Article

Human and bacterial genetic variation shape
oral microbiomes and health

https://doi.org/10.1038/s41586-025-10037-7

Received: 19 January 2025

Accepted: 10 December 2025

Published online: 28 January 2026

Open access

M Check for updates

Nolan Kamitaki'***5¢*, Robert E. Handsaker®**°, Margaux L. A. Hujoel'?%"5,
Ronen E. Mukamel'??, Christina L. Usher®, Steven A. McCarroll**%'°* & Po-Ru Loh"*3*

Human genetic variation influences all aspects of our biology, including the oral
cavity" 3, through which nutrients and microbes enter the body. Yet it is largely
unknown which human genetic variants shape a person’s oral microbiome and
potentially promote its dysbiosis®>>. We characterized the oral microbiomes of 12,519
people by re-analysing whole-genome sequencing reads from previously sequenced
saliva-derived DNA. Human genetic variation at 11loci (10 new) associated with
variation in oral microbiome composition. Several of these related to carbohydrate
availability; the strongest association (P= 3.0 x 107%%) involved the common FUT2
W154X loss-of-function variant, which associated with the abundances of 58 bacterial
species. Human host genetics also seemed to powerfully shape genetic variation in
oral bacterial species: these 11 host genetic variants also associated with variation of
gene dosages in 68 regions of bacterial genomes. Common, multi-allelic copy number
variation of AMYI, which encodes salivary amylase, associated with oral microbiome
composition (P=1.5 x107%*) and with dentures use in UK Biobank (P=5.9 x 107,
n=418,039) but not withbody mass index (P=0.85), suggesting that salivary amylase
abundance impacts health by influencing the oral microbiome. Two other microbiome

composition-associated loci, FUT2 and PITX1, also significantly associated with
denturesrisk, collectively nominating numerous host-microbial interactions that
contribute to tooth decay.

When Antonie van Leeuwenhoek first observed bacteria as ‘animal-
cules’ in scrapings from his teeth in the seventeenth century, one of
his firstinquiries involved the extent of their variation among people®.
Oral microbiomes are now known to vary abundantly across people”®,
and twin studies have shown that some of this variationis heritable' .
However, few human genetic polymorphisms have been associated
with the abundances of specific oral microbial species®; study sizes
sofar (n<3,000) have provided limited power to detect robust genetic
effects. Larger genome-wide association studies (GWAS) of the gut
microbiome (n=5,959-18,340) have consistently replicated two effects
of variation at the LCT and ABO loci on gut microbial abundances™™,
and larger GWAS of oral microbiomes might yield similar discovery.

Oral pathologies, such as dental caries, result from dysbiosis of the
oral microbiome™. Untreated pathologies can progress to oral infec-
tions which carried high mortality rates before modern dentistry and
antibiotics®. Susceptibility to caries and other oral pathologies is also
strongly influenced by genetics'", and GWAS have identified 47 loci
harbouring such genetic effects'®. However, whether these or other
geneticeffects act by modulating the composition of the oral microbi-
omeis at present unknown. Identifying such interactions could point
to microbial drivers of cariogenesis’.

Given the effects of human hosts and resident microbes on each
other’s survival and evolutionary trajectory, the human microbiome
is an example of symbiosis'>*. The stability of the gut microbiome
in individuals?, its codiversification with humans? and abundant
structural variation of its microbial genomes? all suggest intricate
genetic interactions between microbiomes and their human hosts,
whereby microbial genomes adapt to genetic variation across peo-
ple. A recently observed example of such an interaction with the gut
microbiomeis astructural variantin the Faecalibacterium prausnitzii
genome that includes genes encoding an N-acetylgalactosamine
(GalNAc)-metabolizing pathway and interacts with human ABO varia-
tion*. Whether such specific co-adaptation commonly occursin oral
microbiomes remains an open question.

Oral microbiome profiles 012,519 people

To create adataset suitable for exploring variation in the oral microbi-
ome and the way it is shaped by human genetic variation, we analysed
DNA sequencing reads previously generated from whole-genome
sequencing (WGS) of saliva samples from 12,519 participants in the
Simons Foundation Powering Autism Research (SPARK) cohort®
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Fig.1|Oral microbiomesin12,519 individuals measured by WGS of saliva
samples. a, Generation of paired datasets of human genetic variation and oral
microbiome composition from WGS of saliva samples from the SPARK cohort
(n=12,519). Human genetic variants were previously called with DeepVariant
and relative abundances of microbial species were estimated with MetaPhlAn 4
(ref.29) from sequencing reads that did not map to the human genome.

b, Phylogenetictreebased ongenomic divergence among 439 microbial species
observedin>10% of SPARK participants. Phylaareindicated by dot colour and
generawithmorethanfive speciesareindicated with labelled grey sectors.

¢, Contributions of age, sex, ASD case status and genetic ancestry principal
components (PC1through PCS5) to variationinoral microbial species abundances.

(Fig. 1a), building on previous work?*?. WGS captured substantial
non-human genomicinformation®, withamedian of 8.4% ([4.6%,14.7%],
quartiles) of sequencing reads not mapping to the human reference
genome (Extended DataFig.1a). Many of these unmapped readsinstead
mapped to clade-specific marker genes in microbial genomes?®, ena-
bling quantification of relative microbial abundances. This produced
thelargest collection of oral microbiome profiles (n =12,519) generated
so far, measuring the abundances of 645 microbial species present at
>1% frequency, including 439 species (spanning 13 phyla, including one
fungal commensal, Malasseziarestricta) commonly observed in SPARK
(>10% of participants) (Fig. 1b, Extended Data Fig. 1b and Supplemen-
tary Table1). Comparing these profiles acrossindividuals showed that
age wasamajor driver of interindividual variation in oral microbiome
composition, unlike autism spectrum disorder (ASD) case status, sex
and genetic ancestry (Fig. 1c and Extended Data Fig. 1c-g). Across the
lifespan representedin SPARK (age 0-90 years), mean species diversity
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Foreach factor, the fraction of variance in species abundance explained by the
factor was computed for each of the 439 species, and the box and whisker plot
shows the distribution of this quantity across the 439 species. ASD status
explained amedian fraction of variance of 0.002. Boxes span quartiles; centres
indicate medians and whiskers are drawn up to1.5x the interquartile range.

d, Species diversity in the oral microbiome as afunction of hostage. The red
lineindicates median Shannon entropy and the shaded regionindicates the
interquartile range. Oral microbial diversity increases substantially over thefirst
fewyears oflife, plateaus and then modestly declinesinlateadulthood.Imagesina
werereproduced from Pixabay (https://pixabay.com) under a CC01.0 Universal
Public DomainLicence.

sharplyincreased inthefirst few years of life (representing when the oral
cavityis colonized, diet diversifies and primary teeth are acquired) and
thendecreased slowly with age® (Fig.1d). Individual species exhibited
vastly different abundance trajectories over the lifespan, with some
observed predominantly inadults and others predominantly inchildren
(Extended Data Fig. 1h-k).

Human genetics shapes oral microbiome composition

To identify human genetic variants that influence interindividual
differences in the abundances of microbial taxa, we first tested the
abundances of taxa detectable in >10% of participants for association
with common human genetic variants, accounting for family structure
using a linear mixed model***'. Human genetic variants at seven loci
associated with the abundance of at least one taxon at study-wide
significance (P< 4.0 x 10™; Extended DataFig. 2a), with only one locus
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(SLC2A9) previously identified*. As several loci associated with the
abundances of many species (Supplementary Tables 2 and 3) and none
associated with a-diversity (Extended Data Fig. 2b), we developed a
statistical test to capture pleiotropic effects on many species in an
interdependent microbial community*?*, using principal compo-
nent analysis (PCA) to enable efficient genome-wide association test-
ing (Fig. 2a and Methods). Similar to a recent approach for GWAS on
high-dimensional cell state phenotypesin single-cell RNA-seq data®,
this approach also reduces multiple-testing burden by testing each
genetic variant only once.

Applying this approach to SPARK identified four additional human
genomic loci (11 total) at which common genetic variation associ-
ated with oral microbiome composition (P <5 %1075 Fig. 2b and
Extended Data Table 1). The principal component (PC)-based test was
well-calibrated (Extended Data Fig. 2c) and top signals were confirmed
by multivariate distance matrix regression®*** (Extended DataFig. 2d,e).
The association signals tended to distribute across many microbial
PCs (mPCs; Extended Data Fig. 2f-p), suggesting that human genetic
variants subtly influence many axes of microbial community coordina-
tion. Among the ten new loci, eight implicated genes—and in several
cases, specific variants—with readily interpretable functions that could
explain their associations with microbiome composition.

« Threeloci contained genes encoding highly expressed salivary pro-
teins: salivary amylase (encoded by AMYI; P=1.5 x 107, top asso-
ciation), submaxillary gland androgen-regulated proteins (SMR3A
and SMR3B; P=1.4 x10™?) and basic salivary proline-rich proteins
(PRBI-PRB4; P=1.1x10""). These associations seemed to be driven
mainly by genetic variants that modify gene expression or copy num-
ber (Extended Data Table 1, Extended Data Fig. 3 and Supplemen-
tary Note 1). Consistent with these results, heritability-partitioning
analysis® indicated that genetic effects on oral microbiome composi-
tion are enriched at genes specifically expressed in salivary glands
(P=0.02, Extended Data Fig. 4a).

Twolocicontained genes with established roles inimmune function:
the HLA class 1l genes, which encode proteins that present peptidesin
adaptiveimmunity, and TLRI, encoding Toll-like receptor 1, that binds
bacterial lipoproteins ininnateimmunity. The strongest association
at TLRI involved a missense variant (rs5743618; P= 6.2 x 10'8) that
produces the 1602S substitution known toinhibit trafficking of TLR1
to the cell surface, reducing immune response in a recessive man-
ner®®*, Consistent with these reports, 1602S associated recessively
with microbial abundances (P= 6.7 x10%; Extended Data Fig. 4b).
Two other loci, ABO and FUT2, encode glycosyltransferases that
together determine expression of histo-blood group antigens on
epithelial cells and secreted proteins (in addition to the well-known
role of ABO in determining blood type). This broader role is impor-
tant to microbial species that interact with mucosal surfaces, such
that both loci are known to influence the gut microbiome' ™, with
some bacterial species using A-antigen saccharides asacarbohydrate
source®. The variants at ABO and FUT2 that associated most strongly
with oral microbiome composition were rs2519093 (P=9.5x107%),
which tags the Al blood group*’, and rs601338 (P =1.6 x 10! addi-
tively, P=3.0 x 10" recessively), the common FUT2 W154X nonsense
variant that (inhomozygotes) produces the non-secretor phenotype
in which bodily fluids lack histo-blood group antigens*..
Associations of variants at PITXI with oral microbiome composi-
tion colocalized with previously reported associations of these vari-
ants with dental caries and dentures use (2= 0.99 between the top
microbiome-associated variant (rs3749751; P=3.0 x 10 ") and the top
dentures-associated single nucleotide polymorphism (SNP) at PITXI;
Extended DataFig. 4c; ref.18). PITX1is adevelopmentally expressed
gene which seems to have arole in mandibular tooth morphogen-
esis (based on aknockout mouse model)*, suggesting that common
genetic variation at P/ITXI might influence tooth morphology and
through it, oral microbiota and dental health.

The shared associations of genetic variants at PITX1 with both oral
microbiome composition and dental health phenotypes suggested
that other genetic influences on the oral microbiome might similarly
influence dental health. To explore this, we performed GWAS of den-
tures use (a proxy for tooth loss and caries) in the UK Biobank (UKB)
cohort (n=75,156 cases, n = 342,883 controls)*. Three loci—AMY1, FUT2
and PITXI—contained variants that associated (P< 5 x 1078) with both
oral microbiome composition and dentures use, and at each of these
loci, the association patterns colocalized (Fig. 2b and Extended Data
Fig. 4c,d). Moreover, at 8 of the 11 loci influencing oral microbiome
composition, the most strongly associated variant also exhibited at
least a nominal association (P < 0.05) with dentures risk (Extended
DataTable1), suggesting that host genetic effects on oral microbiome
composition often have downstream effects on oral health.

Most of these genetic associations seemed to involve effects of
human genetic variation on the abundances of several bacterial spe-
cies, with 167 species—genotype pairs reaching FDR < 0.05 across the
11loci (Supplementary Table 3). These associations were not driven
by compositional effects or by ASD status (Extended Data Fig. 4e,f).
The strong associations at AMY1 and FUT2 offered an opportunity for
detailed investigation of how genetic variation at these lociinfluences
oral microbiomes and oral health. FUT2 W154X associated with the
abundances of 58 of the 439 species (Fig. 2c-e). FUT2 seemed to be
nearly but not completely haplosufficient in these associations, with
slightly weaker abundance-modifying effects observed among secre-
tor individuals with a heterozygous W154X genotype compared to
those with two wild-type alleles (Fig. 2d and Extended Data Fig. 4g).
For several pairs of closely related species, FUT2 W154X associated with
increased abundance of one species and decreased abundance of the
other (Fig. 2e and Extended Data Fig. 5), possibly reflecting competition
between closely related species for ecological niches.

Effects of complex variation at the amylase locus

AMYI encodes salivary a-amylase, an enzyme that breaks down dietary
starches into simple sugars. The dramatic copy number expansion
of the amylase locus in humans and other animals** has attracted
much interest for its theorized role in facilitating recent adaptation
tostarch-based diets* ¥, but its reported association with human body
mass index (BMI)*® and type 2 diabetes*’ has been controversial***,
AMY1 copy number genotypes in SPARK and UKB (estimated from WGS
depth-of-coverage) showed extensive polymorphism**° (2-32 copies
per individual; Fig. 3a and Extended Data Fig. 6a) and high mutability
(6.3 x107*(3.7 x10™-11x107*,95% confidence interval (Cl)) mutations
per haplotype per generation, similar to an estimate using coalescent
modelling*®; Extended Data Fig. 6b).

Copy number variation of AMY1generated the strongest association
of genetic variation at the amylase locus with oral microbiome compo-
sition (P=1.5 x107°*; Fig. 2b) and associated with the abundances of 42
bacterial species (FDR < 0.05,22 speciesat FDR < 0.01withP=5.1x10"%
to P=0.00047; Fig. 3b). The abundances of these species changed
stepwise with AMYI copy number, generating alongallelic series with
steadily increasing or decreasing abundances (Fig. 3c), congruent with
the effect of AMYI copy number on the abundance of secreted salivary
amylase**2, Two of these associations seemed to confirmassociations
previously observed in smaller candidate gene studies**** (Supple-
mentary Note 2).

AMY1 copy number also associated strongly with dentures use in
UKB (P=5.9 x10%, surpassed only by the PITXI locus; Fig. 2b). Each
additional copy of AMY1 associated witha2.1% (1.7%-2.4%) increase in
the odds of having dentures, corresponding to al.4-fold range in odds
across people with 2-16 AMY1 copies (Fig. 3d). This association repli-
cated in the All of Us (AoU) cohort™ (n=230,002; P=3.5 x 10 for tooth
loss, P=6.1x107 for caries; Extended Data Fig. 6¢-e). Surprisingly,
AMYI copy number associated with decreased risk of bleeding gumsin
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Fig.2|Associations ofhostgenetic variants with oralmicrobiome composition
overlaprisklocifor denturesuse. a, Convertingrelative abundances of

M microbial species (left) into Morthogonal PCs (middle) allows combining
chi-squared statistics foragiven genetic variant (one per PC) into asingle
chi-squared test statistic with M degrees of freedom (right). b, Genome-wide
associations with oral microbiome compositionin SPARK (top, n=12,519) and
denturesusein UKB (bottom, n=418,039). Nonsense (red squares), missense
(green triangles) and multi-allelic copy number variants (CNVs) (blue diamonds)
are highlighted. ¢, Associations of variants at the FUT2locus with relative
species abundance for the five microbial species with the strongest associations
(leftfive plots); colour indicates effect direction (plots with red points correspond
to species which are more abundantin people with functional FUT2 (that s,
secretors); blue, less abundant) and colour saturationindicates linkage
disequilibrium withrs601338 (FUT2 W154X). Association strengths from

the combined test for association with oral microbiome composition show
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much greater statistical power (rightmost plot). d, Effect sizes (ins.d. units)
onrelative abundance of microbial species for individuals heterozygous for
functional FUT2 (light-filled circles) and for homozygotes (dark-filled circles)
relative to those with no functional FUT2 (empty circles). For each effect direction,
the ten mostsignificantly associated species are shown. Pvalues are froma
recessive model of FUT2 W154X genotype. Error bars, 95% Cls. e, Microbial
taxawhose abundance associated with FUT2genotype (FDR < 0.1) shown on
the phylogenetictree of 439 species (red, taxawhose relative abundances
increased with functional FUTZ2; blue, decreased). Two significantly associated
phyla (Firmicutes and Actinobacteria; P=1.2 x 10 *and 4.0 x 1073, respectively)
are highlighted withyellow sectors. At the species level (outermost circle), dot
sizesincrease with statistical significance. P values were computed using
one-sided chi-squared test (top half, b), two-sided linear regression (bottom
half, b) or two-sided linear mixed models (c,d).
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Fig.3|Complex genetic variation of the salivary amylase locus affects the
abundance of several oral microbial species and oral health. a, Distribution
of AMY1diploid copy number estimates for UKB participants (n =490,415). Inset,
diagram of the amylase locus in the human reference genome withcommon
variable cassettes*®*. b, Effect sizes onrelative species abundance for the

16 species most strongly associated with host AMYI copy number (FDR < 0.01).
c,Allelicseries of effect sizes of AMYI copy number genotypes on normalized
abundances of Prevotella pallens and TM7 phylum sp. oral taxon 351 (n=12,487).
d, Odds ratios for risk of dentures use in UKB (n = 418,039) across copy number
genotypes of AMY1 (purple), AMY1F141C (red) and AMYI C477R (blue). e, Odds
ratios for risk of bleeding gums in UKB (n =418,039). f, Associations of variants
atthe amylase locus with dentures use. Plotted variantsinclude paralogous
sequence variants (PSVs) inthe AMY1region (for which copy numbers of minor

Nature | www.nature.com | 5



Article

a Align saliva WGS reads to microbial

reference genomes (30 species) Deletion Pf 1.5kb

o=N
L

Test for association

AG of host genotype

Normalized coverage
\

Py =B | ag |+¢& With WGS coverage
// N\ G in bacterial genomic
/{ \\ | GG bins (measuring
\ ] structural variation)
1 AA
\\ /// — v
Nt 28 38 48 58 68
Microbial contig position (kb)
b
3 * * * * . % -
E :
2 1904 Locus
g 165
© 140 ® ABO
9 115 ® AMY1
= 90 4 ® FUT2
S ® HECTD2
2 65 | MHC
. .
o . RAB27B
S& 4o . ® SLC2A9
R - R
o 5 35 L4 ° TLR1
%_c') :232 ] ¢ ° Significance
= 1 ° . « Bonferroni-
o 20 . ° adjusted P < 0.05
g 154 . 4 FDR < 0.01
b= ° . ®e ° )
» 10 4 © ° ©
c 9 ° ° .
K] 8 1 ° o ° °,
kS| 714 AL A A, A, A AL A, A A A
o 6 N A A A A
% 5 0~ > o9 w v n o 1%} T © TT T © TT 9.0 (2%} [2R%) [2X &) (2 %) ~
< §3553§ 23 3% S5 585538 sggcgss 32 gg 22 2% ]
SZEEFEO €S8 €c £5 s=SD RS 25282 3s o & 35S 3w o= S
EOSS88 oS Q96 QgL 98 8% 98 92 ®TRF O% S o> 9 Q3
8§=09L8s 0% 903 O T20>3dJ QATPos I3} O Qe o2 S
258 58 E£Eg E£fF £33 2239 2R 88w =28 S o8 o8 B [
SoQ & @ 3S a°? Q3 TS L5537 98 IS 38 B« 39 @
5’ @ sy &% & N S 22 3§ & gL &% &> =
T O 3 & 5 T s 3 s ES S =8 Ed = I
I Q g 2 3 7] 7 5L Ho H 5
g g & 3

Fig.4 |Numerousdeletionsinoral microbialgenomesare selected for

by human genetic variation. a, Approachtoidentify deletions in microbial
reference genomes that associate with 11 human genetic variants that influence
oral microbiome composition (Extended Data Table 1). Sequencing reads were
remapped to 30 microbial reference genomes, after which normalized WGS
coverage was computed across 500 bp genomicbins and truncated toamaximum

UKB (P=1.5x107%; Fig. 3e), even though gingivitis is considered a risk
factor for toothloss®**, However, the bleeding gums and dentures use
phenotypes had little genetic overlap™ and were slightly negatively
correlated (r=-0.07, s.e. 0.0015), suggesting largely independent
pathology. These associations were specific to AMYI; the copy number
of AMY2A and AMY2B (encoding pancreatic amylase) did not associate
with dental phenotypes (Extended Data Fig. 6f,g).

Beyond the effect of AMYI copy number, two missense variants in
AMYI carried by 1%-2% of UKB participants seemed to confer the largest
increasesin dentures risk of allcommon variantsin the humangenome
(OR =1.59 (1.46-1.73) per copy of AMYI F141C (P=2.5 x 102); OR = 1.16
(1.10-1.23) per copy of AMYI C477R (P=8.3 x 10°®); Fig.3d). These two
paralogous sequence variants were typically carried on haplotypes
containing three or four copies of AMYI and produced the strongest
conditional associations with dentures use in two stages of stepwise
conditional analysis (Fig. 3f~h). The AMY1 F141C and C477R variants
seemed to conferanincreasein denturesrisk equivalenttoincreasing
AMYI copy number by 22.4 (18.3-26.5) and 7.3 (4.6-9.9) copies, respec-
tively (Fig. 3d). This apparent gain-of-function effect was surprising, as
bothvariants were predicted to be damaging (PolyPhen-2% score of 1.0).
Analyses of amylase protein expression did not detect effects of
AMYI F141C on enzymatic activity (Supplementary Note 3, Extended
Data Fig. 7a-c and Supplementary Fig. 1). The extended allelic series
of AMYI1 copy number and missense variants associated with dentures
use provided aset of geneticinstruments for evaluating which bacterial
species might causally contribute to tooth loss (Fig. 3i and Extended
DataFig. 7d). Reverse causality (that is, dentures use causing changes
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of1.b, Associations between microbial gene dosage (based on normalized WGS
coverage) and human genetic variants. Each dotindicates a microbial genomic
regionthatassociated withatleast one humangenetic variant (circles, Bonferroni-
adjusted P<0.05; triangles, FDR < 0.01). Dot colours indicate human lociand
regions thatassociated with more than one human locus are marked with an
asterisk (top). P values were computed using two-sided linear regression (b).

in the oral microbiome that associate with AMY1 variants) seemed to
be unlikely based on the concordance of effect sizes in children and
adults (Extended DataFig. 7e).

The UKB and AoU datasets also enabled rigorous evaluation of
whether or not AMYI copy number influences BMI among mod-
ern humans. AMYI copy number did not associate with BMI in UKB
(n=418,150, P=0.85; Fig. 3j), AoU (n =219,879, P= 0.30, Extended Data
Fig. 7f) or any genetic ancestry in AoU (Extended Data Fig. 7g-i).

Genetic associations with bacterial gene dosage

Toidentify molecular mechanisms by which human genetic variation
engages the oral microbiome, we next tested whether the microbial
species for which abundances associated with each of the 11loci might
be united by shared biochemical pathway use*® (Extended DataFig. 8a,
Supplementary Tables 4 and 5and Supplementary Note 4). This analysis
identified an adhesin gene in Haemophilus sputorum at which sequenc-
ing coverage associated particularly strongly (relative to elsewhere
in the H. sputorum genome) with FUT2 W154X, suggesting that the
adhesininteracts with FUT2-dependent glycosylation (Extended Data
Fig. 8b and Supplementary Note 4). To search for similar molecular
interactions between human and bacterial proteins, we tested the 11
lead variants associated with oral microbiome composition (Extended
DataTable1) forassociation with microbial gene dosages® (Fig.4a). The
key conceptual difference between testing human genetic variants for
effects on microbial abundances (Fig. 2a) versus microbial gene dos-
ages (Fig.4a)isthat thelatter approach searchesfor effects onrelative



fitness of bacterial strains that do or do not contain agenomic region
(rather than fitness of abacterial species). Thus, it highlights microbial
genomicregions that may contain genes whose products are involved
inahost-microbe genetic interaction (Supplementary Note 5).

Tominimize hypothesis testing burden, we searched specifically for
associations of the 11 variants with measurements of normalized WGS
coveragein 500 base pair (bp) bins tiled across 30 bacterial reference
genomes (Fig.4a, Supplementary Table 6, Methods and Supplementary
Note 5). This analysis identified 208 associations involving 68 regions
of 18 bacterial genomes in which normalized read depth associated
with one or more of the 11 human genetic variants (FDR < 0.01, Fig. 4b
and Supplementary Tables 7 and 8). For example, amylase-binding
protein orthologues in Streptococcus parasanguinis, abpA and abpB,
increased in dosage with higher host AMYI copy number (P=1.13 x 107
and1.80 x 107, respectively; Extended Data Fig. 8c-g and Supplemen-
tary Note 6). Normalized read depth in nearly half of these regions
(33/68) associated with secretor status (based on FUT2 W154X geno-
type). Eight regions associated with more than one human genetic
variant; amongthem, five regions associated with both secretor status
and ABO*A1 (Fig. 4b). Effect directions replicated for 202 of the 208
bin-level associations in10,000 saliva-derived WGS samples from AoU
(Extended Data Fig. 8h and Supplementary Table 7).

ABO A antigen selects for a glycoside hydrolase

Host ABO*A1 genotype (based on rs2519093) strongly associated
with whether Prevotella strains—a prevalent oral genus involved in
early biofilm formation®*—carried agene encoding a glycoside hydro-
lase (Fig. 5a-d). ABO*AI genotype associated exceptionally strongly
(P=4.8x107°-8.3 x 1072*") with normalized WGS coverage across a
3 kilobase (kb) segment of the Prevotella nanceiensis reference genome
(Fig.5a). Thisregionis annotated asaglycoside hydrolase pseudogene
due to an N-terminal truncation in the reference genome. However,
assembly of unmapped sequencing reads with mates aligned to the
region showed no evidence of such truncation: rather, the reads seemed
to originate fromafull-length gene, with 95% homology to aglycoside
hydrolase found in Prevotella salivae (a species not included among
the 30 reference genomes analysed).

ABO*Al genotype associated with sequencing coverage in thisregion
only in secretor individuals (P=1.7 x 10" in secretors; P= 0.44 in
non-secretors), that is, individuals with at least one functional copy
of FUT2, allowing expression of histo-blood group antigens on epithelial
cells and secreted proteins (Fig. 5d). This FUT2-dependent effect of
host blood group seemed to be driven specifically by A antigen pres-
entation: the fraction of individuals for whom the glycoside hydrolase
gene was detectable in saliva-derived DNA increased from 46%-48%
innon-secretors and individuals with B or O blood type to 71%-77% in
secretors with A or AB blood type (Fig. 5b). This association further
reflected the quantity of A antigen predicted by anindividual’s diploid
ABOgenotype: ABO*0, B, A2and Al alleles exhibited an allelic series of
effects on normalized WGS coverage of the glycoside hydrolase gene
that was consistent with the increasing abilities of the glycosyltrans-
ferases encoded by these alleles to synthesize A antigen (Fig. 5c). The
Ballele imposed a strong opposing effect when present in an individ-
ual heterozygous for an A1 or A2 allele (8=-0.074 [-0.12, -0.032] for
Brelative to O, P=5.8 x 107, Fig. 5¢), presumably reflecting competi-
tion between A and B transferases for available galactose residues on
acceptor H antigens (Fig. 5d).

Taken together, these results indicate that the glycoside hydrolase
enables Prevotella strains that express it to use type A histo-blood
group antigens presented on host mucosal cell surfaces or salivary
proteins (in secretors) as a carbohydrate source, similar to a recently
observed effect in the gut microbiome*. We hypothesize that the gly-
coside hydrolase binds A antigens and cleaves the a1,2-fucosyl group
synthesized by FUT2 (Fig. 5d).

Host ABO genotypes showed anintriguingly different pattern of asso-
ciationwithagenomicregion of the most abundant speciesin SPARK,
Rothia mucilaginosa (P=1.4 x 107%; Fig. 5e,f). Blood groups A, B and
AB allassociated with absence (rather than presence) of this region of
the R. mucilaginosa genome, and surprisingly, these associations were
observed in non-secretors as well as secretors (Fig. 5e,f). This region
contains genes thatencode a protein with noannotated domainsanda
3-isopropylmalate dehydrogenase functioninginleucine biosynthesis,
leaving the mechanism of association unknown.

More broadly, this non-FUT2-dependent ABO association sug-
gested the possibility that the association of ABO*AI genotype with
oral microbiome composition (Fig. 2b) might also be partially inde-
pendent from secretor status. Indeed, in non-secretors the ABO*A1
association with microbiome composition remained significant
(P=0.004). This suggests that some effects of ABO variation on the
oral microbiome come from cells not dependent on FUT2 for H anti-
gen production (for example, blood and endothelial cells, which
instead use FUT1). For example, bacteria can produce glycans struc-
turally similar to A or B antigens that can then be recognized by anti-A
or anti-B antibodies that are made by plasma cells and infiltrate into
the mouth®®,

Secretor status selects for microbial adhesins

Conversely, many regions in oral microbial genomes associated with
secretor status but not ABO*AI genotype (Fig.4b), and oral microbiome
composition associated much more strongly with secretor statusthan
withanyvariantatABO (P=3.0 x 108 versus P= 9.4 x 107™; Fig. 2b). This
pattern contrasted with host genetic influences on gut microbiomes
(whichgenerate stronger associations at ABO thanat FUT2; refs. 11-13),
leading us to wonder whether these regions might point to a molecu-
lar mechanism by which secretor status influences oral microbiomes
independently of ABO.

Examining genesinbacterial genomicregions associated with secre-
tor status identified three classes of bacterial proteins that were each
implicated by several genes. Proteins with YadA-like domains were
encoded by nine genes in three species: Veillonella sp. 3627 (vadA
through vadF), Haemophilus sputorum (hadA and hadB) and Haemo-
philusparahaemolyticus (hadC) (Fig. 6a-d and Supplementary Table 8).
YadA (from Yersinia pestis) is a trimeric autotransporter adhesin that
aids attachment to host cells by binding components of the extracellu-
lar matrix, and some such adhesins are known to recognize host protein
glycosylation®*? such as the glycosylation added or enabled by FUT2.
Five of the seven regions containing these genes were present (that
is, not deleted) more often in the oral microbiomes of secretors than
non-secretors, consistent with the hypothesis that the adhesins they
encodebind histo-blood group antigens on the host cell surface. This
wastrue of hadCinH. parahaemolyticus despite this species exhibiting
lower abundance in secretors (Extended Data Fig. 8i). The genome of
V.sp. 3627 contained three such regions (containing vadB through
vadF, where vadC through vadE fall within the same complex region,
Extended DataFig. 8j) whose presence or absence was observed largely
independently in different microbiomes (Fig. 6e). Classifying individu-
als on the basis of which combination of regions was present in their
V.sp.3627 population showed increasing enrichment of secretors
amongindividuals with increasing representation of vadB-vadF genes
in V.sp.3627 (Fig. 6e).

FUT2-associated genomic regions additionally implicated two other
classes of proteins that seemed to haverolesin adhesion to host cells.
Four proteins with CshA domains (CrpD and CrpE in Streptococcus
mitis, CrpF and CrpGin Streptococcus vestibularis) and six proteins with
mucin-binding domains (MucBP, Muc_B2, MucBP_2) (SmdA through
SmdE in S. mitis, SmdF in S. vestibularis) were encoded by genes in
FUT2-associated bacterial genomic regions (Fig. 6f,g). CshA from
Streptococcus gordoniibinds host fibronectin®, aheavily glycosylated
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in500 bp bins of the P. nanceiensis genome surrounding a glycoside hydrolase
gene (n=10,433). Dot colour, effect direction (red, higher coverage among
individuals with Alblood type); dotsize, effect magnitude. Arrowsindicate genes:
glycoside hydrolase pgh95 (A3GM_RS0109435, green), other genes overlapping
theregion associated with ABO*A1 (black) and nearby genes (grey). P values, two-
sided linearregression. b, Proportion of individuals whose oral microbiomes
carry the pgh95gene (n=10,433), stratified by blood type and secretor status.
¢, Effect sizes on normalized coveragein the pgh95region (123,500-124,000)
for genotype combinations of commonblood typealleles (O,B,A2and AI)
relative to O/Oindividuals. Analyses wererestricted to secretors (n=8,278).
Effectsizes seemtoreflect expected abundances of A antigens (yellow squares,
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of host cell proteins and bacterial glycoside hydrolase. Top (pink background),
glycosylation patterns of human mucosal cell surface proteins and secreted
proteins depend on anindividual’s combination of FUT2and ABO genotypes.
Inindividuals with no functional copies of FUT2 (non-secretors), type |
Hantigenis not produced, whereasinsecretors, type | H antigenis produced
and canbe further glycosylated into A antigen or B antigen depending on ABO
genotype (dashed purple outline). These antigens are then presented on
mucosal cell surface and secreted proteins. The associations of ABO genotypes
with presence of the pgh95genein Prevotella strains suggest that the bacterial
glycoside hydrolase protein (PGH95, green) is specifically targeting secreted
type A antigens and cleaving the a1,2-fucosyl group, consistent with high
amino acid homology (-75%) with a1,2-fucosidases in the glycoside hydrolase 95
(GH95) family. e,f, Analogous tob,c, respectively, for the ABO-associated region
inR. mucilaginosa (n=12,475). Error bars, 95% Clsin all panels.
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Fig. 6| FUT2-dependent secretor status selects for three classes of adhesin
genesacross five microbial species. a, Associations of secretor status with
normalized coverage (truncated at1) in 500 bp bins of the V. sp.3627 genome
(n=7,419). Shadingindicates assembled contigs. Significant associations

(FDR <0.01) that overlap genes encoding proteins with YadA-like domains are
highlighted (blue, genomic region more often presentin secretors; red, absent).
Effectdirections arealsoindicated for bins that did not reach significance
butwere surrounded by significantly associated bins. b, Analogous to a, for
H.sputorum (n=8153).c, Analogous to a, for H. parahaemolyticus (n = 7,456).

d, Predicted trimeric structure of VadD (from V.sp.3627), where the head
domain (blue) facilitates attachment to host proteins, stalk domains (magenta)
flexibility and reach, and anchor domain (gold) translocation to bacterial
surface. e, Upset plot of the relative proportions of FUT2 W154X genotypes
(non-secretorsingrey, secretorsin orange) amongindividuals witheach

combination of vadB-vadF gene deletionsin the V.sp.3627 genome. Analysis
wasrestricted toindividuals with each gene either primarily presentin strains
of V.sp.3627 (normalized coverage >0.8) or primarily absent (normalized
coverage <0.2). Blue-to-grey shading of sets (bottom) and numbers of individuals
perset (top) indicate the number of vad genes present. f, Analogous to a, for
S.mitis (n=12,479). Highlighted genes encode proteins that contain eithera
CshA domain (crp genes) or mucin-binding domain (smd genes). g, Analogous
tof, for S.vestibularis (n=11,723). h, Predicted structure of a portion of CrpE
from S. mitis. The CshANR2 (gold) and mucin-binding domains (magenta) both
have lectin activity to their characterized ligands (fibronectin and mucin)®*%*.
i, Model of how host FUT2genotype selects for bacterial strains expressing
proteins with YadA, CshA or mucin-binding domains that can attach to host
cell surface proteins based on the availability of histo-blood type antigens.
Pvalues, two-sided linear regression (a-c,f,g).
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component of the extracellular matrix. Similarly, mucins have numer-
ous glycosylation sites and are up to 90% carbohydrate by mass®*.
Interestingly, one of these proteins, CrpE in S. mitis, seems to contain
both a CshA domain and multiple mucin-binding domains (Fig. 6h
and Supplementary Table 9), suggesting that these might functionin
concert to bind the same host protein or a combination of proximal
targets multivalently.

These enrichments of genes encoding proteins with YadA, CshA
and mucin-binding domains were unlikely to occur by chance: the
genomes of V. sp. 3627, H. sputorum and H. parahaemolyticus only
contain 12, 4 and 8 genes with YadA domains, respectively (Fisher’s
exact P=7.5x10"2,3.5x107°and 0.021), and the genomes of S. mitis
and . vestibularis only contain two and three genes with CshA domains
(P=7.4x10"°and 2.0 x107°) and ten and three genes with mucin-binding
domains (P=3.3 x10™and 0.0087). Most of these genes (15/19) were
more commonly present in the oral microbiomes of people with
functional FUT2, suggesting that they might encode bacterial lectins
that depend on either fucosylation or sugar moieties added by ABO
glycotransferase® (Fig. 6i). This convergence of bacterial genomic
adaptations to host FUT2 genotype broadly suggests that commensal
bacteria commonly make use of host histo-blood group antigens not
only as a carbohydrate source but also for bacterial attachment to
host cell surfaces.

Discussion

Analysis of the largest set of oral microbiome profiles generated to date
identified many specifichuman genetic variants that contribute to the
diversity observed across the oral microbiomes of different people”®.
Thelarge number of such effects suggests alarger influence of human
genetics on the oral microbiome than on the gut microbiome®*’,
perhaps because host cells in the mouth interface more directly with
bacteria (in contrast to cells in the gut, which are typically protected
by amucosalbarrier). Some of these genetic effects on microbial abun-
dances seem likely to mediate associations of the same human genetic
variants with oral health phenotypes, nominating bacterial species
that may contribute to dysbiosis. The salivary amylase gene gener-
ated the strongest such shared effect on oral microbiomes and health,
drivenby both AMYI copy number variation and missense mutationsin
AMY1.The expansion of salivary amylase copy number in humans and
domesticated animals has been hypothesized to be the result of positive
selectiondriven by the advent of agriculture** . Our observation here
that AMY1 gene copy number variation associates with oral microbial
phenotypes thatlead toclinically relevant conditions—combined with
the high mortality rate of tooth infections before modern dentistry
and antibiotics®—suggests that AMYI copy number may have been
under selection as a result of effects on oral health in addition—or in
response—to dietary changes.

The numerous associations that these analyses uncovered between
human genetic variants and bacterial gene dosages suggest frequent
intergenomicadaptation of microbial species toindividualhuman hosts
and implicate specific molecularinteractions likely to drive such adap-
tation. Most of these associations involved genes in bacterial species
whose overall abundances were unaffected by the same human genetic
variants, similar to recent observations of associations of BMIwith gut
microbial sequence variation®, suggesting that genomic adaptations
enable many bacterial species to survive equally well across variable
host genetic environments. By contrast, an association with relative
species abundance could imply that the microbial genome is unable
to adapt to a particular human variation. The variable gene regions
we identified showed some breakpoint heterogeneity (Extended
Data Fig. 9a,b) and could either reflect gene dosage variation among
circulating strains or recurrent mutations, such as in Helicobacter
pylori®®. The large number of such effects suggests that analyses of
bacterial gene dosage may be a powerful way to identify host genetic
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influences on microbiomes, perhaps because analysing the balance
between members of the same species with and without a variable gene
controls for strong environmental influences on species abundance.

Wenote aneed for carein conducting GWAS of microbial-abundance
phenotypes. Weinitially observed astrong association (P=2.5x107°)
of oral microbiome composition with variant callsin the ribosomal RNA
gene region of the p-arm of chromosome 21; however, these variant
calls (which later failed a mappability filter) actually reflected the pres-
ence of orthologous bovine rDNA sequences and associated with the
abundances of bacterial species used indairy fermentation, suggesting
DNA co-acquisition from recently eaten dairy foods (Supplementary
Note 7). Our analytical approach for identifying host-microbe genetic
interactions had several limitations that should be ameliorated with
larger cohorts and improved microbial reference genomes (Extended
Data Fig. 9c-h and Supplementary Note 8). Future datasets will also
provideincreased power to resolve possible pleiotropy and reverse cau-
sality with oral health phenotypes, either through cohorts withhuman
genetic, microbiome and oral health phenotypes”™ or by Mendelian
randomization approaches powered by even larger salivasequencing
datasets—which we have shown here provide rich information about
how oral microbiomes are shaped by human genetics.
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Methods

Ethics

This research complies withall relevant ethical regulations. The study
protocol was determined to be not human subjects research by the
Broad Institute Office of Research Subject Protection as all data ana-
lysed were previously collected and de-identified.

Quantification of microbial relative abundances from saliva WGS
We analysed saliva-derived WGS data previously generated for 12,519
individuals from the SPARK cohort of the Simons Foundation Autism
Research Initiative (SFARI)Z. In brief, DNA extracted fromsalivasamples
was prepared with PCR-free methods for 150 bp paired-end sequencing
on lllumina NovaSeq 6000 machines. Reads were aligned to human
reference build GRCh38 by the New York Genome Center using Cent-
ersfor Common Disease Genomics project standards. Details of saliva
sample collection, DNA extraction and sequencing were described in
ref. 26 (which analysed data from sequencing waves WGS1-3 of the
SPARK integrated WGS (iWGS) v.1.1dataset; here we analysed WGS1-5,
which included additional samples included in subsequent sequenc-
ing waves).

Fromthe CRAM(files previously aligned to GRCh38, we extracted all
unmapped reads for subsequent generation and analysis of oral micro-
biome phenotypes. This retrieved amedian of 67.5 million unmapped
reads per sample ([35.9 million,126.1 million], quartiles), comparable
withthe totalnumber of reads used for previous metagenomic charac-
terization of human microbiomes™ and consistent with previous analy-
ses of SPARK samples for oral microbiome profiling*¥. Unmapped
reads were converted to compressed FASTQ with samtools (v.1.15.1) and
thenused as input for microbiome profiling using MetaPhlAn (v.4.0.6)
withthevOct22 reference database. To evaluate robustness of these oral
microbiome profiles, relative abundances of species in SPARK samples
were compared with those from samples in the Human Microbiome
Project’ by first subsetting to those profiled in both cohorts and then
performing principal coordinate analysis using Bray—Curtis distance
(Extended DataFig. 1b).

From the relative abundance phenotype generated for each spe-
cies by MetaPhlAn, we estimated the fractions of variance explained
by covariates (age, sex, ASD and genetic ancestry PCs; Fig. 1c) using
analysis of variance (finding the sum-of-squares for each covariate
and dividing by the total sum-of-squares).

Generation of mPCs

Relative abundance measures of all microbes were first filtered to 439
entries corresponding to microbial species found in at least 10% of
SPARK DNA samples. Rank-based inverse normal transformation across
individuals was then performed for the abundance of each species.
This transformation did not always produce values with mean 0 and
variance 1(dueto large fractions of samples with zero abundance), so
these were then scaled and centred for use as input to PC analysis to
obtain 439 orthogonal microbial abundance principal components
(mPCs) representing orthogonal axes of microbial variation.

Genotyping and quality control of human genetic variantsin
SPARK

Variant callingin SPARK was previously performed using DeepVariant
(v.1.3.0) to produce sample-level VCFs from reads aligned to GRCh38
followed by GLnexus (v.1.4.1) to call variants jointly across the cohort.
We performed aseries of QC steps on thejoint call set, starting by con-
verting half-calls to missing and then excluding variants with >10% miss-
ingness using plink2 (v.2.00a3.6LM). Variants were further excluded if
they had aminor allele frequency <1% or if they had a Hardy-Weinberg
equilibriumexact test P <1 x 10~ with mid-Padjustment for excessive
heterozygosity, leaving 12,525,098 common variants. Genetic ancestry
PCs were generated by LD-pruning variants in 500 kb windows with

r*>0.1and then running plink2 --pca approx. No individuals were fil-
tered for outlier heterozygosity after inspection in each genetic ances-
try group. Variants were then filtered to those present inthe TOPMed-r3
imputation panel to exclude those in regions of poor mappability to
produce afinal set of 9,618,621 common variants to test for association
with oral microbiome phenotypes.

mPC-based GWAS of oral microbiome composition

A straightforward way to search for host genetic effects on microbi-
omes is to test human genetic variants for association with the abun-
dance of each microbial taxon in turn'®, However, we reasoned
that a statistical test designed to aggregate evidence of pleiotropic
genetic effects on many species inamicrobial community could consid-
erably increase statistical power®>*. To performsuchatestinascalable
manner (efficient enough to test millions of human genetic variants),
we made use of the decomposition of the microbial abundance matrix
into 439 orthogonal mPCs. Specifically, we tested each genetic variant
for association with each rank-based inverse normal transformed mPC,
after which we summed the 439 test statistics obtained per variant to
compute asingle, combined association test for each variant (Fig. 2a;
detailsin next section). Beyond increasing power to detect pleiotropic
effects, theapproachreduces multiple-testingburden by testing each
genetic variant only once. We evaluated applying this approachto a
subset of top axes of microbial variation (rather than all 439 mPCs) but
did not observe afurtherincreasein power, consistent with many axes
of variation contributing association signal in this dataset (Extended
DataFig. 2f-p).

Details of GWAS of oral microbiome composition

We performed GWAS on each mPC phenotype using the linear mixed
modelimplemented in BOLT-LMM to account for the family structure
of the SPARK cohort®**73, Specifically, we ran BOLT-LMM using the
--ImmInfOnly flag (as the non-infinitesimal mixed model provided
anegligible increase in statistical power) with the following covari-
ates: sequencing batch, age, age squared, square root of age, sex,
percentage of mapped reads and the top ten genetic ancestry PCs.
A single father without a recorded age was assigned the average age
of other fathers in the dataset. AMY1 and PRBI copy numbers were
rescaled to arange of [0,2] and encoded as dosages for association
testing.

Totestagenetic variant for association with an effect on overall oral
microbiome composition, we summed chi-square statistics across the
439 orthogonal mPCs and computed the P value based on a chi-squared
distribution with 439 degrees of freedom. We computed P values using
aone-sided test, analogous to how in linear regression, one-sided
chi-squared test statistics are computed (corresponding to two-sided
tests of z-statistics).

MDMR of oral microbiomes with selected genetic variants

We compared our test for genetic effects on oral microbiome com-
position with multivariate distance matrix regression (MDMR)* as
implemented in the MDMR R package® (v.0.5.2), which finds significant
predictors of multivariate outcomes by estimating the attributable
amount of dissimilarity between samples. Rank-based inverse normal
transformed relative abundances of the 439 most prevalent species
(with or without initial centred log-ratio transformation) were used to
generate the Euclidean distance matrix. MDMR was then run with the
following covariates: sequencing batch, age, age squared, square root
of age, sex and percentage of mapped reads. As genetic ancestry PCs
frequently produced a singular matrix as a result of multicollinearity
with individual variants, the top ten genetic PCs were first regressed
fromeach tested variant (rather than including genetic PCs as covari-
ates). The 11 loci identified from our mPC-based GWAS of oral micro-
biome composition were tested alongside 1,000 randomly selected
variants on chromosome 1.



Stratified LD score regression for estimating enrichment of
heritability at genes with tissue-specific expression

We observed that the same mathematical framework that enables par-
titioning of heritability by means of stratified LD score regression on
summary statistics from GWAS of a single trait™ could be extended to
analyse test statistics for association with oral microbiome composi-
tion (based on summing chi-squared test statistics across 439 mPCs).
Starting from the representation of expected marginal chi-square
association statistic for SNP i based on linkage disequilibrium with
variants in categories C,

Elx’1=1+Na+N Y 7l(i, k)
k

averaging across the 439 chi-square statistics for each variant gives
Elx21=1+Na+NY Tl k)
k

such that providing Xizas inputtoS-LDSC generates enrichments cor-
responding to T;. Averaged chi-square statistics per variant were used
asinputto munge_sumstats.py. LDSC was then run withbaseline v.1.2,
weights_hm3_no_hlaasweights and previously described tissue-specific
expression bins derived from Genotype-Tissue Expression (GTEXx)
project samples®.

GWAS of abundances of individual taxa

To avoid test statistic inflation from zero inflation and outlier values,
relative abundance measures for each taxon were rank-based inverse
normal transformed. Abundances of 1,262 taxa (of any phylogenetic
level: species, genus, family and so on) observed in >10% of SPARK
samples were then tested for association with host genotypes using
BOLT-LMM. Thetop 20 PCs from PCA on 439 species observed at >10%
prevalence (thatis, the top 20 mPCs) were used as covariates to control
for the largest axes of variation across samples, along with sequencing
batch, age, age squared, square root of age, sex, percentage of mapped
reads and the top ten genetic ancestry PCs. To test loci that might be
associated as dominant/recessive rather than additive, BOLT-LMM was
rerun using the --domRecHetTest flag.

To evaluate whether some of these associations could reflect com-
positional effects rather than being specific to the associated taxa, we
computed analternative set of taxon abundance phenotypesin which
we took the centred log-ratio transform of relative abundancesin each
sample” (after replacing zero values observed for a given taxon with the
minimum non-zero value for that taxon, to allow computing geometric
means). Centred log-ratio transformed values for each taxa were then
tested for association with host genotypes using BOLT-LMM with the
same covariates as above (Extended Data Fig. 4e).

For estimating effect sizes of specific genotype values such as
FUT2W154X genotypes (Fig. 2d), AMYI copy numbers (Fig. 3c) or PRBI
copy numbers (Extended Data Fig. 3c), we used linear regression with
the same covariates as above, encoding each genotype value (rounded if
necessary) as a separate factor. The standard errors estimated by these
regressions are slightly underestimated because they do not account
for relatedness among SPARK participants, but we determined that
this underestimation of standard errors was mild (7% based on a~14%
inflation of chi-square test statistics computed using linear regres-
sion versus a linear mixed model for the 11 genome-wide significant
loci (Supplementary Fig. 2)). To compare effect sizes in adults versus
unrelated children, one child was randomly selected from each fam-
ily in SPARK. BOLT-LMM was used to run linear regression on each of
these subsets separately.

GWAS in UK Biobank
Starting from 488,377 individuals in the UKB SNP-array dataset*, indi-
viduals were excluded on the basis of the following criteria: 36,008

were removed to drop one relative in pairs of close relatives with kin-
ship coefficient >0.0884, preferentially keeping individuals if they
(1) reported having dentures or (2) reported not having dentures (that
is,had anon-missing dentures phenotype); 28,701 were removed for not
having European genetic ancestry’; 1,469 were removed for not having
available TOPMed-imputed genotypes (including for chromosome X);
2,601 were removed for not having available WGS data; and 53 were
removed for having withdrawn, leaving 419,545 available individuals
for GWAS. For the binary oral health phenotypes (dentures use and
bleeding gums), 418,039 had non-missing values. For the quantitative
BMI z-score phenotype”’, 418,150 had non-missing values.

TOPMed-imputed variants for these individuals were filtered to
require minor allele frequency >0.001 and INFO >0.3. BOLT-LMM was
runin linear regression mode on these samples and variants with the
following covariates: age, age squared, sex, genotype array, assess-
ment centre and top 20 genetic ancestry PCs. For estimating effect
sizes of specific copy numbers of AMY1 (Fig.3d,e,j), AMY2A (Extended
DataFig. 6f) or AMY2B (Extended DataFig. 6g), we performed logistic
regression (for oral health phenotypes) or linear regression (for BMI)
with the same covariates, encoding each copy number (rounded to the
nearest integer) as a separate factor and using the modal copy number
asthereference level.

Phyletic stratification of genetic associations

The phylogenetictree of all species in the MetaPhlAn 4 database used
(v.0ct22), mpa_vOct22_CHOCOPhIAnSGB_202212.nwk, wasfirst subset-
tedtothetree spanning nodes with primary label amongthe 439 species
seen at >10% prevalence in the SPARK cohort. This tree was used with
graphlan (v.1.1.3) for depiction of phylogenetic trees (Figs. 1b and 2e
and Extended DataFig. 5f). For comparisons among the effect sizes of
ahumangenetic variant associated with relative abundances of many
species, phylogenetic distances between pairs of species were first
computed as a cophenetic distance matrix from this tree. For a given
index species A, phylogenetic distances between A and other species B
were then compared with either (1) absolute values of effect sizes for
species B (thatis, | 8], Extended Data Fig. 5b,c,g,h) or (2) effect sizes for
species B oriented relative to the effect direction for species A (that s,
sign(B,) X Bg, Extended Data Fig. 5d,e,i,j).

Estimation of AMYI copy number inall cohorts

In the SPARK (Extended Data Fig. 6a) and AoU v7 cohorts (Extended
DataFig. 6¢), AMY1 copy number was estimated by counting WGSreads
that mapped to the duplicated regions that include AMY1A (chr. 1:
103638545-103666411), AMYIB (chr. 1:103685558-103713427) and
AMYIC (chr.1:103732687-103760549) in GRCh38 and normalizing
against the total number of reads that aligned in either the 0.5 Mb
upstream of AMY2B or the 0.5 Mb downstream of AMY1C. For the UKB
cohort (n=490,415 (ref. 78), Fig. 3a), we applied amore comprehensive
read-depth normalization pipeline thatincorporated sample-specific
GC-bias correctioninferred from genome-wide alignments (similar to
Genome STRiP”®) before normalizing against read depthin the 0.5 Mb
regions flanking the amylase locus. We corrected for slight miscalibra-
tion of these diploid copy number estimates by fitting a linear model
to identify coefficients that centred peaks of copy number estimates
atintegers.

Amongthe UKB participants with WGS available, we identified 5,149
siblings that shared both amylase haplotypes IBD2 (based on at most
three mismatching SNP-array genotypesina2 Mbwindow flanking the
amylase locus, computed using plinkl.9 --genome). Among these IBD2
sibling pairs, 13 pairs were identified as copy number discordant (and
likely to reflect acopy number mutationin the past generation) based
on (1) having AMYI copy number estimates that differed by >1.0 and
(2) having AMY2A copy number estimates consistent with a duplication
or deletion of a commonly variable amylase gene cassette (that is, +1
AMY2A copiesfor AMYI copy number discordances of odd parity and no
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differencein AMY2A copy number for AMYI copy number discordances
of even parity). We estimated AMY1 copy number genotyping accuracy
by computingthe correlationacross IBD2 sibling pairs excluding these
13 copy number discordant pairs.

Testing AMY1 copy number for association with dental
phenotypes and BMI in All of Us

We defined the binary toothloss phenotype as1forindividuals with at
least one recorded instance of “acquired absence of all teeth’ (OMOP
concept ID: 40481327, code: 441935006) and O otherwise. Likewise,
the caries phenotype was derived from ‘dental caries’ (OMOP con-
ceptID: 133228, code: 80967001). For BMI, we generated anormalized
z-score phenotype from BMI (OMOP concept ID: 903124, code: bmi)
by first adjusting for age (in months, determined from time at weight
and height measurement) and age squared and then applyinginverse
rank normal transformation in each sex separately. The BMI z-scores
for males and females were then merged together.

Individuals with WGS available for genotyping AMYI copy num-
ber were first filtered to an unrelated subset of samples (iteratively
dropping oneindividual per related pair with kinship score >0.1, from
relatedness_flagged_samples.tsv). For oral health phenotypes, we
performed logistic regression against AMYI copy number including
age,agesquared, sex and the top 16 genetic ancestry PCs (from ances-
try_preds.tsv) as covariates. For BMI, we performed linear regression
using only genetic ancestry PCs as covariates as age and sex had already
beenresidualized out. For estimating effect sizes of specific copy num-
bers of AMY1 (Extended DataFig. 6d,e and Extended Data Fig. 7f-i), we
performed logistic regression (for oral health phenotypes) or linear
regression (for BMI) with the same covariates, encoding each copy
number (rounded to the nearestinteger) as a separate factor and using
the modal copy number of 6 as the reference level (that is, computing
the effect size of each copy number relative to copy number 6).

Paralogous sequence variationin AMY1

To identify and genotype paralogous sequence variants (PSVs) from
UKB WGS data, we used aread-counting approach similar to our previ-
ous work®, In brief, reads from each sample that had been aligned to
any of the three 27.6 kb regions in GRCh38 corresponding to AMYIA
(chr.1:103638695-103666261), AMY1B (chr.1:103685708-103713277)
and AMYIC (chr.1:103732837-103760399) were realigned with bwa
(v.0.7.17) to the reference sequence of AMYIA after filtering out reads
with any of the last four SAM flags (-F 0xF0O0). Read counts supporting
each base at each position were tabulated with htsbox (r345) pileup,
filtering alignments <50 bp and base calls with quality score <20. Indi-
viduals were called heterozygous for a PSV allele (having at least one
copy of AMY1 with each of two alleles) if at least five reads supported
the variant allele in that sample and at least five reads did not. PSVs
were then filtered to those with heterozygosity >0.002 (resulting in
892 PSVs passingfilters). To estimate diploid copy number genotypes
for aPSV, we multiplied each individual’s diploid AMY1 copy number
bytheallelic fraction of the PSVin that individual. In association tests
using linear regression with BOLT-LMM, we rounded copy number
estimates to integer genotypes.

For follow-up analyses of effect sizes of specific AMY1F141C and
C477R copy number genotypes, we optimized the assignments of
integer copy number genotypes based on manual inspection of his-
tograms of allelic depth-derived PSV copy number estimates (Sup-
plementary Fig. 3). Specifically, we assigned copy numbers for each of
F141C and C477R using the thresholds [0,0.25) = CNO, [0.25,1.75) =CN1,
[1.75,2.7) =CN2,[2.7,3.5) = CN3 and [3.5,5) = CN4. In UKB, F141C had
416,381 (99.2%), 3,124 (0.74%) and 40 (0.0095%) individuals with 0,1
and 2 copies, respectively,and C477R had 412,450 (98.3%), 6,527 (1.6%),
547 (0.13%),19 (0.0045%) and 2 (0.0005%) individuals with 0,1, 2,3
and 4 copies, respectively. In SPARK, F141C had 12,459 (99.5%) and 60
(0.48%) individuals with 0 and 1 copies, respectively, and C477R had

12,343 (98.6%),172 (1.4%) and 4 (0.032%) individuals with 0, 1and 2 cop-
ies, respectively. These threshold-based copy numbers of the alternate
alleles were used inlogistic regression along with copy numbers of the
reference alleles (F141and C477) and covariates as above.

Protein expression of AMY1

Plasmid pCAGEN® was a gift from C. Cepko (Addgene plasmid no. 11160;
http://n2t.net/addgene:11160; RRID Addgene_11160). Codon-optimized
sequences encoding reference, F141C and C477R AMY1 alleles were
synthesized and ordered as gBlocks from Integrated DNA Technologies
for cloning into pCAGEN downstream of the CAG promoter. Clones
were screened for sequence errors before plasmid preparation using
Plasmid Plus Midi Kit (Qiagen, catalogue no.12943). Plasmid pUC19
(New England Biolabs, catalogue no. N3041S) was used as a negative
control. A total of 15 pg of each plasmid was lipofected into separate
10 cm plates of HEK293T (Takara, catalogue no. 632180) cells at ~70%
confluence using 30 pl of Lipofectamine 3000 (Invitrogen, catalogue
no.L3000015). Authentication of HEK293T was done by morphologi-
cal match for type and verification of SV40T antigen with PCR assay.
Lack of mycoplasma contamination was confirmed by Takara as well as
inhouse with MycoAlert Mycoplasma Detection Kit (Lonza, catalogue
no. LT07-318). Medium was switched to serum-free after 24 h before
collection of both supernatant and lysate at 72 h post-lipofection.
Atotal of 10 ml of supernatant was spun at1,000g for 10 mintoremove
cellsand debris before the addition of 100 pl of Halt Protease Inhibitor
Cocktail (100, Thermo Scientific, catalogue no. 78438) and 100 pl of
EDTA (0.5 M). Cells were washed with ice-cold PBS before the addition
of cold 1 ml of RIPA Lysis and Extraction Buffer (Thermo Scientific,
catalogue no. 89900) with 10 pl of Halt Protease Inhibitor Cocktail
(100x) and 10 pl of EDTA (0.5 M). After sufficient solubilization of the
cellshad occurred, 1 pl of Benzonase Nuclease (250 U per pl, Milipore,
catalogue no.E1014) and 10 pl of MgCl, (1 M) were added before incuba-
tionat 37 °C,500 rpm for 30 min. Lysate was thenspun at10,000g for
10 min to remove insoluble precipitate. Both supernatant and lysate
were stored at —80 °C until further use.

Western blot of AMY1in cell culture supernatant and lysate
Atotal of 7.5 pl of supernatant or purified lysate was first run denatured
andreducedinal0% Mini-PROTEAN TGX Precast Protein Gel (Bio-Rad,
catalogue no.4561036) before wet transfer to nitrocellulose membrane
(120V, 2 h). After evaluation of equal loading by Ponceau S Staining
Solution (Thermo Scientific, catalogue no. A40000279), the mem-
brane wasblocked for1hatroomtemperature with TBS, 0.1% Tween-20
and 5% w/v non-fatdry milk before washing three times for 5 min each
with TBS-T (TBS, 0.1% Tween-20). Amylase antibody (G-10, Santa Cruz
Biotechnology, catalogue no. sc-46657, lot no. G0324) was used as
the primary antibody at a1:200 dilution in TBS-T with 5% w/v milk for
incubation overnight at4 °C with rotation. Membrane was washed three
times for 5 min each with TBS-T before addition of anti-mouse IgG,
HRP-linked antibody (Cell Signaling Technology, catalogue no. 7076,
lotno. 39) as secondary ata1:2,000 dilution in TBS-T with 5% w/v milk
for1hincubationatroom temperature with rotation. Membrane was
washed three times for 5 min each with TBS-T before detection with
Amersham ECL Prime Western Blotting Detection Reagent (Cytiva,
catalogue no. RPN2236) (Extended Data Fig. 7a).

Purification of AMY1reference and F141C protein

Purification of amylase from supernatant was done using glycogen,
adapted fromrefs. 82,83. All following steps were conducted onice or at
4 °C (rotation and centrifugation). In brief,10 ml of supernatant was ini-
tially concentrated using prewet 15 ml Amicon Ultra Centrifugal Filter,
30 kDaMWCO (Milipore, catalogue no. UFC9030) and put up to a total
volume of 900 pl with PBS. A total 600 pl of cold ethanol was added
slowly to make 40% ethanol v/v. This was then centrifuged at 10,000g
for10 minto remove any insoluble precipitate. To the supernatant, 75 pl
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0f 0.2 Msodium phosphate buffer (pH 8), 75 pl of glycogen (20 mg ml™,
Roche, catalogue no.10901393001) and 100 pl of ethanol were added
in that order. This was then incubated for 5 min with end-over-end
mixing before centrifugation at 5,000g for 6 min. The glycogen pellets
were then washed twice with 10 mM sodium phosphate buffer (pH 8)
containing ethanol (40% v/v) before resuspension in 100 pl of 50 mM
MOPS buffer (pH 7, Thermo Scientific, catalogue no. J61821-AK) with
5 mM CacCl,. These were then incubated at 37 °C, 500 rpm for 30 min
toallow for glycogen digestion. The above purification procedure was
repeated asnecessary toarrive at purified amylase as evaluated on 10%
Mini-PROTEAN TGX Precast Protein Gel with InstantBlue Coomassie
Protein Stain (Abcam, catalogue no. ab119211) (Extended Data Fig. 7b).

Amylase activity assay

Protein was normalized between reference and F141C isoforms by
densitometric measurement against linear dilution series (r*= 0.99
with input). The concentration chosen for the assay was determined
by having maximal linear activity over the observation window. For
each technical replicate, 10 pl of reference or F141C amylase enzyme
diluted in 50 mM MOPS buffer (pH 7), 5 mM CaCl, and 0.02% w/v BSA
(New England Biolabs, catalogue no. B9000) was quickly mixed with
10 pl of BODIPY FL conjugated-starch substrate from EnzChek Ultra
Amylase Assay Kit (Invitrogen, catalogue no. E33651) in 50 mM MOPS
buffer (pH 7) with 5 mM CaCl,. The reaction was then maintained at
20°C for 2 hin aBio-Rad CFX384 Real-Time PCR Detection System
with fluorescence reading taken every minute using FAM fluorophore
settings with CFX Manager (v.3.1) software. Fluorescence at 30 minrela-
tivetoinitial reading was used asinput toalinear model with allele and
plate to regress out any run-to-run effects during comparison across
technical replicates (Extended Data Fig. 7c).

Bacterial genome reference panel for analysing bacterial gene
dosages

Toreduce hypothesis testingburdenin association analyses of human
genetic variants with bacterial gene dosage phenotypes, we restricted
analysesto aset of 30 bacterial genomes representing highly abundant
species and species whose abundances we had found to associate with
human genetic variants. Specifically, we selected 30 bacterial spe-
cieswithgenomes available in GenBank by including: (1) the five most
abundant species in SPARK oral microbiomes, (2) species that associ-
ated strongly (P< 4 x10™) with at least one human genetic variant and
(3) the top two associated species for each locusifnot already included.
We substituted Stomatobaculum longum for therelated Stomatobacu-
lum SGB5266 which would have been included under (2) but lacked a
GenBank assembly. We selected a single genome for each of the 30
species using the following criteria. The SGB centroid was prioritized
over other genomes if it corresponded to a GenBank assembly. For
casesin which the centroid was not a GenBank assembly and multiple
genomes corresponded to GenBank assemblies, the reference genome
was prioritized if available, or otherwise the highest ranked genome
among those listed. A list of these species and GenBank assemblies is
included in Supplementary Table 6. A bowtie2 index was then built
from these merged genomes.

Measuring bacterial gene dosages using read-depth phenotypes
We computed WGS coverage-derived phenotypes informative of gene
dosage across each of the 30 bacterial reference genomes by first rea-
ligning unmapped reads from SPARK saliva WGS to the 30 reference
genomes using bowtie2 (v.2.5.1) with the --very-sensitive flag. These
alignments were then position-sorted within contigs with samtools
(v.1.15.1). For each WGS sample, we quantified read depth in 500 bp
binstiling each of the 30 bacterial reference genomes using mosdepth
(v.0.3.6), excluding reads with mapping quality <5. For each sample, for
each ofthe 30 bacterial reference genomes, we then median-normalized
the bin-level read-depth measurements across the 500 bp bins of that

reference genome to control for species abundance (such that normal-
ized read-depth measurements had a median of 1 among bins corre-
spondingto each species). If asample had <0.5x median coverage across
bins correspondingto agiven species, we set that sample’s normalized
read-depth measurements for that species to missing to focus down-
stream analyses on samples with less-noisy measurements. Finally,
we truncated median-normalized read-depth values to the interval
[0,1], both to focus on deletions in bacterial genomes and to reduce
the influence of outlier measurements that might reflect mismapped
reads (potentially derived from either duplicated genomic regions or
homologous sequences in microbial species not represented among
the30reference genomes). We reasoned that these bin-level measure-
ments would capture kilobase-scale deletions of bacterial genomes,
circumventing the need to predefine aset of structural variant regions
(whichwas difficult because of the limited sequencing coverage of most
species). Additional details are provided in Supplementary Note 5.

Testing bacterial gene dosage phenotypes for association with
host genotypes

We used linear regression to test each of the 11 human genetic variants
we had foundto associate with oralmicrobiome composition (Extended
DataTable1) for association withnormalized read depth (truncated to
[0,1])ineach 500 bp bin of each of the 30 bacterial reference genomes.
We used an additive model for all variants except FUT2 W154X and
TLR11602S, for which we used a recessive model (corresponding to
secretor/non-secretor status for FUT2). We took two precautions
to avoid potential confounders. First, for each of the 30 species, we
included as covariates the top 20 PCs of the normalized, truncated
read-depth matrix for that species (running PCA after centring and
scaling each bin to have amean of 0 and s.d. of 1 across samples) to
control for linked gene dosages (for example, differences across strains)
that could potentially generate non-causal associations in a manner
analogous to population structure in GWAS (Supplementary Note 5).
Second, we applied a form of genomic control®* (applied across the
500 bp bins of each reference genome) to adjust for remaining test
statisticinflation. Specifically, for each pairing of aspeciesand ahuman
genetic variant, we computed the adjustment factor

median (%)
F0.5)

acrossthe Xlztest statistics for the 500 bp bins of that reference genome,
where F(x) is the inverse cumulative distribution function for a )(12
randomvariable. The )(12 test statistics were then divided by this factor.
Thisyielded 208 read-depth binsin18 species that significantly associ-
ated withatleast one of the 11 human genetic variants (FDR < 0.01, Sup-
plementary Tables 7and 8) and resolved to 68 unique microbial regions
after merging bins within 1.5 kb of another significantly associated bin
(Fig. 4b). We verified that the truncated normalized read-depth phe-
notypes involved in these associations were broadly reasonably dis-
tributed (with most bimodal at 0 and1and mean between 0.05and 0.95;
Supplementary Table 7), such that testing these phenotypes for asso-
ciation with common variants (MAF = 0.08-0.45) using linear regression
inacohort of size 12,519 was expected to produce robust test statistics”.

For combinatorial analysis of deletions of the five vad genesin V.
sp. 3627 that associated in the same direction with FUT2 genotype
(vadB through vadF) (Fig. 6e), we first selected individuals whose
oral microbiomes had evidence of near-complete presence (>0.8
median-normalized coverage) or near-complete absence (<0.2
median-normalized coverage) of each vad gene (n=3,081, represent-
ing roughly half of the SPARK samples with coverage of the V. sp.3627
genomereachingthe >0.5x threshold for analysis). For eachcommon
combination (>2.5% of selected individuals) of presence/absence status
ofvadBthrough vadF, the number ofindividuals witheach FUT2 W154X
genotype were then counted.
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Replication of bacterial gene dosage associationsin the All of Us
cohort

Toevaluatethe generalizability of the associations weidentified in SPARK
between human genetic variants and bacterial gene dosages, we applied
the same computational pipeline described above to 10,000 randomly
selected saliva-derived WGS samples from the AoU v.8 datarelease. We
thenattemptedtoreplicate the 208 associations (between humangenetic
variants and normalized read-depth measurements in 500 bp bins of
bacterial genomes) that had reached significance (FDR < 0.01) in SPARK.

AlphaFold3 prediction of protein structures

To predict protein structures for Streptococcus parasanguinis AbpA
or AbpB (bound to human AMY1), the Veillonella sp.3627 VadD trimer
and Streptococcus mitis CrpE, we used AlphaFold3 (ref. 85) for multimer
prediction with default reference databases and max template date of
2021-09-29. The TonB domain of AbpB and the signal peptide of VadD
were excluded for visualization. To minimize the model size, CrpE was
truncated to the region spanning the CshA NR2 domain to the sixth
mucin-binding domain (residues 572-2701). Structures were visualized
with ChimeraX (v.1.9)* and pLDDT, pTM and ipTM values can be found
inSupplementary Table 9.

Genetically derived blood typing in SPARK

We assigned blood types to SPARK participants on the basis of
WGS-derived SNP and indel genotypes using a procedure similar to
previous work™. The genotype of the rs8176746 missense SNP was first
used to determine anindividual’s dosage (thatis, allele count) of type B
alleles (T allele count) and non-type B dosage (G allele count).

Thers8176719 indel was next used to determine type Ol dosage (dele-
tionallele count), which was subtracted from the non-type B dosage to
yield non-type B/O1 dosage, as the rs8176719 deletion allele typically
occurs on haplotypes that would otherwise be type Aalleles. Although
thisistruein European, East Asian and American ancestry haplotypes
in 1IKGP populations, in a small fraction of African (3.2%) and South
Asian (0.2%) ancestry haplotypes, the rs8176719 deletion occurs in
ciswiththe type Bmissense allele. As we found 36 SPARK participants
who had O1 dosage exceeding non-type B dosage, we subtracted this
excess from their type B dosages.

The rs41302905 missense SNP was next used to determine type O2 dos-
age (T allele count) and subtracted from the non-type B/Oldosage toyield
type Adosage, asitseemstobeinciswithtype AallelesinallIKGP popula-
tions. Ol and 02 dosages were then merged to compute type O dosage.

The rs56392308 indel was next used to determine the type A2 dos-
age (deletion allele count) and subtracted from the type A dosage to
yield type Aldosage. For sevenindividualsin which the type A2 dosage
exceeded type A dosage, five seemed to be on type O alleles and two
on either type O or type B alleles, so this excess was subtracted from
their type A2 dosage.

Enrichment of conserved domains in bacterial genes associated
with secretor status

For each of the bacterial species withadhesin genesin dosage variable
regions that associated with FUT2loss of function (Fig. 6a-c,f,g), pro-
tein IDs (WP numbers) for the species were extracted from its RefSeq
general feature format (GFF) file. Conserved domains (from National
Center for Biotechnology Information (NCBI) conserved domain data-
base) were identified for each protein using a modified version of the
provided bwrpsb.pl script (applied to up to 250 proteins at a time).
Aone-sided Fisher’s exact test was used to identify domains enriched
among proteins encoded by genes within read-depth bins that associ-
ated with FUT2 genotype.

GWAS of read depth in selected microbial genomicregions
We used BOLT-LMM to perform GWAS on the five normalized
read-depth phenotypes for which we observed the most significant

associations with human genetic variants (in our targeted analysis of 11
humangenetic variants). Specifically, these phenotypes measured WGS
readdepthinthefollowing 500 bp bins: H. sputorum QEQH01000003.1:
197,000-197,500, P. nanceiensis KB904333.1:123,500-124,000, S. mitis
MUYNO01000003.1:100,000-100,500, S. vestibularis AEKO01000011.1:
186,000-186,500, V. sp. 3627 RQVG01000009.1:13,500-14,000. In
each GWAS, we included as covariates the top 20 PCs of the normal-
ized, truncated read-depth matrix for the species under consideration,
along with sequencing batch, age, age squared, square root of age,
sex, percentage of mapped reads and the top ten human genetic PCs.

We also used BOLT-LMM to perform GWAS on normalized read-depth
measurements in 500 bp bins spanning the genome of R. mucilaginosa
(the most prevalent species observed in SPARK). To avoid test statistic
inflation due to non-normality, we first excluded bins for which <10%
of samples had non-modal read-depth values, leaving 3,441 bins. We
thenrank-based inverse normal transformed these bins (withrandom
tie-breaking) to further normalize the phenotypes. We ran BOLT-LMM
using the same covariates as above.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Thefollowing dataresources are available by application: UKB (http://
www.ukbiobank.ac.uk/), All of Us Research Program (https://allofus.
nih.gov/) and SFARISPARK (https://www.sfari.org/resource/spark/). To
protect participant confidentiality, approved researchers can obtain
access tothe SPARK population dataset described in this study (SPARK
integrated WGS (iWGS) v.1.1) by applying at https://base.sfari.org.
Quantifications of microbial abundances in SPARK generated in this
study can also be obtained from SFARI Base (Dataset DSO000116).
Summary statistics from GWAS of microbial abundances in SPARK are
available from the GWAS Catalog under accessions GCST90709872
to GCST90711133. Summary statistics from mPC-based GWAS of
oral microbiome composition are available at Zenodo (https://doi.
org/10.5281/zenodo.14559457)%. The following data resources are
publicly available: Human Microbiome Project (https://hmpdacc.org/),
human reference genome build GRCh38 (https://ftp.1000genomes.
ebi.ac.uk/voll/ftp/technical/reference/GRCh38_reference_genome/),
MetaPhlAn v.Oct22 reference database (http://cmprodl.cibio.unitn.
it/biobakery4/metaphlan_databases/), TOPMed-r3 imputation panel
variant list (https://imputation.biodatacatalyst.nhlbi.nih.gov/), LD
score resources https://alkesgroup.broadinstitute.org/LDSCORE/),
NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and
NCBI Conserved Domain Database (https://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml).

Code availability

The following publicly available software resources were used: Met-
aPhlAn (v.4.0.6, http://segatalab.cibio.unitn.it/tools/metaphlan/
index.html), DeepVariant (v.1.3.0, https://github.com/google/
deepvariant), GLnexus (v.1.4.1, https://github.com/dnanexus-rnd/
GLnexus), HUMANN (v.3.8, https://huttenhower.sph.harvard.edu/
humann), GraPhlAn (v.1.1.3, http://segatalab.cibio.unitn.it/tools/
graphlan/index.html), mosdepth (v.0.3.6, https://github.com/brentp/
mosdepth), bowtie (v.2.5.1, https://bowtie-bio.sourceforge.net/bow-
tie2/index.shtml), beftools (v.1.14, http://www.htslib.org/), samtools
(v.1.15.1, http://www.htslib.org/), plink (v.1.90b6.26 and v.2.00a3.7,
https://www.cog-genomics.org/plink/), BOLT-LMM (v.2.4.1, https://
alkesgroup.broadinstitute.org/BOLT-LMM/), qgman (v.0.1.8, https://
cran.r-project.org/web/packages/qgman/index.html), MDMR (v.0.5.2,
https://cran.r-project.org/web/packages/MDMR/index.html), bedtools


https://www.ncbi.nlm.nih.gov/snp/?term=rs8176746
https://www.ncbi.nlm.nih.gov/snp/?term=rs8176719
https://www.ncbi.nlm.nih.gov/snp/?term=rs8176719
https://www.ncbi.nlm.nih.gov/snp/?term=rs8176719
https://www.ncbi.nlm.nih.gov/snp/?term=rs41302905
https://www.ncbi.nlm.nih.gov/snp/?term=rs56392308
http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/
https://allofus.nih.gov/
https://allofus.nih.gov/
https://www.sfari.org/resource/spark/
https://base.sfari.org
https://base.sfari.org/dataset/DS0000116
https://www.ebi.ac.uk/gwas/studies/GCST90709872
https://www.ebi.ac.uk/gwas/studies/GCST90711133
https://doi.org/10.5281/zenodo.14559457
https://doi.org/10.5281/zenodo.14559457
https://hmpdacc.org/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/
http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/
http://cmprod1.cibio.unitn.it/biobakery4/metaphlan_databases/
https://imputation.biodatacatalyst.nhlbi.nih.gov/
https://alkesgroup.broadinstitute.org/LDSCORE/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://segatalab.cibio.unitn.it/tools/metaphlan/index.html
http://segatalab.cibio.unitn.it/tools/metaphlan/index.html
https://github.com/google/deepvariant
https://github.com/google/deepvariant
https://github.com/dnanexus-rnd/GLnexus
https://github.com/dnanexus-rnd/GLnexus
https://huttenhower.sph.harvard.edu/humann
https://huttenhower.sph.harvard.edu/humann
http://segatalab.cibio.unitn.it/tools/graphlan/index.html
http://segatalab.cibio.unitn.it/tools/graphlan/index.html
https://github.com/brentp/mosdepth
https://github.com/brentp/mosdepth
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.htslib.org/
http://www.htslib.org/
https://www.cog-genomics.org/plink/
https://alkesgroup.broadinstitute.org/BOLT-LMM/
https://alkesgroup.broadinstitute.org/BOLT-LMM/
https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/MDMR/index.html

(v.2.27.1, https://bed-tools.readthedocs.io/en/latest/), AlphaFold3
(https://alphafoldserver.com/) and ChimeraX (v.1.9, https://www.cgl.
ucsf.edu/chimerax/). Custom code used to generate resultsin this study
is available at Zenodo (https://doi.org/10.5281/zenodo.14559457)%.
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Extended DataFig.1|Oral microbiome composition changes withhost age.
a, Distribution of the percent of reads not mappingto the humanreference
(GRCh38) across SPARK participants (n=12,519). The median of 8.39%isindicated
by the dotted red line.b, Principal coordinate analysis of microbiome profiles
from the Human Microbiome Project’? together witharandomly selected
subset of SPARK samples (n =250). PCoA was performed using Bray-Curtis
distance onall microbial species profiled in both data sets. The SPARK saliva
samples cluster with other samples from oral communities. Pointsin gray
aresamples from Human Microbiome Project sites not listed inthe legend.

¢, SPARK samples on a UMAP (Uniform Manifold Approximation and Projection)
generated from the first 20 principal components of the abundance matrix for
the 439 most prevalent species fallonagradient withrespect to hostage (color
baronright).d, The 439 most prevalent species on aUMAP generated from their

loadings onto the first 20 principal components of the abundance matrix fall
onagradientwithrespectto correlation of relative species abundance with
hostage (color baronright).e, Among childrenin SPARK (n=5,760), a UMAP
using the same 20 principal components asin bshows minimal stratification by
autismspectrumdisorder case status. f,g, Scatter plots of SPARK participants
along axes of top genetic principal components. Individual dots are colored
accordingtoself-reported race/ethnicity for individuals who reported asingle
race/ethnicity. h-k, Change in abundances of Prevotella melaninogenica,
Streptococcus mitis, Porphyromonas endodontalis, and Neisseria cinerea over
theagerange foundinthe SPARK cohort (truncated at 60 years old due to limited
sampling of elderly individuals). Relative abundances were inverse normal
rank-transformed (y-axis). Red curves indicate medians; shading indicates
interquartileregions.
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Extended DataFig.2|Associations of taxonrelative abundances, a-diversity,
and microbial composition principal components with human genetic
variants.a, Genome-wide associations with relative abundances of 1,262 taxa
observedin >10% of SPARK samples (n =12,519). For each genetic variant, the
most significant p-valueisshown (across the 1,262 tests); thered line indicates
the study-wide significance threshold (p <4.0x10™). Protein-altering variants
and copy number variants of note are highlighted: nonsense (red squares),
missense (green triangles), and multi-allelic CNVs (blue diamonds). b, Genome-
wide associations with a-diversity (Shannon entropy) in SPARK. ¢, Quantile-
quantile plot of p-values computed by our mPC-based test for associations
between human genetic variants and oral microbiome composition (Fig. 2b).
The genomicinflation factor A¢c was calculated as the median chi-square

statistic divided by F(0.5), where F'(x) is the inverse cumulative distribution
functionfora )(4239 random variable.d, Associations of 11lead variantsidentified
by the mPC-based test (red) and 1,000 randomly selected variants (black) with
dissimilarity of relative abundances for the 439 most prevalent species using
multivariate distance matrix regression (MDMR, y-axis) as compared with

our mPC-based test (x-axis). e, Analogous to d, for dissimilarity after applying
the centered log-ratio transform torelative abundance measurements.

f, Associations of AMYI copy number (y-axis) with each of the 439 individual
microbial principal components (x-axis). g-p, Analogous to f, for the other

10 lead variantsidentified by the mPC-based GWAS. P-values were computed
using two-sided linear mixed models (a,b,f-p), one-sided chi-squared test (c; x-axis
ofd,e), or one-sided multivariate distance matrix regression (y-axis of d,e).
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Extended DataFig. 3| Complex associations of human genetic variation
atthe PRBlocus with oral microbiome phenotypes. a, Diploid copy number
of PRBI estimated for SPARK participants from WGS read-depth (n=12,519).

b, Associations of genetic variants at the PRBlocus with relative abundance of
Stomatobaculum SGB5266. The association of PRBI copy number is highlighted
(red point). c, Allelic series of effect sizes of PRBI diploid copy numbers on
relative abundance of Stomatobaculum SGB5266 (in s.d. units, n =12,517).

d, Partial colocalization of associations of genetic variants at the PRBlocus

with Stomatobaculum SGB5266 relative abundance (-logl0(p), x-axis) and oral
microbiome composition (-logl0(p), y-axis). PRBI copy number (red point)
and acommon PRB4loss-of-function variant (blue point) appear to deviate
fromagenerally concordant pattern of associations, likely reflecting multiple
causal effects. e, Effect sizes on Stomatobaculum SGB5266 relative abundance
foreach additional copy of PRBI compared to each functional copy of PRB4
(n=12,519). Error bars, 95% Cls in all panels. P-values were computed using
two-sided linear mixed models (b,d).
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Extended DataFig. 4 |Additionalinformation about associations between
human genetic variants and oral microbial abundance phenotypes.

a, Stratified LD-score regression coefficients (which quantify evidence of
enrichment of heritability in regions surrounding genes with tissue-specific
expression) from S-LDSC analysis of chi-squared statistics from the oral
microbiome composition GWAS (n =12,519). Heritability enrichment was
evaluated for genomicregions defined by 53 tissues from the Genotype-Tissue
Expression Project (GTEXx). b, Effect sizes (in s.d. units) onrelative abundance
of SGB9384 for individuals homozygous for either allele of the TLR11602S
missense variantrelative to heterozygotes (n=12,519). ¢, Colocalization of
genetic associations at the PITXIlocus with dentures use (-log10(p), y-axis) and

oral microbiome composition (-logl0(p), x-axis). d, Analogous to ¢, for the
FUT2locus. e, Consistency of effect sizes for 167 significant variant-species
abundance associations computed with or without applying the centered log-
ratio transformto relative abundance measurements. f, Consistency of effect
sizes for 167 significant variant-species abundance associations computed
with or withoutincluding ASD status as a covariate. g, Distribution of relative
effectsizes on microbial species abundances for individuals homozygous for
the FUT2secretor allele relative to heterozygotes, across microbial species
whoserelative abundance associated with secretor status (FDR < 0.05). Error bars,
95% Clsinall panels. P-values were computed using one-sided chi-squared test
(x-axis of ¢,d), two-sided linear regression (y-axis of ¢,d) or one-sided t-test (g).



Article

bg = p=0.00034 c
o =
w'c
2 =]
=
a % 3 0.09
83
70 g §
r=028 ~ S 006
60 p=14x1022 5%
Iz
® 55
o o
€ 50 55003
: =
3 401 39
2 N
P 2% 000
& 304 < 5 10
8 Phylogenetic distance from
‘é 20 Haemophilus sputorum
£
< d p=072 e
10 c c
S & S S
RES R
o4 - @33 0.03 )
T T T T T 1 go 2 I3
0 20 40 60 80 100 5 %3 =
Firmicute % abundance ey 0.00 E1
sg8g - s
2E3 v
g8t 8
532 903 g
& -5 E ’ ]
Egs S
T=-5 [y
—-0.06
5 10
Phylogenetic distance from
Haemophilus sputorum
J 9% p=26e-07 h
f \\ Vi gy =2
N i 7 Actinobacteria o
N \\ \ // Y SI -
N\ \ / //// % <5 003
N7 g g3
v ©
/\/’\//L»_ § S
= 2 002
o
—— = by
— e = S
& 209
// /\/\ = i E 0.01
NS [}
2 //7 N =R
2, , 25
W //‘/~* [ \ < 0 3 5 9
Firmicutes ] Phylogenetic distance from
Granulicatella adiacens
! 0.04 p=0078 |
@
5@ 8 5
85 s
598 002 %
gag ™ 3
oD 2 L5}
<g 2 <
58 -
%56 000 b
$38L by
0woyg [T)
522 5>
12 QCJ |
oEQ =
T ©-002

0

Extended DataFig. 5| Phyleticstratification of effects oftwo human genetic
variantsonrelative abundances of oral microbial species. a, Positive
correlation of relative abundance of the Actinobacteria phylumrelative to

the Firmicute phylum across salivasamples from SPARK participants (n=12,519).
b, Unsigned effect sizes for associations of secretor status (based on FUT2
W154X, using arecessive model) with relative abundances of the 439 most
prevalent microbial species (y-axis) versus phylogenetic distance from
Haemophilus sputorum (x-axis). ¢, Analogous to b, for Granulicatella SGB8239.
d, Signed effect size of associations of secretor status with relative abundances
of microbial species (oriented relative to the effect direction for H. sputorum)
(y-axis) versus phylogenetic distance from H. sputorum (x-axis). e, Analogous to
d, for G.SGB8239.f, Microbial taxa whose abundance associated with the index
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variantatthe HECTD2/PPPIR3Clocus (FDR < 0.1) shown on the phylogenetic
tree of 439 species (red, taxawhose relative abundances increased with the
referenceallele; blue, taxawhose relative abundances decreased with the

referenceallele). Twosignificantly-associated phyla (Firmicutes and Actinobacteria)

are highlighted withyellow sectors. Atthe species level (outermostcircle),

dotsizesincrease withstatistical significance. g, Analogous tob, for Granulicatella

adiacenswith the HECTD2/PPPIR3Cindex variant. h, Analogousto g, for
Streptococcusvestibularis.i, analogous tod, for G. adiacens with the HECTD2/
PPPIR3Cindex variant.j, analogous toi, for S. vestibularis. For b-e, g-j, thered
lineindicates the median effect size, and the shaded regionindicates the
interquartile range. P-values were computed using two-sided Pearson’s
product-moment correlation (a) or two-sided linear regression (b-e, g-j).
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Extended DataFig. 6 | Genotyping and mutability of AMYI copy number
andreplication ofassociations with oral health. a, Estimated diploid copy
number of AMY1 for SPARK participants (n=12,519). b, Concordance of AMY1
copy number estimates between 5,149 sibling pairs in the UKB cohort that
shareboth haplotypesidentical-by-descent (IBD2) in the region surrounding
theamylase locus. Among the 5,149 IBD2 sibling pairs, 13 had copy number-
discordant calls (red points) that tended to differ by two copies (11/13), likely
corresponding tode novo duplication or deletion of acopy of the common
structural cassette containing two AMYI genesinaninverted orientation
toeachother (Fig. 3a). Several IBD2 sibling pairs with AMYI copy number
estimates that differed by closeto1copy appeared morelikely toreflect

uncertainty in copy number estimates as they lacked a corresponding AMY2A
duplication or deletion that would be expected to accompany a duplication or
deletion of asingle copy of AMYI. This gives an estimated germline mutation
rate of 6.3x10* mutations/meiosis ([3.5x107*,11.1x107*], 95% Cls, similar to
recent estimates from haplotype coalescent trees*®), exceeding the mutation
rate of mostshort tandemrepeats®®. ¢, Analogous to a, for the AoU cohort
(n=245,377).d, 0Odds ratios for risk of complete toothloss in AoU (n=230,002)
per AMY1diploid copy number. e, Analogous tod, for having caries. f, 0dds
ratios forrisk of dentures use in UKB (n = 418,039) per AMY2A diploid copy
number. g, Analogous tof, for AMY2B diploid copy number. Error bars, 95% Cls
inall panels. P-values were computed using two-sided linear regression (d,e).
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Extended DataFig.7 | Functional assays of AMY1coding variation,
consistency of microbiome associations, and lack of copy number
associations withBMIinAoU. a,Immunoblotting for amylase transgenically
expressed in HEK293T cells. Amylase (-56kD) is found in the supernatant of
cellstransfected withthereference sequence of AMYI (lanel) and AMYIF141C

(lane 2), butnot AMYI1C477R (lane 3) or acontrol plasmid (lane 4). The glycogen-

purified proteinis recognized by anti-amylase (lane 5). Amylase is found in the
lysate of cells transfected with the reference sequence of AMYI (lane 6), AMY1
F141C (lane 7), and less abundantly in cells transfected with AMY1C477R (lane 8),
butnotacontrol plasmid (lane 9). Cross-reactive protein (-50kD) canbe seenin
thelysate of allsamples and smaller AMY1fragmentsinlanes containing AMY1.
Theseresults werereplicated in3independent transformations with similar
results. b, Glycogen-purified supernatant from cells transfected with the
reference sequence of AMY1 (lane 1) and AMY1F141C (lane 2), but not AMY1
C477R (lane 3) or a control plasmid (lane 4) contains a single protein band at
~-56kD. Theseresultswerereplicatedin 3independent transformations with
similar results. ¢, Starch degradation is similar between equivalent mass
dilutions of the reference amylaseisoformand AMY1F141C (n =32 technical
replicates for each allele). Starch degradation was measured as change in FAM
relative fluorescence units over 30 min (y-axis) after addition of diluted AMY1

toquenchedstarchsubstrate. Centers, medians. d, Comparison of effect sizes
for AMYI copy number versus AMYI C477R copy number on relative
abundances of 16 bacterial species (from Fig. 3b) and onrisk of dentures

use (bluedot). For some species (e.g., Stomatobaculum SGB5266), the relative
effect size of AMYI copy number versus AMY1C477R copy number onabundance
is similar to this ratio for dentures use (blueline), whereas for others, it is not
(e.g. Prevotellapallens).e, Concordance of effect size estimates for AMYI copy
number onrelative abundances of 439 microbial species in adults (x-axis) and
unrelated children (y-axis). Species whose abundances associated significantly
with AMY1 copy number areindicated in darker gray (FDR < 0.05) or black
(Bonferronip < 0.05).f, Effect sizes on BMI per AMY1 copy number in AoU
(n=219,879). Thelinedrawnis the best fitacross AMYI copy numbers.Asa
positive control, we confirmed that the BMI phenotype we tested (see Methods)
associated strongly withthe BMI-associated SNPrs1421085at FTO* (p=3.72x1074°),
g, Analogous tof, for the African/African American ancestry subset of AoU
participants (n=49,296,p=0.25).h, Analogous tof, for the American Admixed/
Latinoancestry subset of AoU participants (n=38,788, p = 0.01).i, Analogous
tof, for the Europeanancestry subset of AoU participants (n=122,577,p = 0.66).
Errorbars, 95% Clsinall panels. P-values were computed using two-sided t-test (c),
two-sided linear mixed models (e), or two-sided linear regression (f-i).
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Extended DataFig. 8 | Pathway abundance associations and details of gene
dosage associations. a, Effect sizes of AMY1 diploid copy numbersonthe
relative abundance of reads mappingto genesinthetricarboxylicacid cycle
(TCA) pathway across microbial species. b, Associations (-log10(p), x-axis)
oftherelative abundance of reads mapping to each of 2,416 Haemophilus
sputorum gene families with FUT2 secretor status. Read depth measurements
were inverse normal transformed across samples for each gene. Gene families
generally fellinto two modes, one group not associated with FUT2 secretor
status and another that associated at significance similar to that of the relative
abundance of H. sputorum.One outlier (indicated with the red arrow) associated
much morestrongly and corresponds to agene encoding a protein with
trimeric autotransporter adhesin domain annotations (UniParc ID JSHXA9).

¢, Associations of deletions in the genome of Streptococcus parasanguinis

(as estimated by normalized coverage) with AMYI copy number (n=12,340).
Shadingindicates the two assembled contigs of the reference genome. The two
significantassociations (FDR < 0.01) overlap genes encoding amylase-binding
proteins, abpA and abpB.d, Allelic series of effect sizes of AMYI copy number
onnormalized coverage (n=12,026) in the 500 bp bins overlapping abpA
(orange) and abpB (green). e, Effect sizes of AMYI diploid copy numbers on
relative abundance of Streptococcus parasanguinis (n =12,487).f, Protein-
proteininteractionbetween human AMY1 (purple) and S. parasanguinis AbpA
(orange) predicted by AlphaFold3. AMY1residue F141is highlightedinred.

g, Analogoustof, for S. parasanguinis AbpB (green). h, Replication of208
associations between humangenetic variants and normalized read-depth
measurements in 500 bp bins of microbial genomesin the AoU cohort
(comprised of individuals age 18 or older). Effect sizes estimated in AoU
participants (n=10,000, y-axis) are plotted against effect sizes estimated in
SPARK (n=12,519, x-axis). Dots correspond to the 208 associations and are
colored according to the human geneticlocusinvolved, asin Fig. 4b., Effect
sizes of FUT2W154X genotype on normalized coverage at bacterial genes
encoding proteins with YadA-like (adhesin) domain annotations (n = 7419,
Veillonella sp.3627;n=8153, Haemophilus sputorum; n = 7456, Haemophilus
parahaemolyticus). Colorsindicate the effect direction of FUT2genotype on
therelative abundance of each species (red, increasing with functional copies
of FUT2; blue, decreasing with functional copies of FUT2). j, Correlation matrix
of normalized coverageintheregion of the V.sp.3627 genome surrounding
vadD and vadE revealed alinked deletion to vadE that contained vadCand
nearly passed FDR < 0.01 (p = 3.32x10"°) in association with FUT2 W154X
genotype, causing samples with vadE to tend to also containvadC (Fig. 6d) and
possibly suggestive of the eventintroducing vadD occurring after the one that
producedvadCandvadE. Arrowsindicate vad gene locations. Error bars, 95%
Clsinall panels. P-values were computed using two-sided linear mixed model (a,e)
ortwo-sided linear regression (b,c). Effect sizes were computed with two-sided
linearregression (h,i).
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Extended DataFig. 9| Left breakpoints of deletionsinthe genome of
Haemophilus sputorumthat contain the hadA gene are bimodal.

a, Coverage of the QEQH01000003.1 contigin the Haemophilus sputorum
genome forindividuals with distinct left breakpoints of deletions containing
hadA.b, Distribution of left breakpoints for the 200 individuals with highest
genomic coverage of H. sputorum who had strong evidence of the deletion
containing hadA (<0.1median normalized coverage at the strongest associated
bin). For eachindividual, mosdepth was runto measure per-base depth,

and leftandright breakpoints wereidentified as the first or last base with 10
consecutive zeros, respectively. c, Genome-wide associations for normalized
read-depthinthe 500 bp bin of Haemophilus sputorum QEQH01000003.1:

3 4 5 6 7 8 910 11 12 131415161718 2022 X

Chromosome
197000-197500.d, Analogous to ¢, but for Prevotella nanceiensis KB904333.1:
123500-124000. e, Analogous to ¢, but for Streptococcus mitis MUYNO1000
003.1:100000-100500. f, Analogous to ¢, but for Streptococcusvestibularis
AEKO01000011.1:186000-186500. g, Analogous to ¢, but for Veillonella sp.
3627 RQVG01000009.1:13500-14000. h, Genome-wide associations for
normalized read-depthin 500 bp bins spanning the Rothia mucilaginosa
genome. For each human genetic variant, the most significant p-valueis shown
(acrossall 500 bp bins), with the red line indicating the study-wide significance
threshold (p <1.5x10™"). P-values were computed using two-sided linear mixed
models (c-h).
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Extended Data Table 1| Eleven loci at which human genetic variants associate with oral microbiome composition

Locus Lead variant rsiD MAF P microbiome P dentures Other information

AMY1 AMY1 copy number n/a na 15x10%° 5.9x10® Determines AMY7 gene dosage

SLC2A9 49925343 T_G rs13129697 0.32 29x10™ 0.021 SLC2A9 eQTL and sQTL; replicates oral microbiome association*

TLR1 4_38797027_C_A  rs5743618 04 62x10" 0.99 TLR1 1602S missense; affects immune response®®*®

SMR3A | SMR3B ~ 4_70378787_C_T  rs28612397 012 1.4x10™ 6.0x10°° SMR3A and SMR3B eQTL; SMR3B and MUC7 sQTL

PITX1 5_135173987_C_T rs3749751 0.41 30x10™" 7.5x10"® Variant has unknown function; Pitx1 knockout causes jaw malformation*?
HLA 6_32535351_G_A  rs112652539 0.4 22x10™ 7.1x10™ (rs9271236; r*=0.73) eQTL for six HLA class Il genes

ABO 9_133266456_C_T rs2519093 0.18 9.4x10"° 0.022 Tags A1 blood group allele*

PPP1R3C | HECTD2 10_91541231_A_G rs12260868 0.33 88x10°° 0.048 HECTD2 and PPP1R3C eQTL

PRB1-PRB4 12_11369682_G_A rs7966710 025 1.1x10™" 0.88 (rs7977399; =0 81) PRB2 eQTL; PRB1 mCNV and PRB4 R39X also associate with oral microbiome composition (Supplementary Note 1)
POLI | RAB27B 18_54457253_G_A rs17559023 0.08 4.2x10% 0.75 RAB27B, POLI, and C180rf54 eQTL; POL/ sQTL

FUT2 19_48703417_G_A rs601338 045 16x10"" 7.4x10° FUT2 W154X; primary determinant of secretor status*!

MAF, minor allele frequency. priciopiome. P-Value for association with oral microbiome composition in SPARK. pequres, P-Value for association with dentures risk in UKB (with a proxy variant indicated
in parentheses for two variants); nominally significant associations (Dyenwres < 0-05) are indicated in bold.
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Software and code
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Data collection  CFX Manager (v.3.1) as associated with CFX384 Real-Time PCR Detection System was used to collect fluorescence measurements for amylase
enzyme activity.

Data analysis The following publicly available software resources were used: MetaPhlAn (v.4.0.6, http://segatalab.cibio.unitn.it/tools/metaphlan/
index.html), DeepVariant (v.1.3.0, https://github.com/google/deepvariant), GLnexus (v.1.4.1, https://github.com/dnanexus-rnd/GLnexus),
HUMANN (v.3.8, https://huttenhower.sph.harvard.edu/humann), GraPhlAn (v.1.1.3, http://segatalab.cibio.unitn.it/tools/graphlan/index.html),
mosdepth (v.0.3.6, https://github.com/brentp/mosdepth), bowtie (v.2.5.1, https://bowtie-bio.sourceforge.net/bowtie2/index.shtml), bcftools
(v.1.14, http://www.htslib.org/), samtools (v.1.15.1, http://www.htslib.org/), plink (v.1.90b6.26 and v.2.00a3.7,https://www.cog-
genomics.org/plink/), BOLT-LMM (v.2.4.1, https://alkesgroup.broadinstitute.org/BOLT-LMM/), ggman (v.0.1.8, https://cran.r-project.org/web/
packages/gqgman/index.html), MDMR (v.0.5.2, https://cran.r-project.org/web/packages/MDMR/index.html), bedtools (v.2.27.1, https://bed-
tools.readthedocs.io/en/latest/), AlphaFold3 (v3, https://alphafoldserver.com/), and ChimeraX (v.1.9, https://www.cgl.ucsf.edu/chimerax/).
Custom code used to generate results in this study is available via Zenodo at 10.5281/zenodo.14559458

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The following data resources are available by application: UKB (http://www.ukbiobank.ac.uk/), All of Us Research Program (https://allofus.nih.gov/), and SFARI
SPARK (https://www.sfari.org/resource/spark/). Relative abundances of species in the oral microbiome will be returned to SFARI for release upon request. The
following data resources are publicly available: Human Microbiome Project (https://hmpdacc.org/), human reference genome build GRCh38 (https://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/), MetaPhlAn vOct22 reference database (http://cmprod1.cibio.unitn.it/
biobakery4/metaphlan_databases/), TOPMed-r3 imputation panel (https://imputation.biodatacatalyst.nhlbi.nih.gov/), LD score resources (https://
alkesgroup.broadinstitute.org/LDSCORE/), NCBI GenBank (https://www.ncbi.nim.nih.gov/genbank/ ), and NCBI Conserved Domain Database (https://
www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml).
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Reporting on sex and gender Sex was used as a covariate in several analyses, but no values directly pertaining to sex are reported.

Reporting on race, ethnicity, or  For UK Biobank, using the top 20 ancestry principal components, a subset of individuals that fell within a Euclidean distance

other socially relevant (centered at the mean values of each PC for individuals who self-identified as "white") capturing 99% of individuals who self-

groupings identified as "white" were used for phenotype associations. For All of Us, analyses were performed either on the entire
cohort, or by restricting to released genetically-predicted ancestry as noted. For SPARK, all individuals were included in
analyses without restricting to any ancestry. For all analyses except associations with microbial gene dosage, ancestry
principal components were included as covariates in genetic associations.

Population characteristics UK Biobank is a cohort of approximately 500,000 individuals across the United Kingdom between 40 and 69 years of age at
time of recruitment (Sudlow et al. 2015 PLOS Medicine). For phenotype associations in the UK Biobank cohort, age, age
squared, sex, genotype array, assessment center, and top 20 genetic ancestry PCs were used as covariates. All of Usis a
cohort of approximately 245,000 individuals with WGS available (at time of analysis) across the United States older than 18
years of age at time of recruitment (The All of Us Research Program Investigators 2019 N Engl J Med). For oral health
associations in the All of Us cohort, age, age squared, sex, and the top 16 genetic ancestry principal components (from
ancestry_preds.tsv) were used as covariates. For BMI associations in the All of Us cohort, only genetic ancestry principal
components were used as covariates as age and sex had already been residualized out. SFARI SPARK is a cohort of
approximately 160,000 families with at least one child with autism spectrum disorder, where 12,519 individuals (at time of
analysis) have WGS from saliva available (SPARK Consortium 2018 Neuron). For microbiome associations in the SPARK SFARI
cohort, sequencing batch, age, age squared, square root of age, sex, percent of mapped reads, and the top 10 genetic
ancestry principal components were used as covariates.

Recruitment Individuals and biosamples were not obtained for this study and their recruitment is as described in prior publications (cited
in current work).

Ethics oversight Individuals and biosamples were not obtained for this study and local IRBs at each institution approved the collections and
patient-consent materials, as described in the earlier papers on these cohorts (cited in current work). North West-Haydock
Research Ethics Committee gave ethical approval for UK Biobank data collection and availability under reference 16/
NW/0274. Western IRB of Wayne State University gave ethical approval for Simons Foundation Autism Research Initiative
(SPARK) data collection and availability under protocol 20151664. The IRB of the All of Us Research Program gave ethical
approval gave ethical approval for All of Us data collection and availability under protocol 2021-02-TN-001. The Office of
Research Subject Protection (ORSP) of the Broad Institute waived ethical approval for this work, as this research on de-
identified, previously-collected data was determined not to constitute human subjects research and did not require IRB
review. Data from the UKB Resource were accessed under application number 40709 and from SFARI SPARK under
application 3350.2.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size

Data exclusions

Replication

Randomization

Blinding

Starting from 488,377 individuals in the UK Biobank SNP-array data set, individuals were excluded based on the following criteria: 36,008 were
removed to drop one relative within pairs of close relatives with kinship coefficient > 0.0884, preferentially keeping individuals if they a)
reported having dentures or b) reported not having dentures (i.e., had a non-missing dentures phenotype); 28,701 were removed for not
having European genetic ancestry; 1,469 were removed for not having available TOPMed-imputed genotypes (including for chromosome X);
2,601 were removed for not having available WGS data; and 53 were removed for having withdrawn, leaving 419,545 available individuals for
genetic association analyses. For the binary oral health phenotypes (dentures use and bleeding gums), 418,039 had non-missing values. For
the quantitative BMI z-score phenotype, 418,150 had non-missing values.

For the All of Us cohort, 245,377 samples were genotyped for AMY1 copy number from available WGS data and these were then filtered to an
unrelated subset of samples (iteratively dropping one individual per related pair with kinship score > 0.1, from
relatedness_flagged_samples.tsv). 230,002 individuals had non-missing values for the oral health phenotypes and 219,879 individuals had
non-missing values for the BMI z-score phenotype. For replication of microbial gene dosage associations with human genetic variants a
random set of 10,000 samples with saliva as the biosample type were chosen.

For the SFARI SPARK cohort, all 12,519 samples with available WGS data were used for all analyses unless otherwise specified (ex. subsets
used with sufficient genomic read depth coverage of a specific microbial species).

In all cases except for replication of microbial gene dosage associations in All of Us, no sample-size calculation was done to predetermine
sample size and the maximum number of available samples were used. For oral health associations (UK Biobank), we expected that the
association would be sufficiently powered to allow for associating AMY1 copy number with dentures risk given nearby variants reached
genome-wide significance and low r2 (<0.2) between AMY1 copy number and any biallelic tag variants. Additionally, we expected reasonable
power to find evidence of colocalized dentures use associations with microbiome composition given the large number of genome-wide
significant loci (n=47) seen in a previous GWAS for dentures risk. For BMI associations, we expected reasonable power to replicate previously
reported associations with AMY1 copy number, given each of our cohorts (UK Biobank and All of Us) were nearly two orders of magnitude
larger than the largest where a significant relationship was observed. For oral microbiome associations, we expected comparable power to
find significantly associated human loci given results from several similarly sized gut microbiome association studies (n=8-16k). For replication
of microbial gene dosage associations in All of Us, we chose a sample size of 10,000 to limit computational expense while approximating
power of the SFARI SPARK cohort. For enzymatic assays of amylase isoforms, we expected 32 replicates to be sufficient to observe an effect
sufficient to explain the genotypic associations (22.4- and 7.3-fold).

Established QC metrics were used to exclude some samples, genotypes, or sequencing data for analysis as described in previously published
studies (cited in the current work). Samples from individuals in UK Biobank, All of Us, and SFARI SPARK that requested to be withdrawn at the
time of analysis were excluded.

For oral health phenotypes, All of Us (complete tooth loss, caries) served as independent replicate for association with AMY1 copy number as
first performed in UK Biobank (dentures use), where caries was previously reported to have high genetic correlation with dentures use.
Additionally, although not genome-wide significant, the bleeding gums phenotype in UK Biobank also served as a replication of the AMY1 copy
number allelic series with effects from missense variants (F141C, C477R).

For BMI z-score phenotype, All of Us served as an independent replicate for association with AMY1 copy number as first performed in UK
Biobank. Additionally, the same lack of association with AMY1 copy number seen in each genetically-predicted ancestry of All of Us serve as
confirmations of non-ancestry specific trends.

For microbiome composition associations, the colocalization of individually significant microbial species at the same human genetic loci (even
at a (taxa)x(human genetic variants) level of Bonferroni correction) each replicate the overall pattern of association, but also often resolved to
the same lead index variant and pattern of association (Fig. 2, 3 and Extended Data Fig. 2, 3). Additionally, the comparison of associations for
species relative abundance in adults and children separately (performed to assess the plausibility of reverse causality from dentures use)
serve as additional replicates of the human genetic effect. The relative effect sizes of F141C and C477R on the relative abundance of different
microbial species also affected by AMY1 copy number (Fig. 3i) further replicates these variants as exerting some phenotypic function
equivalent to additional copies of AMY1.

For microbial gene dosage associations, the effects observed in the SFARI SPARK cohort were replicated in an independent set of 10,000
samples from the All of Us cohort (Extended Data Fig. 9c)

For in vitro amylase enzymatic assays, purified protein from reference sequence and F141C AMY1 isoforms was used in n=32 replicates of
enzymatic activity, where all attempts were successful and included in Extended Data Figure 7c.

For UK Biobank, samples were collected in batches at different assessment centers at locations across the United Kingdom and these were
encoded as indicator covariates in phenotype-genotype associations. For SFARI SPARK, samples were collected in sequencing batches (WGS1
through WGS5), where these were encoded as indicator covariates. For All of Us, samples were sequenced in batches at different centers,
where these were encoded as indicator covariates. For enzymatic assays, replicates were run as prepared in equally sized groups on plates,
where plates were encoded as indicator covariates. No further randomization was done as all samples were used for each analysis.

For all computational analyses, samples were listed with a randomized ID where association of measured genotype with trait (phenotype such
as dentures use or relative abundance of a particular microbial species) was only done at the point of final statistical analysis. Blinding was not
done for in vitro amylase enzymatic assay sample plating, as fluorescence quantification was performed simultaneously and identically for all
samples on each plate.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Antibodies

Antibodies used anti-Amylase Antibody (clone G-10, Santa Cruz Biotechnology, catalog no. sc-46657, lot no. G0324), Anti-mouse IgG, HRP-linked
Antibody (Cell Signaling Technology, catalog no. 7076, lot no. 39)

Validation The anti-Amylase Antibody (clone G-10) has been validated for use in Western blotting against human salivary amylase with some
user-submitted Western blots (ex. Luti, S. et al. Chronic Training Induces Metabolic and Proteomic Response in Male and Female
Basketball Players: Salivary Modifications during In-Season Training Programs. Healthcare (Basel) 11, 241 (2023).). We also confirm a)
it recognizes a single band at the expected size (¥56 kD) in glycogen-purified cell culture supernatant (EDF 6) which is expected to
yield only amylase from previous work, and b) presence of this band in unpurified cell culture supernatant from cells transfected with
a plasmid containing amylase coding sequence but not those without. We do note that there is a non-specific band at ~50kD present
in the supernatant of cells transfected with a control plasmid not containing AMY1. The anti-mouse antibody (CST 7076) has been
validated against CST primary antibodies in Western blots as indicated on the manufacturer's website.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Lenti-X 293T (HEK293T clone) from Takara Bio USA (lot no. AIYO0015, catalog no. 632180)

Authentication Morphological match for type and in-house verification of SV40T antigen with genotyping PCR assay. No other standard
authentication methods were performed (such as STR typing).

Mycoplasma contamination Lack of mycoplasma contamination was done by Takara Bio USA as well as by members of receiving lab (McCarroll)

Commonly misidentified lines  None were used in this study, HEK293T is a derivative of HEK and has not been listed as commonly misidentified.
(See ICLAC register)

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtres foreach seed stock-tised-or-novel- genotype generated—Describe-anyexperiments-tused-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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