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Single-cell polygenic risk scores dissect 
cellular and molecular heterogeneity of 
complex human diseases
 

Sai Zhang    1,2,3,4,16  , Hantao Shu    5,16, Jingtian Zhou6,7,8,16, Jasper Rubin-Sigler9, 
Xiaoyu Yang10, Yuxi Liu10, Johnathan Cooper-Knock11, Emma Monte3, 
Chenchen Zhu3, Sharon Tu9, Han Li    5, Mingming Tong    3, Joseph R. Ecker    7,12, 
Justin K. Ichida9, Yin Shen    10,13, Jianyang Zeng    14  , Philip S. Tsao    4,15   & 
Michael P. Snyder    3 

Polygenic risk scores (PRSs) predict an individual’s genetic risk for complex 
diseases, yet their utility in elucidating disease biology remains limited. We 
introduce scPRS, a graph neural network-based framework that computes 
single-cell-resolved PRSs by integrating reference single-cell chromatin 
accessibility profiles. scPRS outperforms traditional PRS approaches in 
genetic risk prediction, as demonstrated across multiple diseases including 
type 2 diabetes, hypertrophic cardiomyopathy, Alzheimer disease and 
severe COVID-19. Beyond risk prediction, scPRS prioritizes disease-critical 
cells and, when combined with a layered multiomic analysis, links risk 
variants to gene regulation in a cell-type-specific manner. Applied to these 
diseases, scPRS fine-maps causal cell types and cell-type-specific variants 
and genes, demonstrating its ability to bridge genetic risk with cell-specific 
biology. scPRS provides a unified framework for genetic risk prediction 
and mechanistic dissection of complex diseases, laying a methodological 
foundation for single-cell genetics.

Polygenic risk score1 (PRS), also known as polygenic score2, is a widely 
used approach to predict quantitative traits and disease risk on the basis 
of an individual’s genetic makeup. The method is built upon genetic 
variants, including single-nucleotide polymorphisms (SNPs) and small 
insertions and deletions (indels) that are common (minor allele fre-
quency (MAF) > 5%) in the population. PRS is a critical component of 
precision genomic medicine and has promise in versatile utilities3, such 
as health management, disease screening and therapeutic intervention. 
Traditionally, PRS computation involves a linear model that sums the 
genotypes of selected variants, with each variant weighted according to 
its effect size as estimated by a genome-wide association study4 (GWAS). 
The clumping and thresholding (C+T) method serves as the basis of 
constructing PRSs; however, other advanced approaches5–8 have also 
been developed to enhance prediction by considering nuanced genetic 
architectures. Complex diseases exhibit notable cellular heterogeneity, 

involving multiple tissues or cell types in their pathogenesis9. Risk vari-
ants, particularly noncoding ones, can influence disease susceptibility 
and phenotypic variability through diverse cellular and molecular 
processes10–12. However, these multiple layers of complexity have been 
oversimplified in conventional modeling, substantially limiting the 
predictive power and interpretability of PRS13.

In recent years, single-cell sequencing has emerged as a potent tool 
to dissect cellular and molecular heterogeneity across different tissues 
and conditions14, offering unprecedented opportunities to explore 
genome function at high resolution. Single-cell profiling data from 
healthy tissues provide high-resolution annotations of the baseline 
genome function in which genetic variants are involved. Incorporating 
functional annotations into PRS calculation will remove confounders 
such as linked nonfunctional variants, better characterize a disease’s 
genetic architecture and, therefore, improve the predictive accuracy 
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and target genes within specific cell types, revealing a cell-type-specific 
landscape of genetic regulation. Using drug perturbation data, we 
validated our scPRS-nominated HCM genes, showing that the suppres-
sion of these genes in diseased cardiomyocytes (CDMs) was rescued 
by mavacamten (a US Food and Drug Administration (FDA)-approved 
HCM drug) treatment. Supported by experiments, we identified a new 
role of the AD risk variant rs7922621 in downregulating ANXA11 and 
TSPAN14, specifically in microglia. We also demonstrated the negative 
effect of suppressing these genes on microglial phagocytosis. Taken 
together, scPRS offers a unified approach that encompasses GNN mod-
eling and GNN-inspired downstream analysis for simultaneous disease 
prediction and biological discovery, establishing the methodological 
foundation for single-cell genetics.

Results
Overview of scPRS
The design principle of scPRS is to leverage single-cell epigenome pro-
filing to rationalize the calculation of PRS. The approach begins with 
deconvoluting traditional PRS within individual cells on the basis of 
their chromatin accessibility profiled by scATAC-seq, followed by the 
integration of decomposed single-cell-level PRSs into a final score 
capitalizing on cell–cell similarities (Fig. 1 and Methods). In particular, 
using GWAS summary statistics derived from a disease cohort (referred 
to as the discovery cohort) and an scATAC-seq dataset of healthy tis-
sue pertinent to the disease (referred to as the reference scATAC-seq 
dataset), we compute a conditioned PRS for each individual within our 
target cohort (independent with the discovery cohort) and for each 
reference cell, in which we mask out genetic variants located outside 

and generalization. This has been demonstrated elsewhere15, including 
our latest study16. Moreover, the interpretability of PRS can be con-
siderably enhanced by incorporating functional information, adding 
biological discovery functionality to predictive methods.

To bridge this gap, we propose a strategy that unifies genetics and 
single-cell genomics, named single-cell genetics17, to study disease 
genetics at single-cell resolution. In particular, we introduce scPRS, 
a graph neural network18 (GNN)-based framework that enables indi-
vidualized genetic risk prediction at the single-cell level. scPRS lever-
ages the GNN to construct genetic risk score by drawing insights from 
reference single-cell chromatin accessibility measured by single-cell 
or single-nucleus sequencing assay for transposase-accessible chro-
matin19 (scATAC-seq or snATAC-seq). scATAC-seq or snATAC-seq maps 
single-cell-resolved candidate cis-regulatory elements20 (cCREs), which 
are specific DNA regions that potentially regulate the transcription of 
nearby genes. Beyond enhanced disease prediction, scPRS is empow-
ered with fine-grained model interpretability, which allows for sys-
tematic discovery of cell types and cell-type-specific gene-regulatory 
programs underpinning diseases.

We performed extensive simulation experiments to demon-
strate the effectiveness and robustness of scPRS in identifying 
phenotype-relevant cells. We applied scPRS to four diseases—type 2 
diabetes (T2D), hypertrophic cardiomyopathy (HCM), Alzheimer dis-
ease (AD) and severe COVID-19—and showcased its superior predictive 
performance compared to traditional PRS methods. Through model 
interpretation, scPRS identified known disease-critical cell types as well 
as previously uncharacterized cell populations. scPRS-powered func-
tional analysis further fine-mapped candidate causal variants, cCREs 
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Fig. 1 | Overview of scPRS and its applications. For a given disease, scPRS first 
leverages GWAS summary statistics obtained from the discovery cohort and 
the reference scATAC-seq or snATAC-seq dataset to calculate single-cell-level 
PRSs with different parameters for individuals in the target cohort. Next, scPRS 
embeds and propagates cell-level PRSs over the cell–cell similarity network 
using a GNN. The final readout combines smoothed PRSs from all cells to predict 

the disease risk. scPRS is trained to minimize the loss between predicted and 
true disease labels. The trained model can be used to (1) predict disease risk for 
unseen individuals; (2) prioritize disease-relevant cells and cell types; and (3) fine-
map disease risk variants, genes and disrupted genetic regulation in specific cell 
types. UMAP, uniform manifold approximation and projection. The schematic 
was created using BioRender.com.
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open chromatin regions captured in that specific cell. Recognizing 
the sparsity of scATAC-seq data, scPRS further refines per-cell PRS 
features using a GNN21. This GNN operation serves the dual purpose 
of denoising raw PRS features while capturing nonlinear relationships 
between genetic signals and the cellular epigenome. In the final step, 
scPRS aggregates smoothed single-cell-level PRSs and yields a final 
disease risk score. The interpretability of scPRS is achieved by the 
learned model weights accompanied with single cells that indicate 
the contribution of different cells to the disease risk.

The functionalities of scPRS are exemplified by three downstream 
tasks. First, scPRS predicts disease risk for unseen individuals solely on 
the basis of their genotypes (Fig. 1, step 1). Second, scPRS prioritizes 
single cells that are relevant to the disease, overcoming the resolution 
constraint of predefined cell clusters (Fig. 1, step 2). Third, integrated 
with a multiomic approach, scPRS fine-maps causal variants, genes and 
genetic regulation within prioritized cell types (Fig. 1, step 3).

Evaluation of scPRS using simulations
We first performed simulation experiments to evaluate the capacity of 
scPRS in identifying phenotype-relevant cells. Assuming that the trait 
‘monocyte count’ is fully determined by genetic variants located within 
monocyte-specific open chromatin regions22, we simulated mono-
cyte counts for individuals of a genotyped cohort23 (n = 401). We then 
asked whether we could use scPRS to recapitulate monocytes as the 
causal cell type. Specifically, we used a reference scATAC-seq dataset24 
(Extended Data Fig. 1a) of human peripheral blood mononuclear cells 
(PBMCs) to identify monocyte-specific peaks (Methods). On the basis 
of a monocyte count GWAS22 defining variant effect sizes, we simulated 
the monocyte count for each individual by calculating the C+T PRS 
using only variants located within monocyte-specific peaks (Methods). 
Next, we trained an scPRS model to predict simulated monocyte counts 
from cell-level PRSs computed on all PBMCs. We observed that scPRS 
predictions were significantly correlated with simulated monocyte 
counts (r = 0.77, P < 2.2 × 10−16, Pearson correlation; Extended Data 
Fig. 1b). The cells prioritized by scPRS (Methods) were significantly 
enriched within monocytes (Z = 39.58, P < 1 × 10−50, two-sided Fisher’s 
exact test; Extended Data Fig. 1c), demonstrating that scPRS captured 
causal cells.

Human phenotypes such as complex diseases can be influenced 
by various nongenetic factors, including environmental and lifestyle 
factors25. Additionally, the measurement of phenotypes often carries 
inherent noise. Therefore, it is important to assess the robustness of 
scPRS by introducing noise and randomness into the simulation (Meth-
ods). As expected, we observed a progressive reduction in predictive 
performance as we introduced larger amounts of noise (Extended 
Data Fig. 1d). Notably, scPRS sustained its ability in uncovering mono-
cytes even in the presence of considerable noise terms (Extended Data 
Fig. 1e,f and Supplementary Fig. 1a). For example, when we introduced 
a noise term with the same amount of variance (σ = 1) as that of the 
simulated phenotype, scPRS still accurately identified monocytes (area 
under the curve (AUC) = 0.812; Extended Data Fig. 1e); the enrichment 
of monocytes persisted even when three times the amount of variance 
was added (σ = 3; Z = 2.68, P < 1 × 10−50, two-sided Fisher’s exact test; 
Extended Data Fig. 1f).

We further introduced peak noise into simulation by replacing 
a proportion of randomly selected monocyte-specific peaks with 
non-monocyte-specific peaks. Using these mixed peaks, we generated 
noisy monocyte counts for individuals. We then assessed whether 
scPRS could still identify monocytes from the noisy data. We found 
that scPRS was able to identify monocytes with peak noise levels up to 
90% (Supplementary Fig. 1b,c). We also tested different model hyper-
parameter settings and observed no significant variation in predictive 
performance (Supplementary Fig. 1d). All these results demonstrate 
the robustness of scPRS against different sources of noise, randomness 
and model settings.

Lastly, we conducted a negative control experiment by exclud-
ing monocyte-related cells, including monocytes and cells contain-
ing more than 40 monocyte-specific peaks (~1% of all peaks used for 
simulating monocyte counts) from the PBMC dataset. Unsurpris-
ingly, the predictive performance of scPRS was significantly reduced 
(r = 0.488 (mean) ± 0.085 (s.d.); Supplementary Fig. 1e) compared to 
scPRS trained on the full dataset. Moreover, scPRS exhibited increased 
nonspecificity in prioritizing monocyte-count-relevant cells (Supple-
mentary Fig. 1f), showing a similar saturation pattern in large-noise 
scenarios (Extended Data Fig. 1f).

scPRS accurately predicts diseases
We applied scPRS to multiple diseases, including T2D, HCM, AD and 
severe COVID-19. We used UK Biobank26 (UKBB) data to construct target 
cohorts for T2D and AD and our in-house whole-genome sequencing 
(WGS) data27 for HCM (Methods). The severe COVID-19 target cohort 
was constructed on the basis of the Veterans Affairs (VA) Million Vet-
eran Program28 (MVP) WGS dataset (Methods). The discovery GWAS 
dataset29–32 was carefully chosen to ensure nonoverlap with the target 
cohort for each disease. Multiple reference scATAC-seq datasets of 
disease-relevant tissues were used, including the pancreas33 for T2D, 
left ventricle34 for HCM, frontal cortex35 for AD and lung34 for severe 
COVID-19 (Methods).

For benchmarking, we used six well-established PRS methods: 
C+T (implemented by PLINK36), LDpred2 (including LDpred2-inf, 
LDpred2-grid, and LDpred2-auto)5, Lassosum7 and PolyPred37 (Methods).  
Among these baseline methods, PolyPred uses functional annotations 
to compute prior causal probabilities of variants38, for which we used 
scATAC-seq peaks as the annotation to ensure a fair comparison. To 
examine the predictability of nonpeak and nongenetic factors, we 
also built a C+T PRS model on the basis of variants situated beyond 
open chromatin regions and a logistic regression (LR) model using 
individual’s age, sex and the first ten principal components (PCs) as 
input features (Methods).

Remarkably, scPRS-based methods consistently outperformed 
all baseline PRS approaches in all diseases (Fig. 2a and Supplementary 
Fig. 2a,b). In particular, for HCM, AD and severe COVID-19, scPRS 
achieved superior predictive performance evaluated by both the 
area under the receiver operating characteristic curve (AUROC; HCM, 
0.692 ± 0.079; AD, 0.743 ± 0.017; severe COVID-19, 0.591 ± 0.029) 
and the area under the precision–recall curve (AUPRC; HCM, 
0.781 ± 0.062; AD, 0.751 ± 0.035; severe COVID-19, 0.281 ± 0.034) 
compared to all baseline PRS methods (adjusted P < 0.1, Benjamini–
Hochberg (BH) correction; Fig. 2a and Supplementary Fig. 2a,b), 
except for C+T and LDpred2-auto, which yielded comparable AUPRC 
values in some cases.

For T2D, scPRS presented performance comparable to other 
methods (AUROC, 0.608 ± 0.009; AUPRC, 0.598 ± 0.032; Fig. 2a and 
Supplementary Fig. 2b). Integrating nonpeak C+T PRSs into the scPRS 
model (referred to as scPRS+; Methods) further boosted its perfor-
mance (AUROC, 0.635 ± 0.018; AUPRC, 0.633 ± 0.036), outperform-
ing all baseline methods (adjusted P < 0.1, BH correction; Fig. 2a and 
Supplementary Fig. 2b), except for C+T where the AUROC remained 
comparable. These results suggest that the variants located outside 
pancreas cCREs, such as protein-coding39 and splicing40 variants, or 
variants within cCREs specific to other tissues41 may also contribute 
to T2D susceptibility. This is also supported by the observation that a 
predictor built solely on nonpeak PRSs (referred to as nonpeak C+T) 
performed best among all methods (AUROC, 0.638 ± 0.023; AUPRC, 
0.633 ± 0.039; Fig. 2a and Supplementary Fig. 2b).

We also constructed peak PRSs across different cell types anno-
tated in the scATAC-seq datasets (Methods). scPRS outperformed 
all single-cell-type and multi-cell-type PRSs for all diseases (Supple-
mentary Fig. 3), underscoring the advantage of single-cell-resolved 
modeling in disease prediction.
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The covariate models exhibited limited predictive power for T2D 
and AD (Fig. 2a and Supplementary Fig. 2b) because of the fact that 
we matched age, sex and population between cases and controls in 
constructing the target cohorts. Not surprisingly, the predictive perfor-
mance reached a peak for all diseases after integrating all other factors, 
including nonpeak PRSs and covariates, into the scPRS model (referred 
to as scPRS+covar; Fig. 2a and Supplementary Fig. 2a,b).

We tested the use of alternative scATAC-seq datasets in scPRS, 
including those from a different study42 (for AD), a different donor 
(for HCM) and a different sampling (for T2D). We found that scPRS 
yielded comparable predictive performance (Supplementary 
Fig. 4a,b), demonstrating its robustness against distinct choices of 
reference single-cell datasets. To examine the impact of cell numbers, 
we compared the predictive performance of T2D scPRS models using 
different numbers of cells randomly sampled from the pancreas 
scATAC-seq dataset. We observed that scPRS exhibited moderately 
stable predictive performance across a broad range of cell num-
bers (Supplementary Fig. 4c), with an increase in performance as 
more cells were sampled. We also assessed the impact of input PRS 
choices. In particular, we randomly removed input PRSs, in which a 
certain proportion of randomly selected PRS features were set to zero 
for all samples in each training–testing procedure. We then evalu-
ated the predictive performance of scPRS across different dropout 
rates. scPRS yielded stable predictive performance with only a slight 
decrease as dropout rates increased up to 70% (Supplementary 

Fig. 4d), whereas performance was substantially reduced at higher 
dropout rates.

As a negative control, we chose PBMCs as an unrelated system 
for T2D. scPRS trained on PBMC scATAC-seq data presented inferior 
predictive performance compared to the model trained on the pan-
creas data (Supplementary Fig. 5a), highlighting the importance of 
choosing reference single-cell data from disease-relevant systems or 
tissues in scPRS.

Lastly, we sought to evaluate scPRS on independent target cohorts. 
For T2D, we used the Genetics of T2D Consortium39 (GoT2D) genotype 
dataset as the independent cohort; for HCM, because the discovery 
GWAS was performed on UKBB European (EUR) samples, we con-
structed an independent cohort comprising non-EUR HCM samples 
and matched controls from UKBB; for AD, we used the AD Neuroimag-
ing Initiative43 (ADNI) WGS dataset. We trained scPRS models on the 
basis of the original target cohorts and all PRS methods were tested on 
the new independent target cohorts. Notably, scPRS still outperformed 
all baseline methods for HCM and AD (Fig. 2b and Supplementary 
Fig. 2c). Similarly, scPRS+ further improved the prediction for T2D, sur-
passing all other baseline PRS approaches (Fig. 2b and Supplementary 
Fig. 2c). Interestingly, for HCM, even when scPRS was trained on EUR 
samples, it performed comparably for non-EUR samples (AUROC, 0.692 
(EUR) versus 0.643 (non-EUR); Fig. 2b and Supplementary Fig. 2c), sug-
gesting its portability across different populations, although further 
validation with additional data is needed.
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Fig. 2 | Predictive performance comparison between scPRS and baseline 
methods. a, Bar plots of AUROC values of different models. The training and 
testing procedure was conducted for ten repeats with different random seeds. 
Training, validation and test dataset splits were kept identical across different 
methods to ensure a fair comparison. scPRS+, scPRS model integrating nonpeak 
PRSs; scPRS+covar, scPRS model integrating nonpeak PRSs and covariates (that 

is, age, sex and first ten PCs); C+T (nonpeak), LR model of nonpeak C+T PRSs; 
Covar, LR model of covariates. Performance comparison was conducted using a 
one-sided paired t-test. The mean and 95% confidence interval (CI) are annotated 
using the bar plot and error bar, respectively. b, ROC curves of different models 
evaluated on independent target cohorts. The performance of a random 
predictor is shown by the dashed gray line.
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scPRS prioritizes disease-relevant cells
Next, we sought to examine the disease–cell association using scPRS. 
For each disease, we first trained 100 scPRS models with different ran-
dom seeds based on the entire target cohort and then prioritized cells 
whose model weights consistently exceeded those of background 
cells, designating them as disease-relevant cells (Methods). We also 
harnessed the knowledge of annotated cell types to facilitate biological 
interpretation (Methods).

T2D. There were 14 cell types identified in the human pancreas33 (Fig. 3a, 
left, and Methods), among which two hormone-high cell types (namely, 
GCGhigh alpha cells and INShigh beta cells) were significantly enriched 

with scPRS-selected cells (adjusted P < 0.1, BH correction; Fig. 3a). The 
original study44 that generated the pancreas snATAC-seq dataset had 
linked INShigh and INSlow beta cells to T2D risk using the stratified linkage 
disequilibrium (LD) score regression45 (sLDSC). As another benchmark, 
we applied SCAVENGE46, a computational method that also enables 
single-cell-resolved cell prioritization, to the same data (Methods). In 
addition to GCGhigh alpha cells and INShigh beta cells, SCAVENGE prior-
itized GCGlow alpha cells (adjusted P < 0.1, BH correction; Supplemen-
tary Fig. 6a). In comparison, cells selected by PBMC-based T2D scPRS 
exhibited nonspecificity across cell types (Supplementary Fig. 5b).

While pancreatic beta cell dysfunction and cell death are known 
as key processes in the development of T2D (ref. 47), it is increasingly 
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Fig. 3 | Disease-critical cells identified by scPRS. a–c, Disease-critical cells 
identified by scPRS for T2D (a), HCM (b) and AD (c). Left, scATAC-seq or snATAC-
seq datasets used by scPRS, along with annotated cell types. Middle, disease-
relevant cells prioritized by scPRS (in red). Cell clusters enriched with scPRS-
prioritized cells are highlighted in closed curves with corresponding cell type 
colors. Right, enrichment of scPRS-selected disease cells within each cell type. 

ORs and P values were determined using a one-sided Fisher’s exact test. Cell type 
abbreviations: Fibro, fibroblast; LEC, lymphatic endothelial cell; Peri, pericyte; 
Schw, Schwann cell; SmMus, smooth muscle cell; VEC, vascular endothelial cell. 
For robustness, small cell clusters with fewer than 150 cells were excluded from 
analysis and visualization for all diseases.
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evident that T2D may result from defects in multiple cell types48. Nota-
bly, the alpha cell, which serves as the counterpart to the beta cell 
and is responsible for producing glucagon, has been increasingly 
recognized for its role in T2D pathogenesis49–51. Single-cell profiling 
further revealed the diversity within islet endocrine cells, spanning 
from fine-grained cell states to a continuous spectrum44. Our findings, 
coupled with prior research44,52, underscore the complexity of T2D 
pathogenesis involving multiple cell types within the pancreatic islets.

HCM. In the human left ventricle, a total of 17 cell types were identi-
fied (Fig. 3b, left, and Methods). Among these, two cell types, includ-
ing CDMs and pericytes, presented significant enrichment with 
scPRS-selected cells (adjusted P < 0.1, BH correction; Fig. 3b). As com-
parison, we found no genetic enrichment within snATAC-seq peaks of 
all left-ventricle cell types using sLDSC (Supplementary Fig. 6b and 
Methods). SCAVENGE also linked CDMs to HCM (adjusted P < 0.1, 
BH correction) but enrichment within pericytes was not observed  
(Supplementary Fig. 6c). CDMs, the primary cell type involved in 
the process of hypertrophy and thickening of heart muscle, have a 
pivotal role in HCM pathogenesis53. Pathogenic mutations disrupt 
the normal function of CDMs, leading to structural and functional 
abnormalities53, such as myocardial hypertrophy and fibrosis, con-
tractile dysfunction and arrhythmias. Our scPRS prediction not only 
reinforces the association between CDM dysfunction and HCM but 
also extends this connection from protein function to noncoding  
gene regulation.

Cardiac pericytes interact with endothelial cells through both 
physical and paracrine mechanisms and are integral in maintaining 
cardiac and vascular homeostasis54. Despite being relatively under-
studied, the loss and dysfunction of pericytes have been associated 
with cardiomyopathy55–57. Our results confirm this connection and 
shed light on the potential causal involvement of pericytes in cardiac 
hypertrophy. Importantly, this link would not have been identified with 
either sLDSC or SCAVENGE.

AD. Eight major cell types were identified in the human cortex35 (mid-
dle frontal and superior and middle temporal gyri; Fig. 3c, left, and 
Methods), among which three cell types were significantly enriched 
with scPRS-prioritized cells (adjusted P < 0.1, BH correction; Fig. 3c), 
including microglia, astrocytes and oligodendrocyte progenitor 
cells (OPCs). It is noteworthy that the original study35 that gener-
ated the brain scATAC-seq dataset linked only microglia to AD using 
sLDSC. Applying SCAVENGE to the same data revealed the same set 
of AD-relevant cell types as scPRS (adjusted P < 0.1, BH correction; 
Supplementary Fig. 6d).

The relationship between microglia and AD has been well estab-
lished in the literature58. Microglia have diverse roles, including 
immune response, phagocytosis and synapsis modulation, contribut-
ing extensively to the development and progression of AD pathology. 

Moreover, genetic studies consistently prioritize microglia as the 
most prominent brain cell type associated with AD59,60. In recent years, 
accumulating evidence has underscored the essential role of astrocytes 
in AD pathogenesis through their reactivation or dysfunction61,62. 
Additionally, latest research has linked OPCs to AD, likely because of 
its function in immune modulation and remyelination63. Our results 
reinforce these findings and offer further insights into the cellular 
heterogeneity of AD pathogenesis.

Severe COVID-19. scPRS-prioritized cells were significantly enriched 
in macrophages, natural killer (NK) cells and monocytes (adjusted 
P < 0.1, BH correction; Supplementary Fig. 6e). Dysregulated activation 
of macrophages contributes to tissue damage and disease progression 
through excessive cytokine production64–66. NK cells, crucial for early 
defense against viral infections, may exacerbate the cytokine storm 
when impaired67–70. Monocytes, as precursors to macrophages, have 
also been linked to severe COVID-19 because of their role in inflam-
mation and tissue damage71–73. In particular, monocytes were also 
prioritized by SCAVENGE46 for severe illness.

Of note, scPRS-prioritized cell types aligned with the top- 
performing single-cell-type peak PRSs (Supplementary Fig. 3), pro-
viding additional insight into the rationale behind scPRS-based cell 
prioritization.

scPRS reveals disease regulatory programs
As per model design, scPRS prioritizes cells that contain 
disease-associated variants within their differentially accessible 
chromatin regions. This feature empowers us to delve deeper into 
the regulatory circuits that contribute upstream of the disease across 
different cell types. To achieve this, we devised a layered multiomic 
strategy based on the trained scPRS model to systematically map 
cell-type-specific gene regulation underlying diseases (Fig. 4a and 
Methods).

For each disease-relevant cell type nominated by scPRS, we 
first identified the cCREs that were differentially accessible within 
scPRS-selected cells. Within these, we further prioritized cCREs 
(referred to as disease-relevant cCREs) that were significantly enriched 
with disease-associated variants using MAGMA74. To map cCRE–gene 
interactions, we performed coaccessibility analysis75 on the basis of 
the scATAC-seq data, supplemented by the closest-gene strategy given 
its effectiveness in nominating disease genes76. For each cell type, this 
procedure yielded a set of candidate disease genes associated with the 
disease-relevant cCREs.

To fine-map causal variants within disease-relevant cCREs, we used 
a sequence-based deep learning model77–79 that predicted chromatin 
accessibility across different cell types from the DNA sequence (Supple-
mentary Fig. 4a and Methods). We trained the model using scATAC-seq 
data and then used it to predict the functional effects of individual 
variants on chromatin accessibility across cell types (Supplementary 

Fig. 4 | Cell-type-specific genetic regulation in T2D. a, Schematic of scPRS-
based multiomic strategy for uncovering disease-relevant genetic regulation. 
RNAi, RNA interference. The schematic was created using BioRender.com.  
b, Enrichment of T2D-associated variants within cCREs that were differentially 
accessible in scPRS-prioritized cells. LD threshold r2 = 0.1 was used in clumping 
to retrieve an independent variant set (n = 783,082). P values were determined 
using a two-sided Fisher’s exact test. The log10(OR) and 95% CI are annotated by 
the dots and error bars, respectively. c, Candidate T2D genes and GO enrichment 
analysis results. Significant GO terms (adjusted P < 0.1, BH correction) with OR > 5 
are visualized. d, Enrichment of TFBS-disrupting variants within seq-DL-panc-
prioritized variants (various thresholds applied). seq-DL-panc, the sequence 
deep learning model trained on the pancreas snATAC-seq data. Enrichment was 
estimated by t statistics, where a total of 6,865,604 variants were tested. The box 
plot center line, limits and whiskers represent the median, quartiles and 1.5× the 
interquartile range (IQR), respectively. The dots indicate outliers falling above 

or below the end of the whiskers. Crosses indicate adjusted P > 0.1. e, Enrichment 
of seq-DL-panc-prioritized T2D-associated variants (various thresholds applied) 
within T2D-cCREs. ORs and CIs were determined using a two-sided Fisher’s exact 
test. The log10(OR) is annotated by the solid line and 95% CI is represented by the 
shaded area. The red dashed line indicates null enrichment. f, Illustration of the 
genetic regulation of rs10811660 in INShigh beta cells. In the bar plot, the asterisk 
indicates that the percentage of seq-DL-panc score is greater than 85%. In the 
gene plot, the mapped target gene is highlighted in red. In the link plot, links with 
coaccessibility > 0.05 are visualized; Coaccess, coaccessibility. g, The UMAP plot 
of the pancreas snATAC-seq dataset showing the expression of MAFA in individual 
cells. Gene expression was estimated on the basis of gene activity computed 
by Signac. INShigh beta cells are highlighted in the dashed closed curve. h, Ratio 
between observed and expected cell counts in GCGhigh alpha (left) and INShigh beta 
(right) cells. P values were determined using a two-sided chi-square test.
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Fig. 7a and Methods). This completed the map of disease-relevant 
regulatory circuits composed of variant–cCRE–gene trios. Follow-up 
experiments were carried out in corresponding cell types to validate 
our predictions.

T2D. We first observed a significant enrichment of T2D-associated 
variants (GWAS P < 5 × 10−8) within differentially accessible cCREs for 
scPRS-prioritized cells (P < 1 × 10−6, two-sided Fisher’s exact test; Fig. 4b, 
Supplementary Fig. 7b and Methods). Using MAGMA, we identified 19 
and 22 T2D-relevant cCREs (referred to as T2D-cCREs) in GCGhigh alpha 
and INShigh beta cells, respectively (Supplementary Fig. 7c and Supple-
mentary Table 1). Motif enrichment analysis for T2D-cCREs uncovered 
transcription factors (TFs) of functional importance in corresponding 
cell types (Supplementary Fig. 7c and Methods). For example, TEAD1 
is a critical beta cell TF necessary for coordinating various aspects of 
adult beta cell function, including proliferative quiescence, mature 
identity and functional competence to uphold glucose homeostasis80,81. 
MAFB, whose motif is enriched in both cell types, is another pivotal TF 
in the islet. It is essential for the production and secretion of glucagon 
in alpha cells82 and for the maturation of beta cells83. A recent study 
demonstrated that XBP1 has a vital role in maintaining beta cell identity 
and repressing beta-to-alpha cell transdifferentiation, and is required 
for beta cell compensation and the prevention of diabetes in insulin 
resistance states84.

By mapping target genes of T2D-cCREs, we identified 45 and 29 
candidate risk genes in GCGhigh alpha and INShigh beta cells, respectively 
(Fig. 4c and Supplementary Table 1). The function of alpha cell genes 
was enriched with ‘pancreas development’ (GO:0031016) and ‘RNA 
polymerase core enzyme binding’ (GO:0043175) (adjusted P < 0.1, BH 
correction), whereas the function of beta cell genes was enriched with 
‘response to hexose’ (GO:0009746), ‘positive regulation of insulin 
secretion’ (GO:0032024) and ‘response to glucose’ (GO:0009749) 
(adjusted P < 0.1, BH correction).

Trained on the pancreas snATAC-seq data, the sequence model 
exhibited high accuracy in peak prediction (AUROC, 0.819 ± 0.011; 
AUPRC, 0.639 ± 0.044; Supplementary Fig. 7d). We validated our 
variant effect prediction using two different approaches: expression 
quantitative trait locus (eQTL) analysis and TF-binding site (TFBS) 
prediction (Methods). Leveraging eQTL datasets generated in relevant 
tissues85–88, we observed that eQTLs tended to display larger effects on 
the basis of deep learning prediction in related cell types compared 
to non-eQTLs (Supplementary Fig. 7e). Additionally, variants with 
larger effects were more likely to alter TF binding89 (Fig. 4d). These 
results indicate that the sequence model had captured underlying 
gene regulation mechanisms. We also examined functional effects of 
T2D-associated variants (GWAS P < 0.05) located within T2D-cCREs 
in GCGhigh alpha and INShigh beta cells (Methods). Variants with larger 
effect sizes showed higher enrichment in T2D-cCREs in corresponding 
cell types (Fig. 4e), providing additional support for the functional 
importance of T2D-cCREs we identified.

Combining multiomic evidence from eQTLs, TF binding and 
sequence model prediction fine-mapped T2D risk variants with func-
tional implications (Supplementary Fig. 7f,g and Supplementary 
Table 1). One variant of particular interest is rs10811660, a T2D GWAS 
SNP31 (GWAS P = 1.30 × 10−11, β = −0.13, effect/alternative allele is A) 
residing within an INShigh beta cell-specific T2D-cCRE (chr9:22,133,835–
22,134,336; P = 1.91 × 10−14, log2 fold change (FC) = 4.99; Fig. 4f). We 
predicted that the alternative allele specifically reduced the cCRE 
accessibility in INShigh beta cells (INShigh beta cell Z = −2.43, percen-
tile = 96.84%; Fig. 4f). Furthermore, the affected cCRE was found to be 
coaccessible with CDKN2A (coaccessibility = 0.159; Fig. 4f). Previous 
studies demonstrated that the p16 inhibitor of cyclin-dependent kinase 
(p16INK4A), encoded by CDKN2A, restricts beta cell proliferation during 
aging, restricts beta cell regeneration, mediates overnutrition-related 
senescence and reduces insulin secretory function90. While rs10811660 
has also been linked to a CDKN2A paralog, CDKN2B, because of their dis-
tance proximity90, our coaccessibility analysis suggested that this asso-
ciation might be a false-positive nomination (Fig. 4f). This conclusion 
was further supported by the islet eQTL data88, wherein rs10811660 was 
significantly associated with the expression of CDKN2A (P = 9.94 × 10−4, 
Z = 3.29) rather than that of CDKN2B (P > 0.05, Z = 0.40; Supplementary 
Fig. 7h). Additionally, we found that the alternative allele A disrupted 
the binding motif of MAFA (P < 1 × 10−4, motifbreakR91; Fig. 4f and Meth-
ods), a critical regulator of pancreatic beta cell function92, which was 
more highly expressed in beta cells (Fig. 4g). Collectively, our analysis 
suggests a genetic regulation influencing T2D risk; the T2D risk allele G 
(rs10811660) increases the abundance of MAFA binding, which further 
upregulates CDKN2A expression in INShigh beta cells. This aligns with 
previous evidence implicating that higher expression of CDKN2A may 
increase T2D risk90.

Lastly, we sought to characterize scPRS-selected cells beyond the 
resolution of predefined cell types. In particular, we compared selected 
cells to unselected ones from the same cell type. Differential acces-
sibility analysis identified two peaks (chr10:94,479,864–94,480,365 
and chr10:114,780,533–114,781,034) that were significantly enriched 
in scPRS-selected GCGhigh alpha cells and three peaks (chr9:22,133,835–
22,134,336, chr10:114,758,079–114,758,580 and chr10:114,780,533–
114,781,034) enriched within INShigh beta cells. These marker peaks 
defined novel cell populations relevant to T2D (Supplementary Fig. 8), 
as informed by genetic risk. Consistent with this, we further classified 
each of these two cell types into subtypes on the basis of the accessibility 
of marker peaks and observed significant enrichment of scPRS-selected 
cells in the marker-defined subtype (P < 1 × 10−50, two-sided chi-square 
test; Fig. 4h). Of note, the peak chr10:114,780,533–114,781,034 was 
shared between the selected populations of alpha and beta cells; all 
marker peaks contained at least one T2D GWAS variant (Supplementary 
Table 1). The marker peaks of the selected GCGhigh alpha cells were linked 
to genes such as TCF7L2 and CPEB3, with TCF7L2 also pinpointed in the 
selected INShigh beta cells, suggesting shared T2D biology across these 
two cell populations. The peak chr9:22,133,835–22,134,336 highlighted 

Fig. 5 | Cell-type-specific genetic regulation in HCM. a, Motif enrichment within 
HCM-cCREs identified in two HCM-relevant cell types including CDMs and 
pericyte. Motif enrichment was measured by AUC. Row-wise standardization was 
performed. Only significant enrichment (adjusted P < 0.1, Bonferroni correction) 
is colored. b, Bar plot of GO enrichment for CDM HCM risk genes. Significant GO 
terms (adjusted P < 0.1, BH correction) with OR > 5 are shown. c, The network 
module M16 enriched with pericyte HCM genes. P values were determined using 
a one-sided hypergeometric test. Edges between module genes are shown.  
d, Lollipop chart of GO enrichment (biological process) for M16 genes. 
Significant GO terms (adjusted P < 0.1, BH correction) are shown. e, Schematic of 
iPS cell RNA-seq experiments. Myk, mavacamten; Omec, omecamtiv mecarbil. 
The schematic was created using BioRender.com. f, Expression FC comparison 
between HCM risk genes and the background transcriptome in CDMs across 
different conditions. The box plot center line, limits and whiskers represent the 

median, quartiles and 1.5× the IQR, respectively. P values were determined using 
a two-sided t-test (n = 16,160). NS, not significant; stat, statistics. g, Expression FC 
comparison between HCM risk genes and the background transcriptome in HCM-
relevant cell types based on an HCM snRNA-seq study. The box plot center line, 
limits and whiskers represent the median, quartiles and 1.5× the IQR, respectively. 
P values were determined using a two-sided t-test (n = 11,683). h, Illustration of 
the genetic regulation of rs886125 in CDMs. In the bar plot, the asterisk indicates 
a seq-DL-heart score percentage greater than 85%; seq-DL-heart, the sequence 
deep model trained on the left-ventricle snATAC-seq data. In the gene plot, 
differentially expressed target genes are mapped (in red). Bkg, background.  
i, The UMAP plot of the left-ventricle snRNA-seq dataset showing the expression 
of ZNF382 in individual cells. Expression was estimated by normalized gene 
count. CDMs are highlighted in the dashed closed curve.
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above (Fig. 4f) was one of the marker peaks of the selected INShigh beta 
cells; this peak contained the T2D risk SNP rs10811660, underscoring 
the cellular specificity of rs10811660 in impacting T2D risk.

HCM. We identified 137 and 358 HCM-relevant cCREs (referred to as 
HCM-cCREs) that were linked to 199 and 492 target genes in CDMs and 
pericytes, respectively (Supplementary Table 2). We observed only 
minimal overlap, with just one cCRE and 24 genes shared between these 
two cell types, highlighting their cell type specificity.

Our motif enrichment analysis for HCM-cCREs revealed TFs that 
have critical roles in corresponding cell types (Fig. 5a). For instance, 
TEAD1 is a pivotal regulator involved in maintaining the proper func-
tioning of adult CDMs, whose loss of function has been associated with 
dilated cardiomyopathy93. GATA4 exerts notable control over cardiac 
gene expression, impacting embryonic development, CDM differentia-
tion and stress responsiveness of the adult heart94. NKX2-5 is a central 
regulator of heart development and pathogenic mutations within it 
contribute to progressive cardiomyopathy and conduction defects95. 
Additionally, RBPJ inactivation has been linked to the development of 
disease-promoting properties in brain pericytes96. STAT3 serves as a 
key regulator of cell–cell communication within the heart, a critical 
aspect of pericyte functionality97.

HCM risk genes identified in CDMs exhibited functional impor-
tance in CDMs and cardiomyopathy, such as ‘myosin heavy chain bind-
ing’ (GO:0032036), ‘cardiac muscle contraction’ (GO:0060048) and 
‘sarcomere organization’ (GO:0045214) (adjusted P < 0.1, BH correc-
tion; Fig. 5b). No Gene Ontology (GO) enrichment was observed for 
pericyte genes, suggesting a marked functional diversity within this 
gene set. To better dissect this heterogeneity, we carried out a net-
work analysis on the basis of the protein–protein interactions (PPIs)98 
(Methods), in which one module M16 was significantly enriched with 
HCM pericyte genes (P = 5.07 × 10−4, hypergeometric test; adjusted 
P = 0.034, BH correction; Fig. 5c). Genes within this module displayed 
GO enrichment in various pericyte functions, such as ‘cell–cell adhe-
sion mediated by cadherin’ (GO:0044331), ‘cell–cell junction assembly’ 
(GO:0007043) and ‘cadherin binding’ (GO:0045296) (adjusted P < 0.1, 
BH correction; Fig. 5d and Supplementary Fig. 9a).

To better understand the gene function in the disease context, 
we analyzed an RNA sequencing (RNA-seq) dataset27 of induced 
pluripotent stem cell (iPS cell)-derived CDMs obtained from 43 HCM 
cases and 31 healthy controls (Fig. 5e). Bulk RNA-seq profiling was 
conducted under four conditions: iPS cells, differentiated CDMs, 
mavacamten-treated99 (an HCM drug recently approved by FDA) CDMs 

and omecamtiv mecarbil100 (a heart failure drug serving as the nega-
tive control) treated CDMs. Notably, although the CDM HCM genes 
exhibited no expression difference in iPS cells between HCM cases and 
healthy controls, their expression was significantly reduced in differen-
tiated HCM CDMs compared to control cells (P = 8.95 × 10−3, two-sided 
t-test; Fig. 5f, Supplementary Table 3 and Methods). Intriguingly, the 
downregulation of HCM genes was rescued by mavacamten treatment 
(P = 0.017, two-sided t-test) but persisted in omecamtiv mecarbil treat-
ment (P > 0.05, two-sided t-test; Fig. 5f). The reduced expression of 
HCM genes identified in CDMs and pericytes was also confirmed in 
corresponding cell types using an independent HCM single-cell tran-
scriptome dataset101 (CDM P = 0.02, pericyte P = 0.048, two-sided t-test; 
Fig. 5g), while showing cell type specificity (Supplementary Fig. 9b,c). 
These results demonstrate the disease relevance of our HCM genes.

We trained a different sequence deep learning model on the basis 
of the snATAC-seq dataset of the left ventricle (AUROC, 0.846 ± 0.019; 
AUPRC, 0.658 ± 0.032; Supplementary Fig. 9d). Variant effects pre-
dicted by the model agreed well with eQTL profiling85,102 and TFBS 
prediction (Supplementary Fig. 9e,f). HCM-cCREs presented increased 
enrichment of HCM-associated variants (GWAS P < 0.05) with larger 
effects (Supplementary Fig. 9g).

The sequence deep learning prediction, together with eQTL and 
TFBS analyses, fine-mapped novel cell-type-specific HCM risk variants 
(Supplementary Fig. 9h,i and Supplementary Table 2). As an exam-
ple, the CDM-specific HCM-cCRE (chr12:110,927,025–110,927,526; 
P = 2.5 × 10−3, log2 FC = 1.94; Fig. 5h) contained a nominally significant 
GWAS30 variant rs886125 (GWAS P = 0.019, β = −0.149, effect/alterna-
tive allele = G) and was coaccessible (coaccessibility = 0.367) with 
MYL2, a widely recognized HCM gene80. On the basis of our predic-
tions, the alternative allele G specifically decreased the cCRE within 
CDMs (CDM Z = −1.10, percentile = 87.62%; Fig. 5h) and it disrupted the 
TFBS of ZNF382 (P < 1 × 10−4, motifbreakR; Fig. 5h), which is known as 
a transcriptional repressor103. These results together suggest that the 
risk-increasing allele A, bound by ZNF382, would lower the expres-
sion of MYL2 in CDMs. This was supported by the eQTL data86 in which 
the risk allele A was associated with decreased expression of MYL2 
(P = 0.011, β = 0.125; GTEx artery aorta). Additionally, using our paired 
snRNA-seq data, we found that ZNF382 was more highly expressed in 
CDMs (Fig. 5i), highlighting its cell-type-specific role in gene regulation.

AD. We first confirmed a significant enrichment of AD-associated 
variants (GWAS P < 5 × 10−8) within differentially accessible cCREs 
in scPRS-prioritized cells (P < 5 × 10−3, two-sided Fisher’s exact test; 

Fig. 6 | Cell-type-specific genetic regulation in AD. a, Venn diagram of 
AD-relevant cCREs (top) and genes (bottom) identified by the scPRS-based 
multiomic strategy. AST, astrocyte; MG, microglia. b, Motif enrichment within 
AD-cCREs across different cell types. Motif enrichment was measured by AUC. 
Column-wise standardization was performed. Only significant enrichment 
(adjusted P < 0.1, Bonferroni correction) is colored. P values were determined 
using a hypergeometric test. c, Enrichment of seq-DL-prioritized AD-associated 
variants (various thresholds applied) within AD-cCREs. ORs and CIs were 
determined using a two-sided Fisher’s exact test. The log10(OR) is annotated by 
the solid line and the 95% CI is represented by the shaded area. The red dashed 
line indicates null enrichment. d, Summary statistics of fine-mapped AD risk 
variants in microglia using different annotations. e, Illustration of the genetic 
regulation of rs7922621 in microglia. Box plot: the box plot center line, limits, and 
whiskers represent the median, quartiles and 1.5× the IQR, respectively. P values 
were determined using a two-sided t-test. ref, reference; alt, alternative. In the bar 
plot, the asterisk indicates a seq-DL-brain score percentage greater than 85%;  
seq-DL-brain, the sequence deep model trained on the cortex scATAC-seq data. 
In the gene plot, differentially expressed target genes are mapped (in red). In the 
link plot, links with coaccessibility > 0.05 are shown. Coaccess, coaccessibility. 
f, The UMAP plot of the cortex scATAC-seq dataset showing the expression of 
TFAP2A in individual cells. In the violin plot, P values were determined using a 
two-sided t-test. Gene expression was estimated on the basis of the gene  

activity computed by Signac. Microglia are highlighted in the dashed closed 
curve. g, Diagram showing the haplotypes of variants in wild-type and rs7922621 
prime-edited WTC11-derived microglia. The P1 allele has the risk allele (A), while 
the P2 allele has the nonrisk allele (C). PE, prime editing. h, Allelic imbalance 
between P1 and P2 alleles for ANXA11 quantified by rs2573353 in rs7922621 
wild-type (A/A) and prime-edited (A/C) WTC-derived microglia (n = 4 replicates). 
The center line and error bar represent the mean and s.d, respectively. P values 
were determined using a two-sided t-test. i, RT–qPCR quantification of relative 
mRNA levels in iMGs treated with siRNAs targeting AD genes or scrambled siRNA 
(n = 2 siRNAs for each gene; n = 8 replicates for each condition). mRNA levels 
were normalized to GAPDH. P values were determined using a two-sided t-test. 
Data are presented as the mean ± standard error. j, Quantification of the number 
of TMEM119+ cells colocalized with pHrodo particles indicating phagocytosed 
beads (n = 2 siRNAs for each gene; n = 8 replicates for each condition). A one-way 
ANOVA with Tukey’s HSD test was used for comparison between siRNA targeting 
AD genes and scrambled siRNA. Data are presented as the mean ± standard error. 
k, Representative images of TMEM119+ (red) iMGs treated with ANXA11 siRNA 
or scrambled siRNA showing colocalization of phagocytosed pHrodo particles 
(green, highlighted with arrows). Images were captured 2 h after incubation  
with pHrodo. Parts of the images are zoomed in for better visualization.  
Scale bar, 100 μm.
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Supplementary Fig. 10a). We identified 39, 57 and 6 AD-relevant cCREs 
(referred to as AD-cCREs) that were linked to 71, 118 and 33 target genes 
in astrocytes, microglia and OPCs, respectively (Fig. 6a and Supplemen-
tary Table 4). Numerous AD-cCREs and genes were shared across differ-
ent cell types, among which we recognized multiple well-established 
AD genes, such as the APOE region genes (BCAM, NECTIN2, TOMM40, 
APOE and APOC1), BCL3 and PPP1R37. This signifies their versatile roles 
in AD pathogenesis.

Next, we examined the function of AD-cCREs and candidate genes 
in corresponding cell types. We found that AD-cCREs were enriched 
with binding motifs of cell-type-critical TFs (Fig. 6b). For example, 
astrocyte AD-cCREs displayed exclusive motif enrichment for GATA4, 
a regulator of astrocyte cell proliferation and apoptosis104; microglia 
AD-cCREs exhibited significant motif enrichment for SMAD3, which 
cooperates with PU.1 to enable transcription of some microglia-specific 
genes105; OPC AD-cCREs were exclusively enriched with the RBPJ motif, 
which is a repressor of OLIG2, a major determinant of oligodendro-
cyte differentiation and myelination106. Additionally, the AD candi-
date genes also presented cell-type-specific functions. For instance, 
astrocyte AD genes were enriched with the function of ‘regulation of 
complement activation, classical pathway’ (GO:0030450), microglia 
AD genes displayed enrichment in ‘negative regulation of endocytosis’ 
(GO:0045806) and OPC AD genes exhibited significant enrichment in 
‘IκB kinase and NF-κB signaling’ (GO:0007249) (adjusted P < 0.1, BH 
correction; Supplementary Table 5).

To characterize the variant effect within AD-cCREs, we trained a 
sequence deep learning model on the basis of the cortex scATAC-seq 
data (AUROC, 0.916 ± 0.017; AUPRC, 0.795 ± 0.059; Supplementary 
Fig. 10b). We confirmed the agreement in variant effect prediction 
between the sequence model and two other approaches, including 
QTL (expression and chromatin accessibility) analysis and TFBS predic-
tion (Supplementary Fig. 10c,d). We also uncovered an enrichment of 
large-effect AD-associated variants (GWAS P < 0.05) within AD-cCREs 
across all three relevant cell types, where the enrichment was positively 
correlated with variant effect (Fig. 6c).

We fine-mapped AD risk variants by combining multiomic evidence 
(Fig. 6d, Supplementary Fig. 10e,f and Supplementary Table 4). Among 
the prioritized variants, we recognized numerous cell-type-specific 
risk loci that were previously reported in the literature. For exam-
ple, the AD risk variant rs10792832 (GWAS29 P = 7.56 × 10−16, β = −0.12, 
effect allele/reference = A) was associated with the deactivation of a 
microglia-specific cCRE for PICALM60, aligning with our prediction 
(microglia Z = −1.98, PICALM coaccessibility = 0.246). Another AD risk 
variant rs13025717 (GWAS P = 2.98 × 10−15, β = 0.13, effect/alternative 
allele = T), which represses a microglia cCRE for BIN1 (ref. 35), was 
also prioritized by our analysis (microglia Z = −2.60, BIN1 coacces-
sibility = 0.382). A recent study validated the role of rs1532278 (GWAS 
P = 3.27 × 10−16, β = −0.13, effect/reference allele = T) in modulating 
CLU expression in astrocytes107, supporting our findings (astrocyte 
Z = −0.498, CLU coaccessibility = 0.356;).

In addition to known AD risk loci and genes, our analysis discov-
ered novel genetic factors. One of particular interest is rs7922621, which 
is nominally significant across the genome29 (GWAS P = 2.78 × 10−5, 
β = 0.08, effect/alternative allele = A). This variant resides within 
a microglia-specific AD-cCRE (chr10:82,251,479–82,251,979; 
P = 1.99 × 10−19, log2 FC = 2.39; Fig. 6e). According to the sequence 
model prediction, rs7922621 diminished the accessibility of this cCRE 
exclusively in microglia but not in other cell types (microglia Z = −1.68, 
percentile = 96.63%; Fig. 6e). Coaccessibility analysis further predicted 
that this cCRE regulated the expression of two genes: ANXA11 and 
TSPAN14 (Fig. 6e). Importantly, a recent study reported a reduction in 
local chromatin accessibility associated with rs7922621 in human PS 
cell-derived microglia108. They further validated the reduced expres-
sion of TSPAN14 caused by rs7922621 using prime editing (P = 2.17 × 10−6, 
two-sided t-test; Fig. 6e). Of note, another variant, rs7910643, located 

within the same cCRE and in strong LD with rs7922621 (r2 = 1.0, esti-
mated in the 1,000 Genomes EUR population), was shown to be 
nonfunctional108, consistent with our prediction (microglia Z = 0.29, 
percentile < 85%; Supplementary Table 4).

To further elucidate the regulatory program involving rs7922621, 
we conducted TF motif analysis and identified one TF, TFAP2A, whose 
binding site was disrupted by rs7922621 (P < 1 × 10−4, motifbreakR; 
Fig. 6e). The TFAP2 family is known for its pivotal role in regulating 
both embryonic and oncogenic development109. Furthermore, TFAP2A 
expression showed a significant elevation in microglia compared to 
other cell types (P < 2.2 × 10−16, two-sided t-test; Fig. 6f), suggesting 
its functional importance in microglia, although further evidence is 
required to validate these conclusions.

Prime editing of rs7922621 alters expression of both ANXA11 
and TSPAN14 in microglia
Our scPRS-based analysis pinpointed rs7922621 (chr10:82,251,544:C>A) 
as a candidate AD risk variant and predicted that it regulates two 
genes (ANXA11 and TSPAN14) by altering the accessibility of a 
microglia-specific cCRE (chr10:82,251,479–82,251,979; Fig. 6e). Our 
prior study108 validated the association between rs7922621 and this 
cCRE and further demonstrated that the prime editing of rs7922621, 
converting the risk allele (A) to the nonrisk allele (C) in WTC11 (A/A 
to A/C)-derived microglia (a male iPS cell line), led to an increase in 
TSPAN14 expression. Leveraging the rs7922621-edited clones108, we 
further examined its regulatory role on ANXA11 (Fig. 6g and Meth-
ods). We observed a similar trend in the allelic expression changes of 
ANXA11 associated with rs7922621 in WTC11-derived microglia, with 
the edited nonrisk allele upregulating ANXA11 compared to the risk 
allele (P = 0.005, two-sided t-test; Fig. 6h). We note that, in contrast 
to TSPAN14, ANXA11 exhibits a long-range interaction (~285 kb) with 
rs7922621 (Fig. 6e). Altogether, these results suggest an upstream role 
of rs7922621 in modulating the expression of both ANXA11 and TSPAN14 
in microglia, with the AD risk allele (A) reducing their expression.

Suppression of ANXA11 and TSPAN14 impairs microglial 
phagocytosis
To elucidate the function of ANXA11 and TSPAN14 in microglia, we exam-
ined the effect of knockdown of these genes on microglial phagocytic 
activity. In particular, we individually suppressed ANXA11 and TSPAN14 
in iPS cell-derived microglia-like cells110,111 (iMGs) using small interfer-
ing RNA (siRNA), in which two different siRNAs were tested for each 
gene. Phagocytosis activity was measured using a fluorescent read-
out of pHrodo particles. A reduction in expression following siRNA 
treatment was confirmed for both genes (P < 1 × 10−4, two-sided t-test; 
Fig. 6i). Notably, suppression of these two genes resulted in significantly 
decreased iMG uptake of pHrodo particles compared to scrambled 
siRNA treatments (adjusted P < 1 × 10−3, one-way analysis of variance 
(ANOVA) with Tukey’s honestly significant difference (HSD) test; Fig. 6j). 
These results were consistent across treatments using different siR-
NAs. Our experimental results validated the functional importance of 
ANXA11 and TSPAN14, showing that their suppression impaired micro-
glial phagocytosis, thus supporting the pivotal role of rs7922621 in 
modulating AD risk through its impact on microglial function.

Discussion
GWAS has substantially advanced our understanding of the genetic 
basis of complex human diseases112. Traditionally, these studies aim 
to identify genetic loci that reach genome-wide significance (that is, 
GWAS P < 5 × 10−8). However, for many diseases, the best predictive 
performance is only achieved by including nominally significant or 
even nonsignificant variants in PRS calculation113. This suggests that 
the genetic factors contributing to diseases extend beyond those 
genome-wide significant loci and cannot be fully uncovered by con-
ventional approaches114. While scientists have been calling for larger 
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GWAS consortia and meta-analyses to identify more disease risk loci115, 
it remains an open question how to increase the discovery power given 
relatively limited sample size. Incorporating prior knowledge or multi-
omic data into genetic association analysis has proven to be an effective 
solution67,116.

PRS has been demonstrated as a powerful tool to predict an indi-
vidual’s disease risk. However, it lacks the ability to provide insights 
into disease mechanisms. From the perspective of modern machine 
learning, model interpretation is critical in uncovering latent features 
that contribute to prediction and understanding how models make 
decisions117. As a score computed by aggregating a wide range of vari-
ants, PRS offers limited knowledge on the significance of each variant in 
prediction. Moreover, distinguishing causal variants from statistically 
correlated elements poses an even greater challenge. For example, a 
variant can be associated with the disease through its linkage with the 
causal variant, yet both are treated equivalently within a PRS model. 
This lack in biology-informed model interpretability can, in turn, con-
strain predictive performance such as generalizability15.

We designed scPRS, a deep learning-based PRS framework, to 
address these challenges. scPRS leverages single-cell epigenetic data 
to dissect the genome-wide PRS and then integrates single-cell-level 
PRSs using a GNN. By breaking down PRS into higher-resolution com-
ponents informed by cellular functions, scPRS not only enhances its 
predictive power but also allows for a systematic exploration of cellular 
and molecular basis for diseases. Applications to various diseases 
have shown that scPRS outperformed a variety of existing PRS meth-
ods. Importantly, this superior predictive performance of scPRS was 
achieved using less than 11% of all the variants (that is, variants located 
within open chromatin regions; Supplementary Table 6), highlighting 
the importance of incorporating functional data15 and suggesting a 
notable contribution of noncoding variants to disease risk118.

We showcased the effectiveness of scPRS in identifying 
disease-critical cells. Our method is not confined to cell clustering and 
predefined cell types, offering an unbiased, agnostic analysis. Through 
single-cell-resolved modeling, scPRS can discover disease-relevant cell 
populations by integrating genetic insights. This was demonstrated 
in identifying previously uncharacterized T2D-related alpha and beta 
cell populations defined by scPRS-selected cells. Similar analysis was 
performed for other three diseases but no significance was observed. 
Unlike the selected cells enriched within highlighted cell types, the 
model-prioritized cells in other cell types were sparsely distributed in 
the epigenome space, suggesting less homogeneous cellular functions. 
The selection of these cells was likely because of the randomness of 
model initialization and training, as well as the technical noise inher-
ent in single-cell sequencing. Therefore, we recommend considering 
these cells as background.

The cell type prioritization results agreed well between scPRS 
and sLDSC but the most notable difference occurred for HCM, where 
sLDSC failed to identify any relevant cell types. This lack in power 
could be explained by the difference between bulk and individual-level 
or single-cell-level modeling. First, sLDSC estimates heritability 
enrichment across an ensemble of open chromatin regions within 
a specific cell type but this bulk-level approach does not account 
for the variation among individual cells. This limitation can lead to 
confounding by non-disease-relevant regions, reducing its ability 
to identify disease-critical cells with a high sensitivity. In contrast, 
scPRS weighs the importance of each cell relative to others, provid-
ing a global model that captures cross-cell variation in heritability 
enrichment. The subsequent cell enrichment analysis within each cell 
type enables an effective disease–cell association discovery. Another 
advantage of this single-cell-resolved approach is its ability to identify 
novel disease-relevant cell populations that are not annotated in the 
single-cell dataset, which has been demonstrated for T2D. Second, 
sLDSC works in the GWAS space and its performance can be influ-
enced by the power of the original GWAS. This may explain why sLDSC 

identified zero relevant cell types for HCM, as the HCM GWAS was rela-
tively underpowered, with only two genome-wide significant variants30 
(P < 5 × 10−8). Although GWAS summary statistics are part of the input to 
scPRS, it selects cells whose cell-level PRSs best differentiate individual 
patients from controls rather than relying on the overall GWAS perfor-
mance. This individual-level modeling further increases the power 
to identify disease-relevant cells. Of note, the cell type enrichment P 
values for sLDSC, SCAVENGE and scPRS are not directly comparable. 
Significant cell types were identified by comparing P values derived 
from the same method. Hence, the conclusions regarding cell type 
enrichment are comparable across different approaches.

Several recent studies46,119,120 have also achieved prioritization of 
disease-relevant cells at the single-cell level. However, these approaches 
rely on GWAS summary statistics and, thus, lack predictive power. 
Moreover, superior to these methods, scPRS enables pinpointing 
disease risk variants, genes and regulatory programs across different 
cellular contexts, substantially enhancing the power and resolution 
of genetic discovery. This advancement is exemplified by rs7922621, 
which was pinpointed by scPRS-based analysis as a candidate AD 
risk variant but missed by GWAS because of its nominal significance. 
rs7922621 was also nominated in two recent studies108,121, where it was 
mapped to TSPAN14 in microglia as the target gene. Our scPRS-based 
analysis further linked rs7922621 to another gene ANXA11. The under-
standing of the role of ANXA11 in neurodegenerative disease is rapidly 
evolving; it was first implicated as a genetic cause of amyotrophic 
lateral sclerosis122 (ALS) and later corticobasal syndrome123. Recently, 
ANXA11 was also revealed as a central pathology in specific subtypes 
of frontotemporal dementia124. It is interesting that ANXA11 pathology 
extends beyond neurons; for example, muscle pathology has been 
observed as part of a multisystem proteinopathy with prominent myo-
pathy125. A gap remains in our understanding of the biology underlying 
ANXA11 dysfunction. ANXA11 protein is involved in the tethering of RNA 
granules, including lysosomes with a role in RNA transport126. However, 
this mechanism does not easily account for all of the pathological 
observations made. Our results suggest a role of ANXA11 in microglia 
that underpins AD risk. This is reminiscent of observations of TBK1, 
another ALS gene where distinct pathological mechanisms have been 
observed in neurons and microglia127. We experimentally validated 
the regulatory relationship between rs7922621 and ANXA11 and the 
function of these two genes (ANXA11 and TSPAN14) in maintaining 
microglial phagocytosis. Our data support a model where rs7922621 
increases AD risk by reducing a microglia cCRE targeting ANXA11 and 
TSPAN14 and then suppressing their expression, which impairs micro-
glial phagocytosis.

It is worth noting that we identified rs7922621 in microglia by start-
ing with a comparison analysis of cells prioritized by scPRS, without 
which the subsequent analysis would not have been possible (Fig. 4a). 
While microglia are a well-recognized cell type in AD, we pinpointed 
this AD-microglia linkage without incorporating any prior knowledge, 
using an agnostic, unbiased approach. This serves as a positive control 
to demonstrate the effectiveness of scPRS in identifying disease-critical 
cells. The nomination of new disease-relevant cell populations that are 
not annotated in the original single-cell dataset (Fig. 4h) underscores 
the discovery power of scPRS beyond simply reaffirming known dis-
ease–cell associations.

HCM is a genetic condition with a heritability of up to 50% in its 
familial form53 and an estimated SNP-based heritability ranging from 
0.17 to 0.29 (ref. 128). The genetic study of HCM has been traditionally 
focused on rare pathogenic coding variants53. However, approximately 
40% of persons with HCM remained unexplained by known patho-
genic variants. Previous HCM GWASs for common variants have been 
underpowered, likely because of the limited number of participants 
recruited, resulting in an incomplete knowledge of the genetic archi-
tecture129. Our scPRS-based analysis greatly expands our understanding 
of HCM genetics, highlighting the critical role of common noncoding 

http://www.nature.com/naturebiotechnology
https://www.ncbi.nlm.nih.gov/snp/?term=rs7922621
https://www.ncbi.nlm.nih.gov/snp/?term=rs7922621
https://www.ncbi.nlm.nih.gov/snp/?term=rs7922621
https://www.ncbi.nlm.nih.gov/snp/?term=rs7922621
https://www.ncbi.nlm.nih.gov/snp/?term=rs7922621
https://www.ncbi.nlm.nih.gov/snp/?term=rs7922621


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02725-6

variants in influencing disease risk. Our findings underscore the impor-
tance of regulatory variants that have been largely overlooked in the 
HCM field. These variants may act as risk modifiers through modulating 
the expression of their target genes, including known HCM risk genes 
such as MYL2. Although further validations are necessary, our results 
shed light on the complexity of HCM genetics and biology.

We also constructed C+T PRSs using disease-associated variants 
(GWAS P < 0.05) located within disease-relevant cCREs. Disease cCREs 
from different prioritized cell types were aggregated. We observed 
that these selected variants dominated scPRS prediction, showing 
comparable performance for HCM and T2D (Supplementary Fig. 11). 
This result supports the effectiveness of our scPRS-based framework 
in identifying cell-type-specific disease-related variants. However, we 
caution that it cannot be concluded that this PRS, built on selected vari-
ants, is comparable to scPRS in terms of prediction, as it was derived 
from scPRS after explicitly seeing all samples, which may have caused 
the overfitting issue.

Single-cell genetics is an emerging field that is reshaping our 
understanding of genotype–phenotype relationships17. By integrat-
ing single-cell genomic data into genetic analysis, single-cell genetics 
provides a novel instrument to link genetic variants to diverse cellular 
processes. This is well exemplified by single-cell eQTL studies130–132, 
which enable the identification of context-dependent eQTLs that vary 
across cell states or cell types. scPRS lays the methodological founda-
tion of single-cell genetics, marking a step toward mapping the genetic 
basis of complex diseases in a single-cell-resolved context.

We note that scATAC-seq only annotates genomic regions that 
are potentially involved in transcriptional regulation (for example, 
promoters, enhancers and silencers), whereas other layers of func-
tions, such as proteins, translation and post-transcription, are not 
considered in our current modeling. Considering the heterogeneity 
and complexity of a disease’s genetic architecture, the prediction of 
scPRS could be suboptimal for certain diseases wherein coding, splic-
ing or other variants have an important role. Indeed, we observed better 
predictive performance of C+T over scPRS for T2D. As a compensation, 
we further incorporated nonpeak PRSs constructed using variants 
located outside scATAC-seq peaks into scPRS, resulting in scPRS+, 
which outperformed all baseline PRS methods across the board. Fol-
lowing the same design principle, scPRS can be extended to include 
a wider range of variants by integrating additional modalities, such 
as scRNA-seq133,134 and single-cell DNA methylation135,136. This will be 
explored in our future work.

Considering both time and space complexities, we recommend 
starting with a moderately large number of cells, such as the 10,000 
used in this manuscript, when applying scPRS in practice. This approach 
ensures coverage of cases where the disease or phenotype is driven by 
rare cell types or populations. Moreover, this strategy aligns with the 
exploratory nature of scPRS, as it is a discovery process in which the 
disease-relevant cells are largely unknown until analysis, typically 
requiring multiple iterations of testing.

In summary, scPRS stands as a versatile framework for simultane-
ous disease prediction and biological discovery, enabling the dissec-
tion of the genetic, cellular and molecular heterogeneity underlying 
complex diseases.
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Methods
Single-cell multiome dataset
Single-cell multiome (snRNA-seq + snATAC-seq) data of the human left 
ventricle and lung were processed and clustered on the basis of RNA 
modality using Scanpy137. The cells with high-quality RNA information 
(total detected gene > 500, total unique molecular identifiers < 20,000 
and mitochondrial read percentage < 10%) were selected for further 
analysis. Doublets were filtered using scrublet138 with parameters 
min_counts = 1, min_cells = 10, min_gene_variability_pctl = 90 and n_
prin_comps = 30. The thresholds for doublet removal were decided per 
sample on the basis of the distribution of doublet scores in real versus 
simulated cells. The top 3,000 highly variable genes were selected by 
combining the results from each sample separately with seurat_v3 
mode. The cell-by-gene count matrices were normalized and scaled. 
ALLCools with a Python implementation of Seurat integration was 
used for correction of batch effect between samples with 50 PCs and 
30 canonical correlation dimensions136,139. Leiden clustering was per-
formed on a k-nearest neighbor (kNN; k = 25) graph. The cell clusters 
were annotated and merged to cell types by comparing the expression 
level of predefined marker genes across clusters. The marker genes 
in Litviňuková et al. (2020) and Tucker et al. (2020)140,141 were used to 
annotate the heart cell types.

We also examined the ATAC modality of these cells following the 
methods described below to ensure that these cells also have high-quality 
open chromatin information. The cells that did not pass ATAC quality 
controls (QCs) or constituted an ambiguous cluster in ATAC cell embed-
ding were removed, resulting in 10,233 and 10,330 cells retained for 
downstream analysis for HCM and severe COVID-19, respectively.

scATAC-seq datasets
The cell type labels for the human pancreas and cortex in the original 
datasets33,35 were used. To generate cell embeddings, scATAC-seq data were 
processed and clustered using snapATAC2 (ref. 142) and ALLCools136,139. 
The fragment files were processed to generate cell-by-bin matrices at 5-kb 
resolution using snapATAC2 (ref. 142). The cells with 2,000–50,000 total 
reads and transcription start site (TSS) enrichment > 5 or 7 according to 
the distribution in specific samples were retained. The cell embeddings 
were computed with latent semantic indexing (LSI) and batch effects 
were corrected using the canonical correlation analysis (CCA) LSI mode  
in ALLCools. Cell-by-peak matrices at 500-bp resolution were gener-
ated by calling peaks per cell cluster using snapATAC2. For cortex data,  
superior and middle temporal gyri and middle frontal gyrus samples were 
used for AD analysis, resulting in 11,738 cells. For pancreas data, we ran-
domly sampled 10,000 of 64,948 cells covering all annotated cell types for  
computational acceleration. The single-cell data121 we used in the replica-
tion experiments were processed and QCed similarly.

Cell–cell similarity network
Following a previous study46, we used the mutual kNN (M-kNN) to 
measure the similarity between two different cells. We first used LSI to 
extract low-dimensional embeddings for individual cells. For cortex 
and left-ventricle datasets encompassing multiple samples, batch 
effects were corrected using both CCA and Harmony143 and integrated 
latent embeddings were adopted. Next, we computed the Euclidean 
distance for pairs of cells using their embeddings and then constructed 
the kNN graph ̂G ∈ ℜM×M  on the basis of this distance matrix, in which 
we defined ̂Gi, j = 1(i, j = 1,… ,M)  if cell j is within the top k closest cells of 
cell i and ̂Gi, j = 0 otherwise. The M-kNN graph G was then defined as 
the graph whose edges connect nodes (that is, cells) that are mutually 
kNNs of each other, which was calculated by G = ̂G ∘ ̂G

T
, where ∘ denotes 

the element-wise multiplication.

Target cohorts for T2D and AD
T2D and AD target cohorts were constructed on the basis of the UKBB. 
All the disease cases were defined according to the ICD-10 (tenth 

revision of the International Statistical Classification of Diseases and 
Related Health Problems) code. In particular, all Caucasian individu-
als with a disease ICD-10 code in the inpatient record, death record or 
diagnosis summary record were defined as the disease participants. 
We used E11.9 and G30.9 for AD and T2D, respectively. This resulted in 
1,096 T2D and 932 AD cases. We randomly sampled an equal number 
of healthy controls by matching sex, age and ancestry information for 
each case group. In addition, individuals with a similar or related phe-
notype with the disease (T2D: E10, E11, E12, E13, E14, E23.2, N08.3, N25.1, 
O24, P70.2, Z13.1, Z83.3 and R73.9; AD: F00, G30, F01, F02, F03 and 
F05) were excluded from constructing the control group. In this study, 
overweight individuals (body mass index (BMI) ≥ 25) were excluded 
from constructing the T2D cohort. BMI for each individual was defined 
as the mean of four BMI measurements in the UKBB Data Field 21001.

Target cohort for HCM
The recruitment of the HCM cohort was part of our California Institute 
for Regenerative Medicine (CIRM) cardiomyopathy project27. The tar-
geted population constituted persons with various cardiac procedures 
and noncardiac participants with genetic conditions in clinic who were 
identified to us by their clinical providers. Noncardiac participants 
were recruited in person during onsite clinic days or over the phone 
with permission by the providers. Healthy volunteers were recruited 
from our cardiovascular prevention clinic (that is, persons with no 
diagnosis of heart disease).

Library preparation and sequencing was performed by Macrogene 
(first ten samples) and Novogene on genomic DNA we extracted from 
iPS cells (Qiagen DNeasy kit). Paired-end 150-bp reads were acquired 
on the Illumina HiSeq X Ten for a minimum of 90 Gb of data. Reads 
were processed using Sentieon’s FASTQ-to-VCF pipeline (Sentieon 
version 201808.07)144. This pipeline is a drop-in replacement for a Bur-
rows–Wheeler aligner (BWA)145 plus GATK best-practices146 pipeline for 
germline single-nucleotide variations (SNVs) and indels but has been 
highly tuned for optimal computational efficiency. BWA alignment to 
hg38 was followed by deduplication, realignment, base quality score 
recalibration and variant calling to generate g.vcf files for each sample. 
Coverage was assessed (GATK version 3.7)27. Individual sample g.vcf 
files were joined and variant quality score recalibration was performed.

Target cohort for severe COVID-19
The VA COVID-19 cohort was derived from the VA MVP. The VA MVP is 
an ongoing national voluntary research program that aims to better 
understand how genetic, lifestyle and environmental factors influence 
veteran health28. Briefly, individuals aged 18 to over 100 years old have 
been recruited from over 60 VA medical centers nationwide since 2011 
with current enrollment at >800,000. Informed consent is obtained 
from all participants to provide blood for genomic analysis and access 
to their full electronic health record data within the VA before and after 
enrollment. The study received ethical and study protocol approval 
from the VA central institutional review board (IRB) in accordance 
with the principles outlined in the Declaration of Helsinki. COVID-19 
cases were identified using an algorithm developed by the VA COVID 
national surveillance tool based on reverse transcription (RT)–qPCR 
laboratory test results conducted at VA clinics, supplemented with 
natural language processing on clinical documents for SARS-CoV-2 
tests conducted outside of the VA147. This resulted in the VA COVID-19 
WGS cohort of 2,716 persons with COVID-19 spanning a wide range of 
ages and ancestries. We defined severe COVID-19 cases as persons who 
were hospitalized, received acute care, stayed in the intensive cure 
unit or were deceased and controls as those who did not meet these 
criteria. To minimize potential confounders, we restricted our analysis 
to nonelderly individuals (age < 65).

DNA isolated from peripheral blood samples was used for WGS. 
Libraries were prepared using KAPA hyper prep kits, PCR-free according 
to manufacturers’ recommendations. Sequencing was performed using 
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an Illumina NovaSeq 6000 System (Illumina) with paired-end 2× 150-bp 
read lengths and Illumina’s proprietary reversible terminator-based 
method. The specimens were sequenced to a minimum depth of 25× 
per specimen and an average coverage of 30× per plate.

Independent target cohorts
The GoT2D cohort including 2,874 individuals was used as the inde-
pendent target cohort for T2D. Samples were sequenced using three 
technologies: deep whole-exome sequencing, low-pass (4×) WGS and 
OMNI 2.5M genotyping. Genotypes (SNVs, indels and structural vari-
ants) were called separately for each technology and then integrated 
by genotype refinement into a single phased reference panel. More 
details can be found in a previous study39.

The HCM independent target cohort was constructed by extract-
ing non-EUR HCM samples (ICD-10: I42.1/I42.2) and a same number of 
randomly selected non-EUR controls matching age and sex from the 
UKBB genotype dataset. This resulted in a total of 152 samples.

The WGS data of the independent target cohort for AD were 
obtained from the ADNI database. A total of 808 whole genomes were 
downloaded from ADNI, for which we defined individuals with a diag-
nosis of ‘dementia’ as cases and ‘cognitively normal’ as controls.

WGS data processing
The WGS data for HCM and COVID-19 were processed using the 
functional equivalence GATK variant-calling pipeline148, which was 
developed by the Broad Institute and plugged into our data and task 
management system Trellis. The human reference genome build was 
GRCh38. We used BWA-MEM (version 0.7.15) to align reads, Picard 
2.15.0 to mark PCR duplicates and GATK 4.1.0.0 for base quality score 
recalibration and variant calling using the ‘haplotypeCaller’ function. 
We also used FASTQC (version 0.11.4), SAMtools ‘flagstat’ (version 
0.1.19) and RTG Tools ‘vcfstats’ (version 3.7.1) to assess the qualities 
of the FASTQ, BAM and gVCF files, respectively. In addition, we used 
‘verifybamID’ in GATK 4.1.0.0 to estimate DNA contamination rates 
for individual genomes and removed samples with 5% or more con-
taminated reads.

QCs of genotype data
We performed stringent QCs for the genotype data following the PRS 
tutorial (https://choishingwan.github.io/PRS-Tutorial/). For the GWAS 
summary statistics data (also referred to as the discovery or base data), 
genetic variants with low MAF and imputation information score (INFO) 
were removed. We used thresholds suggested in corresponding original 
papers: MAF < 0.0001, 0.001 and 0.0001 and INFO < 0.4, 0.6 and 0.6 
for T2D, HCM and AD, respectively. We also excluded duplicated and 
ambiguous variants to guarantee the accuracy of PRS calculation.

For the individual-level genotype data (also referred to as the 
target data), we carried out both variant-level and individual-level 
QCs. For WGS data, we performed pre-QCs: we removed samples 
with kinship > 0.03, sample call rate < 0.97 or mean sample cover-
age ≤ 18×; genomic positions resided in low-complexity regions or 
ENCODE-blacklisted regions were removed; we filtered out genotypes 
in individual samples that were detected with too low or too high read 
coverages (read depth < 5 or read depth > 1,500); we required all calls 
to have genotype quality ≥ 20 and, for nonreference calls, a sufficient 
portion (>0.9) of reads was required to cover the alternate alleles.

For all target cohorts, we removed variants with INFO < 0.8 (for 
UKBB-based cohort), missing call rate > 0.01, MAF < 0.01 or Hardy–
Weinberg equilibrium < 1 × 10−6. For variants with mismatching alleles 
between discovery and target data, we strand-flipped these alleles 
to their complementary ones. We further excluded individuals with 
genotyping rate < 0.01 or with extreme heterozygosity rate (that is, 
beyond 3 s.d. from the mean). Individuals with an up-to-second-degree 
relative (π > 0.125) within the cohort were also removed to prevent 
bias in prediction evaluation. Lastly, there were 2,176 (n = 1,088 

cases, n = 1,088 controls), 134 (n = 81 cases, n = 53 controls), 1,839 
(n = 919 cases, n = 920 controls) and 581 (n = 120 cases, n = 461) indi-
viduals passing the above QCs for T2D, HCM, AD and severe COVID-19  
cohorts, respectively.

All independent target cohorts were processed and QCed using 
the same pipeline. After sample-level QCs, the final cohorts consisted 
of 2,749 samples (1,398 cases and 1,351 controls) for GoT2D, 62 samples 
(23 cases and 39 controls) for non-EUR UKBB and 469 samples (251 
cases and 218 controls) for ADNI.

PC analysis for genotype data
To characterize the population structure of target cohorts, PC analysis 
was performed after pruning (window size = 200 variants, sliding step 
size = 50 variants, LD r2 threshold = 0.25). The first ten PCs were retained 
as covariates in the downstream analysis.

PLINK C+T PRS calculation
The cell-level C+T PRS was computed using PLINK, which is given by

PRSj =
∑i∈cCREj βi × Gi

P ×M ,

where cCREj denotes cCREs within cell j, βi is the effect size of variant 
i, Gi  represents the number of effect alleles, P is the ploidy of the 
sample (2 for human) and M is the number of nonmissing variants. 
In the clumping phase, all index variants were forced to be drawn 
from the variants located within scATAC-seq peaks of individual cells 
using the ‘--clump-index-first’ option. Variants within 250 kb of the 
index variant and three LD thresholds (r2 = 0.1, 0.3 and 0.5) were 
considered for clumping. After constructing the index variant set, 
we applied multiple P-value thresholds (P = 1 × 10−5, 1 × 10−4, 1 × 10−3, 
0.01, 0.05, 0.1 and 0.5) to compute PRSs, resulting in 21 PRSs calcu-
lated for each cell and each individual. We used the 1,000 Genomes 
Project samples to estimate the LD (out-sample estimation) for the 
simulation, HCM and severe COVID-19 cohorts because of their 
limited sample sizes, while using the target data (in-sample estima-
tion) for other cohorts.

The standard C+T PRS was calculated using the same set of param-
eters as that used in computing cell-level PRS, except that all variants 
were considered without conditioning. The P-value and LD r2 thresholds 
were regarded as hyperparameters to be optimized in model selection.

Model details of scPRS
The cell-level PRS matrix Xn ∈ ℜM×21(n ∈ 1,… ,N)  presents single-cell- 
resolved genetic risk features for each individual and it is input into the 
scPRS model to predict the disease risk. Here, N and M denote the 
numbers of individuals and cells, respectively.

scPRS consists of three modules (Fig. 1): the feature-embedding 
module, the graph convolutional network module and the readout 
module. The feature-embedding module takes normalized cell-level 
PRS Xn as the input and uses a one-layer perceptron to reweight and 
integrate 21 PRS features per cell:

h(0)n = Xn • abs(W0),

where W0 denotes learnable model parameters, abs represents the 
absolute function and h(0)n ∈ ℜM  represents the integrated features of 
M cells for individual n. According to the definition of PRS, larger values 
in Xn indicate higher disease risk. To maintain this interpretability 
throughout the modeling, we adopt the absolute function abs to 
enforce nonnegativity for W0.

We next seek to integrate PRS features across different cells to 
generate a final risk score. With the consideration of the dropout event 
and sparsity of scATAC-seq data and assuming that cells with similar 
low-dimensional embeddings should have comparable epigenomes 

http://www.nature.com/naturebiotechnology
https://choishingwan.github.io/PRS-Tutorial/


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02725-6

and then similar genetic signals, we use a GNN149 to smooth and denoise 
single-cell-level PRS features. More specifically, on the basis of the 
pre-computed M-kNN graph G, the GNN module is defined as

g(t+1)v = 1
deg(v) ∑

u∈𝒩𝒩𝒩v)
(abs (w(t)

1 )h(t)u + abs (w(t)
2 )h(t)v ) ,

h(t+1)v = leaky ReLU (g(t+1)v ) ,

where h(t)v  denotes the hidden feature of cell v at layer t, w(t)
1  and w(t)

2   
are learnable parameters of layer t, deg denotes the degree of each 
node or cell and 𝒩𝒩(v) represents the neighbors of cell v in the M-kNN 
graph G. The leaky ReLU activation function is defined as

Leaky ReLU(x) = max(α × x, x),

where α = 0.1 is used in this study. Note that the absolute function is 
also adopted to induce nonnegativity to model weights.

Lastly, we design a readout module to map GNN-smoothed hidden 
features to the phenotype leveraging a one-layer perceptron:

y = σ (β • h(T) + b) ,

where β ∈ ℜM represents the learnable regression coefficients indicat-
ing cell importance to prediction, T is the number of total layers in GNN, 
b is the bias term and σ  is the sigmoid function for binary classification 
and the identify function for regression.

Optimization of scPRS
To train scPRS for disease prediction, we adopt the binary cross-entropy 
(BCE) loss and additional regularization functions for enhancing pre-
dictive power and model interpretability. The loss function ℒ of scPRS 
is defined as

ℒ= 1
N∑

n
(yn log(pn) + (1 − yn) log(1 − pn)) + λ1||β||1 + λ2||β||2 + λ3βTGLβ,

where yn ∈ {0, 1} is the true disease label for individual n, pn ∈ [0, 1] is 
the scPRS-predicted disease probability and || • ||1 and || • ||2 represent 
L1 and L2 norms, respectively. We also add a Laplacian regularization 
term based on the symmetric normalized Laplacian matrix GL, which 
is defined as

GL = D
1
2 (D − A)D−

1
2 ,

where D and A denote the degree and adjacency matrices of the cell–cell 
similarity graph G, respectively. We use hyperparameters λ1, λ2 and λ3 
to balance across different regularization terms.

scPRS was trained by minimizing the loss ℒ  using the Adam  
algorithm150 with a learning rate of 1 × 10−3 and batch size of 32. We 
trained scPRS for 200 epochs. Multiple sets of hyperparameters were  
considered in model selection, including T ∈ {0, 1, 2} , λ1 ∈ {0, 1, 10} , 
λ2 ∈ {1, 10, 50, 100, 250, 500, 750}, λ3 ∈ {0.01,0.1,0.5, 1, 2.5, 5, 10, 50, 100} and 
M-kNN neighbor number k ∈ {25, 50} . We also selected between 
CCA-based and Harmony-based cell–cell similarity networks for T2D 
and AD.

In prediction evaluation, we randomly partitioned the dataset into 
training, validation and testing sets comprising 60%, 20% and 20% of 
samples, respectively. We trained different scPRS models with all possi-
ble combinations of hyperparameters and assessed their performance 
(measured by AUROC) on the validation dataset. We selected the model 
yielding the best performance on the validation set and reported its 
performance on the held-out test set. This process was repeated ten 
times with different random seeds to assess the robustness of the 

model. Predictive performance was evaluated using both the AUROC 
and the AUPRC.

In cell prioritization, we conducted fivefold cross-validation, 
which was repeated five times. The best hyperparameter set was then 
selected on the basis of the average AUROC score. The final model was 
trained with this optimal hyperparameter set on the entire dataset. To 
examine the variability of cell weights learned from model training, we 
trained 100 models using different random seeds.

For the regression task, the mean squared error was used as the 
loss function instead of BCE. The model performance was evaluated 
based on the Pearson correlation between true and predicted values.

Calculation of nonpeak and peak PRS
Similar to the cell-level PRS, the calculation of nonpeak PRS was based 
on PLINK C+T, using only variants outside of scATAC-seq peaks as the 
index variants. A total of 21 nonpeak PRSs were computed and inte-
grated in scPRS+, corresponding to different combinations of C+T 
parameters: P ∈ {1 × 10−5, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1, 0.5} and r2 ∈ {0.1, 
0.3, 0.5}. For scPRS+ (integrating cell-level PRSs and nonpeak PRSs) 
and scPRS+covar (integrating cell-level PRSs, nonpeak PRSs, age, sex 
and ten PCs), we concatenated additional features to latent cell features 
h(T) at the final GNN layer.

In calculating the single-cell-type peak PRS, only variants 
located within cell-type peaks were used to select the index variants, 
where the same 21 combinations of C+T parameters were adopted. A 
multi-cell-type PRS was further built by combining all single-cell-type 
PRSs (n = 21 × ncell type) using LR. LR was trained on the training data and 
the performance was reported on the testing data.

Implementation details on LDpred2, Lassosum and PolyPred
We implemented LDpred2 and Lassosum following the bigsnpr 
tutorial (https://privefl.github.io/bigsnpr/articles/LDpred2.
html). Three LDpred2 models were implemented” the infinitesi-
mal model (LDpred2-inf), grid model (LDpred-inf) and auto model 
(LDpred2-auto). All model hyperparameters were selected on the basis 
of recommendations provided in the tutorial. To ensure a fair compari-
son, we maintained the same dataset splits (that is, training, validation 
and test sets) as those used in scPRS. For PLINK C+T, LDpred2-grid and 
Lassosum, the best model hyperparameters were determined on the 
basis of predictive performance on the validation dataset.

For a fair comparison, we used scATAC-seq peaks as the functional 
annotation for variants in PolyPred and adopted the same GWASs 
as those used in scPRS to compute prior causal probabilities38. We 
implemented PolyPhred following the manual provided by the authors 
(https://github.com/omerwe/polyfun/wiki).

Unlike C+T, more advanced PRS methods, including LDpred2, 
Lassosum and PolyPred, inherently optimize r2 and P-value cutoffs to 
select an optimal set of variants for PRS computation. This flexibility 
in optimization is a key innovation of these approaches.

Benchmark on independent target cohorts
Because the original GWAS discovery cohorts for T2D and AD over-
lapped with GoT2D and ADNI, respectively, to prevent information 
leakage, we adopted the UKBB GWAS151 as new summary statistics for 
T2D and AD, which were independent from the new target cohorts. We 
then trained new scPRS models on the basis of original target cohorts. 
For C+T, LDpred2-grid and Lassosum, model hyperparameters were 
optimized on the basis of original target cohorts. For scPRS, hyperpa-
rameters were selected using fivefold cross-validation of the original 
target cohorts. All PRS approaches were tested on the basis of new 
independent target cohorts.

Prioritization of disease-relevant cells and cell types using scPRS
The mapping from input PRS features X to latent cell features h(T)  
monotonically increases as a result of the design principle of scPRS, 
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where weights in the embedding and GNN modules are constrained to 
be nonnegative. This features facilitates model interpretation: a larger 
value of βm denotes a higher enrichment of genetic risk within that cell, 
thereby informing disease–cell relevance. To account for the variability 
of learned cell weights, we trained 100 scPRS models and compared 
the distribution of βm for individual cells with that of top-ranking 
weights (that is, the top 15% of all cell weights per repeat) using a 
one-sided t-test. This comparison was conducted for each cell in the 
dataset. We defined disease-relevant cells as those cells whose adjusted 
P values (using the Benjamini–Yekutieli procedure) were less than 0.1. 
Roughly speaking, scPRS prioritizes cells whose weights are consist-
ently larger than those of the majority of cells.

To get more biological insights, we examined the enrichment of 
scPRS-prioritized cells within each cell type using a Fisher’s exact test. 
The disease-relevant cell types were defined as those cell types whose 
adjusted P values (using the BH procedure) were less than 0.1.

Simulation details
Using the PBMC multiome data downloaded from 10x Genomics, 
we first conducted the differential accessibility analysis to identify 
monocyte-specific scATAC-seq peaks. In this study, we defined mono-
cytes as the total set of CD14/CD16 monocytes and dendritic cells 
considering their shared heritability152. We identified differentially 
accessible regions (DARs) within monocytes using the top 1,500 marker 
peaks per cell subtype. Next, leveraging a monocyte count GWAS22, we 
computed PLINK C+T PRS conditioned on the variants located within 
monocyte DARs for a WGS cohort23 (n = 401). Raw C+T PRS outputs 
were further standardized to mean = 0 and variance = 1, yielding the 
‘ground truth’ of monocyte count for this cohort.

To introduce randomness, we added a noise term to the simulated 
monocyte count:

ỹ = y + ε,

where ε ∼ 𝒩𝒩 (0,σ2). In this study, we used σ ∈ {0,0.25,0.5, 1, 3, 5, 7} . We 
trained scPRS on the basis of these simulation datasets with and  
without noises to evaluate its capacity in identifying phenotype- 
associated cells.

SCAVENGE
We used SCAVENGE46 as a benchmark for prioritizing disease-relevant 
cells. Following the SCAVENGE tutorial (https://sankaranlab.github.io/
SCAVENGE/articles/SCAVENGE), we calculated trait relevance scores 
(TRSs) for individual cells, indicative of their association with the 
disease. Cells were prioritized by SCAVENGE if their TRSs were above 
95% of all TRSs. As in the scPRS analysis, we evaluated the enrichment 
of selected cells within each cell type using the Fisher’s exact test.

Stratified LDSC
Partitioned heritability analysis was carried out using sLDSC as previ-
ously described45. Heritability was quantified within the total set of 
snATAC-seq peaks identified for each of the left-ventricle cell types. 
Genetic enrichment for a particular cell type was defined by calculat-
ing the captured heritability per unit of sequence within the total set of 
identified snATAC-seq peaks for that cell type, compared to the genome 
overall. P values were calculated as previously described45; nominal 
significance (P < 0.05) was taken to be indicative of true enrichment.

We conducted sLDSC using the same GWAS and scATAC-seq data-
sets as those used in scPRS for HCM and severe COVID-19, for which no 
existing sLDSC results were available. For AD, the original sLDSC35 was 
performed on the same GWAS and scATAC-seq dataset. For T2D, the 
original sLDSC44 was carried out on the same scATAC-seq dataset but 
used a larger GWAS153. We chose to report the results of sLDSC applied 
to discovery GWAS to optimize its power, given the larger sample size 
of discovery GWAS compared to target cohort.

Identification of disease-relevant cCREs
As the first step of the layered multiomic analysis (Fig. 5a), we identi-
fied differentially accessible cCREs within each scPRS-prioritized cell 
type using Signac154. Specifically, we used the FindMarker function to 
compare peaks within scPRS-prioritized cells (per cell type) against all 
unselected cells in the dataset as background, with parameters test.
use = ‘LR’, latent.vars = ’peak_region_fragments’, min.pct = 0.02,and 
logfc.threshold = 0.1. Significant peaks (adjusted P < 0.1 based on BH 
correction) with a positive log2 FC were defined as differentially acces-
sible cCREs. Next, leveraging the discovery GWAS summary statistics, 
we conducted MAGMA74 analysis for these differentially accessible 
cCREs per cell type, with gene-model = ‘multi’. MAGMA is a widely used 
tool for gene-level and region-level genetic association analysis based 
on GWAS summary data. It is designed to test genetic associations of 
predefined genes or regions with diseases or traits by aggregating 
variant-level GWAS statistics while accounting for LD. We defined 
disease-relevant cCREs (T2D-cCREs and AD-cCREs) as those cCREs with 
adjusted MAGMA P < 0.1 based on BH correction. We expanded our 
analysis to involve all nominally significant cCREs (MAGMA P < 0.05) 
for HCM, as no cCRE passed the multiple-testing correction.

Mapping cCRE–gene links
We mapped cCREs to their target genes on the basis of two comple-
mentary strategies. First, we adopted the closest-gene strategy155 and 
assigned each cCRE to its closest gene. In addition, we added more 
distant genes on the basis of a coaccessibility analysis using Cicero75 and 
linked each cCRE to those genes whose TSS peak displayed coaccessibil-
ity with the cCRE above 80% of all interactions. For each scPRS-prioritized 
cell type, the expressed genes mapped to disease-relevant cCREs within 
that cell type defined the repertoire of disease candidate genes.

Enrichment of disease-associated variants within 
scPRS-cell-specific peaks
Per disease-relevant cell type, we performed clumping within differen-
tially accessible peaks in scPRS-prioritized cells to remove redundant 
variants. Multiple LD r2 thresholds (r2 = 0.1, 0.3 and 0.5) were tested. 
Leveraging the clumped variant set, we examined the enrichment of 
disease-associated variants (GWAS P < 5 × 10−8) within scPRS-cell-specific 
peaks by comparing it to the genome-wide distribution.

TF-binding motif analysis
The TF-binding motif analysis was performed using GimmeMotifs156. 
The differential motifs between disease-relevant cCREs and all peaks 
within the corresponding cell type were identified using the ‘gimme 
motif’ command with options f = 0.5 and s = 0. AUROC was adopted 
to quantify the motif enrichment.

Network analysis
We downloaded the human PPIs from STRING (version 12.0)98, com-
prising 19,622 proteins and 6,857,702 interactions. High-confidence 
PPIs (combined score > 700) were extracted for downstream analysis, 
including 16,185 proteins and 236,000 interactions. To mitigate bias 
from hub proteins157, we applied the random walk with restart algorithm 
with a restart probability of 0.5. This produced a smoothed network 
after retaining the top 5% predicted edges (n = 6,243,766). Next, we 
used the Louvain method158 to decompose the network into different 
modules. Following algorithm convergence, we obtained 1,261 modules 
with an average size of 13 nodes.

The enrichment of genes of interest within each module was tested 
using the hypergeometric test. Modules with adjusted P < 0.1 based on 
BH correction were considered significant.

Sequence deep learning model design and training
The sequence-based deep learning model was trained to predict 
ATAC-seq peaks across various cell types on the basis of the DNA 
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sequence. Specifically, the sequence model takes a 2,000-bp DNA 
sequence as the input and outputs the peak status of the centered 
200 bp for different cell types. The peak label for a specific cell type 
is 1 if over 50% of the centered 200 bp is overlapped by an ATAC-seq 
peak within that cell type and 0 otherwise. Model structure follows 
the Beluga architecture78, except its outputs correspond to different 
cell types within the tissue of interest.

ATAC-seq peaks within chromosomes 6 and 7 and chromosomes 8 
and 9 were held out as validation and test data, respectively. Peaks in other 
chromosomes were used as training data. Genomic regions annotated  
by the ENCODE blacklist159 were excluded from analysis. We adopted the 
BCE loss as the objective function. The sequence model was trained using 
the stochastic gradient descent algorithm with a weight decay coefficient 
of 1 × 10−6, momentum of 0.9, learning rate of 0.08 and batch size of 64. 
The model was implemented using Selene79, a PyTorch-based library 
for sequence deep learning modeling. In this study, we trained separate 
sequence models using different scATAC-seq datasets.

Prediction of variant effects using sequence deep learning 
model
We used the sequence model to predict the impact of genetic variants 
on cCREs across diverse cell types. For a given cell type c and vari-
ant v (from reference allele to alternative allele), the model predicts 
the status of cCRE yref,c and yalt,c for sequences centered on the refer-
ence and alternative alleles, respectively. We define the functional 
effect of variant v in cell type c as yv,c = yalt,c − yref,c, representing how the 
variant alters cCRE in this cell type. To achieve a global evaluation of 
functional scores, we introduce the Zv,c score, which normalizes yv,c as 
Zv,c = (yv,c − μ)/σ, where μ and σ denote the mean and s.d. of all variant 
scores, respectively. The Qv,c score is further defined as the quantile of 
|Zv,c| among all variants. A higher Q score indicates a larger functional 
effect within a specific cell type.

Benchmarking sequence model prediction
To benchmark the sequence model prediction on variant effects against 
QTL analysis (eQTL or caQTL), we compared the absolute Z scores 
computed by the sequence model between QTLs and non-QTLs using 
a two-sided t-test. The t statistics was used to measure the enrichment 
of functional variants defined by the sequence model within QTLs.

As the second benchmarking, we used SNP2TFBS89 to predict the 
effects of variants on altering TFBS affinity. The binding affinities for 
different TFs were averaged for each studied variant to estimate its over-
all effect. Given a particular quantile cutoff, variants were split into two 
groups according to their Q scores. We then compared the averaged 
SNP2TFBS scores between these two groups of variants using a two-sided  
t-test. We report the t statistic, which indicates the enrichment of TFBS- 
disrupting variants within sequence-model-defined functional variants.

Variant effect within disease-relevant cCREs
We compared the abundance of functional disease-associated vari-
ants (GWAS P < 0.05) within disease-relevant cCREs against the back-
ground using a Fisher’s exact test. Similarly, the functional variants 
were defined as those with Q scores above a given cutoff (multiple 
cutoffs applied). The odds ratio (OR) was adopted to measure the 
enrichment of functional variants within disease cCREs.

Fine-mapping disease risk variants
We used three approaches to fine-map disease risk variants: the 
sequence deep learning model, QTL and TFBS. A 0.8 quantile cutoff 
was adopted to define functional variants on the basis of the sequence 
model in fine-mapping. In addition to SNP2TFBS, motifbreakR91 was 
used to predict variant disruption on TF binding. A positive averaged 
SNP2TFBS score or a strong-effect motifbreakR score was used to 
define a disrupting variant. We excluded missense and loss-of-function 
variants and variants with GWAS P ≥ 0.05 from fine-mapping.

iPS cell reprogramming
iPS cells were reprogrammed from PBMCs using Sendai virus (Cyto-
Tune iPS 2.0 Sendai Reprogramming Kit) as previously described160. 
Three clones were generated per subject, karyotyped (KaryoStat, 
Thermo Fisher Scientific), determined to be free of Mycoplasma and 
evaluated by immunohistochemistry for expression of pluripotency 
markers TRA-1-60 (LifeTech, MA1023) and SSEA4 (LifeTech, MA1021). 
Cells were maintained under feed-free conditions in mTeSR (StemCell 
Technologies, 5850) or Essential 8 medium (Fisher, A1517001) and 
stored in liquid nitrogen.

CDM differentiation and drug treatment
As previously described161, iPS cells were plated on Matrigel and cul-
tured in StemMACS iPS-Brew XF (MACS Miltenyi Biotec, 130-104-368) 
until the final passage in Essential 8 medium (Fisher, A1517001). CDM 
differentiation was induced at 60–80% confluency, with culture in 
RPMI medium (Gibco/LifeTech, 11875-119) plus B27 supplement lacking 
insulin (Gibco/LifeTech, A1895601). Then, 6 µM CHIR-99021 (Fisher, 
NC0976209) was added on day 0 and 6 µM IWR1 (Fisher, NC1319406) 
was added on day 3. Beginning on day 7, the medium was changed 
every other day using RPMI medium supplemented with B27 con-
taining insulin (Gibco/LifeTech 17504-044). Upon commencement 
of beating (around day 15), cells underwent purification by a 3-day 
glucose starvation (RPMI medium without glucose (Gibco/LifeTech, 
11879-020) supplemented with insulin-containing B27), a 1-day 
recovery in glucose-containing medium and subsequent replating 
(dissociated in TrypLE, Fisher, 50-591-353). Cells were then main-
tained in RPMI medium supplemented with insulin-containing B27 
until approximately day 30. After differentiation, drug treatment 
occurred at 0 and 24 h and samples were assayed at 48 h. Cells were 
treated with 250 nM MYK-461 (Cayman Chemical, 19216-5mg), 400 nM 
or 1 μM omecamtiv mecarbil (Selleckchem, Fisher, NC1069600)  
or DMSO.

RNA-seq library preparation, sequencing, QC and expression 
matrix generation
RNA was extracted from iPS cells or CDMs (RNeasy, Qiagen). Illumina 
RNA-seq libraries (TruSeq Stranded Total RNA LP Gold) were pre-
pared on the Bravo (Agilent), pooled and sequenced (NovaSeq 6000, 
paired-end, 100 bp)27. Where possible, drug treatment conditions for 
the same differentiation were kept together in batches, while replicate 
differentiations for the same iPS cell lines were split apart and HCM 
and control samples were distributed across batches. Reads were 
aligned to hg38 (STAR). PC analysis on CDM and iPS samples separately 
returned no outlier samples (defined as Z score of PC1 > 3). Library QC 
was assessed using fastp, fastQC, STAR and Picard metrics. Samples 
were flagged for poor QC by the following metrics: G+C content after 
filtering outside of 20–80% (fastp), duplication rate greater than 40% 
(fastp), uniquely mapped read pairs (fragments) < 20 million (STAR), 
mean reads (average of forward and reverse) < 20 million (fastQC), 
ribosomal RNA bases > 20% (Picard), coding plus UTR (untranslated 
region) < 50% (Picard) and uniquely mapping fragments < 60% (STAR). 
Samples with more than one flag were removed. CDM and iPS cell 
samples were subsequently processed separately. Reads were com-
puted as counts per million (edgeR), corrected for library preparation 
batch (combat-seq) and normalized by the trimmed mean of M values 
(TMM; edgeR) to generate the final expression matrix. For samples 
with biological replicates, TMM counts were averaged. PC analysis was 
performed and PC1 was assessed for Spearman correlation with the fol-
lowing metadata: percent G+C content (fastp), mean reads (average of 
forward and reverse) in millions (fastQC), percent ribosomal RNA bases 
(Picard), uniquely mapped fragments in millions (STAR), duplication 
rate (fastp), percent coding or UTR (Picard), library preparation batch 
and sequencing pool. The maximum absolute value for spearman 
correlation between PC1 and the library metadata was 0.08 for CDM 
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samples, indicating good QC with technical artifacts having minimal 
influence on the dataset. iPS cell samples had higher correlation for 
three metrics (0.26 with G+C content, 0.22 with duplication rate and 
0.11 with percent coding or UTR), with the remaining having less than 
an absolute value of 0.04.

Differential expression analysis
Raw data were input into DESeq2 (ref. 162) as required to compare 
gene expression between HCM cases and controls across different 
conditions. Gene counts were averaged across replicates. Sample sex 
and ancestry were included as covariates in the analysis.

Allelic imbalance analysis in rs7922621 prime-edited microglia
The rs7922621 prime-edited WTC11 clones were obtained from our 
previous study108 and microglia were differentiated accordingly. Total 
RNA was isolated from wild-type and prime-edited microglia using the 
RNeasy plus mini kit (Qiagen, 74034). Briefly, 400 ng of total RNA was 
reverse-transcribed using the iScript complementary DNA (cDNA) syn-
thesis kit (Bio-Rad, 1708891). The cDNA region containing phased het-
erozygous SNP of ANXA11 (rs2573353 in WTC11)163 was amplified using 
the following primers: WTC-ANX-F, AGGTCCAATAATCCCTGCTGA; 
WTC-ANX-R, CCATGGTGCTCGGCTAATTT. The PCR products were 
purified by agarose gel extraction, followed by the addition of Illumina 
adaptors and deep sequencing. Reads were aligned to the sequence of 
either allele and counted if the 100-bp regions surrounding rs2573353 
were exactly matched.

Differentiation of TMEM119–Tdtomato reporter cell line iMGs
iPS cells stably expressing a TMEM119–tdTomato reporter transgene 
were first differentiated into fibroblast-like cells using a previously 
established method110,111. TMEM119–tdTomato fibroblasts were seeded 
onto 96-well plates (Corning) coated with 0.1% gelatin and Matrigel in 
fibroblast medium (DMEM with 10% FBS and 1% penicillin–streptomy-
cin). After 48 h, the cells were transduced with 200 μl of two different 
concentrated retroviruses to overexpress the human PU.1 and CEBPA 
per 96-well well with 5 μg ml−1 polybrene in fibroblast medium. Then, 
24 h after transduction, the medium was switched to DMEM with 5% 
FBS, 10 ng ml−1 human macrophage colony-stimulating factor (M-CSF) 
and 10 ng ml−1 interleukin 34 (IL-34) and refreshed every 3 days thereaf-
ter. iMGs expressing the TMEM119–tdTomato reporter were used for 
experiments 14 days after viral transduction.

siRNA transfection
siRNAs (Thermo Fisher) at a concentration of 30 nM were transfected 
into iMGs on day 14 using Lipofectamine RNAiMAX transfection rea-
gent (Thermo Fisher Scientific, 13778075) in complete iMG medium 
(DMEM + 5% FBS, 10 ng ml−1 M-CSF and 10 ng ml−1 IL-34). After 24 h, the 
medium was refreshed with complete iMG medium; after an additional 
24 h (48 h after transfection), cell cultures were collected for RT–qPCR 
or pHrodo analysis.

pHrodo phagocytosis assay
iMGs cultured in 96-well plates (Corning) coated with Matrigel and 
gelatin were incubated with 10 μg of pHrodo green Escherichia coli 
bioparticles (Inucyte) for 15 min at 37 °C. Wells were then washed with 
PBS and were longitudinally imaged with Molecular Devices ImageEx-
press at 30-min intervals for the initial 2 h and 1-h intervals thereafter 
up to 24 h after the start. The 2-h time point was selected for down-
stream analysis. ImageJ software was used for quantification of indi-
vidual replicates across conditions on the basis of the colocalization 
of TMEM119–Tdtomato and pHrodo green.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The PBMC multiome dataset is available from 10x Genomics (https://
support.10xgenomics.com/single-cell-multiome-atac-gex/data-
sets/1.0.0/pbmc_granulocyte_sorted_10k). The single-cell multiome 
data (snRNA-seq and snATAC-seq coassay) of the human left ventricle 
and lung are publicly accessible through ENCODE 4 (https://www.
encodeproject.org/single-cell/?type=Experiment&assay_slims=Singl
e+cell&status=released). All other scATAC-seq datasets were obtained 
from their original publications33,35. The WGS data used in simulation 
are available from a previous study23. Individual-level genotype–phe-
notype data for T2D and AD were sourced from the UKBB. The WGS and 
iPS cell RNA-seq data for HCM are available from a previous study27. The 
COVID-19 WGS and clinical data are available upon request from the 
corresponding authors (P.S.T. and M.P.S.); these data are not publicly 
available because of US Government and Department of VA restrictions 
relating to participant privacy and consent. The independent target 
cohorts for T2D, HCM and AD are accessible through the European 
Genome-Phenome Archive (EGAD00001002247), UKBB and ADNI 
(https://adni.loni.usc.edu/data-samples/adni-data/), respectively. 
The HCM snRNA-seq dataset was obtained from a previous study101. 
All GWAS summary statistics data were acquired from their original 
publications22,29–31. The GTEx and islet eQTL datasets were downloaded 
from the eQTL catalog (https://www.ebi.ac.uk/eqtl/). Other eQTL and 
caQTL datasets were obtained from their original publications60,85,88,164. 
The reference human genomes (hg19 and hg38) are available online 
(https://hgdownload.soe.ucsc.edu/downloads.html#human).

Code availability
The source code and tutorial for scPRS are available from GitHub 
(https://github.com/szhang1112/scPRS).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Assessing performance of scPRS using simulations.  
a, The uniform manifold approximation and projection (UMAP) plot of the 
human peripheral blood mononuclear cell (PBMC) scATAC-seq dataset. 
Cell clusters with less than 150 cells are not shown. Monocyte subtypes are 
highlighted in italic. Mono, monocyte; TCM, memory T cell; TEM, effector 
memory T cell; NK, natural killer cell; Treg, regulatory T cell; cDC2, conventional 
type 2 dendritic cell; gdT, gamma-delta T cell. b, Pearson correlation between 
simulated and predicted monocyte counts (n = 10 repeats). P-value by two-
sided Pearson correlation. The linear regression line and 95% confidence 
interval (CI) are annotated in the red line and gray shaded area, respectively. 

c, Monocyte-count-relevant cells prioritized by scPRS (in red). Odds ratio and 
P-value by two-sided Fisher’s exact test. OR, odds ratio. d, Pearson correlation 
between simulated and predicted monocyte counts (n = 10 repeats) in different 
noise settings. The mean and 95% CI are annotated in the dot and error bar, 
respectively. σ, standard deviation. e, The receiver operating characteristic 
(ROC) curves for cell prioritization in different noise settings, wherein 
monocytes were labeled as “1” and other cells were labeled as “0”. AUC, the area 
under the curve. f, Monocyte-count-relevant cells prioritized by scPRS (in red) in 
different noise settings. Odds ratio and P-value by two-sided Fisher’s exact test.
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