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Human and bacterial genetic variation shape 
oral microbiomes and health

Nolan Kamitaki1,2,3,4,5,6 ✉, Robert E. Handsaker3,4,5, Margaux L. A. Hujoel1,2,3,7,8, 
Ronen E. Mukamel1,2,3, Christina L. Usher9, Steven A. McCarroll3,4,5,10 ✉ & Po-Ru Loh1,2,3 ✉

Human genetic variation influences all aspects of our biology, including the oral 
cavity1–3, through which nutrients and microbes enter the body. Yet it is largely 
unknown which human genetic variants shape a person’s oral microbiome and 
potentially promote its dysbiosis3–5. We characterized the oral microbiomes of 12,519 
people by re-analysing whole-genome sequencing reads from previously sequenced 
saliva-derived DNA. Human genetic variation at 11 loci (10 new) associated with 
variation in oral microbiome composition. Several of these related to carbohydrate 
availability; the strongest association (P = 3.0 × 10−188) involved the common FUT2  
W154X loss-of-function variant, which associated with the abundances of 58 bacterial 
species. Human host genetics also seemed to powerfully shape genetic variation in 
oral bacterial species: these 11 host genetic variants also associated with variation of 
gene dosages in 68 regions of bacterial genomes. Common, multi-allelic copy number 
variation of AMY1, which encodes salivary amylase, associated with oral microbiome 
composition (P = 1.5 × 10−53) and with dentures use in UK Biobank (P = 5.9 × 10−35, 
n = 418,039) but not with body mass index (P = 0.85), suggesting that salivary amylase 
abundance impacts health by influencing the oral microbiome. Two other microbiome 
composition-associated loci, FUT2 and PITX1, also significantly associated with 
dentures risk, collectively nominating numerous host–microbial interactions that 
contribute to tooth decay.

When Antonie van Leeuwenhoek first observed bacteria as ‘animal-
cules’ in scrapings from his teeth in the seventeenth century, one of 
his first inquiries involved the extent of their variation among people6. 
Oral microbiomes are now known to vary abundantly across people7–9, 
and twin studies have shown that some of this variation is heritable1–3. 
However, few human genetic polymorphisms have been associated 
with the abundances of specific oral microbial species3–5; study sizes 
so far (n < 3,000) have provided limited power to detect robust genetic 
effects. Larger genome-wide association studies (GWAS) of the gut 
microbiome (n = 5,959–18,340) have consistently replicated two effects 
of variation at the LCT and ABO loci on gut microbial abundances10–13, 
and larger GWAS of oral microbiomes might yield similar discovery.

Oral pathologies, such as dental caries, result from dysbiosis of the 
oral microbiome14. Untreated pathologies can progress to oral infec-
tions which carried high mortality rates before modern dentistry and 
antibiotics15. Susceptibility to caries and other oral pathologies is also 
strongly influenced by genetics16,17, and GWAS have identified 47 loci 
harbouring such genetic effects18. However, whether these or other 
genetic effects act by modulating the composition of the oral microbi-
ome is at present unknown. Identifying such interactions could point 
to microbial drivers of cariogenesis9.

Given the effects of human hosts and resident microbes on each 
other’s survival and evolutionary trajectory, the human microbiome 
is an example of symbiosis19,20. The stability of the gut microbiome 
in individuals21, its codiversification with humans22 and abundant 
structural variation of its microbial genomes23 all suggest intricate 
genetic interactions between microbiomes and their human hosts, 
whereby microbial genomes adapt to genetic variation across peo-
ple. A recently observed example of such an interaction with the gut 
microbiome is a structural variant in the Faecalibacterium prausnitzii 
genome that includes genes encoding an N-acetylgalactosamine 
(GalNAc)-metabolizing pathway and interacts with human ABO varia-
tion24. Whether such specific co-adaptation commonly occurs in oral 
microbiomes remains an open question.

Oral microbiome profiles of 12,519 people
To create a dataset suitable for exploring variation in the oral microbi-
ome and the way it is shaped by human genetic variation, we analysed 
DNA sequencing reads previously generated from whole-genome 
sequencing (WGS) of saliva samples from 12,519 participants in the 
Simons Foundation Powering Autism Research (SPARK) cohort25 
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(Fig. 1a), building on previous work26,27. WGS captured substantial 
non-human genomic information28, with a median of 8.4% ([4.6%,14.7%], 
quartiles) of sequencing reads not mapping to the human reference 
genome (Extended Data Fig. 1a). Many of these unmapped reads instead 
mapped to clade-specific marker genes in microbial genomes29, ena-
bling quantification of relative microbial abundances. This produced 
the largest collection of oral microbiome profiles (n = 12,519) generated 
so far, measuring the abundances of 645 microbial species present at 
>1% frequency, including 439 species (spanning 13 phyla, including one 
fungal commensal, Malassezia restricta) commonly observed in SPARK 
(≥10% of participants) (Fig. 1b, Extended Data Fig. 1b and Supplemen-
tary Table 1). Comparing these profiles across individuals showed that 
age was a major driver of interindividual variation in oral microbiome 
composition, unlike autism spectrum disorder (ASD) case status, sex 
and genetic ancestry (Fig. 1c and Extended Data Fig. 1c–g). Across the 
lifespan represented in SPARK (age 0–90 years), mean species diversity 

sharply increased in the first few years of life (representing when the oral 
cavity is colonized, diet diversifies and primary teeth are acquired) and 
then decreased slowly with age8 (Fig. 1d). Individual species exhibited 
vastly different abundance trajectories over the lifespan, with some 
observed predominantly in adults and others predominantly in children 
(Extended Data Fig. 1h–k).

Human genetics shapes oral microbiome composition
To identify human genetic variants that influence interindividual 
differences in the abundances of microbial taxa, we first tested the 
abundances of taxa detectable in ≥10% of participants for association 
with common human genetic variants, accounting for family structure 
using a linear mixed model30,31. Human genetic variants at seven loci 
associated with the abundance of at least one taxon at study-wide 
significance (P < 4.0 × 10−11; Extended Data Fig. 2a), with only one locus 
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Fig. 1 | Oral microbiomes in 12,519 individuals measured by WGS of saliva 
samples. a, Generation of paired datasets of human genetic variation and oral 
microbiome composition from WGS of saliva samples from the SPARK cohort 
(n = 12,519). Human genetic variants were previously called with DeepVariant 
and relative abundances of microbial species were estimated with MetaPhlAn 4 
(ref. 29) from sequencing reads that did not map to the human genome.  
b, Phylogenetic tree based on genomic divergence among 439 microbial species 
observed in ≥10% of SPARK participants. Phyla are indicated by dot colour and 
genera with more than five species are indicated with labelled grey sectors.  
c, Contributions of age, sex, ASD case status and genetic ancestry principal 
components (PC1 through PC5) to variation in oral microbial species abundances. 

For each factor, the fraction of variance in species abundance explained by the 
factor was computed for each of the 439 species, and the box and whisker plot 
shows the distribution of this quantity across the 439 species. ASD status 
explained a median fraction of variance of 0.002. Boxes span quartiles; centres 
indicate medians and whiskers are drawn up to 1.5× the interquartile range.  
d, Species diversity in the oral microbiome as a function of host age. The red 
line indicates median Shannon entropy and the shaded region indicates the 
interquartile range. Oral microbial diversity increases substantially over the first 
few years of life, plateaus and then modestly declines in late adulthood. Images in a 
were reproduced from Pixabay (https://pixabay.com) under a CC0 1.0 Universal 
Public Domain Licence.

http://pixabay.com
http://creativecommons.org/publicdomain
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(SLC2A9) previously identified4. As several loci associated with the 
abundances of many species (Supplementary Tables 2 and 3) and none 
associated with α-diversity (Extended Data Fig. 2b), we developed a 
statistical test to capture pleiotropic effects on many species in an 
interdependent microbial community32–34, using principal compo-
nent analysis (PCA) to enable efficient genome-wide association test-
ing (Fig. 2a and Methods). Similar to a recent approach for GWAS on 
high-dimensional cell state phenotypes in single-cell RNA-seq data35, 
this approach also reduces multiple-testing burden by testing each 
genetic variant only once.

Applying this approach to SPARK identified four additional human 
genomic loci (11 total) at which common genetic variation associ-
ated with oral microbiome composition (P < 5 × 10−8; Fig. 2b and 
Extended Data Table 1). The principal component (PC)-based test was 
well-calibrated (Extended Data Fig. 2c) and top signals were confirmed 
by multivariate distance matrix regression33,36 (Extended Data Fig. 2d,e). 
The association signals tended to distribute across many microbial 
PCs (mPCs; Extended Data Fig. 2f–p), suggesting that human genetic 
variants subtly influence many axes of microbial community coordina-
tion. Among the ten new loci, eight implicated genes—and in several 
cases, specific variants—with readily interpretable functions that could 
explain their associations with microbiome composition. 
•	 Three loci contained genes encoding highly expressed salivary pro-

teins: salivary amylase (encoded by AMY1; P = 1.5 × 10−53, top asso-
ciation), submaxillary gland androgen-regulated proteins (SMR3A 
and SMR3B; P = 1.4 × 10−12) and basic salivary proline-rich proteins 
(PRB1–PRB4; P = 1.1 × 10−11). These associations seemed to be driven 
mainly by genetic variants that modify gene expression or copy num-
ber (Extended Data Table 1, Extended Data Fig. 3 and Supplemen-
tary Note 1). Consistent with these results, heritability-partitioning 
analysis37 indicated that genetic effects on oral microbiome composi-
tion are enriched at genes specifically expressed in salivary glands 
(P = 0.02, Extended Data Fig. 4a).

•	 Two loci contained genes with established roles in immune function: 
the HLA class II genes, which encode proteins that present peptides in 
adaptive immunity, and TLR1, encoding Toll-like receptor 1, that binds 
bacterial lipoproteins in innate immunity. The strongest association 
at TLR1 involved a missense variant (rs5743618; P = 6.2 × 10−18) that 
produces the I602S substitution known to inhibit trafficking of TLR1 
to the cell surface, reducing immune response in a recessive man-
ner38,39. Consistent with these reports, I602S associated recessively 
with microbial abundances (P = 6.7 × 10−29; Extended Data Fig. 4b).

•	 Two other loci, ABO and FUT2, encode glycosyltransferases that 
together determine expression of histo-blood group antigens on 
epithelial cells and secreted proteins (in addition to the well-known 
role of ABO in determining blood type). This broader role is impor-
tant to microbial species that interact with mucosal surfaces, such 
that both loci are known to influence the gut microbiome10–13, with 
some bacterial species using A-antigen saccharides as a carbohydrate 
source24. The variants at ABO and FUT2 that associated most strongly 
with oral microbiome composition were rs2519093 (P = 9.5 × 10−15), 
which tags the A1 blood group40, and rs601338 (P = 1.6 × 10−131 addi-
tively, P = 3.0 × 10−188 recessively), the common FUT2 W154X nonsense 
variant that (in homozygotes) produces the non-secretor phenotype 
in which bodily fluids lack histo-blood group antigens41.

•	 Associations of variants at PITX1 with oral microbiome composi-
tion colocalized with previously reported associations of these vari-
ants with dental caries and dentures use (r2 = 0.99 between the top 
microbiome-associated variant (rs3749751; P = 3.0 × 10−11) and the top 
dentures-associated single nucleotide polymorphism (SNP) at PITX1; 
Extended Data Fig. 4c; ref. 18). PITX1 is a developmentally expressed 
gene which seems to have a role in mandibular tooth morphogen-
esis (based on a knockout mouse model)42, suggesting that common 
genetic variation at PITX1 might influence tooth morphology and 
through it, oral microbiota and dental health.

The shared associations of genetic variants at PITX1 with both oral 
microbiome composition and dental health phenotypes suggested 
that other genetic influences on the oral microbiome might similarly 
influence dental health. To explore this, we performed GWAS of den-
tures use (a proxy for tooth loss and caries) in the UK Biobank (UKB) 
cohort (n = 75,156 cases, n = 342,883 controls)43. Three loci—AMY1, FUT2 
and PITX1—contained variants that associated (P < 5 × 10−8) with both 
oral microbiome composition and dentures use, and at each of these 
loci, the association patterns colocalized (Fig. 2b and Extended Data 
Fig. 4c,d). Moreover, at 8 of the 11 loci influencing oral microbiome 
composition, the most strongly associated variant also exhibited at 
least a nominal association (P < 0.05) with dentures risk (Extended 
Data Table 1), suggesting that host genetic effects on oral microbiome 
composition often have downstream effects on oral health.

Most of these genetic associations seemed to involve effects of 
human genetic variation on the abundances of several bacterial spe-
cies, with 167 species–genotype pairs reaching FDR < 0.05 across the 
11 loci (Supplementary Table 3). These associations were not driven 
by compositional effects or by ASD status (Extended Data Fig. 4e,f). 
The strong associations at AMY1 and FUT2 offered an opportunity for 
detailed investigation of how genetic variation at these loci influences 
oral microbiomes and oral health. FUT2 W154X associated with the 
abundances of 58 of the 439 species (Fig. 2c–e). FUT2 seemed to be 
nearly but not completely haplosufficient in these associations, with 
slightly weaker abundance-modifying effects observed among secre-
tor individuals with a heterozygous W154X genotype compared to 
those with two wild-type alleles (Fig. 2d and Extended Data Fig. 4g). 
For several pairs of closely related species, FUT2 W154X associated with 
increased abundance of one species and decreased abundance of the 
other (Fig. 2e and Extended Data Fig. 5), possibly reflecting competition 
between closely related species for ecological niches.

Effects of complex variation at the amylase locus
AMY1 encodes salivary α-amylase, an enzyme that breaks down dietary 
starches into simple sugars. The dramatic copy number expansion 
of the amylase locus in humans and other animals44 has attracted 
much interest for its theorized role in facilitating recent adaptation 
to starch-based diets45–47, but its reported association with human body 
mass index (BMI)48 and type 2 diabetes49 has been controversial50,51. 
AMY1 copy number genotypes in SPARK and UKB (estimated from WGS 
depth-of-coverage) showed extensive polymorphism45,50 (2–32 copies 
per individual; Fig. 3a and Extended Data Fig. 6a) and high mutability 
(6.3 × 10−4 (3.7 × 10−4–11 × 10−4, 95% confidence interval (CI)) mutations 
per haplotype per generation, similar to an estimate using coalescent 
modelling46; Extended Data Fig. 6b).

Copy number variation of AMY1 generated the strongest association 
of genetic variation at the amylase locus with oral microbiome compo-
sition (P = 1.5 × 10−53; Fig. 2b) and associated with the abundances of 42 
bacterial species (FDR < 0.05, 22 species at FDR < 0.01 with P = 5.1 × 10−25 
to P = 0.00047; Fig. 3b). The abundances of these species changed 
stepwise with AMY1 copy number, generating a long allelic series with 
steadily increasing or decreasing abundances (Fig. 3c), congruent with 
the effect of AMY1 copy number on the abundance of secreted salivary 
amylase45,52. Two of these associations seemed to confirm associations 
previously observed in smaller candidate gene studies49,53 (Supple-
mentary Note 2).

AMY1 copy number also associated strongly with dentures use in 
UKB (P = 5.9 × 10−35, surpassed only by the PITX1 locus; Fig. 2b). Each 
additional copy of AMY1 associated with a 2.1% (1.7%–2.4%) increase in 
the odds of having dentures, corresponding to a 1.4-fold range in odds 
across people with 2–16 AMY1 copies (Fig. 3d). This association repli-
cated in the All of Us (AoU) cohort54 (n = 230,002; P = 3.5 × 10−4 for tooth 
loss, P = 6.1 × 10−3 for caries; Extended Data Fig. 6c–e). Surprisingly, 
AMY1 copy number associated with decreased risk of bleeding gums in 

https://www.ncbi.nlm.nih.gov/snp/?term=rs5743618
https://www.ncbi.nlm.nih.gov/snp/?term=rs2519093
https://www.ncbi.nlm.nih.gov/snp/?term=rs601338
https://www.ncbi.nlm.nih.gov/snp/?term=rs3749751
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Fig. 2 | Associations of host genetic variants with oral microbiome composition 
overlap risk loci for dentures use. a, Converting relative abundances of  
M microbial species (left) into M orthogonal PCs (middle) allows combining 
chi-squared statistics for a given genetic variant (one per PC) into a single 
chi-squared test statistic with M degrees of freedom (right). b, Genome-wide 
associations with oral microbiome composition in SPARK (top, n = 12,519) and 
dentures use in UKB (bottom, n = 418,039). Nonsense (red squares), missense 
(green triangles) and multi-allelic copy number variants (CNVs) (blue diamonds) 
are highlighted. c, Associations of variants at the FUT2 locus with relative 
species abundance for the five microbial species with the strongest associations 
(left five plots); colour indicates effect direction (plots with red points correspond 
to species which are more abundant in people with functional FUT2 (that is, 
secretors); blue, less abundant) and colour saturation indicates linkage 
disequilibrium with rs601338 (FUT2 W154X). Association strengths from  
the combined test for association with oral microbiome composition show 

much greater statistical power (rightmost plot). d, Effect sizes (in s.d. units)  
on relative abundance of microbial species for individuals heterozygous for 
functional FUT2 (light-filled circles) and for homozygotes (dark-filled circles) 
relative to those with no functional FUT2 (empty circles). For each effect direction, 
the ten most significantly associated species are shown. P values are from a 
recessive model of FUT2 W154X genotype. Error bars, 95% CIs. e, Microbial  
taxa whose abundance associated with FUT2 genotype (FDR < 0.1) shown on 
the phylogenetic tree of 439 species (red, taxa whose relative abundances 
increased with functional FUT2; blue, decreased). Two significantly associated 
phyla (Firmicutes and Actinobacteria; P = 1.2 × 10−4 and 4.0 × 10−5, respectively) 
are highlighted with yellow sectors. At the species level (outermost circle), dot 
sizes increase with statistical significance. P values were computed using 
one-sided chi-squared test (top half, b), two-sided linear regression (bottom 
half, b) or two-sided linear mixed models (c,d).

https://www.ncbi.nlm.nih.gov/snp/?term=rs601338
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Fig. 3 | Complex genetic variation of the salivary amylase locus affects the 
abundance of several oral microbial species and oral health. a, Distribution 
of AMY1 diploid copy number estimates for UKB participants (n = 490,415). Inset, 
diagram of the amylase locus in the human reference genome with common 
variable cassettes46,47. b, Effect sizes on relative species abundance for the  
16 species most strongly associated with host AMY1 copy number (FDR < 0.01).  
c, Allelic series of effect sizes of AMY1 copy number genotypes on normalized 
abundances of Prevotella pallens and TM7 phylum sp. oral taxon 351 (n = 12,487). 
d, Odds ratios for risk of dentures use in UKB (n = 418,039) across copy number 
genotypes of AMY1 (purple), AMY1 F141C (red) and AMY1 C477R (blue). e, Odds 
ratios for risk of bleeding gums in UKB (n = 418,039). f, Associations of variants 
at the amylase locus with dentures use. Plotted variants include paralogous 
sequence variants (PSVs) in the AMY1 region (for which copy numbers of minor 

alleles were tested for association). Dot colours indicate linkage disequilibrium 
(LD) with AMY1 copy number. g, Associations with dentures use conditioned on 
AMY1 copy number. h, Associations with dentures use additionally conditioned 
on AMY1 F141C copy number. i, Comparison of effect sizes for AMY1 copy number 
versus AMY1  F141C copy number on relative abundances of 16 microbial species 
(from b, n = 12,519) and on risk of dentures use (large black dot, n = 418,039). For 
some species, the relative effect size of AMY1 copy number versus AMY1 F141C 
copy number on abundance differs significantly from this ratio for dentures 
use (black line). j, Effect sizes of AMY1 copy number genotypes on BMI in UKB 
(n = 418,150). The line drawn is the best fit across AMY1 copy numbers. Error 
bars, 95% CIs in all panels. P values were computed using two-sided linear mixed 
models (b) and linear regression (f–h,j).
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UKB (P = 1.5 × 10−6; Fig. 3e), even though gingivitis is considered a risk 
factor for tooth loss55,56. However, the bleeding gums and dentures use 
phenotypes had little genetic overlap18 and were slightly negatively 
correlated (r = −0.07, s.e. 0.0015), suggesting largely independent 
pathology. These associations were specific to AMY1; the copy number 
of AMY2A and AMY2B (encoding pancreatic amylase) did not associate 
with dental phenotypes (Extended Data Fig. 6f,g).

Beyond the effect of AMY1 copy number, two missense variants in 
AMY1 carried by 1%–2% of UKB participants seemed to confer the largest 
increases in dentures risk of all common variants in the human genome 
(OR = 1.59 (1.46–1.73) per copy of AMY1 F141C (P = 2.5 × 10−26); OR = 1.16 
(1.10–1.23) per copy of AMY1 C477R (P = 8.3 × 10−8); Fig. 3d). These two 
paralogous sequence variants were typically carried on haplotypes 
containing three or four copies of AMY1 and produced the strongest 
conditional associations with dentures use in two stages of stepwise 
conditional analysis (Fig. 3f–h). The AMY1 F141C and C477R variants 
seemed to confer an increase in dentures risk equivalent to increasing 
AMY1 copy number by 22.4 (18.3–26.5) and 7.3 (4.6–9.9) copies, respec-
tively (Fig. 3d). This apparent gain-of-function effect was surprising, as 
both variants were predicted to be damaging (PolyPhen-257 score of 1.0).  
Analyses of amylase protein expression did not detect effects of 
AMY1 F141C on enzymatic activity (Supplementary Note 3, Extended 
Data Fig. 7a–c and Supplementary Fig. 1). The extended allelic series 
of AMY1 copy number and missense variants associated with dentures 
use provided a set of genetic instruments for evaluating which bacterial 
species might causally contribute to tooth loss (Fig. 3i and Extended 
Data Fig. 7d). Reverse causality (that is, dentures use causing changes 

in the oral microbiome that associate with AMY1 variants) seemed to 
be unlikely based on the concordance of effect sizes in children and 
adults (Extended Data Fig. 7e).

The UKB and AoU datasets also enabled rigorous evaluation of 
whether or not AMY1 copy number influences BMI among mod-
ern humans. AMY1 copy number did not associate with BMI in UKB 
(n = 418,150, P = 0.85; Fig. 3j), AoU (n = 219,879, P = 0.30, Extended Data 
Fig. 7f) or any genetic ancestry in AoU (Extended Data Fig. 7g–i).

Genetic associations with bacterial gene dosage
To identify molecular mechanisms by which human genetic variation 
engages the oral microbiome, we next tested whether the microbial 
species for which abundances associated with each of the 11 loci might 
be united by shared biochemical pathway use58 (Extended Data Fig. 8a, 
Supplementary Tables 4 and 5 and Supplementary Note 4). This analysis 
identified an adhesin gene in Haemophilus sputorum at which sequenc-
ing coverage associated particularly strongly (relative to elsewhere 
in the H. sputorum genome) with FUT2 W154X, suggesting that the 
adhesin interacts with FUT2-dependent glycosylation (Extended Data 
Fig. 8b and Supplementary Note 4). To search for similar molecular 
interactions between human and bacterial proteins, we tested the 11 
lead variants associated with oral microbiome composition (Extended 
Data Table 1) for association with microbial gene dosages24 (Fig. 4a). The 
key conceptual difference between testing human genetic variants for 
effects on microbial abundances (Fig. 2a) versus microbial gene dos-
ages (Fig. 4a) is that the latter approach searches for effects on relative 
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Fig. 4 | Numerous deletions in oral microbial genomes are selected for  
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remapped to 30 microbial reference genomes, after which normalized WGS 
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of 1. b, Associations between microbial gene dosage (based on normalized WGS 
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fitness of bacterial strains that do or do not contain a genomic region 
(rather than fitness of a bacterial species). Thus, it highlights microbial 
genomic regions that may contain genes whose products are involved 
in a host–microbe genetic interaction (Supplementary Note 5).

To minimize hypothesis testing burden, we searched specifically for 
associations of the 11 variants with measurements of normalized WGS 
coverage in 500 base pair (bp) bins tiled across 30 bacterial reference 
genomes (Fig. 4a, Supplementary Table 6, Methods and Supplementary 
Note 5). This analysis identified 208 associations involving 68 regions 
of 18 bacterial genomes in which normalized read depth associated 
with one or more of the 11 human genetic variants (FDR < 0.01, Fig. 4b 
and Supplementary Tables 7 and 8). For example, amylase-binding 
protein orthologues in Streptococcus parasanguinis, abpA and abpB, 
increased in dosage with higher host AMY1 copy number (P = 1.13 × 10−7 
and 1.80 × 10−7, respectively; Extended Data Fig. 8c–g and Supplemen-
tary Note 6). Normalized read depth in nearly half of these regions 
(33/68) associated with secretor status (based on FUT2 W154X geno-
type). Eight regions associated with more than one human genetic 
variant; among them, five regions associated with both secretor status 
and ABO*A1 (Fig. 4b). Effect directions replicated for 202 of the 208 
bin-level associations in 10,000 saliva-derived WGS samples from AoU 
(Extended Data Fig. 8h and Supplementary Table 7).

ABO A antigen selects for a glycoside hydrolase
Host ABO*A1 genotype (based on rs2519093) strongly associated 
with whether Prevotella strains—a prevalent oral genus involved in 
early biofilm formation59—carried a gene encoding a glycoside hydro-
lase (Fig. 5a–d). ABO*A1 genotype associated exceptionally strongly 
(P = 4.8 × 10−19–8.3 × 10−241) with normalized WGS coverage across a 
3 kilobase (kb) segment of the Prevotella nanceiensis reference genome 
(Fig. 5a). This region is annotated as a glycoside hydrolase pseudogene 
due to an N-terminal truncation in the reference genome. However, 
assembly of unmapped sequencing reads with mates aligned to the 
region showed no evidence of such truncation: rather, the reads seemed 
to originate from a full-length gene, with 95% homology to a glycoside 
hydrolase found in Prevotella salivae (a species not included among 
the 30 reference genomes analysed).

ABO*A1 genotype associated with sequencing coverage in this region 
only in secretor individuals (P = 1.7 × 10−307 in secretors; P = 0.44 in 
non-secretors), that is, individuals with at least one functional copy 
of FUT2, allowing expression of histo-blood group antigens on epithelial 
cells and secreted proteins (Fig. 5d). This FUT2-dependent effect of 
host blood group seemed to be driven specifically by A antigen pres-
entation: the fraction of individuals for whom the glycoside hydrolase 
gene was detectable in saliva-derived DNA increased from 46%–48% 
in non-secretors and individuals with B or O blood type to 71%–77% in 
secretors with A or AB blood type (Fig. 5b). This association further 
reflected the quantity of A antigen predicted by an individual’s diploid 
ABO genotype: ABO*O, B, A2 and A1 alleles exhibited an allelic series of 
effects on normalized WGS coverage of the glycoside hydrolase gene 
that was consistent with the increasing abilities of the glycosyltrans-
ferases encoded by these alleles to synthesize A antigen (Fig. 5c). The  
B allele imposed a strong opposing effect when present in an individ-
ual heterozygous for an A1 or A2 allele (β = −0.074 [−0.12, −0.032] for  
B relative to O, P = 5.8 × 10−4, Fig. 5c), presumably reflecting competi-
tion between A and B transferases for available galactose residues on 
acceptor H antigens (Fig. 5d).

Taken together, these results indicate that the glycoside hydrolase 
enables Prevotella strains that express it to use type A histo-blood 
group antigens presented on host mucosal cell surfaces or salivary 
proteins (in secretors) as a carbohydrate source, similar to a recently 
observed effect in the gut microbiome24. We hypothesize that the gly-
coside hydrolase binds A antigens and cleaves the α1,2-fucosyl group 
synthesized by FUT2 (Fig. 5d).

Host ABO genotypes showed an intriguingly different pattern of asso-
ciation with a genomic region of the most abundant species in SPARK, 
Rothia mucilaginosa (P = 1.4 × 10−24; Fig. 5e,f). Blood groups A, B and 
AB all associated with absence (rather than presence) of this region of 
the R. mucilaginosa genome, and surprisingly, these associations were 
observed in non-secretors as well as secretors (Fig. 5e,f). This region 
contains genes that encode a protein with no annotated domains and a 
3-isopropylmalate dehydrogenase functioning in leucine biosynthesis, 
leaving the mechanism of association unknown.

More broadly, this non-FUT2-dependent ABO association sug-
gested the possibility that the association of ABO*A1 genotype with 
oral microbiome composition (Fig. 2b) might also be partially inde-
pendent from secretor status. Indeed, in non-secretors the ABO*A1 
association with microbiome composition remained significant 
(P = 0.004). This suggests that some effects of ABO variation on the 
oral microbiome come from cells not dependent on FUT2 for H anti-
gen production (for example, blood and endothelial cells, which 
instead use FUT1). For example, bacteria can produce glycans struc-
turally similar to A or B antigens that can then be recognized by anti-A  
or anti-B antibodies that are made by plasma cells and infiltrate into  
the mouth60.

Secretor status selects for microbial adhesins
Conversely, many regions in oral microbial genomes associated with 
secretor status but not ABO*A1 genotype (Fig. 4b), and oral microbiome 
composition associated much more strongly with secretor status than 
with any variant at ABO (P = 3.0 × 10−188 versus P = 9.4 × 10−15; Fig. 2b). This 
pattern contrasted with host genetic influences on gut microbiomes 
(which generate stronger associations at ABO than at FUT2; refs. 11–13), 
leading us to wonder whether these regions might point to a molecu-
lar mechanism by which secretor status influences oral microbiomes 
independently of ABO.

Examining genes in bacterial genomic regions associated with secre-
tor status identified three classes of bacterial proteins that were each 
implicated by several genes. Proteins with YadA-like domains were 
encoded by nine genes in three species: Veillonella sp. 3627 (vadA 
through vadF), Haemophilus sputorum (hadA and hadB) and Haemo-
philus parahaemolyticus (hadC) (Fig. 6a–d and Supplementary Table 8). 
YadA (from Yersinia pestis) is a trimeric autotransporter adhesin that 
aids attachment to host cells by binding components of the extracellu-
lar matrix, and some such adhesins are known to recognize host protein 
glycosylation61,62, such as the glycosylation added or enabled by FUT2. 
Five of the seven regions containing these genes were present (that 
is, not deleted) more often in the oral microbiomes of secretors than 
non-secretors, consistent with the hypothesis that the adhesins they 
encode bind histo-blood group antigens on the host cell surface. This 
was true of hadC in H. parahaemolyticus despite this species exhibiting 
lower abundance in secretors (Extended Data Fig. 8i). The genome of 
V. sp. 3627 contained three such regions (containing vadB through 
vadF, where vadC through vadE fall within the same complex region, 
Extended Data Fig. 8j) whose presence or absence was observed largely 
independently in different microbiomes (Fig. 6e). Classifying individu-
als on the basis of which combination of regions was present in their 
V. sp. 3627 population showed increasing enrichment of secretors 
among individuals with increasing representation of vadB–vadF genes 
in V. sp. 3627 (Fig. 6e).

FUT2-associated genomic regions additionally implicated two other 
classes of proteins that seemed to have roles in adhesion to host cells. 
Four proteins with CshA domains (CrpD and CrpE in Streptococcus 
mitis, CrpF and CrpG in Streptococcus vestibularis) and six proteins with 
mucin-binding domains (MucBP, Muc_B2, MucBP_2) (SmdA through 
SmdE in S. mitis, SmdF in S. vestibularis) were encoded by genes in 
FUT2-associated bacterial genomic regions (Fig. 6f,g). CshA from 
Streptococcus gordonii binds host fibronectin63, a heavily glycosylated 

https://www.ncbi.nlm.nih.gov/snp/?term=rs2519093
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in Prevotella and also engages the oral microbiome in non-secretors.  
a, Associations of host ABO*A1 genotype with normalized coverage (truncated at 1) 
in 500 bp bins of the P. nanceiensis genome surrounding a glycoside hydrolase 
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of host cell proteins and bacterial glycoside hydrolase. Top (pink background), 
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proteins depend on an individual’s combination of FUT2 and ABO genotypes.  
In individuals with no functional copies of FUT2 (non-secretors), type I 
H antigen is not produced, whereas in secretors, type I H antigen is produced 
and can be further glycosylated into A antigen or B antigen depending on ABO 
genotype (dashed purple outline). These antigens are then presented on 
mucosal cell surface and secreted proteins. The associations of ABO genotypes 
with presence of the pgh95 gene in Prevotella strains suggest that the bacterial 
glycoside hydrolase protein (PGH95, green) is specifically targeting secreted 
type A antigens and cleaving the α1,2-fucosyl group, consistent with high 
amino acid homology (~75%) with α1,2-fucosidases in the glycoside hydrolase 95 
(GH95) family. e,f, Analogous to b,c, respectively, for the ABO-associated region 
in R. mucilaginosa (n = 12,475). Error bars, 95% CIs in all panels.
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Fig. 6 | FUT2-dependent secretor status selects for three classes of adhesin 
genes across five microbial species. a, Associations of secretor status with 
normalized coverage (truncated at 1) in 500 bp bins of the V. sp. 3627 genome 
(n = 7,419). Shading indicates assembled contigs. Significant associations 
(FDR < 0.01) that overlap genes encoding proteins with YadA-like domains are 
highlighted (blue, genomic region more often present in secretors; red, absent). 
Effect directions are also indicated for bins that did not reach significance  
but were surrounded by significantly associated bins. b, Analogous to a, for  
H. sputorum (n = 8153). c, Analogous to a, for H. parahaemolyticus (n = 7,456).  
d, Predicted trimeric structure of VadD (from V. sp. 3627), where the head 
domain (blue) facilitates attachment to host proteins, stalk domains (magenta) 
flexibility and reach, and anchor domain (gold) translocation to bacterial 
surface. e, Upset plot of the relative proportions of FUT2 W154X genotypes 
(non-secretors in grey, secretors in orange) among individuals with each 

combination of vadB–vadF gene deletions in the V. sp. 3627 genome. Analysis 
was restricted to individuals with each gene either primarily present in strains 
of V. sp. 3627 (normalized coverage >0.8) or primarily absent (normalized 
coverage <0.2). Blue-to-grey shading of sets (bottom) and numbers of individuals 
per set (top) indicate the number of vad genes present. f, Analogous to a, for  
S. mitis (n = 12,479). Highlighted genes encode proteins that contain either a 
CshA domain (crp genes) or mucin-binding domain (smd genes). g, Analogous 
to f, for S. vestibularis (n = 11,723). h, Predicted structure of a portion of CrpE 
from S. mitis. The CshA NR2 (gold) and mucin-binding domains (magenta) both 
have lectin activity to their characterized ligands (fibronectin and mucin)63,64.  
i, Model of how host FUT2 genotype selects for bacterial strains expressing 
proteins with YadA, CshA or mucin-binding domains that can attach to host  
cell surface proteins based on the availability of histo-blood type antigens. 
P values, two-sided linear regression (a–c,f,g).
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component of the extracellular matrix. Similarly, mucins have numer-
ous glycosylation sites and are up to 90% carbohydrate by mass64. 
Interestingly, one of these proteins, CrpE in S. mitis, seems to contain 
both a CshA domain and multiple mucin-binding domains (Fig. 6h 
and Supplementary Table 9), suggesting that these might function in 
concert to bind the same host protein or a combination of proximal 
targets multivalently.

These enrichments of genes encoding proteins with YadA, CshA 
and mucin-binding domains were unlikely to occur by chance: the 
genomes of V. sp. 3627, H. sputorum and H. parahaemolyticus only 
contain 12, 4 and 8 genes with YadA domains, respectively (Fisher’s 
exact P = 7.5 × 10−12, 3.5 × 10−5 and 0.021), and the genomes of S. mitis 
and S. vestibularis only contain two and three genes with CshA domains 
(P = 7.4 × 10−5 and 2.0 × 10−5) and ten and three genes with mucin-binding 
domains (P = 3.3 × 10−11 and 0.0087). Most of these genes (15/19) were 
more commonly present in the oral microbiomes of people with 
functional FUT2, suggesting that they might encode bacterial lectins 
that depend on either fucosylation or sugar moieties added by ABO 
glycotransferase65 (Fig. 6i). This convergence of bacterial genomic 
adaptations to host FUT2 genotype broadly suggests that commensal 
bacteria commonly make use of host histo-blood group antigens not 
only as a carbohydrate source but also for bacterial attachment to 
host cell surfaces.

Discussion
Analysis of the largest set of oral microbiome profiles generated to date 
identified many specific human genetic variants that contribute to the 
diversity observed across the oral microbiomes of different people7,8. 
The large number of such effects suggests a larger influence of human 
genetics on the oral microbiome than on the gut microbiome66,67, 
perhaps because host cells in the mouth interface more directly with 
bacteria (in contrast to cells in the gut, which are typically protected 
by a mucosal barrier). Some of these genetic effects on microbial abun-
dances seem likely to mediate associations of the same human genetic 
variants with oral health phenotypes, nominating bacterial species 
that may contribute to dysbiosis. The salivary amylase gene gener-
ated the strongest such shared effect on oral microbiomes and health, 
driven by both AMY1 copy number variation and missense mutations in 
AMY1. The expansion of salivary amylase copy number in humans and 
domesticated animals has been hypothesized to be the result of positive 
selection driven by the advent of agriculture44–47. Our observation here 
that AMY1 gene copy number variation associates with oral microbial 
phenotypes that lead to clinically relevant conditions—combined with 
the high mortality rate of tooth infections before modern dentistry 
and antibiotics15—suggests that AMY1 copy number may have been 
under selection as a result of effects on oral health in addition—or in 
response—to dietary changes.

The numerous associations that these analyses uncovered between 
human genetic variants and bacterial gene dosages suggest frequent 
intergenomic adaptation of microbial species to individual human hosts 
and implicate specific molecular interactions likely to drive such adap-
tation. Most of these associations involved genes in bacterial species 
whose overall abundances were unaffected by the same human genetic 
variants, similar to recent observations of associations of BMI with gut 
microbial sequence variation68, suggesting that genomic adaptations 
enable many bacterial species to survive equally well across variable 
host genetic environments. By contrast, an association with relative 
species abundance could imply that the microbial genome is unable 
to adapt to a particular human variation. The variable gene regions 
we identified showed some breakpoint heterogeneity (Extended 
Data Fig. 9a,b) and could either reflect gene dosage variation among 
circulating strains or recurrent mutations, such as in Helicobacter  
pylori69. The large number of such effects suggests that analyses of 
bacterial gene dosage may be a powerful way to identify host genetic 

influences on microbiomes, perhaps because analysing the balance 
between members of the same species with and without a variable gene 
controls for strong environmental influences on species abundance.

We note a need for care in conducting GWAS of microbial-abundance 
phenotypes. We initially observed a strong association (P = 2.5 × 10−70) 
of oral microbiome composition with variant calls in the ribosomal RNA 
gene region of the p-arm of chromosome 21; however, these variant 
calls (which later failed a mappability filter) actually reflected the pres-
ence of orthologous bovine rDNA sequences and associated with the 
abundances of bacterial species used in dairy fermentation, suggesting 
DNA co-acquisition from recently eaten dairy foods (Supplementary 
Note 7). Our analytical approach for identifying host–microbe genetic 
interactions had several limitations that should be ameliorated with 
larger cohorts and improved microbial reference genomes (Extended 
Data Fig. 9c–h and Supplementary Note 8). Future datasets will also 
provide increased power to resolve possible pleiotropy and reverse cau-
sality with oral health phenotypes, either through cohorts with human 
genetic, microbiome and oral health phenotypes70 or by Mendelian 
randomization approaches powered by even larger saliva sequencing 
datasets—which we have shown here provide rich information about 
how oral microbiomes are shaped by human genetics.
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Methods

Ethics
This research complies with all relevant ethical regulations. The study 
protocol was determined to be not human subjects research by the 
Broad Institute Office of Research Subject Protection as all data ana-
lysed were previously collected and de-identified.

Quantification of microbial relative abundances from saliva WGS
We analysed saliva-derived WGS data previously generated for 12,519 
individuals from the SPARK cohort of the Simons Foundation Autism 
Research Initiative (SFARI)25. In brief, DNA extracted from saliva samples 
was prepared with PCR-free methods for 150 bp paired-end sequencing 
on Illumina NovaSeq 6000 machines. Reads were aligned to human 
reference build GRCh38 by the New York Genome Center using Cent-
ers for Common Disease Genomics project standards. Details of saliva 
sample collection, DNA extraction and sequencing were described in 
ref. 26 (which analysed data from sequencing waves WGS1–3 of the 
SPARK integrated WGS (iWGS) v.1.1 dataset; here we analysed WGS1–5, 
which included additional samples included in subsequent sequenc-
ing waves).

From the CRAM files previously aligned to GRCh38, we extracted all 
unmapped reads for subsequent generation and analysis of oral micro-
biome phenotypes. This retrieved a median of 67.5 million unmapped 
reads per sample ([35.9 million,126.1 million], quartiles), comparable 
with the total number of reads used for previous metagenomic charac-
terization of human microbiomes71 and consistent with previous analy-
ses of SPARK samples for oral microbiome profiling26,27. Unmapped 
reads were converted to compressed FASTQ with samtools (v.1.15.1) and 
then used as input for microbiome profiling using MetaPhlAn (v.4.0.6) 
with the vOct22 reference database. To evaluate robustness of these oral 
microbiome profiles, relative abundances of species in SPARK samples 
were compared with those from samples in the Human Microbiome 
Project72 by first subsetting to those profiled in both cohorts and then 
performing principal coordinate analysis using Bray–Curtis distance 
(Extended Data Fig. 1b).

From the relative abundance phenotype generated for each spe-
cies by MetaPhlAn, we estimated the fractions of variance explained 
by covariates (age, sex, ASD and genetic ancestry PCs; Fig. 1c) using 
analysis of variance (finding the sum-of-squares for each covariate 
and dividing by the total sum-of-squares).

Generation of mPCs
Relative abundance measures of all microbes were first filtered to 439 
entries corresponding to microbial species found in at least 10% of 
SPARK DNA samples. Rank-based inverse normal transformation across 
individuals was then performed for the abundance of each species. 
This transformation did not always produce values with mean 0 and 
variance 1 (due to large fractions of samples with zero abundance), so 
these were then scaled and centred for use as input to PC analysis to 
obtain 439 orthogonal microbial abundance principal components 
(mPCs) representing orthogonal axes of microbial variation.

Genotyping and quality control of human genetic variants in 
SPARK
Variant calling in SPARK was previously performed using DeepVariant 
(v.1.3.0) to produce sample-level VCFs from reads aligned to GRCh38 
followed by GLnexus (v.1.4.1) to call variants jointly across the cohort. 
We performed a series of QC steps on the joint call set, starting by con-
verting half-calls to missing and then excluding variants with >10% miss-
ingness using plink2 (v.2.00a3.6LM). Variants were further excluded if 
they had a minor allele frequency <1% or if they had a Hardy–Weinberg 
equilibrium exact test P < 1 × 10−6 with mid-P adjustment for excessive 
heterozygosity, leaving 12,525,098 common variants. Genetic ancestry 
PCs were generated by LD-pruning variants in 500 kb windows with 

r2 > 0.1 and then running plink2 --pca approx. No individuals were fil-
tered for outlier heterozygosity after inspection in each genetic ances-
try group. Variants were then filtered to those present in the TOPMed-r3 
imputation panel to exclude those in regions of poor mappability to 
produce a final set of 9,618,621 common variants to test for association 
with oral microbiome phenotypes.

mPC-based GWAS of oral microbiome composition
A straightforward way to search for host genetic effects on microbi-
omes is to test human genetic variants for association with the abun-
dance of each microbial taxon in turn10–13. However, we reasoned 
that a statistical test designed to aggregate evidence of pleiotropic  
genetic effects on many species in a microbial community could consid-
erably increase statistical power32–34. To perform such a test in a scalable 
manner (efficient enough to test millions of human genetic variants), 
we made use of the decomposition of the microbial abundance matrix 
into 439 orthogonal mPCs. Specifically, we tested each genetic variant 
for association with each rank-based inverse normal transformed mPC, 
after which we summed the 439 test statistics obtained per variant to 
compute a single, combined association test for each variant (Fig. 2a; 
details in next section). Beyond increasing power to detect pleiotropic 
effects, the approach reduces multiple-testing burden by testing each 
genetic variant only once. We evaluated applying this approach to a 
subset of top axes of microbial variation (rather than all 439 mPCs) but 
did not observe a further increase in power, consistent with many axes 
of variation contributing association signal in this dataset (Extended 
Data Fig. 2f–p).

Details of GWAS of oral microbiome composition
We performed GWAS on each mPC phenotype using the linear mixed 
model implemented in BOLT-LMM to account for the family structure 
of the SPARK cohort30,31,73. Specifically, we ran BOLT-LMM using the 
--lmmInfOnly flag (as the non-infinitesimal mixed model provided 
a negligible increase in statistical power) with the following covari-
ates: sequencing batch, age, age squared, square root of age, sex, 
percentage of mapped reads and the top ten genetic ancestry PCs. 
A single father without a recorded age was assigned the average age 
of other fathers in the dataset. AMY1 and PRB1 copy numbers were 
rescaled to a range of [0,2] and encoded as dosages for association  
testing.

To test a genetic variant for association with an effect on overall oral 
microbiome composition, we summed chi-square statistics across the 
439 orthogonal mPCs and computed the P value based on a chi-squared 
distribution with 439 degrees of freedom. We computed P values using 
a one-sided test, analogous to how in linear regression, one-sided 
chi-squared test statistics are computed (corresponding to two-sided 
tests of z-statistics).

MDMR of oral microbiomes with selected genetic variants
We compared our test for genetic effects on oral microbiome com-
position with multivariate distance matrix regression (MDMR)33 as 
implemented in the MDMR R package36 (v.0.5.2), which finds significant 
predictors of multivariate outcomes by estimating the attributable 
amount of dissimilarity between samples. Rank-based inverse normal 
transformed relative abundances of the 439 most prevalent species 
(with or without initial centred log-ratio transformation) were used to 
generate the Euclidean distance matrix. MDMR was then run with the 
following covariates: sequencing batch, age, age squared, square root 
of age, sex and percentage of mapped reads. As genetic ancestry PCs 
frequently produced a singular matrix as a result of multicollinearity 
with individual variants, the top ten genetic PCs were first regressed 
from each tested variant (rather than including genetic PCs as covari-
ates). The 11 loci identified from our mPC-based GWAS of oral micro-
biome composition were tested alongside 1,000 randomly selected 
variants on chromosome 1.



Stratified LD score regression for estimating enrichment of 
heritability at genes with tissue-specific expression
We observed that the same mathematical framework that enables par-
titioning of heritability by means of stratified LD score regression on 
summary statistics from GWAS of a single trait74 could be extended to 
analyse test statistics for association with oral microbiome composi-
tion (based on summing chi-squared test statistics across 439 mPCs). 
Starting from the representation of expected marginal chi-square 
association statistic for SNP i based on linkage disequilibrium with 
variants in categories Ck,

∑E χ Na N τ l i k[ ] = 1 + + ( , )i
k

k
2

averaging across the 439 chi-square statistics for each variant gives

∑E χ Na N τ l i k[ ] = 1 + + ( , )i
k

k
2

such that providing χi
2 as input to S-LDSC generates enrichments cor-

responding to τk. Averaged chi-square statistics per variant were used 
as input to munge_sumstats.py. LDSC was then run with baseline v.1.2, 
weights_hm3_no_hla as weights and previously described tissue-specific 
expression bins derived from Genotype-Tissue Expression (GTEx)  
project samples37.

GWAS of abundances of individual taxa
To avoid test statistic inflation from zero inflation and outlier values, 
relative abundance measures for each taxon were rank-based inverse 
normal transformed. Abundances of 1,262 taxa (of any phylogenetic 
level: species, genus, family and so on) observed in >10% of SPARK 
samples were then tested for association with host genotypes using 
BOLT-LMM. The top 20 PCs from PCA on 439 species observed at >10% 
prevalence (that is, the top 20 mPCs) were used as covariates to control 
for the largest axes of variation across samples, along with sequencing 
batch, age, age squared, square root of age, sex, percentage of mapped 
reads and the top ten genetic ancestry PCs. To test loci that might be 
associated as dominant/recessive rather than additive, BOLT-LMM was 
rerun using the --domRecHetTest flag.

To evaluate whether some of these associations could reflect com-
positional effects rather than being specific to the associated taxa, we 
computed an alternative set of taxon abundance phenotypes in which 
we took the centred log-ratio transform of relative abundances in each 
sample75 (after replacing zero values observed for a given taxon with the 
minimum non-zero value for that taxon, to allow computing geometric 
means). Centred log-ratio transformed values for each taxa were then 
tested for association with host genotypes using BOLT-LMM with the 
same covariates as above (Extended Data Fig. 4e).

For estimating effect sizes of specific genotype values such as 
FUT2 W154X genotypes (Fig. 2d), AMY1 copy numbers (Fig. 3c) or PRB1 
copy numbers (Extended Data Fig. 3c), we used linear regression with 
the same covariates as above, encoding each genotype value (rounded if 
necessary) as a separate factor. The standard errors estimated by these 
regressions are slightly underestimated because they do not account 
for relatedness among SPARK participants, but we determined that 
this underestimation of standard errors was mild (~7% based on a ~14% 
inflation of chi-square test statistics computed using linear regres-
sion versus a linear mixed model for the 11 genome-wide significant 
loci (Supplementary Fig. 2)). To compare effect sizes in adults versus 
unrelated children, one child was randomly selected from each fam-
ily in SPARK. BOLT-LMM was used to run linear regression on each of 
these subsets separately.

GWAS in UK Biobank
Starting from 488,377 individuals in the UKB SNP-array dataset43, indi-
viduals were excluded on the basis of the following criteria: 36,008 

were removed to drop one relative in pairs of close relatives with kin-
ship coefficient >0.0884, preferentially keeping individuals if they  
(1) reported having dentures or (2) reported not having dentures (that 
is, had a non-missing dentures phenotype); 28,701 were removed for not 
having European genetic ancestry76; 1,469 were removed for not having 
available TOPMed-imputed genotypes (including for chromosome X); 
2,601 were removed for not having available WGS data; and 53 were 
removed for having withdrawn, leaving 419,545 available individuals 
for GWAS. For the binary oral health phenotypes (dentures use and 
bleeding gums), 418,039 had non-missing values. For the quantitative 
BMI z-score phenotype77, 418,150 had non-missing values.

TOPMed-imputed variants for these individuals were filtered to 
require minor allele frequency >0.001 and INFO >0.3. BOLT-LMM was 
run in linear regression mode on these samples and variants with the 
following covariates: age, age squared, sex, genotype array, assess-
ment centre and top 20 genetic ancestry PCs. For estimating effect 
sizes of specific copy numbers of AMY1 (Fig. 3d,e,j), AMY2A (Extended 
Data Fig. 6f) or AMY2B (Extended Data Fig. 6g), we performed logistic 
regression (for oral health phenotypes) or linear regression (for BMI) 
with the same covariates, encoding each copy number (rounded to the 
nearest integer) as a separate factor and using the modal copy number 
as the reference level.

Phyletic stratification of genetic associations
The phylogenetic tree of all species in the MetaPhlAn 4 database used 
(v.Oct22), mpa_vOct22_CHOCOPhlAnSGB_202212.nwk, was first subset-
ted to the tree spanning nodes with primary label among the 439 species 
seen at >10% prevalence in the SPARK cohort. This tree was used with 
graphlan (v.1.1.3) for depiction of phylogenetic trees (Figs. 1b and 2e 
and Extended Data Fig. 5f). For comparisons among the effect sizes of 
a human genetic variant associated with relative abundances of many 
species, phylogenetic distances between pairs of species were first 
computed as a cophenetic distance matrix from this tree. For a given 
index species A, phylogenetic distances between A and other species B 
were then compared with either (1) absolute values of effect sizes for 
species B (that is, |βB|, Extended Data Fig. 5b,c,g,h) or (2) effect sizes for 
species B oriented relative to the effect direction for species A (that is, 
sign(βA) × βB, Extended Data Fig. 5d,e,i,j).

Estimation of AMY1 copy number in all cohorts
In the SPARK (Extended Data Fig. 6a) and AoU v7 cohorts (Extended 
Data Fig. 6c), AMY1 copy number was estimated by counting WGS reads 
that mapped to the duplicated regions that include AMY1A (chr. 1: 
103638545–103666411), AMY1B (chr. 1: 103685558–103713427) and 
AMY1C (chr. 1: 103732687–103760549) in GRCh38 and normalizing 
against the total number of reads that aligned in either the 0.5 Mb 
upstream of AMY2B or the 0.5 Mb downstream of AMY1C. For the UKB 
cohort (n = 490,415 (ref. 78), Fig. 3a), we applied a more comprehensive 
read-depth normalization pipeline that incorporated sample-specific 
GC-bias correction inferred from genome-wide alignments (similar to 
Genome STRiP79) before normalizing against read depth in the 0.5 Mb 
regions flanking the amylase locus. We corrected for slight miscalibra-
tion of these diploid copy number estimates by fitting a linear model 
to identify coefficients that centred peaks of copy number estimates 
at integers.

Among the UKB participants with WGS available, we identified 5,149 
siblings that shared both amylase haplotypes IBD2 (based on at most 
three mismatching SNP-array genotypes in a 2 Mb window flanking the 
amylase locus, computed using plink1.9 --genome). Among these IBD2 
sibling pairs, 13 pairs were identified as copy number discordant (and 
likely to reflect a copy number mutation in the past generation) based 
on (1) having AMY1 copy number estimates that differed by >1.0 and  
(2) having AMY2A copy number estimates consistent with a duplication 
or deletion of a commonly variable amylase gene cassette (that is, ±1 
AMY2A copies for AMY1 copy number discordances of odd parity and no 
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difference in AMY2A copy number for AMY1 copy number discordances 
of even parity). We estimated AMY1 copy number genotyping accuracy 
by computing the correlation across IBD2 sibling pairs excluding these 
13 copy number discordant pairs.

Testing AMY1 copy number for association with dental 
phenotypes and BMI in All of Us
We defined the binary tooth loss phenotype as 1 for individuals with at 
least one recorded instance of ‘acquired absence of all teeth’ (OMOP 
concept ID: 40481327, code: 441935006) and 0 otherwise. Likewise, 
the caries phenotype was derived from ‘dental caries’ (OMOP con-
cept ID: 133228, code: 80967001). For BMI, we generated a normalized 
z-score phenotype from BMI (OMOP concept ID: 903124, code: bmi) 
by first adjusting for age (in months, determined from time at weight 
and height measurement) and age squared and then applying inverse 
rank normal transformation in each sex separately. The BMI z-scores 
for males and females were then merged together.

Individuals with WGS available for genotyping AMY1 copy num-
ber were first filtered to an unrelated subset of samples (iteratively 
dropping one individual per related pair with kinship score >0.1, from 
relatedness_flagged_samples.tsv). For oral health phenotypes, we 
performed logistic regression against AMY1 copy number including 
age, age squared, sex and the top 16 genetic ancestry PCs (from ances-
try_preds.tsv) as covariates. For BMI, we performed linear regression 
using only genetic ancestry PCs as covariates as age and sex had already 
been residualized out. For estimating effect sizes of specific copy num-
bers of AMY1 (Extended Data Fig. 6d,e and Extended Data Fig. 7f–i), we 
performed logistic regression (for oral health phenotypes) or linear 
regression (for BMI) with the same covariates, encoding each copy 
number (rounded to the nearest integer) as a separate factor and using 
the modal copy number of 6 as the reference level (that is, computing 
the effect size of each copy number relative to copy number 6).

Paralogous sequence variation in AMY1
To identify and genotype paralogous sequence variants (PSVs) from 
UKB WGS data, we used a read-counting approach similar to our previ-
ous work80. In brief, reads from each sample that had been aligned to 
any of the three 27.6 kb regions in GRCh38 corresponding to AMY1A 
(chr. 1: 103638695–103666261), AMY1B (chr. 1: 103685708–103713277) 
and AMY1C (chr. 1: 103732837–103760399) were realigned with bwa 
(v.0.7.17) to the reference sequence of AMY1A after filtering out reads 
with any of the last four SAM flags (-F 0xF00). Read counts supporting 
each base at each position were tabulated with htsbox (r345) pileup, 
filtering alignments <50 bp and base calls with quality score <20. Indi-
viduals were called heterozygous for a PSV allele (having at least one 
copy of AMY1 with each of two alleles) if at least five reads supported 
the variant allele in that sample and at least five reads did not. PSVs 
were then filtered to those with heterozygosity >0.002 (resulting in 
892 PSVs passing filters). To estimate diploid copy number genotypes 
for a PSV, we multiplied each individual’s diploid AMY1 copy number 
by the allelic fraction of the PSV in that individual. In association tests 
using linear regression with BOLT-LMM, we rounded copy number 
estimates to integer genotypes.

For follow-up analyses of effect sizes of specific AMY1 F141C and 
C477R copy number genotypes, we optimized the assignments of 
integer copy number genotypes based on manual inspection of his-
tograms of allelic depth-derived PSV copy number estimates (Sup-
plementary Fig. 3). Specifically, we assigned copy numbers for each of 
F141C and C477R using the thresholds [0,0.25) = CN0, [0.25,1.75) = CN1, 
[1.75,2.7) = CN2, [2.7,3.5) = CN3 and [3.5,5) = CN4. In UKB, F141C had 
416,381 (99.2%), 3,124 (0.74%) and 40 (0.0095%) individuals with 0, 1 
and 2 copies, respectively, and C477R had 412,450 (98.3%), 6,527 (1.6%), 
547 (0.13%), 19 (0.0045%) and 2 (0.0005%) individuals with 0, 1, 2, 3 
and 4 copies, respectively. In SPARK, F141C had 12,459 (99.5%) and 60 
(0.48%) individuals with 0 and 1 copies, respectively, and C477R had 

12,343 (98.6%), 172 (1.4%) and 4 (0.032%) individuals with 0, 1 and 2 cop-
ies, respectively. These threshold-based copy numbers of the alternate 
alleles were used in logistic regression along with copy numbers of the 
reference alleles (F141 and C477) and covariates as above.

Protein expression of AMY1
Plasmid pCAGEN81 was a gift from C. Cepko (Addgene plasmid no. 11160; 
http://n2t.net/addgene:11160; RRID Addgene_11160). Codon-optimized 
sequences encoding reference, F141C and C477R AMY1 alleles were 
synthesized and ordered as gBlocks from Integrated DNA Technologies 
for cloning into pCAGEN downstream of the CAG promoter. Clones 
were screened for sequence errors before plasmid preparation using 
Plasmid Plus Midi Kit (Qiagen, catalogue no. 12943). Plasmid pUC19 
(New England Biolabs, catalogue no. N3041S) was used as a negative 
control. A total of 15 µg of each plasmid was lipofected into separate 
10 cm plates of HEK293T (Takara, catalogue no. 632180) cells at ~70% 
confluence using 30 µl of Lipofectamine 3000 (Invitrogen, catalogue 
no. L3000015). Authentication of HEK293T was done by morphologi-
cal match for type and verification of SV40T antigen with PCR assay. 
Lack of mycoplasma contamination was confirmed by Takara as well as 
inhouse with MycoAlert Mycoplasma Detection Kit (Lonza, catalogue 
no. LT07-318). Medium was switched to serum-free after 24 h before 
collection of both supernatant and lysate at 72 h post-lipofection.  
A total of 10 ml of supernatant was spun at 1,000g for 10 min to remove 
cells and debris before the addition of 100 µl of Halt Protease Inhibitor 
Cocktail (100×, Thermo Scientific, catalogue no. 78438) and 100 µl of 
EDTA (0.5 M). Cells were washed with ice-cold PBS before the addition 
of cold 1 ml of RIPA Lysis and Extraction Buffer (Thermo Scientific, 
catalogue no. 89900) with 10 µl of Halt Protease Inhibitor Cocktail 
(100×) and 10 µl of EDTA (0.5 M). After sufficient solubilization of the 
cells had occurred, 1 µl of Benzonase Nuclease (250 U per µl, Milipore, 
catalogue no. E1014) and 10 µl of MgCl2 (1 M) were added before incuba-
tion at 37 °C, 500 rpm for 30 min. Lysate was then spun at 10,000g for 
10 min to remove insoluble precipitate. Both supernatant and lysate 
were stored at −80 °C until further use.

Western blot of AMY1 in cell culture supernatant and lysate
A total of 7.5 µl of supernatant or purified lysate was first run denatured 
and reduced in a 10% Mini-PROTEAN TGX Precast Protein Gel (Bio-Rad, 
catalogue no. 4561036) before wet transfer to nitrocellulose membrane 
(120 V, 2 h). After evaluation of equal loading by Ponceau S Staining 
Solution (Thermo Scientific, catalogue no. A40000279), the mem-
brane was blocked for 1 h at room temperature with TBS, 0.1% Tween-20  
and 5% w/v non-fat dry milk before washing three times for 5 min each 
with TBS-T (TBS, 0.1% Tween-20). Amylase antibody (G-10, Santa Cruz 
Biotechnology, catalogue no. sc-46657, lot no. G0324) was used as 
the primary antibody at a 1:200 dilution in TBS-T with 5% w/v milk for 
incubation overnight at 4 °C with rotation. Membrane was washed three 
times for 5 min each with TBS-T before addition of anti-mouse IgG, 
HRP-linked antibody (Cell Signaling Technology, catalogue no. 7076, 
lot no. 39) as secondary at a 1:2,000 dilution in TBS-T with 5% w/v milk 
for 1 h incubation at room temperature with rotation. Membrane was 
washed three times for 5 min each with TBS-T before detection with 
Amersham ECL Prime Western Blotting Detection Reagent (Cytiva, 
catalogue no. RPN2236) (Extended Data Fig. 7a).

Purification of AMY1 reference and F141C protein
Purification of amylase from supernatant was done using glycogen, 
adapted from refs. 82,83. All following steps were conducted on ice or at 
4 °C (rotation and centrifugation). In brief, 10 ml of supernatant was ini-
tially concentrated using prewet 15 ml Amicon Ultra Centrifugal Filter, 
30 kDa MWCO (Milipore, catalogue no. UFC9030) and put up to a total 
volume of 900 µl with PBS. A total 600 µl of cold ethanol was added 
slowly to make 40% ethanol v/v. This was then centrifuged at 10,000g 
for 10 min to remove any insoluble precipitate. To the supernatant, 75 µl 
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of 0.2 M sodium phosphate buffer (pH 8), 75 µl of glycogen (20 mg ml−1, 
Roche, catalogue no. 10901393001) and 100 µl of ethanol were added 
in that order. This was then incubated for 5 min with end-over-end 
mixing before centrifugation at 5,000g for 6 min. The glycogen pellets 
were then washed twice with 10 mM sodium phosphate buffer (pH 8) 
containing ethanol (40% v/v) before resuspension in 100 µl of 50 mM 
MOPS buffer (pH 7, Thermo Scientific, catalogue no. J61821-AK) with 
5 mM CaCl2. These were then incubated at 37 °C, 500 rpm for 30 min 
to allow for glycogen digestion. The above purification procedure was 
repeated as necessary to arrive at purified amylase as evaluated on 10% 
Mini-PROTEAN TGX Precast Protein Gel with InstantBlue Coomassie 
Protein Stain (Abcam, catalogue no. ab119211) (Extended Data Fig. 7b).

Amylase activity assay
Protein was normalized between reference and F141C isoforms by 
densitometric measurement against linear dilution series (r2 = 0.99 
with input). The concentration chosen for the assay was determined 
by having maximal linear activity over the observation window. For 
each technical replicate, 10 µl of reference or F141C amylase enzyme 
diluted in 50 mM MOPS buffer (pH 7), 5 mM CaCl2 and 0.02% w/v BSA 
(New England Biolabs, catalogue no. B9000) was quickly mixed with 
10 µl of BODIPY FL conjugated-starch substrate from EnzChek Ultra 
Amylase Assay Kit (Invitrogen, catalogue no. E33651) in 50 mM MOPS 
buffer (pH 7) with 5 mM CaCl2. The reaction was then maintained at 
20 °C for 2 h in a Bio-Rad CFX384 Real-Time PCR Detection System 
with fluorescence reading taken every minute using FAM fluorophore 
settings with CFX Manager (v.3.1) software. Fluorescence at 30 min rela-
tive to initial reading was used as input to a linear model with allele and 
plate to regress out any run-to-run effects during comparison across 
technical replicates (Extended Data Fig. 7c).

Bacterial genome reference panel for analysing bacterial gene 
dosages
To reduce hypothesis testing burden in association analyses of human 
genetic variants with bacterial gene dosage phenotypes, we restricted 
analyses to a set of 30 bacterial genomes representing highly abundant 
species and species whose abundances we had found to associate with 
human genetic variants. Specifically, we selected 30 bacterial spe-
cies with genomes available in GenBank by including: (1) the five most 
abundant species in SPARK oral microbiomes, (2) species that associ-
ated strongly (P < 4 × 10−11) with at least one human genetic variant and  
(3) the top two associated species for each locus if not already included. 
We substituted Stomatobaculum longum for the related Stomatobacu-
lum SGB5266 which would have been included under (2) but lacked a 
GenBank assembly. We selected a single genome for each of the 30 
species using the following criteria. The SGB centroid was prioritized 
over other genomes if it corresponded to a GenBank assembly. For 
cases in which the centroid was not a GenBank assembly and multiple 
genomes corresponded to GenBank assemblies, the reference genome 
was prioritized if available, or otherwise the highest ranked genome 
among those listed. A list of these species and GenBank assemblies is 
included in Supplementary Table 6. A bowtie2 index was then built 
from these merged genomes.

Measuring bacterial gene dosages using read-depth phenotypes
We computed WGS coverage-derived phenotypes informative of gene 
dosage across each of the 30 bacterial reference genomes by first rea-
ligning unmapped reads from SPARK saliva WGS to the 30 reference 
genomes using bowtie2 (v.2.5.1) with the --very-sensitive flag. These 
alignments were then position-sorted within contigs with samtools 
(v.1.15.1). For each WGS sample, we quantified read depth in 500 bp 
bins tiling each of the 30 bacterial reference genomes using mosdepth 
(v.0.3.6), excluding reads with mapping quality <5. For each sample, for 
each of the 30 bacterial reference genomes, we then median-normalized 
the bin-level read-depth measurements across the 500 bp bins of that 

reference genome to control for species abundance (such that normal-
ized read-depth measurements had a median of 1 among bins corre-
sponding to each species). If a sample had <0.5× median coverage across 
bins corresponding to a given species, we set that sample’s normalized 
read-depth measurements for that species to missing to focus down-
stream analyses on samples with less-noisy measurements. Finally, 
we truncated median-normalized read-depth values to the interval 
[0,1], both to focus on deletions in bacterial genomes and to reduce 
the influence of outlier measurements that might reflect mismapped 
reads (potentially derived from either duplicated genomic regions or 
homologous sequences in microbial species not represented among 
the 30 reference genomes). We reasoned that these bin-level measure-
ments would capture kilobase-scale deletions of bacterial genomes, 
circumventing the need to predefine a set of structural variant regions 
(which was difficult because of the limited sequencing coverage of most 
species). Additional details are provided in Supplementary Note 5.

Testing bacterial gene dosage phenotypes for association with 
host genotypes
We used linear regression to test each of the 11 human genetic variants 
we had found to associate with oral microbiome composition (Extended 
Data Table 1) for association with normalized read depth (truncated to 
[0,1]) in each 500 bp bin of each of the 30 bacterial reference genomes. 
We used an additive model for all variants except FUT2 W154X and 
TLR1 I602S, for which we used a recessive model (corresponding to 
secretor/non-secretor status for FUT2). We took two precautions 
to avoid potential confounders. First, for each of the 30 species, we 
included as covariates the top 20 PCs of the normalized, truncated 
read-depth matrix for that species (running PCA after centring and 
scaling each bin to have a mean of 0 and s.d. of 1 across samples) to 
control for linked gene dosages (for example, differences across strains) 
that could potentially generate non-causal associations in a manner 
analogous to population structure in GWAS (Supplementary Note 5). 
Second, we applied a form of genomic control84 (applied across the 
500 bp bins of each reference genome) to adjust for remaining test 
statistic inflation. Specifically, for each pairing of a species and a human 
genetic variant, we computed the adjustment factor
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across the χ1
2 test statistics for the 500 bp bins of that reference genome, 

where F−1(x) is the inverse cumulative distribution function for a χ1
2 

random variable. The χ1
2 test statistics were then divided by this factor. 

This yielded 208 read-depth bins in 18 species that significantly associ-
ated with at least one of the 11 human genetic variants (FDR < 0.01, Sup-
plementary Tables 7 and 8) and resolved to 68 unique microbial regions 
after merging bins within 1.5 kb of another significantly associated bin 
(Fig. 4b). We verified that the truncated normalized read-depth phe-
notypes involved in these associations were broadly reasonably dis-
tributed (with most bimodal at 0 and 1 and mean between 0.05 and 0.95; 
Supplementary Table 7), such that testing these phenotypes for asso-
ciation with common variants (MAF = 0.08–0.45) using linear regression 
in a cohort of size 12,519 was expected to produce robust test statistics77.

For combinatorial analysis of deletions of the five vad genes in V. 
sp. 3627 that associated in the same direction with FUT2 genotype 
(vadB through vadF) (Fig. 6e), we first selected individuals whose 
oral microbiomes had evidence of near-complete presence (>0.8 
median-normalized coverage) or near-complete absence (<0.2 
median-normalized coverage) of each vad gene (n = 3,081, represent-
ing roughly half of the SPARK samples with coverage of the V. sp. 3627 
genome reaching the >0.5× threshold for analysis). For each common 
combination (>2.5% of selected individuals) of presence/absence status 
of vadB through vadF, the number of individuals with each FUT2 W154X 
genotype were then counted.
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Replication of bacterial gene dosage associations in the All of Us 
cohort
To evaluate the generalizability of the associations we identified in SPARK 
between human genetic variants and bacterial gene dosages, we applied 
the same computational pipeline described above to 10,000 randomly 
selected saliva-derived WGS samples from the AoU v.8 data release. We 
then attempted to replicate the 208 associations (between human genetic 
variants and normalized read-depth measurements in 500 bp bins of 
bacterial genomes) that had reached significance (FDR < 0.01) in SPARK.

AlphaFold3 prediction of protein structures
To predict protein structures for Streptococcus parasanguinis AbpA 
or AbpB (bound to human AMY1), the Veillonella sp. 3627 VadD trimer 
and Streptococcus mitis CrpE, we used AlphaFold3 (ref. 85) for multimer 
prediction with default reference databases and max template date of 
2021-09-29. The TonB domain of AbpB and the signal peptide of VadD 
were excluded for visualization. To minimize the model size, CrpE was 
truncated to the region spanning the CshA NR2 domain to the sixth 
mucin-binding domain (residues 572–2701). Structures were visualized 
with ChimeraX (v.1.9)86 and pLDDT, pTM and ipTM values can be found 
in Supplementary Table 9.

Genetically derived blood typing in SPARK
We assigned blood types to SPARK participants on the basis of 
WGS-derived SNP and indel genotypes using a procedure similar to 
previous work12. The genotype of the rs8176746 missense SNP was first 
used to determine an individual’s dosage (that is, allele count) of type B 
alleles (T allele count) and non-type B dosage (G allele count).

The rs8176719 indel was next used to determine type O1 dosage (dele-
tion allele count), which was subtracted from the non-type B dosage to 
yield non-type B/O1 dosage, as the rs8176719 deletion allele typically 
occurs on haplotypes that would otherwise be type A alleles. Although 
this is true in European, East Asian and American ancestry haplotypes 
in 1KGP populations, in a small fraction of African (3.2%) and South 
Asian (0.2%) ancestry haplotypes, the rs8176719 deletion occurs in 
cis with the type B missense allele. As we found 36 SPARK participants 
who had O1 dosage exceeding non-type B dosage, we subtracted this 
excess from their type B dosages.

The rs41302905 missense SNP was next used to determine type O2 dos-
age (T allele count) and subtracted from the non-type B/O1 dosage to yield 
type A dosage, as it seems to be in cis with type A alleles in all 1KGP popula-
tions. O1 and O2 dosages were then merged to compute type O dosage.

The rs56392308 indel was next used to determine the type A2 dos-
age (deletion allele count) and subtracted from the type A dosage to 
yield type A1 dosage. For seven individuals in which the type A2 dosage 
exceeded type A dosage, five seemed to be on type O alleles and two 
on either type O or type B alleles, so this excess was subtracted from 
their type A2 dosage.

Enrichment of conserved domains in bacterial genes associated 
with secretor status
For each of the bacterial species with adhesin genes in dosage variable 
regions that associated with FUT2 loss of function (Fig. 6a–c,f,g), pro-
tein IDs (WP numbers) for the species were extracted from its RefSeq 
general feature format (GFF) file. Conserved domains (from National 
Center for Biotechnology Information (NCBI) conserved domain data-
base) were identified for each protein using a modified version of the 
provided bwrpsb.pl script (applied to up to 250 proteins at a time).  
A one-sided Fisher’s exact test was used to identify domains enriched 
among proteins encoded by genes within read-depth bins that associ-
ated with FUT2 genotype.

GWAS of read depth in selected microbial genomic regions
We used BOLT-LMM to perform GWAS on the five normalized 
read-depth phenotypes for which we observed the most significant 

associations with human genetic variants (in our targeted analysis of 11 
human genetic variants). Specifically, these phenotypes measured WGS 
read depth in the following 500 bp bins: H. sputorum QEQH01000003.1: 
197,000–197,500, P. nanceiensis KB904333.1: 123,500–124,000, S. mitis 
MUYN01000003.1: 100,000–100,500, S. vestibularis AEKO01000011.1: 
186,000–186,500, V. sp. 3627 RQVG01000009.1: 13,500–14,000. In 
each GWAS, we included as covariates the top 20 PCs of the normal-
ized, truncated read-depth matrix for the species under consideration, 
along with sequencing batch, age, age squared, square root of age, 
sex, percentage of mapped reads and the top ten human genetic PCs.

We also used BOLT-LMM to perform GWAS on normalized read-depth 
measurements in 500 bp bins spanning the genome of R. mucilaginosa 
(the most prevalent species observed in SPARK). To avoid test statistic 
inflation due to non-normality, we first excluded bins for which <10% 
of samples had non-modal read-depth values, leaving 3,441 bins. We 
then rank-based inverse normal transformed these bins (with random 
tie-breaking) to further normalize the phenotypes. We ran BOLT-LMM 
using the same covariates as above.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The following data resources are available by application: UKB (http://
www.ukbiobank.ac.uk/), All of Us Research Program (https://allofus.
nih.gov/) and SFARI SPARK (https://www.sfari.org/resource/spark/). To 
protect participant confidentiality, approved researchers can obtain 
access to the SPARK population dataset described in this study (SPARK 
integrated WGS (iWGS) v.1.1) by applying at https://base.sfari.org. 
Quantifications of microbial abundances in SPARK generated in this 
study can also be obtained from SFARI Base (Dataset DS0000116). 
Summary statistics from GWAS of microbial abundances in SPARK are 
available from the GWAS Catalog under accessions GCST90709872 
to GCST90711133. Summary statistics from mPC-based GWAS of 
oral microbiome composition are available at Zenodo (https://doi.
org/10.5281/zenodo.14559457)87. The following data resources are 
publicly available: Human Microbiome Project (https://hmpdacc.org/), 
human reference genome build GRCh38 (https://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/), 
MetaPhlAn v.Oct22 reference database (http://cmprod1.cibio.unitn.
it/biobakery4/metaphlan_databases/), TOPMed-r3 imputation panel 
variant list (https://imputation.biodatacatalyst.nhlbi.nih.gov/), LD 
score resources https://alkesgroup.broadinstitute.org/LDSCORE/), 
NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and 
NCBI Conserved Domain Database (https://www.ncbi.nlm.nih.gov/ 
Structure/cdd/cdd.shtml).

Code availability
The following publicly available software resources were used: Met-
aPhlAn (v.4.0.6, http://segatalab.cibio.unitn.it/tools/metaphlan/
index.html), DeepVariant (v.1.3.0, https://github.com/google/
deepvariant), GLnexus (v.1.4.1, https://github.com/dnanexus-rnd/
GLnexus), HUMAnN (v.3.8, https://huttenhower.sph.harvard.edu/
humann), GraPhlAn (v.1.1.3, http://segatalab.cibio.unitn.it/tools/
graphlan/index.html), mosdepth (v.0.3.6, https://github.com/brentp/
mosdepth), bowtie (v.2.5.1, https://bowtie-bio.sourceforge.net/bow-
tie2/index.shtml), bcftools (v.1.14, http://www.htslib.org/), samtools 
(v.1.15.1, http://www.htslib.org/), plink (v.1.90b6.26 and v.2.00a3.7, 
https://www.cog-genomics.org/plink/), BOLT-LMM (v.2.4.1, https://
alkesgroup.broadinstitute.org/BOLT-LMM/), qqman (v.0.1.8, https://
cran.r-project.org/web/packages/qqman/index.html), MDMR (v.0.5.2, 
https://cran.r-project.org/web/packages/MDMR/index.html), bedtools 
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(v.2.27.1, https://bed-tools.readthedocs.io/en/latest/), AlphaFold3 
(https://alphafoldserver.com/) and ChimeraX (v.1.9, https://www.cgl.
ucsf.edu/chimerax/). Custom code used to generate results in this study 
is available at Zenodo (https://doi.org/10.5281/zenodo.14559457)87.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Oral microbiome composition changes with host age. 
a, Distribution of the percent of reads not mapping to the human reference 
(GRCh38) across SPARK participants (n = 12,519). The median of 8.39% is indicated 
by the dotted red line. b, Principal coordinate analysis of microbiome profiles 
from the Human Microbiome Project72 together with a randomly selected 
subset of SPARK samples (n = 250). PCoA was performed using Bray-Curtis 
distance on all microbial species profiled in both data sets. The SPARK saliva 
samples cluster with other samples from oral communities. Points in gray  
are samples from Human Microbiome Project sites not listed in the legend.  
c, SPARK samples on a UMAP (Uniform Manifold Approximation and Projection) 
generated from the first 20 principal components of the abundance matrix for 
the 439 most prevalent species fall on a gradient with respect to host age (color 
bar on right). d, The 439 most prevalent species on a UMAP generated from their 

loadings onto the first 20 principal components of the abundance matrix fall 
on a gradient with respect to correlation of relative species abundance with 
host age (color bar on right). e, Among children in SPARK (n = 5,760), a UMAP 
using the same 20 principal components as in b shows minimal stratification by 
autism spectrum disorder case status. f,g, Scatter plots of SPARK participants 
along axes of top genetic principal components. Individual dots are colored 
according to self-reported race/ethnicity for individuals who reported a single 
race/ethnicity. h-k, Change in abundances of Prevotella melaninogenica, 
Streptococcus mitis, Porphyromonas endodontalis, and Neisseria cinerea over 
the age range found in the SPARK cohort (truncated at 60 years old due to limited 
sampling of elderly individuals). Relative abundances were inverse normal 
rank-transformed (y-axis). Red curves indicate medians; shading indicates 
interquartile regions.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Associations of taxon relative abundances, α-diversity, 
and microbial composition principal components with human genetic 
variants. a, Genome-wide associations with relative abundances of 1,262 taxa 
observed in >10% of SPARK samples (n = 12,519). For each genetic variant, the 
most significant p-value is shown (across the 1,262 tests); the red line indicates 
the study-wide significance threshold (p < 4.0x10−11). Protein-altering variants 
and copy number variants of note are highlighted: nonsense (red squares), 
missense (green triangles), and multi-allelic CNVs (blue diamonds). b, Genome-
wide associations with α-diversity (Shannon entropy) in SPARK. c, Quantile-
quantile plot of p-values computed by our mPC-based test for associations 
between human genetic variants and oral microbiome composition (Fig. 2b). 
The genomic inflation factor λGC was calculated as the median chi-square 

statistic divided by F−1(0.5), where F−1(x) is the inverse cumulative distribution 
function for a χ439

2  random variable. d, Associations of 11 lead variants identified 
by the mPC-based test (red) and 1,000 randomly selected variants (black) with 
dissimilarity of relative abundances for the 439 most prevalent species using 
multivariate distance matrix regression (MDMR, y-axis) as compared with  
our mPC-based test (x-axis). e, Analogous to d, for dissimilarity after applying 
the centered log-ratio transform to relative abundance measurements.  
f, Associations of AMY1 copy number (y-axis) with each of the 439 individual 
microbial principal components (x-axis). g-p, Analogous to f, for the other  
10 lead variants identified by the mPC-based GWAS. P-values were computed 
using two-sided linear mixed models (a,b,f-p), one-sided chi-squared test (c; x-axis 
of d,e), or one-sided multivariate distance matrix regression (y-axis of d,e).
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Complex associations of human genetic variation  
at the PRB locus with oral microbiome phenotypes. a, Diploid copy number 
of PRB1 estimated for SPARK participants from WGS read-depth (n = 12,519).  
b, Associations of genetic variants at the PRB locus with relative abundance of 
Stomatobaculum SGB5266. The association of PRB1 copy number is highlighted 
(red point). c, Allelic series of effect sizes of PRB1 diploid copy numbers on 
relative abundance of Stomatobaculum SGB5266 (in s.d. units, n = 12,517).  
d, Partial colocalization of associations of genetic variants at the PRB locus  

with Stomatobaculum SGB5266 relative abundance (-log10(p), x-axis) and oral 
microbiome composition (-log10(p), y-axis). PRB1 copy number (red point)  
and a common PRB4 loss-of-function variant (blue point) appear to deviate 
from a generally concordant pattern of associations, likely reflecting multiple 
causal effects. e, Effect sizes on Stomatobaculum SGB5266 relative abundance 
for each additional copy of PRB1 compared to each functional copy of PRB4 
(n = 12,519). Error bars, 95% CIs in all panels. P-values were computed using  
two-sided linear mixed models (b,d).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Additional information about associations between 
human genetic variants and oral microbial abundance phenotypes.  
a, Stratified LD-score regression coefficients (which quantify evidence of 
enrichment of heritability in regions surrounding genes with tissue-specific 
expression) from S-LDSC analysis of chi-squared statistics from the oral 
microbiome composition GWAS (n = 12,519). Heritability enrichment was 
evaluated for genomic regions defined by 53 tissues from the Genotype-Tissue 
Expression Project (GTEx). b, Effect sizes (in s.d. units) on relative abundance  
of SGB9384 for individuals homozygous for either allele of the TLR1 I602S 
missense variant relative to heterozygotes (n = 12,519). c, Colocalization of 
genetic associations at the PITX1 locus with dentures use (-log10(p), y-axis) and 

oral microbiome composition (-log10(p), x-axis). d, Analogous to c, for the  
FUT2 locus. e, Consistency of effect sizes for 167 significant variant-species 
abundance associations computed with or without applying the centered log-
ratio transform to relative abundance measurements. f, Consistency of effect 
sizes for 167 significant variant-species abundance associations computed 
with or without including ASD status as a covariate. g, Distribution of relative 
effect sizes on microbial species abundances for individuals homozygous for 
the FUT2 secretor allele relative to heterozygotes, across microbial species 
whose relative abundance associated with secretor status (FDR < 0.05). Error bars, 
95% CIs in all panels. P-values were computed using one-sided chi-squared test 
(x-axis of c,d), two-sided linear regression (y-axis of c,d) or one-sided t-test (g).
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Extended Data Fig. 5 | Phyletic stratification of effects of two human genetic 
variants on relative abundances of oral microbial species. a, Positive 
correlation of relative abundance of the Actinobacteria phylum relative to  
the Firmicute phylum across saliva samples from SPARK participants (n = 12,519). 
b, Unsigned effect sizes for associations of secretor status (based on FUT2 
W154X, using a recessive model) with relative abundances of the 439 most 
prevalent microbial species (y-axis) versus phylogenetic distance from 
Haemophilus sputorum (x-axis). c, Analogous to b, for Granulicatella SGB8239. 
d, Signed effect size of associations of secretor status with relative abundances 
of microbial species (oriented relative to the effect direction for H. sputorum) 
(y-axis) versus phylogenetic distance from H. sputorum (x-axis). e, Analogous to 
d, for G. SGB8239. f, Microbial taxa whose abundance associated with the index 

variant at the HECTD2/PPP1R3C locus (FDR < 0.1) shown on the phylogenetic 
tree of 439 species (red, taxa whose relative abundances increased with the 
reference allele; blue, taxa whose relative abundances decreased with the 
reference allele). Two significantly-associated phyla (Firmicutes and Actinobacteria) 
are highlighted with yellow sectors. At the species level (outermost circle),  
dot sizes increase with statistical significance. g, Analogous to b, for Granulicatella 
adiacens with the HECTD2/PPP1R3C index variant. h, Analogous to g, for 
Streptococcus vestibularis. i, analogous to d, for G. adiacens with the HECTD2/ 
PPP1R3C index variant. j, analogous to i, for S. vestibularis. For b-e, g-j, the red 
line indicates the median effect size, and the shaded region indicates the 
interquartile range. P-values were computed using two-sided Pearson’s 
product-moment correlation (a) or two-sided linear regression (b-e, g-j).
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Extended Data Fig. 6 | Genotyping and mutability of AMY1 copy number 
and replication of associations with oral health. a, Estimated diploid copy 
number of AMY1 for SPARK participants (n = 12,519). b, Concordance of AMY1 
copy number estimates between 5,149 sibling pairs in the UKB cohort that 
share both haplotypes identical-by-descent (IBD2) in the region surrounding 
the amylase locus. Among the 5,149 IBD2 sibling pairs, 13 had copy number-
discordant calls (red points) that tended to differ by two copies (11/13), likely 
corresponding to de novo duplication or deletion of a copy of the common 
structural cassette containing two AMY1 genes in an inverted orientation  
to each other (Fig. 3a). Several IBD2 sibling pairs with AMY1 copy number 
estimates that differed by close to 1 copy appeared more likely to reflect 

uncertainty in copy number estimates as they lacked a corresponding AMY2A 
duplication or deletion that would be expected to accompany a duplication or 
deletion of a single copy of AMY1. This gives an estimated germline mutation 
rate of 6.3x10−4 mutations/meiosis ([3.5x10−4,11.1x10−4], 95% CIs, similar to 
recent estimates from haplotype coalescent trees46), exceeding the mutation 
rate of most short tandem repeats88. c, Analogous to a, for the AoU cohort 
(n = 245,377). d, Odds ratios for risk of complete tooth loss in AoU (n = 230,002) 
per AMY1 diploid copy number. e, Analogous to d, for having caries. f, Odds 
ratios for risk of dentures use in UKB (n = 418,039) per AMY2A diploid copy 
number. g, Analogous to f, for AMY2B diploid copy number. Error bars, 95% CIs 
in all panels. P-values were computed using two-sided linear regression (d,e).
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Extended Data Fig. 7 | Functional assays of AMY1 coding variation, 
consistency of microbiome associations, and lack of copy number 
associations with BMI in AoU. a, Immunoblotting for amylase transgenically 
expressed in HEK293T cells. Amylase (~56kD) is found in the supernatant of 
cells transfected with the reference sequence of AMY1 (lane 1) and AMY1 F141C 
(lane 2), but not AMY1 C477R (lane 3) or a control plasmid (lane 4). The glycogen-
purified protein is recognized by anti-amylase (lane 5). Amylase is found in the 
lysate of cells transfected with the reference sequence of AMY1 (lane 6), AMY1 
F141C (lane 7), and less abundantly in cells transfected with AMY1 C477R (lane 8), 
but not a control plasmid (lane 9). Cross-reactive protein (~50kD) can be seen in 
the lysate of all samples and smaller AMY1 fragments in lanes containing AMY1. 
These results were replicated in 3 independent transformations with similar 
results. b, Glycogen-purified supernatant from cells transfected with the 
reference sequence of AMY1 (lane 1) and AMY1 F141C (lane 2), but not AMY1 
C477R (lane 3) or a control plasmid (lane 4) contains a single protein band at 
~56kD. These results were replicated in 3 independent transformations with 
similar results. c, Starch degradation is similar between equivalent mass 
dilutions of the reference amylase isoform and AMY1 F141C (n = 32 technical 
replicates for each allele). Starch degradation was measured as change in FAM 
relative fluorescence units over 30 min (y-axis) after addition of diluted AMY1 

to quenched starch substrate. Centers, medians. d, Comparison of effect sizes 
for AMY1 copy number versus AMY1 C477R copy number on relative 
abundances of 16 bacterial species (from Fig. 3b) and on risk of dentures  
use (blue dot). For some species (e.g., Stomatobaculum SGB5266), the relative 
effect size of AMY1 copy number versus AMY1 C477R copy number on abundance 
is similar to this ratio for dentures use (blue line), whereas for others, it is not 
(e.g. Prevotella pallens). e, Concordance of effect size estimates for AMY1 copy 
number on relative abundances of 439 microbial species in adults (x-axis) and 
unrelated children (y-axis). Species whose abundances associated significantly 
with AMY1 copy number are indicated in darker gray (FDR < 0.05) or black 
(Bonferroni p < 0.05). f, Effect sizes on BMI per AMY1 copy number in AoU 
(n = 219,879). The line drawn is the best fit across AMY1 copy numbers. As a 
positive control, we confirmed that the BMI phenotype we tested (see Methods) 
associated strongly with the BMI-associated SNP rs1421085 at FTO89 (p = 3.72 × 10−140). 
g, Analogous to f, for the African/African American ancestry subset of AoU 
participants (n = 49,296, p = 0.25). h, Analogous to f, for the American Admixed/ 
Latino ancestry subset of AoU participants (n = 38,788, p = 0.01). i, Analogous 
to f, for the European ancestry subset of AoU participants (n = 122,577, p = 0.66). 
Error bars, 95% CIs in all panels. P-values were computed using two-sided t-test (c), 
two-sided linear mixed models (e), or two-sided linear regression (f-i).

https://www.ncbi.nlm.nih.gov/snp/?term=rs1421085
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Extended Data Fig. 8 | Pathway abundance associations and details of gene 
dosage associations. a, Effect sizes of AMY1 diploid copy numbers on the 
relative abundance of reads mapping to genes in the tricarboxylic acid cycle 
(TCA) pathway across microbial species. b, Associations (-log10(p), x-axis)  
of the relative abundance of reads mapping to each of 2,416 Haemophilus 
sputorum gene families with FUT2 secretor status. Read depth measurements 
were inverse normal transformed across samples for each gene. Gene families 
generally fell into two modes, one group not associated with FUT2 secretor 
status and another that associated at significance similar to that of the relative 
abundance of H. sputorum. One outlier (indicated with the red arrow) associated 
much more strongly and corresponds to a gene encoding a protein with 
trimeric autotransporter adhesin domain annotations (UniParc ID J5HXA9).  
c, Associations of deletions in the genome of Streptococcus parasanguinis  
(as estimated by normalized coverage) with AMY1 copy number (n = 12,340). 
Shading indicates the two assembled contigs of the reference genome. The two 
significant associations (FDR < 0.01) overlap genes encoding amylase-binding 
proteins, abpA and abpB. d, Allelic series of effect sizes of AMY1 copy number 
on normalized coverage (n = 12,026) in the 500 bp bins overlapping abpA 
(orange) and abpB (green). e, Effect sizes of AMY1 diploid copy numbers on 
relative abundance of Streptococcus parasanguinis (n = 12,487). f, Protein-
protein interaction between human AMY1 (purple) and S. parasanguinis AbpA 
(orange) predicted by AlphaFold3. AMY1 residue F141 is highlighted in red.  

g, Analogous to f, for S. parasanguinis AbpB (green). h, Replication of 208 
associations between human genetic variants and normalized read-depth 
measurements in 500 bp bins of microbial genomes in the AoU cohort 
(comprised of individuals age 18 or older). Effect sizes estimated in AoU 
participants (n = 10,000, y-axis) are plotted against effect sizes estimated in 
SPARK (n = 12,519, x-axis). Dots correspond to the 208 associations and are 
colored according to the human genetic locus involved, as in Fig. 4b. i, Effect 
sizes of FUT2 W154X genotype on normalized coverage at bacterial genes 
encoding proteins with YadA-like (adhesin) domain annotations (n = 7419, 
Veillonella sp. 3627; n = 8153, Haemophilus sputorum; n = 7456, Haemophilus 
parahaemolyticus). Colors indicate the effect direction of FUT2 genotype on 
the relative abundance of each species (red, increasing with functional copies 
of FUT2; blue, decreasing with functional copies of FUT2). j, Correlation matrix 
of normalized coverage in the region of the V. sp. 3627 genome surrounding 
vadD and vadE revealed a linked deletion to vadE that contained vadC and 
nearly passed FDR < 0.01 (p = 3.32x10−6) in association with FUT2 W154X 
genotype, causing samples with vadE to tend to also contain vadC (Fig. 6d) and 
possibly suggestive of the event introducing vadD occurring after the one that 
produced vadC and vadE. Arrows indicate vad gene locations. Error bars, 95% 
CIs in all panels. P-values were computed using two-sided linear mixed model (a,e) 
or two-sided linear regression (b,c). Effect sizes were computed with two-sided 
linear regression (h,i).

https://www.uniprot.org/uniprot/J5HXA9


Extended Data Fig. 9 | Left breakpoints of deletions in the genome of 
Haemophilus sputorum that contain the hadA gene are bimodal.  
a, Coverage of the QEQH01000003.1 contig in the Haemophilus sputorum 
genome for individuals with distinct left breakpoints of deletions containing 
hadA. b, Distribution of left breakpoints for the 200 individuals with highest 
genomic coverage of H. sputorum who had strong evidence of the deletion 
containing hadA (<0.1 median normalized coverage at the strongest associated 
bin). For each individual, mosdepth was run to measure per-base depth,  
and left and right breakpoints were identified as the first or last base with 10 
consecutive zeros, respectively. c, Genome-wide associations for normalized 
read-depth in the 500 bp bin of Haemophilus sputorum QEQH01000003.1: 

197000-197500. d, Analogous to c, but for Prevotella nanceiensis KB904333.1: 
123500-124000. e, Analogous to c, but for Streptococcus mitis MUYN01000 
003.1:100000-100500. f, Analogous to c, but for Streptococcus vestibularis 
AEKO01000011.1:186000-186500. g, Analogous to c, but for Veillonella sp. 
3627 RQVG01000009.1:13500-14000. h, Genome-wide associations for 
normalized read-depth in 500 bp bins spanning the Rothia mucilaginosa 
genome. For each human genetic variant, the most significant p-value is shown 
(across all 500 bp bins), with the red line indicating the study-wide significance 
threshold (p < 1.5×10−11). P-values were computed using two-sided linear mixed 
models (c-h).
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Extended Data Table 1 | Eleven loci at which human genetic variants associate with oral microbiome composition

MAF, minor allele frequency. pmicrobiome, p-value for association with oral microbiome composition in SPARK. pdentures, p-value for association with dentures risk in UKB (with a proxy variant indicated 
in parentheses for two variants); nominally significant associations (pdentures < 0.05) are indicated in bold.
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