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Measuring splicing and chromatin accessibility simultaneously in frozen
tissues remains challenging. Here we combined single-cell isoform RNA
sequencing and assay for transposase accessible chromatin (ScISOr-ATAC)
tointerrogate the correlation between these modalities in single cells
inhuman and rhesus macaque frozen cortical tissue samples. Applying
aprevious definition of four ‘cell states’ in which the transcriptome and
chromatin accessibility are coupled or decoupled for each gene, we
demonstrate that splicing patterns in one cell state can differ from those of
another state within the same cell type. We also use ScISOr-ATAC to measure
the correlation of chromatin and splicing across brain cell types, cortical
regions and species (macaque and human) and in Alzheimer’s disease.

In macaques, some excitatory neuron subtypes show brain-region-specific
splicing and chromatin accessibility. In human and macaque prefrontal
cortex, strong evolutionary divergence in one molecular modality does
not necessarily imply strong divergence in another modality. Finally, in
Alzheimer’s disease, oligodendrocytes show high dysregulationin both
chromatin and splicing.

Multimodal measurements, including the simultaneous measurements
of gene expression, chromatin accessibility' > and antibody binding
in single-cell* and spatial genomics>® experiments, are of high impor-
tance in neurobiological investigations and modern-day genomics.
We have previously devised methods to sequence full-length tran-
scripts, alternative exons and exon combinations in single-cell and
single-nuclei studies’’. Here, we introduced chromatin accessibility
as an additional modality to observe splicing and chromatin accessi-
bility (assay for transposase accessible chromatin (ATAC)) simultane-
ously. Moreover, gene expression and ATAC have been used to define
agene’s ‘cell state’, defined as states where transcription (induction
and repression) and chromatin (opening and closing) are coupled

or decoupled’®. However, whether such cell states can result in dis-
tinctsplicing regulation remains unexplored. A recent study showed
that genes can exist in distinct states based on transcriptional activ-
ity and chromatin accessibility, defined as priming, coupled-on,
decoupled and coupled-off (corresponding to cell states 0,1,2 and 3).
Li et al. defined these states as follows. Priming marks chromatin
opening before transcription begins, coupled-onreflects active tran-
scription coupled with open chromatin, decoupling marks the end of
transcription, when chromatin closing and transcriptional repression
are out of sync, and coupled-offindicates inactive transcription and
closed chromatin'®. We applied this ‘cell state’ framework to identify
cell-type-specific splicing changes by cell state.

A full list of affiliations appears at the end of the paper.
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Both splicing and chromatin organization distinguish cell types
withinabrain region and across brainregions”"'*. Moreover, multiple
modalities have undergone evolutionary changes and are affected in
complex diseases including Alzheimer’s disease (AD)" . A key ques-
tion is whether chromatin and splicing alterations reflect the same
underlying processes.

The brain is divided into interconnected regions that are dis-
proportionately affected by distinct neurological diseases. The
prefrontal cortex (PFC) is involved in executive and cognitive func-
tion, whereas the visual cortex involves visual inputs'®*. The PFC is
known to be affected in frontotemporal dementia, AD and psychiat-
ric disorders, whereas the visual cortex is affected in cerebral visual
impairment®®%, These differences highlight the need to understand
brain-region-specific molecular features. Macaques (Macaca mulatta),
althoughwidely used as models due to their evolutionary proximity to
humans®, may not fully replicate human cell-type-specific molecular
patterns. Therefore, detailed analyses of species-specific splicing
and chromatin alterations across cell types is essential to assess the
reliability of model organisms compared to humans. Last, both splic-
ing and chromatin changes have been linked to AD. Although splicing
datamostly come from bulk tissue'®, single-cell chromatin alterations
havebeenstudied. However, it remains unclear whether cell types are
equally affected in AD-specific splicing and if the most-affected cell
types change between modalities.

Therefore, we devised single-cellisoform RNA sequencing coupled
with ATAC (ScISOr-ATAC), which measures gene expression, splicing
and chromatin accessibility in the same individual cells. We used this
method to show that distinct cell states (chromatin-transcriptome
coupling/decoupling states) can reveal distinct splicing patterns.
We then applied ScISOr-ATAC to the macaque PFC and visual cortex,
macaque and human PFC and AD diseased and control PFC (Fig. 1a).
To circumvent differences in statistical power between cell types,
we developed downsampling software that compares statistically
equal changes between cell types or conditions (Methods and
Code availability).

We consider multiple cell subtypes, especially subtypes of excit-
atory neurons. We denote excitatory neurons by cortical layer (L),
intratelencephalic (IT)/extratelencephalic (ET), corticothalamic (CT)
and near-projecting (NP) categories and gene markers. In macaques,
we identified three main excitatory subtypes based on layer-specific
marker expression of CUX2, RORB and both, together with other corti-
calneuron markers (Methods and SupplementaryFig.1), termed L2-L3
IT_CUX2,L3-L5/L6IT_RORBorL2-L4IT_CUX2.RORB.Neuronal subtypes
are transcriptionally distinct with unique synaptic properties®>2,
In mice, CUX2 marks upper-layer neurons and regulates synaptic
functions®**, whereas RORB is highly expressed in L4 neurons and is
essential for synaptic and chromatin organization®.

In brain region comparisons, L3-L5/L6 IT_RORB neurons show
the strongest splicing specificity, whereas L2-14 IT_CUX2.RORB cells
show the highest chromatin specificity. Between macaque and human
PFC, chromatin and splicing often affect different cell types. In AD, glial
cells show stronger dysregulation than neurons across both modali-
ties. Moreover, exoninclusion varies with the chromatin-transcription
cell state, which suggests that these states should be considered as a
hidden variable in the analyses. In summary, chromatin and splicing
show distinct contributions to within-species brain region specificity,
species divergence and AD dysregulation, among distinct cell types,
subtypes and chromatin-transcription cell states; however, in specific
comparisons, both modalities can agree.

Results

Definition of cell types

From two adult male rhesus macaques (Methods), we collected PFC
and visual cortex samples guided by the Allen Brain Atlas*®. Using a10x
Genomics Multiome kit, we prepared single-nucleus RNA and ATAC

libraries and sequenced 293 million-385 million paired-end reads
for RNA and 350 million-381 million reads for ATAC (Supplementary
Fig.1a). After downsamplingreads to similar read numbers per cell and
analyzing the RNA data using published tools*~*’, we identified 36 cell
typesand subtypes, including astrocytes, oligodendrocytes, oligoden-
drocyte precursor cells, microglia, endothelial cells and various sub-
types of excitatory and inhibitory neurons (Methods, Supplementary
Fig.1b and Supplementary Table 1). Overall, we found 6,858-13,710
cells per sample after filtering, with excitatory neurons being the most
abundant (Supplementary Fig. 1c). Within the excitatory neurons, three
subtypesstood out: (1) L3-L5/L6 IT_RORB neurons, mainly character-
ized by RORB expression along with ILIRAPL and MKX; (2) L2-L31T_CUX2
neurons, marked by CUX2, HPCALI and CBLN2; and (3) L2-L4 IT_CUX2.
RORBneurons, which coexpress both RORB and CUX2 (Fig.1b and Sup-
plementary Fig. 2a). In primates, RORB excitatory neurons reside in
layersL3-L5/L6, CUX2.RORBexcitatory neuronsresideinlayers L2-14
and CUX2excitatory neuronsresideinlayers L2-L3 (refs. 40-44). Aver-
age numbers of RNA and ATAC unique molecular identifiers (UMIs)
per cell type between PFC and visual cortex samples (Supplementary
Figs.1f,gand 2b,c) were correlated (Supplementary Figs.1d,eand 2d,e).
Analysis of ten healthy and nine AD-affected human PFC samples (Sup-
plementary Table 2 and Methods) revealed expected brain cell types
(Fig.1c) and largely matched those in macaques. However, two excita-
tory neuron clusters coexpressing CUX2 and RORB (L2-L4 IT_CUX2.
RORB and L2-L4 IT_CUX2.RORB.ACAP3) were rare in human samples
(Fig. 1d,e), potentially due to species differences or sampling bias®.

Overall, excitatory neurons were highly abundant across brain
regions and species (Fig.1d,e). Togaininsightinto disease and synaptic
processes, we custom designed an Agilent enrichment array covering
allannotated splice junctionsin 3,224 macaque and 3,630 human genes
(Methods). These consist of genes linked to synaptic function*¢, AD™,
TDP43 knockdown?’, autism spectrum disorder (ASD)**"°, schizo-
phrenia® and amyotrophic lateral sclerosis (ALS)** and genes with
cell-type-specific splicing patterns in our human PFC® data (Supple-
mentary Fig.3a,b). We applied this enrichment array to the 10x cDNA
for Oxford Nanopore Technologies (ONT) long-read sequencing (Sup-
plementaryFig.4). We achieved 79% to 83% on-target capture using the
enrichment panel, compared to -2% for the unenriched Illuminareads
afterinsilicoextensiontothe average ONT read length (Supplementary
Fig.4a). This extensionartificially expands the mapped Illuminareads
to the average ONT read length, enabling fair comparisons of equal
length. Conservative calling of barcodes yielded 20 million-33 mil-
lion perfectly matching barcoded reads per sample (Supplementary
Fig.4b).Reads were mapped to the macaque genome using minimap2
(ref. 53) and assigned to genes using scisorseqr’. We filtered spliced
reads from the mapped and barcoded reads (Supplementary Fig. 4c).
Spliced ONT reads mapping to the same gene were considered distinct
UMiIsiftheir editdistance was >4 (Methods and Supplementary Fig. 4d).
ONT read lengths showed similar distributions with amedian of 713 bp
(Supplementary Fig. 4e). The median of long-read UMI counts varied by
celltype, where the lowest was observed in oligodendrocytes (Supple-
mentary Fig. 4f,g), whereas the three main excitatory neuron subtypes
(L2-L3IT_CUX2,L2-L4IT_CUX2.RORB and L3-L5/L6 IT_RORB) showed
similar UMl distributions (Supplementary Fig. 4h,i). The exonjunction
targeting before long-read sequencing removes purely intronic reads
as we have shown before®. Moreover, exon-overlapping short-read
andlong-read UMI counts showed correlations between 0.74 and 0.77
per dataset. This suggests that the targeting process is not drastically
biased to certain exons (Supplementary Fig. 4j).

Region-specific splicing patterns are distinct from chromatin

Differential gene expression analysis between PFC and visual cortex
revealed stronger changes in RNA splicing-related genes in excita-
tory neurons than in inhibitory neurons (Methods and Supplemen-
tary Fig.5). Given their corticalimportance and abundance, we tested
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Fig.1|ScISOr-ATAC pipeline and data overview. a, Outline of ScISOr-ATAC vascular and leptomeningeal cells; MG, microglia; OLIG, oligodendrocytes;
experimental and analysis pipeline; GEM, Gel Bead-In Emulsion; snRNA-seq, OPCs, oligodendrocyte precursor cells; ENDC, endothelial cell. Excitatory
single-nucleus RNA sequencing; snATAC-seq, single-nucleus ATAC with neurons areindicated by L, IT or ET and gene markers. ¢, UMAP of human AD and
sequencing; TSO, template switch oligo; poly(dT)VN, poly-dT primer sequence. control PFC samples. d, UMAP of human nuclei from integrated control human
b, Uniform manifold approximation and projection (UMAP) of macaque PFC PFC and macaque samples. e, UMAP of macaque nuclei from integrated control

and visual cortex (VIS) samples; ASC, astrocytes; INN, inhibitory neurons; VLMC, human PFC and macaque samples.
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4,818 exons for differential exon inclusion (Apercent spliced in (A¥))
in excitatory neurons using 2 x 2 exon tests**** and a Benjamini-
Yekutieli (false discovery rate (FDR)) correction®. We identified 143
significantexons (FDR < 0.05,| A¥ | > 0.1; median | A¥ | = 0.21; Fig. 2a).
Among them, the gene encoding DNA polymerase nu (POLN) showed
brain-region-specific splicing: two exons are completely skipped inthe
PFC but are robustly included in the visual cortex (A¥=0.78 and 0.8;
adjusted two-sided Fisher’s exact test Pvalues of <0.006 and <0.003)
and follow the paradigm of coordinated splicing”** *° (Fig. 2b). Given
that we observed that POLNis highly expressed in excitatory neurons
(Supplementary Fig. 6a), we validated its two alternative exons using
bulk tissue from three macaque PFC and visual cortex samples and
observed abroadly similar trend inthe tested alternative exons, but not
inconstitutive exons (Supplementary Fig. 6b,c). Among nonsignificant
2x2tests, 71.7%hada| A¥|of <0.1and 91.1% had a| A¥ | of <0.2, with
very few passing a| A¥| of 0.3, suggesting that most would remain
nonsignificant even with deeper sequencing (Supplementary Fig. 6d).
However, among the few witha | A¥| of 20.5 and 10-20 informative
reads in each condition (n = 6), many may achieve significance with
higher depth. Indeed, simulation experiments suggested that for exons
witha| A¥|of>0.5, only 38% reached significance if 10-20 reads were
sampled (Supplementary Fig. 6e and Methods).

Our data offer the unique opportunity to test whether different
cell states'® show differences in splicing. We examined exons of genes
detectable inmultiple states with sufficient long-read coveragein the
PFC or visual cortex (Fig. 2c and Methods). Across both brain regions
and multiple cell types, we found exons with inclusion differences
tied to distinct cell states (Fig. 2d), suggesting a link to the interplay
between chromatin and splicing® % This observation highlights the
question of whether observed exon inclusion differences between
visual cortex and PFC excitatory neuronsreflect cell-state diversities.
To test this hypothesis, we analyzed 160 exons with five or more long
readsin atleast one cell state and brain region for excitatory neurons.
For each exon, we calculated a ‘normalized-state AY" by dividing the
state AY by the AW across all states, which we refer to as the ‘overall
AW Values of >1 indicate that a specific state equaled or exceeded
the overall splicing difference. Many exons showed at least one state
with a normalized-state AY of >1. In some cases, an exon’s maximum
normalized-state AW values exceeded 1.5, suggesting that strong brain
region specificity originates from one state above others (Fig. 2e). In
excitatory neurons, 51% of exons (82/160) showed brain-region-specific
splicing in at least one cell state, whereas another 41% (65/160) had
maximum normalized-state A¥values between 0.9 and 1. The remain-
ing cases likely stemmed from cell state rather than brain region speci-
ficity (Fig. 2f).

To assess how excitatory neuron subtypes contribute to
region-specific splicing, we compared matched subtypes between

the PFC and visual cortex. In L3-L5/L6 IT_RORB excitatory neurons,
64 0f 1,558 exons showed significant splicing differences (FDR < 0.05,
|A¥|>0.1; median | A¥|=0.34; Supplementary Table 3 and Supple-
mentary Fig.7a,b).InL2-L4 IT_CUX2.RORB neurons, a higher number
of significant exons with a | A¥| of 0.1 was found (n =93 of 2,881;
Supplementary Table 4 and Supplementary Fig. 7a,b), whereas fewer
were found in L2-L3 IT_CUX2 neurons (n =36 of 1,336 tested; Sup-
plementary Table 5 and Supplementary Fig. 7a,b). After allowing at
most five significant exons per gene, 67.1% of differentially included
exons (49 of 73) showed a bias toward visual cortex-specificinclusion
in L2-L4 IT_CUX2.RORB neurons, where negative A¥ values corre-
spond to higher inclusion in the visual cortex. By contrast, L3-L5/L6
IT_RORB excitatory neurons showed a much more even distribution
(two-sided Wilcoxon rank-sum test, P < 0.05; Supplementary Fig. 7c).
The three subtypes offered distinct statistical power in numbers of
exons, cellsand reads. We therefore performed downsampling analysis
and confirmed that L3-L5/L6 IT_RORB neurons showed the strongest
brain-region-specific splicing regulation, followed by L2-L4 IT_CUX2.
RORB neurons (corrected two-sided Wilcoxon rank-sum test P values
0f <2.2x107¢(L3-L5/L6 IT_RORB versus L2-L3 IT_CUX2) and <3 x 107
(L3-L5/L6 IT_RORBversus L2-L4IT_CUX2.RORB); Fig. 2g and Methods).
An example of brain-region-specific splicing in L3-L5/L6 IT_RORB
neuronsis an exon of the gene encoding NFE2-like BZIP transcription
factor 1 (NFE2L1)*°, which is skipped in the PFC but included in 73% of
the visual cortex (corrected two-sided Fisher’s exact test P < 0.003; Sup-
plementary Fig. 7d). NFE2L1 was targeted because of its involvement
inALS and ASD; however, we also target synaptic genes. Intotal, 46.1%
of targeted synaptic genes were also classified as disease-associated
splicing-dysregulation genes. To assess whether specific gene cat-
egories show brain-region-dependent splicing in L3-L5/L6 IT_ RORB
neurons, we classified targeted genes into three groups: disease asso-
ciated but not synaptic (D*S"), synaptic but not disease associated
(D"S*) and both synaptic and disease associated (D*S*). Downsampling
experiments (Methods) showed that D'S™ genes displayed stronger
brain-region-specific splicing patterns than D'S* genes (corrected
two-sided Wilcoxonrank-sumtest P<1.5x107).D'S* genes also showed
such brainregion specificity compared to D"S* genes (D*S* versus D'S",
corrected two-sided Wilcoxon rank-sum test P < 1.5 x107), similar to
disease-associated genes in brain-region-specific splicingamong L3-
L5/L6 IT_RORB neurons (Fig. 2h). These findings suggest that splicing
differences amongexcitatory neuron subtypes contribute to functional
distinctions between the PFC and visual cortex. Additionally, splicing
of disease genes may play amore importantrolein this distinction than
synaptic genes, perhaps indicating that such disease-associated genes
are mostly altered in specific brain areas.

Like the RNA analysis described above, the statistical power
to detect differential chromatin arrangements can vary between

Fig. 2| Region specific splicing patterns are distinct from chromatin.

a, Volcano plot of brain-region-specific splicing for excitatory neurons. b, Cell-
type-resolved single-cell long reads for POLN. Each line represents a single cDNA
molecule. The two top tracks represent excitatory neurons in the PFC and visual
cortex. The bottom black track shows chromosome (chr) 5:2190541-2265209.

¢, Number of genes that include exons tested with one or more and two or

more cell states detected in PFC and visual cortex samples. d, Volcano plot of
state-specific exons across multiple cell types in the PFC and visual cortex

(only exons with ten or more reads in two or more states were tested and are
shown; n=382,108). Exons witha Pvalue of <0.05and | LOR | of >1 are labeled

in color, whereas all others are in gray; LOR, log odds ratio. A one-sided x* test
followed by a Benjamini-Yekutieli multiple testing correction was applied to
evaluate the significance of the splicing-cell state association (Methods).

e, Distribution of the maximum normalized-state AW per exon. Normalized-state
AY=state AY /overall AY.f, Pie chart showing the maximum normalized-state
AWsplit by value into three groups: <0.9, between 0.9 and 1 or >1; Inf, infinity.

g, Downsampling experiment. Distribution of the percentage of exons significant

inbrain region comparisons per subtype (Methods; n=100). h, Downsampling
experiment. Distribution of the percentage of exons significantly targeted by
disease probes (D*S"), synaptic probes (D"S") or overlapping (D'S*; Methods;
n=100).i, Downsampling experiment. The percentage of peaks that are
significantly different for each excitatory neuron subtype between brain regions
inthe vicinity of genes targeted for splicing analysis is shown (Methods; n = 20).
Jj, Breakdown of the percentage of significant peaks by peak location (UTR,

exon, intron or intergenic; Methods; n = 20). k, Example peaks (shaded areas)
inthe vicinity of RCLI s specific to the visual cortex only in L2-L4 IT_CUX2.

RORB excitatory neurons. 1, Motif enrichment of the transcriptional regulator
NEUROGI for excitatory neuron subtypes in the PFC and visual cortex. Each box
plot shows the median (middle line), interquartile range (top and bottom lines of
the box) and adjacent values (whiskers extending to 1.5x the interquartile range
(IQR)). Dots represent outliers beyond this range. A two-sided Wilcoxon rank-
sum test was applied to all the comparisons showning, i,jandl. FDR correction
was applied to multiple comparisons, and corrected P values (<0.05) are shown.
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cell types. To guarantee similar statistical power across samples, we ran-
domly subset one experiment so that all four samples had 7,000-8,000
single-cell ATAC high-quality fragments per cell. Using Signac® and
the MACS2 (ref. 64) peak caller, we called peaks separately for each
cell type, identifying ~119,000, ~104,000 and ~153,000 peaks in PFC

L3-L5/L6IT_RORB,1.2-L3IT_CUX2and L2-L4IT_CUX2.RORBneurons.
In the visual cortex, we found ~-102,000, 107,000 and 137,000 peaks
forthesamethree cell types (Supplementary Fig. 8a,b). We performed
differential peak analysis of matched cell types between the PFC and
visual cortex of macaques. Interrogating peaks associated with the set
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of 3,224 genes targeted for splicing analysis, we found -2,000 or more
differentially regulated peaks for each excitatory subtype (n=1,999,
1,632 and 9,201 for the L3-L5/L6 IT_RORB, L2-L3 IT_CUX2 and L2-L4
IT_CUX2.RORB cells, respectively, at an FDR Pvalue of 0.05 considering
only peaks appearingin atleast 2% of cells; Methods and Supplemen-
tary Fig. 8c). By contrast, L6 CT/L6b_SEMA3E, L5ET_GULPI and L5-L6
NP_TLLI neurons showed only two and zero differentially regulated
peaks, respectively (Supplementary Fig. 8c). These numbers of dif-
ferentially regulated peaks between the PFC and visual cortex showed
the same trend when displayed as a fraction of significant tests. More
specifically, L2-L4 IT_CUX2.RORB neurons showed the highest percent-
age of significant differences (39.71%), far exceeding L3-L5/L6 IT_RORB
(10.10%) and L2-L3IT_CUX2(9.09%) neurons, with negligible signalin
L6_CT/L6b_SEMA3E neurons. These results strongly suggested that
L2-L4IT_CUX2.RORBneurons have the strongest brain-region-specific
chromatin alterations in the vicinity of the enriched set of genes (Sup-
plementary Fig. 8d). Due to varying cellnumbers and open chromatin
regions, statistical power differed among the excitatory cell types.
L2-L4 IT_CUX2.RORB neurons had the highest number of cells (4,626
and 9,756 cells in the PFC and visual cortex, respectively) and open
chromatinregions. For L3-L5/L6 IT_RORBneurons, we observed 2,508
and 3,313 cellsinthe PFC and visual cortex and 2,153 and 3,776 cells for
L2-L3 IT_CUX2 neurons. To control for statistical power differences,
we performed downsampling experiments (Methods) by repeatedly
(n=20)sampling1,000 cellsin both regions, calling peaks and choos-
ingthe peaks closest to targeted genes and randomly sampling 10,000
peaks among these per region. We performed differential chroma-
tin accessibility experiments as described earlier and recorded the
percentage of tests that passed an FDR of 0.05, leading to 20-value
distribution of these excitatory neurons. L2-L4 IT_CUX2.RORB neu-
rons consistently showed the highest median proportion of signifi-
cant peaks (-4.9%), whichis 2.75x and 3.0x higher than L2-L3IT_CUX2
(1.8%) and L3-L5/L6 IT_RORB (1.6%) neurons, respectively (corrected
two-sided paired Wilcoxon rank-sum test Pvalues of <2.87 x 10 ¢ in both
cases; Fig. 2i). This result was robust to distinct ways of annotating cells
with high-quality chromatin signal (Supplementary Fig. 8e and Meth-
ods). To further validate the observation that L2-L4 IT_CUX2.RORB
neurons are most affected by chromatin alterations with amethod that
doesnotdepend onstatistical testing, we computed the peak similar-
ity for all three cell typesinboth brain regions using the Jaccard index
(Methods). L2-L4 IT_CUX2.RORB neurons showed the lowest peak
similarity, which again supports its strongest brain region specificity
of chromatin regulation (Supplementary Fig. 8f). To assess whether
brain-region-specific chromatin changes depend on genomiclocations
(exonic/intronic/untranslated region (UTR)/intergenic), we performed
downsampling experiments (Methods) by randomly sampling 5,000
peaks of each category among all the peaks called from 1,000 cells of
each condition per excitatory neuron subtype. Among the three major
excitatory neuron subtypes, L2-L4 IT_CUX2.RORB neurons showed
the highest significance percentage in each peak category, yielding
1.51%,3.89%, 5.31% and 9.20% as medians for UTR, exonic, intronic and
intergenic peaks, respectively (Fig. 2j and Methods). Arepresentative
example peakislocatedinanintron of the gene encoding RNA terminal
phosphate cyclase like 1 (RCLI), only observed in visual cortex L2-L4
IT_CUX2.RORB cellsbut notinthe PFC (Fig. 2k). Notably, the differences
observed in open chromatin in specific excitatory subtypes between
the twobrainregions canlead to PFC-specific occupancy of transcrip-
tion factors such as NEUROGI (Fig. 21). In summary, chromatin and
splicing distinguish matched cell types between the PFC and visual
cortex indistinct manners.

Chromatin cell subtype specificity patterns mimic splicing

Because splicing and chromatin profiles can reveal brain region
specificities in different ways, we next examined whether they also
distinguish excitatory neuron subtypes, regardless of brain region.

We performed three pairwise comparisons for differential exon
inclusion of L3-L5/L6IT_RORB,1L.2-L4IT_CUX2.RORBand L2-L3IT_CUX2
cells. TheL3-L5/L6 IT_RORBversus L2-L3IT_CUX2 comparison revealed
88 significant exons of 2,705 tested (11 with a| A¥| of 20.5; Fig. 3a),
whereas the other two comparisons (L2-L3 IT_CUX2 versus L2-L4
IT_CUX2.RORB and L3-L5/L6 IT_RORB versus L2-L4 IT_CUX2.RORB)
showed 0 and 5 significant exons witha | A¥ | of >0.5 (Supplemen-
tary Fig. 9a,b). Downsampling experiments revealed that the L3-L5/
L6 IT_RORB versus L2-L3 IT_CUX2 comparison yielded the greatest
cell-type differences in exon usage (Fig. 3b; corrected two-sided
Wilcoxon rank-sum test P values of <8.1 x 107° ((L3-L5/L6 IT_RORB
versus L2-L4 IT_CUX2.RORB) versus (L3-L5/L6 IT RORB versus L2-13
IT_CUX2)) and <2.0 x 102 ((L3-L5/L6 IT_RORB versus L2-L3IT_CUX2)
versus (L2-L4 IT_CUX2.RORBversus L2-L3IT_CUX2))). Cell-type com-
parisons at the chromatinlevel (Fig. 3c and Supplementary Fig. 9c,d)
also revealed that the L3-L5/L6 IT_RORB versus L2-L3 IT_CUX2
comparison yielded the highest number of differentially accessi-
ble peaks using the downsampling strategy (Fig. 3d and Methods;
corrected two-sided Wilcoxon rank-sum test P < 2.0 x 107¢ for all).
The total number of exons and percentage of significant exons and
peaks mirrored the downsampling trends (Supplementary Fig. 9e-h).
Comparing different excitatory neuron subtypes revealed consist-
ent RNA and ATAC patterns, unlike comparisons of the same sub-
type across brain regions, which showed divergent patterns. As an
example of cell-type specificity, an exon of ARAP3 was included in
61.9% of reads from L3-L5/L6 IT_RORB cells but only 7.9% of reads
from L2-L3 IT_CUX2 cells (Fig. 3e). Similarly, DOCK4 harbors two
peaks (chromosome 3:138122410-138124115 and chromosome 3:
138155707-138157028) exclusive to L3-L5/L6 IT_RORB cells and one
peak specific to L2-L3 IT_CUX2 cells across both the PFC and visual
cortex (Fig. 3f). However, some peaks also occurred in all subtypes
but showed significantly higher accessibility in one subtype, such
asin CTNNA2 (Fig. 3g; chromosome 13: 28116151-28117300). In sum-
mary, chromatin and splicing distinguish cell types in a comparable
manner when we perform comparisons between neuron subtypes.

Splicing and chromatin patterns diverge in primate evolution
Therhesus macaqueisamong the closest common model organisms
to humans. Thus, to assess how well macaque chromatin and splicing
signatures represent human signatures and whether certain cell types
show stronger species-specific divergence in chromatin or splicing
is of significance. In addition to the macaque PFC samples used for
region comparisons mentioned earlier, we applied ScISOr-ATAC
to six human PFC samples (four males and two females) for a spe-
cies comparison between human and macaque PFC. We sequenced
257 million-427 million lllumina read pairs for the six control RNA
libraries (samples C1-Cé6) and 321 million-367 million for the six ATAC
libraries (Supplementary Fig. 10a,d and Supplementary Table 2).
RNA profiling revealed multiple cell types and subtypes, with excita-
tory neurons and oligodendrocytes being the most abundant (Sup-
plementary Fig.10e,f). Neurons had higher RNA UMI counts, whereas
glial cells often had more chromatin molecules (Supplementary
Fig. 10g-j). Subtypes within the same cell-type class exhibited
UMI abundance variations (Supplementary Fig. 11). Additionally,
42.3 million barcoded, target-gene-enriched long reads were
sequenced using ONT for the six human PFC samples. Barcoded
reads, UMI counts per cell type and reads reaching a transcription
start site or poly(A) site per sample are provided in Supplementary
Fig.12. We integrated the short-read RNA datasets from both species
(Methods) and identified 16 cell types and subtypes. Notably, the pro-
portion of L2-L3 IT_CUX2.CBLN2 cells, L2-L4 IT_CUX2.RORB.ACAP3
cells and oligodendrocytes differed between human and macaque
PFC (Methods, Fig. 1d,e and Supplementary Fig. 13).

We determined corresponding chromatin peaks in macaques
and humans and tested these for differential accessibility (Methods).
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Fig. 3| Chromatin accessibility and splicing patterns mimic each other
incell subtypes. a, Volcano plot of excitatory neuron subtype-specific
splicing comparison of L3-L5/L6 IT_RORB versus L2-L3IT_CUX2neurons.

b, Downsampling experiment. Distribution of the percentage of exons
significant in the pairwise subtype comparison in both brain regions
(Methods; n=100). ¢, Volcano plot of excitatory neuron subtype-specific
comparison of L3-L5/L6 IT_RORB and L2-L3 IT_CUX2 open chromatin regions
for three types of excitatory cells; FC, fold change. d, Downsampling experiment.
Distribution of the percentage of peaks that are significantly different for each
pairwise subtype comparison in the vicinity of genes targeted for splicing
analysis (Methods; n = 20). e, Cell-type-resolved single-cell long reads for
ARAP3plotted. The top three tracks show L2-L3 IT_CUX2,L3-L5/L6 IT_ RORB
and L2-L4 IT_CUX2.RORB cells, and the bottom black track shows

chromosome 6:139037048-139037086. f, Two outer-most peaks that are
specific to L3-L5/L6 IT_RORB neurons in both the PFC and visual cortex but
absentin L2-L3IT_CUX2neurons. The center peak is present in PFC and visual
cortex L2-L3IT_CUX2neurons butnotin L3-L5/L6 IT_ RORB neurons. These
peaks arein the vicinity of DOCK4. g, Example peak that is in the vicinity of
CTNNAZ showing increased accessibility only in L2-L4 IT_CUX2.RORB neurons in
bothbrain regions. Shading indicates peaks of interest. Each box plot shows the
median (middleline), IQR (top and bottom line of the box) and adjacent values
(whiskers extending to 1.5x the IQR). Dots represent outliers beyond this range.
Atwo-sided Wilcoxon rank-sum test was applied to all the comparisons shown in
b and d. Adjustments were applied to multiple comparisons, and corrected
Pvalues (<0.05) are presented.

The highest number of significant peaks as a fraction of tested peaks
in the vicinity of the 3,224 targeted genes was observed in excitatory
neurons, followed by astrocytes and inhibitory neurons (Supplemen-
tary Fig. 14a). Downsampling experiments (Methods) showed that
astrocytes exhibited the most frequent rearrangements between
humans and macaques (Fig. 4a; corrected two-sided Wilcoxon
rank-sum test: astrocytes versus excitatory neurons P<1.02x107;
astrocytes versus inhibitory neurons P <1.02 x 107). Highly divergent
profiles were observed across neuronal subtypes (Supplementary
Fig. 14b). Downsampling experiments revealed the most noticeable
species-specific rearrangements in L5 IT_RORB excitatory neurons
aswell as L2-L3 IT_CUX2.CBLN2 neurons, but much less so in L2-L3
IT_NRGN.CBLN2 excitatory neurons (corrected two-sided Wilcoxon
rank-sumtest Pvalues of <1.13 x 107 (L5IT_RORB versus L2-L3IT_NRGN.
CBLN2) and <1.13 x 10”7 (L5 IT_CUX2.CBLN2 versus L2-1L3 IT_NRGN.
CBLN2)). Ininhibitory neurons, we found a significant difference in
peaks between GABAergic interneurons originating from the medial
ganglionic eminence (MGE) and the caudal ganglionic eminence
(CGE), albeit much less dramatic than between excitatory neuron
subtypes (corrected two-sided Wilcoxon rank-sum test P value of
<1.30 x 10~ (INN_MGE versus INN_CGE; INN represents inhibitory neu-
ron); Fig. 4b). As an example, a human astrocyte-specific peak and a
separate peak specifictoinhibitory neurons were identified in TRRAP
(Fig. 4c). Another example showed a species-specific peak located in
one exon of CEP250 specific to human L5 IT_RORB neurons (Fig. 4d).
These results indicate that evolution has exerted distinct regulatory
effects on chromatin in excitatory neuron subtypes. In our previous

work, we demonstrated that genome-wide exome enrichment can
successfully remove purely intronic cDNAs from libraries®'. To evalu-
ate the performance of the splice junction-covering enrichment in
this study, we compared splice junction versus exome enrichment
in two human samples® by calculating A¥ values for neurons and
glia and found a correlation of 0.8 (P < 2.2 x107%), suggesting high
concordance between the two methods (Fig. 4e and Methods).

We previously published methods to assess whether an alignment
can be considered consistent with a complete or truncated version
of an annotated isoform®. Due to more extensive annotation of the
human genome than the macaque genome, we found a higher fraction
ofinconsistent (or novel) long-read RNA alignments inmacaques than
in humans (Supplementary Fig. 14c). Although fewer significantly
differentially included exons were detected in inhibitory neurons
than in excitatory neurons (Supplementary Fig. 14d), downsampling
revealed the opposite: inhibitory neurons exhibited more frequent
species-specific splicing differences than both excitatory neurons and
astrocytes (Fig. 4f; corrected two-sided Wilcoxon rank-sumtest Pvalues
of <8 x 107 (astrocytes versusinhibitory neurons) and 4 x 10~ (excita-
tory neurons versusinhibitory neurons)). Among neuronal subtypes,
splicing showed a trend in opposition to the chromatin analysis. For
example, an exon of NUBP2, which is conserved between species, was
presentin 91% of macaque excitatory neuron cDNAsbut only in16% of
human excitatory neuron cDNAs (Fig. 4g; two-sided Fisher’s exact test,
macaques versus humans, FDR < 6 x1075),

Among excitatory neuron subtypes, L2-L3 IT_NRGN.CBLN2
neurons showed the lowest species-specific chromatin arrangements
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Fig. 4 |Splicing and chromatin patterns diverge in primate evolution.
a, Downsampling experiment. Distribution of the percentage of peaks that are
significantly different between humans and macaques in the vicinity of genes
targeted for splicing analysis per cell type (n =20). b, Downsampling experiment
for subtypes with the same method described in a. ¢, Two peaks within TRRAP.
The left peak is specific to human astrocytes but is absent in macaque astrocytes,
and theright peak shows increased chromatin accessibility in human inhibitory
neurons. H, human; M, macaque. d, A peak in CEP250 specific to human L5
IT_RORB cells but absentin macaque L5IT_RORB cells. e, Correlation between
AWvalues (neurons versus glia) of tested exons targeted by both exome probes
and exon-exonjunction probes indicated by regression using a linear model;
shading indicates the 95% confidence interval (n = 414). Shading indicates peaks
ofinterest. f, Downsampling experiment. Distribution of the percentage of exons
showing significant differences between humans and macaques per cell type
(Methods; n=100). g, Cell-type-resolved isoform expression for NUBP2 plotted,
with the top three tracks showing excitatory neurons, inhibitory neurons and
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astrocytes. h, Downsampling experiment for subtypes with the same method
describedinf(n=100).i, Number of genes with one or more and two or more cell
states detected inboth species. Only genes with testable exons were considered.
Jj, Volcano plot of state-specific exons across cell types in humans and macaques.
Only exons with ten or more reads in two or more states were tested (n =238 and
116 for human and macaque, respectively). Exons with a Pvalue of <0.05 and
|LOR | of >1are labeled in color, and the others are in gray. A one-sided x* test
followed by a Benjamini-Yekutieli multiple testing correction was applied to
evaluate the significance of splicing-cell state association. k, Distribution

of the maximum normalized-state A¥ per exon; normalized-state AW = state

AW Joverall AY.1, Pie chart showing the maximum normalized-state A¥ per exon
splitby value into three groups: <0.9, between 0.9 and 1 or 21. Each box plot shows
the median (middle line), IQR (box) and adjacent values (whiskers extending to
1.5x the IQR). Dots represent outliers. A two-sided Wilcoxon rank-sum test was
applied to all the comparisons shownina, b, fand h. FDR correction was applied
to multiple comparisons, and corrected Pvalues (<0.05) are presented.
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but relatively high species-specific splicing arrangements (Supple-
mentary Fig. 14e). Downsampling experiments confirmed this neuronal
subtype to have the highest splicing rearrangements across species
among excitatory subtypes (Methods and Fig. 4h; corrected two-sided
Wilcoxon rank-sum test P values of <2 x 1078 (L2-L3 IT_NRGN.CBLN2
versus LS IT_RORB) and <2 x 107 (L2-L3 IT_NRGN.CBLN2 versus L2-L3
IT_CUX2.CBLN2)). Because enrichment probes targeted annotated
exon-exon junctions (and given annotation differences between
humans and macaques), we tested for potential bias. Importantly, reads
oftenspanmultiple junctions, reducing bias caused by asingle junction
missing from the annotation. We compared A values between human
and macaque excitatory neurons fromspliced reads versus those with
three or more junctions and found strong correlations (Supplementary
Fig.15a), which remained consistent for reads with four or more, five
or more or six or more junctions (Supplementary Fig.15b-d). In sum-
mary, chromatin and splicing analyses show highly divergent results
when comparing matched cell types across species. This is especially
exemplified by astrocytes that exhibit strong chromatin divergence
butlimited splicing changes, whereas L2-L3 IT_NRGN.CBLN2 excitatory
neurons show the opposite trend.

Totest whether species-specific exon inclusion reflects underlying
cell-state differences, we identified cell states for each gene with exons
tested in human and macaque PFC comparisons and focused ongenes
linked to two or more states (Fig. 4i). This revealed many exons whose
inclusion was significantly different between cell statesin not only the
human PFCbut also the macaque PFC (Fig. 4j).

Among exons showing species-specific splicing patterns in excita-
tory neurons, several exons had at least one confirmed observation,
defined by anormalized-state A of >1. The normalized-state AW dis-
tribution appeared larger than in the case of brain regions (Fig. 4k).
For 55% of exonsin excitatory neurons (64/117), species specificity was
confirmedinatleast one cell state, whereas 26% had anormalized-state
AWof<0.9,suggesting that these may stem from variations in cell-state
abundance (Fig. 41).

Chromatin and splicing patternsin AD

To examine whether splicing and chromatin show convergent or diver-
gent cell-type-specific dysregulation in AD, we applied ScISOr-ATAC
to ten control PFC samples (six males and four females) and nine AD
PFC samples (five males and four females). For the 19 RNA libraries,
we sequenced 215 million-479 million Illumina read pairs. For the 19
ATAC libraries, 252 million-512 million read pairs were sequenced
(Supplementary Fig.10). Additionally, we generated >200 million bar-
coded Agilent target-gene-enriched long reads using ONT technology
(Supplementary Fig.12).

We found that oligodendrocytes, and to a lesser extent astro-
cytes, exhibit numerous chromatinchangesin AD. Intotal, 1,480 peaks
(22.13%) near splicing-targeted genes showed significant changes
in oligodendrocytes, whereas neurons showed «1% of such changes,
possibly due to survival bias (Supplementary Fig. 16a,b). Further-
more, downsampling experiments (Methods) revealed a clear trendin
which astrocytes were most affected in AD, followed by oligodendro-
cytes and microglia, whereas excitatory neurons showed the lowest
effects (Fig. 5a; corrected two-sided Wilcoxon rank-sumtest P values of
<4.4 x 107 (oligodendrocytes versus excitatory neurons), <8.3 x 107
(microglia versus excitatory neurons) and <4.4 x 1078 (astrocytes
versus excitatory neurons)). For example, a peak located next to two
exons in FMNL2 was specifically lost in astrocytes in AD (Fig. 5b). On
the splicing side, excitatory neurons showed the highest fraction of
dysregulated exons (Supplementary Fig. 16¢,d and Supplementary
Table 6). However, downsampling experiments (Methods) revealed
that oligodendrocytes showed the strongest dysregulation, whereas
the other cell types did not (Fig. 5¢; two-sided Wilcoxon rank-sum test
P values of <3 x 1072 (oligodendrocytes versus excitatory neurons)
and <3 x107 (oligodendrocytes versus astrocytes)). To validate this

downsampling procedure for both chromatin and splicing, we used
positive and negative controls. In a positive control (neurons versus
glia), downsampling correctly identified significant changes. Inanega-
tive control (neurons split randomly), no differences were detected,
confirming the method’s specificity (Supplementary Fig.17a,b). Fur-
thermore, SynGO analysis of splicing differences between neurons and
gliarevealed nearlyidentical top categoriesin both the fulland down-
sampled datasets (Supplementary Fig.17c), supporting the method’s
reliability. We then probed AD and control reads for how often they
were inconsistent or truncated with any annotated isoform®. Nota-
bly, AD samples showed a higher inconsistency (or novelty) fraction
(Fig. 5d), a difference not explained by intron number per read (Sup-
plementary Fig.18).

In AD versus controls, we observed an oligodendrocyte-specific
dysregulated exon of the gene encoding zinc finger protein 711 (ZNF711),
atranscriptional regulator of neuron development that is associated
with X-linked intellectual disability®**’. Oligodendrocytes showed a42%
decreaseinexoninclusionin AD, whereas excitatory neurons showed
al0% increase in AD (Fig. 5e). To support dysregulation of splicing in
AD oligodendrocytes, Gene Ontology analysis of dysregulated genes at
the chromatinlevel revealed multiple splicing-and RNA biology-linked
terms (Supplementary Fig.19a). Inneurons, splicing alterations in AD
were functionally distinct: excitatory neurons were more linked to
postsynaptic roles, whereasinhibitory neurons were presynapse-term
dominated (Supplementary Fig.19b). Significantly dysregulated exons
did not stand out in terms of exon length, being entirely coding or
maintaining the reading frame (Supplementary Fig. 19c-e). On the
chromatinside, peaks dysregulated inoligodendrocytesin AD samples
were mostly found in UTRs and introns (Supplementary Fig. 19f,g). In
summary, both splicing and chromatin are most strongly altered in AD
inglia, especially oligodendrocytes.

Because previousresults showed that cell state influences splicing,
we asked if splicing differences in AD could be driven by such states.
Among the genes tested for such differences in splicing, we identified
one or more cell states per gene for approximately 1,500 genesinboth
conditions (Fig. 5f). Many exons showed inclusion differences associ-
ated with cell states in both AD and control samples (Fig. 5g). Among
excitatory neurons, and focusing on exons with detected AD-specific
inclusion, we normalized the maximum state-specific A¥ by the overall
AW and observed a symmetric distribution centered around 1. Thus,
confirming states could be found for many exons, but not for all (Fig. 5h,
Supplementary Fig. 20 and Methods). We performed this analysis for
other celltypes and found that astrocytes and oligodendrocytes stood
out as having relatively low and high ratios of exons with maximum
normalized-state-specific A¥ values of >0.9, respectively (Fig. 5i).

Discussion

Measurements of multiple modalities have become commonplacein
single-cell genomics. Here, we introduce ScISOr-ATAC, which enables
the simultaneous recording of splicing patterns and open chromatin
states in frozen samples.

From a systems biology perspective, multimodal measurements
help determine whether one or more modalities influence a third and
whether different modalities provide converging or diverging views
of cell-type diversity. In comparing macaque brain regions, we found
thatdistinct cell chromatin-transcriptome states canresultin different
exoninclusionoutcomes. This raises questions about how these influ-
ences are mediated between cell state and splicing and whether these
may underlie splicing differences. ScISOr-ATAC allows us to assess the
extent of these effects. We examine this across three contexts: matched
cell types in macaque PFC and visual cortex, human-macaque PFC
divergence and cell-type-specific dysregulationin AD.

Although the PFC and visual cortex are both cortical regions that
engage separate functions, both regions do harbor transcription-
ally similar excitatory neuron subtypes. Here, we distinguish three
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Fig. 5| Chromatin and splicing patternsin AD. a, Downsampling experiments.
The distribution of the percentage of peaks that are significantly different
between AD and control samples in the vicinity of genes targeted for splicing
analysis is shown (Methods; n =20).b, A peak that is highlighted within
FMNL2that is present in control astrocytes but not in AD astrocytes. Shading
indicates peaks of interest. c, Downsampling experiment. The distribution of
the percentage of exons showing significant differential inclusion per cell type
in AD versus control is shown (Methods; n=100). d, Percentage of novel reads
found within control (n =10) and AD (n = 9) datasets. e, Cell-type-resolved
single-cell long reads for ZNF711. The top two tracks show AD excitatory neurons
and control excitatory neurons, followed by AD oligodendrocytes and control
oligodendrocytes. The bottom black track shows chromosome X: 85264898~
85268508. f, Number of genes with one or more and two or more cell states
detected in AD and control samples. Only the genes with testable exons were
considered for cell-state detection. g, Volcano plot of state-specific exons across
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multiple cell types in AD and control groups (only exons with ten or more reads
in two or more cell states were tested; n =494 and 726). Exons with a P value of
<0.05and | LOR | of >1 are labeled in color, whereas the others are labeled in gray.
Aone-sided x* test followed by Benjamini-Yekutieli multiple testing correction
was applied to evaluate the significance of splicing—cell state association.

h, Density plot of the distribution of the maximum normalized-state A¥ per
exon. Normalized-state AW = state A¥ /overall AY. 1, Stacked bar plot showing the
proportion of maximum normalized-state A¥ per exon split by value into three
groups: <0.9, between 0.9 and 1or >1. The ‘1’ group represents the fraction of
disease-associated overall A¥ values, which can be seen in specific cell states by
celltype. Each box plot shows the median (middle line), IQR (box) and adjacent
values (whiskers extending to 1.5x the IQR). Dots represent outliers. A two-sided
Wilcoxon rank-sum test was applied to all comparisons shownina,candd. FDR
correction was applied to multiple comparisons, and corrected Pvalues (<0.05)
are shown.

such excitatory neuron subtypes: RORB*CUX2", CUX2'RORB™ and
RORB*CUX2'. Brain-region-specific splicing is most evident in L3-L5/
L6 IT_RORB neurons, whereas chromatin differences are more pro-
nounced in L2-L4 IT_CUX2.RORB neurons. This highlights how each
modality captures unique aspects of regional identity, reinforcing the
value of multimodal approaches. Of note, some brain-region-specific
exoninclusion events co-occur with cell state arrangements. However,
most brain-region-specific splicing events can be validated by one or
more cell states.

Within the same brain region, ATAC and splicing patterns often
highlight similar cell subtype distinctions, although they sometimes
reveal unique features. Comparing human and macaque PFC, astro-
cytes show major chromatin differences but conserved splicing,
whereas L2-L3 IT_NRGN.CBLN2 neurons display the opposite. In terms
ofbiological evolution, the above finding shows that distinct cell types

have undergone evolutionary changes in different modalities. Similar
tothebrainregion comparison, species-specific splicing patterns are
oftenidentified within one or more shared cell states, supporting their
validity. However, we also observe many examples where the overall
observation of species-specific splicing cannot be seenin any cell state,
which could be caused by underlying cell-state differences per species.

In the case of AD, astrocytes show strong AD-related dysregula-
tion in chromatin, but not in splicing, highlighting modality-specific
effects. Many AD-associated splicing changes are reproducible across
cell states, suggesting true dysregulation rather than cell-state dif-
ferences. The weaker neuronal signals may stem from survival bias,
where severely affected neurons are under-represented due to cell loss.
Additionally, our results indicate the cell types that undergo splicing
dysregulation. Although often dysregulation correlates between pairs
of cell types, examples are cell-type specific. The cell-type-specific
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dysregulated splicing events detected in our AD study can serve as
underlying therapeutic targets in the future.

We also observed that chromatin and splicing show divergent
patterns in the species comparison and convergent patterns in the
AD pathology analysis, possibly due to different timescales. In AD,
molecular changes normally could unfold in several years, allowing
persistent interactions across modalities (for example, chromatin
opening might upregulate splicing factors). By contrast, evolutionary
divergence over millions of years may lead to genomic rewiring that
decouples these relationships. Additionally, although chromatinand
splicing are linked through co-transcriptional processes®*>*7, it is
stillachallenge to perfectly predict the impact of chromatin changes
onsplicing.

Additionally, our current work analyzes chromatin and RNA from
the nucleus. Nuclear RNA has advantages and disadvantages, which
we discussed recently’. In brief, nuclear RNA is less likely to yield
full-lengthisoforms due tointernal oligo(dT) priming. On the upside,
nuclear RNAs allow for the detection of incomplete spliced cDNAs
derived fromvery long mRNAs that were undergoing RNA processing.
In cytosolic preparations, some such genes might be biased against
because the resulting full-length cDNA is simply too long for amplifica-
tion and sequencing.

ScISOr-ATAC faces limitations primarily due to the challenges
of long-read sequencing, including high cost and lower depth than
short-read data. Limited depth can undermine performance, especially
for downsampling analyses, which require a minimum read number
per exon per cell type. Deeper sequencing enables more exons and
celltypestobe considered. Moreover, because splicing can vary by cell
state, future studies aiming to track splicing across cell-state transi-
tions would benefit from higher depth and more affordable long-read
sequencing.

In summary, these findings highlight the advantages of simul-
taneous measurements of chromatin and splicing in state-of-the-art
neuroscience approaches as they often show divergent patterns.
Additionally, we demonstrate that splicing can be influenced by cell
state, re-enforcing the need for multimodal datasets. Furthermore,
we provide a detailed map of cell-type specificity of chromatin and
splicing across brain regions, species and disease.

Online content
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Methods

Ethics statement

Allexperiments were conducted in accordance with the 2011 Eighth
Edition of the NIH Guide for the Care and Use of Laboratory Ani-
mals. Animal procedures were performed according to protocols
approved by the Animal Care and Use Committee of Rockefeller
University.

Macaque brain tissue acquisition

Brains were collected from two adult male rhesus macaques
(Mland M2, ages 29 and 26) that were humanely killed viaintramus-
cular administration of ketamine, followed by intravenous admin-
istration of a pentobarbital overdose for approximately 10 min.
These primates had not been exposed to any experimental phar-
macological treatment for 26 months before being killed and had
no recorded infections. Brains were collected within 20 min after
pentobarbital administration (post mortem interval: 2hand1h),
placed onice and dissected into 5- to 10-mm coronal slices of PFC
and visual cortex using a brain mold guided by the Allen Brain Atlas.
Samples were flash-frozen and maintained at —80 °C until processing.

Human brain tissue acquisition

All human samples were deidentified postmortem frozen samples,
which wererequested from the tissue banks maintained by the Center
for Neurodegenerative Disease Research (CNDR) and the University of
Pennsylvania Alzheimer’s Disease Core Center (ADCC), according to
Weill Cornell Medicine institutional review board-approved protocols.
Sample collection was conducted by CNDR/ADCC. A total of nine PFC
samples fromindividuals with AD (five males and four females) and ten
control PFC samples from individuals not diagnosed with dementia
(six males and four females) were included in this study. Participant
sex, age and diagnosis information was supplied by CNDR/ADCC
and can be found in Supplementary Table 2. This study is considered
‘non-human subject research’.

Single-nucleiisolation

Single-nuclei isolation was performed for fresh-frozen human brain
samples using the SnISOr-Seq® protocol and the ATAC-seq protocol
published by Corcesetal.”.

10x Single-nuclei cDNA generation, gene expressionand ATAC
library construction and Illumina sequencing

A 10x Multiome ATAC + Gene Expression assay was performed
by following the manufacturer’s instructions (10x Genomics,
CG000338 ChromiumNextGEM_Multiome ATAC _GEX_User_Guide_
RevE, Chromium Next GEM Single Cell Multiome Reagent Kit A, 16
reactions PN-1000282). The quality of full-length 10x cDNA, ATAC
and 3’ gene expression short-read libraries was measured by Qubit
dsDNA HS assay (Invitrogen, Q32854) and TapeStation Genomic
DNA assay (Agilent, 5067-5365 and 5067-5366). Sequencing libraries
were loaded on Illlumina NovaSeq6000 with PE2 x 100 paired-end
kits by setting the following read length: 28 cycles read 1, 8 cycles
i7 index and 91 cycles read 2 for gene expression libraries and 50
cycles read 1N, 8 cycles i7 index, 24 cycles i5 index and 49 cycles
read 2N for ATAC libraries. The fastq files were generated by run-
ning bcl2fastq v2.20.

Linear/asymmetric PCR and exome capture

Linear/asymmetric PCR was applied to naive full-length 10x cDNA
derived from the last step to remove the nonbarcoded cDNA. Spliced
barcoded cDNA was enriched by performing exome capture using
custom SureSelect probe sets designed for macaques/humans and
the reagent kit SureSelectXT HSQ (Agilent, G9611A). The detailed
linear/asymmetric PCR and exome capture protocol is described in
the SnISOr-Seq pipeline®™*.

Library preparation for ONT

For all samples, ~75 fmol of cDNA processed with linear/asymmet-
ric PCR and exome capture underwent ONT library construction by
using a Ligation Sequencing kit (Oxford Nanopore, SQK-LSK110 and
SQK-LSK114) according to the manufacturer’s protocol (Nanopore
Protocol, Amplicons by Ligation). The ONT library was loaded onto
a PromethlON sequencer by using a PromethlON flow cell (Oxford
Nanopore, FLO-PRO002 and FLO-PRO114M) and sequenced for 72 h.
ONT long reads were base called using MinKNOW 20.06 or MinKNOW
23.07 and filtered for a base quality score of >7.

Exon-exon junction probe design

A list of 3,630 human genes (3,224 ortholog genes in macaques),
including synaptic genes*® (659 for macaques and 720 for humans),
TDP-43 binding targets*” (30 for macaques and 33 for humans),
genes with cell-type-specific highly variable exons in the human PFC®
(259 for macaques and 271 for humans) and genes associated with
missplicingin AD" (173 for macaques and 202 for humans), ASD*$~°
(1,875 for macaques and 2,102 for humans), ALS** (391 for macaques
and 428 for humans) and schizophrenia® (962 for macaques and
1,080 for humans), was assembled. Using the GENCODE human anno-
tation (release 34)’%, all protein-coding transcripts of these genes
were identified. For each exon-exon junction presentin at least one
transcript, 140 bases spanning the junction were selected, with 70
exonic bases on either side. If an exon was shorter than 70 bases,
adjacent exon sequence was included to reach the required length.
Sequences shorter than130 bp or mapping to more than five genomic
loci were excluded. Genes with fewer than five valid probes were
also removed. A 120-mer was chosen from within the initial (130- to
140-base) sequence using Agilent Technology’s method for maximiz-
ing hybridization efficiency.

Short-read data processing

Both RNA and ATAC fastq files of the M1 PFC sample were subsam-
pled randomly using seqtk 1.3 (https://github.com/lh3/seqtk) to
reach aclose reads per cell number with the other three samples. The
cellranger-arc reference for macaques was built based on the gene
annotation of mulatta.Mmul_10 release 104 and genome assembly of
Mmul_10 downloaded from Ensembl”. The cellranger-arc reference
for human was downloaded from 10x Genomics (References-2020-A
Humanreference, GRCh38).

Gene expression data processing and cell-type annotation
Gene x cell matrices processed with cellranger-arc-2.0.1 (refs. 80,81)
were loaded into Seurat 4.2.0 (refs. 37), and cells were filtered per
sample. Doublets were removed before clustering with DoubletFinder
2.0.3 (ref.39) with an expected doublet ratio of 8-16%. After filtering for
high-quality cells, each sample was scaled and normalized using default
parameters and clustered using Seurat”. All samples from the same spe-
cies were merged, scaled and normalized, and variable features were
identified. Batch effect correction was performed using Harmony.
Cells were annotated based on published cell-type markers®-?, as
well as the Azimuth® human dataset and other published datasets
(https://compbio.mit.edu/ad_aging_brain/) as references®>*’. The
marker genes used for cell-type/subtype annotation are shown in
Supplementary Figs.1and 10.

Differential gene expression analysis

For each cell type/subtype, the set of differentially expressed genes
detected from the comparison between conditions (macaque visual
cortex versus PFC) was obtained by running the FindMarkers function
of Seurat” (test = MAST, FDR < 0.05, | log, (fold change) | > 0). Gene
Ontology enrichment analysis for the differentially expressed genes
was performed by using the enrichGO function of clusterProfiler®* 4.2.2
(OrgDb = org.Mmu.eg.db, pAdjustMethod = ‘BH’).
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Compositional data analysis for cell types

Compositional data analysis for cell types identified in the species
comparison between human and macaque PFC samples was per-
formed using scCODA 0.1.9 (ref. 85), and results are shown in Sup-
plementary Fig. 14d.

ATAC data processing

Fragments and peak x cell matrices processed with cellranger-arc-2.0.1
were loaded into Signac® and Seurat®, and each sample was preproc-
essedindividually with a unified set of peaks generated from bed files
of all four samples to build the ‘ATAC’ assay. High-quality cells were
selected after quality controland doublets removal using Signac® and
DoubletFinder 2.0.3 (ref. 39). Subsequently, normalization and dimen-
sional reduction were performed after sample merging and batch
effect correction using Harmony**. We used two methods to perform
cell-type annotation for ATAC data. (1) Cells with matched barcodesin
bothsingle-cellRNA-seqand single-cell ATAC-seq datawere retained
using the barcode translation output from cellranger-arc-2.0.1, and
cell-typeidentities fromsingle-cell RNA-seq were directly assigned to
corresponding single-cell ATAC-seq cells. This method was applied
to all peak-related figures except for S8e. (2) Single-cell ATAC-seq
cells were annotated via label transfer using Signac®. This method
was applied to S8e only. The peaks were called per cell type/subtype
using MACS2 (ref. 64) by running the CallPeaks function of Signac®.
The ‘Peak’ assay was built for downstream analysis using the Signac
functions FeatureMatrix and CreateChromatinAssay. The annota-
tion object supplied for CreateChromatinAssay®® was built based on
the gene annotation of mulatta.Mmul_10.104 (macaque) or Hsapiens.
v86.annotation.hg38 (human) released by Ensembldb. Peaks found
in >2% of cells and located on standard chromosomes were tested
for differential accessibility between conditions (test method = LR,
log (fold change) cutoff = 0), among which the peaks with an FDR of
<0.05 were considered significant. Using the Grange files generated
by reading the Ensembl-based annotation of macaques/humans with
the function import.gff (rtracklayer V1.54.0)%, peak annotation was
performed by running the ClosestFeature function of Signac_1.2.1
(ref. 63) or bedtools closest (V2.30.0)¥” with the bed-formatted gene
annotation transformed by the gtf2bed function of BEDOPS V2.4.41
(ref. 88). Theratios of significant peaks closest to the target genes were
calculated as the peaks with an FDR of <0.05 among the peaks closest
tothe genestargeted in the splicing analysis.

Evaluate differential accessibility between conditions/cell
types by downsampling

Peak calling, normalization, batch effect correction, differential acces-
sibility analysis and generation of the peak annotation pipeline were
performed as described in ‘ATAC data processing’ for alldownsampling
experiments. All the related box plots, scatter plots and density plots
were generated using ggplot2 (ref. 89).

Brain region comparison and species comparison

For each cell type or subtype, 1,000 cells from each condition were
randomly sampled. For condition comparisons (macaque PFC ver-
sus visual cortex or human PFC versus macaque PFC), 10,000 peaks
were randomly subsampled among all peaks called from 2,000 cells
(sum of cells from both conditions) per cell type or subtype and dif-
ferential accessibility of peaks that were found in >2% of cells were
tested (test method = LR, log (fold change) cutoff =0, FDR < 0.05).
Subsampling was repeated 20 times.

Excitatory neuron subtype comparison

For each pair of excitatory neuron subtypes shown in Fig. 3d, 10,000
peaks were randomly subsampled from the peaks called from 4,000
cells (1,000 cells of each subtype per brain region) per subtype com-
parison, and the differential accessibility of peaks observed in >2%

of cells was tested (test method = LR, log, (fold change) cutoff =0,
FDR < 0.05). Random subsampling was repeated 20 times.

Human AD versus control

Toevaluate the differential accessibility per major cell type between AD
and control samples, we randomly chose seven of ten control samples
and six of nine AD samples for downsampling. For 7 random control
samples, 150 random cells were selected per sample to make a total of
1,050 cells as the control group. Similarly, for 6 random control sam-
ples,175random cells were selected per sample to make a total of 1,050
cells as the AD group. For the condition comparison between AD and
control samples, peaks were called from 2,100 random subsampled
cells per cell type, followed by random sampling of 20,000 peaks for
the differential accessibility test. Only peaks that were detected in
>2% cells were tested (test method = LR, log (fold change) cutoff =0,
FDR < 0.05). Subsampling was repeated 20 times.

Neurons versus gliaand comparison within neurons

(human control PFC)

This experiment was performed as a proof of concept for downsam-
plingshownin Supplementary Fig.17b. The same protocol performed
for AD versus control samples was applied to evaluate differential
accessibility in neurons versus glia (positive control) and within neu-
rons (negative control). Subsampling was repeated 100 times.

Differential accessibility of different peak categories between
conditions evaluated by downsampling

To evaluate chromatin accessibility differences between excitatory
neuron subtypes by genomiclocation, peaks were divided into differ-
ent categories (exon/intron/UTR/intergenic) according to the closest
features defined by the annotation. Of note, only the peaks whose
closest features were either protein-coding genes or long noncoding
RNA genes and that were located on standard chromosomes were
considered here. For each peak category, 5,000 peaks were randomly
selected from the peaks called from 1,000 cells randomly subsam-
pled per condition (PFC/visual cortex). Random subsampling was
performed 20 times.

Evaluation of the similarity of cell-type-specific peak sets of
different conditions with the Jaccard similarity index

For each excitatory neuron subtype (RORB, CUX2 and CUX2.RORB),
peaks were called for PFC or visual cortex cells separately. The peak
calling, normalization and batch effect correction pipeline was per-
formed as described in ‘ATAC data processing’. The peak coordinates
were exported using granges function of GenomicRanges 1.46.1
(ref. 90) and written in sorted bed format. The Jaccard similarity
index of the comparison between peaks called from PFC and visual
cortex cells of each excitatory cell type was calculated using the
bedtoolsr::bt.jaccard function of BedtoolsR 2.30.0-5 (ref. 91).

Differential motif enrichment analysis

For each excitatory neuronsubtype (RORB, CUX2and CUX2.RORB), we
used the getMatrixSet and AddMotifs functions of Signac® to get the
motifinformation. Overrepresented motifs (FDR < 0.05) were detected
by setting the significant brain-region-specific peaks as background
(parameters for finding differentially accessible peaks: FDR < 0.05, test
method =LR, min.pct =0.02,|log, (fold change) | > 0). The enrichment
score violin plot of one of the top hits is shownin Fig. 3i.

Mapping orthologous exons in human data

The TransMap® projection alignment algorithm was used to map exons
between human and macaque assemblies. LASTZ® 1.04.15 genomic
alignments between the human GRCh38 and macaque RheMacl10 ref-
erence assemblies were used to map reference transcript annotations
between assemblies. TransMap was used instead of UCSC Genome
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Browser liftOver®, as it produces base-level alignments, allowing
observation of indels and other differences between the LASTZ chain
and net alignmentsfiles. These were obtained from the UCSC Genome
Browser site, along with the below-mentioned programs to process
them. Syntenic genomic alignments were obtained by filtering the
net files to obtain the syntenic nets using ‘netFilter -syn” and then
using ‘netChainSubset -wholeChains’ to obtain a set of syntenic chain
alignments for mappings. GENCODE’® human v35 and macaque were
mapped to the other assembly using the ‘psIMap’ program®.

Species comparison of peaks in conserved exons

The most conserved exons pairs between humans and macaques were
considered for chromatin accessibility comparison. Atotal 0f 157,596
human exons and 157,562 macaque exons composed of 159,279 pairs,
which indicates for each exon in one species, only the one with the
highest ortholog similarity in another species was considered. For all
normal human PFC samples, the command bedtools intersect®” was
used to filter for the fragments that overlapped with human exons
(>1bp)inthe conserved exon pairs. The conserved exon-covering frag-
ments were sorted and indexed for each sample. The same procedure
was performed for allmacaque PFC samples except for that fragments
were mapped to the hg38 genome by rtracklayer::liftOver®. For the
bed file of ATAC peaks in Cell Ranger output, only the peaks covering
conserved exons were kept for each sample. Similar to the fragment file
processing procedure, allmacaque PFC sample peaks were mapped to
thehuman hg38 genome and combined with human PFC sample peaks.
The conservative exon-covering peaks and fragments were used for
ATAC assay creation. To build the ‘Peak’ assay, the peaks were called
either by major cell types or subtypes by MACS2 (ref. 64; by running
the CallPeaks function of Signac®). By running the Signac functions
FeatureMatrix and CreateChromatinAssay, the ‘Peak’ assay was built
for downstreamanalysis. The annotation used for CreateChromatinAs-
say®®was built based on the human gene annotation EnsDb.Hsapiens.
v86. Only standard chromosome peaks were considered. Similarly,
the combined data of the ‘Peak’ assay were scaled and normalized,
andthetop features were identified. Integration of data to control for
sample-specific batch effects was performed using Harmony™.

Long-read data processing

ONT fastq files were first filtered for barcoded reads with the GetBar-
codes function from scisorseqR’. Reads were mapped using minimap2
(ref. 53), followed by differential splicing analysis with scisorseqR
using the commands MapAndFilter() and InfoPerLongRead() with
defaultsettings. Given that the default setting of the command InfoP-
erLongRead() requires a ‘minTimeslsoObserve’ equal to 5, only the
spliced reads that supportthe uniqueisoforms observed at least five
times were keptand recorded in Allinfo files of each sample. The gener-
ated AllInfo files were then UMI corrected, where UMIs were required
to have an edit distance of >4. If multiple reads with similar UMIs did
not meet this criterion, then only one read of the group was kept.
UMI-filtered AllInfo files were used in scisorATAC'’s casesVcontrols
function with basic settings to yield differentially spliced exons. The
cell-type-resolved single-cell long-read assignments per example gene
with alternative exons were plotted using ScISOrwiz*.

Validation of POLN exon inclusion using quantitative PCR with
reverse transcription

RNA was extracted from macaque tissue isolated from the PFC or
visual cortex using an RNeasy Mini kit (Qiagen, 74104), which involved
on-columnDNase I digestionbefore RNA elution. cDNA was synthesized
using SuperScript IV Reverse Transcriptase (Invitrogen, 18090200),
according to the manufacturer’s protocol. Quantitative PCR with
reverse transcription was performed using 30 ng of cDNA as template
per sample, validated primers (see below) and PowerUp SYBR Green
Master Mix (Applied Biosystems, A25742) on a QuantStudio 3 Real-Time

PCR System (Thermo Fisher Scientific). Primers for quantitative PCR
with reverse transcription were designed by using Primer-BLAST and
were synthesized by Thermo Fisher Scientific. The primers targeted
mutually shared POLN exons (5-TGAGCAGTAACCAGCTTCGAG-3’
and 5’-GATGAAGGTCTCGCAGAGCA-3’) or visual cortex-specific
exons (5-AGAGTAGAGTCAGGGAGCCA-3’ and 5-TGCCTCCTGGGT
TCAAGCGA-3’). Comparisons were made using the comparative cycling
threshold (C,) method, and data were normalized to the PFC and are
shown as fold change.

Merge macaque and human expression data by liger

We used liger” tointegrate the RNA assay data from six human normal
PFC samples and two macaque PFC samples. We annotated a total
of 16 cell types using the pipeline described in the gene expression
data analysis section. Among all nine excitatory neuron subtypes,
we only considered the three most abundant subtypes, which were
L2-L3I1T_CUX2.CBLN2,L2-L3IT_NRGN.CBLN2and L3-L5IT_RORB cells,
for species comparison. The other two abundant subtypes (L2-L4
IT_CUX2.RORBand L2-L4IT_CUX2.RORB.ACAP3 (2,843 and 4,549)) were
excluded from the following analysis as they are under-represented in
the humansamples. Additional excitatory neuron subtypes (L5/L6 NP,
LSET,L6 CT/L6band L6 IT CAR3/L6 IT) wererecoveredinboth species
but were also excluded as each comprise less than1,000 cells.

Calling differentially included exons

For each cell type and alternative exon, inclusion counts and exclusion
counts were collected as previously performed. Before testing for
differential exon inclusion, a x* criterion was applied for filtering. To
compare exoninclusion for two distinct comparisons, a2 x 2 table was
populated for inclusion and exclusion counts for the two conditions,
and a two-sided Fisher’s exact test was used following a Benjamini—
Yekutieli correction for multiple testing. See the Supplementary tables
for lists of significant excitatory subtype exons between the PFC and
visual cortex.

Downsampling experiments for differential splicing analysis
Downsampling splicing experiments for the PFC versus visual
cortex, PFC cell-type comparison and species comparison. To
compare two comparisons (that is, differences between the PFC and
visual cortexin RORB" cells against the same areas in CUX2" cells) with
equal power, we performed downsampling experiments. We selected
all exons that had at least 20 exclusion or inclusion counts in both
brain areas. This was followed by randomly selecting 20 reads among
the total. These reads were then used to recalculate the difference in
percent isoforminclusion between the areas (A¥). Next, we selected
100 exons randomly for this cell type between two brain areas, enforc-
ing that there be at most one exon per gene. We then repeated these
stepsforall celltypes that were compared. Thisyielded100 2 x 2 tables
for all comparisons, with exactly equal column sums and the same
characteristics (table number) for multiple testing correction. We then
performed a Fisher’s exact test and Benjamini-Yekutieli correction
for multiple testing and recorded the number of significant events
for all comparisons. The procedure was repeated 100 times, giving a
distribution of significant percentages for both comparisons. These
two distributions were compared with atwo-sided Wilcoxon rank-sum
test. For disease downsamplingin Fig. 2f, we used 20 exons rather than
100 dueto smaller sample size. This process was done for all downsam-
pling comparisons except for AD versus control samples in Fig. 5 to
account forindividual variation due to the high number of individuals
that were used. We describe this process below.

Downsampling splicing experiments for AD versus control sam-
ples. To account for individual variation due to the high number of
human samples involved in this analysis, we designed an updated
downsampling process to equalize comparisons and ensure that
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observed changes were not contributed by one or a few individuals.
Inthis process, we first selected exons that were observed in seven or
more samples in both the AD and control groups. We then randomly
selected seven of those available samples to use in this analysis. We
nextfiltered allexons that had five or more reads per sample, yielding
aminimum of 35 reads per group. We then randomly selected 4 reads
per sample, yielding a total of 28 reads per group. Twenty-five exons
per cell type with sufficient data were selected randomly between
AD and control samples. This yielded 25 2 x 2 tables for all compari-
sons, with exactly equal column sums and the same characteristics
(table number) for multiple testing correction. We then performed
a Fisher’s exact test and Benjamini-Yekutieli correction for mul-
tiple testing and recorded the number of significant events for all
comparisons. The procedure was repeated 100 times, giving a distribu-
tion of significant percentages for cell types. These distributions were
compared with a Wilcoxon rank-sum test.

Downsampling splicing experiments for neurons versus glia and
comparisons within neurons. This experiment was performed as
a proof of concept in control human PFC data and is shown in Sup-
plementary Fig. 17a. For the neuronal control group (neuron 1 versus
neuron 2), all neuronal cell types were combined and split into two
equal groups (neuron1and neuron 2). In comparison, we compared
all neurons to all glia. Downsampling experiments were performed
the same as in the PFC versus visual cortex, PFC cell-type comparison
and species comparison sections.

Comparing SynGO terms shared by neurons versus glia
splicing analysis and downsampled analysis

To validate the downsampling analysis shown in Supplementary
Fig. 17c, we compared the Gene Ontology of differentially spliced
genes fromboth the full splicing and downsampling analyses.

Exome capture efficiency comparison between probe sets

To compare the exome capture efficiency between different probe
sets, we used two datasets derived from two human PFC samples
(C4 and Cé6), which were exome captured by two probe sets
(whole-exome probe and brain gene exon—-exon junction probe) sep-
arately. The whole-exome probe-captured dataset was released in
our previous publication®, For each dataset, the differential splicing
analysis was performed by comparing neurons and non-neurons by
runningthe ‘casesVcontrols’ function of the scisorATAC package. The
correlation between the AW values of shared tested exons derived from
two datasets is shown in Fig. 4e.

Statistical sensitivity simulations

We made large numbers of matrices witha A¥ of 0.1 (1,000 total counts
in each column). All such matrices have P values of <10 x 10". We then
downsampled these to combined counts of 0-9 (in each column),10-19
(in each column), 20-29 (in each column), 30-39 (in each column),
40-49 (in each column) and 50-249 (in each column) and recorded
the fraction of matrices that passed Benjamini-Yekutieli correction
for multiple testing (ata corrected Pvalue of <0.05for 100 testsin each
case). These fractions give an idea of how many reads are required to
findatrue A¥ of 0.1. We repeated this process for A¥ 0.2,0.3, 0.4 and
0.5.Insummary, for a A¥ of >0.4 and read numbers (in each column)
of 230, one reaches a sensitivity of 82%. These data are shown in Sup-
plementary Fig. 6e.

Correlation between cell-type-specific splicing and cell states
revealed by transcription and chromatin accessibility

To get the cell states defined by transcription and chromatin accessi-
bility per gene per cell type, we followed the tutorial of Velocyto® and
MultiVelo'0.1.3. Loom files were obtained by running Velocyto 0.17 for
allhuman PFC samples (ten control and nine AD samples) and macaque

samples (two PFC and 2 visual cortex). With the spliced and unspliced
counts stored in loom files, running MultiVelo velocity stream and
latent time was performed for the genes that had exons tested for
differential splicing of each comparison (1,571 genes for the macaque
brainregion comparison, 2,936 genes for the species comparison and
1,874 genes for the AD versus control comparison).

Astate value of 0,1, 2 or 3 (corresponding to cell states priming,
coupled-on, decoupled and coupled-off, respectively) was assigned to
each cell x gene pair by Multivelo based on the RNA-seq and ATAC-seq
expression dynamics. These state values (S, €{0,1,2,3}) were then used
to connect to the exon splicing levels per cell. If a gene only exhibited
onestateacrossall cells, thenit was classified as asingle-state gene and
excluded from further analysis. For each cell in a given cell type, and
alltested exons for a particular condition, we used the UMI-corrected
Alllnfofilesasinput to obtain the inclusion or exclusion of an exon-cell
pair. Using the state value assigned for a gene (S,) as a proxy for all
exonsinthatgene (S,.), the exoninclusion and exclusion vectors fora
celltype were decomposed intoindividual state vectors. Thus, amatrix
containing the state values as rows and inclusion or exclusion values
as columns was populated. A state-wise percent spliced in (¥) value
was therefore obtained by dividing the inclusion counts for a state by
the total number of molecules arising from that gene containing that
state. Amatrix was only considered for testing for differential inclusion
ifit fulfilled the x* criteria. A Pvalue using the x* test was reported, and
if the number of states was limited to two, an LOR was also explicitly
calculated. This process was repeated for all cell types and conditions
inacomparison (for example, AD versus control).

Evaluation of the association between splicing and cell state
LOR was used for quantifying the strength of the association between
two events, splicing and cell state. For an exon of a specific cell type,
we calculated a Pvalue, and a Benjamini-Yekutieli correction was per-
formed for multiple testing. For a significant exon, we then used the
LOR to quantify the differenceininclusion between both states. Thus,
inaddition to knowing that the ¥values are significantly different, we
can also assess how different they are. The Pvalues are derived from
the x* test for a2 x 2 table. Likewise, the LOR is also deduced from the
countsofthe2 x 2table. ‘A, represents the number of reads that sup-
porttheexonofaspecificcelltypein query for state A.‘A.,. represents
the number of reads that mapped to the gene but exclude the exon of
aspecific cell type in query for state A. A similar definition applies to
‘Binc and ‘B,,.for state B.

LOR = log, (’M)

Binc/Bexc

Asdescribedin‘Long-read dataprocessing’, only spliced reads sup-
porting isoforms observed five or more times per sample (default) were
retained in the AllInfo file. We also tested a relaxed cutoff, requiring
isoforms to appear five or more times across all samples in acompari-
son. Thisled toamodestincrease insignificantly differentially included
exons. Notably, over 80% of exons identified using the strict cutoff
were also found with the relaxed cutoff, indicating high consistency.
Foreachcelltypeinacomparison, only the exons where the total read
counts were greater than 10 were retained. Using this, an exon x state
matrix of ¥values was obtained per condition, and the matrix for one
condition was subtracted from the other, which was defined the as
statePSI matrix. Toidentify the outliers, we limited the statePSI matrix
to values that showed at least a 5% difference between conditions and
then normalized each row of the statePSI matrix by the RNA-only ¥,
thus defining the normState matrix. Finally, in cases where the same
exon was tested in both conditions for the same cell type and showed
significancein atleast one, the state ¥values were plotted against the
state toshow the divergence in exoninclusion depending on chroma-
tin-RNA state dynamics.
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Definitions of ¥, state A¥, overall A¥ and normalized-state AY:

_ inclusion reads
inclusion reads + exclusion reads

overall Ay = pease _ yCul
statex AW = w(Case statex) — ¥(Ctrl state x)

statex AV

normalized statexAY = —————
overall A¥

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thehumanand macaque short-read and long-read datasets used in this
study are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA1021558
(ref.99).

All the data used to support the findings of this study are provided
within the paper and are publicly available at https://www.gencode-
genes.org/human (ref. 78), https://ftp.ensembl.org/pub/release-104/
gtf/mus_musculus/ (ref. 79), https://www.blueprintnhpatlas.org
(ref. 36), https://azimuth.hubmapconsortium.org/references/
human_motorcortex/ (refs. 37,82) and https://compbio.mit.edu/ad_
aging_brain/ (ref. 83).

Code availability

The package scisorATAC is available at https://github.com/careen-
foord/scisorATAC (ref.100).

Other analysis pipelines are available at https://github.com/
wenhu0701/ScisorATAC (ref. 101).
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represent a relatively similar disease condition within the group. In addition, to control for the potential effect of gender composition
differences in AD or control group, we tried to balance the ratio between genders in each group: 9 Alzheimer’s disease(AD) PFC samples
composed of 5 males and 4 females, 10 control PFC samples composed of 6 males and 4 females.

Blinding Not available for blinding design as no treatment was applied.
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Animals and other research organisms
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Field-collected samples  The study doesn't involve filed-collected samples.

Ethics oversight All experiments were conducted in accordance with the 2011 Eighth Edition of the NIH guide for the Care and Use of Laboratory
Animals. Animal procedures were performed according to protocols approved by the Animal Care and Use Committee of the
Rockefeller University.
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