Article

Sub-second volumetric 3D printing by
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Volumetric additive manufacturing has emerged as a promising technique for the
flexible production of complex structures, with diverse applications in engineering,
photonics and biology*. However, present methods still face a trade-off between
resolution and volumetric build rate, restricting efficient and flexible production of
high-resolution 3D structures. Here we propose a method, called digital incoherent
synthesis of holographic light fields (DISH), to generate high-resolution 3D light
distributions through continuous multi-angle projections with a high-speed rotating
periscope without the requirement of sample rotation. The iterative optimization of
the holograms for different angles in DISH maintains 19-um printing resolution across
the1-cmrange thatis far beyond the depth of field of the objective and enables high-
resolution in situ 3D printing of millimetre-scale objects within only 0.6 s. Acrylate
materialsinarange of viscosities are used to demonstrate the general compatibility of
DISH. Integrating DISH with a fluid channel, we achieved mass production of complex
and diverse 3D structures within low-viscosity materials, demonstrating its potential

for broad applications in diverse fields.

Precise and efficient manufacturing of complex 3D structuresisincreas-
ingly vital across diverse fields such as structural mechanics®, pho-
tonics®, pharmaceutics’, tissue engineering®® and drug screening'.
Traditional methods such as moulding™ and phase separation? are
efficient for mass production but prove costly and time-consuming
whenmodifying structures. 3D printing methods such as stereolithog-
raphy®, digital light processing** and two-photon polymerization”*
offer great flexibility in fabricating intricate 3D designs with high preci-
sion, although their efficiency is far from enough for mass production.
Efforts have been made to enhance the production rate and reduce
the layering effects. Continuous liquid interface production®** uses
oxygen inhibition to avoid reciprocating when printing contiguous
layers and integrates a continuous roll for batch production®but the
printing processes are essentially layer-wise. Xolography? is a form of
volumetric additive manufacturing that moves alight sheet through the
stationary resin. Despite its recent update with continuous production
using afluid control system?, the dual-colour photoinitiator requires
necessary time to revert, which restricts its volumetric build rates.
Toaddress this problem, volumetric 3D printing, exemplified by com-
puted axial lithography (CAL)', emerges as a promising technique to
print the entire volume simultaneously using controlled 3D light distri-
butionsgenerated by light patterns fromdifferent angles. Because fewer
angle numbers used during projection will severely degrade the spatial
resolution owingto the missing coneinthe frequency domain, akinto
computed tomography, present CAL techniques involve the 360° rota-
tion of the sample for high-precision tomographic reconstruction'?.

However, the requirement of sample rotation makes it hard for in situ
printing and restricts the rotation speed to avoid mechanical vibra-
tions affecting printing resolution and system alignment. In this case,
high-viscosity printing ink is usually required to prevent sample sinking
during the tens of seconds printing time for millimetre-scale objects,
restrictingits possibility of integrating flow control to furtherimprove
the printing efficiency** 28, Also, when we try to further increase the
printing resolution with a high-numerical-aperture (NA) objective
for excitation, the diffraction effect of light, once negligible, has now
surfaced as a prominent challenge, posing difficulties for maintaining
high-precision modulation across alarge depth of field®**. Therefore,
high-speed, high-throughput successive fabrication of millimetre-scale
objects with high resolution remains a systemic challenge.

Here weintroduce digitalincoherent synthesis of holographiclight
fields, named DISH, to achieve high-speed, high-resolution volumetric
printing of millimetre-scale objects within 1s. Instead of rotating the
sample, we design a rotating periscope with a long-working-distance
0.055-NA objective to deliver high-resolution projections of precisely
controlled light fields at a rotation speed of up to 10 rotations s™.
Although partially coherent or incoherent light has a shallow depth
of field, we use a coherent laser source with adigital micromirror device
(DMD) to rapidly generate optimized patterns at up to17,000 Hz, which
canachieve high-resolution modulation even far from the native objec-
tive plane without the requirement to mechanically shift the focal
plane. Although the DMD cannot directly modulate the phase of the
light fields, we develop an iterative algorithm with the wave-optics
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Fig.1|Principle andillustration of DISH. a, Multi-angle projectionis used to
generate 3D lightintensity distributions withina fixed container for volumetric
printing.b, Arotating periscopeis designed to generate high-speed rotating
projections of the light patterns modulated by aDMD within 0.6 s. The target
modelandits experimental printout are shown on therightasanexample.
c,Images captured at different time points showing that the printing process

propagation model and a customized loss function to optimize the
projected light fields holographically for high-resolution 3D modula-
tionwith enhanced fidelity compared with traditional algorithms. With
substantially increased rotating speed and resolution over traditional
CAL methods, DISH becomes very sensitive to systemerrors such as sys-
tem misalignment, aberration and attenuation. Therefore, we develop
anadaptive-optics-based rapid calibration method to achieve a uniform
opticalresolution of 11 pumacross 1-cm depth experimentally, enabling
high-speed production of samples with the finest positive feature of
12 pmand astable printing resolution of 19 pm (Extended Data Fig. 1).
Different materialsinarange of viscosities are validated to be compat-
ible with DISH. By using both advantages of high efficiency and high
precision, we integrate DISH with a fluidic channel to demonstrate
successive flexible production of complex and diverse 3D structures
within low-viscosity materials, which may open up a horizon for diverse
applications such as high-throughput bioprinting, drug screening,
micromachines and miniaturized photonics.
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Printout

inalow-viscosity PEGDA aqueous solution can be finished within 0.6 s.

d, Comparisons of the simulated 3D light distributions generated by the
DISH system with incoherentlight, coherentlight without holographic
optimization and coherentlight with holographic optimization. The target
ground truthisalso shownontheleft.Scalebars,1 mm.

Principle of DISH

To avoid the instability of high-speed sample rotation in traditional
CAL methods, we develop a rotating periscope in DISH to facilitate
high-speed projections of light fields at up to 10 rotations s™ (Fig. 1a,b
and Extended Data Fig. 2). ADMD is used to generate high-resolution
light modulation at speeds up to 17,000 Hz. The periscope is placed in
front of the objective, altering the propagation direction of patterned
beams. The DMD patterns are synchronized accurately with the rota-
tionangles for incoherent synthesis of 3D light intensity distributions
(Extended DataFig. 3). By rapidly changing theillumination angles, DISH
makes use of the motor’s rotation speed as the primary determinant of
exposure time. Allbeams are projected through the single flat surface
ofacontainer to generate 3D patterns, simplifying requirements on the
printing container and facilitating applications such as insitu printing
onspecific objects orin vivo bioprinting. Our experimental validation
reveals that DISH can finish the 3D printing of a millimetre-scale object



withinonly 0.6 sin a polyethylene glycol diacrylate (PEGDA) aqueous
solution (Fig. 1cand Supplementary Video 1). In traditional CAL meth-
ods, high-viscosity (6,000-10,000 cP) photosensitive materials are
required to alleviate the effect of product sinking® owing to the printing
time lasting tens of seconds. The ultrahigh printing speed of DISH can
effectively mitigate these limitations and work for low-viscosity materi-
als of 4.7 cP, accomplishing printing before sample sinking.

To further increase the printing resolution, we use a long-working-
distance objective lens with a 0.055 NA for light projection. However,
withtheincreaseinresolution, the diffraction effect of light cannotbe
ignored by simply using the ray approximation. For partially coherent
orincoherentlight typically usedin previous CAL methods, axial scan-
ning willbe required to cover alarge volume range owing to the shallow
depth of field with a high NA (about 0.4 mm for 0.055 NA at 405 nm),
which will reduce the printing speed for millimetre-scale objects to
maintain highresolution (Fig. 1d). In DISH, we address this problem by
using acoherent laser source and holographically calculating and opti-
mizingthelight fields, which canachieve high-resolution modulation
far beyond the native objective plane without mechanically shifting
the focal plane. Combined with the high-speed digital modulation of
the DMD, we can achieve high-resolution 3D light modulations across
alarge depth range up to 1 cm after specifically designed optimiza-
tion, more than 20 times larger than the depth of field. Multi-angular
excitation also offers sufficient degrees of freedom to generate
high-resolution 3D intensity distributions by DMD modulation dur-
ing optimization.

Holographiclight fields optimization

Different from the optimization process in CAL methods*® using ray
approximations for thelight field, a coarse-to-fineiterative algorithm
is developed for DISH to optimize the binary projection patternsin the
DMD using the wave-optics model for coherent light. The projection
patterns for different angles are summedincoherently to generate the
3D high-resolution intensity distributions for high-fidelity printing
after considering the response of the photocuring materials®, which
can be expressed as the following optimization problem:

min L=) ._ ldy-DX)+) ._7IDX)-d|’

s.t. 1=3 1", (6,0, 6,€{0,13

inwhichD(X) represents the accumulated dose at each 3D pointinthe
objective area, which is determined by the intensity of the patterned
beams/, exposure time and light attenuation in materials. A represents
the 3D region of the target model to be printed, in which the accumu-
lated dose is expected to be d, for polymerization, and A represents
the area outside the target region in which the accumulated dose is
supposed to be smaller than the threshold d, to avoid overexposure.
o,u is the DMD-projected amplitudes for the angle ¢. 7, represents
the process of light propagation in wave optics, considering the refrac-
tionattheinterface of airand material. By minimizing the loss function,
we can optimize the binary projection patterns to achieve precise 3D
intensity distributions and improve the printing accuracy (Methods).

Because suchabinary discrete optimization problem involving more
than 0.1 billion voxels for a millimetre-scale object is very time-
consuming, we develop a coarse-to-fineiterative algorithm to reduce
the computational costs (Fig. 2a). We first optimize this problem by
existing gradient descent algorithms®?*to obtain high-resolution 3D
intensity distributions /" for N discrete angles with the same 2D
distributions along the angle . Then we use the synthesis of Gadjacent
binary projection patterns around the angle ¢ asagroup. These groups
for each angle are sequentially optimized through a holographiciter-
ative algorithm (Methods) to fit the target high-resolution intensity
distributions /;**"*across alarge depthrange without the requirement

of mechanically shifting the focal plane. The flow chart of the holo-
graphic optimizationis demonstrated in Extended DataFig. 4, illustrat-
ing the necessity of holographic optimization for high-contrast 3D
projections.

Compared with previous penalty minimization (PM) methods with
ray approximation used in CAL*, our method can fully exploit the
advantage of a coherent light source for holographic light fields to
generate high-resolution 3D structures across about a 1-cm depth
range for the 0.055-NA objective (Fig. 2b,c). We also compared our
method with the global Gerchberg-Saxton algorithm*®, a traditional
iterative method for holographic pattern optimization. Our method
achieves a more accurate intensity distribution in terms of the Jac-
card index and signed distances, as shown in Fig. 2d and Extended
Data Fig. 5. We further analysed the influence of the total number of
projection patterns and the binarization parameter Gon the printing
accuracy. More projections will increase the printing fidelity and gen-
erally converge withmore than1,000 binary projections for different
G.Our DMD canrapidly project1,000 patterns within 0.06 sto ensure
high printing speed. Although a smaller binarization parameter G
can reach convergence with fewer projections, it leads to the loss of
overall greyscale information with lower fidelity (Fig. 2e and Extended
Data Fig. 6). The performance gradually converges when G is larger
than 3. Therefore, we choose G =10 and a total projection number of
1,800 projections (corresponding to 180 coarse 3D doses) in practical
experiments.

Experimental calibration of DISH

We built up a proof-of-concept system to experimentally validate
the performance of DISH. With both improvements in the printing
speed and resolution, DISH is much more sensitive than previous CAL
methods to system errors such as slight system misalignment, optical
aberrations and beam attenuation. Therefore, careful calibration of
the system is critical to achieve high performance experimentally. As
depicted in Extended Data Fig. 7, the beam undergoes refraction at
the surface between the air and the material during propagation. The
pattern of the beam will be non-uniformly modulated after the refrac-
tion process, leading to blurring at the edge (Fig. 3a). Therefore, we
took this refraction processinto consideration during the wave-optics
model of the beam propagationin the optimizationalgorithmtoreduce
errors (Methods).

Also, DISH is a non-coaxial, multi-view optical system. During the
rotation of the periscope, any mismatch in different angular pro-
jections will lead to blurring of the integrated intensity, akin to the
non-uniformoptical aberrations. Therefore, we developed an adaptive-
optics-based calibration method to calibrate the projection of each
angle at the single-pixel level and ensure that all inclined beams pre-
cisely overlap at target positions. Inspired by digital adaptive opticsin
scanning light-field imaging**, the light intensity was first captured
inthe fluorescent material by two cameras placed in orthogonal direc-
tions, which worked as the wavefront sensors to detect the degrees
of misalignment (Fig. 3b). Then we can laterally shift the projection
patterns for each angle in the DMD using the measured misalignment
asthe feedback (Extended DataFig. 8). By rotating the periscope and
capturing theimages of the beams for each angle, we can sequentially
calibrate each angular projectionbased on the relationship among the
DMD pixels, platform angles and 3D positions. Moreover, wave-optic
parameters, such as the propagation distance to the native focal plane
of the DMD, were calibrated by projecting designed stripes (Fig. 3c).
The entire calibration process can be finished withinafew minutes and
only requires being carried out once for a fixed DISH system without
the requirement of any hardware modifications. Accurate 3D inten-
sity distributions for printing can then be achieved experimentally
after both pattern optimization and adaptive-optics-based system
calibration (Fig. 3d).
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Fig.2|Illustration and evaluations of the coarse-to-fine holographic
optimizationalgorithm for the projection patterns. a, Diagramillustrating
the holographic optimization algorithm for multi-angle projections. Aniterative
holographicalgorithmis developed to optimize binary patterns for each angle.
b, Comparisons of the optimized patterns by the traditional PM algorithm

and our holographic optimization algorithm. ¢, Simulated products and the
cross-sections obtained by PMand our method. d, Curves of the Jaccard index

To characterize the optical resolution of DISH quantitatively, we
firstimaged the 3D projection intensity generated by DISH in a fluo-
rescent solution, with the exposure time of the cameras set as exactly
therotation timerequired for 360°. As shown in Fig. 3e,f, we projected
the patterns of triple dots, each with a feature size and lateral spac-
ing of 10.8 um corresponding to two DMD pixels, at different axial
positions with an axial interval of 2.4 mm. Although patterns opti-
mized by backprojection and our method both successfully generated
high-resolution structures at the printing centre near the focal plane,
the backprojection method degraded at the axial position of 4.8 mm
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between the simulated products and the target versus the number of total
binary projection patterns for eachrotation round. The curves of three
different methods were compared, including the PM algorithm, the global
Gerchberg-Saxton (GS) algorithm and our algorithm. e, Curves of the Jaccard
index between the simulated products and the target versus the number of
total binary projection patterns for each rotation round. Curves of our method
with different binarization parameters are shown.

fromthe printing centre owing to the defocus effect. By contrast, our
method maintained high-resolution features even at the out-of-focus
plane (<0.4 mm depth of field for a 0.055-NA objective) after holo-
graphic optimization (Fig. 3f).

High-resolution 3D printing by DISH

To comprehensively evaluate the experimental printing resolution of
DISH, we used DISH to print diverse sample structures. First, we printed
high-resolution stripes on the 3D surface to evaluate the resolution
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Fig.3 | Experimental calibration of DISH. a, Illustration of the influence of
therefractionat the interface of airand material by showing the amplitude

and angular spectrabefore and after refraction. b, Schematicillustrating the
adaptive-optics-based calibration process by updating the optimized patterns
onthe DMD for each angle based on fluorescence images captured by two
orthogonal cameras. c, Thebeam projected from ¢ = 0°, captured by the

front camera, which helps determine the position of the conjugate plane.
Theimage hasbeencompressedinthe vertical direction approximately ten
times. d, Experimental fluorescence images of two cubes generated by DISH

at different axial positions. A model with an axial length of 1 cm was
designed with featured lines of different widths on the surface, with
the smallest linewidth of 10.8 um corresponding to two DMD pixels
(each pixel corresponds to about 5.4 pm at the objective plane).Sucha
relief-structure model is particularly sensitive to dose contrast, making
it suitable to evaluate overall projection precision. It should be noted
that better resolution may be obtained if we use a DMD with a smaller
pixel size and a larger pixel number, as a NA of 0.055 corresponds to a
diffraction limit of about 3.68 pm at 405 nm. The printed results are
illustratedin Fig. 4a,b and the linewidth was measured as11.0 £ 1.2 pym
across the whole depth range. By contrast, the product generated by
ray-approximation backprojections (Fig. 4c) showed muchlower reso-
lution away from the printing centre, indicating the shallow depth of
field for the 0.055-NA excitation. Therefore, DISH with coherent light
and holographic optimization enables high printing precision across
1cm, morethan 20 times larger than the depth of field of a NA of 0.055.
Another sample covered with dense stripes was also printed to verify
theresolution stability at different regions (Fig. 4d-f). Furthermore, we
quantitatively measured the linewidths across different axial positions
inthe sample of Fig. 4a to validate the uniform resolution of DISH for
millimetre-scale objects (Fig. 4g).

Then we tested the printing resolution on independent positive
features. A fishbone model with a designed linewidth of 10.8 pm was
printed (Fig. 4h). The measured width after printing was 11.9 + 2.1 um
(mean + standard deviation) across different bones at different regions
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before and after calibration. e, Experimental fluorescence images of beams
focused at several axial positions across the printing areawith an axial interval
of 2.4 mm.f, Experimental fluorescence images of three dots with a designed
feature size of 10.8 pmand agap of10.8 pm, located at the printing centre
(upper row) and 4.8 mm away from the printing centre (bottomrow). The
ground-truth targetis shownin the first column. Results obtained by two
different optimization methods (our holographic optimization algorithm
and backprojection) are shown with the corresponding optimized patterns
for several angles on the left. Scale bars, 100 pm (c); 1mm (d,e); 50 pm (f).

(Fig. 4i). Highexperimental printing resolution can also be visualized by
thesharp edgesand angles of the structures. Therefore, we used DISHto
printthestar (Fig. 4j) and the triangular pyramid (Fig. 4k). The designed
angle of the star was 36° and the measured angles for different regions
were about 36.0 +1.6°, validating the high printing precision. To further
validate the uniform printing resolution across the complete 3D vol-
ume and directions, we printed aconch modelincluding lines aligned
in different directions and axial positions (Fig. 41-0). The linewidths
after printing were measured as 19.3 + 3.4 um, indicating an overall
uniform printing resolution of about 19 um for DISH on diverse posi-
tive structures. Similar uniform printing performance was validated by
printing periodicstructures across alarge volume ora curved surface
(Extended DataFig. 9b-e). Negative features are more challenging for
volumetric printing methods. We printed an inner conical model to
show the versatility of DISH on diverse structures. The diameters of
theinscribed circle were measured tobe about 50 pm (Extended Data
Fig. 9f,g). Finally, we printed a complicated structure of a Theodoric
statue and validated our printing fidelity by comparing the designed
model with the scanning results by X-ray computed tomography on
our printed product (Extended Data Fig. 9h).

High-speed successive 3D printing

By increasing both the printing speed and precision of millimetre-scale
samples with volumetric exposure, DISH facilitates mass production

Nature | www.nature.com | 5
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Fig.4|Experimental characterization of the printing resolution of DISH.

a, Relief-structure products printed by DISH, demonstrating the smallest feature
size overal-cmrange. The linewidths were measured as 54.0 £2.9,11.0 1.2,
15.5+1.9,20.9 +2.3and 33.1+ 2.1 um, respectively. b, Close-up view of the relief
structure printed using patterns optimized by our holographic optimization
algorithm. ¢, Close-up view of arelief structure printed using patterns optimized
by the conventional ray-optic backprojection algorithm. d, Relief-structure
sample with densestripes printed by DISH. e,f, Close-up images of the edge (e)
and middle (f) regions of the sampleind. g, Average linewidths measured at
different axial positions of the sample ina, demonstrating a uniform resolution
of11pmoveral-cmdepthrange. We used n =6 measurements for each position,

of diverse 3D structures, which is critical for practical applications
such as high-throughput drug screening*?, mass fabrication of pho-
tonics computing devices** and bioprinting®. To demonstrate this
advantage, we integrated DISH with a fluidic channel for high-speed
mass 3D printing (Fig. 5a). A pump was used to shift the products and
replenish the printing material and a strainer was used to collect the
printing products while separating the uncured material for reuse. The
exposure time of eachsample was 0.6 s (Supplementary Video 2). Dif-
ferent from traditional mass production methods with a fixed mould
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witherrorbarsrepresenting the standard deviation. h,i, Fishbone structure
andits close-up view printed by DISH, in whichits positive features were
measured tobe11.9 + 2.1 pm.j, Five-pointed star model with designed angles
of36°and measured angles of 36.0 +1.6°.k, Triangular pyramid with sharp
edges. -0, Conch model (I) and the printout result by DISH (m). The lines
aligned in different directions and z-axis positions were measured tobe 19.3 +
3.4 pum(n,0). Asthelines are distributed along the z-axis positions, those located
outside the microscope focal plane appear as defocused patterns. We used
mean * standard deviation here for the width measurement. Scale bars,

500 pm (a-c); 200 pm (d-f); 1 mm (h,j-m); 100 pm (i,n,0).

for the same structure, DISH can successively manufacture different
objects with both high efficiency and high flexibility (Fig. 5b,c).

For industrial or engineering applications, we demonstrated intri-
cate shapes with complicated surfaces and hanging structures such
as the Theodoric statue (Fig. 5d,e), the squid (Fig. 5f) and the Benchy
(Fig. 5g),among others (Extended Data Fig. 9). For biological applica-
tions, we demonstrated helical tubes to mimic the vessels (Fig. Shand
Extended DataFig. 9i). The hollow structure was validated by injecting
different colours of ink. Because the light is only projected from one
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Fig.5|Successive 3D printing of diverse structures by DISH with a fluidic
channel. a, Schematicillustrating DISH integrated with a fluidic channel, a
pump and astrainer for mass production and collection of printoutsin flow.
b, Photographs depicting the printing process in flow. ¢, Diverse structures
printed at high speed by DISH, including cube frames, tetrahedron frames,
flowers, squids, spinal cord slices and bifurcated tubes. d,e, Digital model (d)

side by DISH, intravital in situ bioprinting of diverse structures on a
fixed surface canbe conducted at high speed. Also, because the entire
3D volume is printed simultaneously, DISH enables the printing of
unsupported chains, which are challenging for extrusion or layer-wise
printing techniques (Extended Data Fig. 9j).

Also, DISHis ageneral framework that can be compatible with com-
mon 3D printing materials. We further demonstrated the application
of several frequently used photocuring materials in DISH. The rigid
structures printed with dipentaerythritol hexaacrylate (DPHA) and
bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPAGDA)
were demonstrated in Fig. 5i,j and Extended Data Fig. 9n. Tubes were
also printed with biomolecule-based hydrogels gelatin methacrylate
(GelMA) and silk fibrin methacryloyl (SilMA) (Fig. Sk and Extended Data
Fig. 90). Moreover, elastic materials such as urethane dimethacrylate
(UDMA) can also be printed, as shown in Extended Data Fig. 9p. All of
these experiments demonstrate the broad applications of DISH with
both high flexibility and efficiency.

Discussion

In summary, we introduce a volumetric 3D printing method, DISH,
capable of successively producing high-resolution, millimetre-scale

and PEGDA printed product (e) of the Theodoricstatue. f, Squid statuette
printed with PEGDA. g, Benchy model printed with PEGDA. h, Helical tubes as
common modelsinbiological applications. Red and blue dyes were injected
forvisualization.i, Airplane printed with DPHA. j, Bird printed with BPAGDA.
k, Bifurcated tube printed with soft biomaterial GeIMA. Scale bars, 5mm (b,c);
1mm (d-k).

objects within 0.6 s. With the integration of a series of developments
in both hardware and software, the system can be calibrated within
several minutes without further hardware modification, achieving a
uniform printing resolution of about 19-um feature size across the
1-cm range throughout the container experimentally.

Inadditive manufacturing, higher spatial resolution or smaller voxel
size results in a substantial increase in the number of voxels required
per unit volume, which consequently decreases volumetric build
rate. Conversely, enhancing volumetric build rate often occurs at the
cost of reduced resolution. Voxel printing rate is therefore a param-
eter that enables intuitive characterization of 3D printing efficiency
across several length scales. Using DISH, a sample with a volume of
approximately 200 mm? (Extended Data Fig. 2e) can be produced
in a minimum exposure time of 0.6 s, achieving a volume printing
rate of 333 mm?s™ and a voxel printing rate of 1.25 x 10® voxels s at
a voxel size of (11 pm)? x 22 um (Extended Data Fig. 8e). Compared
with other 3D printing methods, DISH shows great improvement in
speed and resolution when manufacturing millimetre-scale samples
(Extended Data Fig. 1). In the future, the DMD and the rotation peri-
scope can reach a much faster speed up to 10 rotations s to further
acceleratethebuild rate, aslongas alaser source with higher power is
used. Furthermore, the batch processing speed in the fluidic system
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is expected to be improved once rapid and stable switching between
flowing and static states s realized through precise flow control. As for
the computational cost of the algorithm before the printing process,
DISH is comparable with other computed holographic methods?. Still,
after acquiring high-resolution datasets that account for refractive
aberrations, introducing end-to-end neural networks for 3D hologram
generation*** and graphics processing unit (GPU) acceleration may
greatly reduce the computational cost.

Various factorsinfluence the experimental printing resolution, such
asthe projection methods, the non-linear response of the materials and
the structures of target products. High-precision dose distributions of
11 pmhave been observed in fluorescent solutions and relief-structure
printouts of DISH (Figs. 3f and 4a,b). However, our experiments, along-
siderelevant literature®, indicate that isolated small structures require
much higher dose contrast and are sensitive to the surrounding dose
distribution, highlighting the need for more precise dose control. At
present, we have achieved about 19 pm overall printing resolution
across the effective depth range and 12 pm as the finest independent
positive feature (Fig. 4). Algorithms that can increase dose contrast
or take diffusion into consideration may further improve the overall
printing resolution near the optical diffraction limit. Besides, a DMD
with a larger pixel number and smaller pixel size can further improve
the printing throughput with either a larger field of view or a higher
printing resolution. Another factor reducing product quality is speckle
noise, which causes intensity inhomogeneities and stripe-like artefacts
along the beam propagation direction. The traditional perpendicular
projection causes stripes to overlap, forming transverse patterns. By
contrast, our inclined projection system avoids this issue, resulting
in less prominent stripes. Nonetheless, the surface quality could be
further improved by using several or tiled holograms to suppress
speckle noises or introducing beam translation by means of optical
components.

The proposed design of single-side illumination enablesin situ print-
ingbutintroduces the missing-cone problem, slightly reducing the axial
resolution compared with the lateral resolution. Changing the mechani-
cal design of the periscope can address this problem (Extended Data
Fig.10). However, the substantial variation in propagation direction for
curved container surfaces violates the paraxial approximation required
for angular spectrum modelling, in which an extremely high spatial
sampling frequency is needed to model the phase modulation pro-
cessinduced by the curved surface during calculation. Consequently,
higher computational costs would be required and both aberrations
and depth of field should be re-evaluated to ensure the resolution of
printed structures in this case.

Aswell asthe mass production of diverse samples by integrating DISH
with a fluidic device, more applications can be explored in the future.
Directinsitu printingin pipelines and Petri dishes canbe applied in biol-
ogy for high-throughput drug screening. Massive printing in a steady
multi-material laminar flow can be realized with specialized fluidics?**%.
Photonic computing devices and diverseimaging systems, such as the
cameramoduleinmobile phones, may be fabricated at high throughput
with DISH. With both high precision and high efficiency, we believe that
DISH may openup ahorizon for broad applications with ultrahigh-speed
3D printing, including biology, photonics and engineering.
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Methods

Experimental set-up
Extended DataFig. 2 shows the experimental set-up of DISH. A coherent
405-nm light beam emitted from the continuous-wave diode laser CNI
MDL-HD-405 with alinewidth of 1.5 nmis modulated by aDMD equipped
with atotal internal reflection prism. The DMD (TI DLP9500) driven by
VIiALUX V-9501 features a pixel size of 10.8 um, an array size of
1,920 x 1,080 and arefresh rate of 17.9 kHz. The patterned beam passes
through a 4f system, consisting of a tube lens (Thorlabs TTL200-A), an
aperture and an objective lens with aworking distance of 34 mm (Mitu-
toyo M Plan Apo 2%, NA 0.055). The aperture allows only the central
diffraction order to pass. The beam is then directed into a periscope
fixed on a hollow rotating platform, driven by an alternating current
servo motor (Panasonic MSMJ042G1U). Finally, the beam is obliquely
projectedinto a quartz cuvette, withan entry maximum power density
of 150 mW cm™and a total maximum power of 40 mW, limited by the
laser. The periscope consists of two small mirrors (Extended Data
Fig.2c,d). The first mirrorisinclined at a 45° angle relative to the z-axis
and the second mirror is inclined at 22.5°. After reflection within the
periscope, thebeamis projected into the container ata45° angle. When
the incident angle is 45°, this configuration yields a reasonable axial
feature size for most materials with different refractive indices, while
keeping the interface reflectivity low. This mechanical design accom-
modates a light beam of 6 mmin diameter. As shown in Extended Data
Fig. 2e, the printing area exhibits a centrally symmetric spindle-like
shape, which can be approximated by a cylinder and two cones. The
total volume of this approximated shapeis%r[cftarlwr colsé)i - % ,inwhich
O.representstheincidentangle, 6, represents therefractedangleandd
represents the beam diameter. When d =5.832 mm (5.4 um x 1,080) and
therefractive index of the material is 1.48, the total volume is 214.1 mm?®,
The time sequence diagram of the synchronization of rotation and
the projection pattern is detailed in Extended Data Fig. 3. A National
Instruments PCle-6363 multifunction I/O device is used to generate
voltage pulses and control various components, including the laser
shutter, camera shutter, projection angle and DMD projections. The
servo motor is operated at 1,000 rpm, resulting in a period of 0.6 s
for the hollow rotating platformwith a1:10 reduction ratio. DMD pro-
jections are synchronized with the actual angle. During the printing
process, the laser shutter is closed until the motor speed stabilizes.
The shutter controls the exposure time tobe 0.6 s. Typically, the servo
motor is triggered with a 60-kHz square wave, whereas the DMD is
triggered with a 3-kHz square wave, showing 1,800 projections per
cycle. The running speed could also be adjusted as needed. Because
the laser power used in our prototype system is relatively low, all trig-
ger parameters described here are specifically configured for the 0.6-s
exposure time rather than for maximum operating speed.

Modelling of the system

Therelationship between the beam propagation coordinates (x,, y,, z,)
andtheworld coordinates (x, y, z) is established to ensure compatibility
with any 3D projection direction. The coordinates (x, y, z) are defined
accordingto the container. The z-axis represents the rotation axis, the
x-axis represents the horizontal direction and the y-axis represents
the vertical direction. The coordinates (x,, y,, z,) are defined accord-
ing to the beam inside the container, with the z,-axis indicating the
propagation direction. Both coordinate systems share the same origin,
whichisthe printing centre. In our experimental set-up, the coordinate
transformation canbe represented by the Euler angle representation:

(x,,2)" = RA(@)R(B)R,(~)-(X,, ¥, 2,)"

inwhich ¢ represents the platform angle and 6, represents the refrac-
tion angle in the material. R,and R, represent the rotation around the
x-axis and z-axis, respectively.

In wave optics, the propagation is modelled as:

Hp(Z)=F H(z, + 1, A,)- S, H(l, A)F
21 2 2.
H(z,/l)=exp{J/lz,/1—(Aj;) -(#,) }

Here F denotes the Fourier transformation that converts complex
amplitudesintoangular spectra. H(l, ;) and H(z, + [, A,) are the propa-
gation matrices in air and in the material, respectively. S, represents
refraction, which is achieved through a distorted stretching in the
angular spectrum. As the plane wave remains a plane wave after refrac-
tionataflatinterface, the corresponding relationship of angular spec-
trum coordinates before and after refraction can be calculated using
the 3D form of Snell’s law. This distorted stretching on the angular
spectrum is implemented by the imwarp functionin MATLAB.

Adaptive-optics-based calibration

To simplify the calibration process, the optical system preceding the
periscope was adjusted to ensure that the beam emitted from the DMD
centre precisely coincides with the rotation axis of the platform. There-
fore, the rotating light path was adjusted to be centrosymmetric and
the angle ofincidence 6,remained unchanged. Owing to the symmetry
of the system, the beam emitted from the DMD centre should gen-
erate intensity with the shape of a one-sheet hyperboloid within the
container. Its symmetric centre was considered as the printing centre
andthe origin of the world coordinates. The distance fromthe printing
centre to the front surface of the container was denoted as z,. During
calibration, the optical devices were fixed and only the projections
were updated as the platform rotated.

First, a coarse linear relationship between the DMD pixel coordi-
nates, platform angle and 3D coordinates inside the container was
established. DMD pixels were activated individually while the platform
was slowly rotating and the corresponding excited fluorescencein the
container 18 pg ml™ coumarin-30 DMSO resolution was captured in
realtime by the front and side cameras equipped with emission filters.
Asillustrated in Extended Data Fig. 8b, the projection angle ¢ of the
beam was determined using the front camera, whereas the angle of
refraction 6, was measured with the side camera. The remaining two
degrees of freedom of the ray were calculated by the position of its
intersection point with the z= 0 plane. The DMD pixel was then shifted
according to the fluorescent photographs taken from the cameras.
Finally, aset of DMD offset pixels that emitted beams to exactly inter-
sect the printing centre was obtained, denoted by (xio"‘,yio"’ ). Extended
Data Fig. 8c,d show an example of the positions of the beam before
and after calibration.

Subsequently, the propagation distance from the conjugate plane
to the interface of the container was measured. When the platform
angle ¢ = 0, line segments at the y-zplane (Fig. 3c) were projected and
the symmetrical centre of the resulting 3D intensity was considered
as the approximate conjugate plane. Several images were captured
atdifferent focal planes with an electrotunable lens and the symmetric
centre of their composite photograph identified the approximate
conjugate plane of the DMD. The propagation distance from the
printing centre to the approximate conjugate plane was denoted
asz/.

Finally, the precise calibration was operated with holographi-
cally synthesized patterns. The focusing performance throughout
the container was checked and the calibrated parameters were fine-
tuned until the intensities at all platform angles were consistent
with the simulation of wave-optic propagation. When the container
was shifted for a distance of 2’ along the z-axis and the material was
replaced by that with a refractive index of n’, these parameters could
berecalculated as follows without the requirement of extra calibration
experiments:



n’sinf, = nsinb,
z4tan6/ =z tan6, - z’tan6,
z5'sinB; =z5sind,

02?,3097) = (6%¢,5,%¢)

Holographic optimization algorithm
First, the optimization problem to obtain the coarse 3D intensity dis-
tributions /;°**¢ contributed by each angle is shown below:

min L=3 ;. ld, - p(OE)AL?
2l )AL~ d),
s.t. I= Z(p I(;:oarse

in which X represents the 3D coordinates in the objective area, ¢ rep-
resents the projection angle, u(X) represents the attenuation during
the propagation in materials and thus u(X)/(X) At represents the accu-
mulated dose at each point. A represents the 3D region of the target
model to be printed, in which the accumulated dose is expected to be
d,forpolymerizationand A representstheareaoutsidethetargetregion
inwhichtheaccumulated doseis supposed to be smaller than the thresh-
old d;toavoid overexposure. At corresponds to the temporal duration
of each projection. The number of projection angles for optimization
in this step can be reduced by duplicating the pattern with adjacent
anglesto accelerate the computation process. The binary restrictions
and the effect of diffraction are ignored in this process; therefore, the
traditional methods*?* can be implemented to solve this problem.

Then, the following holographic problem is sequentially solved for
each group of G adjacent binary projection patterns:

min L= s ldy- nIR)AL
2 MGG AL- d)?
St 1= X e o™+ Lo 1y, (B, 001,

6¢ge{0,1}, ge{l2,..,G

Here the loss function is the same as that in the previous problem.
I;,emp isinitialized as I(fj""‘rse and willbe updatedtobe |H¢(6wu)|2 afteré,
isholographically optimized. {¢,} is aset of adjacent Gangles centred
ate. 6, |s the binary image shown by the DMD for the angle @,. u rep-
resents the non-uniform amplitude distribution of the beam, which
canbe calibrated using abeam profiler. H,,_represents the process of
light propagation in wave optics considering the refraction at the sur-
face of air and material.

Tosolve this discrete optimization in the complex number domain,
avirtual complexamplitude V, isintroduced to represent the average
power of these G binary projections. It satisfies the condition that
IV, 12 ~Z¢ 16, u|2/G Withineachiteration, the phase of H,, V, isassumed
to be constant and the binarization erroris temporarlly 1gnored that
is|H,V, |2 =Yy IH (6, u)|%/G, thus the gradient descent of V,,canbe
approxnmated Then V isupdated alongits gradient- descentdlrectlon
and converted toits nearest positive real number.

The1mageset{6 }lscalculated by5 0g = HIA I>>(g-0.5)/G-lu/*} and
thebest{d, }thatmmlmlzesthelossfunctlonlsselectedastheoutput
The flow chart of the holographic optimization is demonstrated in
Extended DataFig. 4a. Notably, directly converting a greyscale projec-
tioninto asequence of binary projections resultsin degraded intensity
contrast for out-of-focus planes, because the light beams projected at
different time points lack coherence to each other. Consequently,
theintensity of direct projection Hy V(,,I2 differs fromthat of theinco-
herent synthesis of binary projections Z¢g |H¢g(6¢gu)|2/6, asshownin
Extended Data Fig. 4b. The incoherent synthesis more accurately

represents our experimentalimplementation, thereby reducing dose
estimation errors.

In the printing experiments, a volume pixel size of 5.4 um was used
tomatch the DMD pixel size at the conjugate plane. In the simulations
depicted inFig. 2 and Extended Data Figs. 5 and 6, a volume pixel size
of 1.8 umwas used. A total of 180 greyscale images were derived from
the traditional algorithms and the binarization parameter G was set to
10, yielding 1,800 binary projections to minimize the effect of motion
blur. Each group underwent 20 holographic optimization cycles. For
a model with dimensions 1,350 x 1,350 x 1,852 (corresponding to
7.3 x 7.3 x10.0 mm), ourimplemented holographic algorithm*, using
the parameters mentioned above, required approximately 24 hto com-
pletein MATLAB R2023a, running onan Intel Core i7-11700 CPU. Deep
learning methods and GPUs may be used in the future to accelerate the
computing process.

Materials used for printing

PEGDA hydrogel. 20% w/v PEGDA with an average molecular weight
0f1,000 g mol™ (PEGDA 1000, P902470, Macklin) was dissolved in
deionized water. 0.25% w/w of lithium phenyl-2,4,6-trimethylben-
zoylphosphinate (LAP; L157759, Aladdin) was added as a photoini-
tiator. This solution was used for Fig. 1c, Extended Data Fig. 9d and
Supplementary Video 1.

PEGDA mixed solvent. 20% w/v PEGDA 1000, 20% w/v deionized
water and 60% polyethylene glycol with an average molecular weight
0of 400 g mol™ (PEG 400, P815616, Macklin) were mixed and stirred
for 30 min. 0.25% LAP was added as a photoinitiator. This gel was
used for Figs. 4a-f and 5b,c, Extended Data Fig. 9a,b,e, k and Supple-
mentary Video 2. PEGDA mixed solvent ink was used to characterize
the performance of DISH. PEG can serve as porogen®® and causes
polymerization-induced phase separation in the printed samples. Al-
thoughthe polymer frameworks are still formed by PEGDA, the samples
appear white instead of transparent owing to the scattering induced
by phase separation. The enhanced scattering makes the printouts
more visible and the printing process can thus be directly captured
by cameras. Also, binary solvents could induce faster polymerization
thanasinglesolvent™and faster curing is suitable for DISH toincrease
the printing speed.

PEGDA resin.2 mM photoinitiator diphenyl (2,4,6-trimethylbenzoyl)
phosphine oxide (TPO; T107643, Aladdin) was added to PEGDA with
an average molecular weight 0f 1,000 g mol™ (P131592, Aladdin) and
stirred until fully dissolved. This material was used to print objects in
Figs.1b,41-o0and 5e-h, Extended DataFig. 9f,g,i,j,|, m and Supplemen-
tary Videos 3 and 4.

SilMA hydrogel. SilMA was synthesized following the protocol in
ref. 52. 2 g SiIMA was dissolved in deionized water to make a 10-ml
solution. The 20% w/v SilMA was used with 0.25% LAP and the printouts
are shown in Extended Data Fig. 90.

GelMA hydrogel. GelMA was synthesized following the protocol in
ref. 53.1g GelMA was dissolved in deionized water to make a10-ml
solution. The10% w/v SilMA was used with 0.25% LAP and the printouts
areshownin Fig. 5k.

BPAGDA resin. BPAGDA (411167, Sigma) was mixed at 3:2 w/w with
2-hydroxyethyl methacrylate (HEMA; H810855, Macklin).2 mM TPO was
added and the mixture was stirred at 60 °C for 30 min. The printouts
are showninFig. 5j.

DPHA resin. DPHA (D889657, Macklin) was mixed at 2:1 w/w with HEMA.
2 mM TPO was added and the mixture was stirred at 60 °C for 30 min.
The printouts are shown in Fig. 5i and Extended Data Fig. 9n.
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UDMA resin. UDMA (D885973, Macklin) was mixed at 4:1 w/w with
HEMA. 2 mM TPO was added and the mixture was stirred at 40 °C for
30 min. The printouts are shown in Extended Data Fig. 9c,p.

UDMA +PEGDA resin. UDMA was mixed at 1:1 w/w with PEGDA.2 mM
TPO was added and the mixture was stirred at 40 °C for 30 min. The
printouts are shown in Extended Data Fig. 9h.

The viscosity of the inks was tested by Anton Paar MCR 302e, rotor
CP50, shearingrate100 s™. The viscosities of these materials are: 20%
PEGDA hydrogel: 4.734 cP; 20% SilMA hydrogel: 40.12 cP; PEGDA mixed
solvent: 63.85 cP; PEGDA resin: 99.11 cP; BPAGDA resin: 656.38 cP; DPHA
resin: 750.49 cP; UDMA resin: 562.99 cP. These samples were tested at
room temperature (25 °C). 10% GelMA hydrogel was used and tested
at40 °Casaliquidink and the viscosity is 14.15 cP.

Printing and post-processing

The inks can be directly replaced for each printing process and resin
reuse could be achieved through heating and exposure to ambient air,
asdemonstratedin previous volumetric printing systems. Furthermore,
low-viscosity materials used for printing, such as PEGDA aqueous solu-
tion, facilitate the spontaneous replenishment of dissolved oxygen.
Gentle pipetting between printing sessions was conducted to maintain
the printing performance for these low-viscosity inks.

The printouts were gently separated from the uncured materials
and washed with water or ethanol. For high-viscosity resins, heating
and ultrasonics could be involved to aid cleaning. Subsequently, an
extra405-nmlight exposure (30 mW cm™2) was applied for 60 sin cor-
responding photoinitiator solutions (water containing 0.25% LAP or
ethanol containing 2 mM TPO). For hydrogel samples, dipotassium
hydrogen phosphate solution (9.7% w/v) was used to balance the swell-
inginFig. 4 and Extended Data Fig. 9a,b, making the microscopiclength
the same as the designed length.

Visualization of the printed products

In Supplementary Videos 1and 2, the products were directly imaged
within the material. In Supplementary Video 1, the subtle variation
inrefractive index was visualized by placing a checkerboard pattern
behind the container. In Supplementary Video 2, a green laser beam
was used to enhance scattering without influencing the curing reaction.
InSupplementary videos 3 and 4, the cleaning process is temporarily
putin a cuvette for better filming, with usual washing using bigger
containers and more solvent to ensure cleanliness.

The products were post-processed and then photographed in various
ways: macro photography (Figs. 1b, 4a,j,k,m and 5g-k and Extended
Data Fig. 9b left, 9f,j—p), stereoscopy (Fig. Se,f and Extended Data
Fig. 9¢,i) and bright-field microscopy (Figs. 1c right and 4a-f,h,i,n,0
and Extended DataFig. 9a,b,d,e,g). The hollow structure was validated
by injecting different colours of ink, including Fig. 5h,k and Extended
DataFig. 9g,i,0. The X-ray computed tomography scanningin Extended
Data Fig. 9h was conducted using a ZEISS Xradia 620 Versa.

Alldimensions of the printed objects are reported asmean + standard
deviation. For the linewidths in Fig. 4a,b, n = 20 measurements were

taken for each stripe group across the sample. Data in Fig. 4g were
obtained at each indicated axial position, with n = 6 measurements
per position. For the fishbone width in Fig. 4i, n =10 measurements
were performed. For the conch structurein Fig. 4m-o, atotalof n =40
measurements was conducted across its various lines.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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