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Spatial host–microbiome sequencing reveals 
niches in the mouse gut

Britta Lötstedt1,2,3, Martin Stražar    4, Ramnik Xavier4,5,6, Aviv Regev    1,7,10   & 
Sanja Vickovic    1,3,8,9 

Mucosal and barrier tissues, such as the gut, lung or skin, are composed 
of a complex network of cells and microbes forming a tight niche that 
prevents pathogen colonization and supports host–microbiome symbiosis. 
Characterizing these networks at high molecular and cellular resolution 
is crucial for understanding homeostasis and disease. Here we present 
spatial host–microbiome sequencing (SHM-seq), an all-sequencing-based 
approach that captures tissue histology, polyadenylated RNAs and bacterial 
16S sequences directly from a tissue by modifying spatially barcoded 
glass surfaces to enable simultaneous capture of host transcripts and 
hypervariable regions of the 16S bacterial ribosomal RNA. We applied 
our approach to the mouse gut as a model system, used a deep learning 
approach for data mapping and detected spatial niches defined by cellular 
composition and microbial geography. We show that subpopulations of 
gut cells express specific gene programs in diff erent microenvironments 
characteristic of regional commensal bacteria and impact host–bacteria 
interactions. SHM-seq should enhance the study of native host–microbe 
interactions in health and disease.

Mucosal and barrier tissues are ecosystems of multiple host cell 
types and a complex microbiome that vary in space and time. Anti-
gen recognition and innate immune responses1 in the host, and 
molecular mechanisms derived from the microbiome, together 
prevent pathogen colonization and support the establishment 
of the host–microbiome spatial niche and host–microbial sym-
biosis2. Conversely, spatial dysregulation3,4 in diseases such as 
inflammatory bowel disease (IBD) can lead to dysfunction of the  
gut barrier5,6.

Characterizing and understanding the host–microbiome spatial 
niche requires detailed measurement of the identity and molecu-
lar characteristics of host cells and microbiome species and their 

interrelations in a spatial context. On the microbiome side, spatial 
metagenomics methods7 are emerging to map bacteria by either imag-
ing8,9 or metagenomic plot sampling10. However, such studies focused 
on smaller regions, such as inter-fold, mucosal or lumen regions in 
the gut, and typically used broad taxonomy assignments, reaching 
family level at best10,11, with few reports at the level of specific genera 
or species9,12–14. Moreover, metagenomic plot sampling, so far the 
only approach for spatial bacterial sequencing in situ10, does not 
currently profile host gene expression. On the host side, single-cell 
genomics, including single-cell RNA sequencing (scRNA-seq), has 
been instrumental to characterize the cellular composition of tis-
sues, for the host15, resident microbes16,17 or joint profiling of host 
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Results
SMH-seq
We developed SHM-seq by adapting spatial transcriptomics25, where 
mRNA is captured by probes on a glass slide followed by profiling, to 
enable simultaneous capture of polyadenylated (host) transcripts and 
hypervariable (V4) regions of the 16S ribosomal RNA (rRNA) (Methods  
and Fig. 1). Specifically, we first produced solid-phase spatial tran-
scriptomics slides covered with uniquely barcoded and spatially 
addressable poly(d)T capture probes25–27, with ~1,000 distinct DNA 
features (that is, spatial spots) deposited and covalently linked to a 
glass substrate (Methods). We enzymatically modified these spatially 
barcoded features on the glass array to enable simultaneous capture of 
polyadenylated transcripts (~50% surface capture probes) and hyper-
variable (V4) regions of the 16S rRNA28 (~50% surface capture probes) 

and viral amplicon sequences18, but without spatial information. 
Spatial transcriptomics methods, either imaging based or sequenc-
ing based, enable cell type mapping in situ19–24 but have not yet been 
applied to simultaneously profile both host and microbiome in a  
spatial context.

In this study, we bridged this gap by developing spatial host–micro-
biome sequencing (SHM-seq; Fig. 1), a robust all-sequencing-based 
technology that leverages previous advancements in spatial tran-
scriptomics25,26 and provides histology, spatial RNA-seq and spatial 
16S sequencing using readily available instrumentation to profile 
the host’s expression responses in relation to microbial biogeogra-
phy. We applied it in the model system of the mouse colon and show 
here a roadmap for interrogating spatial gene expression programs in  
correlation with bacterial presence.
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Fig. 1 | SHM-seq. a, Three different mouse conditions used in the study 
analyzing cross-sections in the mouse gut. b, Tissue sections from mouse colons 
were placed on a barcoded glass array, with a barcoded surface adapted for 
simultaneous capture of polyadenylated host transcripts and 16S bacterial rRNA. 
Tissue sections were imaged, cells were permeabilized and cDNA was synthesized 

on the array surface before library preparation and sequencing. c, Data analysis 
identifies regional gene programs, their cell type constituents, association with 
mouse condition and regional association with specific commensal bacteria. 
Hyb, hybridization; Ext, extension.
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through a hybridization and extension reaction (Methods, Fig. 1 and  
Supplementary Fig. 1). Next, we placed frozen tissue sections on the 
optimized glass surface, stained them with hematoxylin and eosin 
(H&E) and imaged the tissue histology by bright-field microscopy. 
Finally, after imaging, we permeabilized the cells, allowing capture of 
host polyadenylated transcripts and bacterial 16S sequences on the 
array. The result was direct spatial DNA barcoding of host transcripts 
and bacterial species, which were sequenced by Illumina sequencing26.

To test SHM-seq, we applied it to profile intestinal cross-sections 
from the colon of C57BL/6 mice grown under typical conditions (spe-
cific pathogen free (SPF)) or as germ free (GF) or altered Schaedler flora 
(ASF) mice (Fig. 1 and Methods). GF mice provide a negative control; 
ASF mice, which contain only a defined floral community, provide a 
clear target for validation of the capture of expected bacterial spe-
cies; and regular C57BL/6 SPF mice represent a complex case study 
with unaltered gut flora. In total, we applied SHM-seq to 124 tissue 
sections and collected data from 15,321 spatial spots (covered by the 
tissue) across the three conditions (Supplementary Tables 1 and 2 and 
Supplementary Fig. 2).

A deep learning approach for taxonomy classification
Although, for spatial transcriptomics (host) data, we used an estab-
lished processing pipeline29 (Methods), we devised a novel taxonomy 
assignment pipeline to process the spatial microbiome data. First, 
we created a custom, gold standard bacterial genome reference for 
our experiment (Methods), based on species detected in dedicated 
shotgun metagenomic sequencing data, comprising 65 most abun-
dant species from 39 genera present in our bulk reference samples in 
at least 0.1% abundance, a cutoff chosen as offering the most accurate 
mapping metrics (Fig. 2a, Supplementary Fig. 3a and Methods). Next, 
we compared the performance in terms of taxonomic assignment (by 
Kraken2 (ref.30)) when using this custom reference versus using other 
bacterial reference databases, including the National Center for Bio-
technology Informationʼs (NCBI) RefSeq31 whole genome and NCBI’s 
16S rRNA databases (Methods and Supplementary Fig. 3b–d). Although 
our customized gold standard (restricted) whole genome reference 
(SPF: 65 species; ASF: eight species) had higher mapping accuracy and 
lower false-positive rate on both real and simulated SHM-seq data, the 
RefSeq references performed reasonably as well, making them a viable 
option when dedicated metagenomics data cannot be collected for a 
customized reference. Simulated data additionally showed that the 
database type (whole genome versus 16S rRNA), size and sequencing 
read length all impact the performance of taxonomic assignments 
(Supplementary Fig. 3e).

We next devised a taxonomy assignment approach, where spa-
tially captured sequences were first classified using Kraken2 (ref.30)  
(Methods), and those without a taxonomic classification were then pro-
cessed by a novel deep learning approach (Methods). Our deep learning 
model (Supplementary Fig. 4a) is based on convolutional and recurrent 
neural networks, which process a read from both directions, seek local 
sequence patterns and their distant interactions and are trained to 
predict the most likely taxonomic assignment (Methods). We assessed 
its performance using simulated bacterial reads with attached taxa 
labels, mimicking data otherwise obtained with SHM-seq (Methods).

The deep learning model enhanced performance compared 
to using Kraken2 (Fig. 2b and Supplementary Fig. 4b,c) or QIIME 2 
(ref.32), a commonly used 16S rRNA analysis tool (average Pearson r: 
0.97 (Kraken2 + deep learning model) and 0.21 (QIIME 2), P ≤ 10−4, aver-
age Bray–Curtis dissimilarity: 0.06 and 0.46, respectively, genus level; 
Supplementary Fig. 4d). First, the deep learning model (used alone) 
assigned sequences to genera with 97% accuracy on a test dataset of 
20% of the data. Next, we used the simulated data to assess taxonomic 
assignment metrics by comparing the predicted to the true taxonomic 
labels for data unseen by the model during training. The deep learning  
model after Kraken2 significantly outperformed Kraken2 alone on 

genus-level assignment, by several measures, including (1) higher 
similarity between relative bacterial abundances based on the model’s 
assignment versus the ground truth (average Pearson r for Kraken2 + 
deep learning model versus Kraken2 alone: 0.97 versus 0.68, P ≤ 10−4; 
Fig. 2b); (2) higher similarity in bacterial composition, evaluated 
at a resolution of 1,000 randomly assigned spatial spots (average  
Bray–Curtis dissimilarity 0.06 versus 0.15; Supplementary Fig. 4b); 
and (3) higher total accuracy (92% versus 84%, P ≤ 10−4), higher F1 score 
(89% versus 85%, P ≤ 10−4) and lower false-positive rate (8% versus 16%, 
P ≤ 10−4; Supplementary Fig. 4c), when evaluated as bulk-like samples. 
Thus, the deep learning model can improve the taxonomic assignments 
in SHM-seq data.

Sensitive and specific bacterial rRNA and host mRNA capture
We evaluated SHM-seq by (1) specificity and sensitivity of bacterial 
capture rates in SHM-seq compared to bulk 16S rRNA sequencing and 
by fluorescence in situ hybridization (FISH); and (2) host RNA-seq  
quality metrics obtained by SHM-seq compared to spatial transcrip-
tomics alone.

To assess specificity (the fraction of sequencing reads mapping 
to genomic regions in the gold standard reference) and sensitivity (the 
fraction of expected species detected with SHM-seq), we analyzed pro-
files from the defined community in ASF33 mice as a positive control and 
from GF mice as a negative control (Fig. 1 and Methods). On average, 22% 
of all reads in ASF mice samples (n = 3) aligned to the bacterial reference, 
whereas only 0.008036% of reads from GF mice samples were assigned 
to any of the 65 species in the reference (n = 3) (Fig. 2c). For ASF samples, 
bacterial reads mapped to the expected locations in the respective 
ASF reference genomes highlighting the specificity of our targeted 
capture (mean reads in expected genomic bin: 97.0 ± 1.5% s.e.m., n = 18 
tissue sections; Supplementary Fig. 5), with most reads (85.7 ± 4.5% 
mean ± s.e.m., n = 18 tissue sections) mapping on average to the 
expected capture region of the 16S rRNA gene (Supplementary Fig. 6).  
Highlighting the sensitivity of SHM-seq, all of the expected bacterial 
species were captured in the ASF samples, with ASF519 and ASF502 as 
the dominating bacteria (Supplementary Fig. 7a), in line with previous 
bulk RT–qPCR results34 (Pearson r = 0.85; Supplementary Fig. 7b) and 
with high reproducibility across replicates (Supplementary Fig. 7a). 
SHM-seq even detected ASF360, which was previously reported to be 
difficult to detect at low abundance using RT–qPCR35.

As a more complex case study, we further tested SHM-seq’s perfor-
mance in bacterial capture in SPF mice (Methods; n = 3). On average, 
28% of all reads aligned to the bacterial genome reference (Fig. 2c) 
and were assigned to 39 genera in our metagenomic reference (22 of 
which were present at >1% abundance), with Duncaniella, Turicibacter 
and Muribaculum the most abundant (Fig. 2d). The genera detected 
and their relative abundances correlated well with 16S rRNA sequenc-
ing (Pearson r = 0.69, P ≤ 10−4; Fig. 2e), and, on average, 90.7 ± 1.7% 
(mean ± s.e.m.) of SHM-seq reads (n = 9 tissue sections) mapped to 
the expected 16S rRNA capture region. Notably, our enzymatic cell 
permeabilization protocol was as efficient for preparing (bulk) bacte-
rial samples as was traditional mechanical extraction of nucleic acids 
(Pearson r = 0.95, P ≤ 10−4; Fig. 2f).

To further validate the specificity of spatial capture of bacterial 
genomes in different regions of interest, we compared the bacterial 
abundance profiles obtained with SHM-seq in ASF mice with those 
measured by FISH (Methods) with five fluorescent bacterial detec-
tion probes: a positive control to detect all bacterial species, probes 
targeting three distinct ASF species and a negative control. We detected 
and quantified the fluorescence signal over three major tissue regions 
(Methods and Supplementary Fig. 8a–d). The abundances of the overall 
positive control and of each of the three ASF-specific bacterial species in 
FISH correlated significantly with the SHM-seq measurements (average  
Spearman ρ; ASF502: 0.72, ASF360: 0.72, ASF519: 0.55, positive control: 
0.75, P ≤ 10−4; Fig. 2g–i and Supplementary Fig. 8e–g).
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Host RNA-seq quality metrics were similar between SHM-seq 
and spatial transcriptomics. There were no significant differences 
in RNA-seq read mapping rates or unique molecular identifier (UMI) 
counts between spatial transcriptomics and SHM-seq in either SPF or 
ASF mice (n = 3; Supplementary Fig. 9a–d): 66% and 63% of the spatially 
captured reads were uniquely mapped, and pseudo-bulk UMI counts 
correlated highly (Pearson r = 0.95 and 0.92, respectively). Further-
more, there was high agreement in host expression profiles when we 
used regular spatial transcriptomics arrays (only poly(d)T capture) 
with the permeabilization method developed solely for disrupting 
host cells versus the method used for disrupting both host and bacte-
rial cells (Pearson r = 0.94; Supplementary Fig. 9e,f). Thus, the surface 
treatment, permeabilization method and library preparation used in 
SHM-seq compare in specificity and sensitivity to commonly used 
methods for accessing bacterial sample composition and for spatial 
host expression profiling.

Defining spatial patterns of bacterial and host expression
To recover the spatial organization of microbes and host from our data, 
we defined the expression of host genes and abundance of bacterial 
genera in each spot, mapped those to 16 defined morphological regions 
of interest (MROIs) (Fig. 3a) to identify characteristic patterns and, 
finally, visualized our data as overviews of changes in tissue architec-
ture at a more gross (by major MROIs) or fine (minor MROIs) level. In 
brief, we manually assigned each spot in each profiled tissue section 
to one of 16 MROI categories (Methods), based on histology, and then 
automatically visualized those on rasterized vector representations of 
tissues for each mouse condition (Methods). In this way, we quantified 
spatial abundances from 100 colonic mouse sections in SPF and GF 
mice, spanning 10,924 spatially barcoded spots (covered by gut tis-
sue), each with spatial expression of 17,956 host genes and 39 bacterial 
genera across the MROIs. On average, we sampled 20 tissue sections, 
2,208 spots and ~32,000 nuclear cell segments from each mouse colon 
(Supplementary Fig. 10). We tested for significant spatial expression 
differences in the sampled sections using Splotch36,37 (Methods), a 
hierarchical probabilistic approach that accounts for the relative posi-
tion of each spot (with four nearest neighbors), differences in sampling 
(number of spots) between MROIs and the biological batch variables 
of presence of bacteria in the mice (that is, conditions) and individuals 
(that is, animals).

Spatial co-organization of host and microbe composition
We asked how gene expression in each of 16 MROIs was impacted by 
overall bacterial presence by comparing SPF versus GF mice (with no 
bacteria). Although both SPF and GF mice showed similar regional 
expression of some marker genes (for example, Epcam in the epithe-
lium, Myh11 in the muscularis regions and Cd52 in Peyer’s patches;  
Fig. 3b), other genes were significantly differentially expressed between 
them in a region-specific manner (Fig. 3c). For example, Satb2 and Muc2 
were, respectively, downregulated and upregulated in the crypt apex 
of SPF versus GF mice, the tissue layer most proximal to the mucosa 
and lumen (Fig. 3d). Satb2 helps maintain intestinal homeostasis, and 
its expression prevents excessive crypt damage and inflammation38. 
Similarly, Muc2 is key for maintenance of a healthy mucosal layer, and its 
depletion results in direct contact between epithelial cells and bacteria 
in the colon, leading to inflammation and cancer39. In other examples, 
Hnf4a, a gene associated with epithelium renewal40, is more highly 
expressed in the base of the crypt in GF versus SPF mice, and Gpx2, 
whose deficiency is related to propagating IBD symptoms41, is induced 
in the region bordering epithelium and muscularis mucosae tissue in 
SPF versus GF mice (Supplementary Fig. 11).

Host spatial expression patterns in SPF mice were mirrored by 
distinct bacterial genera detected by Splotch (Methods) at different 
abundances and compositions in six distinct MROIs in the SPF mice. The 
detected bacteria were found in the colonic inter-fold regions (crypt 

base, crypt mid and crypt apex/mid), the mucosal layers (crypt apex/
mucosa and mucosa/pellet) or the lumen (that is, pellet, where they 
were most abundant, as expected). Inter-fold regions had the lowest 
diversity, and the pellet had the highest diversity (Fig. 3e). Morphologi-
cal regions in close proximity to each other shared some highly abun-
dant genera: Pseudobutyrivibrio was shared in the two mucosal regions, 
and Mediterraneibacter, an obligate anaerobe and formerly part of 
the Ruminococcus genus42, was shared between the inter-fold regions  
(Fig. 3e,f). Mucosal regions had a preponderance of Oscillibacter  
(Fig. 3f,g, middle); Pseudobutyrivibrio (Fig. 3f,g, bottom); and Rumi-
nococcus and Phocaeicola, with the latter two genera previously asso-
ciated with the mucosa13,43–45, whereas the pellet had an abundance 
of commensal bacteria14,46, such as Lactobacillus, Muribaculum and 
Anaerocolumna but also Massilistercora, part of the Eubacteriales 
family and previously reported only in the human gut47 (Fig. 3g, top). 
These patterns were apparent both in aggregate across samples and 
in individual sections, with good reproducibility (Fig. 3f–h and Sup-
plementary Fig. 12).

The mucosal barrier, otherwise preventing unwanted direct con-
tact between lumen and host cells in the crypt apex, signals the immune 
system in a process mediated by epithelial cells48. We hypothesized 
that detected bacterial genera, some observed exclusively with tight 
junction mucosal barriers (for example, Pseudobutyrivibrio, Rumi-
nococcus and Oscillibacter; Figs. 3f,g and 4a) and others diffusing 
into the tissue-specific inter-fold regions (for example, Intestimonas,  
Coprococcus and Flavonifractor; Figs. 3f and 4a), could influence and 
be influenced by host expression in close proximity. To systematically 
investigate significant regional and cell type composition differences 
and associate them to the presence of bacteria from different gen-
era, we identified 28 spatial modules of genes that are co-expressed 
across spots (Supplementary Fig. 13a and Methods). We then parti-
tioned each such module into gene submodules by gene co-variation 
across single-nucleus RNA sequencing (snRNA-seq) profiles (Fig. 4b,  
Supplementary Fig. 13b and Methods), recovering 203 submodules 
(Supplementary Table 3 and Methods). We labeled each submodule by its 
expression in one or multiple of the 30 cell types identified by snRNA-seq 
and tested it for enriched KEGG pathways (Fig. 4c and Methods).

In the presence of microbiota, specifically Pseudobutyrivibrio, 
Sodaliphilus and Oscillibacter, colonocytes in the apex of the crypts 
expressed Ceacam20, a known receptor for Gram-negative bacte-
ria49 and a known colitis suppressor50, whereas goblet cells expressed 
high levels of Hif1a, a marker of a functioning mucosal barrier that is 
downregulated in IBD51 (Fig. 4d and Supplementary Table 4). Neurons 
in the neighboring region (that is, upper mid region of the crypts), in 
the presence of Intestimonas, expressed Tacr1 and other neuroactive 
ligands and receptors implicated in regulating gut motility52, whereas 
macrophages in the same regions and in the presence of the same bac-
terial genera expressed Fcrl2 and Slamf6, genes that have been shown 
to modulate neuro-immune signaling upon receptor–microbe bind-
ing53,54 (Fig. 4d and Supplementary Table 4). Specialized spatial niches 
in lower regions of the crypts also contained networks of neurons and 
myocytes involved in muscle contractility (Camk2a in the presence of 
Coprococcus), axon guidance (Sema4f in the presence of Flavonifrac-
tor) and cholinergic signaling (Chat in the presence of Coprococcus)  
(Fig. 4d and Supplementary Table 4).

Discussion
Here we presented SHM-seq, a method that relies on solid surface  
capture of polyadenylated host transcripts and variable (V4) 16S bac-
terial regions onto spatially barcoded microarrays for joint spatial 
profiling of bacterial composition, host gene expression and tissue 
histology. We provided a deep-learning-based approach to enhance tax-
onomy assignment for metagenomic taxa classification from SHM-seq 
data with improved detection rates and assignment accuracy and a 
roadmap for interrogating coordinated spatial expression programs. 
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Benchmarking against a gold standard custom reference, generated 
from dedicated metagenomics data in the same system, we show that 
SHM-seq data are compatible with mapping to different databases, 
containing either 16S rRNA or full genome bacterial sequences, and 
that the accuracy of the mapping is based on the quality and size of 
the respective databases.

We benchmarked the sensitivity and specificity of SHM-seq com-
pared to traditional 16S sequencing, published RT–qPCR data as well 
as FISH and spatial transcriptomics in three mouse conditions: SPF, GF 
and ASF. SHM-seq showed reproducibility and robustness using a tissue 
dataset of 124 sections and detected all the bacteria genera otherwise 
present after 16S sequencing in SPF mice as well as all of the eight species 
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referenced in ASF mice. Previous studies reported variation in bacterial 
abundance between mice34,35,55. In our study, we also saw differences in 
abundance obtained with SHM-seq versus external ASF data, although 
the overall correlation between the datasets was high (Pearson r = 0.85), 
and SHM-seq was highly reproducible across mice. Future studies can 
alter the amount and sequence of capture oligonucleotides on the 
spatial array surface to further tune the recovery rate of bacterial versus 
host transcripts or introduce other user-defined capture moieties of 
interest. Additionally, although sequencing only parts of the 16S rRNA 
gene has been shown to be sufficient to identify bacterial genera56, it has 
limited resolution at finer taxonomic levels, such as specific bacterial 
species and strains. SHM-seq can address these concerns in the future by 
modifying the capture sequences and library preparation procedures, 
preferably by increasing the sequencing read length.

Using these data and methods, we show that, in the presence of 
microbiota, subpopulations of goblet cells and colonocytes formed 
cell-adhesive layers filled with Muc2 and Ceacam20 for host–micro-
bial communication. Additionally, we observed distinct submodules 
of genes expressed in specific microenvironments in SPF mice that 
encode proteins that can regulate intestinal physiological functions 
and colonic motility, which are disrupted in GF mice57. Thus, our spatial 
analysis identified spatial expression programs throughout the tis-
sue cross-section characteristic of regional populations that display 
distinct, mouse-condition-relevant dynamics and may depend on 
the presence of commensal bacteria and/or impact host–bacteria 
interactions.

SHM-seq enables robust spatial host–microbiome profiling 
from a large number of tissues but is currently limited by the reso-
lution of solid-phase capture arrays. To address this, Splotch, our 
quantitative data model (Methods), simultaneously combines spatial 
and experimental parameters to improve probabilistic inference of 
spatially resolved gene expression from lower-resolution arrays36,37. 
Moreover, by interrogating tissue contexts through MROIs, the model 
shares information across tissue sections to detect reproducible spa-
tial changes in the different mouse conditions; to create a common 
coordinate framework (CCF) guided by the biological question and 
spatial resolution58; and to generate easier visualization of large tissue 
cohorts. Future studies can further tackle the resolution limitation 
using higher-density formats23,24,59 and with enhanced computational 
mapping approaches for deconvolving cell–cell inter-species commu-
nication networks. Additionally, using 16S rRNA databases restricted to 
gut microbial species can further alleviate the computational burden of 
mapping SHM-seq data, whereas mapping to large 16S rRNA databases 
increases the risk of false-positive mapping rates and the risk of lower 
representation of species in these databases. As such, we favor whole 
genome databases, such as RefSeq, and, when possible, restrict those 
to species present in adjacent metagenomic data, when available.

SHM-seq paves the way for future work and detailed investigation 
in larger studies, designed to compare animal models—for example, 
during colitis-induced changes60 or infection61—and human patients 
sampled longitudinally or cross-sectionally, where both microbiome 
and host cells vary, as does host genetics. Such analyses can expand 
understanding of the relationship between host and microbiome and 
lead to better understanding of mechanisms sustaining homeosta-
sis in health or onset and persistence of chronic inflammation. Our 
method should, thus, help in better understanding environmental 
and microbiome-driven spatial neighborhood heterogeneity in barrier 
and mucosal tissues.
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Methods
SHM-seq data generation
Mice. Adult C57BL/6 SPF mice were purchased from The Jackson Labo-
ratory and maintained in accordance with ethical guidelines monitored 
by the Institutional Animal Care and Use Committee (IACUC), estab-
lished by the Division of Comparative Medicine at the Broad Institute 
of MIT and Harvard, and consistent with the Guide for Care and Use of 
Laboratory Animals, National Research Council, 1996 (institutional 
animal welfare assurance no. A4711-01), with protocol 0122-10-16. 
Adult C57BL/6 GF mice were obtained from Taconic Biosciences and 
maintained in a gnotobiotic environment. Some of these mice were 
randomly selected and inoculated with ASF33 over several generations 
and used when >6 weeks of age. After colonization, ASF mice were 
housed in sterile conditions and tested with polymerase chain reaction 
(PCR) to ensure that sterility was maintained63. Animal housing room 
temperatures were monitored and always maintained according to 
species-specific needs. Humidity was maintained at 30–70%. Light 
intensity and light cycle timing were carefully regulated by Broad 
Institute animal facilities. To capture material from multiple sections 
per colonic tube, as well as to maximize the use of a single spatial 
array (1,007 spatial spots spread over ~42 µm2), we placed 2–3 tissue 
cross-sections onto one spatial capture area. We sampled ~20 sections 
from each mouse by sectioning in the aforementioned fashion across 
one spatial capture slide containing six active capture areas.

Tissue collection. Colonic tubes from the mid part of the colon were 
dissected within minutes of killing mice, and tissues were dried from 
excess fluids and embedded in Optimal Cutting Temperature (O.C.T., 
Fisher Healthcare) in large molds (VWR) pre-filled with O.C.T. The 
molds were then laid onto a metal plate pre-chilled and set on top of 
dry ice for 2 min or until complete freezing. Samples were transferred 
to −80 °C until sectioning.

Generation of slides with customized surfaces. Customized  
surface primers were immobilized to an amine-activated surface area 
(~40 mm2 each) using covalent bioconjugation25,27, as recommended 
by the manufacturer (Surmodics). Three distinct surfaces were gener-
ated for validations: 16S, poly(d)T and a mixed poly(d)T/16S surface. 
The oligonucleotides immobilization in each case were:

5′-[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACAC 
GACGCTCTTCCGATCTNNNNNNNNATCTCGACGACTACHVGGGTAT
CTAATCC-3′

5′-[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACAC 
GACGCTCTTCCGATCTNNNNNNNNTTTTTTTTTTTTTTTTTTTVN-3′ 
(both Integrated DNA Technologies (IDT)).

All slide incubations took place on a thermal incubator (Eppendorf 
Thermomixer Option C) with slides mounted into a hybridization 
chamber (ArrayIt). All in situ reactions performed on spatial arrays 
were carried out in a class II biosafety cabinet.

Generation of spatial arrays with customized surfaces. All spatial 
arrays were produced as previously described for the original spatial 
transcriptomics method25,27. In brief, six spatial microarrays per slide 
were created using amine-activated CodeLink slides (Surmodics). To 
ensure covalent binding chemistry to the amine-activated surface, DNA 
oligonucleotides (IDT) were constructed as follows:

5′-[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACA 
CGACGCTCTTCCGA TCT-[18mer spatial barcode]-[7mer random 
UMI]-[20T]-VN.

Printing was performed by ArrayJet LTD by spotting 100 pL of 
spatially barcoded DNA oligonucleotides (33 µM diluted in 2× CodeLink 
printing buffer) using inkjet technology to form 100-μm spots with a 
200-μm spot-to-spot pitch, resulting in a total of 1,007 different spa-
tially addressable spots printed in a 6.2-mm × 6.6-mm capture area. A 
complete list of all spatially barcoded DNA oligonucleotides used in 

this study is available at https://github.com/nygctech/shmseq. After 
printing the spatial arrays, slides were blocked using a pre-warmed 
blocking solution (50 mM ethanolamine, 0.1 M Tris, pH 9) at 50 °C for 
30 min and washed with 4× saline sodium citrate (SSC) and 0.1% SDS 
(pre-warmed to 50 °C) for 30 min before rinsing the slides with deion-
ized water and drying.

Next, capture areas were modified to create a customized  
surface containing a mixture of poly(d)T and 16S capture 
sequences. To hybridize the 16S probe onto the spatially bar-
coded poly(d)T surface probes, 75 µl of the 16S (V4) probe 
(IDT) with the sequence 5′-GGATTAGATACCCBDGTAGTCGAGA 
TNBAAAAAAAAAAAAAAAAAAAA-3′ (sequence28 modified to enable 
attachment to the spatial arrays) at 0.8 nM concentration in 2× SSC 
(Sigma-Aldrich), 20% fresh formamide (Thermo Fisher Scientific) and 
0.1% Tween (Sigma-Aldrich) was added to each spatial capture area 
and incubated for 30 min at room temperature. The probe mix was 
then removed, and capture areas were washed with 100 µl of 0.1× SSC 
(Sigma-Aldrich). To covalently attach the hybridized 16S probes onto 
the spatially barcoded poly(d)T surface probes, an extension reaction 
was performed with 75 µl of 1× M-MuLV buffer, 2 U µl−1 RNaseOUT, 
20 U µl−1 M-MuLV and 0.5 mM dNTPs (all from Thermo Fisher Scien-
tific) and 0.20 µg µl−1 BSA (New England Biolabs (NEB)) added to the 
wells and incubated at 42 °C for 30 min. The M-Mulv solution was then 
removed, followed by a wash with 100 µl of 0.1× SSC. To strip the 16S 
probes used in the hybridization and extension reaction, and make the 
covalently attached 16S surface probes single stranded, surface capture 
areas were incubated 3× with 75 µl of 100% formamide for 3 min at room 
temperature. Capture areas were then washed twice with 100 µl of 0.1× 
SSC before washing the entire slide for 10 min at 50 °C in 2× SSC/0.1% 
SDS (Sigma-Aldrich), followed by 1-min wash with 0.2× SSC and finally 
0.1× SSC, both at 37 °C. This resulted in spatially barcoded capture areas 
containing ~1:1 ratio of poly(d)T and 16S capture sequences.

Cryosectioning. The entire cryo chamber, including all surfaces and 
tools used during cryosectioning, were wiped with 70% ethanol before 
the start of sectioning to avoid bacterial contamination. Both spatial 
arrays and O.C.T.-embedded gut tissue blocks were allowed to reach the 
temperature of the cryo chamber before 10-µm-thick cross-sections 
of gut tissue were placed on customized spatial arrays. Tissue fixation 
followed immediately as described below.

Tissue fixation, H&E staining and imaging. The spatial array was 
warmed at 37 °C for 2.5 min. Then, the entire area of the glass slide 
was covered in a methacarn solution (60% absolute methanol, 30% 
chloroform stabilized with ethanol and 10% glacial acetic acid (all from 
Sigma-Aldrich)) for 10 min at room temperature in a closed space to 
avoid evaporation. Methacarn was then removed, and the slide was 
allowed to dry before ~300 µl of isopropanol (Sigma-Aldrich) was 
added to the slide and incubated for 1 min at room temperature. When 
the slide was completely dry again, it was stained using H&E in an Easy-
Dip Slide Jar Staining system (Weber Scientific). The system included 
containers separately filled with ~80 ml of Dako Mayer’s hematoxylin 
and Dako Blueing Buffer (both from Agilent Technologies), 5% Eosin 
Y in 0.45 M Tris acetate (both from Sigma-Aldrich) buffer at pH 6 and 
nuclease-free water (Thermo Fisher Scientific). The slide was put in 
a slide holder and completely dipped in hematoxylin for 6 min, fol-
lowed by five dips in nuclease-free water and then 10 dips in a beaker 
filled with ~800 ml of nuclease-free water. The slide holder was then 
dipped in Dako Blueing Buffer for 5 s, followed by another five dips 
in nuclease-free water. Finally, the slide holder was put in the eosin 
solution for 1 min and washed by five dips in nuclease-free water. The 
slide was removed from the holder and air dried before being mounted 
with 85% glycerol and covered with a coverslip (VWR) before imaging. 
Imaging of stained H&E tissue sections on glass arrays was performed 
on a Metafer VSlide scanning system (MetaSystems) installed on an 
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Axio Imager Z2 microscope (Carl Zeiss) with an LED transmitted light 
source and a CCD camera. Using an A-P ×10/0.25 Ph1 objective lens 
(Carl Zeiss) and a configuration program26, focusing and scanning of 
each tissue section on the glass array was done automatically. Image 
stitching was done using VSlide (version 1.0.0) with 60-µm overlap and 
linear blending between fields of view. Images were extracted using 
jpg compression.

In situ reactions: permeabilization and reverse transcription. 
Before start, the hybridization chamber was cleaned with RNaseZap 
(Thermo Fisher Scientific) and 70% ethanol, followed by at least 
30 min in a UV light chamber. After section imaging, the slide was 
again attached to the hybridization chamber to proceed with the 
following permeabilization reactions (referred to as ‘bacterial treat-
ment’ below). First, 100 µl of a lysozyme solution with 0.05 M EDTA 
(pH 8.0, Thermo Fisher Scientific), 0.1 M Tris HCl, pH 8 (Thermo Fisher 
Scientific) and 10 µg µl−1 lysozyme (from chicken egg white, lyophi-
lized powder, Sigma-Aldrich) were added to each well and incubated 
for 30 min at 37 °C, followed by wash with 100 µl of 0.1× SSC. Second, 
75 µl of 10% Triton X-100 (Sigma-Aldrich) was added and incubated for 
5 min at 37 °C, followed by a 100-µl wash of 0.1× SSC. Third, a solution 
with 0.05% SDS and 5 mM DTT (Thermo Fisher Scientific) was added 
and incubated for 5 min at 37 °C, followed by a 100-µl wash of 0.1× 
SSC. Fourth, 100 µl of collagenase I (200 U) in 1× HBSS (both from 
Thermo Fisher Scientific) were added to each well and incubated for 
20 min at 37 °C, again followed by a 100-µl wash of 0.1× SSC. Lastly, 
75 µl per well of 0.1% pepsin (pH 1, Sigma-Aldrich) was incubated for 
10 min at 37 °C, followed by a final wash of 100 µl of 0.1× SSC. In situ 
cDNA synthesis was performed as previously described26. In brief, 
75 µl of 50 ng µl−1 actinomycin D (Sigma-Aldrich) and 0.5 mM dNTPs 
(Thermo Fisher Scientific, 0.20 µg µl−1 BSA and 1 U µl−1 USER enzyme 
(both from NEB), 6% v/v Lymphoprep (STEMCELL Technologies), 
1 M betaine (B0300-1VL, Sigma-Aldrich), 1× first-strand buffer, 5 mM 
DTT, 2 U µl−1 RNaseOUT and 20 U µl−1 Superscript III (all from Thermo 
Fisher Scientific)) were added to each well. The reaction was sealed 
with Microseal ‘B’ PCR Plate Seals (Bio-Rad) and incubated for at least 
6 h. After incubation, 70 µl of the released cDNA material from each 
hybridization chamber well was collected and stored in a 96-well PCR 
plate (Eppendorf).

Library preparation. Library preparation was performed using 
the SM-Omics automated library preparation protocol, as previ-
ously described26. In brief, released cDNA material was first made 
double stranded using the nicked RNA template strands as primers 
for copying the cDNA strand with DNA polymerase I. To avoid over-
digestion, the reaction was terminated with EDTA, and ends were 
blunted using T4 DNA polymerase before linear amplification by 
in vitro transcription. Amplified material was again transcribed into 
cDNA, resulting in material ready for PCR indexing as described in 
the next subsection.

Quantification, indexing and sequencing. qPCR quantification and 
indexing were performed as previously described64 using TruSeq LT 
Illumina indexing and a KAPA HotStart HiFi ReadyMix (Roche). Indexed 
cDNA libraries were cleaned using a 0.7:1 ratio with AMPure XP beads 
(Beckman Coulter) to PCR product, according to the manufacturer’s 
protocol, and eluted in 12 µl of elution buffer (Qiagen). Each sample’s 
concentration was measured using the DNA HS Qubit assay (Thermo 
Fisher Scientific), and average fragment length was determined using 
either Bioanalyzer HS or DNA1000 TapeStation (both from Agilent 
Technologies). Each sample was then diluted to the desired concentra-
tion for sequencing (1.08 pM on a NextSeq and 10 pM on a MiSeq, both 
with ~10% PhiX). Pooled libraries were sequenced with 25 nucleotides 
(nt) in the forward read and 55 nt and 150 nt in the reverse read on 
NextSeq and MiSeq (Illumina), respectively.

Generation of bacterial validation data
Mechanical extraction of bacterial RNA. An approximately 
1-mm-thick tissue section with pellet was sectioned from SPF colons 
in O.C.T. and put in a dry ice-cold Lysis Matrix D tube (MP Biomedi-
cals). Then, 400 µl of RLT buffer (Qiagen) with 1% 2-mercaptoethanol 
(Sigma-Aldrich) was added to the tube, and the solution was homog-
enized in a FastPrep-24 instrument (MP Biomedicals) at speed 6 for 40 s. 
Tubes were then centrifuged for 5 min at 12,000 r.p.m. Supernatant 
was transferred to a new tube, and RNA extraction was done using the 
RNeasy Mini Kit (Qiagen), according to the manufacturer’s instruc-
tions. Extracted RNA was fragmented using the NEBNext Magnesium 
RNA Fragmentation Module Kit (NEB), heating for 2 min. Fragmented 
RNA was cleaned with the MinElute Cleanup Kit (Qiagen), according 
to the manufacturer’s instructions. Quality of the fragmented RNA 
was evaluated by the Bioanalyzer Pico Kit (Agilent Technologies). 
Next, ~20 ng µl−1 mechanical extracted RNA was added on a 16S surface 
probe coated quality control (QC) array in an in situ cDNA reaction, 
as described in the ‘In situ reactions: permeabilization and reverse 
transcription’ subsection. After at least 6-h incubation at 42 °C, 70 µl of 
the released material from each well was collected and stored in a new 
96-well PCR plate (Eppendorf). Library preparation, quantification, 
indexing and sequencing on the MiSeq were performed as described 
in the ‘Library preparation’ and ‘Quantification, indexing and sequenc-
ing’ subsections.

Extraction and metagenomic sequencing of fecal DNA. Pellet was 
collected from the colon of SPF mice by perforating the colon wall and 
scraping the pellet and mucus into a 1.5-ml collection tube (Eppendorf). 
Collected pellet was stored at −80 °C until further processed. DNA was 
extracted from the pellet using a Lysing Matrix Y tube (MP Biomedi-
cals), according to the manufacturer’s instructions. Extracted DNA 
concentration was determined using the DNA HS Qubit assay. DNA 
was made into libraries using Nextera XT (15031942 v05). Concentra-
tion and average fragment length of each sample were evaluated using 
the DNA HS Qubit assay (Thermo Fisher Scientific) and Bioanalyzer HS 
(Agilent Technologies), respectively. Each sample was diluted to the 
desired concentration for sequencing (9 pM, ~10% PhiX), and pooled 
samples were sequenced on a MiSeq (2 × 150 bp, lllumina). Each sample 
was sequenced to ~5–10 million reads.

FISH. FISH was performed on the same fresh-frozen gut tissue sam-
ples from ASF mice. All sections were 10-µm-thick cross-sections 
and consecutively collected. First sections were placed on the spa-
tial array, followed by placing consecutive sections on a CodeLink 
amine-activated slide (Surmodics); the following two sections were 
then again placed on the spatial array. Sections on the spatial array 
were used for SHM-seq, and sections on the amine-activated CodeLink 
slide (Surmodics) were prepared for FISH as further described. Slides 
were warmed at 37 °C for 2.5 min on a thermal incubator, before tissue 
sections were fixed using freshly prepared methacarn, as described 
in the ‘Tissue fixation, H&E staining and imaging’ subsection. Slides 
were then placed in a hybridization chamber, and 75 µl of preheated 
FISH solution (0.9 M NaCl and 20 mM Tris, pH 7 (both Thermo Fisher 
Scientific), 0.1% SDS (Sigma-Aldrich) and a FISH oligonucleotide 
detection probe (0.06 µg ul−1)) was added to each well and incubated 
for 2 h at 25 °C. Oligonucleotide detection FISH probes (IDT) were 
used depending on the target of interest: probe EUB338 (5′-/Cy5/
GCTGCCTCCCGTAGGAGT-3′) for all bacteria; probe non-338 (5′-/Cy5/
ACTCCTACGGGAGGCAGC-3′) as a negative control; probe Lab158 
(5′-/Cy5/GGTATTAGCAYCTGTTTCCA-3′)65–67 to target ASF360; probe 
Lac435 (5′-/Cy5/TCTTCCCTGCTGATAGA-3′)68,69 to target ASF502; and 
probe Bac303 (5′-/Cy5/CCAATGTGGGGGACCTT-3′)8,67 to target ASF519. 
After the 2-h incubation, FISH solution was removed, and wells were 
washed with 100 µl of 1× PBS before the hybridization chamber was 
removed and slides were dipped 12 times in 50 ml of 1× PBS before 
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being air dried. Slides were mounted with 85% glycerol (Sigma-Aldrich) 
and a coverslip (VWR). Epifluorescent images were acquired on an 
Axio Imager Z2 microscope using a PhotoFluor LM-75 light source 
(89North) in combination with a Plan-APOCHROMAT ×63/1.4 oil DIC 
objective (Carl Zeiss). Images were processed using VSlide (version 
1.0.0, MetaSystems).

Processing on H&E imaging data
Image registration and annotation. Image processing and registration 
of barcoded spots was done using SpoTteR26. H&E images (collected 
in RGB channels) were downscaled to approximately 500 × 500 pixels. 
For efficient grid spot detection, tissues were masked from the images 
using quantile thresholding in the red channel. Centroids of spatial 
array spots were detected by computing the image Hessian. Centroid 
coordinates were used as probable grid points, and a rectangular grid 
was then fitted to these probable points using a local optimizer (nlminb, 
R package stats (R version 3.6.3)). With iterations and removing 10% of 
the probable spots that did not fit the perfect grid structure, a new grid 
was fitted until the target number of grid points per row (here, 35) and 
column (here, 33) was reached. Final grid points were overlapped with 
the previously masked tissue section to select spatial points present 
only under the detected tissue section area. These points were used 
in further analysis.

H&E images were annotated using a graphical cloud-based inter-
face24 by manually assigning each spatial coordinate (x,y) resulting 
from the grid fitting process with one or more morphological region 
tags. The tags used were epithelium (E), epithelium and muscle and 
submucosa (ALL), epithelium and mucosae and submucosa (EMMSUB), 
epithelium and mucosae (EMM), muscle and submucosa (MSUB), 
crypt base (BASE), externa and interna (MEI), externa (ME), interna 
(MI), mucosae and interna (MMI), mucosa and pellet (MUPE), crypt 
mid (MID), crypt apex and mucosa (APEXMU), crypt apex and crypt 
mid (UPPERMID), Peyer’s patch (PP) and pellet (PE). E, EMMSUB, EMM, 
BASE, MEI, ME, MI, MUPE, MID, MMI, APEXMU, UPPERMID, PP and PE 
were visualized in tissue vector representations.

Processing of host reads
Raw reads processing and mapping of host reads. Reads were gen-
erated with bcl2fastq2 (version 2.20.0) and trimmed to remove adap-
tor sequences and the 16S surface probe sequence using BBDuk70 
(version 38.33). ST Pipeline (version 1.7.6)29 was used to generate 
gene-by-barcode matrices. The reverse quality-filtered reads were 
mapped with STAR (version 2.6.0)71 to the mouse genome reference 
(GRCm38 primary assembly), and mitochondrial sequences were 
removed. Mapped reads were annotated using HTseq-count (version 
0.11.4)72 and the mm11 mouse annotation reference (https://www.
gencodegenes.org/mouse/release_M11.html). Annotated reads were 
demultiplexed with TagGD29,73 (version 0.3.6) with a Hamming distance 
clustering approach (k-mer 6, mismatches 2). This connected transcript 
information to spatial barcodes. Finally, UMI collapsing per transcript 
and spatial barcode was performed with a naive clustering approach 
(mismatches 1) similar to that described in UMI-tools74.

Processing of bacterial reads
Generation of gold standard mouse gut bacterial reference. FASTQ 
reads were generated with bcl2fastq2, and reads were quality filtered 
using KneadData (version 0.7.4) (https://huttenhower.sph.harvard.
edu/kneaddata/) (mouse database mouse_C57BL). MEGAHIT75 (ver-
sion 1.2.9) was used for assembly of the filtered reads, and bowtie2 
(ref.76) (version 2.3.4.3) was used for mapping reads to the assembly. 
MetaBAT2 (ref.77) (version 2.15) was used for binning the assembly, and 
the command-line version of NCBI BLAST78 (version 2.9.0+) was used 
to assign taxonomy to contigs with blastn and database ‘nt’. MEGAHIT, 
bowtie2 and MetaBAT2 were all run using default settings. Assignments 
were filtered (E-value ≤ 10E−6) and sorted (by E-value and percent 

identity), and each contig was then assigned the top taxonomy assign-
ment. Contigs belonging to an assigned taxonomy on species level at 
various cutoffs (>0.1%, >0.05% and >0.01% corresponding to 65, 121 
and 419 species, respectively) were retained. For each cutoff, refer-
ence genomic sequences (complete genomes, chromosomes or scaf-
folds, depending on availability for these species) were downloaded 
from the NCBI RefSeq database31 (release 205), resulting in FASTA 
sequence databases (one for each cutoff) of the taxa found in SPF mice 
(n = 6) and used as input to build custom databases in Kraken2 (version 
2.0.9)30 according to Kraken2 default instructions, including masking 
of low-complexity regions. Reference genomes for six species were not 
found in the RefSeq database (Supplementary Table 5) and were not 
included in the FASTA sequence databases. The mouse gut bacterial 
references were also filtered for genera that have previously been found 
in mice and/or the intestine79–81. A phylogenetic tree of the reference 
taxa was built using NCBI’s Common Tree and visualized using iTOL 
(version 6.4.3)82. When analyzing mouse gut tissue with defined flora 
(ASF), genome sequences according to ref. 83 were downloaded from 
the NCBI and used as input to build a custom ASF database in Kraken2.

Generation of simulated data. Two simulated datasets were gener-
ated based on the abundance of taxa using cutoffs 0.1% and 0.01% (as 
described in the ‘Generation of gold standard mouse gut bacterial 
reference’ subsection): 16S rRNA FASTA sequences for the taxa found 
in SPF mice were downloaded from the NCBI (downloaded 24 July 
2021), except two taxa where the 16S rRNA FASTA sequence were miss-
ing (Sodaliphilus pleomorphus and Anaerocolumna sedimenticola). 
Command-line NCBI BLAST78 (version 2.9.0+) was used to align every 
possible sequence version of the 16S surface probe to the 16S rRNA 
FASTA sequences to find the best possible alignment for the 16S surface 
probe per taxa. To mimic spatially captured reads from a real SHM-seq, 
2 million paired reads from a real SHM-seq experiment were used as a 
template for FASTQ headers, sequence and quality scores for the for-
ward read and FASTQ headers and quality scores for the reverse read. 
The sequences in Read 2 were replaced by 150-bp-long fragments of 
the 16S rRNA sequences from randomly selected taxa. Fragments were 
created by selecting a region upstream of the best possible alignment 
of the 16S surface probe per randomly selected taxa. Each region was 
then randomly selected a length based on a normal length distribution 
with parameters characteristic to a spatial array (400 ± 44 bp) and 
trimmed to 150 bp. This resulted in a simulated dataset with 2 million 
randomly selected 16S rRNA gene sequences, generated from where 
the 16S surface probe was expected to capture, from the taxa in our 
mouse gut bacterial references but with known exact taxa and both 
reverse and forward reads.

Deep learning model: data pre-processing. A total of 500,000 DNA 
sequences were randomly selected from the simulated dataset based 
on a 0.1% abundance cutoff (described in the ‘Generation of simulated 
data’ subsection) and uniformly sampled, and single-point mutations 
with 0.1% rate were introduced. This was followed by random shorten-
ing based on a normal distribution of fragment lengths from a true 
SHM-seq experiment (143 ±13 bp, truncated at 150 bp). Reads from 
each taxon in the mouse gut bacterial reference were represented at 
least 100 times per genus. Sequences were one-hot encoded, such that 
each nucleotide (A, C, T, G and N) was represented by a five-dimensional 
binary vector, followed by sequence padding up to the maximum 
length (150 bp). Taxa labels were one-hot encoded into one of N genera. 
The encoded sequences and taxa labels were provided as input for 
training the model.

Deep learning model: architecture. A taxonomic classifier of short 
reads was implemented using Keras84 with TensorFlow85 back end 
(version 2.2.0) in Python (version 3.8.10) (Supplementary Fig. 4a).  
The model takes as input one-hot encoded DNA sequences of varying 
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lengths and provides a genus label as output. First, a masking layer 
was used to ignore padded entries, followed by four layers of a 
one-dimensional convolutional layer with kernel sizes of 15, 17, 19 and 
23 to extract short motifs, followed by a concatenation and a dropout 
(50% rate) module and two bidirectional long short-term memory 
network layers, which processed the sequences in both directions. 
This was followed by another dropout layer (20% rate), a dense layer 
(reLU activation), a dropout layer (10% rate), another dense layer (reLU 
activation) and, finally, a fully connected layer (softmax activation) 
to reduce the final output size to the number of distinct genera in the 
input data. In total, the model consisted of 298,760 trainable param-
eters. Cross-entropy loss was used to train a multi-class classifier with 
Adam as the optimization algorithm86. The model architecture was 
visualized using Netron87.

Deep learning model: training details. Model parameters were opti-
mized by using 80% of sequences for training and 20% for testing. 
Each epoch started with shuffling the training data and computing 
the gradient update once for each training data point to obtain unbi-
ased gradient estimates88. During training, categorical accuracy and 
cross-entropy loss were used to monitor progress. Training was ter-
minated after a maximum of 15 epochs or when the training loss did 
not decrease in five consecutive epochs. The area under the receiver 
operating characteristic (ROC) curve and the F1 score were calculated 
using Scikit-learn (version 0.24.2)89 and used to report the final perfor-
mance on test data.

Deep learning model: evaluation. One million simulated sequences 
with corresponding taxa (as in the ‘Generation of simulated data’ 
subsection) were modified with a sequencing error rate of 1%90 and 
random shortening as described above. Sequences were classified 
either by Kraken2 alone or by Kraken2 followed by the deep learn-
ing model. Performance was evaluated compared to the ground 
truth taxa labels by calculating Bray–Curtis dissimilarities and Pear-
son correlation coefficients of the bacterial relative abundances 
per spot using Scipy (version 1.1.0)91 spatial.distance.braycurtis 
and Scikit-learn (version 0.24.2)89 stats.pearsonr, respectively. A 
higher similarity of the relative abundances between classifications 
and the ground truth resulted in lower Bray–Curtis dissimilarities  
and higher Pearson correlations. Accuracy and F1 score were  
calculated on the whole dataset using Scikit-learn (version 0.24.2)89 
metrics.classification_report.

Comparison of taxonomy assignments. To compare how well 
Kraken2 performs when using different RefSeq databases (whole 
genome versus 16S rRNA) of different sizes (restricted versus unre-
stricted), taxonomy assignments were made by the taxonomy assign-
ment pipeline but without using the deep learning model (as described 
in the ‘Raw reads processing and mapping of bacterial data’ subsec-
tion). The four databases used in the comparisons were: RefSeq Bacte-
ria whole genome database (downloaded from Kraken2 GitHub version 
2.1.2) and adding to it the whole genomes from all eight ASF species in 
Kraken2 (ref.83) (‘RefSeq whole genomes’); the custom gold standard 
restricted whole genome database (‘65 species whole genome’, as 
described in the ‘Generation of gold standard mouse gut bacterial 
reference’ subsection) and the RefSeq Bacteria 16S rRNA database, 
derived from those RefSeq bacterial taxa that had available 16S rRNA 
sequences in the NCBI (‘RefSeq 16S rRNA’, ~3,000 taxa, downloaded 
on 24 July 2021); and finally, we restricted the RefSeq 16S rRNA data-
base to the 65 species detected in the gold standard restricted whole 
genome database (‘65 species 16S rRNA’). For comparing the impact 
of read lengths, simulated datasets were prepared as described in the 
‘Generation of simulated data’ subsection by using cutoff 0.1% but 
with longer length distribution (650 ± 44 bp) and trimmed to 150 bp, 
300 bp, 450 bp and 600 bp.

Raw reads processing and mapping of bacterial data. FASTQ reads 
were generated with bcl2fastq2 and trimmed to remove adaptor 
sequences using BBDuk70. Trimmed reads were quality filtered using 
the same quality-filtering step as in the ST Pipeline (version 1.7.6)29, but 
only reads longer than 100 nt were kept. TagGD73 was used to connect 
the spatial barcode to each forward read (k-mer 6, mismatches 2, Ham-
ming distance clustering algorithm), and BWA-MEM (version 0.7.17)92 
with reference mouse genome (GRCm39) was used to remove host map-
ping sequences. Remaining reverse reads were mapped to the mouse 
gut bacterial reference (created as described in the ‘Generation of gold 
standard mouse gut bacterial reference’ subsection) using Kraken2 
(version 2.0.9)30 (confidence 0.01). Reads originated from GF and 
SPF mice were mapped to the mouse gut bacterial reference, whereas 
reads originated from ASF mice were mapped to the ASF reference. 
Taxonomy assignments made by Kraken2 were improved using the 
deep learning model. UMIs with identical spatial barcodes and taxo-
nomical assignments were collapsed using UMI-tools (version 1.0.0)74 
(UMIClusterer, threshold 1), resulting in a bacteria-by-barcode matrix.

Analysis of bacterial validation data
Spatial analysis of bacterial fluorescence. Bacterial presence  
in scanned fluorescence images was detected using ilastik (version 
1.3.3)93. After training and testing each bacterial fluorescence print 
separately in ilastik, the resulting bacterial detection mask was aligned 
with the fluorescent image to detect mean fluorescence intensity per 
spatial coordinate and stored as a matrix. This matrix was then run in 
Splotch (as described in the ‘Hierarchical probabilistic modeling using 
Splotch’ subsection). Resulting normalized fluorescence intensity was 
compared to the normalized bacterial presence by randomly select-
ing, at most, three spatial coordinates from each annotated region per 
sample (only annotated regions that were shared between the normal-
ized fluorescence intensity and the normalized bacterial presence were 
considered) and scaling them within each sample, before matching them 
to a spatial coordinate in the same region and comparing them to each 
other (normalized fluorescence intensity versus normalized bacterial 
presence per spatial coordinate). To limit the region annotated as pellet, 
spatial coordinates annotated as pellet were selected if they were spa-
tially adjacent to coordinates annotated as mouse tissue. This procedure 
was repeated 1,000 times to generate an average spatial correlation 
measurement between normalized bacterial FISH intensity and normal-
ized sequenced bacterial presence, expressed as Spearman correlation.

16S surface probe sensitivity. To evaluate 16S surface probe sensi-
tivity, reference DNA sequence and gene annotation files were down-
loaded from Ensembl Bacteria94 for the ASF bacteria available in the 
database (version 104.1) (ASF356, ASF360, ASF457, ASF492, ASF500 
and ASF519 (taxonomy ID 1235789)). Reads captured from ASF tissue 
sections on a spatial transcriptomics QC array with only 16S surface 
probes on the array surface were separately mapped against each 
ASF bacteria genome using BWA-MEM (version 0.7.17)92. Gene body 
coverage over the 16S rRNA genes in respective reference genomes was 
generated using RSeQC (version 4.0.0)95. Genome binning was done by 
summarizing the aligned reads in separate bins, each bin representing 
a hundredth of the respective ASF genome.

16S surface probe specificity. Specificity was first evaluated by propor-
tion of bacteria versus mouse read alignment. Tissue sections from SPF, 
ASF and GF mice were placed on QC arrays with 16S surface probes, and 
finished libraries were prepared using either bacterial treatment or colon 
treatment. Each finished library was sequenced to approximately 660,000 
reads. Reads were taxonomically annotated by using the taxonomy assign-
ment pipeline without the deep learning model. The proportion of reads 
mapping to the respective bacterial reference (mouse gut bacterial ref-
erence for SPF and GF tissue samples and ASF reference for ASF tissue 
samples) was calculated by using the number of trimmed reads.
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Protocol specificity was also evaluated by comparing the bacterial 
treatment with a mechanical treatment (see the ‘Mechanical extraction 
of bacterial RNA’ subsection). Spearman rank and Pearson correla-
tion coefficients were calculated using Scipy’s (version 1.1.0)91 stats. 
spearmanr and stats.pearsonr.

Bacterial treatment was compared to a bulk 16S rRNA sequencing 
dataset62 where the 16S libraries were made from material originating 
from feces of C57BL/6J mice (Sequence Read Archive (SRA) sample refer-
ences: SRR9212951, SRR9213178 and SRR9213335). The correlation was 
calculated using Scipy’s (version 1.1.0) Pearson correlation coefficient91.

Comparison of the taxonomy assignment pipeline with QIIME 2. 
The taxonomy assignment pipeline (as described in the ‘Raw reads 
processing and mapping of bacterial data’ subsection) was compared 
to QIIME 2 (ref.32) (version 2022.2) by using the simulated dataset 
(generated as described in the ‘Generation of simulated data’ subsec-
tion). QIIME 2 was run with default settings for single-end sequences, 
and the Silva 138 99% OTUs full-length sequences classifier was used 
for taxonomic profiling.

Effect of bacterial treatment on mouse gene expression. To evaluate 
the effect of the bacterial treatment on measured host (mouse) gene 
expression, we normalized96 gene counts from samples with and with-
out bacterial treatment (reads downsampled to the same saturation 
levels) and from samples prepared on a spatial array with customized 
surface or a standard spatial array (reads downsampled to the same 
saturation levels). Pearson correlation coefficient was calculated using 
Scipy’s (version 1.1.0)91 stats.pearsonr.

Spatial modeling and visualization of host–microbiome data
Hierarchical probabilistic modeling using Splotch. Splotch36,37 was 
used for statistical analysis of spatial data. Splotch is a hierarchical 
probabilistic that captures variation in spatial transcriptomics data 
through modeling of different study design covariates, such as indi-
vidual’s age or mouse condition (B); a linear model component captur-
ing spatial variation in array data with a conditional autoregressive 
(CAR) prior (ψ); and gene expression variation captured in each inde-
pendent spatial measurement (ϵ) to account for technical artifacts. 
Sequencing depth is accounted for by using a size factor s where the 
total number of captured UMI counts per spatial spot is divided by the 
median UMI counts across all analyzed spots. The posterior distribu-
tion of the parameters is interrogated from the model—for example, 
when the model was conditioned of bacterial presence in the tissues 
to quantitate expression changes across both the mouse conditions 
and different tissue contexts.

Genes (i), tissue sections (j) and independent spatial spots (k)  
were indexed as follows: i ∈ [1, 2,… ,Ngenes] , j ∈ [1, 2,… ,Ntissues] ,
k ∈ [1, 2,… ,N( j)spots] .  Gene expression in each spot is considered an 
approximation of observed counts yi, j,k, where yi, j,k is expected to equal 
to sj,kλi, j,k. sj,k  is the size factor (total number of UMIs observed at spot 
k and tissue section j, and λi, j,k  is the rate of gene expression (referred 
to as normalized counts throughout)). Splotch then models the 
observed counts using the zero-inflated Poisson (ZIP) distribution:

yi, j,k ∼ ZIP (sj,kλi, j,k,θpi ) ,nb = 0, zi = 1, (1)

where θpi  represents the gene-specific probability of a dropout. The 
zero-inflated models account for an overabundance of zeros by introducing 
a second zero-generating process gated by a Bernoulli random variable:

yi, j,k ∼ {
0, if θi = 1,

Pois (sj,kλi, j,k) , if θi = 0

θPi ∼ Beta (1, 2) ,

θi ∼ Bernoulli (θPi ) ,

(2)

where the Poisson process can be replaced by negative binomial (NB) 
without loss of generality. The gene expression rate parameter λi, j,k 
is described in terms of a generalized linear model (GLM) by three 
components:

log (λi, j,k) = Bi, j,k + ψi, j,k + ϵi, j,k. (3)

where Bi, j,k is the characteristic expression of gene k within the context 
of spot k, from which a characteristic expression vector βi ∈ RNMROI is 
derived describing which MROI spot k comes from. At the top level, the 
dataset is split along an important covariate (for example, presence of 
bacteria), and a separate βi,l1  is modeled for each unique group 
(l1 ∈ {1,… L1}). At the next level, each set is further partitioned along 
another covariate (for example, animal individual). A two-level hierar-
chical model for βi can, thus, be specified as:

βi,l1 ∼ 𝒩𝒩 (0, (σ(l1)i )
2
I) ,

βi,l1 ,l2 ∼ 𝒩𝒩 (βi,l1 , (σ
(l2)
i )

2
I) ,

σ(l2)i ∼ 𝒩𝒩≥0 (0, 1) ,

(4)

where, in practice, σ(l1)i = 2 for all i, l1, and posteriors are inferred over 
all σ(l2)i . For convenience, because each tissue j belongs to one covariate 
group at each level, the inverse mapping function ρ−1 ( j) is introduced 
that maps j  to the appropriate l1,l2,l3 indices for βi. With this in hand, 
Bi,j,kis formally defined in the non-compositional model:

Bi,j,k = xTj,k i, −1(j), (5)

where xj,k  is a one-hot encoding of the spot MROI annotation D( j )k  used 
to index the relevant entry in the characteristic expression  
vector βi,ρ−1( j ).

ψi, j,k describes the how the local and immediate neighborhood 
of spot k has an effect gene i and is modeled using the CAR prior. The 
observations in each spatial spot are assumed to be dependent on 
the spot’s immediate spatial neighborhood defined as four nearest 
neighbors. ψi,j,k is defined as a Markov random field over the spots in 
each array:

ψi,j|αi,j, τi,j,Wj ∼ 𝒩𝒩 (0, (τiKj (I − αiK−1j Wj))
−1
) ,

αi ∼ 𝒰𝒰 (0, 1) ,

τi ∼ Γ−1 (1, 1) ,

(6)

where σi is a spatial autocorrelation parameter; τi is a conditional preci-
sion parameter; Kj is a diagonal matrix containing the number of neigh-
bors for each spot in tissue j; and Wj is the adjacency matrix (with zero 
diagonal).

ϵi,j,k  captures variation at the level of individual spots with the 
assumption that each spot was independently and identically distrib-
uted (i.i.d) to infer their standard deviations:

ϵi, j,k ∼ 𝒩𝒩 (0,σ2i ) ,

σ_i ∼ N≥0(0,0.32),
(7)

where σi is the inferred level of variability for gene j.
Data were processed as a two-level model when describing  

differences in mouse model/condition and morphological region 
(when comparing SPF versus GF mice) or as a one-level model for ASF 
mouse analysis. Input data were raw UMI counts (as described above). 
Sampling from the posterior was done running four independent 
chains with 200 iterations per chain (100 warmup and 100 sampling). 
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The model was conditioned on 10,924 spots, 16 morphological region 
tags and two mouse conditions (SPF versus GF) (two-level model) or 
4,397 spots, five morphological region tags and one mouse condition 
(ASF) (one-level model).

For differential expression analysis, each pairwise comparison of 
gene expression was denoted as a random variable Δβ that describes 
the difference between two conditions as β1 − β2. β1 and β2 represent 
any two conditions arising from any two combinations in the model—
for example, any two genes, sample covariates (for example, mouse 
condition; SPF versus GF) or MROIs regions (for example, crypt apex 
and mucosa versus crypt base). The null hypothesis presumes that the 
two posterior distributions over characteristic expression coefficients 
β1 and β2 estimated by the model are identical and that Δβ is tightly 
centered around zero. To quantify this similarity, Δβ|𝒟𝒟 (where 𝒟𝒟 is the 
training data) is compared to the prior distribution Δβ using the  
Savage–Dickey density ratio97 that estimates the Bayes factor (BF) 
between the conditions:

BF ≈
p (Δβ = 0)
p (Δβ = 0|𝒟𝒟)

, (8)

where the probability density functions are evaluated at zero. If expres-
sion is different between the two conditions, then the posterior Δβ|𝒟𝒟 
will not be centered around zero, and the estimated BF will be large; 
hence, the null hypothesis is rejected, and the two genes are denoted 
as differentially expressed between the conditions. Hereafter, the Sav-
age–Dickey density ratio is referred to as BF. Upregulated genes (Δβ > 0) 
with at least log(BF) > 0.5 were considered as differentially expressed 
between any two conditions and used in all downstream analysis. 
Bacterial genera were called as detected in SPF tissue if the bacterial 
weighted mean count per morphological region was greater than the 
maximal weighted mean in corresponding morphological mouse 
region in GF. The total regional count had to count for more than 2% of 
the total bacterial count to be called as detected.

Visualizing expression and abundances with rasters. To enable 
spatial data visualization across sections and conditions, a rasterized 
tissue representation of canonical tissue architecture of the mid part of 
the colonic tube was created as scalable vector graphics (svg) and anno-
tated with MROI information. Tissue vectors captured the two most 
common tissue architectures observed in this study (a zoomed-out 
view of major MROIs (E, EMM, ME, MEI, MI, MMI, PP, MUPE and P) and 
a zoomed-in view of minor MROIs (APEXMU, BASE, MID, UPPERMID, 
EMM, EMMSUB, ME, MEI, MI, MMI, PP, MUPE and P)) and used only for 
visualizations. matplotlib98 was used to automatically plot averaged 
host gene or bacterial expression from all spatial spots corresponding 
to each MROI and condition as annotated in the svg files.

Host gene expression mapped using cell type signatures
snRNA-seq data processing. Mouse colon snRNA-seq data were 
obtained from ref. 99, containing 340,461 individual cell profiles 
across 22,986 expressed genes. In brief, nucleus profiles with >800 
genes expressed in a minimum of 10 cells and <30% mitochondrial 
or rRNA signatures were retained for analysis. Raw counts data were 
normalized to transcripts-per-10,000 (TP10K). To regress out genes 
as differentially expressed, the mean and the coefficient of varia-
tion (CV) of expression of each gene were calculated and partitioned 
into 20 equal-frequency bins. LOESS regression was used to estimate 
the relationship between log(CV) and log(mean), and genes with 
the 1,500 highest residuals were equally sampled across these bins. 
To account for differences in batches, this was performed for each 
sample separately, and a consensus list of 1,500 genes with greatest 
recovery rates was selected. Next, using Scanpy100, Harmony101 was 
used for further batch correction with 20 neighbors and 40 principal 
components from principal component analysis. After 10 iterations, 

convergence was reached, and the resulting data were clustered with 
PhenoGraph102, with 25 nearest neighbors using the Minkowski metric. 
Cell type labels provided in ref. 99 were used to manually label clusters 
after PhenoGraph clustering.

Spatial co-expression analysis and definition of modules. All pos-
terior estimates that account for both morphological differences and 
differences in mouse conditions were used as λi,j,k in a sparse matrix 
format Λ ∈ RNspotsxNgenes , where Nspots = 5,413 and Ngenes = 17,956. The 
snRNA-seq normalized counts and SHM-seq posterior means counts 
tables were standardized separately across cells and spots within genes, 
respectively, considering common genes (Ncommon genes = 16,525) in both 
datasets, resulting in matrices Xstandardized ∈ RNcellsxNcommon genes  and 
Λstandardized ∈ RNspotsxNcommon genes. Finally, the similarity of each cell to each 
spot P  was calculated as the Pearson correlation coefficient r between 
its standardized and imputed expression vector (columns of Xstandardized) 
and spots’ expression vectors (columns of Λstandardized), resulting in 
cell-specific similarity vectors. Morphological spots were used from 
all region categories except for those found in PE and MUPE. To find 
sets of co-expressed genes—that is, with similar spatial patterns across 
spots—the data P were hierarchically clustered with the average linkage 
method using the L1 norm (Manhattan distance), with a set distance 
threshold to detect 28 distinct blocks (subsets of genes co-expressed 
across subsets of spots—hereafter, spatial modules) using scipy.cluster.
hierarchy.fcluster.

Using snRNA-seq profiles to partition modules to submodules. 
Gene expression submatrices were created of the expression of genes 
belonging to each spatial co-expression module. To identify which 
specific cell types underlie expression in each spatial module or sub-
module, mean expression values were calculated for each gene across 
the single-cell profiles in each of 30 snRNA-seq clusters (as described 
in the ‘snRNA-seq data processing’ subsection) and scaled by divid-
ing each gene’s mean expression per cluster by its maximum mean 
expression across cell type clusters. Genes with an average scaled 
expression lower than 1 were removed (scaled expressions set to 0). 
Then, to estimate cell type compositions in each spatial module (or 
submodule), the expression profiles in each spatial module for the 
subset of genes from the 30 filtered and averaged snRNA-seq cell type 
(cluster) signatures were hierarchically subclustered within each spatial 
module using cosine distance and average linkage. These genes of each 
module were then grouped in submodules using 0.4× the maximum 
of the linkage matrix as cutoff. Next, two-sided Wilcoxon signed-rank 
test (followed by Benjamini–Hochberg false discovery rate (FDR)) was 
used to compare enrichment of cell type (cluster) signatures in the 
co-expression submodules in a one-versus-rest fashion. The cell types 
used in the enrichment analysis were: neurons, transit amplifying cells 
(TAs), cycling TAs, myocytes, goblet cells, colonocytes, fibroblasts, glia, 
lymphatic cells, macrophages, enteroendocrine cells, mesothelial cells, 
stem cells, T cells, tuft cells, B cells and vascular cells.

KEGG pathway enrichment. KEGG database103 gene sets were tested 
for enrichment in each cell-type-specific submodule with a one-tailed 
Fisher exact test followed by a Benjamini–Hochberg FDR. KEGG  
pathways with FDR < 0.05 were visualized.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw data have been deposited to NCBI’s SRA under accession 
PRJNA999495 (ref.104). All processed data have been deposited in 
the Single Cell Portal under accession SCP2375 (https://singlecell.
broadinstitute.org/single_cell/study/SCP2375).
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Code availability
All code is deposited on GitHub at https://github.com/nygctech/ 
shmseq (ref.105).
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