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Genome sequencing studies have identified numerous cancer mutations
across a wide spectrum of tumor types, but determining the phenotypic

consequence of these mutations remains a challenge. Here, we developed
ahigh-throughput, multiplexed single-cell technology called TISCC-seq

to engineer predesignated mutations in cells using CRISPR base editors,
directly delineate their genotype among individual cells and determine
each mutation’s transcriptional phenotype. Long-read sequencing of

the target gene’s transcript identifies the engineered mutations, and

the transcriptome profile from the same set of cells is simultaneously
analyzed by short-read sequencing. Through integration, we determine the
mutations’ genotype and expression phenotype at single-cell resolution.
Using celllines, we engineer and evaluate the impact of >100 TP53 mutations
on gene expression. Based on the single-cell gene expression, we classify the
mutations as having a functionally significant phenotype.

Ongoing genomic studies of cancer are cataloguing extensive numbers
of somatic variants. For example, genome sequencing studies have
identified numerous cancer mutations across awide spectrum of tumor
types. Many of these mutations resultinamino acid substitutions. Given
the sheer number of discovered mutations, determining the phenotype
of cancer substitutions with functional characterization remains an
enormous challenge. In silico functional predictions of cancer muta-
tions are frequently used as asolution. However, these computational
methods do not provide more discrete biological characterization.
Thereremains anotable need for high-throughput approaches to func-
tionally evaluate many mutationsin an efficient manner. CRISPR base
editors and single guide RNAs (sgRNAs) have been used for genetic
screens, where they directly introduce specific variants into target
genes at their native genomic loci among transduced cells'™*. Studies
using thismethod examined the altered cellular fitness resulting from

theintroduced genetic variants, either by counting sgRNA or barcode
sequences among the cell pool, but these approaches do not directly
verify the presence of an engineered mutation, as the association with
agenotype isimputed based on the sgRNA or the barcode sequence.

Baseeditors canintroduce multiple variantsintoatarget genomic
sequence. Although a given sgRNA sequence is intended to generate
asingle variant, the actual base editing process introduces multiple
different, unintended variants at the target genomic sequence. For
example, when using the cytosine base editor (CBE), the conversion
of either a Cto T or a C to G produces different variants other than
what was intended. CBEs exhibit cytosine editing in both the target
and neighboring bystander cytosines in the editing window with the
outcome being multiple different variants at the target sequencesite.
This variability points to the need to directly genotype the base editor
target site as the best approach for verifying the intended mutation
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Fig.1|Schematic of TISCC-seq. a, Overview of direct detection and phenotyping
of various TP53 coding mutations. b, Schematic of the variant calling accuracy
comparison between short- and long-read single-cell sequencing. ¢, Accuracy of
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the mutation calling of long-read sequencing. We compared mutation sequences
of each sgRNA target site and calculated proportion of UMIs that have the same
sequence in short-and long-read sequencing.

being present. Direct validation of an engineered mutationis aneces-
sary step if one is to accurately determine the phenotype, and this
requires examining individual cells.

Several studies have used a reporter system to infer the pres-
ence of engineered mutations®*, but this is an indirect approach and
assumes the same genome edit has occurred inboth the reporter and
endogenous site. Also, these methods may not reflect the precise
effects of mutations on gene expression. For example, the single-cell
Perturb-seq method was adapted to exogenously express genesin the
form of cDNAs containing a specific variant and then indirectly meas-
ure the mutated gene using a barcode sequence’. Although one can
interrogate the resultant single-cell transcriptome changes induced
by each variant, this approach has limitations. Specifically, the gene
variant is expressed with an exogenous promoter that is not under
canonical geneticregulation at the gene’s native locus. Second, variants
aredeliveredto cells withwild-type gene expression of the target gene,
which can mask the effect of the variant on protein function. Third,
only the barcode sequence is detected instead of the variant itself.
Template switching in lentivirus packaging can induce swapping of
the variant-barcode association®, leading to artifactsinidentification
and transcriptional phenotyping.

We developed a method that addresses these challenges and
resolves theseissues. This method is referred to as transcript-informed
single-cell CRISPR sequencing (TISCC-seq). This approach relies on
CRISPR base editors to introduce multiple endogenous genetic vari-
antsintoagiven genomictarget. Long-read sequencingidentifies these
mutations directly from a target’s transcript sequence at single-cell
resolution. Then, we integrate the short-read transcriptome profile
from the same single cells (Fig. 1a). This integrative approach enables
single-cell direct genotyping and phenotyping of various genetic vari-
antsintroducedinto the native gene locus. Single-cell characterization
allows one todistinguish the base editor’sintended versus unintended
mutationsamongindividual cells. We applied thisapproach to engineer
aseries of previously reported cancer mutations in TP53, the majority
of which have never been functionally characterized.

Results

Identifying mutations with single-cell cDNA sequencing

We conducted an analysis comparing long- versus short-read single-cell
cDNA sequencing. For this initial test, we designed an assay to intro-
duce different genetic variants in exon2 and 3 of the RACKI gene
(Fig. 1b). The length of RACK1 cDNA up to exon3 is approximately
500 bp; thislengthinterval can be fully covered with short reads. This
geneisthemosthighly expressed in the HEK293T cell line as determined
from single-cell short- and long-read gene expression data from our
previous publication’. We designed 10 sgRNAs targeting exon2 and 3
of RACK1gene and transduced lentiviruses encoding those sgRNAs to
HEK293T cells at 0.1 multiplicity of infection (Supplementary Table 2).
Transduced cells were selected by puromycin. Then, we transfected
aplasmid encoding an adenine base editor (ABE) into the cells. This
step introduced multiple genetic variants at sgRNA target sites. After
6 days, we generated single-cell cDNAs and extracted genomic DNA
from cells derived from the same suspension.

From the genomic DNA of transduced cells, we amplified exon2
or 3 of the RACK1 gene and performed short-read sequencing to
evaluate the frequency of genetic variants in RACKI genomic DNA.
Based on the DNA sequencing, we identified genetic variants intro-
duced by all ten sgRNAs. The frequency of ABE-induced genetic vari-
ants varied from 1.1% to 10.1% from the genomic DNA of pooled cells
(Supplementary Fig.1).

Next, we evaluated the presence of these variants at single-cell
transcript level using single-cell cDNAs. These engineered variants
were proximalto the 5 end of the cDNA, allowing us to sequence them
with short reads (that is, lllumina). Short-read sequences have a high
base quality for variant calling and allowed us to compare the long- and
short-read results. From the single-cell cDNA library, we prepared
sequencing libraries for both short- and long-read sequencing to
assess single-cell level genetic variants from the RACK1 transcripts.
For short-read sequencing, we amplified exon2 or 3 of RACKI from
single-cell cDNA with cell barcodes and unique molecular identifier
(UMI) sequences using the 5" adaptor primer and exon-specific primers
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(Fig. 1b). These libraries were sequenced on the lllumina MiSeq plat-
form. In lllumina sequencing, each DNA fragment is sequenced from
both ends, resulting in two reads per fragment. These two reads are
referred toas readlandread2. Similar toregular single-cell gene expres-
sionsequencing, we used 26 bp of readlsequences for cellbarcode and
UMl extraction. The read2 sequences were used for the evaluation of
the newly introduced RACKI genetic variants at target sites. Using the
genetic coordinates of the sgRNA target window (thatis, 3 bpto 8 bp),
foragivenread, weidentified the corresponding cell barcode, UMl and
the genetic variant.

For long-read sequencing, we amplified the entire RACKI cDNA
using the 5’ adaptor and primers specific to the last 3’ exon from the
same single-cell cDNA library (Fig. 1b). The intact cDNA amplicon was
sequenced with an Oxford Nanopore instrument. Guppy was used for
base calling, and minimap2 was used for alignment®’. Each sequence
read had the cellbarcode, UMIand complete RACKI cDNA sequence. We
extracted the cell barcodes and UMl as we previously described’. After
genome alignment of the long-read data, the cellbarcodes and UMI fell
into soft-clipped sequence. Therefore, we extracted the soft-clipped
portion of each read and compared that with the cell barcodes identi-
fied from gene expression library sequencing. Only reads with perfectly
matching cell barcodes were used for further analysis. Using the aligned
long-read data, we identified the RACKI genetic variants. Therefore,
long-read information provided the genetic variants with accompa-
nying cell barcode and UMI sequence. For additional quality control
filtering, UMIs with less than three reads were filtered out. We gener-
ated consensus genetic variants for each UMI using multiple reads.

We compared the RACK1 variant calls from short- and long-read
single-cell data. We analyzed consensus RACKI genetic variants for each
cellbarcode and UMI combination. Across all target sites, we compared
479,509 UMIs: 99.2% of them had identical genetic variants in average
(Fig. 1c). This result demonstrated the high accuracy of long-read
identification of CRISPR-engineered genetic variants. Recentimprove-
mentsintheaccuracy of nanopore sequencing and UMI-based consen-
sus generation enabled this analysis. We then compared the frequency
of genetic variants from genomic DNA and aggregated single-cell cDNA
foreach of the10 target sites introduced by base editors. The frequency
of each variantbetween genomic DNA and single-cell cDNA had ahigh
correlation (R*=0.63; Supplementary Fig. 1).

Base editor guide RNA designs for TP53 cancer mutations

We introduced a set of sgRNAs designed for multiple 7P53 mutations
and used TISCC-seq to obtain the gene expression profile and TP53
genotype fromindividual cells. First, we focused on the design of the
genome engineering of TP53 mutations (Fig. 2a). We identified TP53
mutations which were reported more than nine times in the COSMIC
database’*. The majority of these frequent cancer mutations were within
the TP53DNA-binding domain. The total number of coding mutations
was 351. We designed base editor libraries targeting this mutation set.
To cover as many mutations as possible, we used several base editor
combinations: (1) CBE with NGG protospacer adjacent motif (PAM),
(2) CBE witha NG PAM, (3) ABE with NGG PAM and (4) ABE withaNG
PAM. Using the NGG PAM base editors, we designed 74 sgRNAs targeting
99 TP53 variants. The NG PAM base editors have a more flexible PAM,
so we were able to design an additional 88 sgRNAs targeting 159 vari-
ants (Supplementary Fig. 2). Most sgRNAs targeted the DNA-binding
domain of p53 protein (Fig. 2b).

Base editors can alter any target nucleotide in their target win-
dow (thatis, 3 bp to 8 bp) which leads to different nucleotides at that
position. TISCC-seq identified this variation among single cells. For
example, the sgRNA introducing E258K mutation by C to T substi-
tution induces the E258G mutation by C to G substitution (Supple-
mentary Fig. 3). Similarly, the sgRNA introducing S127P mutation by
A to G substitution at the third adenine induces the Y126H mutation
by A to G substitution at the sixth adenine (Supplementary Fig. 3).

Therefore, this result suggests that any given sgRNA can introduce
multiple variants depending on the window sequence context. The
entire number of amino acid changes that could be introduced by
the NGG or NG PAM base editors and our sgRNA libraries was 920 and
1,999, respectively. For the final design, we targeted 251 known TP53
mutations with the potential for introducing 2,892 possible amino
acid changes (Supplementary Fig. 2).

CRISPR base editor engineering of TP53 mutations

We used HCT116 and U20S human cell lines for this study. Both cell lines
have wild-type TP53, which we independently confirmed" . The p53
pathway is repressed by the negative regulator MDM2in both cell lines™.
The oncoprotein MDM2is an E2 ubiquitin ligase”>. MDM2 binds to and
promotes the ubiquitin-dependent degradation of the p53 protein. The
small molecule nutlin-3a caninhibit p53-MDM2 binding efficiently’. To
activate the p53 pathway and select for TP53 mutations with functional
effects, we tested various concentrations of nutlin-3a, including 5 pM,
10 pM and 20 pM, based on previous reports'. Our results showed
successful p53 pathway activation at 10 pM nutlin-3a, which we used
for both cell lines.

We generated four sgRNA libraries for each base editor (NGG-CBE,
NGG-ABE, NG-CBE and NG-ABE), and the combined libraries were
designed to cover the preselected TP53 mutations. We transduced
those libraries using a lentivirus system to both the HCT116 and
U20S cell lines. The cells were transfected with each respective base
editor plasmid. It had been reported that base editors can induce
off-target RNA editing”. To minimize those effects, we chose transient
transfection rather than stable expression of base editors. Typically,
plasmid-based protein expression peaks after 24 h of transfection
and diminishes after 5 or 6 days™®. Six days after transfection, we used
nutlin-3a to activate the p53 pathway.

TISCC-seq detection of TP53 mutations

After10 days of nutlin-3atreatment, we harvested the cells for suspen-
sion, prepared single-cell cDNA libraries and also extracted genomic
DNA from a portion of the cell suspension (Methods). We amplified
TP53 transcripts from the single-cell cDNA library, sequenced their
full-length transcript and determined the presence of the TP53 muta-
tion from the long-read data (Fig. 2a). Asanimportant additional step,
weextracted cell barcodes and UMI per each long-read as described ear-
lier. To prevent the effect of sequencing errorin UMI region, wefiltered
outany UMIwithlessthan10longreads. As a quality control threshold,
we used only the cell barcode and UMI combinations found in 10 or
more reads. For generating a consensus, we also included UMIs witha
low edit distance, assuming the differences were related to sequencing
errors. For TP53variant calling, we extracted every nucleotide sequence
inthe sgRNA target window (for example, chr 17:7674940-7674945 for
the sgRNA in Fig. 2d) and compared them with reference sequence (for
example, CACTCG to CATTCG). Based on nucleotide changes of agiven
mutation, we determined the amino acid substitution at the target site
(forexample, VI96M).

Forindependent validation, we used amplicon sequencing from
the transduced cells’ genomic DNA to independently assess the fre-
quency of a subset of TP53 mutations. This analysis compared the
frequency of each TP53 mutation introduced by 12 sgRNAs in genomic
DNA versus the results from analyzing the single-cell cDNA from
HCT116 cells. These TP53 mutations were introduced efficiently with
up to 12.1% for one variant and 27 variants were introduced with a
frequency greater than 0.25%. The prevalence of each mutation from
single-cell cDNA and genomic DNA was generally correlated (Fig. 2c
and Supplementary Fig. 4; R?=0.59). Some variants had higher fre-
quency in genomic DNA and lower in cDNA (that is, W146Ter). This
result means that for some mutations the corresponding transcripts
were not expressed efficiently or were subjected to higher RNA deg-
radation. The lower prevalence of cDNA mutations may reflect effects
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resultant amino acid changes from cells with sgRNA targeting V197M mutation.
Proportions of mutations are calculated from the single-cell cDNA long-read
sequencing. Underlines indicate each triplet codon and numbers indicate
position of the codon. Red DNA sequences indicate substituted bases, and blue
indicate PAM sequences. WT, wild type.

from nonsense-mediated decay (NMD). This processis a surveillance
mechanism that eliminates mRNA transcripts containing premature
stop codons. For example, although 5.1% of cells had a W146 Ter muta-
tion at the genomic DNA level, this mutation was not detected as fre-
quently atthe single cDNA level (0.2%) because the transcripts with the
variant were degraded in cells by NMD (Fig. 2c).

As another type of validation, we also sequenced the sgRNA
expressed in each cell from single-cell cDNA using a direct capture
method previously described’”’. Most of the single-cell CRISPR screen
studies have relied on an sgRNA sequencing (sgRNA-seq) method to
infer the resultant genetic edits®* >, This method assumes that cells
with the sgRNA have the targeted genomic edit. However, the efficiency
of base editors is lower than that of Cas9 nuclease**. As described
earlier, abase editor may introduce multiple genetic variants fromthe
same sgRNA (Supplementary Fig. 3). Therefore, one cannot assume
that cells transduced with base editors and a single sgRNA have the
intended variantat the target position (Fig. 2d and Extended Data Fig.1).
Our results showed that this was the case. For example, we evaluated
ansgRNA whichwas designed tointroduce the TP53V197M mutation.

The sgRNA'’s target site has three cytosines in its window. Among 101
cells expressing this specific sgRNA, 11 cells had V197M mutation,
whereas 30 cells had both R196Q and V197M mutations (Fig. 2d). There-
fore, the conventional single-cell CRISPR screening method using
sgRNA-seq did not correctly identify the introduced variants among
the various single cells. In contrast, with direct long-read sequencing
ofthe full-length target transcripts fromsingle cells, we bypassed this
issueand directly identified the actual mutationintroduced by the base
editor from the cDNA.

TISCC-seq and analysis of HCT116 cells with TP53 mutations

We performed gene expression analysis using the same single-cell cDNA
library we used for long-read sequencing. As we described previously,
weintegrated the single-cell TP53mutation genotypes fromlong reads
with the single-cell gene expression profile datafrom short reads’. We
used cellbarcode matching between the long-read datawith amutation
genotype and the short-read data (Methods). This process allowed us to
link those cells with TP53 mutation to their individual gene expression
profiles. To conduct a cluster analysis of the cells with different TP53

Nature Biotechnology | Volume 42 | August 2024 | 1254-1262

1257


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01949-8

mutations, we used Uniform Manifold Approximationand Projection
(UMAP) (Fig. 3). We investigated the effect of p53 pathway activation
by nutlin-3ain HCT116 cells with TP53 mutations using a subset of our
sgRNA library (10 sgRNAs). When we compared the gene expression
profiles between cells with wild-type or TP53 mutations, there was a
clearly delineated difference upon p53 pathway activation (Fig. 3a,b).
When we visualized the expression of p53 pathway involved genesona
UMAP plot using aheatmap, we found that cells with deleterious TP53
mutations displayed decreased p53 pathway involved gene expression
compared to wild-type cells (Extended Data Fig. 2).

Next, we sequenced HCT116 cells transduced with our full TP53
sgRNA library and activated by nutlin-3a. Among the 42,564 cells that
were sequenced, we filtered out a set of high-quality long-read UMIs
(UMl read count >9) covering TP53 from 12,887 cells. This subset of
high-quality reads were useful for confirming the mutation genotype.
For each cell, we had an average of 898 TP53 reads with a complexity
of 4.5 UMIs for this subset. We filtered out cells which had a heterozy-
gous mutation. Overall, we detected a total of 169 different mutations
distributed among the various single cells.

We analyzed the single-cell gene expression for each mutation.
To provide arobust measurement of single-cell expression, we filtered
out those TP53 mutations expressed in fewer than five cells. This step
retained 74 mutations for further analysis. Via UMAP clustering, the
cellswithwild-type versus TP53 mutations were separated among dif-
ferent clusters. Compared to the clustering observed in Fig. 3b, which
included 11 mutations, this dataset encompasses 74 mutations with a
wider range of impact. As a result, the separation between wild-type
cellsand other cellsis less distinct in this dataset. Wild-type cells were
predominantly clusteredin clusters 5and 9 (Fig. 3c and Supplementary
Fig.5).For eachvariant, we calculated its proportion withineach cluster
and performed hierarchical clustering of each variant based on the
proportion (Fig. 3d). Cells with the following five mutations (R156C,
V1571,V173A,R273C and A276V) clustered with the wild-type cells. This
result was a preliminary indication that this set of mutations did not
have asignificantimpact on the gene expression phenotype; we anno-
tated them as wild-type-like and the others as functionally significant.

We examined the expression of 343 genes known tobeinvolvedin
the p53 pathway from previous report using single-cell data analysis
(Supplementary Table 6)*. Cells that were wild type or with muta-
tions that were wild-type-like had higher expression of p53 pathway
involved genes (Fig. 3e). Wild-type cells had higher p53 pathway gene
expression scores compared to the majority of cells expressing func-
tionally significant TP53 mutations (Fig. 3f; P< 0.03; Supplementary
Fig. 6). Additionally, we analyzed the expression of the CDKNIA gene,
which encodes a p21 protein. p21 protein is a regulator of cell cycle
progression and arrest. Wild-type cells had higher CDKN1A expression
compared to the cells with functionally significant TP53 mutations
(Extended DataFig. 3). Next, we performed pathway analysis between
wild-type cells and cells with wild-type-like versus functionally signifi-
cant variants. Cells with functionally significant mutations had lower
p53 pathway activity and higher G2M checkpoint gene expressionthan
the wild-type cells (Fig. 3g; P=1.66 x 10 and 1.66 x 10™). In addition,
cellswith wild-type-like variants expressing R156C, V1571, V173A,R273C

or A276V did not have differences in these two pathways compared to
cells with wild-type TP53 (Fig. 3g; P=0.95and 0.44). These results are
evidence that this subset of the mutations had features similar to wild
type and thus had less functional impact. In summary, wild-type cells
had higher p53 pathway activity and related gene expression than cells
with functionally significant TP53 variants. These results validated the
TISCC-seq method for high-throughput functional classification of
these mutations.

TISCC-seq analysis of TP53 mutations in U20S cell line

As an additional verification of our results, we performed a similar
analysis with the U20S cell line using the same sgRNAs for the TP53
mutations. Among 38,451 cells that we sequenced, we were able to
acquire high-quality long-read sequences from 12,155 cells. On aver-
age per each cell, we filtered out the high-quality TP53 reads of which
there were 890 with acomplexity of 4.6 UMIs. As described, we applied
afiltering strategy to eliminate heterozygous mutations. For the
U20S line, we characterized 161 mutations with TISCC-seq. For gene
expression analysis, we used the 62 variants which were detected in
more than five cells. From the UMAP analysis, wild-type cells and cells
with TP53 mutations separate into distinct clusters (Supplementary
Fig.7and Extended DataFig. 4). Wild-type cells were primarily associ-
ated with cluster 1. For each mutation, we calculated its proportion
within each cluster and performed hierarchical clustering based on
this cluster proportion (Extended Data Fig. 4b). From the hierarchical
clustering results, we identified four mutations, T1401, R156C, T221I
and R273C, that were associated with wild-type 7P53. The R156C and
R273C mutations had asimilar association with the wild-type cells for
both the HCT116 and U20S cell lines. The wild-type U20S cells had
higher expression of CDKN1A and other p53 pathway involved genes
compared to the majority of cells expressing functionally significant
TP53 mutations (Extended Data Figs. 4 and 5). The analysis of pathway
activity showed that cells with functionally significant mutations had
significantly lower p53 pathway activity and higher G2M checkpoint
gene expression (Extended DataFig. 4e; P=1.62x102and 1.62x107%).
Conversely, cells with wild-type-like mutations were not statistically
significant to the same extreme degree as the functionally significant
mutations (Extended Data Fig. 4e; P=0.52 and 0.001).

Confirmation of TISCC-seq using clonal cell lines

Our prior experiments were highly multiplexed in engineering differ-
ent mutations. Providing additional confirmation of the single-cell
results, we conducted simplex experiments of individual mutations
using the HCT116 cell line. Using the ABE, we generated homozygous
clonal cell lines with either the TP531195T or Y220C mutation which
were functionally significant and had enough cells from single-cell
assay. To obtain clones, we used limiting dilution after ABE transfection.
These two mutations have been reported to have a deleterious effect
on function'®?” and the multiplexed TISCC-seq results also demon-
strated that they had a functional effect (Fig. 3d). We performed bulk
RNA-seq from nutlin-3a treated wild-type cells and those clonal cells.
We compared the result with single-cell results from HCT116 cell lines
(Fig. 4 and Extended Data Fig. 6).

Fig.3|TISCC-seqon HCT116 cells. a-c, UMAP plots showing single-cell gene
expression profile per each genetic variant. HCT116 cells are treated with vehicle
(a) or nutlin-3a (b) after the introduction of variants using a subset of the sgRNA
library. ¢, HCT116 cells are treated with nutlin-3a after the introduction of
variants using the full sgRNA library. d, Proportion of UMAP cluster from cells
with each genetic variant. Hierarchical clustering was performed based on the
proportion to categorize genetic variants. Red indicates wild-type-like variants.
e, UMAP embedding of cells colored by p53 pathway gene scores. f, Violin plots
showing p53 pathway gene score per cells with each genetic variant. *P < 0.03;
NS, not significant; two-sided ¢t-test. P=1.7x1072,3.7x107%,1.3x107,2.1x10™,
1.5%x107%,3.8x107,2.1x1072,9.5x107°,7.8x107,2.6 x107,7.2x107%,6.9x10™*,

3.9x107,1.5x107%,2.8x107%,2.0x107%,8.7x10%,5.0x107%,1.4 x10°°,
44x10™,5.7x10™,3.3x10%,3.0x107™3,5.8x107%,1.5x107°,1.5x107%,
7.5x10%,8.6x107%,5.5x107%,4.3x10%,3.1x107,9.2x1073,1.2x1072,1.4 X107,
1.3x107°,6.3x10%,2.3x1072,8.6 x107%,7.2x10™,1.1x107°,1.8 x10™¥,2.1x107%,
3.8x10%,7.2x107%,4.2x10%°,2.0x10*,5.0 x1075,2.0 x107°,8.0 x 10,
8.9x107,1.4x107%,8.2x107%,4.2x107%,3.8x10%,1.8x10™*, 1.7 x10™,
73x107%,2.2x107,8.7x107,2.2x107%,6.1x107%,8.2x107, 7.6 x 10™°,
7.0x10™,5.7x107°,2.1x107%,8.6 x10%?,5.3x1075,5.3x107,5.7x107, 4.6 107,
2.6x107,3.7x107,3.8 x107". g, Heatmap showing average Gene Set Variation
Analysis (GSVA) enrichment score of selected Hallmark pathways per each
category of genetic variant.
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Fromthe single-cell results, both mutations demonstrated lower
p53 pathway activity and higher G2M checkpoint gene expression
thanwild-type cells (Fig. 4a; [195T: P=2.2x10 ™ and 1.7 1073, Y220C:
2.2x10™"and 9.4 x1072). From the conventional, bulk-based RNA-seq
results, we observed the same effect on the same pathways (Fig. 4b;
1195T: P=3.4x10"%and 2.4 x107,Y220C:1.0x10*and 2.6 x107). Next,
we performed differential gene expression (DGE) analysis between
wild-type and mutation-bearing cells. We compared the DGE results
from single-cell RNA-seq and standard RNA-seq. For the I195T or the
Y220C mutation, we identified the top 100 genes determined from
single-cell RNA-seq data. For the I195T mutation, 94 out of 100 were
confirmed as showing differential expression per the conventional
RNA-seq. Likewise for the Y220C mutation, 80 out of 100 genes were
confirmed as showing differential expression per the conventional
RNA-seq (Supplementary Tables7and 8; P<1.0 x107%).

Overall, the1195T and Y220C cell lines had higher G2M checkpoint
gene expressionas anindicator of more active cell division compared
to the cells with wild-type TP53. To validate this result, we evaluated
celldivisionand cell cycling from wild-type and TP53-mutated HCT116
cells using 5-ethynyl-2’-deoxyuridine (EdU) and a propidium iodide
(PI) flow cytometry assay. The Pl assay detects total DNA amounts for
G1-and G2-phase comparison. The EdU assay labels newly synthesized
DNA to detect S-phase. The cell cycle of wild-type HCT116 cells was
arrested by nutlin-3a treatment (Fig. 4c and Extended Data Fig. 7;
P<2.2x107).Incontrast, thecellcycleof HCT116 cellswitheitherthel195T
orthe Y220C mutationdid not undergo arrest with nutlin-3a treatment
(Fig. 4cand Extended Data Fig.7; P= 0.95and 0.95).

We expanded our analysis by generating five additional clones
with TP53 mutations and conducted RNA-seq analysis (Extended
DataFig. 6e,f). The V1571 mutation was categorized as wild-type-like,
whereas the remaining mutations were deemed functionally sig-
nificant based on the TISCC-seq analysis. Our results revealed that
HCT116 cells with the V1571 mutation exhibited a gene expression
profile that was similar to that of wild-type cells, whereas cells with
functionally significant mutations showed distinct differences in
gene expression. To further investigate the impact of TP53 mutations
on cell growth, we conducted growth assays using HCT116 cells with
10 different TP53 mutations that were categorized as functionally
significant (Extended Data Fig. 8). Our data demonstrated that cells

with these mutations exhibited a growth advantage over wild-type
cells when treated with nutlin-3a, further supporting the notion that
these mutations confer a growth advantage. This result established
that this single-cell approach accurately identified the phenotypes of
these mutations.

Discussion

In this study, we report a multiplexed method that uses base editors
tointroduce specific cancer mutations and single-cell sequencing to
identify the genotype and phenotypes of the induced cancer muta-
tions. Referred to as TISCC-seq, thisapproach overcomesissues with
short-read based single-cell or bulk CRISPR screens, neither of which
verify endogenous DNA variants that are engineered into the genomes
of cells. This approachintegrated single-cell long-read and short-read
sequencing for CRISPR base editor screens. As a result, endogenous
genetic variants introduced by the CRISPR base editor are directly
confirmed from the target gene transcript. At single-cell resolution,
the genetic variant and its resultant transcriptome changes become
evident. Therefore, we can determine the functional consequences
of TP53 mutations across different cell lines. Some mutations had a
greater functionalimpact on the cells’ gene expression while a smaller
subset had awild-type-like phenotype. Our results corroborated some
insilico predictions (Supplementary Table 9). For example, the R156C
mutation is predicted to have neutral effect on p53 pathway'®?. This
was confirmed experimentally among our results. In both cell lines
used in this study, this mutation had a wild-type phenotype. Over-
all, this approach has the potential for enabling highly multiplexed
functional evaluation of cancer mutations and germline variants.
Following functional assays using cell lines with desired genetic vari-
antswill help deepen understanding of the phenotype of each variant
asshowninFig. 4.

Although we used four base editors for this study, there were some
mutations that we were unable to target (Supplementary Fig. 2). We
anticipate that modification of base editor properties such as their
enzymatic activity’>*°, window>' and PAM restriction®? will broaden
the types of mutations and other variants which can be engineered
intogenomes. The prime editor which canintroduce any genetic vari-
ant at the target site will even enable saturation mutagenesis of the
target gene®.
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Mutually exclusive TP53 mutations were observed in HCT116 and
U20S cell lines through TISCC-seq analysis (Supplementary Fig. 8).
Our analysis suggests that differences in CRISPR base editing efficien-
cies between the two cell lines may account for these mutations. For
instance, the C135Y mutation, which was only detected in U20S cells
and deemed functionally significant, exhibited low editing efficiency
(-1%) when we attempted to introduce it into HCT116 cells using a
guide RNA with a CRISPR base editor. Consequently, the mutation
was not observed in the HCT116 cell TISCC-seq data. Nevertheless,
our findings revealed that the C135Y mutation conferred a growth
advantage in HCT116 cells (Extended Data Fig. 8). We also investigated
four functionally significant TP53 mutations (1195T, Y220C, Y236H and
L257P)in non-cancer MMNK1 cells. We treated these cells with nutlin-3a
and found no evidence of a growth advantage in cells carrying these
TP53 mutations (Extended Data Fig. 9). This observationis consistent
with the knownrole of the p53 pathway, which frequently triggers cell
cyclearrest or apoptosisin response to various stresses that are more
prevalentindeveloped cancer cells thanin non-cancer cells. Our results
underscore the potential utility of TISCC-seq inrevealing the functional
consequences of mutations across diverse cellular contexts, including
primary cells and developed cancer cells.

We further demonstrated that TISCC-seq canbe applied to longer
genes by targeting SF3B1, which has a transcript longer than 6 kb, and
introducing multiple mutations using CRISPR base editorsin K562 cells.
Our analysis using TISCC-seq successfully genotyped these mutations
at the single-cell level (Extended Data Fig. 10). These results illustrate
the versatility of TISCC-seq and its potential to enable the assessment
of genetic variants across a broad range of genomic contexts, includ-
ing longer genes.

The complexities of high-throughput CRISPR engineering,
single-cell sequencing and its higher cost limit the scalability of
single-cell CRISPR screens compared to conventional genetic screens
donewith conventional bulk assays. TISCC-seq provides some potential
benefits that may be useful for standard CRISPR screens. For exam-
ple, one can use a bulk-based cellular genetic screen for hundreds of
thousands of sgRNAs generating variants and then narrow down the
sgRNAs to the hundreds with remarkable impact on cell survival or
drug response. Then, TISCC-seq can be used for a deeper analysis of
sgRNAs by detecting genuine endogenous mutations and their result-
ant phenotype at single-cell level resolution. This combination may
enable more accurate evaluation of CRISPR-based screens in the future.

The sensitivity of single-cell RNA-seqis limited. Therefore, we can
onlydetectalimited number of transcripts for each gene. Itis challeng-
ing to detect any transcripts from low-expressed genes in individual
cells. This sparsity in single-cell RNA-seq datarestricts the application
of TISCC-seqto genes with extremely low expression levels. However,
advancementsinsingle-cell reverse transcription and transcript enrich-
ment technology can greatly enhance the efficiency of TISCC-seq.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of data and code avail-
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Methods

Cell culture conditions

HEK293T (ATCC CRL-11268) and MMNK-1 (JCRB1554) cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM) with 10%
fetal bovine serum (FBS). HCT116 (ATCC CCL-247) cells and U20S
(ATCC HTB-96) were maintained in McCoy’s 5 A modified medium
supplemented with 10% FBS. We stimulated p53 pathway of cells
with 10 pM Nutlin-3a. K562 (ATCC CCL-243) cells were maintained
in RPMI 1640 with 10% FBS. Cells were authenticated by STR profil-
ing. All cell lines were confirmed by PCR to be free of mycoplasma
contamination.

Lentiviral gRNA library production

Theoligonucleotides for sgRNA library generation were ordered using
IDT oPools Oligo Pools. Amplified gRNA cassettes were cloned using
NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) into
lentiGuide-Puro (Addgene plasmid #52963). Purified plasmids were
electroporated to ElectroMAX Stbl4 Competent Cells (New England
Biolabs) and amplified.

Lentivirus production

Approximately 2.0 x 10° HEK293T cells were plated 24 h before trans-
fection. Cells were transfected with pMD2.G (500 ng, Addgene plasmid
#12259), psPAX2 (1.500 ng, Addgene plasmid #12260) and lentiviral
sgRNA library (2,000 ng) using Lipofectamine 2000 (Invitrogen) as
per the manufacturer’s protocol. The viral supernatant was collected
after 48 h of transfection. The supernatants were filtered through a
0.45 pm filter and transduced to cells.

Lentivirus transduction

HCT116 and U20S cells were diluted to 1.4 x 10° and 0.7 x 10° cells ml™
and plated a day before the transduction. Lentiviral supernatant and
polybrene (8 pg ml™, Sigma-Aldrich) were added to the cells. After 24 h,
transduced cells were selected by puromycin (Life Technologies) at
concentration of 0.4 ug ml™and 1.0 pg mi™.

Transfection and electroporation conditions

We used 1.2 x 10° HEK293T cells to transfect the base editor plasmids
(2,000 ng) using Lipofectamine 2000 (Invitrogen) as per the manu-
facturer’s protocol. We used 1.0 x 10° HCT116, U20S and K562 cells to
transfect the base editor plasmids (2,600 ng) using SE or SF solution
and 4D-nucleofector (Lonza) as per the manufacturer’s protocol. We
used SE solution and DN-100 program for MMNK-1 cells. Base editor
plasmids pCMV_AncBE4max_P2A_GFP and pCMV_ABEmax_P2A_GFP
were gifts from D. Liu (Addgene plasmid # 112100 and 112101)**. Base
editor constructs pCAG-CBE4max-SpG-P2A-EGFP (RTW4552) and
pCMV-T7-ABEmax(7.10)-SpG-P2A-EGFP (RTW4562) were gifts from
BenjaminKleinstiver (Addgene plasmid #139998 and #140002)2. After
6 days of electroporation, cells were subjected to chemical treatment
or single-cell library preparation. For TP53 variant clone generation,
base editor plasmids (2,250 ng) and sgRNA plasmid (750 ng) were
electroporated to cells. We conducted single-cell subcloning with
limiting dilution and confirmed the genotype of the target with PCR
amplification and sequencing.

Single-cell library preparation

Single-cell cDNA and gene expression libraries are generated
using Chromium Next GEM Single Cell 5’ Library & Gel Bead Kit v2
(10x Genomics) according to the manufacturer’s protocol. The cDNA
and gene expression libraries are amplified with16 and 14 cycles of PCR
respectively. The quality of gene expression librariesis confirmed using
2%E-Gel (ThermoFisher Scientific). We quantified the sequencinglibrar-
ies using Qubit (Invitrogen) and sequenced on lllumina sequencers
(Illumina).

Single-cell sgRNA capture and sequencing

The sgRNA direct capture was performed as previously described””.
Briefly, 6 pmol sgRNA scaffold binding primer was added to RT mas-
ter mix. After cDNA amplification, the sgRNA fractions were purified
using SPRIselect bead (Beckman Coulter Life Sciences). The library was
amplified and sequenced with gene expression library.

Long-read sequencing

Ten ng of the single-cell full-length cDNA were used to amplify tran-
scripts. Primer sequences are shown in Supplementary Table 5. We
used KAPA HiFi HotStart ReadyMix (Roche) for amplification. Librar-
ies were prepared with 900 fmol of each amplicon for Promethion
flow cell FLO-PRO002 (Oxford Nanopore Technologies) using Native
Barcoding Expansion and Ligation SequencingKit (Oxford Nanopore
Technologies) according to the manufacturer’s protocol. Libraries
were sequenced on a Promethion over 72 h.

Single-cell transcript analysis

Short-read transcripts. Base calling for 5’ gene expression libraries
was performed using cellranger 6.0 (10x Genomics). In preparation
for integrated analysis, the transcript count matrices generated by
cellranger were processed by Seurat 3.0.2 (ref. 35). QCfiltering removed
cells with fewer than 100 or more than 8,000 genes, cells with more
than 30% mitochondrial genes and cells predicted to be doublets by
DoubletFinder*. Additionally, any genes present in three or fewer cells
were removed. Batch effects between each single-cell cDNA generation
reactionand base editors were corrected by Harmony®. Cell cycle phase
were also corrected by Harmony.

Long-read variant calling. Base calling was performed using guppy
5 with super accuracy mode and alignment to the GRCh38 refer-
ence genome using minimap2 (refs. 8,9). Cell barcodes and UMIs are
extracted as previously described’. For validating TP53 mutation geno-
typing, we filtered out UMIs less than 10 reads and consolidated UMIs
with high similarity (edit distance less than 3). A custom python script
utilizing the pysam module was used to identify reads spanning the
sgRNA target windows and extracted the base calls at each position
within the window. Base calls were used predict amino acid changes per
each cell. Cells with heterozygous amino acid changes were excluded
for the gene expression analysis. Output from this script was summa-
rized to provide expected amino acid change per cell barcode.

Integration of long and short reads. The variant per cell barcode
table were added to the Seurat object metadata as anew column. Cells
without high-quality long-read datawere filtered. For gene expression
analysis, wefiltered variants which were detected inless than 5 cells. A
hierarchical clustering was done in R using hclust, cutree and dendex-
tend. Biological pathway analysis was performed with the GSVA tool**.

Cell cycle analysis

We used Click-iT Plus EdU Alexa Fluor 488 Flow Cytometry Assay Kit
(Life Technologies) according to manufacturer’s protocol. Briefly, we
plated cells a day before nutlin-3a or vehicle treatment. After 24 h of
chemical treatment, cellsin S-phase were labeled with 10 mM EdU solu-
tion for 2 h. FxCycle PI/RNase Staining Solution (Life Technologies) was
used for PIstaining. After the staining, cells were analyzed by NovoCyte
Quanteon Flow Cytometer Systems (Agilent).

RNA-seq

We used KAPA mRNA HyperPrep Kit (Roche) for mRNA-seq library
preparationaccording to manufacturer’s protocol. For each cell type,
we used triplicatelibrary preparations with1 pgtotalRNA asaninput.
Libraries were sequenced by NextSeq (Illumina) by 75 bp paired-end
sequencing. The reads were aligned to the reference genome GRCh38
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by a two-pass method with STAR and gene expression level was meas-
ured using HT-Seq***°. We used DESeq2 for DE analysis*. Biological
pathway analysis was performed with the GSVA tool*,

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
High-throughput DNA sequencing files are available from the NCBI
SRA under BioProject PRINA880341.

Code availability
Scripts for analysis are available onZenodo (https://zenodo.org/badge/
latestdoi/555044610) under the MIT license terms.
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Extended Data Fig. 1| Pie charts showing the proportion of resultant amino
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Extended Data Fig. 2| UMAP embedding of cells colored by P53 pathway gene scores. TP53 variants were introduced to HCT116 cells using a subset of our sgRNA
library and analyzed.
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Extended Data Fig. 3| CDKN1A expression level from HCT116 cells with various TP53 genet

expression. (b) Violin plot showing CDKNIA gene expression level per cells with each genetic variant. Reds indicate wild type like variants.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01949-8

A276V
C135R
C135Y
C141R
C238R
C238R_N239D
C238Y
C275R
D281G
E221G
E258G
E258K
E287K

1195T
1195T_N239D
1232T
1232T_Y234H
K120E

L252F

L257P
M133T

UMAP_2

-
~——————
0000000000000 00000000

o
UMAP_1

C TP53 signature genes

M2371
M2371_C238Y
M237T
M237T_Y236H
M2461

M246T

N239D
N239D_S240G
N239G
N239G_S240G
N239S

R156C

R196Q
R196Q_V197!
R196Q_V197M
R273C
R273C_E258K
R273C_E287K
R280G

R282Q

S127P

b

S215G

S240G

S99F
S99F_Q100Ter
T125M

T1401
T1401_P142S
T1551
T155|_R156C
T1551_R156C_R273(
T2111

Vi97M

V274A

WT

Y126H
Y126H_S127P
Y163H

Y220C
Y220C_E221G
Y234H

Y236H

Custer lloOMl 1 H2E3H+sHBsHcl7Hs
T1551_R156C_R273C
S99F
1195T_N239D
R196Q
M237T
E221G
M246T
1232T_Y234H
C141R
N239G_S240G
Y126H
C238R
Y163H

1195T

M133T
S215G

1232T

C135R
N239D_S240G
N239D

S127P

N239G

P

Y126H_S127P
C238R_N239D
Y220C

Y236H

L257P
Y220C_E221G
Y234H

D281G

V274A
R196Q_V197I
E258K
R196Q_V197M
M2371

V197M
S99F_Q100Ter
N239S
M237T_Y236H
M2371_C238Y
K120E

[

[ A276V
C135Y
T1401_P142S
E287K
Tiaagl
. o
N : 0.4 Checkpoint -
ol 0.3 P T155|_2T12%5§§
g | 02 P53 1252F
0 % 0.1 - R282Q
o 0.0 Pathway carsh
-0.1 R273C
& S & Wl
4 ébé’ 5 Like LRisec
O 1) o ) ©
& é\’ g & & & £
4 0 4 8 § Q\ Proportion
<9
UMAP_1 >
TP53 signature genes
n.s
§ 0.4 * n.s
=
% 0.3
o
Q
5 0.2
1]
Q
&
o 0.1
z
H
g 0.0
o
5]
&
= —0.14
7
£,
&8
o~
8
'S

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | TP53 variants analysis in U20S cells. (a) UMAP plot
showing single-cell gene expression profile per each genetic variant. U20S cells
are treated with Nutlin-3a after introduction of variants using full sgRNA library.
(b) Proportion of UMAP cluster from cells with each genetic variant. Hierarchical

clustering was performed based on the proportion to categorize genetic variants.

Redsindicate wild type-like variants. (c¢) UMAP embedding of cells colored by
p53 pathway gene scores. (d) Violin plot showing the p53 pathway gene score
per cells with each genetic variant. *: P < 0.03, n.s: Not significant; two-sided
t-test. P=8.0e-08,2.0e-11, 6.5e-65, 6.8e-16, 0.0e + 00, 4.9e-12,1.6e-259, 4.2e-65,

1.6e-20,4.2e-04,0.0e + 00, 5.5e-195, 9.2e-300, 3.8e-311, 4.9¢e-63,1.8e-15,1.0e-19,
2.0e-224,1.6e-10,1.6e-58,0.0e + 00, 0.0e + 00, 9.6e-05, 7.4e-09, 3.4e-13,5.9¢e-173,
1.4e-183,1.0e-52, 6.4e-191, 5.3e-120, 5.8e-14, 1.3e-06, 9.6e-80, 1.5e-13, 1.3e-52,
1.4e-03,1.2e-08, 5.6e-13, 2.3e-07,3.9¢e-05, 5.6e-10, 1.9e-28, 7.8e-21, 1.4e-05, 7.7e-07,
5.8e-05,2.2e-05,4.3e-12,1.1e-02, 4.9e-04, 3.5e-05,1.5e-01, 3.5e-03,2.7e-02, 1.1e-11,
3.0e-03,1.0e-01, 3.6e-01, 4.8e-02, 4.0e-02, 5.0e-01, 7.2e-01. (e) Heatmap showing
average GSVA enrichment score of selected Hallmark pathways per each category
of genetic variant.
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expression. (b) Violin plot showing CDKN1A gene expression level per cells with each genetic variant. Reds indicate wild type like variants.
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Extended Data Fig. 7 | FACS gating strategy. Gating strategy for cell cycle assay presented on Fig. 4c.
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TISCC-seq in HCT116 cells confirmed by CRISPR base editing and nutlin-
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nutlin-3a. Analysis of the resulting population revealed an increasing frequency
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for the selective advantage conferred by TP53 mutations in HCT116 cells. N=3
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Extended Data Fig. 10 | Single-cell genotyping of SF3B1 gene using TISCC-seq. We used the CRISPR base editor to introduce various mutations in SF381in K562
cells and genotyped them using TISCC-seq. (a) Transcript structure of SF3B1. (b) Result of single-cell genotype of SF3B1. (c) Gene expression profile based on SF3B1
mutations.
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Methodology
Sample preparation HCT116 cells are detached by trypLE and filtered before FACS
Instrument NovoCyte Quanteon
Software NovoExpress 1.4.4
Cell population abundance Cells are not sorted
Gating strategy FSC/SSC was used for primary gating. Cells cycles are custom gated by Pl and EdU staining.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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