good genome-wide coverage in the common (>5%)
and low-frequency (1-5%) MAF ranges were available"”. Genotyping
arrays capture genome-wide genetic variations (SNPs and indels)
within both coding and noncoding regions, allowing imputation of
genotypes and tests for association between genotypes and a speci-
fied trait. To avoid confounding results due to differences in ances-
tral background, we stratified the cohort across six broad genetic
ancestries (African, AFR; Hispanic or Latin American, AMR; Ashkenazi
Jewish, ASJ; East Asian, EAS; non-Finnish European, NFE; and South
Asian, SAS) before testing for associations between EBV DNAemia and
UKB-imputed genotypes, whichresulted in a total of 450,032 individu-
alswith arrayimputed genotype dataavailable, including 426,563 indi-
viduals of NFE ancestry. We then used REGENIE v.3.5 (ref. 63) to examine
associations between EBV DNAemia and imputed genotypes, using
alogistic model with covariates and applying Firth correction: EBV
DNAemia - age + sex + age x sex + age’ + age? x sex + batch + ancestry
PCs1-20, as previously described®*. The input to REGENIE includes
directly genotyped variants (MAF >1%, MAC > 100, genotyping rate
per variant >99%, and genotyping rate per individual >80%). We pruned
these variant sets using PLINK2 (--indep-pairwise 1000 100 0.8) as
input to REGENIE’s stepl analyses. This step produces awhole genome
regression model to fit to the binary trait of EBV DNAemia and outputs
aset of genomic predictions.

For REGENIE step2, we further filtered out SNPs that had 0.99 ‘missing-
ness’,imputationINFO < 0.7, and p.HWE >1x 107, This step fits a logistic
model to imputed data, using the genomic predictions from stepl. To
estimate heritability of SNPs and genomic inflation, we performed link-
agedisequilibrium scoreregression (LDSC) by applying the Idsc package
(v.1.0.1).Inbrief, we used munge_stats.py on the cleaned summary stats,
then used Idsc.py to estimate A using the supplied 1KG Genomes link-
age disequilibrium score matrices (Supplementary Note 4). Identical
steps were applied to conduct the EBV serology GWAS on the subset of
UKB participants for whom EBV serostatus was measured*.

To annotate variant loci, we focused on significant variants
(P<5x107%) and created genomic intervals of £1 Mb around each
variant. As variants on chromosome 6 often exhibit linkage disequi-
librium with MHC, we created a custom interval (chr6: 25,500,000 to
34,000,000) for the HLA region. We then combined overlappinginter-
vals using the GenomicRanges reduce function and selected the most
significant variant per interval as theindex variant. In the case of ties, we
selected the variant closest to the midpoint of the region. We applied
the reduce function again to ensure we had a set of non-redundant
index variants. Finally, we annotated each variant by the closest gene,
using Ensembl v.111(Jan 2024) gene annotations and selecting the gene
whose midpoint was closest to the index variant. For visualization of
specificloci, we used the canonical hg38 reference genome isoforms.
Linkage disequilibrium was determined via LDIink® for the regions
noted (Supplementary Note 4). Zoom plots were from the array-based
GWAS associationsin the UKB, and the linkage disequilibriumreference
panelin LDLink® used all European populations.

We complemented our GWAS with an exome-wide association analy-
ses (EXWAS), leveraging the whole genome sequencing dataavailablein
the UKB. Specifically, we tested for associations between EBV DNAemia
and protein-coding variants observedin at least six participants of NFE
ancestry in the UKB. We applied our previously described protocol to
generate variant-level statistics**®°, Variants were required to pass the
following quality control criteria: coverage >10x; >0.20 of reads with
the alternate allele for heterozygous genotype calls; binomial test of
alternate allele proportion departure from 50% in heterozygous state
P>1%107%GQ > 20; Fisher Strand Bias < 200 for indels and < 60 for SNVs;
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root-mean-square mapping quality (MQ) > 40; QUAL > 30; read position
rank sum score (RPRS) > -2; mapping quality rank score (MQRS) > -8;
DRAGEN variant status =PASS; and <10% of the cohort with missing geno-
types. Additional out-of-sample quality controlfilters were alsoimposed
based onthe gnomAD v2.1.1exomes (GRCh38liftover) dataset®. The sites
of all variants wererequired to have >10x coverage in 230% of gnomAD
exomesand, if present, each variant was required to have an allele count
>50% of the raw allele count. Variants with missing values for any filter
were retained unless they failed another metric. Variants failing quality
controlin>20,000 people were also removed. Pvalues were generated
viaFisher’s exact two-sided test. Three distinct genetic models were stud-
ied forbinarytraits: allelic (A versus Ballele), dominant (AA + AB versus
BB),andrecessive (AAversus AB + BB), where A denotes the alternative
alleleand Bdenotes thereference allele. EXWAS hits were filtered follow-
ing: P<5x107%, nCases >20, and protein-altering Most Damaging Effect
(‘Stop_lost’, ‘Stop_gained’, ‘Start_lost’, ‘Splice_region_variant’, ‘Splice_
donor_variant’, ‘Splice acceptor variant’,‘Missense_variant’, ‘Frameshift_
variant’,‘Disruptive_inframe_insertion’,Disruptive_inframe_deletion’).
Forfunctional variant annotation and interpretation, AlphaMissense®®
was executed on all variants that were statistically significant from the
ExWAS analyses using default parameters. If multiple transcripts were
associated, only one is reported (the one with the highest AlphaMis-
sense score, if available).

Replication of UKB EBV DNAemia-associated genotypes

To broadly capture variants in individuals with EUR ancestry in AOU,
we used the variant-level metadata for the SNP and indel variants con-
tained in the short read WGS (srWGS) data dictionary. We filtered for
variants withan alternative allele frequency (AF) of 0.01 < AF < 0.49 or
0.51< AF <0.99 (gvs_eur_af) and at least 100 individuals containing
this variant (gvs_eur_sc >100) in the EUR subpopulation as the input
SNPIists to stepl and 2 of the REGENIEv3.2.4 pipeline. This resulted in
16,566,413 variants across chromosomes 1-22. EBV DNAemia was sup-
plied as abinary trait, along with the covariates age, sex, age x sex, and
ancestry PCs 1-15. There were 133,578 such individuals that had EBV
DNAemia status determined, of which131,938 had complete covariate
data and were included in the analysis, and 12,099,305 total variants
had GWAS statistics results.

Genomic architecture associations

To holistically evaluate genetic architecture similarities between EBV
DNAemia and IMDs, we used the R package cupcake®. The package
was used to define shared components of genetic architecture across
13IMDs, applying shrinkage to adjust for linkage disequilibrium, allele
frequency and differential sample size. Summary statistics of 13 large
IMD GWASs were used to define areduced dimension space using PCA,
which served as a common genetic basis that enabled simultaneous
comparisons between multiple diseases. The reduced dimension space
included 566 driver variants and 13 PCs that were defined as orthogo-
nal genetic risk components®. Applying this approach, we extracted
summary association statistics for these 566 driver variants from our
UKB NFEEBV DNAemia GWAS. After checking and adjusting the effect
allele alignment, we used cupcake® to project these variants onto the
13IMD geneticrisk bases and assess the significance of association with
each component. The output from this projection is a score or delta
(6) for each PC that quantifies the difference between the projected
geneticrisk for that trait on a particular basis axis and a synthetic con-
trol (which has zero effect sizes for all SNPs). This effectively measures
how strongly the trait aligns with therisk architecture represented by
that component. To account for uncertainty, the variance of § is cal-
culated using the propagation of error fromtheinput GWAS summary
statistics, adjusted for the same shrinkage weights and allele frequency
variance as applied in basis construction. With & and its variance, a
Z-statistic can be formed for each component, and standard statistical
inference can be used to compute a Pvalue’®.

Pathway and single-cell analyses

Toevaluate the gene expression program uncovered by our EXWAS asso-
ciations, we used a high-resolution single-cell cellularindexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) dataset of PBMCs
from eight distinct donors with 210,911 quality-controlled cells*. The
148 ExXWAS-associated genes were input alongside the preprocessed
Seurat* object into the AddModuleScore function with default hyper-
parameters. Toreduce technical variation, we removed genes mapping
tothe HLAregionaswellasribosome-associated genes from theinput
gene list (HLA for genetic polymorphisms; ribosome for cell quality)
from the module score foreground and background. Downstream
association analyses of cell type enrichment were performed using
the pre-supplied labels.

Pathway enrichment analyses were performed using the same
EXWAS gene set via the clusterProfiler R package®. Gene set analyses
were performed using the enrichGO (for biological processes) and
enrichKEGG functions (for pathways) using the set of 148 genes and
allENSEMBL human genes as abackground set. For analyses with HLA
(Fig.4e) and chromosome 6 excluded (Fig. 4f), we removed either HLA
or chromosome 6 genes from both the foreground (that is, test set)
and background set for statistical analyses. We used the simplify()
function in clusterProfiler with a similarity cutoff of 0.7 (the default
value) to reduce the number of redundant association terms. Hence,
we note that the labels in panels Fig. 4d-f are not identical in name;
this result is due to the simplify() function’s selection of a single term
thatis nearly identical to other related terms.

Enrichment analyses for non-coding enrichmentinaccessible chro-
matinused 18 fluorescentactivated cell sorting (FACS)-isolated immune
and hematopoietic populations that were uniformly reprocessed and
aggregated using the hgl9 reference genome (Extended Data Fig. 5a).
To compute enrichment scores, we isolated genome-wide significant
variants from the UKB NFE GWAS, lifted over the hg38 coordinates to
hgl9, and built a RangedSummarizedExperiment object to compute
the enrichment. For accessible chromatin enrichments, we used an
approach motivated by the chromVAR statistical testing framework
adapted for genetic variants. Specifically,100 background peaks (iden-
tified through the same mean and GC content of the ATAC-seq peak)
were used as anull distribution, and the mean deviations at peaks vari-
ably containing genome-wide significant variants were computed via
the abundance of accessible chromatin from each sorted population.
The background and observed deviations were used to estimate an
empirical Z-statistic, which was transformed into a P-value using the
pnorm() R function.

HLA haplotype and EBV peptide presentation
We used the four-digit HLA imputation calls processed in the UKB
Research Analysis Platform using HLA*IMP:02 (ref. 70). Allele dos-
age values of >0.7 were used to assign donor haplotypes for a specific
four-digit HLA allele. Homozygotes were determined by alleles with
values of >1.3. For the AOU cohort, predetermined HLA genotypes
were not available in the workbench. Hence, we reconstructed the
HLA calls for all individuals of EUR ancestry using the T1K toolkit™
(v.1.0.8-r237) by extracting reads aligning to the HLA region, which
included canonical chr6é HLAregion (chr6:25,500,000 to 34,000,000)
and all alternative HLA contigs in the hg38 reference. Using a .bed file
of the HLA region coordinates, these alignments were streamed with
the GATK PrintReads commandsinto the TIK genotyper, which was set
to default parameters. Following T1K toolkit recommendations, the
donor haplotypes were assigned for alleles called with a quality score
of >0. Homozygotes were determined by donors with only a single
allele and with a quality score of >30.

Todetermine specific HLA associations with EBV DNAemia, we used
the per-person four-digit HLA alleles for both class 1 and Il as predic-
torsinalogistic regression, with EBV DNAemia as an outcome. Models



included standard covariates used throughout the paper (age, sex,
genetic PCs and so on). We performed this regression on the 208 HLA
classand 145 HLA class Il alleles in UKB NFE individuals. We then
repeated the same analysis for 175 class 1 and 132 class Il alleles that
were also present in the AOU EUR cohort (Supplementary Table 7).

The amino acid sequences of all 87 unique EBV protein sequences
were obtained from the peptide sequence of the nuccore NC_007605.
The protein .fastafile wasinput to NetMHCpan, along with all observed
MHC class I (HLA-A, HLA-B or HLA-C) and class Il (HLA-DR, HLA-DP or
HLA-DQ) alleles in the UKB NFE cohort. Sliding windows of all 8-, 9-,
10- or 11-mers of the provided protein sequences were generated for
the prediction of classallele peptide presentation; sliding windows of
size15-mers were used for class II. The binding scores of these peptides
were determined for all observed UKB NFE MHC alleles that could be
scored by NetMHCpan4.1and NetMHClIpan4.3 (ref. 48).

The NetMHC output reflects the predicted %rank score for each
peptide and a given allele, which is a measure of the rank of the pre-
dicted affinity of the allele for the peptide compared to aset 0of 400,000
random natural peptides. For MHC class I, we computed the HBR score
per allele by taking the harmonic mean over the two genotyped alleles
for each of HLA-A, B and C. For homozygotes, the harmonic meanis
equivalent to any individual observation. For individuals missing a
single allele, we considered only the genotyped call, and for two miss-
ing alleles, the individual was excluded from the per-allele analysis.

For MHC class Il analyses, all HLA-DRB alleles were directly applied
as input—along with the EBV proteome .fasta file—to generate HLA-
peptide presentationscores for all possible 15-mer sliding windows. As
HLA-DQand HLA-DRalleles exist in pairs of alpha and beta alleles within
the predictions, we took all HLA-DQ and HLA-DP allelesimputedin the
UKB NFE cohort and generated all possible combinations of HLA-DQA/
HLA-DQB alleles and all possible combinations of HLA-DPA-HLA-DPB
allele pairs. These alpha-beta allele combinations were then used as
inputs to NetMHClIpan, along with the EBV proteome .fastafile. Again,
the output filelists each peptide, the protein from which the peptide is
derived, agivenclassllallele (pair) and the predicted %rank_EL score,
which s the percentile rank of the eluted ligand prediction score.
As HLA-DRA is the only non-variable gene in the population, each
individual has only two possible HLA-DR heterodimers. Each indi-
vidual canform four possible alpha-beta heterodimers from HLA-DP
and HLA-DQ (between alpha and beta molecules). Hence, each indi-
vidual may assemble up to ten unique heterodimeric MHC class I
molecules®.

The per-allele HBR was computed using the harmonic rank of the
heterodimers for eachallele class and rescaled by a factor of 106 when
computingthe final AHBR score (showninFig. 5). The comparisons were
only between the NFE/EUR ancestry populations in either cohort. To
further verify that our effect was linked to class Il presentation strength,
we completed regression analyses using the same set of covariates for
our genetic association analyses, which verified that other forms of
confounding (for example, population stratification or sex) did not
explain the associations between the class Il predicted presentation
strength and EBV DNAemia.

EBV viral sequence analysis

Rawsequencing reads from chrEBV were merged from all participants
from both cohorts. The aggregated .bam file was transformed into a
per-base, per-nucleotide count using bam-readcount’. For the type
land 2 strain analyses, we sought to quantify the abundance directly
from the aligned reads to the chrEBV reference (a type 1 EBV strain).
Here we performed amultiple-sequence alignment of the EBNA-2 gene
(the major difference between strains) for nuccore IDsK03333 (type 1)
and K03332 (type 2) and mapped the MSA coordinates back to the
chrEBVreference to identify putative regions that would reflect single
nucleotide variation, which, in turn, would reflect strain-level differ-
ences. We identified nine variants on chrEBV: 36209C>T, 36226 T>A,

36251A>G, 36252A>T, 36258C>A, 36275G>T, 36302A>C, 36312T>A
and 36320C>T, where the reference allele was type 1-derived and the
alternate wastype 2-derived. These variants were selected on the basis
of: (1) the combined allele frequency being greater than 99% for the
reference and alternate alleles and (2) no overlap with the repetitive
regions (Fig. 1b).

Next, we analysed a set of 31 protein-altering mutations in EBV
(Extended DataFig. 7c), which was curated fromarecent global-scale
analyses of EBV genomes® derived from individuals with EBV* naso-
pharyngeal carcinomas. Of these 31 EBV VUS, there were four VUS that
were detected at less than 5% pseudobulk in both cohorts. To assess
whether these four VUS were potentially involved inimmune eva-
sion, we assembled all possible peptides for presentation on both
classeslandll, and then scored these peptides with all of the NFE/EUR
observed HLA alleles to compute a NetMHC rank score for both the
wild-type and mutated forms of the peptides. Asboth the wild-type and
mutated peptides generally had similar values, and few were near the
IEDB-validated thresholds (blue dotted lines; Extended DataFig. 7d,e),
we suggest that these VUS—if there is an effect—are probably not
mediated viaimmune evasion butinstead via altered function of the
viral protein.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The UKB data are available to qualified researchers (http:/www.
ukbiobank.ac.uk/register-apply/). The AOU data are available as a
featured workspace to registered researchers of the AOU Researcher
Workbench (https://www.researchallofus.org/). Summary statistics
from the EBV DNAemia discovery GWAS (UKB NFE individuals) are
available at https://my.locuszoom.org/gwas/409414/?token=6385c9
0400414f34b8ed17679bf1495b and have been uploaded to the GWAS
catalogue (GCST90572743).

Code availability

The code toreproduce custom analyses in this manuscriptis available
online at https://github.com/clareaulab/ebv_biobank_gwas.
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Extended DataFig.1|Supportinganalyses of EBVDNA detectedin WGS
datafrom UKB. (a) Mappability of the EBV contigin the hg38 reference.

(b) Characterization of EBV DNAemiarates stratified by EBV seropositive
antigen number. Overall EBV seropositivity requires 2+ antigens. (c) Partition
of UKB participants by EBV DNA detection after accounting for biased regions.
“Biased only” refers to participants with reads mapping only to the two
repetitiveregionsindicated in Fig.1b. “Valid and low count” have EBV DNA
detected after masking the two biased regions. “DNAemia” exceeds 1.2 EBV
copies per10* human cells. (d) Simulated data of a mixture 0of 10% O EBV and
90%log-normal EBV. The dotted lineindicates the threshold for data censoring.
(e) Result of data censoring on simulated data. (f) Empirical distribution of
observed EBV levels. (g) Comparison of donor positivity from simulated and
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observed EBV levels. The threshold of 1.2 EBV copies per 10* human cells was
chosenin the manuscript. (h) Geographical distribution of participant birth
location coloured by percent EBV DNAemia, split by UK NUTS2 annotations.
(i) Percent EBV DNAemiaresolved by sex and age in UKB. Statistical test:
two-sided proportion test comparingsex in the associated age bin. Error
bars: standard error of the mean. (j) Percent EBV DNAemiaresolved by
genetic ancestry in UKB. (k) Percent EBV DNAemiaresolved by sex and
immunosuppressive drug use in UKB. Statistical test: two-sided proportion
testcomparing sex inthe associated immunosuppressive drug use bin. For
panelsb,i,j k: centeristhe mean or point estimate of the proportion; error bars:
standard error of the mean. Sample size: n=490,560.
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Extended DataFig.2|Supporting analyses of EBV DNA detected from WGS geneticancestry in AOU. (f) Percent EBV DNAemiaresolved by sexand
datafrom AOU. (a) Schematic of AOU chrEBV extraction from blood-based immunosuppressive drug usein AOU. Statistical test: two-sided proportion
WGS. (b) Sum of per-base read coverage of map quality (MAPQ) score >30. testcomparingsexin the associated immunosuppressive drug use bin. Error
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Extended DataFig. 3 |Supporting analyses for phenome-wide associations
forselected traits. (a) Summary of associations between EBV DNAemiaand
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test: Wald test from logistic regression model (two-sided). (b) Focused
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association summary for two ICD-10 codes. (c) Top UKB neurological
associations, sorted by effect size (odds ratio; OR). Traits were filtered for a
minimum of 10 cases and anominal P< 0.05 (logistic regression; two-sided).
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Extended DataFig. 4 |Supporting analyses for NFE genetic association
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enrichmentatanominal P<0.05. Statistical test: two-sided LD score regression
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Data collection  Reads mapping to the chrEBV contig were extracted for the UKB using samtools v1.17 and for the AoU cohort using GATK v4.2.6. Four-digit
HLA calls were acquired from the UKB RAP web portal. HLA genotypes for AoU were inferred via T1K v1.0.7. For both cohorts, the underlying
composition of the viral genomes were determined using bam-readcount v1.0.1 on the merged .bam file of all chrEBV reads.

Data analysis Downstream analyses were performed using bowtie2 v2.5.1, REGENIE v3.2.4 (AoU) and v3.5 (UKB), plink v1.9 (AoU) and 2.0 (UKB),
Idsc v1.0.1, GenomicRanges v1.59.0, AlphaMissense v2023.hg38, cupcake v0.1.0, CIBERSORT v1.0.6, kallisto v0.50.0, Seurat v5, clusterProfiler
v4.0, chromVAR v1.5.0, NetMHCpan v4.1, and NetMHClIpan v4.3. Code to reproduce custom analyses in this manuscript is available online at
https://github.com/clareaulab/ebv_biobank_gwas.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The UK Biobank data are available to qualified researchers (please refer to the details at http://www.ukbiobank.ac.uk/register-apply/). The All of Us data are
available as a featured workspace to registered researchers of the All of Us Researcher Workbench (https://www.researchallofus.org/). Summary statistics from the
EBV DNAemia discovery NFE GWAS in UKB are available at https://my.locuszoom.org/gwas/409414/?token=6385c90400414f34b8ed17679bf1495b and have been
uploaded to the GWAS catalogue (GCST90572743). No new sequencing data was generated as part of this study.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender All analyses included males and females. We report that sex was used as a covariate in many downstream analyses and
association tests.

Reporting on race, ethnicity, or Both sex assigned at birth and self reported gender of individuals was collected. Sex assigned at birth was used for all

other socially relevant relevant analyses, including only individuals where the genetically inferred sex matched sex assigned at birth.
groupings
Population characteristics For the discovery cohort, the average age was 57, and 54% of the cohort was female. 94% of the cohort is of European

ancestry (UK Biobank). For the All of Us cohort, adults 18 years and older who have the capacity to consent and currently
reside in the U.S. or a U.S. territory were eligible.

Recruitment Participants were recruited to the UK Biobank on a voluntary basis. Approx 500K individuals 40-69 years of age in 2006-2010
volunteered. Informed consent was obtained for all participants. It has previously been observed that participants are less
likely to live in socioeconomically deprived areas than non-participants, and they tend to be healthier than non-participants,
which may impact some of the reporting rates in comparison to what could be observed through random sampling from the
UK population. Fry et al (10.1093/aje/kwx246). Recruitment of the All of Us Research Program was described in detail in "The
“All of Us” Research Program", NEJM 2019; briefly individuals were recruited through direct participant enrollment or

recruitment at one of >340 locations at US healthcare provider organizations or federally qualified community health centers.

Ethics oversight The protocols for UK Biobank are overseen by The UK Biobank Ethics Advisory Committee (EAC), for more information see
https://www.ukbiobank.ac.uk/ethics/ and https://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf
Informed consent for the All of Us participants is conducted in person or through an eConsent platform that includes primary
consent, HIPAA Authorization for Research EHRs, and Consent for Return of Genomic Results. The protocol was reviewed by
the Institutional Review Board (IRB) of the All of Us Research Program. The All of Us IRB follows the regulations and guidance
of the NIH Office for Human Research Protections for all studies, ensuring that the rights and welfare of research participants
are overseen and protected uniformly.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No pre-determined sample size was calculated for these analyses as analyses were retrospective from large cohorts. The sample sizes for
genetic and phenotypic associations exceeded 490,000 from the UKB (discovery cohort) and 245,000 from AoU (replication cohort) represent
the largest cohorts to date to study the genetic basis of EBV (a minimum ~50x increase from any past study), meaning our sample size was
substantially larger than any published analysis to date.

Data exclusions  No data or individuals with successful generation of genome sequencing data were excluded from these analyses.

Replication The UK Biobank cohort was used for discovery. The All of Us cohort was used for replication studies. The GWAS and PheWAS results showed
largely concordant results for variants and phecodes that could be analyzed in both cohorts. For PheWAS, 87 of 141 (62%) significant
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phecodes in UKB that could be remapped to the AoU phecodes replicated in AoU (P < 0.05; OR directionally concordant with UKB statistics).
For GWAS, 40,675 variants were genome-wide significant (P < 5x1078) in UKB and passed quality control filters in AoU, of which 91.4% were
replicated in AoU (nominal P < 0.05; OR concordant).

Randomization  This study is observational. Randomization was not applicable to this study.

Blinding This study is observational, using coded de-identified data. Blinding was not applicable to this study

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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