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Mucosal and barrier tissues, such as the gut, lung or skin, are composed
of acomplex network of cells and microbes forming a tight niche that

prevents pathogen colonization and supports host-microbiome symbiosis.
Characterizing these networks at high molecular and cellular resolution

is crucial for understanding homeostasis and disease. Here we present
spatial host-microbiome sequencing (SHM-seq), an all-sequencing-based
approach that captures tissue histology, polyadenylated RNAs and bacterial
16S sequences directly from a tissue by modifying spatially barcoded

glass surfaces to enable simultaneous capture of host transcripts and
hypervariable regions of the 16S bacterial ribosomal RNA. We applied

our approach tothe mouse gut asamodel system, used a deep learning
approach for data mapping and detected spatial niches defined by cellular
composition and microbial geography. We show that subpopulations of
gut cells express specific gene programs in different microenvironments
characteristic of regional commensal bacteria and impact host-bacteria
interactions. SHM-seq should enhance the study of native host-microbe
interactionsin health and disease.

Mucosal and barrier tissues are ecosystems of multiple host cell
types and a complex microbiome that vary in space and time. Anti-
gen recognition and innate immune responses' in the host, and
molecular mechanisms derived from the microbiome, together
prevent pathogen colonization and support the establishment
of the host-microbiome spatial niche and host-microbial sym-
biosis’. Conversely, spatial dysregulation®* in diseases such as
inflammatory bowel disease (IBD) can lead to dysfunction of the
gut barrier>®,

Characterizing and understanding the host-microbiome spatial
niche requires detailed measurement of the identity and molecu-
lar characteristics of host cells and microbiome species and their

interrelations in a spatial context. On the microbiome side, spatial
metagenomics methods’ are emerging to map bacteria by either imag-
ing®® or metagenomic plot sampling'®. However, such studies focused
on smaller regions, such as inter-fold, mucosal or lumen regions in
the gut, and typically used broad taxonomy assignments, reaching
family level at best'®", with few reports at the level of specific genera
or species”*, Moreover, metagenomic plot sampling, so far the
only approach for spatial bacterial sequencing in situ'®, does not
currently profile host gene expression. On the host side, single-cell
genomics, including single-cell RNA sequencing (scRNA-seq), has
been instrumental to characterize the cellular composition of tis-
sues, for the host®, resident microbes'®" or joint profiling of host
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Fig.1|SHM-seq. a, Three different mouse conditions used in the study

analyzing cross-sections in the mouse gut. b, Tissue sections from mouse colons
were placed onabarcoded glass array, with a barcoded surface adapted for
simultaneous capture of polyadenylated host transcripts and 16S bacterial rRNA.
Tissue sections were imaged, cells were permeabilized and cDNA was synthesized

onthearray surface before library preparation and sequencing. ¢, Data analysis
identifies regional gene programs, their cell type constituents, association with
mouse condition and regional association with specific commensal bacteria.
Hyb, hybridization; Ext, extension.

and viral amplicon sequences’®, but without spatial information.
Spatial transcriptomics methods, either imaging based or sequenc-
ing based, enable cell type mapping in situ?* but have not yet been
applied to simultaneously profile both host and microbiome in a
spatial context.

Inthis study, we bridged this gap by developing spatial host-micro-
biome sequencing (SHM-seq; Fig. 1), a robust all-sequencing-based
technology that leverages previous advancements in spatial tran-
scriptomics®?® and provides histology, spatial RNA-seq and spatial
16S sequencing using readily available instrumentation to profile
the host’s expression responses in relation to microbial biogeogra-
phy. We applied it in the model system of the mouse colon and show
here aroadmap for interrogating spatial gene expression programsin
correlation with bacterial presence.

Results

SMH-seq

We developed SHM-seq by adapting spatial transcriptomics®, where
mRNA is captured by probes on a glass slide followed by profiling, to
enable simultaneous capture of polyadenylated (host) transcripts and
hypervariable (V4) regions of the 16S ribosomal RNA (rRNA) (Methods
and Fig. 1). Specifically, we first produced solid-phase spatial tran-
scriptomics slides covered with uniquely barcoded and spatially
addressable poly(d)T capture probes®?, with ~1,000 distinct DNA
features (that is, spatial spots) deposited and covalently linked to a
glass substrate (Methods). We enzymatically modified these spatially
barcoded features onthe glass array to enable simultaneous capture of
polyadenylated transcripts (-50% surface capture probes) and hyper-
variable (V4) regions of the 16S rRNA?® (-50% surface capture probes)
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through a hybridization and extension reaction (Methods, Fig.1and
Supplementary Fig. 1). Next, we placed frozen tissue sections on the
optimized glass surface, stained them with hematoxylin and eosin
(H&E) and imaged the tissue histology by bright-field microscopy.
Finally, afterimaging, we permeabilized the cells, allowing capture of
host polyadenylated transcripts and bacterial 16S sequences on the
array. The result was direct spatial DNA barcoding of host transcripts
and bacterial species, which were sequenced by llluminasequencing®.

To test SHM-seq, we applied it to profile intestinal cross-sections
from the colon of C57BL/6 mice grown under typical conditions (spe-
cificpathogen free (SPF)) or as germfree (GF) or altered Schaedler flora
(ASF) mice (Fig. 1 and Methods). GF mice provide a negative control;
ASF mice, which contain only a defined floral community, provide a
clear target for validation of the capture of expected bacterial spe-
cies; and regular C57BL/6 SPF mice represent a complex case study
with unaltered gut flora. In total, we applied SHM-seq to 124 tissue
sections and collected data from 15,321 spatial spots (covered by the
tissue) across the three conditions (Supplementary Tables1and 2 and
Supplementary Fig. 2).

A deep learning approach for taxonomy classification
Although, for spatial transcriptomics (host) data, we used an estab-
lished processing pipeline* (Methods), we devised a novel taxonomy
assignment pipeline to process the spatial microbiome data. First,
we created a custom, gold standard bacterial genome reference for
our experiment (Methods), based on species detected in dedicated
shotgun metagenomic sequencing data, comprising 65 most abun-
dant species from 39 genera present in our bulk reference samples in
atleast 0.1% abundance, a cutoff chosen as offering the most accurate
mapping metrics (Fig. 2a, Supplementary Fig. 3aand Methods). Next,
we compared the performance in terms of taxonomic assignment (by
Kraken2 (ref.30)) when using this custom reference versus using other
bacterial reference databases, including the National Center for Bio-
technology Information’s (NCBI) RefSeq* whole genome and NCBI's
16S rRNA databases (Methods and Supplementary Fig.3b-d). Although
our customized gold standard (restricted) whole genome reference
(SPF: 65 species; ASF: eight species) had higher mappingaccuracy and
lower false-positive rate on both real and simulated SHM-seq data, the
RefSeqreferences performed reasonably as well, making them a viable
option when dedicated metagenomics data cannot be collected fora
customized reference. Simulated data additionally showed that the
database type (whole genome versus 16S rRNA), size and sequencing
read length all impact the performance of taxonomic assignments
(Supplementary Fig. 3e).

We next devised a taxonomy assignment approach, where spa-
tially captured sequences were first classified using Kraken2 (ref.30)
(Methods), and those without ataxonomic classification were then pro-
cessedbyanovel deeplearningapproach (Methods). Our deeplearning
model (Supplementary Fig. 4a) isbased on convolutional and recurrent
neural networks, which process aread from both directions, seek local
sequence patterns and their distant interactions and are trained to
predict the most likely taxonomic assignment (Methods). We assessed
its performance using simulated bacterial reads with attached taxa
labels, mimicking data otherwise obtained with SHM-seq (Methods).

The deep learning model enhanced performance compared
to using Kraken2 (Fig. 2b and Supplementary Fig. 4b,c) or QIIME 2
(ref.32), acommonly used 16S rRNA analysis tool (average Pearson r:
0.97 (Kraken2 +deep learning model) and 0.21 (QIIME 2), P< 107*, aver-
age Bray-Curtis dissimilarity: 0.06 and 0.46, respectively, genus level;
Supplementary Fig. 4d). First, the deep learning model (used alone)
assigned sequences to genera with 97% accuracy on a test dataset of
20% of the data. Next, we used the simulated data to assess taxonomic
assignment metrics by comparing the predicted to the true taxonomic
labels for data unseen by the model during training. The deep learning
model after Kraken2 significantly outperformed Kraken2 alone on

genus-level assignment, by several measures, including (1) higher
similarity between relative bacterial abundances based on the model’s
assignment versus the ground truth (average Pearson r for Kraken2 +
deep learning model versus Kraken2 alone: 0.97 versus 0.68, P<107*;
Fig. 2b); (2) higher similarity in bacterial composition, evaluated
at aresolution of 1,000 randomly assigned spatial spots (average
Bray-Curtis dissimilarity 0.06 versus 0.15; Supplementary Fig. 4b);
and (3) higher totalaccuracy (92% versus 84%, P<10™*), higher F1score
(89% versus 85%, P<107*) and lower false-positive rate (8% versus 16%,
P<107*; Supplementary Fig. 4c), when evaluated as bulk-like samples.
Thus, the deep learning model canimprove the taxonomic assignments
inSHM-seq data.

Sensitive and specific bacterial rRNA and host mRNA capture
We evaluated SHM-seq by (1) specificity and sensitivity of bacterial
capture rates in SHM-seq compared to bulk 16S rRNA sequencing and
by fluorescence in situ hybridization (FISH); and (2) host RNA-seq
quality metrics obtained by SHM-seq compared to spatial transcrip-
tomics alone.

To assess specificity (the fraction of sequencing reads mapping
togenomicregionsinthe gold standard reference) and sensitivity (the
fraction of expected species detected with SHM-seq), we analyzed pro-
files from the defined community in ASF*> mice as a positive control and
from GF mice asanegative control (Fig.1and Methods). On average, 22%
of allreadsin ASF mice samples (n = 3) aligned to the bacterial reference,
whereas only 0.008036% of reads from GF mice samples were assigned
toany of the 65speciesinthereference (n=3) (Fig.2c). For ASF samples,
bacterial reads mapped to the expected locations in the respective
ASF reference genomes highlighting the specificity of our targeted
capture (meanreadsin expected genomicbin: 97.0 +1.5%s.e.m.,n=18
tissue sections; Supplementary Fig. 5), with most reads (85.7 + 4.5%
mean * s.e.m., n =18 tissue sections) mapping on average to the
expected capture region of the16S rRNA gene (Supplementary Fig. 6).
Highlighting the sensitivity of SHM-seq, all of the expected bacterial
species were captured inthe ASF samples, with ASF519 and ASF502 as
the dominating bacteria (Supplementary Fig. 7a), inline with previous
bulk RT-qPCR results®* (Pearson r = 0.85; Supplementary Fig. 7b) and
with high reproducibility across replicates (Supplementary Fig. 7a).
SHM-seq even detected ASF360, which was previously reported to be
difficult to detect at low abundance using RT-qPCR™.

Asamore complex case study, we further tested SHM-seq’s perfor-
mance in bacterial capture in SPF mice (Methods; n=3). On average,
28% of all reads aligned to the bacterial genome reference (Fig. 2¢c)
and were assigned to 39 genera in our metagenomic reference (22 of
whichwere present at >1% abundance), with Duncaniella, Turicibacter
and Muribaculum the most abundant (Fig. 2d). The genera detected
and theirrelative abundances correlated well with 16S rRNA sequenc-
ing (Pearson r=0.69, P<107*; Fig. 2e), and, on average, 90.7 + 1.7%
(mean * s.e.m.) of SHM-seq reads (n =9 tissue sections) mapped to
the expected 16S rRNA capture region. Notably, our enzymatic cell
permeabilization protocol was as efficient for preparing (bulk) bacte-
rial samples as was traditional mechanical extraction of nucleic acids
(Pearsonr=0.95,P<10* Fig. 2f).

To further validate the specificity of spatial capture of bacterial
genomes in different regions of interest, we compared the bacterial
abundance profiles obtained with SHM-seq in ASF mice with those
measured by FISH (Methods) with five fluorescent bacterial detec-
tion probes: a positive control to detect all bacterial species, probes
targeting three distinct ASF species and a negative control. We detected
and quantified the fluorescence signal over three major tissue regions
(Methods and Supplementary Fig. 8a-d). The abundances of the overall
positive controland of each of the three ASF-specific bacterial speciesin
FISH correlated significantly with the SHM-seq measurements (average
Spearman p; ASF502:0.72, ASF360: 0.72, ASF519: 0.55, positive control:
0.75,P<107* Fig. 2g-iand Supplementary Fig. 8e-g).
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Fig.2|SHM-seq accurately captures bacterial representation and
abundances in SPF and ASF mice. a, Bacterial reference of the mouse gut
microbiome. Phylogenetic tree of SPF colonic content, representing the 65
species colored to highlight taxonomic families and genera. b, Enhanced
annotation performance of the deep learning model. Average Pearson
correlation coefficient (y axis) between true and predicted taxonomic labels from
spatial spots (Methods) on five taxonomic levels (x axis) when using Kraken2
(orange) or Kraken2 together with the deep learning model (blue) (y axis) (n=3).
Error bars: 95% confidence intervals. ¢, Highly specific mapping of bacterial
reads. Overall bacterial alignment rates to reference genomes (y axis, %) for GF
(left, n=3), ASF (middle, n = 3) and SPF (right, n = 3) tissue sections using spatial
16S sequencing. d, High reproducibility of bacterial abundances in SPF mouse
colons by SHM-seq. Percentage (y axis) of the top 10 most abundant bacteria
generain each of three independent samples of SPF mouse colons (x axis).
e, SHM-seq compares well to 16S rRNA sequencing. Pseudo-bulk abundances

ofbacterial genera (dot) from SHM-seq (x axis, SPF mice, n=3) and bulk 16S
rRNA sequencing® (yaxis, SPF mice, n = 3). Top left: Pearson r. f, Enzymatic
(SHM-seq) extraction of bacterial content agrees with established mechanic
extraction. Pseudo-bulk abundances of each bacterial genera (dot) from SHM-
seq (xaxis, SPF mice, n =3) and mechanical extraction (y axis, SPF mice, n =3).
g-i, SHM-seq agreement with FISH probes targeting ASF502. g, Distribution
(box plot, normalized signals per region) and individual measurements (scatter
plot, mean signal per region and sample, n = 6) of ASF502 counts by FISH (y axis)
and SHM-seq (x axis). Shaded areas: 95% confidence interval. ¢,g, Box plots:
center black line, median; color-coded box, interquartile range; error bars, 1.5x
interquartile range; black dots; outliers. h, Cross-section of an ASF mouse colon
(scale bar, 180 pm) with four regions (red rectangles) and their zoom-ins (i) (scale
bar, 25 um). Colors: tissue (blue), fibers (gray) and ASF502 (red). e f, Line: linear

regression model fit. Shaded areas: 95% confidence interval. norm, normalized;
DL, deep learning.
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Host RNA-seq quality metrics were similar between SHM-seq
and spatial transcriptomics. There were no significant differences
in RNA-seq read mapping rates or unique molecular identifier (UMI)
counts between spatial transcriptomics and SHM-seq in either SPF or
ASF mice (n =3; Supplementary Fig. 9a-d): 66% and 63% of the spatially
captured reads were uniquely mapped, and pseudo-bulk UMI counts
correlated highly (Pearson r=0.95 and 0.92, respectively). Further-
more, there was high agreement in host expression profiles when we
used regular spatial transcriptomics arrays (only poly(d)T capture)
with the permeabilization method developed solely for disrupting
host cells versus the method used for disrupting both host and bacte-
rial cells (Pearsonr=0.94; Supplementary Fig. 9¢,f). Thus, the surface
treatment, permeabilization method and library preparation used in
SHM-seq compare in specificity and sensitivity to commonly used
methods for accessing bacterial sample composition and for spatial
host expression profiling.

Defining spatial patterns of bacterial and host expression
Torecover the spatial organization of microbes and host from our data,
we defined the expression of host genes and abundance of bacterial
generain each spot, mappedthose to 16 defined morphological regions
of interest (MROIs) (Fig. 3a) to identify characteristic patterns and,
finally, visualized our data as overviews of changes in tissue architec-
ture at amore gross (by major MROISs) or fine (minor MROIs) level. In
brief, we manually assigned each spot in each profiled tissue section
to one of 16 MROI categories (Methods), based on histology, and then
automatically visualized those on rasterized vector representations of
tissues for each mouse condition (Methods). In this way, we quantified
spatial abundances from 100 colonic mouse sections in SPF and GF
mice, spanning 10,924 spatially barcoded spots (covered by gut tis-
sue), each with spatial expression 0f17,956 host genes and 39 bacterial
genera across the MROIs. On average, we sampled 20 tissue sections,
2,208 spotsand ~32,000 nuclear cell segments from each mouse colon
(Supplementary Fig. 10). We tested for significant spatial expression
differences in the sampled sections using Splotch***” (Methods), a
hierarchical probabilistic approach that accounts for the relative posi-
tion of each spot (with four nearest neighbors), differences insampling
(number of spots) between MROIs and the biological batch variables
of presence of bacteriain the mice (thatis, conditions) and individuals
(thatis, animals).

Spatial co-organization of host and microbe composition

We asked how gene expression in each of 16 MROIs was impacted by
overall bacterial presence by comparing SPF versus GF mice (with no
bacteria). Although both SPF and GF mice showed similar regional
expression of some marker genes (for example, Epcam in the epithe-
lium, Myhil in the muscularis regions and Cd52 in Peyer’s patches;
Fig.3b), other genes were significantly differentially expressed between
theminaregion-specific manner (Fig. 3c). For example, Satb2 and Muc2
were, respectively, downregulated and upregulated in the crypt apex
of SPF versus GF mice, the tissue layer most proximal to the mucosa
and lumen (Fig.3d). Satb2 helps maintainintestinal homeostasis, and
its expression prevents excessive crypt damage and inflammation’®,
Similarly, Muc2is key for maintenance of a healthy mucosal layer, and its
depletionresultsindirect contact between epithelial cells and bacteria
in the colon, leading toinflammation and cancer®. In other examples,
Hnf4a, a gene associated with epithelium renewal*’, is more highly
expressed in the base of the crypt in GF versus SPF mice, and Gpx2,
whose deficiency is related to propagating IBD symptoms®, isinduced
inthe region bordering epithelium and muscularis mucosae tissue in
SPF versus GF mice (Supplementary Fig. 11).

Host spatial expression patterns in SPF mice were mirrored by
distinct bacterial genera detected by Splotch (Methods) at different
abundances and compositionsinsix distinct MROIs in the SPF mice. The
detected bacteria were found in the colonic inter-fold regions (crypt

base, crypt mid and crypt apex/mid), the mucosal layers (crypt apex/
mucosa and mucosa/pellet) or the lumen (that is, pellet, where they
were most abundant, as expected). Inter-fold regions had the lowest
diversity, and the pellet had the highest diversity (Fig. 3e). Morphologi-
calregionsin close proximity to each other shared some highly abun-
dantgenera: Pseudobutyrivibrio was shared in the two mucosal regions,
and Mediterraneibacter, an obligate anaerobe and formerly part of
the Ruminococcus genus*, was shared between the inter-fold regions
(Fig. 3e,f). Mucosal regions had a preponderance of Oscillibacter
(Fig. 3f,g, middle); Pseudobutyrivibrio (Fig. 3f,g, bottom); and Rumi-
nococcus and Phocaeicola, with the latter two genera previously asso-
ciated with the mucosa™***, whereas the pellet had an abundance
of commensal bacteria'**¢, such as Lactobacillus, Muribaculum and
Anaerocolumna but also Massilistercora, part of the Eubacteriales
family and previously reported only in the human gut” (Fig. 3g, top).
These patterns were apparent both in aggregate across samples and
inindividual sections, with good reproducibility (Fig. 3f~h and Sup-
plementary Fig.12).

The mucosal barrier, otherwise preventing unwanted direct con-
tactbetween lumenandhostcellsinthe cryptapex, signals theimmune
system in a process mediated by epithelial cells*®. We hypothesized
that detected bacterial genera, some observed exclusively with tight
junction mucosal barriers (for example, Pseudobutyrivibrio, Rumi-
nococcus and Oscillibacter; Figs. 3f,g and 4a) and others diffusing
into the tissue-specific inter-fold regions (for example, Intestimonas,
Coprococcus and Flavonifractor; Figs. 3f and 4a), could influence and
be influenced by host expression in close proximity. To systematically
investigate significant regional and cell type composition differences
and associate them to the presence of bacteria from different gen-
era, we identified 28 spatial modules of genes that are co-expressed
across spots (Supplementary Fig. 13a and Methods). We then parti-
tioned each such module into gene submodules by gene co-variation
across single-nucleus RNA sequencing (snRNA-seq) profiles (Fig. 4b,
Supplementary Fig. 13b and Methods), recovering 203 submodules
(Supplementary Table 3 and Methods). We labeled each submodule by its
expressioninone or multiple of the 30 cell typesidentified by snRNA-seq
and tested it for enriched KEGG pathways (Fig. 4c and Methods).

In the presence of microbiota, specifically Pseudobutyrivibrio,
Sodaliphilus and Oscillibacter, colonocytes in the apex of the crypts
expressed Ceacam20, a known receptor for Gram-negative bacte-
ria*’ and a known colitis suppressor®’, whereas goblet cells expressed
high levels of Hifla, a marker of a functioning mucosal barrier that is
downregulatedinIBD* (Fig. 4d and Supplementary Table 4). Neurons
in the neighboring region (thatis, upper mid region of the crypts), in
the presence of Intestimonas, expressed Tacrl and other neuroactive
ligands and receptorsimplicated in regulating gut motility**>, whereas
macrophagesinthe sameregionsandinthe presence of the same bac-
terial genera expressed Fcrl2 and Slamf6, genes that have been shown
to modulate neuro-immune signaling upon receptor-microbe bind-
ing>>** (Fig. 4d and Supplementary Table 4). Specialized spatial niches
inlower regions of the crypts also contained networks of neurons and
myocytes involved in muscle contractility (Camk2ain the presence of
Coprococcus), axon guidance (Sema4fin the presence of Flavonifrac-
tor) and cholinergic signaling (Chat in the presence of Coprococcus)
(Fig.4d and Supplementary Table 4).

Discussion

Here we presented SHM-seq, a method that relies on solid surface
capture of polyadenylated host transcripts and variable (V4) 16S bac-
terial regions onto spatially barcoded microarrays for joint spatial
profiling of bacterial composition, host gene expression and tissue
histology. We provided adeep-learning-based approach to enhance tax-
onomy assignment for metagenomic taxa classification from SHM-seq
data with improved detection rates and assignment accuracy and a
roadmap for interrogating coordinated spatial expression programs.
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Fig.3|Spatial detection of bacteria and host gene expression with SHM-seq.
a, MROI in the mouse colon. H&E-stained tissue sections from GF (left) and SFP
(right) mice (left panels) annotated and visualized with vector representations
(right panels), showing bacteria and host expression in major and minor MROIs
associated with each anatomical tissue layer (right panels). Scale bar, 300 pum.
b, Spatial host gene expression in three major MROIs. Expression (color bar,
normalized gene expression) of selected spatially variable genes in GF (left)

and SPF (right) tissue sections in major MROIs. ¢, Differential gene expression
between mouse conditions. Significance (dot size, log,,BF; Methods) of
differential expression and expression level (normalized gene expression) of
the top 10 genes (rows) differentially expressed between GF and SPF mouse
tissue sections (columns) (Methods). d, Gene expression differences between
morphological regions. Posterior distributions of the region-specific coefficient
parameters () of Satb2 (left) and Muc2 (right) in four MROIs describing
coloniccryptsin SPF (blue) and GF (orange) mice. Dashed lines: mean of each
distribution. e, Bacteria detected across six MROIs in SPF mouse tissues.

Number of (left) and top three most abundant (right) bacteria genera (color
code) detected in minor MROIs. Line thickness: average Euclidean distances
between MROIs. f, Regional abundance of taxa. Scaled normalized bacterial
counts (normalized counts scaled within each genus, color bar) in MROIs (color
code, columns) for each detected bacteria (rows). g, Association between taxa
and spatial regions. t-distributed stochastic neighbor embedding (t-SNE) of
scaled bacterial count profile of each spatial spot (color scale, dots, n = 4,655,
left panel) and the distribution of normalized bacterial count for all spatial spots
(right panel) in six minor MROISs (color code) in SPF mice for different genera.
Boxplots: Center black line, median; color-coded box, interquartile range;

error bars, 1.5x interquartile range; black dots; outliers. h, Reproducibility of
bacterial associations across individual sections. H&E (left), MROIl annotations
(color code, middle) and normalized bacterial count for Pseudobutyrivibrio
(colorscale, right) in three tissue sections. Circles: spatial spots. Scale bar,

500 pm. Abbreviations asin Methods (c-h). MROI color code shared (f,g). Norm,
normalized; NS, not significant; inf, infinity.
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Fig. 4| Bacterial presence influences host expression in four major tissue
regions. a, Regional association of bacterial taxa and host gene expression.
Mean average count (color scale) of selected top differentially expressed genes
(columns, black text) and top differentially abundant taxa (columns, blue text)
in each spatial region (rows) across four major tissue MROIs (color code, right,
and labels on top). b, Regional association of taxa and cell type composition.
Left panels: t-distributed stochastic neighbor embedding (t-SNE) of scaled
bacterial count vectors in each spatial spot (dots) colored by abundance of taxa
(blue color scale, scaled normalized bacterial counts, taxon on top) that are
differentially abundantin each of four MROIs (color code, labels in upper left
corner). Right panels: t-SNE of host snRNA-seq cell profiles (dots) mapped in each

afaf
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individual MROI colored by cell type label. ¢, Expression submodules in different
regions reflect distinct biological processes associated with bacterial presence.
Significance (color scale, —log,,(FDR), one-tailed Fisher exact test) of enrichment
of KEGG pathways (rows) in each submodule (columns) associated with each
spatial region and mouse condition (color code, middle) and bacterial taxa
associated with the same spatial region and condition (bottom). Color coding of
spatialmodules asin a. d, Differential regional gene expression associated with
bacterial taxa. Region maps colored by spatial abundance of bacterial genera
(blue color scale, normalized bacterial counts) and normalized spatial expression
of cell type marker genes (red color scale) in each MROI in SPF and GF.

Benchmarking against a gold standard custom reference, generated
fromdedicated metagenomics datain the same system, we show that
SHM-seq data are compatible with mapping to different databases,
containing either 16S rRNA or full genome bacterial sequences, and
that the accuracy of the mapping is based on the quality and size of
the respective databases.

We benchmarked the sensitivity and specificity of SHM-seq com-
pared to traditional 16S sequencing, published RT-qPCR data as well
as FISH and spatial transcriptomicsin three mouse conditions: SPF, GF
and ASF. SHM-seq showed reproducibility and robustness using a tissue
dataset of 124 sections and detected all the bacteria genera otherwise
present after 16S sequencing in SPF mice as well as all of the eight species
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referenced in ASF mice. Previous studies reported variationin bacterial
abundance between mice***>*, In our study, we also saw differences in
abundance obtained with SHM-seq versus external ASF data, although
the overall correlation between the datasets was high (Pearson r= 0.85),
and SHM-seq was highly reproducible across mice. Future studies can
alter the amount and sequence of capture oligonucleotides on the
spatial array surfaceto further tune the recoveryrate of bacterial versus
host transcripts or introduce other user-defined capture moieties of
interest. Additionally, although sequencing only parts of the 165 rRNA
gene has beenshown to be sufficient to identify bacterial genera®, it has
limited resolution at finer taxonomic levels, such as specific bacterial
species andstrains. SHM-seq canaddress these concernsinthe future by
modifying the capture sequences and library preparation procedures,
preferably by increasing the sequencing read length.

Using these data and methods, we show that, in the presence of
microbiota, subpopulations of goblet cells and colonocytes formed
cell-adhesive layers filled with Muc2 and Ceacam20 for host-micro-
bial communication. Additionally, we observed distinct submodules
of genes expressed in specific microenvironments in SPF mice that
encode proteins that can regulate intestinal physiological functions
and colonic motility, which are disrupted in GF mice”. Thus, our spatial
analysis identified spatial expression programs throughout the tis-
sue cross-section characteristic of regional populations that display
distinct, mouse-condition-relevant dynamics and may depend on
the presence of commensal bacteria and/or impact host-bacteria
interactions.

SHM-seq enables robust spatial host-microbiome profiling
from a large number of tissues but is currently limited by the reso-
lution of solid-phase capture arrays. To address this, Splotch, our
quantitative datamodel (Methods), simultaneously combines spatial
and experimental parameters to improve probabilistic inference of
spatially resolved gene expression from lower-resolution arrays®**".
Moreover, by interrogating tissue contexts through MROIs, the model
sharesinformation across tissue sections to detect reproducible spa-
tial changes in the different mouse conditions; to create a common
coordinate framework (CCF) guided by the biological question and
spatial resolution®®; and to generate easier visualization of large tissue
cohorts. Future studies can further tackle the resolution limitation
using higher-density formats®***° and with enhanced computational
mapping approaches for deconvolving cell-cellinter-species commu-
nication networks. Additionally, using 16S rRNA databases restricted to
gut microbial species canfurther alleviate the computational burden of
mapping SHM-seq data, whereas mappingto large 16S rRNA databases
increases therisk of false-positive mapping rates and the risk of lower
representation of species in these databases. As such, we favor whole
genome databases, suchas RefSeq, and, when possible, restrict those
to species presentin adjacent metagenomic data, when available.

SHM-seq paves the way for future work and detailed investigation
in larger studies, designed to compare animal models—for example,
during colitis-induced changes®® or infection®—and human patients
sampled longitudinally or cross-sectionally, where both microbiome
and host cells vary, as does host genetics. Such analyses can expand
understanding of the relationship between host and microbiome and
lead to better understanding of mechanisms sustaining homeosta-
sis in health or onset and persistence of chronic inflammation. Our
method should, thus, help in better understanding environmental
and microbiome-driven spatial neighborhood heterogeneity in barrier
and mucosal tissues.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01988-1.
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Methods

SHM-seq data generation

Mice. Adult C57BL/6 SPF mice were purchased from The Jackson Labo-
ratory and maintained in accordance with ethical guidelines monitored
by the Institutional Animal Care and Use Committee (IACUC), estab-
lished by the Division of Comparative Medicine at the Broad Institute
of MIT and Harvard, and consistent with the Guide for Care and Use of
Laboratory Animals, National Research Council, 1996 (institutional
animal welfare assurance no. A4711-01), with protocol 0122-10-16.
Adult C57BL/6 GF mice were obtained from Taconic Biosciences and
maintained in a gnotobiotic environment. Some of these mice were
randomly selected and inoculated with ASF*® over several generations
and used when >6 weeks of age. After colonization, ASF mice were
housedinsterile conditions and tested with polymerase chainreaction
(PCR) to ensure that sterility was maintained®. Animal housing room
temperatures were monitored and always maintained according to
species-specific needs. Humidity was maintained at 30-70%. Light
intensity and light cycle timing were carefully regulated by Broad
Institute animal facilities. To capture material from multiple sections
per colonic tube, as well as to maximize the use of a single spatial
array (1,007 spatial spots spread over ~42 pm?), we placed 2-3 tissue
cross-sections onto one spatial capture area. We sampled -20 sections
from each mouse by sectioningin the aforementioned fashion across
one spatial capture slide containing six active capture areas.

Tissue collection. Colonic tubes from the mid part of the colon were
dissected within minutes of killing mice, and tissues were dried from
excess fluids and embedded in Optimal Cutting Temperature (O.C.T.,
Fisher Healthcare) in large molds (VWR) pre-filled with O.C.T. The
molds were then laid onto a metal plate pre-chilled and set on top of
dryicefor2 min or until complete freezing. Samples were transferred
to—80 °C until sectioning.

Generation of slides with customized surfaces. Customized
surface primers wereimmobilized to anamine-activated surface area
(-40 mm? each) using covalent bioconjugation®?, as recommended
by the manufacturer (Surmodics). Three distinct surfaces were gener-
ated for validations: 16S, poly(d)T and a mixed poly(d)T/16S surface.
The oligonucleotidesimmobilization in each case were:

5-[AmC6]JUUUUUGACTCGTAATACGACTCACTATAGGGACAC
GACGCTCTTCCGATCTNNNNNNNNATCTCGACGACTACHVGGGTAT
CTAATCC-3

5-[AmC6]JUUUUUGACTCGTAATACGACTCACTATAGGGACAC
GACGCTCTTCCGATCTNNNNNNNNTTTTTTTTTTTTTTTTTTTVN-3’
(both Integrated DNA Technologies (IDT)).

Allslideincubationstook place on athermalincubator (Eppendorf
Thermomixer Option C) with slides mounted into a hybridization
chamber (Arraylt). All in situ reactions performed on spatial arrays
were carried outinaclass Il biosafety cabinet.

Generation of spatial arrays with customized surfaces. All spatial
arrays were produced as previously described for the original spatial
transcriptomics method®?. In brief, six spatial microarrays per slide
were created using amine-activated CodeLink slides (Surmodics). To
ensure covalent binding chemistry to the amine-activated surface, DNA
oligonucleotides (IDT) were constructed as follows:

5-[AmMC6]JUUUUUGACTCGTAATACGACTCACTATAGGGACA
CGACGCTCTTCCGA TCT-[18mer spatial barcode]-[7mer random
UMI]-[20T]-VN.

Printing was performed by ArrayJet LTD by spotting 100 pL of
spatially barcoded DNA oligonucleotides (33 pM diluted in 2x CodeLink
printing buffer) using inkjet technology to form 100-pum spots with a
200-um spot-to-spot pitch, resulting in a total of 1,007 different spa-
tially addressable spots printed ina 6.2-mm x 6.6-mm capture area. A
complete list of all spatially barcoded DNA oligonucleotides used in

this study is available at https://github.com/nygctech/shmseq. After
printing the spatial arrays, slides were blocked using a pre-warmed
blocking solution (50 mM ethanolamine, 0.1 M Tris, pH 9) at 50 °C for
30 min and washed with 4x saline sodium citrate (SSC) and 0.1% SDS
(pre-warmed to 50 °C) for 30 minbefore rinsing the slides with deion-
ized water and drying.

Next, capture areas were modified to create a customized
surface containing a mixture of poly(d)T and 16S capture
sequences. To hybridize the 16S probe onto the spatially bar-
coded poly(d)T surface probes, 75 pl of the 16S (V4) probe
(IDT) with the sequence 5-GGATTAGATACCCBDGTAGTCGAGA
TNBAAAAAAAAAAAAAAAAAAAA-3’ (sequence” modified to enable
attachment to the spatial arrays) at 0.8 nM concentration in 2x SSC
(Sigma-Aldrich),20% fresh formamide (Thermo Fisher Scientific) and
0.1% Tween (Sigma-Aldrich) was added to each spatial capture area
and incubated for 30 min at room temperature. The probe mix was
thenremoved, and capture areas were washed with 100 pl of 0.1x SSC
(Sigma-Aldrich). To covalently attach the hybridized 16S probes onto
the spatially barcoded poly(d)T surface probes, an extension reaction
was performed with 75 pl of 1x M-MuLV buffer, 2 U pul™ RNaseOUT,
20 U pl™ M-MuLV and 0.5 mM dNTPs (all from Thermo Fisher Scien-
tific) and 0.20 pg pl™ BSA (New England Biolabs (NEB)) added to the
wellsandincubated at 42 °C for 30 min. The M-Mulv solution was then
removed, followed by a wash with 100 pl of 0.1x SSC. To strip the 16S
probesusedinthe hybridization and extension reaction, and make the
covalently attached 16S surface probes single stranded, surface capture
areaswereincubated 3x with 75 pul of 100% formamide for 3 min at room
temperature. Capture areas were then washed twice with100 pl of 0.1x
SSC before washing the entire slide for 10 min at 50 °C in 2x SSC/0.1%
SDS (Sigma-Aldrich), followed by 1-min wash with 0.2x SSC and finally
0.1xSSC,bothat37 °C. This resulted in spatially barcoded capture areas
containing -1:1ratio of poly(d) T and 16S capture sequences.

Cryosectioning. The entire cryo chamber, including all surfaces and
tools used during cryosectioning, were wiped with 70% ethanol before
the start of sectioning to avoid bacterial contamination. Both spatial
arraysand O.C.T.-embedded gut tissue blocks were allowed to reach the
temperature of the cryo chamber before 10-um-thick cross-sections
of guttissue were placed on customized spatial arrays. Tissue fixation
followed immediately as described below.

Tissue fixation, H&E staining and imaging. The spatial array was
warmed at 37 °C for 2.5 min. Then, the entire area of the glass slide
was covered in a methacarn solution (60% absolute methanol, 30%
chloroform stabilized with ethanoland 10% glacial acetic acid (all from
Sigma-Aldrich)) for 10 min at room temperature in a closed space to
avoid evaporation. Methacarn was then removed, and the slide was
allowed to dry before ~300 pl of isopropanol (Sigma-Aldrich) was
added totheslide and incubated for 1 minatroom temperature. When
the slide was completely dry again, it was stained using H&E in an Easy-
Dip Slide Jar Staining system (Weber Scientific). The system included
containers separately filled with ~-80 ml of Dako Mayer’s hematoxylin
and Dako Blueing Buffer (both from Agilent Technologies), 5% Eosin
Y in 0.45 M Tris acetate (both from Sigma-Aldrich) buffer at pH 6 and
nuclease-free water (Thermo Fisher Scientific). The slide was put in
aslide holder and completely dipped in hematoxylin for 6 min, fol-
lowed by five dips in nuclease-free water and then 10 dips in a beaker
filled with ~800 ml of nuclease-free water. The slide holder was then
dipped in Dako Blueing Buffer for 5 s, followed by another five dips
in nuclease-free water. Finally, the slide holder was put in the eosin
solution for 1 min and washed by five dips in nuclease-free water. The
slide was removed from the holder and air dried before being mounted
with 85% glycerol and covered with a coverslip (VWR) before imaging.
Imaging of stained H&E tissue sections on glass arrays was performed
on a Metafer VSlide scanning system (MetaSystems) installed on an
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Axio Imager Z2 microscope (Carl Zeiss) with an LED transmitted light
source and a CCD camera. Using an A-P x10/0.25 Phl objective lens
(Carl Zeiss) and a configuration program?, focusing and scanning of
each tissue section on the glass array was done automatically. Image
stitching was done using VSlide (version1.0.0) with 60-umoverlap and
linear blending between fields of view. Images were extracted using
jpg compression.

In situ reactions: permeabilization and reverse transcription.
Before start, the hybridization chamber was cleaned with RNaseZap
(Thermo Fisher Scientific) and 70% ethanol, followed by at least
30 minina UV light chamber. After section imaging, the slide was
again attached to the hybridization chamber to proceed with the
following permeabilization reactions (referred to as ‘bacterial treat-
ment’ below). First, 100 pl of a lysozyme solution with 0.05 M EDTA
(pH 8.0, Thermo Fisher Scientific), 0.1 M Tris HCI, pH 8 (Thermo Fisher
Scientific) and 10 pg pl™ lysozyme (from chicken egg white, lyophi-
lized powder, Sigma-Aldrich) were added to each well and incubated
for30 minat 37 °C, followed by wash with100 pl of 0.1x SSC. Second,
75 pl of 10% Triton X-100 (Sigma-Aldrich) was added and incubated for
5Sminat 37 °C, followed by a100-pl wash of 0.1x SSC. Third, asolution
with 0.05% SDS and 5 mM DTT (Thermo Fisher Scientific) was added
and incubated for 5 min at 37 °C, followed by a 100-pl wash of 0.1x
SSC. Fourth, 100 pl of collagenase 1 (200 U) in 1x HBSS (both from
Thermo Fisher Scientific) were added to each well and incubated for
20 min at 37 °C, again followed by a 100-pl wash of 0.1x SSC. Lastly,
75 pl per well of 0.1% pepsin (pH 1, Sigma-Aldrich) was incubated for
10 min at 37 °C, followed by a final wash of 100 pl of 0.1x SSC. In situ
cDNA synthesis was performed as previously described®. In brief,
75 ul of 50 ng pI™ actinomycin D (Sigma-Aldrich) and 0.5 mM dNTPs
(Thermo Fisher Scientific, 0.20 pg pl BSAand 1U pl™ USER enzyme
(both from NEB), 6% v/v Lymphoprep (STEMCELL Technologies),
1Mbetaine (BO300-1VL, Sigma-Aldrich), 1x first-strand buffer, 5 mM
DTT,2 U pul' RNaseOUT and 20 U pl ™ Superscript 1l (all from Thermo
Fisher Scientific)) were added to each well. The reaction was sealed
with Microseal ‘B’ PCR Plate Seals (Bio-Rad) and incubated for at least
6 h. After incubation, 70 pl of the released cDNA material from each
hybridization chamber well was collected and stored in a 96-well PCR
plate (Eppendorf).

Library preparation. Library preparation was performed using
the SM-Omics automated library preparation protocol, as previ-
ously described®. In brief, released cDNA material was first made
double stranded using the nicked RNA template strands as primers
for copying the cDNA strand with DNA polymerase I. To avoid over-
digestion, the reaction was terminated with EDTA, and ends were
blunted using T4 DNA polymerase before linear amplification by
invitro transcription. Amplified material was again transcribed into
c¢DNA, resulting in material ready for PCR indexing as described in
the next subsection.

Quantification, indexing and sequencing. qPCR quantification and
indexing were performed as previously described®* using TruSeq LT
llluminaindexing and aKAPA HotStart HiFi ReadyMix (Roche). Indexed
cDNA libraries were cleaned using a 0.7:1 ratio with AMPure XP beads
(Beckman Coulter) to PCR product, according to the manufacturer’s
protocol, and eluted in 12 pl of elution buffer (Qiagen). Each sample’s
concentration was measured using the DNA HS Qubit assay (Thermo
Fisher Scientific), and average fragment length was determined using
either Bioanalyzer HS or DNA100O TapeStation (both from Agilent
Technologies). Each sample was then diluted to the desired concentra-
tion forsequencing (1.08 pM on aNextSeq and 10 pM on aMiSeq, both
with -10% PhiX). Pooled libraries were sequenced with 25 nucleotides
(nt) in the forward read and 55 nt and 150 nt in the reverse read on
NextSeq and MiSeq (Illumina), respectively.

Generation of bacterial validation data

Mechanical extraction of bacterial RNA. An approximately
1-mm-thick tissue section with pellet was sectioned from SPF colons
in 0.C.T. and put in a dry ice-cold Lysis Matrix D tube (MP Biomedi-
cals). Then, 400 pl of RLT buffer (Qiagen) with 1% 2-mercaptoethanol
(Sigma-Aldrich) was added to the tube, and the solution was homog-
enizedinaFastPrep-24 instrument (MP Biomedicals) at speed 6 for40 s.
Tubes were then centrifuged for 5 min at 12,000 r.p.m. Supernatant
wastransferred toanew tube, and RNA extraction was done using the
RNeasy Mini Kit (Qiagen), according to the manufacturer’s instruc-
tions. Extracted RNA was fragmented using the NEBNext Magnesium
RNA Fragmentation Module Kit (NEB), heating for 2 min. Fragmented
RNA was cleaned with the MinElute Cleanup Kit (Qiagen), according
to the manufacturer’s instructions. Quality of the fragmented RNA
was evaluated by the Bioanalyzer Pico Kit (Agilent Technologies).
Next, -20 ng pl™ mechanical extracted RNA was added ona16S surface
probe coated quality control (QC) array in an in situ cDNA reaction,
as described in the ‘In situ reactions: permeabilization and reverse
transcription’subsection. After atleast 6-hincubationat42 °C, 70 pl of
thereleased material fromeach well was collected and stored inanew
96-well PCR plate (Eppendorf). Library preparation, quantification,
indexing and sequencing on the MiSeq were performed as described
inthe Library preparation’and ‘Quantification, indexing and sequenc-
ing’ subsections.

Extraction and metagenomic sequencing of fecal DNA. Pellet was
collected from the colon of SPF mice by perforating the colonwalland
scrapingthe pelletand mucusintoal.5-mlcollectiontube (Eppendorf).
Collected pellet was stored at —80 °C until further processed. DNA was
extracted from the pellet using a Lysing Matrix Y tube (MP Biomedi-
cals), according to the manufacturer’s instructions. Extracted DNA
concentration was determined using the DNA HS Qubit assay. DNA
was made into libraries using Nextera XT (15031942 v05). Concentra-
tionand average fragment length of each sample were evaluated using
the DNAHS Qubit assay (Thermo Fisher Scientific) and Bioanalyzer HS
(Agilent Technologies), respectively. Each sample was diluted to the
desired concentration for sequencing (9 pM, ~10% PhiX), and pooled
samples were sequenced onaMiSeq (2 x 150 bp, lllumina). Each sample
was sequenced to ~5-10 million reads.

FISH. FISH was performed on the same fresh-frozen gut tissue sam-
ples from ASF mice. All sections were 10-um-thick cross-sections
and consecutively collected. First sections were placed on the spa-
tial array, followed by placing consecutive sections on a CodeLink
amine-activated slide (Surmodics); the following two sections were
then again placed on the spatial array. Sections on the spatial array
were used for SHM-seq, and sections on the amine-activated CodeLink
slide (Surmodics) were prepared for FISH as further described. Slides
were warmed at 37 °C for 2.5 min on a thermalincubator, before tissue
sections were fixed using freshly prepared methacarn, as described
in the ‘Tissue fixation, H&E staining and imaging’ subsection. Slides
were then placed in a hybridization chamber, and 75 pl of preheated
FISH solution (0.9 M NaCl and 20 mM Tris, pH 7 (both Thermo Fisher
Scientific), 0.1% SDS (Sigma-Aldrich) and a FISH oligonucleotide
detection probe (0.06 ng ul™)) was added to each well and incubated
for 2 hat 25 °C. Oligonucleotide detection FISH probes (IDT) were
used depending on the target of interest: probe EUB338 (5’-/Cy5/
GCTGCCTCCCGTAGGAGT-3’) for all bacteria; probe non-338 (5’-/Cy5/
ACTCCTACGGGAGGCAGC-3’) as a negative control; probe Lab158
(5"-/Cy5/GGTATTAGCAYCTGTTTCCA-3")*"% to target ASF360; probe
Lac435(5’-/Cy5/TCTTCCCTGCTGATAGA-3")*** to target ASF502; and
probe Bac303 (5’-/Cy5/CCAATGTGGGGGACCTT-3")* to target ASF519.
After the 2-h incubation, FISH solution was removed, and wells were
washed with 100 pl of 1x PBS before the hybridization chamber was
removed and slides were dipped 12 times in 50 ml of 1x PBS before
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beingair dried. Slides were mounted with 85% glycerol (Sigma-Aldrich)
and a coverslip (VWR). Epifluorescent images were acquired on an
Axio Imager Z2 microscope using a PhotoFluor LM-75 light source
(89North) in combination with a Plan-APOCHROMAT x63/1.4 oil DIC
objective (Carl Zeiss). Images were processed using VSlide (version
1.0.0, MetaSystems).

Processing on H&E imaging data

Image registration and annotation. Image processing and registration
of barcoded spots was done using SpoTteR*. H&E images (collected
inRGB channels) were downscaled to approximately 500 x 500 pixels.
For efficient grid spot detection, tissues were masked from the images
using quantile thresholding in the red channel. Centroids of spatial
array spots were detected by computing the image Hessian. Centroid
coordinates were used as probable grid points, and arectangular grid
was thenfitted to these probable points using alocal optimizer (nlminb,
R package stats (Rversion 3.6.3)). With iterations and removing 10% of
the probable spots that did not fit the perfect grid structure, anew grid
was fitted until the target number of grid points per row (here, 35) and
column (here, 33) wasreached. Final grid points were overlapped with
the previously masked tissue section to select spatial points present
only under the detected tissue section area. These points were used
infurther analysis.

H&E images were annotated using agraphical cloud-based inter-
face’ by manually assigning each spatial coordinate (x,y) resulting
from the grid fitting process with one or more morphological region
tags. The tags used were epithelium (E), epithelium and muscle and
submucosa (ALL), epithelium and mucosae and submucosa (EMMSUB),
epithelium and mucosae (EMM), muscle and submucosa (MSUB),
crypt base (BASE), externa and interna (MEI), externa (ME), interna
(MI), mucosae and interna (MMI), mucosa and pellet (MUPE), crypt
mid (MID), crypt apex and mucosa (APEXMU), crypt apex and crypt
mid (UPPERMID), Peyer’s patch (PP) and pellet (PE). E, EMMSUB, EMM,
BASE, MEI, ME, MI, MUPE, MID, MMI, APEXMU, UPPERMID, PP and PE
were visualized in tissue vector representations.

Processing of host reads

Raw reads processing and mapping of host reads. Reads were gen-
erated with bcl2fastq2 (version 2.20.0) and trimmed to remove adap-
tor sequences and the 16S surface probe sequence using BBDuk™
(version 38.33). ST Pipeline (version 1.7.6)* was used to generate
gene-by-barcode matrices. The reverse quality-filtered reads were
mapped with STAR (version 2.6.0)” to the mouse genome reference
(GRCm38 primary assembly), and mitochondrial sequences were
removed. Mapped reads were annotated using HTseq-count (version
0.11.4)"% and the mm11 mouse annotation reference (https:/www.
gencodegenes.org/mouse/release_M11.html). Annotated reads were
demultiplexed with TagGD**” (version 0.3.6) with a Hamming distance
clustering approach (k-mer 6, mismatches 2). This connected transcript
information to spatial barcodes. Finally, UMI collapsing per transcript
and spatial barcode was performed with a naive clustering approach
(mismatches 1) similar to that described in UMI-tools™.

Processing of bacterial reads

Generation of gold standard mouse gut bacterial reference. FASTQ
reads were generated with bcl2fastq2, and reads were quality filtered
using KneadData (version 0.7.4) (https://huttenhower.sph.harvard.
edu/kneaddata/) (mouse database mouse_C57BL). MEGAHIT” (ver-
sion 1.2.9) was used for assembly of the filtered reads, and bowtie2
(ref.76) (version 2.3.4.3) was used for mapping reads to the assembly.
MetaBAT2 (ref.77) (version 2.15) was used for binning the assembly, and
the command-line version of NCBI BLAST”® (version 2.9.0+) was used
to assign taxonomy to contigs with blastn and database ‘nt’. MEGAHIT,
bowtie2 and MetaBAT2 were all run using default settings. Assignments
were filtered (E-value <10E-6) and sorted (by E-value and percent

identity), and each contig was then assigned the top taxonomy assign-
ment. Contigs belonging to an assigned taxonomy on species level at
various cutoffs (>0.1%, >0.05% and >0.01% corresponding to 65, 121
and 419 species, respectively) were retained. For each cutoff, refer-
ence genomic sequences (complete genomes, chromosomes or scaf-
folds, depending on availability for these species) were downloaded
from the NCBI RefSeq database® (release 205), resulting in FASTA
sequence databases (one for each cutoff) of the taxafound in SPF mice
(n=6)andused asinput to build custom databases in Kraken2 (version
2.0.9)* according to Kraken2 default instructions, including masking
of low-complexity regions. Reference genomes for six species were not
found in the RefSeq database (Supplementary Table 5) and were not
included in the FASTA sequence databases. The mouse gut bacterial
references were also filtered for generathat have previously been found
in mice and/or the intestine” . A phylogenetic tree of the reference
taxa was built using NCBI's Common Tree and visualized using iTOL
(version 6.4.3)%2, When analyzing mouse gut tissue with defined flora
(ASF), genome sequences accordingto ref. 83 were downloaded from
the NCBIand used asinput to build acustom ASF database in Kraken2.

Generation of simulated data. Two simulated datasets were gener-
ated based on the abundance of taxa using cutoffs 0.1% and 0.01% (as
described in the ‘Generation of gold standard mouse gut bacterial
reference’ subsection): 16S rRNA FASTA sequences for the taxa found
in SPF mice were downloaded from the NCBI (downloaded 24 July
2021), except two taxa where the 16S rRNA FASTA sequence were miss-
ing (Sodaliphilus pleomorphus and Anaerocolumna sedimenticola).
Command-line NCBIBLAST”® (version 2.9.0+) was used to align every
possible sequence version of the 16S surface probe to the 16S rRNA
FASTA sequences to find the best possible alignment for the 16S surface
probe per taxa. To mimic spatially captured reads fromareal SHM-seq,
2 million paired reads from a real SHM-seq experiment were used as a
template for FASTQ headers, sequence and quality scores for the for-
ward read and FASTQ headers and quality scores for the reverse read.
The sequences in Read 2 were replaced by 150-bp-long fragments of
the16SrRNA sequences fromrandomly selected taxa. Fragments were
created by selecting aregion upstream of the best possible alignment
of the 16S surface probe per randomly selected taxa. Each region was
thenrandomly selected alengthbased onanormallengthdistribution
with parameters characteristic to a spatial array (400 * 44 bp) and
trimmed to 150 bp. This resulted in a simulated dataset with 2 million
randomly selected 16S rRNA gene sequences, generated from where
the 16S surface probe was expected to capture, from the taxain our
mouse gut bacterial references but with known exact taxa and both
reverse and forward reads.

Deep learning model: data pre-processing. A total of 500,000 DNA
sequences were randomly selected from the simulated dataset based
ona0.1%abundance cutoff (described in the ‘Generation of simulated
data’subsection) and uniformly sampled, and single-point mutations
with 0.1% rate were introduced. This was followed by random shorten-
ing based on a normal distribution of fragment lengths from a true
SHM-seq experiment (143 13 bp, truncated at 150 bp). Reads from
each taxon in the mouse gut bacterial reference were represented at
least 100 times per genus. Sequences were one-hotencoded, such that
eachnucleotide (A, C, T, Gand N) wasrepresented by a five-dimensional
binary vector, followed by sequence padding up to the maximum
length (150 bp). Taxa labels were one-hot encoded into one of Ngenera.
The encoded sequences and taxa labels were provided as input for
training the model.

Deep learning model: architecture. A taxonomic classifier of short
reads was implemented using Keras®* with TensorFlow® back end
(version 2.2.0) in Python (version 3.8.10) (Supplementary Fig. 4a).
The modeltakes as input one-hot encoded DNA sequences of varying
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lengths and provides a genus label as output. First, a masking layer
was used to ignore padded entries, followed by four layers of a
one-dimensional convolutional layer with kernel sizes 0f 15,17,19 and
23 toextract short motifs, followed by a concatenation and a dropout
(50% rate) module and two bidirectional long short-term memory
network layers, which processed the sequences in both directions.
This was followed by another dropout layer (20% rate), a dense layer
(reLUactivation), adropout layer (10% rate), another dense layer (reLU
activation) and, finally, a fully connected layer (softmax activation)
to reduce the final output size to the number of distinct generain the
input data. In total, the model consisted of 298,760 trainable param-
eters. Cross-entropy loss was used to train a multi-class classifier with
Adam as the optimization algorithm®¢. The model architecture was
visualized using Netron®.

Deep learning model: training details. Model parameters were opti-
mized by using 80% of sequences for training and 20% for testing.
Each epoch started with shuffling the training data and computing
the gradient update once for each training data point to obtain unbi-
ased gradient estimates®®. During training, categorical accuracy and
cross-entropy loss were used to monitor progress. Training was ter-
minated after a maximum of 15 epochs or when the training loss did
not decrease in five consecutive epochs. The area under the receiver
operating characteristic (ROC) curve and the F1score were calculated
using Scikit-learn (version 0.24.2)*° and used to report the final perfor-
mance on test data.

Deep learning model: evaluation. One million simulated sequences
with corresponding taxa (as in the ‘Generation of simulated data’
subsection) were modified with a sequencing error rate of 1%°° and
random shortening as described above. Sequences were classified
either by Kraken2 alone or by Kraken2 followed by the deep learn-
ing model. Performance was evaluated compared to the ground
truth taxa labels by calculating Bray—-Curtis dissimilarities and Pear-
son correlation coefficients of the bacterial relative abundances
per spot using Scipy (version 1.1.0)' spatial.distance.braycurtis
and Scikit-learn (version 0.24.2)% stats.pearsonr, respectively. A
higher similarity of the relative abundances between classifications
and the ground truth resulted in lower Bray-Curtis dissimilarities
and higher Pearson correlations. Accuracy and F1 score were
calculated on the whole dataset using Scikit-learn (version 0.24.2)%
metrics.classification_report.

Comparison of taxonomy assignments. To compare how well
Kraken2 performs when using different RefSeq databases (whole
genome versus 16S rRNA) of different sizes (restricted versus unre-
stricted), taxonomy assignments were made by the taxonomy assign-
ment pipeline but without using the deep learning model (as described
in the ‘Raw reads processing and mapping of bacterial data’ subsec-
tion). The four databases used inthe comparisons were: RefSeq Bacte-
riawhole genome database (downloaded from Kraken2 GitHub version
2.1.2) and adding to it the whole genomes from all eight ASF speciesin
Kraken2 (ref.83) (‘RefSeq whole genomes’); the custom gold standard
restricted whole genome database (‘65 species whole genome’, as
described in the ‘Generation of gold standard mouse gut bacterial
reference’ subsection) and the RefSeq Bacteria 16S rRNA database,
derived from those RefSeq bacterial taxa that had available 16S rRNA
sequences in the NCBI (‘RefSeq 16S rRNA’, -3,000 taxa, downloaded
on 24 July 2021); and finally, we restricted the RefSeq 16S rRNA data-
basetothe 65 species detected in the gold standard restricted whole
genome database (‘65 species 16S rRNA’). For comparing the impact
ofreadlengths, simulated datasets were prepared as described in the
‘Generation of simulated data’ subsection by using cutoff 0.1% but
withlonger length distribution (650 + 44 bp) and trimmed to 150 bp,
300 bp, 450 bp and 600 bp.

Raw reads processing and mapping of bacterial data. FASTQ reads
were generated with bcl2fastq2 and trimmed to remove adaptor
sequences using BBDuk’. Trimmed reads were quality filtered using
the same quality-filtering step asin the ST Pipeline (version1.7.6)%, but
only reads longer than100 nt were kept. TagGD”* was used to connect
the spatialbarcodeto each forward read (k-mer 6, mismatches 2, Ham-
ming distance clustering algorithm), and BWA-MEM (version 0.7.17)*
withreference mouse genome (GRCm39) was used to remove host map-
ping sequences. Remaining reverse reads were mapped to the mouse
gutbacterial reference (created asdescribed in the ‘Generation of gold
standard mouse gut bacterial reference’ subsection) using Kraken2
(version 2.0.9)*° (confidence 0.01). Reads originated from GF and
SPF mice were mapped to the mouse gut bacterial reference, whereas
reads originated from ASF mice were mapped to the ASF reference.
Taxonomy assignments made by Kraken2 were improved using the
deep learning model. UMIs with identical spatial barcodes and taxo-
nomical assignments were collapsed using UMI-tools (version1.0.0)™
(UMIClusterer, threshold 1), resulting in abacteria-by-barcode matrix.

Analysis of bacterial validation data

Spatial analysis of bacterial fluorescence. Bacterial presence
in scanned fluorescence images was detected using ilastik (version
1.3.3)%. After training and testing each bacterial fluorescence print
separately inilastik, the resulting bacterial detection mask was aligned
with the fluorescent image to detect mean fluorescence intensity per
spatial coordinate and stored as a matrix. This matrix was then runin
Splotch (as described in the ‘Hierarchical probabilistic modeling using
Splotch’ subsection). Resulting normalized fluorescence intensity was
compared to the normalized bacterial presence by randomly select-
ing, at most, three spatial coordinates from each annotated region per
sample (only annotated regions that were shared between the normal-
ized fluorescence intensity and the normalized bacterial presence were
considered) and scalingthem withineach sample, before matchingthem
to aspatial coordinate in the same region and comparing them to each
other (normalized fluorescence intensity versus normalized bacterial
presence per spatial coordinate). To limit the region annotated as pellet,
spatial coordinates annotated as pellet were selected if they were spa-
tially adjacent to coordinates annotated as mouse tissue. This procedure
was repeated 1,000 times to generate an average spatial correlation
measurement between normalized bacterial FISHintensity and normal-
ized sequenced bacterial presence, expressed as Spearman correlation.

16S surface probe sensitivity. To evaluate 16S surface probe sensi-
tivity, reference DNA sequence and gene annotation files were down-
loaded from Ensembl Bacteria® for the ASF bacteria available in the
database (version 104.1) (ASF356, ASF360, ASF457, ASF492, ASF500
and ASF519 (taxonomy ID 1235789)). Reads captured from ASF tissue
sections on a spatial transcriptomics QC array with only 16S surface
probes on the array surface were separately mapped against each
ASF bacteria genome using BWA-MEM (version 0.7.17)”>. Gene body
coverage over the16SrRNA genes inrespective reference genomes was
generated using RSeQC (version 4.0.0)”. Genome binning was done by
summarizing the aligned readsin separate bins, each bin representing
ahundredth of the respective ASF genome.

16S surface probe specificity. Specificity was first evaluated by propor-
tion of bacteria versus mouse read alignment. Tissue sections from SPF,
ASF and GF mice were placed on QC arrays with 16S surface probes, and
finished libraries were prepared using either bacterial treatment or colon
treatment. Eachfinished library was sequenced to approximately 660,000
reads. Reads were taxonomically annotated by using the taxonomy assign-
ment pipeline without the deep learning model. The proportion of reads
mapping to the respective bacterial reference (mouse gut bacterial ref-
erence for SPF and GF tissue samples and ASF reference for ASF tissue
samples) was calculated by using the number of trimmed reads.
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Protocol specificity was also evaluated by comparing the bacterial
treatment withamechanical treatment (see the ‘Mechanical extraction
of bacterial RNA’ subsection). Spearman rank and Pearson correla-
tion coefficients were calculated using Scipy’s (version 1.1.0)"" stats.
spearmanr and stats.pearsontr.

Bacterial treatment was compared to abulk16SrRNA sequencing
dataset®” where the 16S libraries were made from material originating
fromfeces of C57BL/6) mice (Sequence Read Archive (SRA) sample refer-
ences: SRR9212951, SRR9213178 and SRR9213335). The correlation was
calculated using Scipy’s (version 1.1.0) Pearson correlation coefficient”.

Comparison of the taxonomy assignment pipeline with QIIME 2.
The taxonomy assignment pipeline (as described in the ‘Raw reads
processing and mapping of bacterial data’ subsection) was compared
to QIIME 2 (ref.32) (version 2022.2) by using the simulated dataset
(generated as described in the ‘Generation of simulated data’ subsec-
tion). QIIME 2 was run with default settings for single-end sequences,
and the Silva 138 99% OTUs full-length sequences classifier was used
for taxonomic profiling.

Effect of bacterial treatment on mouse gene expression. To evaluate
the effect of the bacterial treatment on measured host (mouse) gene
expression, we normalized’® gene counts from samples with and with-
out bacterial treatment (reads downsampled to the same saturation
levels) and from samples prepared on a spatial array with customized
surface or a standard spatial array (reads downsampled to the same
saturation levels). Pearson correlation coefficient was calculated using
Scipy’s (version 1.1.0)” stats.pearsonr.

Spatial modeling and visualization of host-microbiome data
Hierarchical probabilistic modeling using Splotch. Splotch®** was
used for statistical analysis of spatial data. Splotch is a hierarchical
probabilistic that captures variation in spatial transcriptomics data
through modeling of different study design covariates, such as indi-
vidual’s age or mouse condition (B); alinear model component captur-
ing spatial variation in array data with a conditional autoregressive
(CAR) prior (¢); and gene expression variation captured in each inde-
pendent spatial measurement (¢) to account for technical artifacts.
Sequencing depth is accounted for by using a size factor s where the
total number of captured UMI counts per spatial spot is divided by the
median UMI counts across all analyzed spots. The posterior distribu-
tion of the parameters is interrogated from the model—for example,
when the model was conditioned of bacterial presence in the tissues
to quantitate expression changes across both the mouse conditions
and different tissue contexts.

Genes (i), tissue sections (j) and independent spatial spots (k)
were indexed as follows: i€[L2,...,Ngenes|./ € [L2, ..., Niissues] »
ke [1,2,... ,Niﬁmsl. Gene expression in each spot is considered an
approximation of observed counts y; ;, where y; ;. is expected to equal
t0 s;4A; j - Sjx IS the size factor (total number of UMIs observed at spot
kandtissuesection j,and A, ;, is the rate of gene expression (referred
to as normalized counts throughout)). Splotch then models the
observed counts using the zero-inflated Poisson (ZIP) distribution:

Yijk ~ ZIP (8;4Aiju 67 ) ,nb = 0,zi = 1, (1)

where ¢ represents the gene-specific probability of a dropout. The
zero-inflated models account for an overabundance of zeros by introducing
asecond zero-generating process gated by aBernoullirandom variable:

o, ifo; =1,
if6, =0
Bi” ~ Beta(l,2),

Yijk ~ .
Pois (Sj,kAi,j,k) s

2

6; ~ Bernoulli (6/),

where the Poisson process can be replaced by negative binomial (NB)
without loss of generality. The gene expression rate parameter A,
is described in terms of a generalized linear model (GLM) by three
components:

log (A jx) = Bijk + Wik + €ijik- 3

where B, ;is the characteristic expression of gene kwithin the context
of spot k, from which a characteristic expression vector ; € RMwo js
derived describing which MROI spot k comes from. At the top level, the
datasetis splitalong animportant covariate (for example, presence of
bacteria), and a separate g;, is modeled for each unique group
(4 €{1,...L1}). At the next level, each set is further partitioned along
another covariate (for example, animalindividual). A two-level hierar-
chical model for B;can, thus, be specified as:

Biy, ~ JV(O, (0,(.['))21),
By, ~ N (Bi,ll,(agll))zl), 4)

o™ ~ ¥y (0,1),

l

. . 1, . . .
where, in practice, ag ) 2forall i, L, and posteriors are inferred over

all UE.IZ). For convenience, because each tissue jbelongstoone covariate
group ateachlevel, the inverse mapping function p~! (j)isintroduced
that maps j to the appropriate [,,,,1; indices for ;. With this in hand,
B, ;,is formally defined in the non-compositional model:

Bijx = Xka i, -1(j) %)
where x;, isaone-hot encoding of the spot MROl annotation D<kj) used
to index the relevant entry in the characteristic expression
vector B,y

¥, describes the how the local and immediate neighborhood
of spot k has an effect gene i and is modeled using the CAR prior. The
observations in each spatial spot are assumed to be dependent on
the spot’simmediate spatial neighborhood defined as four nearest
neighbors. ¢, is defined as a Markov random field over the spots in
eacharray:

. -1
(/)i,jlam, Ti.j’ WJ ~ JV(O, (Tfl(j (I— a,»Kj_ M/j)) ) ,
a ~ U (0,1), ©
5 ~T1(1,1),

where g;is aspatial autocorrelation parameter; z;is a conditional preci-
sion parameter; K;is a diagonal matrix containing the number of neigh-
borsforeachspotintissue j;and W;is the adjacency matrix (with zero
diagonal).

€;;x captures variation at the level of individual spots with the
assumption that each spot wasindependently and identically distrib-
uted (i.i.d) toinfer their standard deviations:

6'-’ ik ~ N O,O'2 .
LJ ( 1) (7)
0. ~ Nx¢(0,0.3%),

where g;is the inferred level of variability for gene j.

Data were processed as a two-level model when describing
differences in mouse model/condition and morphological region
(when comparing SPF versus GF mice) or as a one-level model for ASF
mouse analysis. Input datawere raw UMI counts (as described above).
Sampling from the posterior was done running four independent
chainswith200iterations per chain (100 warmup and 100 sampling).
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The modelwas conditioned on 10,924 spots, 16 morphological region
tags and two mouse conditions (SPF versus GF) (two-level model) or
4,397 spots, five morphological region tags and one mouse condition
(ASF) (one-level model).

For differential expression analysis, each pairwise comparison of
gene expression was denoted as arandom variable A, that describes
the difference between two conditions as §; - §,. B, and 3, represent
any two conditions arising from any two combinations in the model—
for example, any two genes, sample covariates (for example, mouse
condition; SPF versus GF) or MROIs regions (for example, crypt apex
and mucosa versus crypt base). The null hypothesis presumes that the
two posterior distributions over characteristic expression coefficients
B, and B, estimated by the model are identical and that Ag is tightly
centered around zero. To quantify this similarity, Ag| D (Where Dis the
training data) is compared to the prior distribution Ag using the
Savage-Dickey density ratio®” that estimates the Bayes factor (BF)
between the conditions:

~ M (8)
p(8s=01D)

where the probability density functions are evaluated at zero. If expres-
sion is different between the two conditions, then the posterior Ag|D
will not be centered around zero, and the estimated BF will be large;
hence, the null hypothesis is rejected, and the two genes are denoted
as differentially expressed between the conditions. Hereafter, the Sav-
age-Dickey density ratiois referred to as BF. Upregulated genes (A; > 0)
with at least log(BF) > 0.5 were considered as differentially expressed
between any two conditions and used in all downstream analysis.
Bacterial genera were called as detected in SPF tissue if the bacterial
weighted mean count per morphological region was greater than the
maximal weighted mean in corresponding morphological mouse
regionin GF. The total regional count had to count for more than 2% of
the total bacterial count to be called as detected.

Visualizing expression and abundances with rasters. To enable
spatial data visualization across sections and conditions, a rasterized
tissue representation of canonical tissue architecture of the mid part of
the colonictube was created as scalable vector graphics (svg) and anno-
tated with MROI information. Tissue vectors captured the two most
common tissue architectures observed in this study (a zoomed-out
view of major MROIs (E, EMM, ME, MEI, MI, MMI, PP, MUPE and P) and
azoomed-in view of minor MROIs (APEXMU, BASE, MID, UPPERMID,
EMM, EMMSUB, ME, MEI, M1, MMI, PP, MUPE and P)) and used only for
visualizations. matplotlib® was used to automatically plot averaged
host gene or bacterial expression fromall spatial spots corresponding
to each MROI and condition as annotated in the svg files.

Host gene expression mapped using cell type signatures

snRNA-seq data processing. Mouse colon snRNA-seq data were
obtained from ref. 99, containing 340,461 individual cell profiles
across 22,986 expressed genes. In brief, nucleus profiles with >800
genes expressed in a minimum of 10 cells and <30% mitochondrial
or rRNA signatures were retained for analysis. Raw counts data were
normalized to transcripts-per-10,000 (TP10K). To regress out genes
as differentially expressed, the mean and the coefficient of varia-
tion (CV) of expression of each gene were calculated and partitioned
into 20 equal-frequency bins. LOESS regression was used to estimate
the relationship between log(CV) and log(mean), and genes with
the 1,500 highest residuals were equally sampled across these bins.
To account for differences in batches, this was performed for each
sample separately, and a consensus list of 1,500 genes with greatest
recovery rates was selected. Next, using Scanpy'®’, Harmony'*' was
used for further batch correction with 20 neighbors and 40 principal
components from principal component analysis. After 10 iterations,

convergence was reached, and the resulting datawere clustered with
PhenoGraph'®, with 25 nearest neighbors using the Minkowski metric.
Celltypelabels providedinref. 99 were used to manually label clusters
after PhenoGraph clustering.

Spatial co-expression analysis and definition of modules. All pos-
terior estimates that account for both morphological differences and
differences in mouse conditions were used as 4, ;, in a sparse matrix
format A € RMsvosNeenes, where Nyyors = 5,413 and Ngepes = 17,956. The
snRNA-seq normalized counts and SHM-seq posterior means counts
tableswere standardized separately across cells and spots withingenes,
respectively, considering common genes (Neommongenes = 16,525) inboth
datasets, resulting in matrices Xandardizeq € RVeelsNeommongenes  and
Astandardized € RVsposNeommoneenes, Finally, the similarity of each cell to each
spot P was calculated as the Pearson correlation coefficient rbetween
itsstandardized and imputed expression vector (columns of X,.ingardized
and spots’ expression vectors (columns of Agangardized), Fesulting in
cell-specific similarity vectors. Morphological spots were used from
all region categories except for those found in PE and MUPE. To find
sets of co-expressed genes—that s, with similar spatial patterns across
spots—the data Pwere hierarchically clustered with the average linkage
method using the L1 norm (Manhattan distance), with a set distance
threshold to detect 28 distinct blocks (subsets of genes co-expressed
across subsets of spots—hereafter, spatial modules) using scipy.cluster.
hierarchy.fcluster.

Using snRNA-seq profiles to partition modules to submodules.
Gene expressionsubmatrices were created of the expression of genes
belonging to each spatial co-expression module. To identify which
specific cell types underlie expression in each spatial module or sub-
module, mean expression values were calculated for each gene across
the single-cell profiles in each of 30 snRNA-seq clusters (as described
in the ‘snRNA-seq data processing’ subsection) and scaled by divid-
ing each gene’s mean expression per cluster by its maximum mean
expression across cell type clusters. Genes with an average scaled
expression lower than 1 were removed (scaled expressions set to 0).
Then, to estimate cell type compositions in each spatial module (or
submodule), the expression profiles in each spatial module for the
subset of genes from the 30 filtered and averaged snRNA-seq cell type
(cluster) signatures were hierarchically subclustered within each spatial
module using cosine distance and average linkage. These genes of each
module were then grouped in submodules using 0.4x the maximum
of the linkage matrix as cutoff. Next, two-sided Wilcoxon signed-rank
test (followed by Benjamini-Hochberg false discovery rate (FDR)) was
used to compare enrichment of cell type (cluster) signatures in the
co-expressionsubmodulesin aone-versus-rest fashion. The cell types
used inthe enrichment analysis were: neurons, transit amplifying cells
(TAs), cycling TAs, myocytes, goblet cells, colonocytes, fibroblasts, glia,
lymphatic cells, macrophages, enteroendocrine cells, mesothelial cells,
stemcells, T cells, tuft cells, B cells and vascular cells.

KEGG pathway enrichment. KEGG database' gene sets were tested
for enrichmentin each cell-type-specific submodule with a one-tailed
Fisher exact test followed by a Benjamini-Hochberg FDR. KEGG
pathways with FDR < 0.05 were visualized.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw data have been deposited to NCBI’s SRA under accession
PRJNA999495 (ref.104). All processed data have been deposited in
the Single Cell Portal under accession SCP2375 (https://singlecell.
broadinstitute.org/single_cell/study/SCP2375).
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Code availability

All code is deposited on GitHub at https://github.com/nygctech/

shmseq (ref.105).
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Software and code
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Data collection  Image stitching was done using Vslide (v.1.0.0) with 60um overlap and linear blending between fields of views. Images were extracted using
jpg compression. Pooled libraries were sequenced with 25nt in the forward read and 55nt and 150nt in the reverse read on NextSeq and
MiSeq (Illumina), respectively.

Data analysis Fastq reads were generated with bcl2fastg2 (v.2.20.0) and trimmed to remove adaptor sequences using BBDuk (v.38.33). Trimmed reads
were quality filtered using the same quality filtering step as in ST pipeline (v.1.7.6) but only reads longer than 100nt were kept. TagGD (v0.3.6)
was used to connect the spatial barcode to each forward read (k-mer 6, mismatches 2, hamming distance clustering algorithm) and BWA
mem (v0.7.17) with reference mouse genome (GRCm39) was used to remove host mapping sequences. Remaining reverse reads were
mapped to the mouse gut bacterial reference (created as described in “Generation of mouse gut bacterial reference”) using Kraken2 (v.2.0.9)
(confidence 0.01). Reads originated from GF and SPF mice were mapped to the mouse gut bacterial reference, while reads originated from
ASF mice were mapped to the ASF reference. Taxonomy assignments made by Kraken2 were improved using the deep learning model. UMIs
with identical spatial barcodes and taxonomical assignments were collapsed using UMI-tools (v.1.0.0) resulting in a bacteria-by-barcode
matrix. H&E images were processed using SpoTteR (https://github.com/klarman-cell-observatory/SpoTteR) where centroid coordinates were
used as probable grid points and a rectangular grid was then fitted to these probable points using a local optimizer (nlminb, v.3.6.3). Splotch
(v1.0) (https://github.com/tare/Splotch) is a hierarchical probabilistic that captures variation in ST data through modeling of different study
design covariates such as individual’s age or mouse condition, and was used for statistical analysis of spatial data. All custom code is available
at: XXX

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data have been deposited in the Single Cell Portal under accession SCP1447 (https://singlecell.broadinstitute.org/single_cell/study/SCP1447).
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Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The number of biological and technical replicates was chosen based on preliminary experiments, so as to provide sufficient power for
comparison. In each condition reported in the study, we used at least 3 independent mouse tissue sections to describe that condition.

Data exclusions  No data was exuded from the study.

Replication In total, we applied SHM-seq to 124 tissue sections and collected data from 15,321 spatial spots (covered by the tissue) across the three
conditions. All attempts at replication were successful.

Randomization  Animals were randomly distributed into cages and ear-punched by animal care staff. Cages of animals were randomly chosen for all
experiments.

Blinding Blinding was not relevant in this study because our experiments did not involve any human subjects and all data collectection, processing and
analysis methods were quantitative and identical across all experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods
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Animals and other research organisms
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Laboratory animals Adult (>6 weeks of age) C57BL/6 specific pathogen-free mice (SPF), Adult C57BL/6 germ-free mice (GF) and Adult C57BL/6 germ-free
mice that have been colonized with ASF. Adult C57BL/6 germ-free mice (denoted GF) were obtained from Taconic Biosciences (USA)
and maintained in a gnotobiotic environment. Some of these mice were randomly selected and inoculated with ASF31 over several
generations and used when >6 weeks of age. After colonization, ASF mice (denoted ASF) were housed in sterile conditions, and
tested with PCR to ensure sterility was maintained. Animal housing room temperatures are monitories and maintained at all times
according to species-specific needs. Humidity is maintained at 30-70%. Light intensity and light cycle timing were carefuly regulated
by Broad Institute animal facilities. Automated light timers ensured a consistent light&dark cycle.

Wild animals No wild animals were used in this study.
Reporting on sex N/A
Field-collected samples  No samples were collected in the field.

Ethics oversight Adult C57BL/6 specific pathogen-free mice (SPF) were purchased from The Jackson Laboratory (Bar Harbor, ME) and maintained in
accordance with ethical guidelines monitored by the Institutional Animal Care and Use Committees (IACUC) established by the
Division of Comparative Medicine at the Broad Institute of MIT and Harvard, and consistent with the Guide for Care and Use of
Laboratory Animals, National Research Council, 1996 (institutional animal welfare assurance no. A4711-01), with protocol
0122-10-16.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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