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Combined single-cell profiling of chromatin–
transcriptome and splicing across brain cell 
types, regions and disease state
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Measuring splicing and chromatin accessibility simultaneously in frozen 
tissues remains challenging. Here we combined single-cell isoform RNA 
sequencing and assay for transposase accessible chromatin (ScISOr–ATAC) 
to interrogate the correlation between these modalities in single cells 
in human and rhesus macaque frozen cortical tissue samples. Applying 
a previous definition of four ‘cell states’ in which the transcriptome and 
chromatin accessibility are coupled or decoupled for each gene, we 
demonstrate that splicing patterns in one cell state can differ from those of 
another state within the same cell type. We also use ScISOr–ATAC to measure 
the correlation of chromatin and splicing across brain cell types, cortical 
regions and species (macaque and human) and in Alzheimer’s disease.  
In macaques, some excitatory neuron subtypes show brain-region-specific 
splicing and chromatin accessibility. In human and macaque prefrontal 
cortex, strong evolutionary divergence in one molecular modality does 
not necessarily imply strong divergence in another modality. Finally, in 
Alzheimer’s disease, oligodendrocytes show high dysregulation in both 
chromatin and splicing.

Multimodal measurements, including the simultaneous measurements 
of gene expression, chromatin accessibility1–3 and antibody binding 
in single-cell4 and spatial genomics5,6 experiments, are of high impor-
tance in neurobiological investigations and modern-day genomics. 
We have previously devised methods to sequence full-length tran-
scripts, alternative exons and exon combinations in single-cell and 
single-nuclei studies7–9. Here, we introduced chromatin accessibility 
as an additional modality to observe splicing and chromatin accessi-
bility (assay for transposase accessible chromatin (ATAC)) simultane-
ously. Moreover, gene expression and ATAC have been used to define 
a gene’s ‘cell state’, defined as states where transcription (induction 
and repression) and chromatin (opening and closing) are coupled  

or decoupled10. However, whether such cell states can result in dis-
tinct splicing regulation remains unexplored. A recent study showed 
that genes can exist in distinct states based on transcriptional activ-
ity and chromatin accessibility, defined as priming, coupled-on, 
decoupled and coupled-off (corresponding to cell states 0, 1, 2 and 3).  
Li et al. defined these states as follows. Priming marks chromatin 
opening before transcription begins, coupled-on reflects active tran-
scription coupled with open chromatin, decoupling marks the end of 
transcription, when chromatin closing and transcriptional repression 
are out of sync, and coupled-off indicates inactive transcription and 
closed chromatin10. We applied this ‘cell state’ framework to identify 
cell-type-specific splicing changes by cell state.
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libraries and sequenced 293 million–385 million paired-end reads 
for RNA and 350 million–381 million reads for ATAC (Supplementary 
Fig. 1a). After downsampling reads to similar read numbers per cell and 
analyzing the RNA data using published tools37–39, we identified 36 cell 
types and subtypes, including astrocytes, oligodendrocytes, oligoden-
drocyte precursor cells, microglia, endothelial cells and various sub-
types of excitatory and inhibitory neurons (Methods, Supplementary 
Fig. 1b and Supplementary Table 1). Overall, we found 6,858–13,710 
cells per sample after filtering, with excitatory neurons being the most 
abundant (Supplementary Fig. 1c). Within the excitatory neurons, three 
subtypes stood out: (1) L3–L5/L6 IT_RORB neurons, mainly character-
ized by RORB expression along with IL1RAPL and MKX; (2) L2–L3 IT_CUX2 
neurons, marked by CUX2, HPCAL1 and CBLN2; and (3) L2–L4 IT_CUX2.
RORB neurons, which coexpress both RORB and CUX2 (Fig. 1b and Sup-
plementary Fig. 2a). In primates, RORB excitatory neurons reside in 
layers L3–L5/L6, CUX2.RORB excitatory neurons reside in layers L2–L4 
and CUX2 excitatory neurons reside in layers L2–L3 (refs. 40–44). Aver-
age numbers of RNA and ATAC unique molecular identifiers (UMIs) 
per cell type between PFC and visual cortex samples (Supplementary 
Figs. 1f,g and 2b,c) were correlated (Supplementary Figs. 1d,e and 2d,e). 
Analysis of ten healthy and nine AD-affected human PFC samples (Sup-
plementary Table 2 and Methods) revealed expected brain cell types 
(Fig. 1c) and largely matched those in macaques. However, two excita-
tory neuron clusters coexpressing CUX2 and RORB (L2–L4 IT_CUX2.
RORB and L2–L4 IT_CUX2.RORB.ACAP3) were rare in human samples 
(Fig. 1d,e), potentially due to species differences or sampling bias45.

Overall, excitatory neurons were highly abundant across brain 
regions and species (Fig. 1d,e). To gain insight into disease and synaptic 
processes, we custom designed an Agilent enrichment array covering 
all annotated splice junctions in 3,224 macaque and 3,630 human genes 
(Methods). These consist of genes linked to synaptic function46, AD16, 
TDP43 knockdown47, autism spectrum disorder (ASD)48–50, schizo-
phrenia51 and amyotrophic lateral sclerosis (ALS)52 and genes with 
cell-type-specific splicing patterns in our human PFC8 data (Supple-
mentary Fig. 3a,b). We applied this enrichment array to the 10x cDNA 
for Oxford Nanopore Technologies (ONT) long-read sequencing (Sup-
plementary Fig. 4). We achieved 79% to 83% on-target capture using the 
enrichment panel, compared to ~2% for the unenriched Illumina reads 
after in silico extension to the average ONT read length (Supplementary 
Fig. 4a). This extension artificially expands the mapped Illumina reads 
to the average ONT read length, enabling fair comparisons of equal 
length. Conservative calling of barcodes yielded 20 million–33 mil-
lion perfectly matching barcoded reads per sample (Supplementary 
Fig. 4b). Reads were mapped to the macaque genome using minimap2 
(ref. 53) and assigned to genes using scisorseqr9. We filtered spliced 
reads from the mapped and barcoded reads (Supplementary Fig. 4c). 
Spliced ONT reads mapping to the same gene were considered distinct 
UMIs if their edit distance was ≥4 (Methods and Supplementary Fig. 4d). 
ONT read lengths showed similar distributions with a median of 713 bp 
(Supplementary Fig. 4e). The median of long-read UMI counts varied by 
cell type, where the lowest was observed in oligodendrocytes (Supple-
mentary Fig. 4f,g), whereas the three main excitatory neuron subtypes 
(L2–L3 IT_CUX2, L2–L4 IT_CUX2.RORB and L3–L5/L6 IT_RORB) showed 
similar UMI distributions (Supplementary Fig. 4h,i). The exon junction 
targeting before long-read sequencing removes purely intronic reads 
as we have shown before8. Moreover, exon-overlapping short-read 
and long-read UMI counts showed correlations between 0.74 and 0.77 
per dataset. This suggests that the targeting process is not drastically 
biased to certain exons (Supplementary Fig. 4j).

Region-specific splicing patterns are distinct from chromatin
Differential gene expression analysis between PFC and visual cortex 
revealed stronger changes in RNA splicing-related genes in excita-
tory neurons than in inhibitory neurons (Methods and Supplemen-
tary Fig. 5). Given their cortical importance and abundance, we tested 

Both splicing and chromatin organization distinguish cell types 
within a brain region and across brain regions7,9,11–14. Moreover, multiple 
modalities have undergone evolutionary changes and are affected in 
complex diseases including Alzheimer’s disease (AD)15–17. A key ques-
tion is whether chromatin and splicing alterations reflect the same 
underlying processes.

The brain is divided into interconnected regions that are dis-
proportionately affected by distinct neurological diseases. The 
prefrontal cortex (PFC) is involved in executive and cognitive func-
tion, whereas the visual cortex involves visual inputs18,19. The PFC is 
known to be affected in frontotemporal dementia, AD and psychiat-
ric disorders, whereas the visual cortex is affected in cerebral visual 
impairment20–26. These differences highlight the need to understand 
brain-region-specific molecular features. Macaques (Macaca mulatta), 
although widely used as models due to their evolutionary proximity to 
humans27, may not fully replicate human cell-type-specific molecular 
patterns. Therefore, detailed analyses of species-specific splicing 
and chromatin alterations across cell types is essential to assess the 
reliability of model organisms compared to humans. Last, both splic-
ing and chromatin changes have been linked to AD. Although splicing 
data mostly come from bulk tissue16, single-cell chromatin alterations 
have been studied. However, it remains unclear whether cell types are 
equally affected in AD-specific splicing and if the most-affected cell 
types change between modalities.

Therefore, we devised single-cell isoform RNA sequencing coupled 
with ATAC (ScISOr–ATAC), which measures gene expression, splicing 
and chromatin accessibility in the same individual cells. We used this 
method to show that distinct cell states (chromatin–transcriptome 
coupling/decoupling states) can reveal distinct splicing patterns. 
We then applied ScISOr–ATAC to the macaque PFC and visual cortex,  
macaque and human PFC and AD diseased and control PFC (Fig. 1a). 
To circumvent differences in statistical power between cell types, 
we developed downsampling software that compares statistically 
equal changes between cell types or conditions (Methods and  
Code availability).

We consider multiple cell subtypes, especially subtypes of excit-
atory neurons. We denote excitatory neurons by cortical layer (L), 
intratelencephalic (IT)/extratelencephalic (ET), corticothalamic (CT) 
and near-projecting (NP) categories and gene markers. In macaques, 
we identified three main excitatory subtypes based on layer-specific 
marker expression of CUX2, RORB and both, together with other corti-
cal neuron markers (Methods and Supplementary Fig. 1), termed L2–L3 
IT_CUX2, L3–L5/L6 IT_RORB or L2–L4 IT_CUX2.RORB. Neuronal subtypes 
are transcriptionally distinct with unique synaptic properties28–32. 
In mice, CUX2 marks upper-layer neurons and regulates synaptic 
functions33,34, whereas RORB is highly expressed in L4 neurons and is 
essential for synaptic and chromatin organization35.

In brain region comparisons, L3–L5/L6 IT_RORB neurons show 
the strongest splicing specificity, whereas L2–L4 IT_CUX2.RORB cells 
show the highest chromatin specificity. Between macaque and human 
PFC, chromatin and splicing often affect different cell types. In AD, glial 
cells show stronger dysregulation than neurons across both modali-
ties. Moreover, exon inclusion varies with the chromatin–transcription 
cell state, which suggests that these states should be considered as a 
hidden variable in the analyses. In summary, chromatin and splicing 
show distinct contributions to within-species brain region specificity, 
species divergence and AD dysregulation, among distinct cell types, 
subtypes and chromatin–transcription cell states; however, in specific 
comparisons, both modalities can agree.

Results
Definition of cell types
From two adult male rhesus macaques (Methods), we collected PFC 
and visual cortex samples guided by the Allen Brain Atlas36. Using a 10x 
Genomics Multiome kit, we prepared single-nucleus RNA and ATAC 
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Fig. 1 | ScISOr-ATAC pipeline and data overview. a, Outline of ScISOr–ATAC 
experimental and analysis pipeline; GEM, Gel Bead-In Emulsion; snRNA-seq, 
single-nucleus RNA sequencing; snATAC-seq, single-nucleus ATAC with 
sequencing; TSO, template switch oligo; poly(dT)VN, poly-dT primer sequence. 
b, Uniform manifold approximation and projection (UMAP) of macaque PFC 
and visual cortex (VIS) samples; ASC, astrocytes; INN, inhibitory neurons; VLMC, 

vascular and leptomeningeal cells; MG, microglia; OLIG, oligodendrocytes; 
OPCs, oligodendrocyte precursor cells; ENDC, endothelial cell. Excitatory 
neurons are indicated by L, IT or ET and gene markers. c, UMAP of human AD and 
control PFC samples. d, UMAP of human nuclei from integrated control human 
PFC and macaque samples. e, UMAP of macaque nuclei from integrated control 
human PFC and macaque samples.
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4,818 exons for differential exon inclusion (Δpercent spliced in (ΔΨ)) 
in excitatory neurons using 2 × 2 exon tests8,9,54 and a Benjamini–
Yekutieli (false discovery rate (FDR)) correction55. We identified 143 
significant exons (FDR < 0.05, | ΔΨ | ≥ 0.1; median | ΔΨ | = 0.21; Fig. 2a). 
Among them, the gene encoding DNA polymerase nu (POLN) showed 
brain-region-specific splicing: two exons are completely skipped in the 
PFC but are robustly included in the visual cortex (ΔΨ = 0.78 and 0.8; 
adjusted two-sided Fisher’s exact test P values of <0.006 and <0.003) 
and follow the paradigm of coordinated splicing7,56–60 (Fig. 2b). Given 
that we observed that POLN is highly expressed in excitatory neurons 
(Supplementary Fig. 6a), we validated its two alternative exons using 
bulk tissue from three macaque PFC and visual cortex samples and 
observed a broadly similar trend in the tested alternative exons, but not 
in constitutive exons (Supplementary Fig. 6b,c). Among nonsignificant 
2 × 2 tests, 71.7% had a | ΔΨ | of ≤0.1 and 91.1% had a | ΔΨ | of ≤0.2, with 
very few passing a | ΔΨ | of 0.3, suggesting that most would remain 
nonsignificant even with deeper sequencing (Supplementary Fig. 6d). 
However, among the few with a | ΔΨ | of ≥0.5 and 10–20 informative 
reads in each condition (n = 6), many may achieve significance with 
higher depth. Indeed, simulation experiments suggested that for exons 
with a | ΔΨ | of ≥0.5, only 38% reached significance if 10–20 reads were 
sampled (Supplementary Fig. 6e and Methods).

Our data offer the unique opportunity to test whether different 
cell states10 show differences in splicing. We examined exons of genes 
detectable in multiple states with sufficient long-read coverage in the 
PFC or visual cortex (Fig. 2c and Methods). Across both brain regions 
and multiple cell types, we found exons with inclusion differences 
tied to distinct cell states (Fig. 2d), suggesting a link to the interplay 
between chromatin and splicing61,62. This observation highlights the 
question of whether observed exon inclusion differences between 
visual cortex and PFC excitatory neurons reflect cell-state diversities. 
To test this hypothesis, we analyzed 160 exons with five or more long 
reads in at least one cell state and brain region for excitatory neurons. 
For each exon, we calculated a ‘normalized-state ΔΨ’ by dividing the 
state ΔΨ by the ΔΨ across all states, which we refer to as the ‘overall 
ΔΨ’. Values of ≥1 indicate that a specific state equaled or exceeded 
the overall splicing difference. Many exons showed at least one state 
with a normalized-state ΔΨ of ≥1. In some cases, an exon’s maximum 
normalized-state ΔΨ values exceeded 1.5, suggesting that strong brain 
region specificity originates from one state above others (Fig. 2e). In 
excitatory neurons, 51% of exons (82/160) showed brain-region-specific 
splicing in at least one cell state, whereas another 41% (65/160) had 
maximum normalized-state ΔΨ values between 0.9 and 1. The remain-
ing cases likely stemmed from cell state rather than brain region speci-
ficity (Fig. 2f).

To assess how excitatory neuron subtypes contribute to 
region-specific splicing, we compared matched subtypes between 

the PFC and visual cortex. In L3–L5/L6 IT_RORB excitatory neurons, 
64 of 1,558 exons showed significant splicing differences (FDR < 0.05, 
| ΔΨ | ≥ 0.1; median | ΔΨ | = 0.34; Supplementary Table 3 and Supple-
mentary Fig. 7a,b). In L2–L4 IT_CUX2.RORB neurons, a higher number 
of significant exons with a | ΔΨ | of ≥0.1 was found (n = 93 of 2,881; 
Supplementary Table 4 and Supplementary Fig. 7a,b), whereas fewer 
were found in L2–L3 IT_CUX2 neurons (n = 36 of 1,336 tested; Sup-
plementary Table 5 and Supplementary Fig. 7a,b). After allowing at 
most five significant exons per gene, 67.1% of differentially included 
exons (49 of 73) showed a bias toward visual cortex-specific inclusion 
in L2–L4 IT_CUX2.RORB neurons, where negative ΔΨ values corre-
spond to higher inclusion in the visual cortex. By contrast, L3–L5/L6 
IT_RORB excitatory neurons showed a much more even distribution 
(two-sided Wilcoxon rank-sum test, P < 0.05; Supplementary Fig. 7c). 
The three subtypes offered distinct statistical power in numbers of 
exons, cells and reads. We therefore performed downsampling analysis 
and confirmed that L3–L5/L6 IT_RORB neurons showed the strongest 
brain-region-specific splicing regulation, followed by L2–L4 IT_CUX2.
RORB neurons (corrected two-sided Wilcoxon rank-sum test P values 
of <2.2 × 10−16 (L3–L5/L6 IT_RORB versus L2–L3 IT_CUX2) and <3 × 10−7 
(L3–L5/L6 IT_RORB versus L2–L4 IT_CUX2.RORB); Fig. 2g and Methods). 
An example of brain-region-specific splicing in L3–L5/L6 IT_RORB 
neurons is an exon of the gene encoding NFE2-like BZIP transcription 
factor 1 (NFE2L1)59, which is skipped in the PFC but included in 73% of 
the visual cortex (corrected two-sided Fisher’s exact test P < 0.003; Sup-
plementary Fig. 7d). NFE2L1 was targeted because of its involvement 
in ALS and ASD; however, we also target synaptic genes. In total, 46.1% 
of targeted synaptic genes were also classified as disease-associated 
splicing-dysregulation genes. To assess whether specific gene cat-
egories show brain-region-dependent splicing in L3–L5/L6 IT_RORB 
neurons, we classified targeted genes into three groups: disease asso-
ciated but not synaptic (D+S−), synaptic but not disease associated 
(D−S+) and both synaptic and disease associated (D+S+). Downsampling 
experiments (Methods) showed that D+S− genes displayed stronger 
brain-region-specific splicing patterns than D−S+ genes (corrected 
two-sided Wilcoxon rank-sum test P < 1.5 × 10−7). D+S+ genes also showed 
such brain region specificity compared to D−S+ genes (D+S+ versus D−S+, 
corrected two-sided Wilcoxon rank-sum test P < 1.5 × 10−7), similar to 
disease-associated genes in brain-region-specific splicing among L3–
L5/L6 IT_RORB neurons (Fig. 2h). These findings suggest that splicing 
differences among excitatory neuron subtypes contribute to functional 
distinctions between the PFC and visual cortex. Additionally, splicing 
of disease genes may play a more important role in this distinction than 
synaptic genes, perhaps indicating that such disease-associated genes 
are mostly altered in specific brain areas.

Like the RNA analysis described above, the statistical power 
to detect differential chromatin arrangements can vary between  

Fig. 2 | Region specific splicing patterns are distinct from chromatin.  
a, Volcano plot of brain-region-specific splicing for excitatory neurons. b, Cell-
type-resolved single-cell long reads for POLN. Each line represents a single cDNA 
molecule. The two top tracks represent excitatory neurons in the PFC and visual 
cortex. The bottom black track shows chromosome (chr) 5: 2190541–2265209.  
c, Number of genes that include exons tested with one or more and two or  
more cell states detected in PFC and visual cortex samples. d, Volcano plot of 
state-specific exons across multiple cell types in the PFC and visual cortex  
(only exons with ten or more reads in two or more states were tested and are 
shown; n = 382,108). Exons with a P value of ≤0.05 and | LOR | of >1 are labeled 
in color, whereas all others are in gray; LOR, log odds ratio. A one-sided χ2 test 
followed by a Benjamini–Yekutieli multiple testing correction was applied to 
evaluate the significance of the splicing–cell state association (Methods).  
e, Distribution of the maximum normalized-state ΔΨ per exon. Normalized-state 
ΔΨ = state ΔΨ /overall ΔΨ. f, Pie chart showing the maximum normalized-state 
ΔΨ split by value into three groups: <0.9, between 0.9 and 1 or ≥1; Inf, infinity.  
g, Downsampling experiment. Distribution of the percentage of exons significant 

in brain region comparisons per subtype (Methods; n = 100). h, Downsampling 
experiment. Distribution of the percentage of exons significantly targeted by 
disease probes (D+S−), synaptic probes (D−S+) or overlapping (D+S+; Methods; 
n = 100). i, Downsampling experiment. The percentage of peaks that are 
significantly different for each excitatory neuron subtype between brain regions 
in the vicinity of genes targeted for splicing analysis is shown (Methods; n = 20). 
j, Breakdown of the percentage of significant peaks by peak location (UTR, 
exon, intron or intergenic; Methods; n = 20). k, Example peaks (shaded areas) 
in the vicinity of RCL1 is specific to the visual cortex only in L2–L4 IT_CUX2.
RORB excitatory neurons. l, Motif enrichment of the transcriptional regulator 
NEUROG1 for excitatory neuron subtypes in the PFC and visual cortex. Each box 
plot shows the median (middle line), interquartile range (top and bottom lines of 
the box) and adjacent values (whiskers extending to 1.5× the interquartile range 
(IQR)). Dots represent outliers beyond this range. A two-sided Wilcoxon rank-
sum test was applied to all the comparisons shown in g, i, j and l. FDR correction 
was applied to multiple comparisons, and corrected P values (<0.05) are shown.
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cell types. To guarantee similar statistical power across samples, we ran-
domly subset one experiment so that all four samples had 7,000–8,000 
single-cell ATAC high-quality fragments per cell. Using Signac63 and 
the MACS2 (ref. 64) peak caller, we called peaks separately for each 
cell type, identifying ~119,000, ~104,000 and ~153,000 peaks in PFC 

L3–L5/L6 IT_RORB, L2–L3 IT_CUX2 and L2–L4 IT_CUX2.RORB neurons. 
In the visual cortex, we found ~102,000, 107,000 and 137,000 peaks 
for the same three cell types (Supplementary Fig. 8a,b). We performed 
differential peak analysis of matched cell types between the PFC and 
visual cortex of macaques. Interrogating peaks associated with the set 
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of 3,224 genes targeted for splicing analysis, we found ~2,000 or more 
differentially regulated peaks for each excitatory subtype (n = 1,999, 
1,632 and 9,201 for the L3–L5/L6 IT_RORB, L2–L3 IT_CUX2 and L2–L4 
IT _CUX2.RORB cells, respectively, at an FDR P value of 0.05 considering 
only peaks appearing in at least 2% of cells; Methods and Supplemen-
tary Fig. 8c). By contrast, L6 CT/L6b_SEMA3E, L5 ET_GULP1 and L5–L6 
NP_TLL1 neurons showed only two and zero differentially regulated 
peaks, respectively (Supplementary Fig. 8c). These numbers of dif-
ferentially regulated peaks between the PFC and visual cortex showed 
the same trend when displayed as a fraction of significant tests. More 
specifically, L2–L4 IT_CUX2.RORB neurons showed the highest percent-
age of significant differences (39.71%), far exceeding L3–L5/L6 IT_RORB 
(10.10%) and L2–L3 IT_CUX2 (9.09%) neurons, with negligible signal in 
L6_CT/L6b_SEMA3E neurons. These results strongly suggested that 
L2–L4 IT_CUX2.RORB neurons have the strongest brain-region-specific 
chromatin alterations in the vicinity of the enriched set of genes (Sup-
plementary Fig. 8d). Due to varying cell numbers and open chromatin 
regions, statistical power differed among the excitatory cell types. 
L2–L4 IT_CUX2.RORB neurons had the highest number of cells (4,626 
and 9,756 cells in the PFC and visual cortex, respectively) and open 
chromatin regions. For L3–L5/L6 IT_RORB neurons, we observed 2,508 
and 3,313 cells in the PFC and visual cortex and 2,153 and 3,776 cells for 
L2–L3 IT_CUX2 neurons. To control for statistical power differences, 
we performed downsampling experiments (Methods) by repeatedly 
(n = 20) sampling 1,000 cells in both regions, calling peaks and choos-
ing the peaks closest to targeted genes and randomly sampling 10,000 
peaks among these per region. We performed differential chroma-
tin accessibility experiments as described earlier and recorded the 
percentage of tests that passed an FDR of 0.05, leading to 20-value 
distribution of these excitatory neurons. L2–L4 IT_CUX2.RORB neu-
rons consistently showed the highest median proportion of signifi-
cant peaks (~4.9%), which is 2.75× and 3.0× higher than L2–L3 IT_CUX2 
(1.8%) and L3–L5/L6 IT_RORB (1.6%) neurons, respectively (corrected 
two-sided paired Wilcoxon rank-sum test P values of <2.87 × 10−6 in both 
cases; Fig. 2i). This result was robust to distinct ways of annotating cells 
with high-quality chromatin signal (Supplementary Fig. 8e and Meth-
ods). To further validate the observation that L2–L4 IT_CUX2.RORB 
neurons are most affected by chromatin alterations with a method that 
does not depend on statistical testing, we computed the peak similar-
ity for all three cell types in both brain regions using the Jaccard index 
(Methods). L2–L4 IT_CUX2.RORB neurons showed the lowest peak 
similarity, which again supports its strongest brain region specificity 
of chromatin regulation (Supplementary Fig. 8f). To assess whether 
brain-region-specific chromatin changes depend on genomic locations 
(exonic/intronic/untranslated region (UTR)/intergenic), we performed 
downsampling experiments (Methods) by randomly sampling 5,000 
peaks of each category among all the peaks called from 1,000 cells of 
each condition per excitatory neuron subtype. Among the three major 
excitatory neuron subtypes, L2–L4 IT_CUX2.RORB neurons showed 
the highest significance percentage in each peak category, yielding 
1.51%, 3.89%, 5.31% and 9.20% as medians for UTR, exonic, intronic and 
intergenic peaks, respectively (Fig. 2j and Methods). A representative 
example peak is located in an intron of the gene encoding RNA terminal 
phosphate cyclase like 1 (RCL1), only observed in visual cortex L2–L4 
IT_CUX2.RORB cells but not in the PFC (Fig. 2k). Notably, the differences 
observed in open chromatin in specific excitatory subtypes between 
the two brain regions can lead to PFC-specific occupancy of transcrip-
tion factors such as NEUROG1 (Fig. 2l). In summary, chromatin and 
splicing distinguish matched cell types between the PFC and visual 
cortex in distinct manners.

Chromatin cell subtype specificity patterns mimic splicing
Because splicing and chromatin profiles can reveal brain region 
specificities in different ways, we next examined whether they also  
distinguish excitatory neuron subtypes, regardless of brain region.  

We performed three pairwise comparisons for differential exon  
inclusion of L3–L5/L6 IT_RORB, L2–L4 IT_CUX2.RORB and L2–L3 IT_CUX2 
cells. The L3–L5/L6 IT_RORB versus L2–L3 IT_CUX2 comparison revealed 
88 significant exons of 2,705 tested (11 with a | ΔΨ | of ≥0.5; Fig. 3a), 
whereas the other two comparisons (L2–L3 IT_CUX2 versus L2–L4 
IT_CUX2.RORB and L3–L5/L6 IT_RORB versus L2–L4 IT_CUX2.RORB) 
showed 0 and 5 significant exons with a | ΔΨ | of ≥0.5 (Supplemen-
tary Fig. 9a,b). Downsampling experiments revealed that the L3–L5/
L6 IT_RORB versus L2–L3 IT_CUX2 comparison yielded the greatest 
cell-type differences in exon usage (Fig. 3b; corrected two-sided  
Wilcoxon rank-sum test P values of <8.1 × 10−5 ((L3–L5/L6 IT_RORB  
versus L2–L4 IT_CUX2.RORB) versus (L3–L5/L6 IT_RORB versus L2–L3 
IT_ CUX2)) and <2.0 × 10−12 ((L3–L5/L6 IT_RORB versus L2–L3 IT_CUX2) 
versus (L2–L4 IT_CUX2.RORB versus L2–L3 IT_CUX2))). Cell-type com-
parisons at the chromatin level (Fig. 3c and Supplementary Fig. 9c,d) 
also revealed that the L3–L5/L6 IT_RORB versus L2–L3 IT_CUX2  
comparison yielded the highest number of differentially accessi-
ble peaks using the downsampling strategy (Fig. 3d and Methods; 
corrected two-sided Wilcoxon rank-sum test P < 2.0 × 10−6 for all). 
The total number of exons and percentage of significant exons and 
peaks mirrored the downsampling trends (Supplementary Fig. 9e–h). 
Comparing different excitatory neuron subtypes revealed consist-
ent RNA and ATAC patterns, unlike comparisons of the same sub-
type across brain regions, which showed divergent patterns. As an 
example of cell-type specificity, an exon of ARAP3 was included in 
61.9% of reads from L3–L5/L6 IT_RORB cells but only 7.9% of reads 
from L2–L3 IT_CUX2 cells (Fig. 3e). Similarly, DOCK4 harbors two 
peaks (chromosome 3: 138122410–138124115 and chromosome 3: 
138155707–138157028) exclusive to L3–L5/L6 IT_RORB cells and one 
peak specific to L2–L3 IT_CUX2 cells across both the PFC and visual 
cortex (Fig. 3f). However, some peaks also occurred in all subtypes 
but showed significantly higher accessibility in one subtype, such 
as in CTNNA2 (Fig. 3g; chromosome 13: 28116151–28117300). In sum-
mary, chromatin and splicing distinguish cell types in a comparable 
manner when we perform comparisons between neuron subtypes.

Splicing and chromatin patterns diverge in primate evolution
The rhesus macaque is among the closest common model organisms 
to humans. Thus, to assess how well macaque chromatin and splicing 
signatures represent human signatures and whether certain cell types 
show stronger species-specific divergence in chromatin or splicing 
is of significance. In addition to the macaque PFC samples used for 
region comparisons mentioned earlier, we applied ScISOr–ATAC 
to six human PFC samples (four males and two females) for a spe-
cies comparison between human and macaque PFC. We sequenced  
257 million–427 million Illumina read pairs for the six control RNA 
libraries (samples C1–C6) and 321 million–367 million for the six ATAC 
libraries (Supplementary Fig. 10a,d and Supplementary Table 2).  
RNA profiling revealed multiple cell types and subtypes, with excita-
tory neurons and oligodendrocytes being the most abundant (Sup-
plementary Fig. 10e,f). Neurons had higher RNA UMI counts, whereas 
glial cells often had more chromatin molecules (Supplementary 
Fig. 10g–j). Subtypes within the same cell-type class exhibited 
UMI abundance variations (Supplementary Fig. 11). Additionally,  
42.3 million barcoded, target-gene-enriched long reads were 
sequenced using ONT for the six human PFC samples. Barcoded 
reads, UMI counts per cell type and reads reaching a transcription 
start site or poly(A) site per sample are provided in Supplementary 
Fig. 12. We integrated the short-read RNA datasets from both species 
(Methods) and identified 16 cell types and subtypes. Notably, the pro-
portion of L2–L3 IT_CUX2.CBLN2 cells, L2–L4 IT_CUX2.RORB.ACAP3 
cells and oligodendrocytes differed between human and macaque 
PFC (Methods, Fig. 1d,e and Supplementary Fig. 13).

We determined corresponding chromatin peaks in macaques 
and humans and tested these for differential accessibility (Methods).  
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The highest number of significant peaks as a fraction of tested peaks  
in the vicinity of the 3,224 targeted genes was observed in excitatory 
neurons, followed by astrocytes and inhibitory neurons (Supplemen-
tary Fig. 14a). Downsampling experiments (Methods) showed that 
astrocytes exhibited the most frequent rearrangements between 
humans and macaques (Fig. 4a; corrected two-sided Wilcoxon 
rank-sum test: astrocytes versus excitatory neurons P < 1.02 × 10−7; 
astrocytes versus inhibitory neurons P < 1.02 × 10−7). Highly divergent 
profiles were observed across neuronal subtypes (Supplementary 
Fig. 14b). Downsampling experiments revealed the most noticeable 
species-specific rearrangements in L5 IT_RORB excitatory neurons 
as well as L2–L3 IT_CUX2.CBLN2 neurons, but much less so in L2–L3 
IT_NRGN.CBLN2 excitatory neurons (corrected two-sided Wilcoxon 
rank-sum test P values of <1.13 × 10−7 (L5 IT_RORB versus L2–L3 IT_NRGN.
CBLN2) and <1.13 × 10−7 (L5 IT_CUX2.CBLN2 versus L2–L3 IT_NRGN.
CBLN2)). In inhibitory neurons, we found a significant difference in 
peaks between GABAergic interneurons originating from the medial 
ganglionic eminence (MGE) and the caudal ganglionic eminence 
(CGE), albeit much less dramatic than between excitatory neuron 
subtypes (corrected two-sided Wilcoxon rank-sum test P value of 
<1.30 × 10−6 (INN_MGE versus INN_CGE; INN represents inhibitory neu-
ron); Fig. 4b). As an example, a human astrocyte-specific peak and a 
separate peak specific to inhibitory neurons were identified in TRRAP 
(Fig. 4c). Another example showed a species-specific peak located in 
one exon of CEP250 specific to human L5 IT_RORB neurons (Fig. 4d). 
These results indicate that evolution has exerted distinct regulatory 
effects on chromatin in excitatory neuron subtypes. In our previous 

work, we demonstrated that genome-wide exome enrichment can  
successfully remove purely intronic cDNAs from libraries8,14. To evalu-
ate the performance of the splice junction-covering enrichment in  
this study, we compared splice junction versus exome enrichment 
in two human samples8 by calculating ΔΨ values for neurons and  
glia and found a correlation of 0.8 (P < 2.2 × 10−16), suggesting high 
concordance between the two methods (Fig. 4e and Methods).

We previously published methods to assess whether an alignment 
can be considered consistent with a complete or truncated version 
of an annotated isoform65. Due to more extensive annotation of the 
human genome than the macaque genome, we found a higher fraction 
of inconsistent (or novel) long-read RNA alignments in macaques than 
in humans (Supplementary Fig. 14c). Although fewer significantly 
differentially included exons were detected in inhibitory neurons 
than in excitatory neurons (Supplementary Fig. 14d), downsampling 
revealed the opposite: inhibitory neurons exhibited more frequent 
species-specific splicing differences than both excitatory neurons and 
astrocytes (Fig. 4f; corrected two-sided Wilcoxon rank-sum test P values 
of <8 × 10−3 (astrocytes versus inhibitory neurons) and 4 × 10−3 (excita-
tory neurons versus inhibitory neurons)). Among neuronal subtypes, 
splicing showed a trend in opposition to the chromatin analysis. For 
example, an exon of NUBP2, which is conserved between species, was 
present in 91% of macaque excitatory neuron cDNAs but only in 16% of 
human excitatory neuron cDNAs (Fig. 4g; two-sided Fisher’s exact test, 
macaques versus humans, FDR < 6 × 10−8).

Among excitatory neuron subtypes, L2–L3 IT_NRGN.CBLN2  
neurons showed the lowest species-specific chromatin arrangements 
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Fig. 4 | Splicing and chromatin patterns diverge in primate evolution.  
a, Downsampling experiment. Distribution of the percentage of peaks that are 
significantly different between humans and macaques in the vicinity of genes 
targeted for splicing analysis per cell type (n = 20). b, Downsampling experiment 
for subtypes with the same method described in a. c, Two peaks within TRRAP. 
The left peak is specific to human astrocytes but is absent in macaque astrocytes, 
and the right peak shows increased chromatin accessibility in human inhibitory 
neurons. H, human; M, macaque. d, A peak in CEP250 specific to human L5 
IT_RORB cells but absent in macaque L5 IT_RORB cells. e, Correlation between 
ΔΨ values (neurons versus glia) of tested exons targeted by both exome probes 
and exon–exon junction probes indicated by regression using a linear model; 
shading indicates the 95% confidence interval (n = 414). Shading indicates peaks 
of interest. f, Downsampling experiment. Distribution of the percentage of exons 
showing significant differences between humans and macaques per cell type 
(Methods; n = 100). g, Cell-type-resolved isoform expression for NUBP2 plotted, 
with the top three tracks showing excitatory neurons, inhibitory neurons and 

astrocytes. h, Downsampling experiment for subtypes with the same method 
described in f (n = 100). i, Number of genes with one or more and two or more cell 
states detected in both species. Only genes with testable exons were considered. 
j, Volcano plot of state-specific exons across cell types in humans and macaques. 
Only exons with ten or more reads in two or more states were tested (n = 238 and 
116 for human and macaque, respectively). Exons with a P value of ≤0.05 and 
| LOR | of >1 are labeled in color, and the others are in gray. A one-sided χ2 test 
followed by a Benjamini–Yekutieli multiple testing correction was applied to 
evaluate the significance of splicing–cell state association. k, Distribution  
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ΔΨ /overall ΔΨ. l, Pie chart showing the maximum normalized-state ΔΨ per exon 
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the median (middle line), IQR (box) and adjacent values (whiskers extending to 
1.5× the IQR). Dots represent outliers. A two-sided Wilcoxon rank-sum test was 
applied to all the comparisons shown in a, b, f and h. FDR correction was applied 
to multiple comparisons, and corrected P values (<0.05) are presented.
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but relatively high species-specific splicing arrangements (Supple-
mentary Fig. 14e). Downsampling experiments confirmed this neuronal 
subtype to have the highest splicing rearrangements across species 
among excitatory subtypes (Methods and Fig. 4h; corrected two-sided 
Wilcoxon rank-sum test P values of <2 × 10−28 (L2–L3 IT_NRGN.CBLN2 
versus L5 IT_RORB) and <2 × 10−7 (L2–L3 IT_NRGN.CBLN2 versus L2–L3 
IT_CUX2.CBLN2)). Because enrichment probes targeted annotated 
exon–exon junctions (and given annotation differences between 
humans and macaques), we tested for potential bias. Importantly, reads 
often span multiple junctions, reducing bias caused by a single junction 
missing from the annotation. We compared ΔΨ values between human 
and macaque excitatory neurons from spliced reads versus those with 
three or more junctions and found strong correlations (Supplementary 
Fig. 15a), which remained consistent for reads with four or more, five 
or more or six or more junctions (Supplementary Fig. 15b–d). In sum-
mary, chromatin and splicing analyses show highly divergent results 
when comparing matched cell types across species. This is especially 
exemplified by astrocytes that exhibit strong chromatin divergence 
but limited splicing changes, whereas L2–L3 IT_NRGN.CBLN2 excitatory 
neurons show the opposite trend.

To test whether species-specific exon inclusion reflects underlying 
cell-state differences, we identified cell states for each gene with exons 
tested in human and macaque PFC comparisons and focused on genes 
linked to two or more states (Fig. 4i). This revealed many exons whose 
inclusion was significantly different between cell states in not only the 
human PFC but also the macaque PFC (Fig. 4j).

Among exons showing species-specific splicing patterns in excita-
tory neurons, several exons had at least one confirmed observation, 
defined by a normalized-state ΔΨ of ≥1. The normalized-state ΔΨ dis-
tribution appeared larger than in the case of brain regions (Fig. 4k). 
For 55% of exons in excitatory neurons (64/117), species specificity was 
confirmed in at least one cell state, whereas 26% had a normalized-state 
ΔΨ of <0.9, suggesting that these may stem from variations in cell-state 
abundance (Fig. 4l).

Chromatin and splicing patterns in AD
To examine whether splicing and chromatin show convergent or diver-
gent cell-type-specific dysregulation in AD, we applied ScISOr–ATAC 
to ten control PFC samples (six males and four females) and nine AD 
PFC samples (five males and four females). For the 19 RNA libraries, 
we sequenced 215 million–479 million Illumina read pairs. For the 19 
ATAC libraries, 252 million–512 million read pairs were sequenced 
(Supplementary Fig. 10). Additionally, we generated >200 million bar-
coded Agilent target-gene-enriched long reads using ONT technology  
(Supplementary Fig. 12).

We found that oligodendrocytes, and to a lesser extent astro-
cytes, exhibit numerous chromatin changes in AD. In total, 1,480 peaks 
(22.13%) near splicing-targeted genes showed significant changes 
in oligodendrocytes, whereas neurons showed «1% of such changes, 
possibly due to survival bias (Supplementary Fig. 16a,b). Further-
more, downsampling experiments (Methods) revealed a clear trend in 
which astrocytes were most affected in AD, followed by oligodendro-
cytes and microglia, whereas excitatory neurons showed the lowest 
effects (Fig. 5a; corrected two-sided Wilcoxon rank-sum test P values of 
<4.4 × 10−14 (oligodendrocytes versus excitatory neurons), <8.3 × 10−13 
(microglia versus excitatory neurons) and <4.4 × 10−18 (astrocytes 
versus excitatory neurons)). For example, a peak located next to two 
exons in FMNL2 was specifically lost in astrocytes in AD (Fig. 5b). On 
the splicing side, excitatory neurons showed the highest fraction of 
dysregulated exons (Supplementary Fig. 16c,d and Supplementary 
Table 6). However, downsampling experiments (Methods) revealed 
that oligodendrocytes showed the strongest dysregulation, whereas 
the other cell types did not (Fig. 5c; two-sided Wilcoxon rank-sum test 
P values of <3 × 10−2 (oligodendrocytes versus excitatory neurons) 
and <3 × 10−2 (oligodendrocytes versus astrocytes)). To validate this 

downsampling procedure for both chromatin and splicing, we used 
positive and negative controls. In a positive control (neurons versus 
glia), downsampling correctly identified significant changes. In a nega-
tive control (neurons split randomly), no differences were detected, 
confirming the method’s specificity (Supplementary Fig. 17a,b). Fur-
thermore, SynGO analysis of splicing differences between neurons and 
glia revealed nearly identical top categories in both the full and down-
sampled datasets (Supplementary Fig. 17c), supporting the method’s 
reliability. We then probed AD and control reads for how often they 
were inconsistent or truncated with any annotated isoform65. Nota-
bly, AD samples showed a higher inconsistency (or novelty) fraction 
(Fig. 5d), a difference not explained by intron number per read (Sup-
plementary Fig. 18).

In AD versus controls, we observed an oligodendrocyte-specific 
dysregulated exon of the gene encoding zinc finger protein 711 (ZNF711), 
a transcriptional regulator of neuron development that is associated 
with X-linked intellectual disability66,67. Oligodendrocytes showed a 42% 
decrease in exon inclusion in AD, whereas excitatory neurons showed 
a 10% increase in AD (Fig. 5e). To support dysregulation of splicing in 
AD oligodendrocytes, Gene Ontology analysis of dysregulated genes at 
the chromatin level revealed multiple splicing- and RNA biology-linked 
terms (Supplementary Fig. 19a). In neurons, splicing alterations in AD 
were functionally distinct: excitatory neurons were more linked to 
postsynaptic roles, whereas inhibitory neurons were presynapse-term 
dominated (Supplementary Fig. 19b). Significantly dysregulated exons 
did not stand out in terms of exon length, being entirely coding or 
maintaining the reading frame (Supplementary Fig. 19c–e). On the 
chromatin side, peaks dysregulated in oligodendrocytes in AD samples 
were mostly found in UTRs and introns (Supplementary Fig. 19f,g). In 
summary, both splicing and chromatin are most strongly altered in AD 
in glia, especially oligodendrocytes.

Because previous results showed that cell state influences splicing, 
we asked if splicing differences in AD could be driven by such states. 
Among the genes tested for such differences in splicing, we identified 
one or more cell states per gene for approximately 1,500 genes in both 
conditions (Fig. 5f). Many exons showed inclusion differences associ-
ated with cell states in both AD and control samples (Fig. 5g). Among 
excitatory neurons, and focusing on exons with detected AD-specific 
inclusion, we normalized the maximum state-specific ΔΨ by the overall 
ΔΨ and observed a symmetric distribution centered around 1. Thus, 
confirming states could be found for many exons, but not for all (Fig. 5h, 
Supplementary Fig. 20 and Methods). We performed this analysis for 
other cell types and found that astrocytes and oligodendrocytes stood 
out as having relatively low and high ratios of exons with maximum 
normalized-state-specific ΔΨ values of ≥0.9, respectively (Fig. 5i).

Discussion
Measurements of multiple modalities have become commonplace in 
single-cell genomics. Here, we introduce ScISOr–ATAC, which enables 
the simultaneous recording of splicing patterns and open chromatin 
states in frozen samples.

From a systems biology perspective, multimodal measurements 
help determine whether one or more modalities influence a third and 
whether different modalities provide converging or diverging views 
of cell-type diversity. In comparing macaque brain regions, we found 
that distinct cell chromatin–transcriptome states can result in different 
exon inclusion outcomes. This raises questions about how these influ-
ences are mediated between cell state and splicing and whether these 
may underlie splicing differences. ScISOr–ATAC allows us to assess the 
extent of these effects. We examine this across three contexts: matched 
cell types in macaque PFC and visual cortex, human–macaque PFC 
divergence and cell-type-specific dysregulation in AD.

Although the PFC and visual cortex are both cortical regions that 
engage separate functions, both regions do harbor transcription-
ally similar excitatory neuron subtypes. Here, we distinguish three 
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such excitatory neuron subtypes: RORB+CUX2−, CUX2+RORB− and 
RORB+CUX2+. Brain-region-specific splicing is most evident in L3–L5/
L6 IT_RORB neurons, whereas chromatin differences are more pro-
nounced in L2–L4 IT_CUX2.RORB neurons. This highlights how each 
modality captures unique aspects of regional identity, reinforcing the 
value of multimodal approaches. Of note, some brain-region-specific 
exon inclusion events co-occur with cell state arrangements. However, 
most brain-region-specific splicing events can be validated by one or 
more cell states.

Within the same brain region, ATAC and splicing patterns often 
highlight similar cell subtype distinctions, although they sometimes 
reveal unique features. Comparing human and macaque PFC, astro-
cytes show major chromatin differences but conserved splicing, 
whereas L2–L3 IT_NRGN.CBLN2 neurons display the opposite. In terms 
of biological evolution, the above finding shows that distinct cell types 

have undergone evolutionary changes in different modalities. Similar 
to the brain region comparison, species-specific splicing patterns are 
often identified within one or more shared cell states, supporting their 
validity. However, we also observe many examples where the overall 
observation of species-specific splicing cannot be seen in any cell state, 
which could be caused by underlying cell-state differences per species.

In the case of AD, astrocytes show strong AD-related dysregula-
tion in chromatin, but not in splicing, highlighting modality-specific 
effects. Many AD-associated splicing changes are reproducible across 
cell states, suggesting true dysregulation rather than cell-state dif-
ferences. The weaker neuronal signals may stem from survival bias, 
where severely affected neurons are under-represented due to cell loss. 
Additionally, our results indicate the cell types that undergo splicing 
dysregulation. Although often dysregulation correlates between pairs 
of cell types, examples are cell-type specific. The cell-type-specific 
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Fig. 5 | Chromatin and splicing patterns in AD. a, Downsampling experiments. 
The distribution of the percentage of peaks that are significantly different 
between AD and control samples in the vicinity of genes targeted for splicing 
analysis is shown (Methods; n = 20). b, A peak that is highlighted within 
FMNL2 that is present in control astrocytes but not in AD astrocytes. Shading 
indicates peaks of interest. c, Downsampling experiment. The distribution of 
the percentage of exons showing significant differential inclusion per cell type 
in AD versus control is shown (Methods; n = 100). d, Percentage of novel reads 
found within control (n = 10) and AD (n = 9) datasets. e, Cell-type-resolved 
single-cell long reads for ZNF711. The top two tracks show AD excitatory neurons 
and control excitatory neurons, followed by AD oligodendrocytes and control 
oligodendrocytes. The bottom black track shows chromosome X: 85264898–
85268508. f, Number of genes with one or more and two or more cell states 
detected in AD and control samples. Only the genes with testable exons were 
considered for cell-state detection. g, Volcano plot of state-specific exons across 

multiple cell types in AD and control groups (only exons with ten or more reads  
in two or more cell states were tested; n = 494 and 726). Exons with a P value of 
≤0.05 and | LOR | of >1 are labeled in color, whereas the others are labeled in gray. 
A one-sided χ2 test followed by Benjamini–Yekutieli multiple testing correction 
was applied to evaluate the significance of splicing–cell state association.  
h, Density plot of the distribution of the maximum normalized-state ΔΨ per 
exon. Normalized-state ΔΨ = state ΔΨ /overall ΔΨ. i, Stacked bar plot showing the 
proportion of maximum normalized-state ΔΨ per exon split by value into three 
groups: <0.9, between 0.9 and 1 or ≥1. The ‘≥1’ group represents the fraction of 
disease-associated overall ΔΨ values, which can be seen in specific cell states by 
cell type. Each box plot shows the median (middle line), IQR (box) and adjacent 
values (whiskers extending to 1.5× the IQR). Dots represent outliers. A two-sided 
Wilcoxon rank-sum test was applied to all comparisons shown in a, c and d. FDR 
correction was applied to multiple comparisons, and corrected P values (<0.05) 
are shown.
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dysregulated splicing events detected in our AD study can serve as 
underlying therapeutic targets in the future.

We also observed that chromatin and splicing show divergent 
patterns in the species comparison and convergent patterns in the 
AD pathology analysis, possibly due to different timescales. In AD, 
molecular changes normally could unfold in several years, allowing 
persistent interactions across modalities (for example, chromatin 
opening might upregulate splicing factors). By contrast, evolutionary 
divergence over millions of years may lead to genomic rewiring that 
decouples these relationships. Additionally, although chromatin and 
splicing are linked through co-transcriptional processes61,62,68–75, it is 
still a challenge to perfectly predict the impact of chromatin changes 
on splicing.

Additionally, our current work analyzes chromatin and RNA from 
the nucleus. Nuclear RNA has advantages and disadvantages, which 
we discussed recently76. In brief, nuclear RNA is less likely to yield 
full-length isoforms due to internal oligo(dT) priming. On the upside, 
nuclear RNAs allow for the detection of incomplete spliced cDNAs 
derived from very long mRNAs that were undergoing RNA processing. 
In cytosolic preparations, some such genes might be biased against 
because the resulting full-length cDNA is simply too long for amplifica-
tion and sequencing.

ScISOr–ATAC faces limitations primarily due to the challenges 
of long-read sequencing, including high cost and lower depth than 
short-read data. Limited depth can undermine performance, especially 
for downsampling analyses, which require a minimum read number 
per exon per cell type. Deeper sequencing enables more exons and 
cell types to be considered. Moreover, because splicing can vary by cell 
state, future studies aiming to track splicing across cell-state transi-
tions would benefit from higher depth and more affordable long-read 
sequencing.

In summary, these findings highlight the advantages of simul-
taneous measurements of chromatin and splicing in state-of-the-art 
neuroscience approaches as they often show divergent patterns.  
Additionally, we demonstrate that splicing can be influenced by cell 
state, re-enforcing the need for multimodal datasets. Furthermore, 
we provide a detailed map of cell-type specificity of chromatin and 
splicing across brain regions, species and disease.
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Methods
Ethics statement
All experiments were conducted in accordance with the 2011 Eighth 
Edition of the NIH Guide for the Care and Use of Laboratory Ani-
mals. Animal procedures were performed according to protocols 
approved by the Animal Care and Use Committee of Rockefeller 
University.

Macaque brain tissue acquisition
Brains were collected from two adult male rhesus macaques  
(M1 and M2, ages 29 and 26) that were humanely killed via intramus-
cular administration of ketamine, followed by intravenous admin-
istration of a pentobarbital overdose for approximately 10 min.  
These primates had not been exposed to any experimental phar-
macological treatment for ≥6 months before being killed and had 
no recorded infections. Brains were collected within 20 min after 
pentobarbital administration (post mortem interval: 2 h and 1 h), 
placed on ice and dissected into 5- to 10-mm coronal slices of PFC 
and visual cortex using a brain mold guided by the Allen Brain Atlas. 
Samples were flash-frozen and maintained at −80 °C until processing.

Human brain tissue acquisition
All human samples were deidentified postmortem frozen samples, 
which were requested from the tissue banks maintained by the Center 
for Neurodegenerative Disease Research (CNDR) and the University of 
Pennsylvania Alzheimer’s Disease Core Center (ADCC), according to 
Weill Cornell Medicine institutional review board-approved protocols. 
Sample collection was conducted by CNDR/ADCC. A total of nine PFC 
samples from individuals with AD (five males and four females) and ten 
control PFC samples from individuals not diagnosed with dementia  
(six males and four females) were included in this study. Participant  
sex, age and diagnosis information was supplied by CNDR/ADCC 
and can be found in Supplementary Table 2. This study is considered 
‘non-human subject research’.

Single-nuclei isolation
Single-nuclei isolation was performed for fresh-frozen human brain 
samples using the SnISOr–Seq8 protocol and the ATAC–seq protocol 
published by Corces et al.77.

10x Single-nuclei cDNA generation, gene expression and ATAC 
library construction and Illumina sequencing
A 10x Multiome ATAC + Gene Expression assay was performed 
by following the manufacturer’s instructions (10x Genomics, 
CG000338_ChromiumNextGEM_Multiome_ATAC_GEX_User_Guide_
RevE, Chromium Next GEM Single Cell Multiome Reagent Kit A, 16 
reactions PN-1000282). The quality of full-length 10x cDNA, ATAC 
and 3′ gene expression short-read libraries was measured by Qubit 
dsDNA HS assay (Invitrogen, Q32854) and TapeStation Genomic 
DNA assay (Agilent, 5067-5365 and 5067-5366). Sequencing libraries 
were loaded on Illumina NovaSeq6000 with PE 2 × 100 paired-end 
kits by setting the following read length: 28 cycles read 1, 8 cycles 
i7 index and 91 cycles read 2 for gene expression libraries and 50 
cycles read 1N, 8 cycles i7 index, 24 cycles i5 index and 49 cycles 
read 2N for ATAC libraries. The fastq files were generated by run-
ning bcl2fastq v2.20.

Linear/asymmetric PCR and exome capture
Linear/asymmetric PCR was applied to naive full-length 10x cDNA 
derived from the last step to remove the nonbarcoded cDNA. Spliced 
barcoded cDNA was enriched by performing exome capture using 
custom SureSelect probe sets designed for macaques/humans and 
the reagent kit SureSelectXT HSQ (Agilent, G9611A). The detailed 
linear/asymmetric PCR and exome capture protocol is described in 
the SnISOr–Seq pipeline8,14.

Library preparation for ONT
For all samples, ~75 fmol of cDNA processed with linear/asymmet-
ric PCR and exome capture underwent ONT library construction by 
using a Ligation Sequencing kit (Oxford Nanopore, SQK-LSK110 and 
SQK-LSK114) according to the manufacturer’s protocol (Nanopore 
Protocol, Amplicons by Ligation). The ONT library was loaded onto 
a PromethION sequencer by using a PromethION flow cell (Oxford 
Nanopore, FLO-PRO002 and FLO-PRO114M) and sequenced for 72 h. 
ONT long reads were base called using MinKNOW 20.06 or MinKNOW 
23.07 and filtered for a base quality score of >7.

Exon–exon junction probe design
A list of 3,630 human genes (3,224 ortholog genes in macaques), 
including synaptic genes46 (659 for macaques and 720 for humans), 
TDP-43 binding targets47 (30 for macaques and 33 for humans), 
genes with cell-type-specific highly variable exons in the human PFC8  
(259 for macaques and 271 for humans) and genes associated with 
missplicing in AD16 (173 for macaques and 202 for humans), ASD48–50 
(1,875 for macaques and 2,102 for humans), ALS52 (391 for macaques 
and 428 for humans) and schizophrenia51 (962 for macaques and 
1,080 for humans), was assembled. Using the GENCODE human anno-
tation (release 34)78, all protein-coding transcripts of these genes 
were identified. For each exon–exon junction present in at least one 
transcript, 140 bases spanning the junction were selected, with 70 
exonic bases on either side. If an exon was shorter than 70 bases, 
adjacent exon sequence was included to reach the required length. 
Sequences shorter than 130 bp or mapping to more than five genomic 
loci were excluded. Genes with fewer than five valid probes were 
also removed. A 120-mer was chosen from within the initial (130- to 
140-base) sequence using Agilent Technology’s method for maximiz-
ing hybridization efficiency.

Short-read data processing
Both RNA and ATAC fastq files of the M1 PFC sample were subsam-
pled randomly using seqtk 1.3 (https://github.com/lh3/seqtk) to 
reach a close reads per cell number with the other three samples. The 
cellranger-arc reference for macaques was built based on the gene 
annotation of mulatta.Mmul_10 release 104 and genome assembly of 
Mmul_10 downloaded from Ensembl79. The cellranger-arc reference 
for human was downloaded from 10x Genomics (References-2020-A 
Human reference, GRCh38).

Gene expression data processing and cell-type annotation
Gene × cell matrices processed with cellranger-arc-2.0.1 (refs. 80,81) 
were loaded into Seurat 4.2.0 (refs. 37), and cells were filtered per 
sample. Doublets were removed before clustering with DoubletFinder 
2.0.3 (ref. 39) with an expected doublet ratio of 8~16%. After filtering for 
high-quality cells, each sample was scaled and normalized using default 
parameters and clustered using Seurat37. All samples from the same spe-
cies were merged, scaled and normalized, and variable features were 
identified. Batch effect correction was performed using Harmony38. 
Cells were annotated based on published cell-type markers31,32, as 
well as the Azimuth37 human dataset and other published datasets  
(https://compbio.mit.edu/ad_aging_brain/) as references82,83. The 
marker genes used for cell-type/subtype annotation are shown in 
Supplementary Figs. 1 and 10.

Differential gene expression analysis
For each cell type/subtype, the set of differentially expressed genes 
detected from the comparison between conditions (macaque visual 
cortex versus PFC) was obtained by running the FindMarkers function 
of Seurat37 (test = MAST, FDR < 0.05, | log2 (fold change) | > 0). Gene 
Ontology enrichment analysis for the differentially expressed genes 
was performed by using the enrichGO function of clusterProfiler84 4.2.2 
(OrgDb = org.Mmu.eg.db, pAdjustMethod = ‘BH’).
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Compositional data analysis for cell types
Compositional data analysis for cell types identified in the species 
comparison between human and macaque PFC samples was per-
formed using scCODA 0.1.9 (ref. 85), and results are shown in Sup-
plementary Fig. 14d.

ATAC data processing
Fragments and peak × cell matrices processed with cellranger-arc-2.0.1 
were loaded into Signac63 and Seurat37, and each sample was preproc-
essed individually with a unified set of peaks generated from bed files 
of all four samples to build the ‘ATAC’ assay. High-quality cells were 
selected after quality control and doublets removal using Signac63 and 
DoubletFinder 2.0.3 (ref. 39). Subsequently, normalization and dimen-
sional reduction were performed after sample merging and batch 
effect correction using Harmony38. We used two methods to perform 
cell-type annotation for ATAC data. (1) Cells with matched barcodes in 
both single-cell RNA-seq and single-cell ATAC–seq data were retained 
using the barcode translation output from cellranger-arc-2.0.1, and 
cell-type identities from single-cell RNA-seq were directly assigned to 
corresponding single-cell ATAC–seq cells. This method was applied 
to all peak-related figures except for S8e. (2) Single-cell ATAC–seq 
cells were annotated via label transfer using Signac63. This method 
was applied to S8e only. The peaks were called per cell type/subtype 
using MACS2 (ref. 64) by running the CallPeaks function of Signac63. 
The ‘Peak’ assay was built for downstream analysis using the Signac 
functions FeatureMatrix and CreateChromatinAssay. The annota-
tion object supplied for CreateChromatinAssay63 was built based on 
the gene annotation of mulatta.Mmul_10.104 (macaque) or Hsapiens.
v86.annotation.hg38 (human) released by Ensembldb. Peaks found 
in >2% of cells and located on standard chromosomes were tested 
for differential accessibility between conditions (test method = LR, 
log (fold change) cutoff = 0), among which the peaks with an FDR of 
<0.05 were considered significant. Using the Grange files generated 
by reading the Ensembl-based annotation of macaques/humans with 
the function import.gff (rtracklayer V1.54.0)86, peak annotation was 
performed by running the ClosestFeature function of Signac_1.2.1 
(ref. 63) or bedtools closest (V2.30.0)87 with the bed-formatted gene 
annotation transformed by the gtf2bed function of BEDOPS V2.4.41 
(ref. 88). The ratios of significant peaks closest to the target genes were 
calculated as the peaks with an FDR of <0.05 among the peaks closest 
to the genes targeted in the splicing analysis.

Evaluate differential accessibility between conditions/cell 
types by downsampling
Peak calling, normalization, batch effect correction, differential acces-
sibility analysis and generation of the peak annotation pipeline were 
performed as described in ‘ATAC data processing’ for all downsampling 
experiments. All the related box plots, scatter plots and density plots 
were generated using ggplot2 (ref. 89).

Brain region comparison and species comparison
For each cell type or subtype, 1,000 cells from each condition were 
randomly sampled. For condition comparisons (macaque PFC ver-
sus visual cortex or human PFC versus macaque PFC), 10,000 peaks 
were randomly subsampled among all peaks called from 2,000 cells  
(sum of cells from both conditions) per cell type or subtype and dif-
ferential accessibility of peaks that were found in >2% of cells were 
tested (test method = LR, log (fold change) cutoff = 0, FDR < 0.05). 
Subsampling was repeated 20 times.

Excitatory neuron subtype comparison
For each pair of excitatory neuron subtypes shown in Fig. 3d, 10,000 
peaks were randomly subsampled from the peaks called from 4,000 
cells (1,000 cells of each subtype per brain region) per subtype com-
parison, and the differential accessibility of peaks observed in >2% 

of cells was tested (test method = LR, log2 (fold change) cutoff = 0, 
FDR < 0.05). Random subsampling was repeated 20 times.

Human AD versus control
To evaluate the differential accessibility per major cell type between AD 
and control samples, we randomly chose seven of ten control samples 
and six of nine AD samples for downsampling. For 7 random control 
samples, 150 random cells were selected per sample to make a total of 
1,050 cells as the control group. Similarly, for 6 random control sam-
ples, 175 random cells were selected per sample to make a total of 1,050 
cells as the AD group. For the condition comparison between AD and 
control samples, peaks were called from 2,100 random subsampled 
cells per cell type, followed by random sampling of 20,000 peaks for 
the differential accessibility test. Only peaks that were detected in 
>2% cells were tested (test method = LR, log (fold change) cutoff = 0, 
FDR < 0.05). Subsampling was repeated 20 times.

Neurons versus glia and comparison within neurons  
(human control PFC)
This experiment was performed as a proof of concept for downsam-
pling shown in Supplementary Fig. 17b. The same protocol performed 
for AD versus control samples was applied to evaluate differential 
accessibility in neurons versus glia (positive control) and within neu-
rons (negative control). Subsampling was repeated 100 times.

Differential accessibility of different peak categories between 
conditions evaluated by downsampling
To evaluate chromatin accessibility differences between excitatory 
neuron subtypes by genomic location, peaks were divided into differ-
ent categories (exon/intron/UTR/intergenic) according to the closest 
features defined by the annotation. Of note, only the peaks whose 
closest features were either protein-coding genes or long noncoding 
RNA genes and that were located on standard chromosomes were 
considered here. For each peak category, 5,000 peaks were randomly 
selected from the peaks called from 1,000 cells randomly subsam-
pled per condition (PFC/visual cortex). Random subsampling was 
performed 20 times.

Evaluation of the similarity of cell-type-specific peak sets of 
different conditions with the Jaccard similarity index
For each excitatory neuron subtype (RORB, CUX2 and CUX2.RORB), 
peaks were called for PFC or visual cortex cells separately. The peak 
calling, normalization and batch effect correction pipeline was per-
formed as described in ‘ATAC data processing’. The peak coordinates 
were exported using granges function of GenomicRanges 1.46.1  
(ref. 90) and written in sorted bed format. The Jaccard similarity 
index of the comparison between peaks called from PFC and visual  
cortex cells of each excitatory cell type was calculated using the 
bedtoolsr::bt.jaccard function of BedtoolsR 2.30.0-5 (ref. 91).

Differential motif enrichment analysis
For each excitatory neuron subtype (RORB, CUX2 and CUX2.RORB), we 
used the getMatrixSet and AddMotifs functions of Signac63 to get the 
motif information. Overrepresented motifs (FDR < 0.05) were detected 
by setting the significant brain-region-specific peaks as background 
(parameters for finding differentially accessible peaks: FDR < 0.05, test 
method = LR, min.pct = 0. 02, | log2 (fold change) | > 0). The enrichment 
score violin plot of one of the top hits is shown in Fig. 3i.

Mapping orthologous exons in human data
The TransMap92 projection alignment algorithm was used to map exons 
between human and macaque assemblies. LASTZ93 1.04.15 genomic 
alignments between the human GRCh38 and macaque RheMac10 ref-
erence assemblies were used to map reference transcript annotations 
between assemblies. TransMap was used instead of UCSC Genome 
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Browser liftOver94, as it produces base-level alignments, allowing 
observation of indels and other differences between the LASTZ chain 
and net alignments files. These were obtained from the UCSC Genome 
Browser site, along with the below-mentioned programs to process 
them. Syntenic genomic alignments were obtained by filtering the 
net files to obtain the syntenic nets using ‘netFilter -syn’ and then 
using ‘netChainSubset -wholeChains’ to obtain a set of syntenic chain 
alignments for mappings. GENCODE78 human v35 and macaque were 
mapped to the other assembly using the ‘pslMap’ program95.

Species comparison of peaks in conserved exons
The most conserved exons pairs between humans and macaques were 
considered for chromatin accessibility comparison. A total of 157,596 
human exons and 157,562 macaque exons composed of 159,279 pairs, 
which indicates for each exon in one species, only the one with the 
highest ortholog similarity in another species was considered. For all 
normal human PFC samples, the command bedtools intersect87 was 
used to filter for the fragments that overlapped with human exons 
(≥1 bp) in the conserved exon pairs. The conserved exon-covering frag-
ments were sorted and indexed for each sample. The same procedure 
was performed for all macaque PFC samples except for that fragments 
were mapped to the hg38 genome by rtracklayer::liftOver96. For the 
bed file of ATAC peaks in Cell Ranger output, only the peaks covering 
conserved exons were kept for each sample. Similar to the fragment file 
processing procedure, all macaque PFC sample peaks were mapped to 
the human hg38 genome and combined with human PFC sample peaks. 
The conservative exon-covering peaks and fragments were used for 
ATAC assay creation. To build the ‘Peak’ assay, the peaks were called 
either by major cell types or subtypes by MACS2 (ref. 64; by running 
the CallPeaks function of Signac63). By running the Signac functions 
FeatureMatrix and CreateChromatinAssay, the ‘Peak’ assay was built 
for downstream analysis. The annotation used for CreateChromatinAs-
say63 was built based on the human gene annotation EnsDb.Hsapiens.
v86. Only standard chromosome peaks were considered. Similarly, 
the combined data of the ‘Peak’ assay were scaled and normalized, 
and the top features were identified. Integration of data to control for 
sample-specific batch effects was performed using Harmony38.

Long-read data processing
ONT fastq files were first filtered for barcoded reads with the GetBar-
codes function from scisorseqR9. Reads were mapped using minimap2 
(ref. 53), followed by differential splicing analysis with scisorseqR 
using the commands MapAndFilter() and InfoPerLongRead() with 
default settings. Given that the default setting of the command InfoP-
erLongRead() requires a ‘minTimesIsoObserve’ equal to 5, only the 
spliced reads that support the unique isoforms observed at least five 
times were kept and recorded in AllInfo files of each sample. The gener-
ated AllInfo files were then UMI corrected, where UMIs were required 
to have an edit distance of ≥4. If multiple reads with similar UMIs did 
not meet this criterion, then only one read of the group was kept. 
UMI-filtered AllInfo files were used in scisorATAC’s casesVcontrols 
function with basic settings to yield differentially spliced exons. The 
cell-type-resolved single-cell long-read assignments per example gene 
with alternative exons were plotted using ScISOrWiz59.

Validation of POLN exon inclusion using quantitative PCR with 
reverse transcription
RNA was extracted from macaque tissue isolated from the PFC or 
visual cortex using an RNeasy Mini kit (Qiagen, 74104), which involved 
on-column DNase I digestion before RNA elution. cDNA was synthesized 
using SuperScript IV Reverse Transcriptase (Invitrogen, 18090200), 
according to the manufacturer’s protocol. Quantitative PCR with 
reverse transcription was performed using 30 ng of cDNA as template 
per sample, validated primers (see below) and PowerUp SYBR Green 
Master Mix (Applied Biosystems, A25742) on a QuantStudio 3 Real-Time 

PCR System (Thermo Fisher Scientific). Primers for quantitative PCR 
with reverse transcription were designed by using Primer-BLAST and 
were synthesized by Thermo Fisher Scientific. The primers targeted 
mutually shared POLN exons (5′-TGAGCAGTAACCAGCTTCGAG-3′ 
and 5′-GATGAAGGTCTCGCAGAGCA-3′) or visual cortex-specific 
exons (5′-AGAGTAGAGTCAGGGAGCCA-3′ and 5′-TGCCTCCTGGGT 
TCAAGCGA-3′). Comparisons were made using the comparative cycling 
threshold (Ct) method, and data were normalized to the PFC and are 
shown as fold change.

Merge macaque and human expression data by liger
We used liger97 to integrate the RNA assay data from six human normal 
PFC samples and two macaque PFC samples. We annotated a total 
of 16 cell types using the pipeline described in the gene expression 
data analysis section. Among all nine excitatory neuron subtypes, 
we only considered the three most abundant subtypes, which were 
L2–L3 IT_CUX2.CBLN2, L2–L3 IT_NRGN.CBLN2 and L3–L5 IT_RORB cells, 
for species comparison. The other two abundant subtypes (L2–L4 
IT_CUX2.RORB and L2–L4 IT_CUX2.RORB.ACAP3 (2,843 and 4,549)) were 
excluded from the following analysis as they are under-represented in 
the human samples. Additional excitatory neuron subtypes (L5/L6 NP, 
L5 ET, L6 CT/L6b and L6 IT CAR3/L6 IT) were recovered in both species 
but were also excluded as each comprise less than 1,000 cells.

Calling differentially included exons
For each cell type and alternative exon, inclusion counts and exclusion 
counts were collected as previously performed. Before testing for 
differential exon inclusion, a χ2 criterion was applied for filtering. To 
compare exon inclusion for two distinct comparisons, a 2 × 2 table was 
populated for inclusion and exclusion counts for the two conditions, 
and a two-sided Fisher’s exact test was used following a Benjamini–
Yekutieli correction for multiple testing. See the Supplementary tables 
for lists of significant excitatory subtype exons between the PFC and 
visual cortex.

Downsampling experiments for differential splicing analysis
Downsampling splicing experiments for the PFC versus visual 
cortex, PFC cell-type comparison and species comparison. To 
compare two comparisons (that is, differences between the PFC and 
visual cortex in RORB+ cells against the same areas in CUX2+ cells) with 
equal power, we performed downsampling experiments. We selected 
all exons that had at least 20 exclusion or inclusion counts in both 
brain areas. This was followed by randomly selecting 20 reads among 
the total. These reads were then used to recalculate the difference in 
percent isoform inclusion between the areas (ΔΨ). Next, we selected 
100 exons randomly for this cell type between two brain areas, enforc-
ing that there be at most one exon per gene. We then repeated these 
steps for all cell types that were compared. This yielded 100 2 × 2 tables 
for all comparisons, with exactly equal column sums and the same 
characteristics (table number) for multiple testing correction. We then 
performed a Fisher’s exact test and Benjamini–Yekutieli correction 
for multiple testing and recorded the number of significant events 
for all comparisons. The procedure was repeated 100 times, giving a 
distribution of significant percentages for both comparisons. These 
two distributions were compared with a two-sided Wilcoxon rank-sum 
test. For disease downsampling in Fig. 2f, we used 20 exons rather than  
100 due to smaller sample size. This process was done for all downsam-
pling comparisons except for AD versus control samples in Fig. 5 to 
account for individual variation due to the high number of individuals 
that were used. We describe this process below.

Downsampling splicing experiments for AD versus control sam-
ples. To account for individual variation due to the high number of 
human samples involved in this analysis, we designed an updated 
downsampling process to equalize comparisons and ensure that 
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observed changes were not contributed by one or a few individuals. 
In this process, we first selected exons that were observed in seven or 
more samples in both the AD and control groups. We then randomly 
selected seven of those available samples to use in this analysis. We 
next filtered all exons that had five or more reads per sample, yielding 
a minimum of 35 reads per group. We then randomly selected 4 reads 
per sample, yielding a total of 28 reads per group. Twenty-five exons 
per cell type with sufficient data were selected randomly between 
AD and control samples. This yielded 25 2 × 2 tables for all compari-
sons, with exactly equal column sums and the same characteristics  
(table number) for multiple testing correction. We then performed 
a Fisher’s exact test and Benjamini–Yekutieli correction for mul-
tiple testing and recorded the number of significant events for all  
comparisons. The procedure was repeated 100 times, giving a distribu-
tion of significant percentages for cell types. These distributions were 
compared with a Wilcoxon rank-sum test.

Downsampling splicing experiments for neurons versus glia and 
comparisons within neurons. This experiment was performed as 
a proof of concept in control human PFC data and is shown in Sup-
plementary Fig. 17a. For the neuronal control group (neuron 1 versus 
neuron 2), all neuronal cell types were combined and split into two 
equal groups (neuron 1 and neuron 2). In comparison, we compared 
all neurons to all glia. Downsampling experiments were performed 
the same as in the PFC versus visual cortex, PFC cell-type comparison 
and species comparison sections.

Comparing SynGO terms shared by neurons versus glia 
splicing analysis and downsampled analysis
To validate the downsampling analysis shown in Supplementary 
Fig. 17c, we compared the Gene Ontology of differentially spliced 
genes from both the full splicing and downsampling analyses.

Exome capture efficiency comparison between probe sets
To compare the exome capture efficiency between different probe 
sets, we used two datasets derived from two human PFC samples  
(C4 and C6), which were exome captured by two probe sets 
(whole-exome probe and brain gene exon–exon junction probe) sep-
arately. The whole-exome probe-captured dataset was released in 
our previous publication8. For each dataset, the differential splicing 
analysis was performed by comparing neurons and non-neurons by 
running the ‘casesVcontrols’ function of the scisorATAC package. The 
correlation between the ΔΨ values of shared tested exons derived from 
two datasets is shown in Fig. 4e.

Statistical sensitivity simulations
We made large numbers of matrices with a ΔΨ of 0.1 (1,000 total counts 
in each column). All such matrices have P values of ≤10 × 10−. We then 
downsampled these to combined counts of 0–9 (in each column), 10–19 
(in each column), 20–29 (in each column), 30–39 (in each column), 
40–49 (in each column) and 50–249 (in each column) and recorded 
the fraction of matrices that passed Benjamini–Yekutieli correction 
for multiple testing (at a corrected P value of <0.05 for 100 tests in each 
case). These fractions give an idea of how many reads are required to 
find a true ΔΨ of 0.1. We repeated this process for ΔΨ 0.2, 0.3, 0.4 and 
0.5. In summary, for a ΔΨ of ≥0.4 and read numbers (in each column) 
of ≥30, one reaches a sensitivity of 82%. These data are shown in Sup-
plementary Fig. 6e.

Correlation between cell-type-specific splicing and cell states 
revealed by transcription and chromatin accessibility
To get the cell states defined by transcription and chromatin accessi-
bility per gene per cell type, we followed the tutorial of Velocyto98 and 
MultiVelo10 0.1.3. Loom files were obtained by running Velocyto 0.17 for 
all human PFC samples (ten control and nine AD samples) and macaque 

samples (two PFC and 2 visual cortex). With the spliced and unspliced 
counts stored in loom files, running MultiVelo velocity stream and 
latent time was performed for the genes that had exons tested for 
differential splicing of each comparison (1,571 genes for the macaque 
brain region comparison, 2,936 genes for the species comparison and 
1,874 genes for the AD versus control comparison).

A state value of 0, 1, 2 or 3 (corresponding to cell states priming, 
coupled-on, decoupled and coupled-off, respectively) was assigned to 
each cell × gene pair by Multivelo based on the RNA-seq and ATAC–seq 
expression dynamics. These state values (Sgc ∈ {0,1,2,3}) were then used 
to connect to the exon splicing levels per cell. If a gene only exhibited 
one state across all cells, then it was classified as a single-state gene and 
excluded from further analysis. For each cell in a given cell type, and 
all tested exons for a particular condition, we used the UMI-corrected 
AllInfo files as input to obtain the inclusion or exclusion of an exon–cell 
pair. Using the state value assigned for a gene (Sgc) as a proxy for all 
exons in that gene (Sec), the exon inclusion and exclusion vectors for a 
cell type were decomposed into individual state vectors. Thus, a matrix 
containing the state values as rows and inclusion or exclusion values 
as columns was populated. A state-wise percent spliced in (Ψ) value 
was therefore obtained by dividing the inclusion counts for a state by 
the total number of molecules arising from that gene containing that 
state. A matrix was only considered for testing for differential inclusion 
if it fulfilled the χ2 criteria. A P value using the χ2 test was reported, and 
if the number of states was limited to two, an LOR was also explicitly 
calculated. This process was repeated for all cell types and conditions 
in a comparison (for example, AD versus control).

Evaluation of the association between splicing and cell state
LOR was used for quantifying the strength of the association between 
two events, splicing and cell state. For an exon of a specific cell type, 
we calculated a P value, and a Benjamini–Yekutieli correction was per-
formed for multiple testing. For a significant exon, we then used the 
LOR to quantify the difference in inclusion between both states. Thus, 
in addition to knowing that the Ψ values are significantly different, we 
can also assess how different they are. The P values are derived from 
the χ2 test for a 2 × 2 table. Likewise, the LOR is also deduced from the 
counts of the 2 × 2 table. ‘Ainc’ represents the number of reads that sup-
port the exon of a specific cell type in query for state A. ‘Aexc’ represents 
the number of reads that mapped to the gene but exclude the exon of 
a specific cell type in query for state A. A similar definition applies to 
‘Binc’ and ‘Bexc’ for state B.

LOR = log2 (
Ainc/Aexc
Binc/Bexc

)

As described in ‘Long-read data processing’, only spliced reads sup-
porting isoforms observed five or more times per sample (default) were 
retained in the AllInfo file. We also tested a relaxed cutoff, requiring 
isoforms to appear five or more times across all samples in a compari-
son. This led to a modest increase in significantly differentially included 
exons. Notably, over 80% of exons identified using the strict cutoff 
were also found with the relaxed cutoff, indicating high consistency. 
For each cell type in a comparison, only the exons where the total read 
counts were greater than 10 were retained. Using this, an exon × state 
matrix of Ψ values was obtained per condition, and the matrix for one 
condition was subtracted from the other, which was defined the as 
statePSI matrix. To identify the outliers, we limited the statePSI matrix 
to values that showed at least a 5% difference between conditions and 
then normalized each row of the statePSI matrix by the RNA-only Ψ, 
thus defining the normState matrix. Finally, in cases where the same 
exon was tested in both conditions for the same cell type and showed 
significance in at least one, the state Ψ values were plotted against the 
state to show the divergence in exon inclusion depending on chroma-
tin–RNA state dynamics.

http://www.nature.com/naturebiotechnology
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Definitions of Ψ, state ΔΨ, overall ΔΨ and normalized-state ΔΨ:

Ψ = inclusion reads
inclusion reads + exclusion reads

overall ΔΨ = Ψ
Case − Ψ

Ctrl

state xΔΨ = Ψ (Case state x) − Ψ (Ctrl state x)

normalized state xΔΨ = state xΔΨ
overall ΔΨ

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The human and macaque short-read and long-read datasets used in this 
study are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA1021558 
(ref. 99).

All the data used to support the findings of this study are provided 
within the paper and are publicly available at https://www.gencode-
genes.org/human (ref. 78), https://ftp.ensembl.org/pub/release-104/
gtf/mus_musculus/ (ref. 79), https://www.blueprintnhpatlas.org  
(ref. 36), https://azimuth.hubmapconsortium.org/references/ 
human_motorcortex/ (refs. 37,82) and https://compbio.mit.edu/ad_
aging_brain/ (ref. 83).

Code availability
The package scisorATAC is available at https://github.com/careen-
foord/scisorATAC (ref. 100).
Other analysis pipelines are available at https://github.com/
wenhu0701/ScisorATAC (ref. 101).
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