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Polygenic risk scores (PRSs) predict anindividual’s genetic risk for complex
diseases, yet their utility in elucidating disease biology remains limited. We
introduce scPRS, agraph neural network-based framework that computes

single-cell-resolved PRSs by integrating reference single-cell chromatin
accessibility profiles. scPRS outperforms traditional PRS approachesin
geneticrisk prediction, as demonstrated across multiple diseases including
type 2 diabetes, hypertrophic cardiomyopathy, Alzheimer disease and
severe COVID-19. Beyond risk prediction, scPRS prioritizes disease-critical
cellsand, when combined with alayered multiomic analysis, links risk
variants to gene regulationin a cell-type-specific manner. Applied to these
diseases, scPRS fine-maps causal cell types and cell-type-specific variants
and genes, demonstrating its ability to bridge genetic risk with cell-specific
biology. scPRS provides a unified framework for genetic risk prediction
and mechanistic dissection of complex diseases, laying a methodological
foundation for single-cell genetics.

Polygenicrisk score! (PRS), also known as polygenic score?, isawidely
used approach to predict quantitative traits and disease risk on the basis
of anindividual’s genetic makeup. The method is built upon genetic
variants, including single-nucleotide polymorphisms (SNPs) and small
insertions and deletions (indels) that are common (minor allele fre-
quency (MAF) > 5%) in the population. PRS is a critical component of
precision genomic medicine and has promise in versatile utilities’, such
ashealthmanagement, disease screening and therapeutic intervention.
Traditionally, PRS computation involves a linear model that sums the
genotypes of selected variants, with each variant weighted according to
itseffect size as estimated by agenome-wide association study* (GWAS).
The clumping and thresholding (C+T) method serves as the basis of
constructing PRSs; however, other advanced approaches®® have also
beendeveloped to enhance prediction by considering nuanced genetic
architectures. Complex diseases exhibit notable cellular heterogeneity,

involving multiple tissues or cell types in their pathogenesis’. Risk vari-
ants, particularly noncoding ones, caninfluence disease susceptibility
and phenotypic variability through diverse cellular and molecular
processes'®'2, However, these multiple layers of complexity have been
oversimplified in conventional modeling, substantially limiting the
predictive power and interpretability of PRS®.

Inrecentyears, single-cell sequencing has emerged as a potent tool
todissect cellularand molecular heterogeneity across different tissues
and conditions™, offering unprecedented opportunities to explore
genome function at high resolution. Single-cell profiling data from
healthy tissues provide high-resolution annotations of the baseline
genome functioninwhich genetic variants are involved. Incorporating
functional annotationsinto PRS calculation will remove confounders
such as linked nonfunctional variants, better characterize a disease’s
genetic architecture and, therefore, improve the predictive accuracy
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Fig.1| Overview of scPRS and its applications. For a given disease, scPRS first
leverages GWAS summary statistics obtained from the discovery cohort and

the reference scATAC-seq or snATAC-seq dataset to calculate single-cell-level
PRSs with different parameters for individuals in the target cohort. Next, scPRS
embeds and propagates cell-level PRSs over the cell-cell similarity network
using a GNN. The final readout combines smoothed PRSs from all cells to predict

the disease risk. scPRS is trained to minimize the loss between predicted and

true disease labels. The trained model can be used to (1) predict disease risk for
unseen individuals; (2) prioritize disease-relevant cells and cell types; and (3) fine-
map disease risk variants, genes and disrupted genetic regulation in specific cell
types. UMAP, uniform manifold approximation and projection. The schematic
was created using BioRender.com.

and generalization. This has been demonstrated elsewhere®, including
our latest study’®. Moreover, the interpretability of PRS can be con-
siderably enhanced by incorporating functional information, adding
biological discovery functionality to predictive methods.

To bridge this gap, we propose a strategy that unifies genetics and
single-cell genomics, named single-cell genetics”, to study disease
genetics at single-cell resolution. In particular, we introduce scPRS,
a graph neural network™ (GNN)-based framework that enables indi-
vidualized genetic risk prediction at the single-cell level. scPRS lever-
agesthe GNNto construct genetic risk score by drawing insights from
reference single-cell chromatin accessibility measured by single-cell
or single-nucleus sequencing assay for transposase-accessible chro-
matin® (scATAC-seq or snATAC-seq). SCATAC-seq or snATAC-seq maps
single-cell-resolved candidate cis-regulatory elements® (cCREs), which
are specific DNA regions that potentially regulate the transcription of
nearby genes. Beyond enhanced disease prediction, scPRS is empow-
ered with fine-grained model interpretability, which allows for sys-
tematic discovery of cell types and cell-type-specific gene-regulatory
programs underpinning diseases.

We performed extensive simulation experiments to demon-
strate the effectiveness and robustness of scPRS in identifying
phenotype-relevant cells. We applied scPRS to four diseases—type 2
diabetes (T2D), hypertrophic cardiomyopathy (HCM), Alzheimer dis-
ease (AD) and severe COVID-19—and showcased its superior predictive
performance compared to traditional PRS methods. Through model
interpretation, scPRSidentified known disease-critical cell types as well
aspreviously uncharacterized cell populations. scPRS-powered func-
tional analysis further fine-mapped candidate causal variants, cCREs

and target genes within specific cell types, revealing a cell-type-specific
landscape of genetic regulation. Using drug perturbation data, we
validated our scPRS-nominated HCM genes, showing that the suppres-
sion of these genes in diseased cardiomyocytes (CDMs) was rescued
by mavacamten (a US Food and Drug Administration (FDA)-approved
HCMdrug) treatment. Supported by experiments, we identified anew
role of the AD risk variant rs7922621 in downregulating ANXA11 and
TSPAN14, specifically inmicroglia. We also demonstrated the negative
effect of suppressing these genes on microglial phagocytosis. Taken
together, scPRS offers a unified approach that encompasses GNN mod-
elingand GNN-inspired downstream analysis for simultaneous disease
predictionand biological discovery, establishing the methodological
foundation for single-cell genetics.

Results

Overview of scPRS

Thedesign principle of scPRSis to leverage single-cell epigenome pro-
filing to rationalize the calculation of PRS. The approach begins with
deconvoluting traditional PRS within individual cells on the basis of
their chromatin accessibility profiled by scATAC-seq, followed by the
integration of decomposed single-cell-level PRSs into a final score
capitalizing on cell-cell similarities (Fig. 1and Methods). In particular,
using GWAS summary statistics derived fromadisease cohort (referred
to as the discovery cohort) and an scATAC-seq dataset of healthy tis-
sue pertinent to the disease (referred to as the reference scATAC-seq
dataset), we compute aconditioned PRS for each individual within our
target cohort (independent with the discovery cohort) and for each
reference cell, in which we mask out genetic variants located outside
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open chromatin regions captured in that specific cell. Recognizing
the sparsity of scATAC-seq data, scPRS further refines per-cell PRS
features using a GNN?. This GNN operation serves the dual purpose
of denoising raw PRS features while capturing nonlinear relationships
between genetic signals and the cellular epigenome. In the final step,
scPRS aggregates smoothed single-cell-level PRSs and yields a final
disease risk score. The interpretability of scPRS is achieved by the
learned model weights accompanied with single cells that indicate
the contribution of different cells to the disease risk.

The functionalities of scPRS are exemplified by three downstream
tasks. First, scPRS predicts diseaserisk for unseenindividuals solely on
the basis of their genotypes (Fig. 1, step 1). Second, scPRS prioritizes
single cellsthat arerelevant to the disease, overcoming the resolution
constraint of predefined cell clusters (Fig. 1, step 2). Third, integrated
withamultiomicapproach, scPRS fine-maps causal variants, genes and
genetic regulation within prioritized cell types (Fig. 1, step 3).

Evaluation of scPRS using simulations

Wefirst performed simulation experiments to evaluate the capacity of
scPRSinidentifying phenotype-relevant cells. Assuming that the trait
‘monocyte count’is fully determined by genetic variants located within
monocyte-specific open chromatin regions?, we simulated mono-
cyte counts for individuals of agenotyped cohort® (n=401). We then
asked whether we could use scPRS to recapitulate monocytes as the
causal cell type. Specifically, we used areference scATAC-seq dataset™
(Extended DataFig.1a) of human peripheral blood mononuclear cells
(PBMCs) to identify monocyte-specific peaks (Methods). Onthe basis
of amonocyte count GWAS? defining variant effect sizes, we simulated
the monocyte count for each individual by calculating the C+T PRS
using only variantslocated within monocyte-specific peaks (Methods).
Next, we trained an scPRS model to predict simulated monocyte counts
from cell-level PRSs computed on all PBMCs. We observed that scPRS
predictions were significantly correlated with simulated monocyte
counts (r=0.77, P<2.2 x107%, Pearson correlation; Extended Data
Fig. 1b). The cells prioritized by scPRS (Methods) were significantly
enriched within monocytes (Z=39.58, P<1x107°, two-sided Fisher’s
exacttest; Extended DataFig.1c), demonstrating that scPRS captured
causal cells.

Human phenotypes such as complex diseases can be influenced
by various nongenetic factors, including environmental and lifestyle
factors®. Additionally, the measurement of phenotypes often carries
inherent noise. Therefore, it is important to assess the robustness of
scPRS by introducing noise and randomnessinto the simulation (Meth-
ods). As expected, we observed a progressive reduction in predictive
performance as we introduced larger amounts of noise (Extended
DataFig.1d). Notably, scPRS sustained its ability in uncovering mono-
cyteseveninthepresence of considerable noise terms (Extended Data
Fig.1le,fand SupplementaryFig.1a). Forexample, when we introduced
a noise term with the same amount of variance (o =1) as that of the
simulated phenotype, scPRS still accurately identified monocytes (area
under the curve (AUC) = 0.812; Extended Data Fig. 1e); the enrichment
of monocytes persisted even when three times the amount of variance
was added (0=3; Z=2.68, P<1x107, two-sided Fisher’s exact test;
Extended Data Fig. 1f).

We further introduced peak noise into simulation by replacing
a proportion of randomly selected monocyte-specific peaks with
non-monocyte-specific peaks. Using these mixed peaks, we generated
noisy monocyte counts for individuals. We then assessed whether
scPRS could still identify monocytes from the noisy data. We found
that scPRS was able to identify monocytes with peak noise levels up to
90% (Supplementary Fig. 1b,c). We also tested different model hyper-
parameter settings and observed no significant variationin predictive
performance (Supplementary Fig. 1d). All these results demonstrate
the robustness of scPRS against different sources of noise, randomness
and model settings.

Lastly, we conducted a negative control experiment by exclud-
ing monocyte-related cells, including monocytes and cells contain-
ing more than 40 monocyte-specific peaks (-1% of all peaks used for
simulating monocyte counts) from the PBMC dataset. Unsurpris-
ingly, the predictive performance of scPRS was significantly reduced
(r=0.488 (mean) + 0.085 (s.d.); Supplementary Fig. 1e) compared to
scPRS trained onthe full dataset. Moreover, scPRS exhibited increased
nonspecificity in prioritizing monocyte-count-relevant cells (Supple-
mentary Fig. 1f), showing a similar saturation pattern in large-noise
scenarios (Extended Data Fig. If).

scPRS accurately predicts diseases

We applied scPRS to multiple diseases, including T2D, HCM, AD and
severe COVID-19. We used UK Biobank? (UKBB) data to construct target
cohorts for T2D and AD and our in-house whole-genome sequencing
(WGS) data” for HCM (Methods). The severe COVID-19 target cohort
was constructed on the basis of the Veterans Affairs (VA) Million Vet-
eran Program?® (MVP) WGS dataset (Methods). The discovery GWAS
dataset® **was carefully chosen to ensure nonoverlap with the target
cohort for each disease. Multiple reference scATAC-seq datasets of
disease-relevant tissues were used, including the pancreas® for T2D,
left ventricle® for HCM, frontal cortex® for AD and lung** for severe
COVID-19 (Methods).

For benchmarking, we used six well-established PRS methods:
C+T (implemented by PLINK*), LDpred2 (including LDpred2-inf,
LDpred2-grid,and LDpred2-auto)’, Lassosum’and PolyPred” (Methods).
Amongthese baseline methods, PolyPred uses functional annotations
to compute prior causal probabilities of variants®®, for which we used
SCATAC-seq peaks as the annotation to ensure a fair comparison. To
examine the predictability of nonpeak and nongenetic factors, we
also built a C+T PRS model on the basis of variants situated beyond
open chromatin regions and a logistic regression (LR) model using
individual’s age, sex and the first ten principal components (PCs) as
input features (Methods).

Remarkably, scPRS-based methods consistently outperformed
all baseline PRS approachesin all diseases (Fig.2a and Supplementary
Fig. 2a,b). In particular, for HCM, AD and severe COVID-19, scPRS
achieved superior predictive performance evaluated by both the
areaunder the receiver operating characteristic curve (AUROC; HCM,
0.692 + 0.079; AD, 0.743 + 0.017; severe COVID-19, 0.591 + 0.029)
and the area under the precision-recall curve (AUPRC; HCM,
0.781+0.062; AD, 0.751 £ 0.035; severe COVID-19, 0.281 + 0.034)
compared to all baseline PRS methods (adjusted P < 0.1, Benjamini-
Hochberg (BH) correction; Fig. 2a and Supplementary Fig. 2a,b),
exceptfor C+T and LDpred2-auto, whichyielded comparable AUPRC
values in some cases.

For T2D, scPRS presented performance comparable to other
methods (AUROC, 0.608 + 0.009; AUPRC, 0.598 + 0.032; Fig. 2a and
Supplementary Fig. 2b). Integrating nonpeak C+T PRSsinto the scPRS
model (referred to as scPRS+; Methods) further boosted its perfor-
mance (AUROC, 0.635 + 0.018; AUPRC, 0.633 + 0.036), outperform-
ing all baseline methods (adjusted P< 0.1, BH correction; Fig. 2a and
Supplementary Fig. 2b), except for C+T where the AUROC remained
comparable. These results suggest that the variants located outside
pancreas cCREs, such as protein-coding® and splicing*° variants, or
variants within cCREs specific to other tissues* may also contribute
to T2D susceptibility. This is also supported by the observation that a
predictor built solely on nonpeak PRSs (referred to as nonpeak C+T)
performed best among all methods (AUROC, 0.638 + 0.023; AUPRC,
0.633 + 0.039; Fig. 2a and Supplementary Fig. 2b).

We also constructed peak PRSs across different cell types anno-
tated in the scATAC-seq datasets (Methods). scPRS outperformed
all single-cell-type and multi-cell-type PRSs for all diseases (Supple-
mentary Fig. 3), underscoring the advantage of single-cell-resolved
modelingin disease prediction.
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Fig. 2| Predictive performance comparison between scPRS and baseline
methods. a, Bar plots of AUROC values of different models. The training and
testing procedure was conducted for ten repeats with different random seeds.
Training, validation and test dataset splits were kept identical across different
methods to ensure a fair comparison. scPRS+, scPRS model integrating nonpeak
PRSs; scPRS+covar, scPRS model integrating nonpeak PRSs and covariates (that

is, age, sex and first ten PCs); C+T (nonpeak), LR model of nonpeak C+T PRSs;
Covar, LR model of covariates. Performance comparison was conducted using a
one-sided paired t-test. The mean and 95% confidence interval (Cl) are annotated
using the bar plot and error bar, respectively. b, ROC curves of different models
evaluated onindependent target cohorts. The performance of arandom
predictoris shown by the dashed gray line.

The covariate models exhibited limited predictive power for T2D
and AD (Fig. 2a and Supplementary Fig. 2b) because of the fact that
we matched age, sex and population between cases and controls in
constructing the target cohorts. Not surprisingly, the predictive perfor-
mance reached a peak for all diseases after integrating all other factors,
including nonpeak PRSs and covariates, into the scPRS model (referred
to as scPRS+covar; Fig. 2a and Supplementary Fig. 2a,b).

We tested the use of alternative scATAC-seq datasets in scPRS,
including those from a different study** (for AD), a different donor
(for HCM) and a different sampling (for T2D). We found that scPRS
yielded comparable predictive performance (Supplementary
Fig. 4a,b), demonstrating its robustness against distinct choices of
reference single-cell datasets. To examine theimpact of cellnumbers,
we compared the predictive performance of T2D scPRS models using
different numbers of cells randomly sampled from the pancreas
SCATAC-seq dataset. We observed that scPRS exhibited moderately
stable predictive performance across a broad range of cell num-
bers (Supplementary Fig. 4c), with an increase in performance as
more cells were sampled. We also assessed the impact of input PRS
choices. In particular, we randomly removed input PRSs, in which a
certain proportionof randomly selected PRS features were set to zero
for all samples in each training-testing procedure. We then evalu-
ated the predictive performance of scPRS across different dropout
rates. scPRS yielded stable predictive performance with only aslight
decrease as dropout rates increased up to 70% (Supplementary

Fig. 4d), whereas performance was substantially reduced at higher
dropoutrates.

As a negative control, we chose PBMCs as an unrelated system
for T2D. scPRS trained on PBMC scATAC-seq data presented inferior
predictive performance compared to the model trained on the pan-
creas data (Supplementary Fig. 5a), highlighting the importance of
choosing reference single-cell data from disease-relevant systems or
tissuesinscPRS.

Lastly, we sought to evaluate scPRS onindependent target cohorts.
For T2D, we used the Genetics of T2D Consortium* (GoT2D) genotype
dataset as the independent cohort; for HCM, because the discovery
GWAS was performed on UKBB European (EUR) samples, we con-
structed an independent cohort comprising non-EUR HCM samples
and matched controls from UKBB; for AD, we used the AD Neuroimag-
ing Initiative” (ADNI) WGS dataset. We trained scPRS models on the
basis of the original target cohorts and all PRS methods were tested on
thenewindependent target cohorts. Notably, scPRS still outperformed
all baseline methods for HCM and AD (Fig. 2b and Supplementary
Fig.2c).Similarly, scPRS+furtherimproved the prediction for T2D, sur-
passing all other baseline PRS approaches (Fig. 2b and Supplementary
Fig. 2c). Interestingly, for HCM, even when scPRS was trained on EUR
samples, it performed comparably for non-EUR samples (AUROC, 0.692
(EUR) versus 0.643 (non-EUR); Fig. 2b and Supplementary Fig. 2c), sug-
gesting its portability across different populations, although further
validation with additional datais needed.
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ORs and Pvalues were determined using a one-sided Fisher’s exact test. Cell type
abbreviations: Fibro, fibroblast; LEC, lymphatic endothelial cell; Peri, pericyte;
Schw, Schwann cell; SmMus, smooth muscle cell; VEC, vascular endothelial cell.
For robustness, small cell clusters with fewer than 150 cells were excluded from
analysis and visualization for all diseases.

scPRS prioritizes disease-relevant cells

Next, we sought to examine the disease-cell association using scPRS.
Foreachdisease, wefirst trained 100 scPRS models with different ran-
domseedsbased ontheentire target cohortand then prioritized cells
whose model weights consistently exceeded those of background
cells, designating them as disease-relevant cells (Methods). We also
harnessed the knowledge of annotated cell types to facilitate biological
interpretation (Methods).

T2D. There were 14 cell typesidentified in the human pancreas™ (Fig. 3a,
left,and Methods), among which two hormone-high cell types (namely,
GCG"e" alpha cells and INS"e" beta cells) were significantly enriched

with scPRS-selected cells (adjusted P< 0.1, BH correction; Fig. 3a). The
original study** that generated the pancreas snATAC-seq dataset had
linked INS"e" and INS"" beta cells to T2D risk using the stratified linkage
disequilibrium (LD) score regression* (sLDSC). As another benchmark,
we applied SCAVENGE*, a computational method that also enables
single-cell-resolved cell prioritization, to the same data (Methods). In
addition to GCG"&" alpha cells and INS"&" beta cells, SCAVENGE prior-
itized GCG"" alpha cells (adjusted P< 0.1, BH correction; Supplemen-
tary Fig. 6a).In comparison, cells selected by PBMC-based T2D scPRS
exhibited nonspecificity across cell types (Supplementary Fig. 5b).
While pancreatic beta cell dysfunction and cell death are known
as key processes in the development of T2D (ref. 47), it is increasingly
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evident that T2D may result from defects in multiple cell types*s. Nota-
bly, the alpha cell, which serves as the counterpart to the beta cell
and is responsible for producing glucagon, has been increasingly
recognized for its role in T2D pathogenesis*~*. Single-cell profiling
further revealed the diversity within islet endocrine cells, spanning
from fine-grained cell states to a continuous spectrum*’, Our findings,
coupled with prior research***?, underscore the complexity of T2D
pathogenesisinvolving multiple cell types within the pancreaticislets.

HCM. In the human left ventricle, a total of 17 cell types were identi-
fied (Fig. 3b, left, and Methods). Among these, two cell types, includ-
ing CDMs and pericytes, presented significant enrichment with
scPRS-selected cells (adjusted P < 0.1, BH correction; Fig. 3b). As com-
parison, we found no genetic enrichment within snATAC-seq peaks of
all left-ventricle cell types using sLDSC (Supplementary Fig. 6b and
Methods). SCAVENGE also linked CDMs to HCM (adjusted P< 0.1,
BH correction) but enrichment within pericytes was not observed
(Supplementary Fig. 6¢). CDMs, the primary cell type involved in
the process of hypertrophy and thickening of heart muscle, have a
pivotal role in HCM pathogenesis®. Pathogenic mutations disrupt
the normal function of CDMs, leading to structural and functional
abnormalities®, such as myocardial hypertrophy and fibrosis, con-
tractile dysfunction and arrhythmias. Our scPRS prediction not only
reinforces the association between CDM dysfunction and HCM but
also extends this connection from protein function to noncoding
generegulation.

Cardiac pericytes interact with endothelial cells through both
physical and paracrine mechanisms and are integral in maintaining
cardiac and vascular homeostasis®. Despite being relatively under-
studied, the loss and dysfunction of pericytes have been associated
with cardiomyopathy®". Our results confirm this connection and
shed light on the potential causal involvement of pericytes in cardiac
hypertrophy.Importantly, this link would not have been identified with
either sLDSC or SCAVENGE.

AD. Eight major cell types were identified in the human cortex® (mid-
dle frontal and superior and middle temporal gyri; Fig. 3¢, left, and
Methods), among which three cell types were significantly enriched
with scPRS-prioritized cells (adjusted P< 0.1, BH correction; Fig. 3c),
including microglia, astrocytes and oligodendrocyte progenitor
cells (OPCs). It is noteworthy that the original study® that gener-
ated the brain scATAC-seq dataset linked only microglia to AD using
sLDSC. Applying SCAVENGE to the same data revealed the same set
of AD-relevant cell types as scPRS (adjusted P< 0.1, BH correction;
Supplementary Fig. 6d).

The relationship between microglia and AD has been well estab-
lished in the literature®. Microglia have diverse roles, including
immune response, phagocytosis and synapsis modulation, contribut-
ing extensively to the development and progression of AD pathology.

Moreover, genetic studies consistently prioritize microglia as the
most prominentbrain cell type associated with AD***°. Inrecent years,
accumulating evidence has underscored the essential role of astrocytes
in AD pathogenesis through their reactivation or dysfunction®®,
Additionally, latest research has linked OPCs to AD, likely because of
its function in immune modulation and remyelination®. Our results
reinforce these findings and offer further insights into the cellular
heterogeneity of AD pathogenesis.

Severe COVID-19. scPRS-prioritized cells were significantly enriched
in macrophages, natural killer (NK) cells and monocytes (adjusted
P<0.1,BHcorrection; Supplementary Fig. 6e). Dysregulated activation
of macrophages contributes to tissue damage and disease progression
through excessive cytokine production® %, NK cells, crucial for early
defense against viral infections, may exacerbate the cytokine storm
when impaired®’°. Monocytes, as precursors to macrophages, have
also been linked to severe COVID-19 because of their role in inflam-
mation and tissue damage’ 7. In particular, monocytes were also
prioritized by SCAVENGE** for severeiillness.

Of note, scPRS-prioritized cell types aligned with the top-
performing single-cell-type peak PRSs (Supplementary Fig. 3), pro-
viding additional insight into the rationale behind scPRS-based cell
prioritization.

scPRSreveals disease regulatory programs

As per model design, scPRS prioritizes cells that contain
disease-associated variants within their differentially accessible
chromatin regions. This feature empowers us to delve deeper into
theregulatory circuits that contribute upstream of the disease across
different cell types. To achieve this, we devised a layered multiomic
strategy based on the trained scPRS model to systematically map
cell-type-specific gene regulation underlying diseases (Fig. 4a and
Methods).

For each disease-relevant cell type nominated by scPRS, we
first identified the cCREs that were differentially accessible within
scPRS-selected cells. Within these, we further prioritized cCREs
(referred to as disease-relevant cCREs) that were significantly enriched
with disease-associated variants using MAGMA™. To map cCRE-gene
interactions, we performed coaccessibility analysis™ on the basis of
the scATAC-seq data, supplemented by the closest-gene strategy given
its effectiveness innominating disease genes’. For each cell type, this
procedureyielded aset of candidate disease genes associated with the
disease-relevant cCREs.

Tofine-map causal variants within disease-relevant cCREs, we used
asequence-based deep learning model”””° that predicted chromatin
accessibility across different celltypes fromthe DNA sequence (Supple-
mentary Fig.4aand Methods). We trained the model using scATAC-seq
data and then used it to predict the functional effects of individual
variants on chromatin accessibility across cell types (Supplementary

Fig. 4| Cell-type-specific genetic regulation in T2D. a, Schematic of scPRS-
based multiomic strategy for uncovering disease-relevant genetic regulation.
RNAIi, RNA interference. The schematic was created using BioRender.com.

b, Enrichment of T2D-associated variants within cCREs that were differentially
accessible in scPRS-prioritized cells. LD threshold r* = 0.1 was used in clumping
toretrieve anindependent variant set (n = 783,082). Pvalues were determined
using atwo-sided Fisher’s exact test. The log,,(OR) and 95% Cl are annotated by
the dots and error bars, respectively. ¢, Candidate T2D genes and GO enrichment
analysis results. Significant GO terms (adjusted P < 0.1, BH correction) with OR > 5
arevisualized. d, Enrichment of TFBS-disrupting variants within seq-DL-panc-
prioritized variants (various thresholds applied). seq-DL-panc, the sequence
deep learning model trained on the pancreas snATAC-seq data. Enrichment was
estimated by ¢ statistics, where a total of 6,865,604 variants were tested. The box
plot center line, limits and whiskers represent the median, quartiles and 1.5x the
interquartile range (IQR), respectively. The dots indicate outliers falling above

or below the end of the whiskers. Crosses indicate adjusted P> 0.1. e, Enrichment
of seq-DL-panc-prioritized T2D-associated variants (various thresholds applied)
within T2D-cCREs. ORs and Cls were determined using a two-sided Fisher’s exact
test. Thelog,,(OR) is annotated by the solid line and 95% Cl is represented by the
shaded area. The red dashed line indicates null enrichment. f, Illustration of the
genetic regulation of rs10811660 in INS"e" beta cells. In the bar plot, the asterisk
indicates that the percentage of seq-DL-panc score is greater than 85%. In the
gene plot, the mapped target gene is highlighted in red. In the link plot, links with
coaccessibility > 0.05 are visualized; Coaccess, coaccessibility. g, The UMAP plot
of the pancreas snATAC-seq dataset showing the expression of MAFA in individual
cells. Gene expression was estimated on the basis of gene activity computed

by Signac. INS"¢" beta cells are highlighted in the dashed closed curve. h, Ratio
between observed and expected cell countsin GCG"e" alpha (left) and INS"®" beta
(right) cells. Pvalues were determined using a two-sided chi-square test.
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Fig. 7a and Methods). This completed the map of disease-relevant
regulatory circuits composed of variant—-cCRE-gene trios. Follow-up
experiments were carried out in corresponding cell types to validate
our predictions.

T2D. We first observed a significant enrichment of T2D-associated
variants (GWAS P < 5 x10°%) within differentially accessible cCREs for
scPRS-prioritized cells (P<1x 107, two-sided Fisher’s exact test; Fig. 4b,
Supplementary Fig. 7b and Methods). Using MAGMA, we identified 19
and 22 T2D-relevant cCREs (referred to as T2D-cCREs) in GCG"e"alpha
and INS"¢"beta cells, respectively (Supplementary Fig. 7cand Supple-
mentary Table1). Motif enrichment analysis for T2D-cCREs uncovered
transcription factors (TFs) of functionalimportancein corresponding
cell types (Supplementary Fig. 7c and Methods). For example, TEAD1
is a critical beta cell TF necessary for coordinating various aspects of
adult beta cell function, including proliferative quiescence, mature
identity and functional competence to uphold glucose homeostasis®**',
MAFB, whose motifis enriched in both cell types, is another pivotal TF
intheislet. Itis essential for the productionand secretion of glucagon
in alpha cells® and for the maturation of beta cells®. A recent study
demonstrated that XBP1 has a vital role in maintaining beta cell identity
andrepressing beta-to-alphacell transdifferentiation, andis required
for beta cell compensation and the prevention of diabetes in insulin
resistance states®*.

By mapping target genes of T2D-cCREs, we identified 45 and 29
candidate risk genes in GCG"&"alpha and INS"e" beta cells, respectively
(Fig. 4c and Supplementary Table 1). The function of alpha cell genes
was enriched with ‘pancreas development’ (GO:0031016) and ‘RNA
polymerase core enzyme binding’ (GO:0043175) (adjusted P< 0.1, BH
correction), whereas the function of beta cell genes was enriched with
‘response to hexose’ (GO:0009746), ‘positive regulation of insulin
secretion’ (GO:0032024) and ‘response to glucose’ (GO:0009749)
(adjusted P< 0.1, BH correction).

Trained on the pancreas snATAC-seq data, the sequence model
exhibited high accuracy in peak prediction (AUROC, 0.819 + 0.011;
AUPRC, 0.639 + 0.044; Supplementary Fig. 7d). We validated our
variant effect prediction using two different approaches: expression
quantitative trait locus (eQTL) analysis and TF-binding site (TFBS)
prediction (Methods). Leveraging eQTL datasets generated inrelevant
tissues®*%, we observed that eQTLs tended to display larger effects on
the basis of deep learning prediction in related cell types compared
to non-eQTLs (Supplementary Fig. 7e). Additionally, variants with
larger effects were more likely to alter TF binding® (Fig. 4d). These
results indicate that the sequence model had captured underlying
gene regulation mechanisms. We also examined functional effects of
T2D-associated variants (GWAS P < 0.05) located within T2D-cCREs
in GCG"e" alpha and INS"¢" beta cells (Methods). Variants with larger
effect sizes showed higher enrichmentin T2D-cCREs in corresponding
cell types (Fig. 4e), providing additional support for the functional
importance of T2D-cCREs we identified.

Combining multiomic evidence from eQTLs, TF binding and
sequence model prediction fine-mapped T2D risk variants with func-
tional implications (Supplementary Fig. 7f,g and Supplementary
Table1). One variant of particular interest is rs10811660, a T2D GWAS
SNP*' (GWAS P=1.30 x 107", B=-0.13, effect/alternative allele is A)
residing within an INS"" beta cell-specific T2D-cCRE (chr9:22,133,835-
22,134,336; P=1.91 107, log, fold change (FC) = 4.99; Fig. 4f). We
predicted that the alternative allele specifically reduced the cCRE
accessibility in INS"&" beta cells (INS"&" beta cell Z=-2.43, percen-
tile =96.84%; Fig. 4f). Furthermore, the affected cCRE was found tobe
coaccessible with CDKN2A (coaccessibility = 0.159; Fig. 4f). Previous
studies demonstrated that the p16 inhibitor of cyclin-dependent kinase
(p16™%*"), encoded by CDKN2A, restricts beta cell proliferation during
aging, restricts beta cell regeneration, mediates overnutrition-related
senescence and reducesinsulin secretory function’. While rs10811660
hasalso beenlinked toa CDKN2A paralog, CDKN2B, because of their dis-
tance proximity?®, our coaccessibility analysis suggested that this asso-
ciationmight be afalse-positive nomination (Fig. 4f). This conclusion
was further supported by the islet eQTL data®, wherein rs10811660 was
significantly associated with the expression of CDKN2A (P=9.94 x10™*,
Z=3.29) rather thanthat of CDKN2B (P> 0.05,Z= 0.40; Supplementary
Fig. 7h). Additionally, we found that the alternative allele A disrupted
the binding motif of MAFA (P <1x10™*, motifbreakR"; Fig. 4fand Meth-
ods), a critical regulator of pancreatic beta cell function®?, which was
more highly expressed in betacells (Fig. 4g). Collectively, our analysis
suggests a geneticregulation influencing T2D risk; the T2D risk allele G
(rs10811660) increases the abundance of MAFA binding, which further
upregulates CDKN2A expression in INS"e" beta cells. This aligns with
previous evidence implicating that higher expression of CDKN2A may
increase T2D risk®.

Lastly, we sought to characterize scPRS-selected cells beyond the
resolution of predefined cell types. In particular, we compared selected
cells to unselected ones from the same cell type. Differential acces-
sibility analysis identified two peaks (chr10:94,479,864-94,480,365
and chr10:114,780,533-114,781,034) that were significantly enriched
inscPRS-selected GCG"e" alpha cells and three peaks (chr9:22,133,835-
22,134,336, chr10:114,758,079-114,758,580 and chr10:114,780,533~
114,781,034) enriched within INS"e" beta cells. These marker peaks
defined novel cell populations relevant to T2D (Supplementary Fig. 8),
asinformed by genetic risk. Consistent with this, we further classified
eachofthesetwo celltypesinto subtypesonthebasis of the accessibility
of marker peaks and observed significant enrichment of scPRS-selected
cellsin the marker-defined subtype (P<1x 107, two-sided chi-square
test; Fig. 4h). Of note, the peak chr10:114,780,533-114,781,034 was
shared between the selected populations of alpha and beta cells; all
marker peaks contained at least one T2D GWAS variant (Supplementary
Table1). The marker peaks of the selected GCG"€"alpha cellswere linked
togenessuchas TCF7L2and CPEB3, with TCF7L2also pinpointedin the
selected INS"&"beta cells, suggesting shared T2D biology across these
two cell populations. The peak chr9:22,133,835-22,134,336 highlighted

Fig. 5| Cell-type-specific genetic regulation in HCM. a, Motif enrichment within
HCM-cCREs identified in two HCM-relevant cell types including CDMs and
pericyte. Motif enrichment was measured by AUC. Row-wise standardization was
performed. Only significant enrichment (adjusted P < 0.1, Bonferroni correction)
iscolored. b, Bar plot of GO enrichment for CDM HCM risk genes. Significant GO
terms (adjusted P < 0.1, BH correction) with OR > 5 are shown. ¢, The network
module M16 enriched with pericyte HCM genes. P values were determined using
aone-sided hypergeometric test. Edges between module genes are shown.

d, Lollipop chart of GO enrichment (biological process) for M16 genes.
Significant GO terms (adjusted P < 0.1, BH correction) are shown. e, Schematic of
iPS cell RNA-seq experiments. Myk, mavacamten; Omec, omecamtiv mecarbil.
The schematic was created using BioRender.com. f, Expression FC comparison
between HCM risk genes and the background transcriptome in CDMs across
different conditions. The box plot center line, limits and whiskers represent the

median, quartiles and 1.5x the IQR, respectively. P values were determined using
atwo-sided t-test (n =16,160). NS, not significant; stat, statistics. g, Expression FC
comparison between HCM risk genes and the background transcriptome in HCM-
relevant cell types based on an HCM snRNA-seq study. The box plot center line,
limits and whiskers represent the median, quartiles and 1.5x the IQR, respectively.
Pvalues were determined using a two-sided ¢-test (n =11,683). h, lllustration of
the genetic regulation of rs886125in CDMs. In the bar plot, the asterisk indicates
aseq-DL-heartscore percentage greater than 85%; seq-DL-heart, the sequence
deep model trained on the left-ventricle snATAC-seq data. In the gene plot,
differentially expressed target genes are mapped (in red). Bkg, background.

i, The UMAP plot of the left-ventricle snRNA-seq dataset showing the expression
of ZNF382inindividual cells. Expression was estimated by normalized gene
count. CDMs are highlighted in the dashed closed curve.
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above (Fig. 4f) was one of the marker peaks of the selected INS"&"beta
cells; this peak contained the T2D risk SNP rs10811660, underscoring
the cellular specificity of rs10811660 in impacting T2D risk.

HCM. We identified 137 and 358 HCM-relevant cCREs (referred to as
HCM-cCREs) that were linked to 199 and 492 target genesin CDMs and
pericytes, respectively (Supplementary Table 2). We observed only
minimal overlap, with just one cCRE and 24 genes shared between these
two cell types, highlighting their cell type specificity.

Our motif enrichment analysis for HCM-cCREs revealed TFs that
have critical roles in corresponding cell types (Fig. 5a). For instance,
TEADL1 is a pivotal regulator involved in maintaining the proper func-
tioning of adult CDMs, whose loss of function has been associated with
dilated cardiomyopathy®. GATA4 exerts notable control over cardiac
gene expression, impacting embryonic development, CDM differentia-
tion and stress responsiveness of the adult heart™. NKX2-5is a central
regulator of heart development and pathogenic mutations within it
contribute to progressive cardiomyopathy and conduction defects®.
Additionally, RBPJinactivation has been linked to the development of
disease-promoting properties in brain pericytes’. STAT3 serves as a
key regulator of cell-cell communication within the heart, a critical
aspect of pericyte functionality”.

HCM risk genes identified in CDMs exhibited functional impor-
tancein CDMs and cardiomyopathy, such as ‘myosin heavy chain bind-
ing’ (GO:0032036), ‘cardiac muscle contraction’ (GO:0060048) and
‘sarcomere organization’ (GO:0045214) (adjusted P< 0.1, BH correc-
tion; Fig. 5b). No Gene Ontology (GO) enrichment was observed for
pericyte genes, suggesting a marked functional diversity within this
gene set. To better dissect this heterogeneity, we carried out a net-
work analysis on the basis of the protein-protein interactions (PPls)”®
(Methods), in which one module M16 was significantly enriched with
HCM pericyte genes (P=5.07 x 107, hypergeometric test; adjusted
P=0.034,BH correction; Fig. 5¢c). Genes within this module displayed
GO enrichment in various pericyte functions, such as ‘cell-cell adhe-
sion mediated by cadherin’ (GO:0044331), ‘cell-cell junction assembly’
(G0O:0007043) and ‘cadherinbinding’ (GO:0045296) (adjusted P< 0.1,
BH correction; Fig. 5d and Supplementary Fig. 9a).

To better understand the gene function in the disease context,
we analyzed an RNA sequencing (RNA-seq) dataset” of induced
pluripotent stem cell (iPS cell)-derived CDMs obtained from 43 HCM
cases and 31 healthy controls (Fig. 5e). Bulk RNA-seq profiling was
conducted under four conditions: iPS cells, differentiated CDMs,
mavacamten-treated’” (an HCM drug recently approved by FDA) CDMs

and omecamtiv mecarbil'®® (a heart failure drug serving as the nega-
tive control) treated CDMs. Notably, although the CDM HCM genes
exhibited no expression difference iniPS cells between HCM cases and
healthy controls, their expression was significantly reduced in differen-
tiated HCM CDMs compared to control cells (P=8.95 x 1073, two-sided
t-test; Fig. 5f, Supplementary Table 3 and Methods). Intriguingly, the
downregulation of HCM genes was rescued by mavacamten treatment
(P=0.017,two-sided t-test) but persisted in omecamtiv mecarbil treat-
ment (P> 0.05, two-sided t-test; Fig. 5f). The reduced expression of
HCM genes identified in CDMs and pericytes was also confirmed in
corresponding cell types using anindependent HCM single-cell tran-
scriptome dataset'” (CDM P = 0.02, pericyte P= 0.048, two-sided t-test;
Fig.5g), while showing cell type specificity (Supplementary Fig. 9b,c).
Theseresults demonstrate the disease relevance of our HCM genes.

We trained a different sequence deep learning model on the basis
ofthe snATAC-seq dataset of the left ventricle (AUROC, 0.846 + 0.019;
AUPRC, 0.658 + 0.032; Supplementary Fig. 9d). Variant effects pre-
dicted by the model agreed well with eQTL profiling®'°> and TFBS
prediction (Supplementary Fig. 9e,f). HCM-cCREs presented increased
enrichment of HCM-associated variants (GWAS P < 0.05) with larger
effects (Supplementary Fig. 9g).

The sequence deep learning prediction, together with eQTL and
TFBS analyses, fine-mapped novel cell-type-specific HCMrisk variants
(Supplementary Fig. 9h,i and Supplementary Table 2). As an exam-
ple, the CDM-specific HCM-cCRE (chr12:110,927,025-110,927,526;
P=2.5x107, log, FC=1.94; Fig. 5h) contained a nominally significant
GWAS®® variant rs886125 (GWAS P=0.019, 8 = -0.149, effect/alterna-
tive allele = G) and was coaccessible (coaccessibility = 0.367) with
MYL2, awidely recognized HCM gene®’. On the basis of our predic-
tions, the alternative allele G specifically decreased the cCRE within
CDMs (CDM Z=-1.10, percentile = 87.62%; Fig. 5h) and it disrupted the
TFBS of ZNF382 (P<1x10™*, motifbreakR; Fig. 5h), which is known as
atranscriptional repressor'®. These results together suggest that the
risk-increasing allele A, bound by ZNF382, would lower the expres-
sion of MYL2in CDMs. This was supported by the eQTL data®® inwhich
the risk allele A was associated with decreased expression of MYL2
(P=0.011, 3=0.125; GTEx artery aorta). Additionally, using our paired
snRNA-seq data, we found that ZNF382 was more highly expressed in
CDMs (Fig. 5i), highlighting its cell-type-specific role in gene regulation.

AD. We first confirmed a significant enrichment of AD-associated
variants (GWAS P < 5 x 107®) within differentially accessible cCREs
in scPRS-prioritized cells (P <5 x 1073, two-sided Fisher’s exact test;

Fig. 6 | Cell-type-specific genetic regulation in AD. a, Venn diagram of
AD-relevant cCREs (top) and genes (bottom) identified by the scPRS-based
multiomic strategy. AST, astrocyte; MG, microglia. b, Motif enrichment within
AD-cCREs across different cell types. Motif enrichment was measured by AUC.
Column-wise standardization was performed. Only significant enrichment
(adjusted P < 0.1, Bonferroni correction) is colored. Pvalues were determined
using a hypergeometric test. ¢, Enrichment of seq-DL-prioritized AD-associated
variants (various thresholds applied) within AD-cCREs. ORs and Cls were
determined using a two-sided Fisher’s exact test. The log,,(OR) is annotated by
the solid line and the 95% Clis represented by the shaded area. The red dashed
lineindicates null enrichment. d, Summary statistics of fine-mapped AD risk
variants in microglia using different annotations. e, lllustration of the genetic
regulation of rs7922621in microglia. Box plot: the box plot center line, limits, and
whiskers represent the median, quartiles and 1.5x the IQR, respectively. Pvalues
were determined using a two-sided ¢-test. ref, reference; alt, alternative. In the bar
plot, the asterisk indicates a seq-DL-brain score percentage greater than 85%;
seq-DL-brain, the sequence deep model trained on the cortex scATAC-seq data.
Inthe gene plot, differentially expressed target genes are mapped (inred). In the
link plot, links with coaccessibility > 0.05 are shown. Coaccess, coaccessibility.
f, The UMAP plot of the cortex scATAC-seq dataset showing the expression of
TFAP2Ainindividual cells. In the violin plot, Pvalues were determined using a
two-sided t-test. Gene expression was estimated on the basis of the gene

activity computed by Signac. Microglia are highlighted in the dashed closed
curve. g, Diagram showing the haplotypes of variants in wild-type and rs7922621
prime-edited WTC11-derived microglia. The P1allele has therisk allele (A), while
the P2 allele has the nonrisk allele (C). PE, prime editing. h, Allelicimbalance
between P1and P2 alleles for ANXA1I quantified by rs2573353 inrs7922621
wild-type (A/A) and prime-edited (A/C) WTC-derived microglia (n = 4 replicates).
The center line and error bar represent the mean and s.d, respectively. Pvalues
were determined using a two-sided ¢-test. i, RT-qPCR quantification of relative
mRNA levels iniMGs treated with siRNAs targeting AD genes or scrambled siRNA
(n=2siRNAs for each gene; n = 8 replicates for each condition). mRNA levels
were normalized to GAPDH. Pvalues were determined using a two-sided ¢-test.
Data are presented as the mean + standard error. j, Quantification of the number
of TMEM119° cells colocalized with pHrodo particles indicating phagocytosed
beads (n =2siRNAs for each gene; n = 8 replicates for each condition). A one-way
ANOVA with Tukey’s HSD test was used for comparison between siRNA targeting
AD genes and scrambled siRNA. Data are presented as the mean + standard error.
k, Representative images of TMEM119* (red) iMGs treated with ANXA11 siRNA

or scrambled siRNA showing colocalization of phagocytosed pHrodo particles
(green, highlighted with arrows). Images were captured 2 h after incubation

with pHrodo. Parts of the images are zoomed in for better visualization.

Scale bar,100 pm.
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Supplementary Fig.10a). We identified 39, 57 and 6 AD-relevant cCREs
(referred to as AD-cCREs) that were linked to 71,118 and 33 target genes
inastrocytes, microgliaand OPCs, respectively (Fig. 6aand Supplemen-
tary Table 4). Numerous AD-cCREs and genes were shared across differ-
ent cell types, among which we recognized multiple well-established
AD genes, such as the APOE region genes (BCAM, NECTIN2, TOMM40,
APOE and APOCI), BCL3and PPPIR37. This signifies their versatile roles
in AD pathogenesis.

Next, we examined the function of AD-cCREs and candidate genes
in corresponding cell types. We found that AD-cCREs were enriched
with binding motifs of cell-type-critical TFs (Fig. 6b). For example,
astrocyte AD-cCREs displayed exclusive motifenrichment for GATA4,
aregulator of astrocyte cell proliferation and apoptosis'®*; microglia
AD-cCREs exhibited significant motif enrichment for SMAD3, which
cooperates with PU.1to enable transcription of some microglia-specific
genes'”; OPC AD-cCREs were exclusively enriched with the RBP) motif,
which is a repressor of OLIG2, a major determinant of oligodendro-
cyte differentiation and myelination'*®. Additionally, the AD candi-
date genes also presented cell-type-specific functions. For instance,
astrocyte AD genes were enriched with the function of ‘regulation of
complement activation, classical pathway’ (GO:0030450), microglia
AD genes displayed enrichment in ‘negative regulation of endocytosis’
(G0O:0045806) and OPC AD genes exhibited significant enrichmentin
‘IkB kinase and NF-kB signaling’ (GO:0007249) (adjusted P< 0.1, BH
correction; Supplementary Table 5).

To characterize the variant effect within AD-cCREs, we trained a
sequence deep learning model on the basis of the cortex scATAC-seq
data (AUROC, 0.916 + 0.017; AUPRC, 0.795 + 0.059; Supplementary
Fig. 10b). We confirmed the agreement in variant effect prediction
between the sequence model and two other approaches, including
QTL (expression and chromatinaccessibility) analysis and TFBS predic-
tion (Supplementary Fig.10c,d). We also uncovered an enrichment of
large-effect AD-associated variants (GWAS P < 0.05) within AD-cCREs
acrossallthreerelevant cell types, where the enrichment was positively
correlated with variant effect (Fig. 6¢).

Wefine-mapped ADrisk variants by combining multiomic evidence
(Fig. 6d, Supplementary Fig.10e,fand Supplementary Table 4). Among
the prioritized variants, we recognized numerous cell-type-specific
risk loci that were previously reported in the literature. For exam-
ple, the AD risk variant rs10792832 (GWAS* P=7.56 x 107, B=-0.12,
effect allele/reference = A) was associated with the deactivation of a
microglia-specific cCRE for PICALM®°, aligning with our prediction
(microgliaZ=-1.98, PICALM coaccessibility = 0.246). Another AD risk
variant rs13025717 (GWAS P=2.98 x 107", B = 0.13, effect/alternative
allele = T), which represses a microglia cCRE for BINI (ref. 35), was
also prioritized by our analysis (microglia Z=-2.60, BINI coacces-
sibility = 0.382). Arecent study validated the role of rs1532278 (GWAS
P=3.27x107%, B=-0.13, effect/reference allele = T) in modulating
CLU expression in astrocytes'”, supporting our findings (astrocyte
Z=-0.498, CLU coaccessibility = 0.356;).

In addition to known AD risk loci and genes, our analysis discov-
ered novel geneticfactors. One of particularinterestis rs7922621, which
is nominally significant across the genome?” (GWAS P=2.78 x107%,
S =0.08, effect/alternative allele = A). This variant resides within
a microglia-specific AD-cCRE (chr10:82,251,479-82,251,979;
P=1.99 x107%, log, FC = 2.39; Fig. 6e). According to the sequence
model prediction, rs7922621diminished the accessibility of this cCCRE
exclusively in microgliabut notin other cell types (microgliaZ=-1.68,
percentile = 96.63%; Fig. 6e). Coaccessibility analysis further predicted
that this cCRE regulated the expression of two genes: ANXA1I and
TSPAN14 (Fig. 6e).Importantly, arecent study reported areductionin
local chromatin accessibility associated with rs7922621in human PS
cell-derived microglia'®®. They further validated the reduced expres-
sion of TSPAN14 caused by rs7922621 using prime editing (P=2.17 x107%,
two-sided t-test; Fig. 6e). Of note, another variant, rs7910643, located

within the same cCRE and in strong LD with rs7922621 (r*=1.0, esti-
mated in the 1,000 Genomes EUR population), was shown to be
nonfunctional'®, consistent with our prediction (microglia Z=0.29,
percentile < 85%; Supplementary Table 4).

Tofurther elucidate the regulatory programinvolving rs7922621,
we conducted TF motif analysis and identified one TF, TFAP2A, whose
binding site was disrupted by rs7922621 (P<1x107*, motifbreakR;
Fig. 6e). The TFAP2 family is known for its pivotal role in regulating
both embryonic and oncogenic development'®. Furthermore, TFAP2A
expression showed a significant elevation in microglia compared to
other cell types (P<2.2 x107, two-sided ¢-test; Fig. 6f), suggesting
its functional importance in microglia, although further evidence is
required to validate these conclusions.

Prime editing of rs7922621 alters expression of both ANXA11
and TSPANI4 in microglia

Our scPRS-based analysis pinpointed rs7922621 (chr10:82,251,544:C>A)
as a candidate AD risk variant and predicted that it regulates two
genes (ANXAII and TSPANI14) by altering the accessibility of a
microglia-specific cCRE (chr10:82,251,479-82,251,979; Fig. 6e). Our
prior study'® validated the association between rs7922621 and this
cCRE and further demonstrated that the prime editing of rs7922621,
converting the risk allele (A) to the nonrisk allele (C) in WTC11 (A/A
to A/C)-derived microglia (a male iPS cell line), led to an increase in
TSPANI4 expression. Leveraging the rs7922621-edited clones', we
further examined its regulatory role on ANXA11 (Fig. 6g and Meth-
ods). We observed a similar trend in the allelic expression changes of
ANXALII associated with rs7922621in WTCl11-derived microglia, with
the edited nonrisk allele upregulating ANXA1I compared to the risk
allele (P=0.005, two-sided t-test; Fig. 6h). We note that, in contrast
to TSPAN14, ANXA1I exhibits a long-range interaction (-285 kb) with
rs7922621 (Fig. 6e). Altogether, these results suggest an upstreamrole
ofrs7922621in modulating the expression of both ANXA11and TSPAN14
inmicroglia, with the AD risk allele (A) reducing their expression.

Suppression of ANXA11 and TSPAN14 impairs microglial
phagocytosis

Toelucidate the function of ANXA11 and TSPANI4in microglia, we exam-
ined the effect of knockdown of these genes on microglial phagocytic
activity. In particular, we individually suppressed ANXA11 and TSPAN14
iniPS cell-derived microglia-like cells"*™ (iMGs) using small interfer-
ing RNA (siRNA), in which two different siRNAs were tested for each
gene. Phagocytosis activity was measured using a fluorescent read-
out of pHrodo particles. A reduction in expression following siRNA
treatment was confirmed for both genes (P<1x 107, two-sided t-test;
Fig. 6i). Notably, suppression of these two genes resulted in significantly
decreased iMG uptake of pHrodo particles compared to scrambled
siRNA treatments (adjusted P<1x 1073, one-way analysis of variance
(ANOVA) with Tukey’s honestly significant difference (HSD) test; Fig. 6j).
These results were consistent across treatments using different siR-
NAs. Our experimental results validated the functional importance of
ANXAIIand TSPAN14,showing that their suppressionimpaired micro-
glial phagocytosis, thus supporting the pivotal role of rs7922621in
modulating AD risk through its impact on microglial function.

Discussion

GWAS has substantially advanced our understanding of the genetic
basis of complex human diseases'2. Traditionally, these studies aim
to identify genetic loci that reach genome-wide significance (that is,
GWAS P <5x107%). However, for many diseases, the best predictive
performance is only achieved by including nominally significant or
even nonsignificant variants in PRS calculation', This suggests that
the genetic factors contributing to diseases extend beyond those
genome-wide significant loci and cannot be fully uncovered by con-
ventional approaches™*. While scientists have been calling for larger
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GWAS consortia and meta-analyses to identify more disease risk loci',
itremains an open question how toincrease the discovery power given
relatively limited sample size. Incorporating prior knowledge or multi-
omic datainto genetic association analysis has proventobe aneffective
solution®,

PRS has been demonstrated as a powerful tool to predict an indi-
vidual’s disease risk. However, it lacks the ability to provide insights
into disease mechanisms. From the perspective of modern machine
learning, modelinterpretationis criticalin uncoveringlatent features
that contribute to prediction and understanding how models make
decisions'’”. As a score computed by aggregating a wide range of vari-
ants, PRS offers limited knowledge on the significance of each variantin
prediction. Moreover, distinguishing causal variants from statistically
correlated elements poses an even greater challenge. For example, a
variantcan be associated with the disease through its linkage with the
causal variant, yet both are treated equivalently within a PRS model.
Thislackin biology-informed modelinterpretability can, inturn, con-
strain predictive performance such as generalizability®.

We designed scPRS, a deep learning-based PRS framework, to
address these challenges. scPRS leverages single-cell epigenetic data
to dissect the genome-wide PRS and then integrates single-cell-level
PRSs using a GNN. By breaking down PRS into higher-resolution com-
ponents informed by cellular functions, scPRS not only enhances its
predictive power but also allows for asystematic exploration of cellular
and molecular basis for diseases. Applications to various diseases
have shown that scPRS outperformed a variety of existing PRS meth-
ods. Importantly, this superior predictive performance of scPRS was
achieved usingless than11% of all the variants (that is, variants located
withinopen chromatinregions; Supplementary Table 6), highlighting
the importance of incorporating functional data® and suggesting a
notable contribution of noncoding variants to disease risk"®.

We showcased the effectiveness of scPRS in identifying
disease-critical cells. Our method is not confined to cell clustering and
predefined cell types, offering an unbiased, agnostic analysis. Through
single-cell-resolved modeling, scPRS can discover disease-relevant cell
populations by integrating genetic insights. This was demonstrated
inidentifying previously uncharacterized T2D-related alphaand beta
cell populations defined by scPRS-selected cells. Similar analysis was
performed for other three diseases but no significance was observed.
Unlike the selected cells enriched within highlighted cell types, the
model-prioritized cellsin other cell types were sparsely distributed in
the epigenome space, suggesting less homogeneous cellular functions.
The selection of these cells was likely because of the randomness of
model initialization and training, as well as the technical noise inher-
entinsingle-cell sequencing. Therefore, we recommend considering
these cells as background.

The cell type prioritization results agreed well between scPRS
and sLDSC but the most notable difference occurred for HCM, where
sLDSC failed to identify any relevant cell types. This lack in power
could be explained by the difference between bulk and individual-level
or single-cell-level modeling. First, sSLDSC estimates heritability
enrichment across an ensemble of open chromatin regions within
a specific cell type but this bulk-level approach does not account
for the variation among individual cells. This limitation can lead to
confounding by non-disease-relevant regions, reducing its ability
to identify disease-critical cells with a high sensitivity. In contrast,
scPRS weighs the importance of each cell relative to others, provid-
ing a global model that captures cross-cell variation in heritability
enrichment. The subsequent cell enrichment analysis within each cell
type enables an effective disease-cell association discovery. Another
advantage of this single-cell-resolved approachisits ability to identify
novel disease-relevant cell populations that are not annotated in the
single-cell dataset, which has been demonstrated for T2D. Second,
sLDSC works in the GWAS space and its performance can be influ-
enced by the power of the original GWAS. This may explain why SLDSC

identified zero relevant cell types for HCM, as the HCM GWAS was rela-
tively underpowered, with only two genome-wide significant variants®
(P<5x107®). Although GWAS summary statistics are part of theinput to
scPRS, itselects cells whose cell-level PRSs best differentiate individual
patients from controls rather thanrelying on the overall GWAS perfor-
mance. This individual-level modeling further increases the power
to identify disease-relevant cells. Of note, the cell type enrichment P
values for sSLDSC, SCAVENGE and scPRS are not directly comparable.
Significant cell types were identified by comparing P values derived
from the same method. Hence, the conclusions regarding cell type
enrichment are comparable across different approaches.

Several recent studies**"''* have also achieved prioritization of
disease-relevant cells at the single-cell level. However, these approaches
rely on GWAS summary statistics and, thus, lack predictive power.
Moreover, superior to these methods, scPRS enables pinpointing
disease risk variants, genes and regulatory programs across different
cellular contexts, substantially enhancing the power and resolution
of genetic discovery. This advancement is exemplified by rs7922621,
which was pinpointed by scPRS-based analysis as a candidate AD
risk variant but missed by GWAS because of its nominal significance.
rs7922621was also nominated in two recent studies'®®'”", where it was
mapped to TSPANI4in microglia as the target gene. Our scPRS-based
analysis further linked rs7922621to another gene ANXA11. The under-
standing of the role of ANXA1I in neurodegenerative diseaseis rapidly
evolving; it was first implicated as a genetic cause of amyotrophic
lateral sclerosis'? (ALS) and later corticobasal syndrome'”. Recently,
ANXAI11 was also revealed as a central pathology in specific subtypes
of frontotemporal dementia'®. Itis interesting that ANXA11 pathology
extends beyond neurons; for example, muscle pathology has been
observed as part of a multisystem proteinopathy with prominent myo-
pathy'®. Agap remainsin our understanding of the biology underlying
ANXA11 dysfunction. ANXAIl proteinisinvolved in the tethering of RNA
granules, including lysosomes with arole in RNA transport'?*. However,
this mechanism does not easily account for all of the pathological
observations made. Our results suggest a role of ANXA1I in microglia
that underpins AD risk. This is reminiscent of observations of TBK1,
another ALS gene where distinct pathological mechanisms have been
observed in neurons and microglia'”. We experimentally validated
the regulatory relationship between rs7922621 and ANXAII and the
function of these two genes (ANXA1I and TSPANI4) in maintaining
microglial phagocytosis. Our data support a model where rs7922621
increases AD risk by reducing a microglia cCRE targeting ANXA1I and
TSPAN14 and then suppressing their expression, whichimpairs micro-
glial phagocytosis.

Itisworth noting that weidentified rs7922621in microgliaby start-
ing with a comparison analysis of cells prioritized by scPRS, without
which the subsequent analysis would not have been possible (Fig. 4a).
While microglia are a well-recognized cell type in AD, we pinpointed
this AD-microglialinkage withoutincorporating any prior knowledge,
using anagnostic, unbiased approach. This serves as a positive control
todemonstrate the effectiveness of scPRS inidentifying disease-critical
cells. The nomination of new disease-relevant cell populations that are
not annotated in the original single-cell dataset (Fig. 4h) underscores
the discovery power of scPRS beyond simply reaffirming known dis-
ease—cell associations.

HCM is a genetic condition with a heritability of up to 50% in its
familial form®® and an estimated SNP-based heritability ranging from
0.17t00.29 (ref.128). The genetic study of HCM has been traditionally
focused onrare pathogenic coding variants®. However, approximately
40% of persons with HCM remained unexplained by known patho-
genic variants. Previous HCM GWASs for common variants have been
underpowered, likely because of the limited number of participants
recruited, resulting in an incomplete knowledge of the genetic archi-
tecture'. Our scPRS-based analysis greatly expands our understanding
of HCM genetics, highlighting the critical role of common noncoding
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variantsininfluencing disease risk. Our findings underscore theimpor-
tance of regulatory variants that have been largely overlooked in the
HCMfield. These variants may act as risk modifiers through modulating
the expression of their target genes, including known HCMrisk genes
suchas MYL2. Although further validations are necessary, our results
shed light on the complexity of HCM genetics and biology.

We also constructed C+T PRSs using disease-associated variants
(GWAS P < 0.05) located within disease-relevant cCREs. Disease cCREs
from different prioritized cell types were aggregated. We observed
that these selected variants dominated scPRS prediction, showing
comparable performance for HCM and T2D (Supplementary Fig. 11).
This result supports the effectiveness of our scPRS-based framework
inidentifying cell-type-specific disease-related variants. However, we
caution thatit cannotbe concluded that this PRS, built on selected vari-
ants, is comparable to scPRS in terms of prediction, as it was derived
from scPRS after explicitly seeing all samples, which may have caused
the overfittingissue.

Single-cell genetics is an emerging field that is reshaping our
understanding of genotype-phenotype relationships”. By integrat-
ing single-cell genomic datainto genetic analysis, single-cell genetics
providesanovelinstrument to link genetic variants to diverse cellular
processes. This is well exemplified by single-cell eQTL studies™* >,
which enable theidentification of context-dependent eQTLs that vary
across cell states or cell types. scPRS lays the methodological founda-
tion of single-cell genetics, marking a step toward mapping the genetic
basis of complex diseases in a single-cell-resolved context.

We note that scATAC-seq only annotates genomic regions that
are potentially involved in transcriptional regulation (for example,
promoters, enhancers and silencers), whereas other layers of func-
tions, such as proteins, translation and post-transcription, are not
considered in our current modeling. Considering the heterogeneity
and complexity of a disease’s genetic architecture, the prediction of
scPRS could be suboptimal for certain diseases wherein coding, splic-
ingorother variantshave animportantrole.Indeed, we observed better
predictive performance of C+T over scPRS for T2D. Asacompensation,
we further incorporated nonpeak PRSs constructed using variants
located outside scATAC-seq peaks into scPRS, resulting in scPRS+,
which outperformed all baseline PRS methods across the board. Fol-
lowing the same design principle, scPRS can be extended to include
awider range of variants by integrating additional modalities, such
as scRNA-seq*>"** and single-cell DNA methylation™>"*°, This will be
exploredinour future work.

Considering both time and space complexities, we recommend
starting with a moderately large number of cells, such as the 10,000
usedinthis manuscript, when applying scPRSin practice. Thisapproach
ensures coverage of cases where the disease or phenotypeis driven by
rare cell types or populations. Moreover, this strategy aligns with the
exploratory nature of scPRS, as it is a discovery process in which the
disease-relevant cells are largely unknown until analysis, typically
requiring multiple iterations of testing.

Insummary, scPRS stands as a versatile framework for simultane-
ous disease prediction and biological discovery, enabling the dissec-
tion of the genetic, cellular and molecular heterogeneity underlying
complex diseases.
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Methods

Single-cell multiome dataset

Single-cell multiome (snRNA-seq + snATAC-seq) data of the human left
ventricle and lung were processed and clustered on the basis of RNA
modality using Scanpy'”. The cells with high-quality RNA information
(total detected gene > 500, total unique molecular identifiers < 20,000
and mitochondrial read percentage <10%) were selected for further
analysis. Doublets were filtered using scrublet™® with parameters
min_counts =1, min_cells =10, min_gene_variability_pctl =90 and n_
prin_comps =30. The thresholds for doublet removal were decided per
sample onthe basis of the distribution of doublet scores inreal versus
simulated cells. The top 3,000 highly variable genes were selected by
combining the results from each sample separately with seurat_v3
mode. The cell-by-gene count matrices were normalized and scaled.
ALLCools with a Python implementation of Seurat integration was
used for correction of batch effect between samples with 50 PCs and
30 canonical correlation dimensions™**’, Leiden clustering was per-
formed on a k-nearest neighbor (KNN; k = 25) graph. The cell clusters
were annotated and merged to cell types by comparing the expression
level of predefined marker genes across clusters. The marker genes
in Litviriukova et al. (2020) and Tucker et al. (2020)"*'* were used to
annotate the heart cell types.

We also examined the ATAC modality of these cells following the
methods described below to ensure that these cells also have high-quality
open chromatin information. The cells that did not pass ATAC quality
controls (QCs) or constituted an ambiguous cluster in ATAC cell embed-
ding were removed, resulting in 10,233 and 10,330 cells retained for
downstream analysis for HCM and severe COVID-19, respectively.

SCATAC-seq datasets

The cell type labels for the human pancreas and cortex in the original
datasets®* were used. Togenerate cellembeddings, scATAC-seq datawere
processed and clustered using snapATAC2 (ref. 142) and ALLCools"*".
The fragment files were processed to generate cell-by-bin matrices at 5-kb
resolution using snapATAC2 (ref.142). The cells with 2,000-50,000 total
reads and transcription start site (TSS) enrichment > 5 or 7 according to
the distribution in specific samples were retained. The cell embeddings
were computed with latent semantic indexing (LSI) and batch effects
were corrected using the canonical correlation analysis (CCA) LSI mode
in ALLCools. Cell-by-peak matrices at 500-bp resolution were gener-
ated by calling peaks per cell cluster using snapATAC2. For cortex data,
superior and middle temporal gyriand middle frontal gyrus samples were
used for AD analysis, resulting in 11,738 cells. For pancreas data, we ran-
domly sampled10,000 of 64,948 cells covering allannotated cell types for
computational acceleration. The single-cell data' we used in the replica-
tion experiments were processed and QCed similarly.

Cell-cell similarity network

Following a previous study*®, we used the mutual kNN (M-kNN) to
measure the similarity between two different cells. We first used LSIto
extract low-dimensional embeddings for individual cells. For cortex
and left-ventricle datasets encompassing multiple samples, batch
effects were corrected using both CCA and Harmony'* and integrated
latent embeddings were adopted. Next, we computed the Euclidean
distance for pairs of cells using their embeddings and then constructed
the KNN graph G e ®M*™ on the basis of this distance matrix, in which
wedefined G; ; = 1(i,j = 1, ..., M) if cell jis within the top k closest cells of
celliand G, ; = 0 otherwise. The M-kNN graph G was then defined as
the graph whose edges connect nodes (that s, ceIIs)Tthat aremutually
kNNs of each other, whichwas calculated by G = G - G , where - denotes
the element-wise multiplication.

Target cohorts for T2D and AD
T2D and AD target cohorts were constructed on the basis of the UKBB.
All the disease cases were defined according to the ICD-10 (tenth

revision of the International Statistical Classification of Diseases and
Related Health Problems) code. In particular, all Caucasian individu-
alswith adisease ICD-10 codein the inpatient record, death record or
diagnosis summary record were defined as the disease participants.
We used E11.9 and G30.9 for AD and T2D, respectively. This resulted in
1,096 T2D and 932 AD cases. We randomly sampled an equal number
of healthy controls by matching sex, age and ancestry information for
each casegroup. Inaddition, individuals with asimilar or related phe-
notype with the disease (T2D: E10, E11, E12, E13, E14, E23.2,NO8.3,N25.1,
024, P70.2,713.1,783.3 and R73.9; AD: FOO, G30, FO1, FO2, FO3 and
FO5) were excluded from constructing the control group. In this study,
overweight individuals (body mass index (BMI) > 25) were excluded
from constructing the T2D cohort. BMIfor eachindividual was defined
as the mean of four BMI measurements in the UKBB Data Field 21001.

Target cohort for HCM

Therecruitment of the HCM cohort was part of our California Institute
for Regenerative Medicine (CIRM) cardiomyopathy project”. The tar-
geted population constituted persons with various cardiac procedures
and noncardiac participants with genetic conditionsin clinicwhowere
identified to us by their clinical providers. Noncardiac participants
were recruited in person during onsite clinic days or over the phone
with permission by the providers. Healthy volunteers were recruited
from our cardiovascular prevention clinic (that is, persons with no
diagnosis of heart disease).

Library preparation and sequencing was performed by Macrogene
(firstten samples) and Novogene on genomic DNA we extracted from
iPS cells (Qiagen DNeasy kit). Paired-end 150-bp reads were acquired
on the lllumina HiSeq X Ten for a minimum of 90 Gb of data. Reads
were processed using Sentieon’s FASTQ-to-VCF pipeline (Sentieon
version 201808.07)"**. This pipeline is adrop-in replacement for a Bur-
rows-Wheeler aligner (BWA)"* plus GATK best-practices'*® pipeline for
germline single-nucleotide variations (SNVs) and indels but has been
highly tuned for optimal computational efficiency. BWA alignment to
hg38 was followed by deduplication, realignment, base quality score
recalibration and variant calling to generate g.vcf files for each sample.
Coverage was assessed (GATK version 3.7)”. Individual sample g.vcf
fileswerejoined and variant quality score recalibration was performed.

Target cohort for severe COVID-19
The VA COVID-19 cohort was derived from the VAMVP. The VAMVP is
an ongoing national voluntary research program that aims to better
understand how genetic, lifestyle and environmental factorsinfluence
veteran health”®, Briefly, individuals aged 18 to over 100 years old have
beenrecruited from over 60 VA medical centers nationwide since 2011
with current enrollment at >800,000. Informed consent is obtained
fromall participants to provide blood for genomic analysis and access
totheir full electronic health record data within the VA before and after
enrollment. The study received ethical and study protocol approval
from the VA central institutional review board (IRB) in accordance
with the principles outlined in the Declaration of Helsinki. COVID-19
cases were identified using an algorithm developed by the VA COVID
national surveillance tool based on reverse transcription (RT)-qPCR
laboratory test results conducted at VA clinics, supplemented with
natural language processing on clinical documents for SARS-CoV-2
tests conducted outside of the VA'”. This resulted in the VA COVID-19
WGS cohort of 2,716 persons with COVID-19 spanning a wide range of
agesand ancestries. We defined severe COVID-19 cases as persons who
were hospitalized, received acute care, stayed in the intensive cure
unit or were deceased and controls as those who did not meet these
criteria. Tominimize potential confounders, we restricted our analysis
tononelderly individuals (age < 65).

DNA isolated from peripheral blood samples was used for WGS.
Libraries were prepared using KAPA hyper prep kits, PCR-free according
to manufacturers’recommendations. Sequencing was performed using
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anllluminaNovaSeq 6000 System (Illumina) with paired-end 2x150-bp
read lengths and Illumina’s proprietary reversible terminator-based
method. The specimens were sequenced to a minimum depth of 25x
per specimen and an average coverage of 30x per plate.

Independent target cohorts

The GoT2D cohort including 2,874 individuals was used as the inde-
pendent target cohort for T2D. Samples were sequenced using three
technologies: deep whole-exome sequencing, low-pass (4x) WGS and
OMNI 2.5M genotyping. Genotypes (SNVs, indels and structural vari-
ants) were called separately for each technology and then integrated
by genotype refinement into a single phased reference panel. More
details canbe found in a previous study®.

The HCMindependent target cohort was constructed by extract-
ingnon-EURHCM samples (ICD-10:142.1/142.2) and asame number of
randomly selected non-EUR controls matching age and sex from the
UKBB genotype dataset. This resulted in a total of 152 samples.

The WGS data of the independent target cohort for AD were
obtained from the ADNI database. A total of 808 whole genomes were
downloaded from ADNI, for which we defined individuals with a diag-
nosis of ‘dementia’ as cases and ‘cognitively normal’ as controls.

WGS data processing

The WGS data for HCM and COVID-19 were processed using the
functional equivalence GATK variant-calling pipeline'*®, which was
developed by the Broad Institute and plugged into our data and task
management system Trellis. The human reference genome build was
GRCh38. We used BWA-MEM (version 0.7.15) to align reads, Picard
2.15.0 tomark PCR duplicates and GATK 4.1.0.0 for base quality score
recalibration and variant calling using the ‘haplotypeCaller’ function.
We also used FASTQC (version 0.11.4), SAMtools ‘flagstat’ (version
0.1.19) and RTG Tools ‘vcfstats’ (version 3.7.1) to assess the qualities
of the FASTQ, BAM and gVCF files, respectively. In addition, we used
‘verifybamID’ in GATK 4.1.0.0 to estimate DNA contamination rates
for individual genomes and removed samples with 5% or more con-
taminated reads.

QCs of genotype data
We performed stringent QCs for the genotype data following the PRS
tutorial (https://choishingwan.github.io/PRS-Tutorial/). For the GWAS
summary statistics data (also referred to as the discovery or base data),
genetic variants with low MAF and imputationinformation score (INFO)
wereremoved. We used thresholds suggested in corresponding original
papers: MAF < 0.0001, 0.001 and 0.0001 and INFO < 0.4, 0.6 and 0.6
for T2D, HCM and AD, respectively. We also excluded duplicated and
ambiguous variants to guarantee the accuracy of PRS calculation.
For the individual-level genotype data (also referred to as the
target data), we carried out both variant-level and individual-level
QCs. For WGS data, we performed pre-QCs: we removed samples
with kinship > 0.03, sample call rate < 0.97 or mean sample cover-
age < 18x; genomic positions resided in low-complexity regions or
ENCODE-blacklisted regions were removed; we filtered out genotypes
inindividual samples that were detected with too low or too high read
coverages (read depth <5 orread depth >1,500); we required all calls
to have genotype quality > 20 and, for nonreference calls, a sufficient
portion (>0.9) of reads was required to cover the alternate alleles.
For all target cohorts, we removed variants with INFO < 0.8 (for
UKBB-based cohort), missing call rate > 0.01, MAF < 0.01 or Hardy-
Weinbergequilibrium <1x107%. For variants with mismatching alleles
between discovery and target data, we strand-flipped these alleles
to their complementary ones. We further excluded individuals with
genotyping rate < 0.01 or with extreme heterozygosity rate (that is,
beyond 3 s.d.from the mean). Individuals with an up-to-second-degree
relative (> 0.125) within the cohort were also removed to prevent
bias in prediction evaluation. Lastly, there were 2,176 (n=1,088

cases, n=1,088 controls), 134 (n = 81 cases, n = 53 controls), 1,839
(n=919 cases, n=920 controls) and 581 (n =120 cases, n =461) indi-
viduals passing the above QCs for T2D, HCM, AD and severe COVID-19
cohorts, respectively.

Allindependent target cohorts were processed and QCed using
the same pipeline. After sample-level QCs, the final cohorts consisted
of2,749 samples (1,398 cases and 1,351 controls) for GoT2D, 62 samples
(23 cases and 39 controls) for non-EUR UKBB and 469 samples (251
cases and 218 controls) for ADNI.

PC analysis for genotype data

Tocharacterize the population structure of target cohorts, PC analysis
was performed after pruning (window size = 200 variants, sliding step
size =50 variants, LD r threshold = 0.25). The first ten PCs were retained
as covariates in the downstream analysis.

PLINK C+T PRS calculation
The cell-level C+T PRS was computed using PLINK, whichis given by

PRS, = Ziec‘(;RE,ﬂi X Gi’
XM

where cCRE; denotes cCREs within cellj, g;is the effect size of variant
i, G; represents the number of effect alleles, P is the ploidy of the
sample (2 for human) and M is the number of nonmissing variants.
In the clumping phase, all index variants were forced to be drawn
fromthe variants located within scATAC-seq peaks of individual cells
using the ‘--clump-index-first’ option. Variants within 250 kb of the
index variant and three LD thresholds (+*= 0.1, 0.3 and 0.5) were
considered for clumping. After constructing the index variant set,
we applied multiple P-value thresholds (P=1x107%,1x107*,1x 1073,
0.01, 0.05, 0.1and 0.5) to compute PRSs, resulting in 21 PRSs calcu-
lated for each cell and each individual. We used the 1,000 Genomes
Project samples to estimate the LD (out-sample estimation) for the
simulation, HCM and severe COVID-19 cohorts because of their
limited sample sizes, while using the target data (in-sample estima-
tion) for other cohorts.

Thestandard C+T PRS was calculated using the same set of param-
eters as that used in computing cell-level PRS, except that all variants
were considered without conditioning. The P-valueand LD r* thresholds
wereregarded as hyperparameters to be optimized inmodel selection.

Model details of scPRS
The cell-level PRS matrix X,, € ®¥<%(n € 1,...,N) presents single-cell-
resolved geneticrisk features for eachindividualanditis inputinto the
scPRS model to predict the disease risk. Here, N and M denote the
numbers of individuals and cells, respectively.

scPRS consists of three modules (Fig. 1): the feature-embedding
module, the graph convolutional network module and the readout
module. The feature-embedding module takes normalized cell-level
PRS X, as the input and uses a one-layer perceptron to reweight and
integrate 21 PRS features per cell:

h® = X, « abs(Wy),

where W, denotes learnable model parameters, abs represents the
absolute function and 1> e %" represents the integrated features of
Mcellsforindividual n. According to the definition of PRS, larger values
in X, indicate higher disease risk. To maintain this interpretability
throughout the modeling, we adopt the absolute function abs to
enforce nonnegativity for W,

We next seek to integrate PRS features across different cells to
generateafinal risk score. With the consideration of the dropout event
and sparsity of scATAC-seq data and assuming that cells with similar
low-dimensional embeddings should have comparable epigenomes
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and then similar genetic signals, we use a GNN'* to smooth and denoise
single-cell-level PRS features. More specifically, on the basis of the
pre-computed M-kNN graph G, the GNN module is defined as

t+1) _ 1
v

= degw) ue%:(u) (abs (wif)> hff) + abs (w;t)) h,(})) ,

A = leaky ReLU (gff“)),

where A{? denotes the hidden feature of cell v at layer ¢, w{” and w’
are learnable parameters of layer ¢, deg denotes the degree of each
node or cell and #(v) represents the neighbors of cell vin the M-kNN
graph G. The leaky ReLU activation function is defined as

Leaky ReLU(x) = max(a x X, X),

where a = 0.1is used in this study. Note that the absolute function is
also adopted to induce nonnegativity to model weights.

Lastly, we design areadout module to map GNN-smoothed hidden
features to the phenotype leveraging a one-layer perceptron:

y=0(B+hD +b),

where g € ®Mrepresents the learnable regression coefficients indicat-
ing cellimportanceto prediction, Tis the number of totallayersin GNN,
bisthebiastermand g isthe sigmoid function for binary classification
and the identify function for regression.

Optimization of scPRS

TotrainscPRSfor disease prediction, we adopt the binary cross-entropy
(BCE) loss and additional regularization functions for enhancing pre-
dictive power and modelinterpretability. The loss function £ of scPRS
isdefined as

L= 3 (v 108(pa) + (L =y l0g (1~ p) + AllBll + A28, + AsB7Gof

where y, € {0,1} is the true disease label for individual n, p, € [0,1] is
the scPRS-predicted disease probability and || - ||, and || - ||, represent
L,;and L, norms, respectively. We also add a Laplacian regularization
term based on the symmetric normalized Laplacian matrix G,, which
isdefined as

1 1
G, =D3(D-A)Dz,

where Dand A denote the degree and adjacency matrices of the cell-cell
similarity graph G, respectively. We use hyperparameters A;, A, and A;
to balance across different regularization terms.

scPRS was trained by minimizing the loss & using the Adam
algorithm™° with a learning rate of 1 x 10 and batch size of 32. We
trained scPRS for 200 epochs. Multiple sets of hyperparameters were
considered in model selection, including 7 €{0,1,2}, 4, € {0,1,10},
A, €1{1,10,50,100, 250,500,750} A5 € {0.01,0.1,0.5,1,2.5,5,10,50,100and
M-kNN neighbor number k € {25,50}. We also selected between
CCA-based and Harmony-based cell-cell similarity networks for T2D
and AD.

Inprediction evaluation, we randomly partitioned the datasetinto
training, validation and testing sets comprising 60%, 20% and 20% of
samples, respectively. We trained different scPRS models with all possi-
ble combinations of hyperparameters and assessed their performance
(measured by AUROC) onthe validation dataset. We selected the model
yielding the best performance on the validation set and reported its
performance on the held-out test set. This process was repeated ten
times with different random seeds to assess the robustness of the

model. Predictive performance was evaluated using both the AUROC
and the AUPRC.

In cell prioritization, we conducted fivefold cross-validation,
whichwas repeated five times. The best hyperparameter set was then
selected onthe basis of the average AUROC score. The final model was
trained with this optimal hyperparameter set on the entire dataset. To
examine the variability of cell weights learned from model training, we
trained 100 models using different random seeds.

For the regression task, the mean squared error was used as the
loss function instead of BCE. The model performance was evaluated
based on the Pearson correlation between true and predicted values.

Calculation of nonpeak and peak PRS

Similar to the cell-level PRS, the calculation of nonpeak PRS was based
on PLINK C+T, using only variants outside of scATAC-seq peaks as the
index variants. A total of 21 nonpeak PRSs were computed and inte-
grated in scPRS+, corresponding to different combinations of C+T
parameters:Pe {1x107%1x10™,1x107,0.01,0.05,0.1,0.5}and * € {0.1,
0.3, 0.5}. For scPRS+ (integrating cell-level PRSs and nonpeak PRSs)
and scPRS+covar (integrating cell-level PRSs, nonpeak PRSs, age, sex
andten PCs), we concatenated additional features to latent cell features
A at the final GNN layer.

In calculating the single-cell-type peak PRS, only variants
located within cell-type peaks were used to select the index variants,
where the same 21 combinations of C+T parameters were adopted. A
multi-cell-type PRS was further built by combining all single-cell-type
PRSS (1= 21 X Ngype) Using LR. LR was trained on the training dataand
the performance was reported on the testing data.

Implementation details on LDpred2, Lassosum and PolyPred
We implemented LDpred2 and Lassosum following the bigsnpr
tutorial (https://privefl.github.io/bigsnpr/articles/LDpred2.
html). Three LDpred2 models were implemented” the infinitesi-
mal model (LDpred2-inf), grid model (LDpred-inf) and auto model
(LDpred2-auto). Allmodel hyperparameters were selected on the basis
of recommendations provided inthe tutorial. To ensure a fair compari-
son, we maintained the same dataset splits (that is, training, validation
and test sets) as those used inscPRS. For PLINK C+T, LDpred2-grid and
Lassosum, the best model hyperparameters were determined on the
basis of predictive performance on the validation dataset.

For afair comparison, we used scATAC-seq peaks as the functional
annotation for variants in PolyPred and adopted the same GWASs
as those used in scPRS to compute prior causal probabilities®. We
implemented PolyPhred following the manual provided by the authors
(https://github.com/omerwe/polyfun/wiki).

Unlike C+T, more advanced PRS methods, including LDpred2,
Lassosum and PolyPred, inherently optimize r* and P-value cutoffs to
select an optimal set of variants for PRS computation. This flexibility
in optimizationis a key innovation of these approaches.

Benchmark onindependent target cohorts

Because the original GWAS discovery cohorts for T2D and AD over-
lapped with GoT2D and ADNI, respectively, to prevent information
leakage, we adopted the UKBB GWAS™ as new summary statistics for
T2D and AD, which were independent from the new target cohorts. We
thentrained new scPRS models on the basis of original target cohorts.
For C+T, LDpred2-grid and Lassosum, model hyperparameters were
optimized on the basis of original target cohorts. For scPRS, hyperpa-
rameters were selected using fivefold cross-validation of the original
target cohorts. All PRS approaches were tested on the basis of new
independent target cohorts.

Prioritization of disease-relevant cells and cell types using scPRS
The mapping from input PRS features X to latent cell features A"
monotonically increases as a result of the design principle of scPRS,
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where weightsin the embedding and GNN modules are constrained to
benonnegative. This features facilitates model interpretation: a larger
value of B,,denotes a higher enrichment of genetic risk within that cell,
thereby informing disease-cell relevance. To account for the variability
of learned cell weights, we trained 100 scPRS models and compared
the distribution of g,, for individual cells with that of top-ranking
weights (that is, the top 15% of all cell weights per repeat) using a
one-sided ¢-test. This comparison was conducted for each cell in the
dataset. We defined disease-relevant cells as those cells whose adjusted
Pvalues (using the Benjamini-Yekutieli procedure) were less than 0.1.
Roughly speaking, scPRS prioritizes cells whose weights are consist-
ently larger than those of the majority of cells.

To get more biological insights, we examined the enrichment of
scPRS-prioritized cells within each cell type using aFisher’s exact test.
The disease-relevant cell types were defined as those cell types whose
adjusted Pvalues (using the BH procedure) were less than 0.1.

Simulation details
Using the PBMC multiome data downloaded from 10x Genomics,
we first conducted the differential accessibility analysis to identify
monocyte-specific SCATAC-seq peaks. In this study, we defined mono-
cytes as the total set of CD14/CD16 monocytes and dendritic cells
considering their shared heritability’*>. We identified differentially
accessible regions (DARs) within monocytes using the top1,500 marker
peaks per cell subtype. Next, leveraging amonocyte count GWAS*, we
computed PLINK C+T PRS conditioned on the variants located within
monocyte DARs for a WGS cohort?® (n=401). Raw C+T PRS outputs
were further standardized to mean = 0 and variance =1, yielding the
‘ground truth’ of monocyte count for this cohort.

Tointroduce randomness, we added a noise term to the simulated
monocyte count:

y=y+¢

where € ~ 4 (0,0?%). In this study, we used o € {0,0.25,0.5,1,3,5,7}. We
trained scPRS on the basis of these simulation datasets with and
without noises to evaluate its capacity in identifying phenotype-
associated cells.

SCAVENGE

We used SCAVENGE*¢ as abenchmark for prioritizing disease-relevant
cells. Following the SCAVENGE tutorial (https://sankaranlab.github.io/
SCAVENGE/articles/SCAVENGE), we calculated trait relevance scores
(TRSs) for individual cells, indicative of their association with the
disease. Cells were prioritized by SCAVENGE if their TRSs were above
95% of all TRSs. As in the scPRS analysis, we evaluated the enrichment
of selected cells within each cell type using the Fisher’s exact test.

Stratified LDSC
Partitioned heritability analysis was carried out using sSLDSC as previ-
ously described®. Heritability was quantified within the total set of
SnATAC-seq peaks identified for each of the left-ventricle cell types.
Genetic enrichment for a particular cell type was defined by calculat-
ing the captured heritability per unit of sequence within the total set of
identified snATAC-seq peaks for that cell type, compared to the genome
overall. P values were calculated as previously described*’; nominal
significance (P < 0.05) was taken to be indicative of true enrichment.
We conducted sLDSC using the same GWAS and scATAC-seq data-
setsas those used in scPRS for HCM and severe COVID-19, for which no
existing SLDSC results were available. For AD, the original SLDSC* was
performed on the same GWAS and scATAC-seq dataset. For T2D, the
original sSLDSC** was carried out on the same scATAC-seq dataset but
used alarger GWAS™’, We chose to report the results of SLDSC applied
to discovery GWAS to optimize its power, given the larger sample size
of discovery GWAS compared to target cohort.

Identification of disease-relevant cCREs

As the first step of the layered multiomic analysis (Fig. 5a), we identi-
fied differentially accessible cCREs within each scPRS-prioritized cell
type using Signac™*. Specifically, we used the FindMarker function to
compare peaks within scPRS-prioritized cells (per cell type) against all
unselected cells in the dataset as background, with parameters test.
use = ‘LR, latent.vars = 'peak_region_fragments’, min.pct = 0.02,and
logfc.threshold = 0.1. Significant peaks (adjusted P < 0.1 based on BH
correction) with a positive log, FC were defined as differentially acces-
sible cCREs. Next, leveraging the discovery GWAS summary statistics,
we conducted MAGMA'™ analysis for these differentially accessible
cCREs per cell type, withgene-model = ‘multi. MAGMA is awidely used
tool for gene-level and region-level genetic association analysis based
on GWAS summary data. It is designed to test genetic associations of
predefined genes or regions with diseases or traits by aggregating
variant-level GWAS statistics while accounting for LD. We defined
disease-relevant cCREs (T2D-cCREs and AD-cCREs) as those cCREs with
adjusted MAGMA P < 0.1 based on BH correction. We expanded our
analysis to involve all nominally significant cCREs (MAGMA P < 0.05)
for HCM, as no cCRE passed the multiple-testing correction.

Mapping cCRE-gene links

We mapped cCREs to their target genes on the basis of two comple-
mentary strategies. First, we adopted the closest-gene strategy™ and
assigned each cCRE to its closest gene. In addition, we added more
distant genes on the basis of a coaccessibility analysis using Cicero” and
linked each cCRE to those genes whose TSS peak displayed coaccessibil-
itywith the cCREabove 80% of allinteractions. For each scPRS-prioritized
celltype, the expressed genes mapped to disease-relevant cCREs within
that cell type defined the repertoire of disease candidate genes.

Enrichment of disease-associated variants within
scPRS-cell-specific peaks

Per disease-relevant cell type, we performed clumping within differen-
tially accessible peaks in scPRS-prioritized cells to remove redundant
variants. Multiple LD 72 thresholds (= 0.1, 0.3 and 0.5) were tested.
Leveraging the clumped variant set, we examined the enrichment of
disease-associated variants (GWAS P < 5 x 1078) within scPRS-cell-specific
peaks by comparing it to the genome-wide distribution.

TF-binding motif analysis

The TF-binding motif analysis was performed using GimmeMotifs'®,
The differential motifs between disease-relevant cCREs and all peaks
within the corresponding cell type were identified using the ‘gimme
motif’ command with options f = 0.5 and s = 0. AUROC was adopted
to quantify the motif enrichment.

Network analysis
We downloaded the human PPIs from STRING (version 12.0)°%, com-
prising 19,622 proteins and 6,857,702 interactions. High-confidence
PPIs (combined score > 700) were extracted for downstream analysis,
including 16,185 proteins and 236,000 interactions. To mitigate bias
fromhub proteins™’, we applied the random walk with restart algorithm
with a restart probability of 0.5. This produced a smoothed network
after retaining the top 5% predicted edges (n = 6,243,766). Next, we
used the Louvain method"® to decompose the network into different
modules. Following algorithm convergence, we obtained 1,261 modules
with an average size of 13 nodes.

The enrichment of genes of interest within each module was tested
using the hypergeometrictest. Modules with adjusted P< 0.1based on
BH correction were considered significant.

Sequence deep learning model design and training
The sequence-based deep learning model was trained to predict
ATAC-seq peaks across various cell types on the basis of the DNA
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sequence. Specifically, the sequence model takes a 2,000-bp DNA
sequence as the input and outputs the peak status of the centered
200 bp for different cell types. The peak label for a specific cell type
is 1if over 50% of the centered 200 bp is overlapped by an ATAC-seq
peak within that cell type and O otherwise. Model structure follows
the Beluga architecture’, except its outputs correspond to different
cell types within the tissue of interest.

ATAC-seq peaks within chromosomes 6 and 7 and chromosomes 8
and 9 were held out as validation and test data, respectively. Peaksin other
chromosomes were used as training data. Genomic regions annotated
by the ENCODE blacklist™’ were excluded fromanalysis. We adopted the
BCElossasthe objective function. The sequence model was trained using
thestochasticgradient descent algorithm with aweight decay coefficient
of 1x107%, momentum of 0.9, learning rate of 0.08 and batch size of 64.
The model was implemented using Selene’, a PyTorch-based library
for sequence deep learning modeling. In this study, we trained separate
sequence models using different sScATAC-seq datasets.

Prediction of variant effects using sequence deep learning
model

We used the sequence model to predict theimpact of genetic variants
on cCREs across diverse cell types. For a given cell type c and vari-
ant v (from reference allele to alternative allele), the model predicts
the status of cCRE y,.¢. and y,. . for sequences centered on the refer-
ence and alternative alleles, respectively. We define the functional
effectof variantvincelltypecasy, =Y.~ Vet representing how the
variant alters cCRE in this cell type. To achieve a global evaluation of
functional scores, we introduce the Z,. score, which normalizes y, . as
Z,.=(y,.— w/o, where p and o denote the mean and s.d. of all variant
scores, respectively. The Q,.scoreis further defined as the quantile of
|Z,.| among all variants. A higher Q score indicates a larger functional
effect within a specific cell type.

Benchmarking sequence model prediction
Tobenchmark the sequence model prediction on variant effects against
QTL analysis (eQTL or caQTL), we compared the absolute Z scores
computed by the sequence model between QTLs and non-QTLs using
atwo-sided t-test. The ¢ statistics was used to measure the enrichment
of functional variants defined by the sequence model within QTLs.
As the second benchmarking, we used SNP2TFBS®* to predict the
effects of variants on altering TFBS affinity. The binding affinities for
different TFs were averaged for each studied variant to estimate its over-
all effect. Given a particular quantile cutoff, variants were split into two
groups according to their Q scores. We then compared the averaged
SNP2TFBS scores between these two groups of variants using atwo-sided
t-test. We report the ¢ statistic, which indicates the enrichment of TFBS-
disrupting variants within sequence-model-defined functional variants.

Variant effect within disease-relevant cCREs

We compared the abundance of functional disease-associated vari-
ants (GWAS P < 0.05) within disease-relevant cCREs against the back-
ground using a Fisher’s exact test. Similarly, the functional variants
were defined as those with Q scores above a given cutoff (multiple
cutoffs applied). The odds ratio (OR) was adopted to measure the
enrichment of functional variants within disease cCREs.

Fine-mapping disease risk variants

We used three approaches to fine-map disease risk variants: the
sequence deep learning model, QTL and TFBS. A 0.8 quantile cutoff
was adopted to define functional variants on the basis of the sequence
model in fine-mapping. In addition to SNP2TFBS, motifbreakR” was
used to predict variant disruption on TF binding. A positive averaged
SNP2TFBS score or a strong-effect motifbreakR score was used to
define adisrupting variant. We excluded missense and loss-of-function
variants and variants with GWAS P > 0.05 from fine-mapping.

iPS cell reprogramming

iPS cells were reprogrammed from PBMCs using Sendai virus (Cyto-
Tune iPS 2.0 Sendai Reprogramming Kit) as previously described.
Three clones were generated per subject, karyotyped (KaryoStat,
Thermo Fisher Scientific), determined to be free of Mycoplasma and
evaluated by immunohistochemistry for expression of pluripotency
markers TRA-1-60 (LifeTech, MA1023) and SSEA4 (LifeTech, MA1021).
Cells were maintained under feed-free conditions in mTeSR (StemCell
Technologies, 5850) or Essential 8 medium (Fisher, A1517001) and
stored inliquid nitrogen.

CDM differentiation and drug treatment

As previously described'®, iPS cells were plated on Matrigel and cul-
turedin StemMACS iPS-Brew XF (MACS Miltenyi Biotec,130-104-368)
until the final passage in Essential 8 medium (Fisher, A1517001). CDM
differentiation was induced at 60-80% confluency, with culture in
RPMImedium (Gibco/LifeTech, 11875-119) plus B27 supplement lacking
insulin (Gibco/LifeTech, A1895601). Then, 6 uM CHIR-99021 (Fisher,
NC0976209) was added on day 0 and 6 pM IWR1 (Fisher, NC1319406)
was added on day 3. Beginning on day 7, the medium was changed
every other day using RPMI medium supplemented with B27 con-
taining insulin (Gibco/LifeTech 17504-044). Upon commencement
of beating (around day 15), cells underwent purification by a 3-day
glucose starvation (RPMI medium without glucose (Gibco/LifeTech,
11879-020) supplemented with insulin-containing B27), a 1-day
recovery in glucose-containing medium and subsequent replating
(dissociated in TrypLE, Fisher, 50-591-353). Cells were then main-
tained in RPMI medium supplemented with insulin-containing B27
until approximately day 30. After differentiation, drug treatment
occurred at 0 and 24 h and samples were assayed at 48 h. Cells were
treated with250 nMMYK-461 (Cayman Chemical,19216-5mg),400 nM
or 1 uM omecamtiv mecarbil (Selleckchem, Fisher, NC1069600)
or DMSO.

RNA-seq library preparation, sequencing, QC and expression
matrix generation

RNA was extracted from iPS cells or CDMs (RNeasy, Qiagen). lllumina
RNA-seq libraries (TruSeq Stranded Total RNA LP Gold) were pre-
pared on the Bravo (Agilent), pooled and sequenced (NovaSeq 6000,
paired-end, 100 bp)”. Where possible, drug treatment conditions for
the same differentiation were kept together in batches, while replicate
differentiations for the same iPS cell lines were split apart and HCM
and control samples were distributed across batches. Reads were
aligned to hg38 (STAR). PC analysis on CDM and iPS samples separately
returned no outlier samples (defined as Zscore of PC1 > 3). Library QC
was assessed using fastp, fastQC, STAR and Picard metrics. Samples
were flagged for poor QC by the following metrics: G+C content after
filtering outside of 20-80% (fastp), duplication rate greater than 40%
(fastp), uniquely mapped read pairs (fragments) < 20 million (STAR),
mean reads (average of forward and reverse) <20 million (fastQC),
ribosomal RNA bases >20% (Picard), coding plus UTR (untranslated
region) < 50% (Picard) and uniquely mapping fragments < 60% (STAR).
Samples with more than one flag were removed. CDM and iPS cell
samples were subsequently processed separately. Reads were com-
puted as counts per million (edgeR), corrected for library preparation
batch (combat-seq) and normalized by the trimmed mean of Mvalues
(TMM; edgeR) to generate the final expression matrix. For samples
with biological replicates, TMM counts were averaged. PC analysis was
performed and PC1 was assessed for Spearman correlation with the fol-
lowing metadata: percent G+C content (fastp), mean reads (average of
forward and reverse) in millions (fastQC), percent ribosomal RNA bases
(Picard), uniquely mapped fragments in millions (STAR), duplication
rate (fastp), percentcoding or UTR (Picard), library preparation batch
and sequencing pool. The maximum absolute value for spearman
correlation between PC1 and the library metadata was 0.08 for CDM
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samples, indicating good QC with technical artifacts having minimal
influence on the dataset. iPS cell samples had higher correlation for
three metrics (0.26 with G+C content, 0.22 with duplication rate and
0.11with percent coding or UTR), with the remaining having less than
anabsolute value of 0.04.

Differential expression analysis

Raw data were input into DESeq2 (ref. 162) as required to compare
gene expression between HCM cases and controls across different
conditions. Gene counts were averaged across replicates. Sample sex
and ancestry were included as covariates in the analysis.

Allelicimbalance analysis in rs7922621 prime-edited microglia

The rs7922621 prime-edited WTC11 clones were obtained from our
previous study'*® and microglia were differentiated accordingly. Total
RNAwasisolated fromwild-type and prime-edited microglia using the
RNeasy plus mini kit (Qiagen, 74034). Briefly, 400 ng of total RNA was
reverse-transcribed using theiScript complementary DNA (cDNA) syn-
thesis kit (Bio-Rad, 1708891). The cDNA region containing phased het-
erozygous SNP of ANXAII (rs2573353in WTC11)"** was amplified using
the following primers: WTC-ANX-F, AGGTCCAATAATCCCTGCTGA;
WTC-ANX-R, CCATGGTGCTCGGCTAATTT. The PCR products were
purified by agarose gel extraction, followed by the addition of llumina
adaptorsand deep sequencing. Reads were aligned to the sequence of
eitherallele and countedifthe100-bp regions surrounding rs2573353
were exactly matched.

Differentiation of TMEM119-Tdtomato reporter cell line iMGs
iPS cells stably expressing a TMEM119-tdTomato reporter transgene
were first differentiated into fibroblast-like cells using a previously
established method"*""'. TMEM119-tdTomato fibroblasts were seeded
onto 96-well plates (Corning) coated with 0.1% gelatin and Matrigel in
fibroblast medium (DMEM with 10% FBS and 1% penicillin-streptomy-
cin). After 48 h, the cells were transduced with 200 pl of two different
concentrated retroviruses to overexpress the human PU.1 and CEBPA
per 96-well well with 5 pug ml™ polybrene in fibroblast medium. Then,
24 h after transduction, the medium was switched to DMEM with 5%
FBS, 10 ng mI" human macrophage colony-stimulating factor (M-CSF)
and 10 ng mlinterleukin 34 (IL-34) and refreshed every 3 days thereaf-
ter. iMGs expressing the TMEM119-tdTomato reporter were used for
experiments 14 days after viral transduction.

siRNA transfection

siRNAs (Thermo Fisher) ata concentration of 30 nM were transfected
into iMGs on day 14 using Lipofectamine RNAiMAX transfection rea-
gent (Thermo Fisher Scientific, 13778075) in complete iMG medium
(DMEM + 5% FBS, 10 ng mI™ M-CSF and 10 ng mIIL-34). After 24 h, the
medium was refreshed with complete iMG medium; after anadditional
24 h (48 hafter transfection), cell cultures were collected for RT-qPCR
or pHrodo analysis.

pHrodo phagocytosis assay

iMGs cultured in 96-well plates (Corning) coated with Matrigel and
gelatin were incubated with 10 pg of pHrodo green Escherichia coli
bioparticles (Inucyte) for 15 minat 37 °C. Wells were then washed with
PBS and were longitudinally imaged with Molecular Devices ImageEx-
press at 30-minintervals for theinitial 2 hand 1-h intervals thereafter
up to 24 h after the start. The 2-h time point was selected for down-
stream analysis. Image]J software was used for quantification of indi-
vidual replicates across conditions on the basis of the colocalization
of TMEM119-Tdtomato and pHrodo green.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The PBMC multiome dataset is available from 10x Genomics (https://
support.10xgenomics.com/single-cell-multiome-atac-gex/data-
sets/1.0.0/pbmc_granulocyte_sorted_10k). The single-cell multiome
data (snRNA-seq and snATAC-seq coassay) of the human left ventricle
and lung are publicly accessible through ENCODE 4 (https://www.
encodeproject.org/single-cell/?type=Experiment&assay_slims=Singl
e+cell&status=released). All other scATAC-seq datasets were obtained
from their original publications®*. The WGS data used in simulation
are available from a previous study®. Individual-level genotype-phe-
notype data for T2D and AD were sourced from the UKBB. The WGS and
iPS cell RNA-seq data for HCM are available from a previous study®. The
COVID-19 WGS and clinical data are available upon request from the
corresponding authors (P.S.T. and M.P.S.); these data are not publicly
available because of US Government and Department of VA restrictions
relating to participant privacy and consent. The independent target
cohorts for T2D, HCM and AD are accessible through the European
Genome-Phenome Archive (EGAD00001002247), UKBB and ADNI
(https://adni.loni.usc.edu/data-samples/adni-data/), respectively.
The HCM snRNA-seq dataset was obtained from a previous study'".
All GWAS summary statistics data were acquired from their original
publications**?*~*'. The GTEx andislet eQTL datasets were downloaded
fromthe eQTL catalog (https://www.ebi.ac.uk/eqtl/). OthereQTLand
caQTL datasets were obtained from their original publications®®>581¢4,
The reference human genomes (hgl9 and hg38) are available online
(https://hgdownload.soe.ucsc.edu/downloads.html#human).

Code availability
The source code and tutorial for scPRS are available from GitHub
(https://github.com/szhang1112/scPRS).
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Extended Data Fig. 1| Assessing performance of scPRS using simulations.

a, The uniform manifold approximation and projection (UMAP) plot of the
human peripheral blood mononuclear cell (PBMC) scATAC-seq dataset.

Cell clusters with less than 150 cells are not shown. Monocyte subtypes are
highlighted initalic. Mono, monocyte; TCM, memory T cell; TEM, effector
memory T cell; NK, natural killer cell; Treg, regulatory T cell; cDC2, conventional
type 2 dendritic cell; gdT, gamma-delta T cell. b, Pearson correlation between
simulated and predicted monocyte counts (n =10 repeats). P-value by two-
sided Pearson correlation. The linear regression line and 95% confidence
interval (CI) are annotated in the red line and gray shaded area, respectively.

¢, Monocyte-count-relevant cells prioritized by scPRS (in red). Odds ratio and
P-value by two-sided Fisher’s exact test. OR, odds ratio. d, Pearson correlation
between simulated and predicted monocyte counts (n=10 repeats) in different
noise settings. The mean and 95% Cl are annotated in the dot and error bar,
respectively. o, standard deviation. e, The receiver operating characteristic
(ROC) curves for cell prioritization in different noise settings, wherein
monocytes were labeled as “1” and other cells were labeled as “0”. AUC, the area
under the curve. f, Monocyte-count-relevant cells prioritized by scPRS (inred) in
different noise settings. Odds ratio and P-value by two-sided Fisher’s exact test.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

X] A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  dx-toolkit v0.347.0 was used to download data from UKBB RAP.

Data analysis The sequence deep learning model was implemented using Selene v0.2.0 (https://github.com/FunctionLab/selene). Baseline PRS methods
included C+T (PLINK v1.9), LDpred2 (bigsnpr v1.12.2), and Lassosum v0.4.5. We also implemented SCAVENGE v1.0.2 (https://github.com/
sankaranlab/SCAVENGE) and stratified LDSC v1.0.1 (https://github.com/bulik/Idsc). Single-cell data analysis was performed using Scrublet
v0.2.2, Seurat v4.3.0, Scanpy v1, Signac v1.11.0, and ALLCools v1.1.0 (https://github.com/Ihging/ALLCools). GO analysis was conducted using
Enrichr (https://maayanlab.cloud/Enrichr/) if not specified. TF motif analysis was carried out using GimmeMotifs v0.18.0(https://
gimmemotifs.readthedocs.io/en/master/). We performed TF binding site prediction using SNP2TFBS (https://epd.expasy.org/snp2tfbs/) and
motifbreakR v2.15.5 (https://github.com/Simon-Coetzee/motifBreakR). All statistical analyses were performed using Python v3 and R v4.
scPRS source code can be found at https://github.com/szhang1112/scPRS.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The PBMC multiome dataset is available from 10x Genomics (https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/
pbmc_granulocyte_sorted_10k). The single-cell multiome data (snRNA-seq and snATAC-seq coassay) of the human left ventricle and lung are publicly accessible
through ENCODE 4 (https://www.encodeproject.org/single-cell/?type=Experiment&assay_slims=Single+cell&status=released). All other single-cell ATAC-seq
datasets were obtained from their original publications (refs. 7,8). The WGS data used in simulation are available from ref. 28. Individual-level genotype-phenotype
data for T2D and AD were sourced from the UK Biobank. The WGS and iPSC RNA-seq data for HCM are available from ref. 14. The COVID-19 WGS and clinical data
are available upon request from the corresponding authors (P.S.T. and M.P.S.); these data are not publicly available due to US Government and Department of
Veteran's Affairs restrictions relating to participant privacy and consent. The independent target cohorts for T2D, HCM, and AD are accessible through EGA (no.
EGAD00001002247), UKBB, and ADNI (https://adni.loni.usc.edu/data-samples/adni-data/), respectively. The HCM snRNA-seq dataset was obtained from ref. 52. All
GWAS summary statistics data were acquired from their original publications (refs. 27,53-55). The GTEx and islet eQTL datasets were downloaded from the eQTL
Catalogue (https://www.ebi.ac.uk/eqtl/). Other eQTL and caQTL datasets were obtained from their original publications (refs. 56-59). The reference human
genomes (hg19 and hg38) are available from https://hgdownload.soe.ucsc.edu/downloads.html#human.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was included as a covariate in our analysis when possible.

Reporting on race, ethnicity, or = We focused on European samples when possible. Mixed populations were analyzed for small cohorts such as HCM and

other socially relevant COVID-19. The first 10 genotype principal components (PCs) were included as covariates in the analysis.
groupings
Population characteristics The UK Biobank is a large-scale prospective cohort study including 500,000 participants recruited between 2006 and 2010.

These participants, aged between 40 and 69, provided extensive biological and medical data, including physical measures,

lifestyle information, and health records. We constructed T2D and AD target cohorts based on the UKBB with matched age
and sex between cases and controls. Cases were defined by the ICD-10 code in inpatient record, death record, or diagnosis
summary record.

HCM target cohort includes 97 healthy controls (age: 52.4 [mean] + 18.2 [SD]; male: 54.6%) and HCM cases (age: 54.4 + 16.3;
male: 61.4%). The targeted patient population were patients with various cardiac procedures and non-cardiac patients with
genetic conditions in clinic who were identified to us by their clinical providers. Non-cardiac patients were recruited in person
during onsite clinic days or over the phone with permission by the providers. Healthy volunteers were recruited from our
cardiovascular prevention clinic (i.e., patients with no diagnosis of heart disease).

The VA COVID-19 cohort was derived from the VA Million Veteran Program (MVP). COVID-19 cases were identified using an
algorithm developed by the VA COVID National Surveillance Tool based on reverse transcription polymerase chain reaction
laboratory test results conducted at VA clinics, supplemented with natural language processing on clinical documents for
SARS-CoV-2 tests conducted outside of the VA19. We defined severe COVID-19 cases as patients who were hospitalized,
received acute care, stayed in ICU, or deceased, and controls as those who did not meet these criteria. To minimize potential
confounders, we restricted our analysis to non-elderly individuals (age < 65).

Recruitment The recruitment of the HCM cohort is part of our CIRM cardiomyopathy project (ref. 14). The targeted patient population
were patients with various cardiac procedures and non-cardiac patients with genetic conditions in clinic who were identified
to us by their clinical providers. Non-cardiac patients were recruited in person during onsite clinic days or over the phone
with permission by the providers. Healthy volunteers were recruited from our cardiovascular prevention clinic (i.e., patients
with no diagnosis of heart disease).

The VA COVID-19 cohort was derived from the VA Million Veteran Program (MVP). The VA MVP is an ongoing national
voluntary research program that aims to better understand how genetic, lifestyle, and environmental factors influence
veteran health. Briefly, individuals aged 18 to over 100 years old have been recruited from over 60 VA Medical Centers
nationwide since 2011 with current enroliment at >800,000. Informed consent is obtained from all participants to provide
blood for genomic analysis and access to their full electronic health record (EHR) data within the VA prior to and after
enrollment. The study received ethical and study protocol approval from the VA Central Institutional Review Board in
accordance with the principles outlined in the Declaration of Helsinki. COVID-19 cases were identified using an algorithm
developed by the VA COVID National Surveillance Tool based on reverse transcription polymerase chain reaction laboratory
test results conducted at VA clinics, supplemented with natural language processing on clinical documents for SARS-CoV-2
tests conducted outside of the VA.

Ethics oversight Ethics approval for the UKB study was obtained from the North West Centre for Research Ethics Committee (protocol no. 11/
NW/0382). The Stanford CIRM cardiomyopathy project is in compliance with the Stanford Human Research Protection
Program guidelines and approved by the Stanford Institutional Review Board (IRB #30064). In addition, the procedures are in
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compliance with the International Society of Stem Cell Research guidelines and approved by the Stanford IRB/Stem Cell
Research Oversight panel (SCRO #656). Ethics approval for the MVP COVID-19 study was obtained from the Office of
Research and Development, Veterans Health Administration (MVP0OO1)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All disease cases were utilized in our analysis for each cohort. The same number of control samples were randomly selected from UKBB for
T2D and AD.

Data exclusions  Samples that failed quality controls were excluded from the analysis. For severe COVID-19, samples with age >= 65 were excluded to remove
confounding factors. Overweight individuals (body mass index (BMI) >= 25) were excluded for T2D.

Replication The siRNA experiment was replicated for 8 times for each siRNA. The prime-editing experiment was replicated for 4 times. All replicates were
successful.

Randomization  Random training and testing dataset splits were employed in evaluating model performance.

Blinding In PRS model training, investigators were not blinded to group allocation because the sample labels were needed for training an ML model. In
other scenarios, such as model evaluation and siRNA/prime-editing experiments, the investigators were blinded to group allocation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) For prime editing experiment, microglia were derived from the WTC11 iPSC line, which was originally established in Dr. Bruce
Conklin's lab at UCSF and later shared as a gift with Dr. Yin Shen's lab. Detailed information about this iPSC line can be found
in Miyaoka et al., Nature Methods (PMID: 24509632) and at http://hpscreg.eu/cell-line/UCSF1001-A.

For TMEM119-tdTomato reporter iPSCs, lymphoblastoid cells obtained from a healthy, 56-year-old male, were provided by
the NINDS biorepository and reprogrammed into iPSCs in house.

Authentication hPSCs are routinely tested for expressing stem cell markers and differentiated microglia are tested by know microglia
markers. Confirmation of the knock-in TMEM119-tdTomato construct was obtained by genotyping.

Mycoplasma contamination All cells used in the present study were verified as mycoplasma contamination free.

Commonly misidentified lines  None of the cell lines used are commonly misidentified lines.
(See ICLAC register)
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Seed stocks NA

Novel plant genotypes  NA

Authentication NA
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