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AlphaDIA enables DIA transfer learning for 
feature-free proteomics
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Mikhail Lebedev    1, Marvin Thielert1, Sophia Steigerwald1, Mohamed Kotb1, 
Oscar Despard1, Tim Heymann    1, Xie-Xuan Zhou1, Maximilian T. Strauss    2, 
Constantin Ammar1, Sander Willems    1, Magnus Schwörer1, 
Wen-Feng Zeng    1   & Matthias Mann    1,2 

The scale of data generated for mass-spectrometry-based proteomics 
and modern acquisition strategies poses a challenge to bioinformatic 
analysis. Search engines need to make optimal use of the data for biological 
discoveries while remaining statistically rigorous, transparent and 
performant. Here we present alphaDIA, a modular open-source search 
framework for data-independent acquisition (DIA) proteomics. We 
developed a feature-free identification algorithm that performs machine 
learning directly on the raw signal and is particularly suited for detecting 
patterns in data produced by time-of-flight instruments. Benchmarking 
demonstrates competitive identification and quantification performance. 
While the method supports empirical spectral libraries, we propose a search 
strategy named DIA transfer learning that uses fully predicted libraries. 
This entails continuously optimizing a deep neural network for predicting 
machine-specific and experiment-specific properties, enabling the generic 
DIA analysis of any post-translational modification. AlphaDIA provides a 
high performance and accessible framework running locally or in the cloud, 
opening DIA analysis to the community.

Proteomics entails the study of key players of life—proteins—and their 
translation, composition of isoforms, post-translational modification 
(PTM) and degradation1. As proteomes are composed of thousands 
of different proteoforms, which produce hundreds of thousands 
of peptides in bottom-up proteomics, handling complexity is cen-
tral to mass spectrometry (MS)-based proteomics acquisition and 
bioinformatic analysis.

Until recently, data-dependent acquisition (DDA) was the acqui-
sition method of choice. The direct relationship between selected 
precursors and relatively pure fragmentation spectra, combined with 
its mature ecosystem of search engines, results in confident peptide 
identifications2–5. It has therefore establised itself even in the most chal-
lenging applications like complex patterns of PTMs or the interpretation 

of interprotein crosslinks6,7. Yet, selecting only a single peptide at a time 
comes at the cost of increased data acquisition time and stochastic 
sampling of precursors across liquid chromatography (LC)–MS runs8.

In contrast to DDA, data-independent acquisition (DIA) allows 
the selection of multiple peptides in parallel, originally in the form of 
cycles of fixed-width, relatively wide selection windows9,10. This results 
in systematic sequencing of all available peptides only limited by sensi-
tivity. Repeated scanning of the same mass range yields complete elu-
tion profiles of both the precursors and the fragments. This increases 
dynamic range and allows for faster acquisition and deeper proteome 
characterization down to the single-cell level11,12. The principal chal-
lenge of DIA is the increased spectral complexity as multiple peptides 
fragment together leading to convoluted spectra. Thus, DIA data by 

Received: 25 June 2024

Accepted: 24 July 2025

Published online: xx xx xxxx

 Check for updates

1Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany. 2Proteomics Program, Novo Nordisk Foundation Center 
for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.  e-mail: wzeng@biochem.mpg.de; 
mmann@biochem.mpg.de

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-025-02791-w
http://orcid.org/0000-0003-4749-3730
http://orcid.org/0000-0002-8441-6067
http://orcid.org/0009-0008-3646-7899
http://orcid.org/0000-0002-6984-6894
http://orcid.org/0000-0003-3320-6833
http://orcid.org/0000-0002-7124-610X
http://orcid.org/0000-0003-4325-2147
http://orcid.org/0000-0003-1292-4799
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-025-02791-w&domain=pdf
mailto:wzeng@biochem.mpg.de
mailto:mmann@biochem.mpg.de


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02791-w

sample-specific empirical libraries18–21. However, for optimal perfor-
mance, this has so far required DDA data on the same MS platform 
and experimental method. This is particularly the case for spectra of 
post-translationally modified peptides as support for DIA libraries is 
only emerging22–24.

Despite the enormous potential of DIA, the fact that spectra are not 
easily manually interpretable has hindered full acceptance, especially 
as researchers must generally rely on a few closed-source algorithms. 
Flexible and open algorithms would clearly be beneficial to extend the 
reach, transparency and acceptance of DIA and allow incorporating cre-
ative new processing algorithms into existing software frameworks25–27. 
This becomes especially necessary as the most recent generation of 

nature require algorithms to deconvolute overlapping fragmentation 
patterns and assign peptide identifications.

Initially, DIA involved generating an empirical, sample-specific 
spectral library, usually acquired by offline fractionation of samples 
and DDA acquisition or spectrum-centric processing13,14. Deconvolution 
of coisolated peptides into individual spectra effectively reduces them 
to DDA-like data, amenable to the plethora of proven DDA methods. 
However, peptide-centric approaches, in which each spectrum of 
the library is matched to the complex DIA data, achieve higher per-
formance especially if paired with deep-learning-based scoring of 
identifications as pioneered by Demichev et al.15–17. Deep learning 
also allows the prediction of libraries in silico, obviating the need for 
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Fig. 1 | Overview of the alphaDIA framework. a, Components of alphaDIA 
and the integration into the alphaPept ecosystem. AlphaDIA uses alphaRaw 
and alphaTims50 for accessing raw data from all major vendors. Importing and 
prediction of spectral libraries are facilitated by alphaBase and alphaPeptDeep20. 
After successful search, LFQ is performed using directLFQ40. Two leftmost mass 
spectrometry instrument illustrations created with BioRender. b–f, TIMS DIA 
data acquired using optimal dia-PASEF39 are searched using a peptide-centric 
algorithm. b, The library entry for a single peptide sequence is selected for 

search. c, Fragment spectra containing the precursor of interest are extracted 
and converted into a dense matrix in spectrum space. d, Information from 
fragments mapping to the precursor of interest are combined in a continuous 
score. ML, machine learning. e, AlphaDIA defines candidate peak groups 
with discrete integration boundaries (top row: intensities, bottom row: mass 
deviation from theoretical mass). f, Aggregating signal across the integration 
boundaries in ion mobility and retention time reveals the peptide spectrum. For 
further scoring, AlphaPeptDeep spectrum predictions are used.
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instrument uses time-of-flight (TOF) detectors, which are sensitive 
down to the single-molecule level28,29. Raw files easily contain billions 
of detector events, often with no clearly visible peaks and up to four 
dimensions of separation30. Handling these data has usually required 
data reduction of the ion mobility dimension, introducing feature 
boundaries or centroiding31,32, which may all lead to loss of information. 
We found that this presents formidable challenges when implementing 
novel scan modes that make data processing even more demanding33–35.

Therefore, to enable open, performant and extensible process-
ing of high complexity DIA data, we propose a processing framework 
that builds on current developments in deep learning. Our algorithms 
view a DIA experiment as a high-dimensional snapshot of the peptide 
spectrum space. This representation is amenable to DIA methods on all 
major instrument platforms and naturally covers simple DIA methods, 
as well as ion mobility, variable windows, sliding quadrupole windows 
and yet-to-be-developed acquisition modes. Integral to this generalized 
representation, the data are processed without a reduction in retention 
time or mobility resolution. Instead, our feature-free approach per-
forms machine learning directly on the raw signal, combing all available 
information before making discrete identifications. Furthermore, we 
propose a DIA transfer learning strategy based on our recently published 
alphaPeptDeep library. Transfer learning adapts the peptide library 
directly to the instrument and sample workflow36. This closer coupling 
of deep learning beyond library prediction may become characteristic 
of the next generation of search engines37. We showcase performance 
and versatility by extending DIA to arbitrary peptide PTMs, closing the 
gap between the versatility of DDA and the performance of DIA.

Results
We present alphaDIA, a modular, open-source framework for DIA 
search. It builds on the scientific python stack and the alphaPept38 
ecosystem allowing flexible search strategies and default workflows 
accessible through a Python API, Jupyter notebooks, a command line 
interface or an easily installable graphical user interface (Fig. 1a and 
Methods). AlphaDIA covers the entire workflow from raw files to report-
ing protein quantities and can process files and proprietary formats 
from all major vendors. It was designed for ‘one-stop processing’ of 
large cohorts, running natively on Windows, Linux and Mac or in a 
distributed fashion in the cloud with Slurm or Docker.

Feature-free processing for high-dimensional TOF data
Apart from state-of-the-art DIA processing, the impetus for alphaDIA 
was the shift toward fast, sensitive and stochastic TOF detectors, pre-
senting novel algorithmic challenges and opportunities. AlphaDIA’s 
feature-free and peptide-centric search is illustrated by the identifica-
tion of the peptide LLELTSSYSPDVSDYK2+ from timsTOF Ultra dia-PASEF 
(parallel accumulation serial fragmentation) data (Extended Data Fig. 1). 
First, we select all MS1 and MS2 spectra that contribute evidence for 
this precursor (Fig. 1b). A dense representation of the spectrum space is 
used to score potential peak group candidates, which does not involve 
feature building or centroiding (Fig. 1c,d). Instead, signals are aggre-
gated across retention time, ion mobility and fragments using learned 
convolution kernels. Discrete peak groups are determined only after 
all this evidence has been collected (Fig. 1e). In this way, noisy TOF 
data in which individual fragment signals are not distinguishable from 
background can still be processed (Extended Data Fig. 2). The agree-
ment with the predicted spectrum gives evidence for a confident iden-
tification only when the signal in the peak groups is integrated into a 
spectrum of matched fragments (Fig. 1f).

Deep-learning-based search for proteome characterization
AlphaDIA uses deep-learning-based target–decoy competition and 
iterative calibration to search complex proteomes with spectral 
libraries. For each target precursor entry with a given sequence and 
charge state, a paired decoy peptide is created using a mutation 

pattern (Methods). Each peak group is scored by a collection of up 
to 47 features using a fully connected neural network (NN) (Fig. 2a). 
False precursor identifications are controlled using a count-based 
false discovery rate (FDR), calculated from the probabilities predicted 
by the NN (Fig. 2b,c). Measured properties such as retention time, ion 
mobility and m/z ratios are iteratively calibrated to the observed data 
on a high-confidence subset of precursors, using nonlinear locally 
estimated scatterplot smoothing (LOESS) regression with polyno-
mial basis functions (Fig. 2d–f and Supplementary Fig. 1). AlphaDIA 
uses spectrum-centric fragment competition to ensure that fragment 
information is only used for single-precursor identification, even when 
multiple library entries match the same observed signal (Methods). To 
assess the performance of this algorithm, we performed a library-based 
search using a previously published spectral library39 from fractionated 
Hela lysate that was searched with MSFragger. On a 21-min gradient 
with 60 samples per day (SPD) of HeLa cell lysate measured on a tim-
sTOF Ultra with dia-PASEF, our algorithm identified more than 73,000 
precursors with unique sequence and charge, corresponding to almost 
6,800 protein groups (Fig. 2g–i). For label-free quantification (LFQ), 
we integrated the recently developed directLFQ algorithm40, which 
resulted in a median coefficient of variation (CV) of 7.7% for protein 
groups and a Person R > 0.99 across replicates (Fig. 2j,k). This suggests 
that alphaDIA can search and quantify complex protein mixtures with 
excellent depth and quantitative precision.

AlphaDIA adapts to instruments and acquisition methods
Recently, DIA has been coupled to sophisticated data acquisition 
schemes where the quadrupole isolation window scans nearly con-
tinuously through the m/z or m/z and ion mobility space11,29,32. The 
methods, termed synchro-PASEF or midia-PASEF hold the promise 
of much improved precursor specificity and quantitative accuracy; 
however, this has been difficult to realize because of a lack of flexible 
algorithms handling the thousands of individual isolation windows 
per DIA cycle. AlphaDIA’s processing algorithm and alphaRaw’s effi-
cient data handling allow using all synchro scans that contribute signal 
for a given precursor, considering its isotope distribution as a prior 
(Fig. 3a). Using the masses and abundance of the precursor isotopes, 
we model the behavior of the quadrupole, resulting in a template with 
the expected intensity distribution across synchro scan observations 
(Fig. 3b). This template includes the slicing of the isotope distribution 
by the quadrupole, which must be recapitulated in the intensity profiles 
of the fragments (Fig. 3c). This comparison of the fragment profile 
with the template contributes to our deep-learning-based identifica-
tion score and enables the analysis of complex proteomes (Fig. 3d and 
Extended Data Fig. 3). This first processing algorithm for sliding quadru-
pole data could be extended from synchro-PASEF to similar acquisition 
schemes such as midia-PASEF or scanning SWATH (sequential window 
acquisition of all theoretical fragment ions).

Next, we wanted to extend the reach of alphaDIA to other prot-
eomic platforms and methods. For instance, our algorithms adapted 
naturally to fixed-window and variable-window DIA data from quad-
rupole Orbitrap analyzers. The absence of ion mobility reduces the 
search space to a one-dimensional search across retention time while 
still using all valid MS2 observations for a given precursor (Fig. 3e). 
As before, after discrete peak group candidates have been identi-
fied (Fig. 3f), the spectrum-centric view allows detailed scoring using 
alphaPeptDeep-predicted spectra (Fig. 3g). Additionally, alphaDIA can 
process Orbitrap and Orbitrap Astral data with wide, narrow, variable 
or overlapping DIA windows. It can likewise process Sciex SWATH data 
(Extended Data Fig. 4).

AlphaDIA matches popular packages in library-based search
Having established the ability of alphaDIA for in-depth analysis of 
complex proteomes and its adaptability to diverse platforms, we next 
wanted to directly benchmark its performance against other common 

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02791-w

DIA search engines. To avoid potential bias, we build upon a recently 
published benchmarking study from the Shui group, in which mouse 
brain membrane isolates were spiked into a complex background of 
yeast proteins in varying ratios and measured on a quadrupole orbitrap 
(QE-HF) and a timsTOF41. The authors generated empirical libraries with 
MS Fragger4 and optimized search parameters for DIA-NN, Spectronaut 
and MaxDIA (Fig. 4a).

On the basis of the provided libraries, alphaDIA identified up 
to 50,600 mouse peptides in the QE data across all samples and up 
to 81,500 on the timsTOF (Extended Data Fig. 5). Inferring proteins 

from uniquely identified peptide involves considerations that can 
influence the number of reported protein groups42. AlphaDIA allows 
strict (maximum parsimony) or commonly used heuristic grouping 
(Methods). With the latter, we identified 5,366 proteins (QE-HF) and 
7,649 (timsTOF) protein groups across all samples, matching and even 
exceeding the other algorithms (Fig. 4b,c). This is also reflected across 
replicates for single conditions. AlphaDIA quantified the most protein 
groups in at least three of five replicates for most ratios while maintain-
ing comparable CVs and accuracy as judged by the proteome mixing 
ratios (Fig. 4d and Supplementary Figs. 2 and 3).
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To prevent over-reporting by sophisticated DIA database search-
ing strategies based on internal target–decoy FDR estimates, results 
can be externally validated by including additional proteome databases 
from species not present in the sample43. As in the benchmarking study, 
we performed an entrapment search with an Arabidopsis library added 
in increasing proportions to the target library. On both MS platforms, 

even for 100% entrapment, Arabidopsis identifications matched the 
chosen target FDR of 1% at the protein level (Fig. 4e,f). At this protein 
FDR, false-positive precursors are even less likely, appearing only at 
0.1% globally. This contrasted with some of the other tested tools, which 
reported up to threefold more false-positive Arabidopsis identifications 
than intended at the chosen FDR target (Supplementary Fig. 4). The 
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f, Elution profile of fragment and precursor ions for the precursor of interest.  
g, Observed and predicted fragment intensities after integration of the peak area 
(top) and mass accuracy for the same precursor (bottom).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02791-w

increased library size only minimally decreased overall identifications 
for alphaDIA. We conclude that, for library-based search, alphaDIA pro-
vides at least competitive performance with common search engines 
while maintaining a reliable and conservative FDR.

Predicted library search with alphaPeptDeep
While empirical libraries benefit from implicitly capturing instru-
ment and workflow specific properties, the key advantage of 
deep-learning-predicted libraries of the entire proteome database is that 
it eliminates cumbersome library measurement altogether. We recently 
introduced alphaPeptDeep, an open-source, transformer-based deep 
learning framework for predicting all MS-relevant peptide properties 
from their sequences20.

With these state-of-the-art predicted libraries, we devised a 
two-step search workflow in alphaDIA consisting of library refine-
ment and quantification (Fig. 5a). Furthermore, we reasoned that 
our feature-free search should adapt well to the high-sensitivity 
TOF data generated by the Orbitrap Astral MS instrument. For 
benchmarking, we acquired and searched bulk Hela samples with 
an alphaPeptDeep-predicted library containing 3.6 million tryptic 
precursors. AlphaDIA identified on average more than 120,000 pre-
cursors, matching or exceeding the performance of the other tested 
search engines (Fig. 5b). As comparison of inferred protein num-
bers in bottom-up proteomics depends on the chosen algorithm, 
which is not public for the other tools, we wanted to provide an 
upper and lower limit with heuristic grouping and more conservative 
maximum-parsimony-based inference (Methods). Remarkably, in 
the 60-SPD method (21 min) this corresponded to the identification 
of 9,800 protein groups with heuristic grouping and close to 8,600 

proteins without grouping (Fig. 5d). The great depth of proteome 
characterization was also reflected in the data completeness across 
replicates (Extended Data Fig. 6). We validated the FDR control of 
this more complex two-step workflow by appending the Arabidopsis 
library, which externally confirmed rigorous control of false-positive 
identifications (1.08% at protein level and 0.2% at precursor level; 
Fig. 5f). While searches of fully predicted tryptic libraries are usually 
faster than acquisition for non-ion-mobility data (Fig. 5e), the explicit 
modeling of the ion mobility dimension leads to increased processing 
times (>1 h per file) for large libraries and will need improvement in 
future versions of AlphaDIA.

To compare identified proteins across search engines, we mapped 
peptide sequences to the UniProt reference proteome. Reassur-
ingly, more than 78,000 peptides and 8,100 proteins (counting only 
nonambiguous matches) were jointly identified by all tested tools 
(Fig. 5g). AlphaDIA had the highest number of uniquely identified 
peptides among search engines, manifesting in high sequence cover-
age (median of eight peptides per protein; Fig. 5h) and few proteins 
with only single-peptide evidence across the tested search engines 
(Extended Data Fig. 7).

To assess the accuracy of LFQ, we used the established strategy44 
of three species proteomes mixed in defined ratios, acquired on the 
Orbitrap Astral. Fully predicted library search combined with directLFQ 
recapitulated the expected ratios with excellent precision and accuracy 
(Fig. 5i and Extended Data Fig. 8).

Multiplexed DIA has recently shown great potential to increase 
throughput and depth45,46. To analyze such data, identifications must 
be transferred between the channels, which involves an additional 
channel FDR. We benchmarked it to a DIA dataset in which HeLa 
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cells were labeled as heavy and light using stable isotope labeling 
by amino acids in cell culture (SILAC) and analyzed on a QE-HFX47 
(Extended Data Fig. 9). Proportions of identifications in ‘light only’, 
‘heavy only’ and ‘light and heavy’ were very similar to the previous DDA 
and DIA results, validating our channel FDR. Interestingly, on the same 
data, the absolute number of identified peptides was threefold higher 
than in the original paper, reflecting advances in DIA search over the 
last years in general and specifically in alphaDIA.

DIA transfer learning allows search with unseen PTMs
To date, fully predicted libraries address many of the needs of DIA 
workflows but their pretrained prediction models are still best suited 
to the sample and instrument types that were used in training. This 
makes it necessary to train custom models for different situations 

(for example, PTMs), as they generally change retention and fragmen-
tation behavior compared to the unmodified peptide. We reasoned 
that close integration of prediction by deep learning and the search 
engine might have the potential learn to adapt to such differences, an 
approach that we call DIA transfer learning. The subsequent search 
with alphaDIA confidently identified precursors and their spectra were 
first collected into a training dataset. The general pretrained models 
for retention time, fragmentation spectra and charge were fine-tuned 
on the experiment-specific training dataset (Fig. 6a,b). This resulted in 
a custom model, reflecting the behavior of peptides on the individual 
LC–MS setup. A hold-out validation and test dataset ensured generali-
zation and prevented overfitting.

To assess the potential of transfer learning, we first applied it to a 
dataset of dimethylated HeLa peptides, an example of a modification 
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that is known to alter retention times and fragmentation behavior 
(Methods and Fig. 6c). We found that transfer learning accurately mod-
eled the effects of the lysine and N-terminal dimethylation on retention 
time behavior, improving R2 from 0.69 to 0.99 (Fig. 6d–i).

Using the transfer learned model resulted in a total of 96,000 
unique precursor and 8,613 protein identifications, a 48% increase over 
the 65,000 precursors identified without transfer learning and a 25% 
increase in protein groups (Fig. 6d,e and Supplementary Fig. 5). This 
gain in identifications is driven additively by both improved predictions 
of retention times from a median prediction error of 317 s down to only 
11 s and an increase in the median correlation to predicted spectra from 
0.5 to 0.85 (Fig. 6g,h).

Given these large improvements, we wished to ascertain that 
they were not the result of overfitting, despite the use of a hold-out 
validation and test dataset. Similarly to before, we used entrapment 
with the Arabidopsis proteome library followed by transfer learn-
ing with all precursors, including false-positive Arabidopsis hits 
(Extended Data Fig. 10a). Remarkably, even successive rounds of trans-
fer learning led to more confident precursors identifications and <0.5% 
false Arabidopsis identifications at 1% FDR (Extended Data Fig. 10b–d). 
Upon inspection, we found that predictions of target hits showed sub-
stantial improved agreement with observed data, whereas the opposite 
was true of false-positive Arabidopsis hits (Extended Data Fig. 10e–g). 
This implies that end-to-end transfer learning generalizes to the pep-
tide behavior in the actual experiment, improving identifications and 
control of false discoveries at the same time.

Discussion
AlphaDIA addresses critical DIA challenges including spectral data 
complexity and the need for robust algorithms handling high- 
dimensional data.

Our results demonstrate that already the first public version of 
alphaDIA matches and, in many cases, surpasses existing software 
tools in terms of performance and versatility.

AlphaDIA’s feature-free processing method is central to its per-
formance and flexibility. Traditional DIA processing methods rely 
on predefined feature boundaries, which can lead to information 
loss, especially with the high sensitivity and the stochastic nature 
of TOF detectors. By contrast, alphaDIA’s approach aggregates sig-
nals across multiple dimensions, ensuring that all relevant data are 
used before making discrete identifications. Additionally, alphaDIA 
extends the reach of DIA to novel acquisition modes. Together 
with its open-source architecture, alphaDIA enables the commu-
nity to quickly iterate between experimental innovations and their 
algorithmic implementation.

Our benchmarking against established tools using both empirical 
and predicted libraries showcases alphaDIA’s equal or superior per-
formance. This holds true across platforms and experimental designs 
including the Orbitrap Astral, where alphaDIA identified over 120,000 
precursors and 9,800 protein groups in a 60-SPD format.

One of the most innovative aspects of alphaDIA is its transfer 
learning capability. Through integration with the transformer models 
of alphaPeptDeep, alphaDIA closes the loop between spectral library 
prediction and DIA search. Our approach allows the model to adapt to 
experiment-specific conditions, enhancing the accuracy of peptide 
identifications. We showcased this on a dataset of dimethylated HeLa 
peptides demonstrating substantial improvements in retention time 
prediction and spectral correlation, resulting in a 48% increase in 
unique precursor identifications and a 25% increase in protein groups 
compared to using pretrained models alone. This allows the application 
of DIA search to hitherto inaccessible areas such as post-translationally 
modified proteins without PTM specific pretraining or to the better 
identification of HLA peptides. We demonstrated that transfer learn-
ing not only improves overall identifications but even improves FDR 
control, ensuring reliable results. The value of this approach is further 

validated by the independent and parallel development of Carafe, 
highlighting a convergence in the field toward transfer learning as a 
standard tool in DIA processing48.

The advancements presented by alphaDIA pave the way for 
more comprehensive and accurate proteomic analyses, which will 
be important as MS technology continues to evolve. The framework’s 
open-source nature ensures that it can be continuously improved and 
extended by the scientific community, fostering innovation and col-
laboration49. We, therefore, aim to establish alphaDIA as a cornerstone 
for the next generation of DIA analysis, closely coupled to the develop-
ments in artificial intelligence.
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Methods
Calibration and optimization of retention time, ion mobility 
and m/z
During search, AlphaDIA calibrates library properties such as retention 
time, ion mobility, precursor m/z, fragment m/z and search tolerances. 
Calibration removes the systematic deviation of observed and library 
values. Optimization reduces the search space to improve the confi-
dence in identifications and to accelerate the search. Initial parameters 
are an MS1 tolerance of 30 ppm, MS2 tolerance of 30 ppm, 0.1 1/K0 ion 
mobility tolerance and 50% retention time tolerance.

AlphaDIA supports search space optimization with fixed target 
values such as a mass tolerance of 7 ppm and automatic optimiza-
tion to give optimal search results. By default, mass tolerances are 
optimized with targeted optimization and retention time while ion 
mobility tolerances undergo automatic optimization. First, all targeted 
optimizations are performed at the same time, followed by separate 
automated optimizations of the remaining properties.

For each optimization, the search is performed batch-wise, start-
ing with the first 8,000 precursors and using an exponential batch 
plan (16,000, 32,000, 64,000, …) until 200 precursors are identified 
at 1% FDR. For targeted optimization, the search space of the property 
of interest is updated to the 95% percentile of the precursors identi-
fied at 1% FDR. For automated optimization, the search space of the 
property of interest is set to the 99% percentile of the precursors 
identified at 1% FDR and a figure of merit is logged. MS1 error opti-
mization uses the correlation of the observed and predicted isotope 
intensity profile as a figure of merit. For MS2, retention time and ion 
mobility use the precursor proportion of the library detected at 1% 
FDR as a figure of merit. Optimization is stopped if the property of 
interest does not change substantially. The optimal value based on 
the figure of merit is used.

Calibration of systematic deviations happens in parallel on the 
basis of the subset of confident precursors identified at 1% FDR. 
Library-encoded values are calibrated to match the dataset distribu-
tion using LOESS regression. For calibration of fragment m/z values, 
up to 5,000 (but at least 500) of the best fragments according to their 
extracted ion chromatogram (XIC) correlation are used.

LOESS regression with uniformly distributed kernels is used for 
each property to be calibrated (Supplementary Fig. 1). Regression is 
performed on first-degree and second-degree polynomial basis func-
tions of the calibratable property. For m/z and ion mobility, two local 
estimators with tricubic kernels are used. For retention time predic-
tion, six estimators with tricubic kernels are used. The architecture is 
built on the scikit-learn package and can be configured to use different 
hyperparameters and arbitrary predictors for calibration.

Scoring of precursors and decoys using convolution kernels 
and supervised classification
AlphaDIA uses a two-step scoring machine learning algorithm to iden-
tify the best potential peak group for every library entry. The first 
step builds on a collection of weighted convolution kernels, learned 
during optimization and calibration of the spectral library. For every 
precursor of interest, MS1 scans and MS2 scans contributing infor-
mation toward the identification are identified from the DIA cycle 
pattern of the acquisition method. On the basis of a certain number 
of highest-intensity fragments in the library (default: 12), dense rep-
resentations of the search space in ion mobility and retention time 
dimension are assembled. To identify putative peak groups for each 
precursor, a set of convolution kernels, reflecting the expected dis-
tribution in retention time, ion mobility and fragment intensity, are 
learned during calibration and optimization. The convolution of the 
search space is performed in Fourier space for fast processing and a 
single score is calculated as a log sum across kernels and fragments. 
Local maxima are identified using a simple peak-picking algorithm 
and retention time and ion mobility boundaries of the peak group of 

interest are defined from the joint scoring function. These candidates 
are subsequently rescored for FDR estimation.

As the second step, AlphaDIA uses target–decoy competition 
for scoring the quality of precursor spectrum matches. Upon library 
import, paired known false-positive decoy peptides are created for 
every target. By default, a mutation pattern GAVLIFMPWSCTYHKR
QENDBJOUXZ>LLLVVLLLLTSSSSLLNDQEVVVVVV is used. For every 
library entry, target and decoy, the best high-scoring matches from 
the convolution kernel score are used for supervised classification. 
Up to 47 features are calculated for each peak group match, reflecting 
the merit of the identification. A multilayer perceptron (MLP) deep NN 
with layer sizes of 100, 50, 20 and 5 and a total of 47 input dimensions 
(10,810 parameters) is trained to predict the probability of being a false 
decoy identification. Training is performed with stochastic gradient 
descent for ten epochs with a batch size of 5,000 and learning rate of 
0.001. While training on an 80% training set, a 20% test set is held out 
to mitigate overfitting. On the basis of the final score, the best (lowest) 
decoy probability peak group is retained for every library entry and a 
count-based FDR is calculated.

FDR calculation
AlphaDIA uses a count-based FDR on the level for assigning confi-
dence to precursor, peptide, protein and channels. Identifications 
are given as a set of target and decoy identifications P = {p0,p1,… ,pi}, 
all associated with a ground-truth decoy status decoy ∶ P → {true, false} 
and a deep-learning-derived decoy score ̂y ∶ P→ℝ. For every precursor 
with index i, the number of targets with lower or equal 
decoy probability,

ntarget = |{p | ̂y (p) ≤ ̂y (pi) ,decoy (p) = false}|,

and the number of decoys with lower or equal decoy probability,

ndecoy = |{p| ̂y (p) ≤ ̂y (pi) ,decoy (p) = true}|,

are calculated. Furthermore, the total numbers of targets and decoys 
in the set are calculated as follows:

Ntarget = |{p|decoy (p) = false}|

Ndecoy = |{p|decoy (p) = true}|

The local count-based q value is given as follows:

qi =
ndecoy
ntarget

×
Ntarget
Ndecoy

This is converted to the FDR using the minimum q value where a 
precursor was accepted:

FDRi = min (qi, {q, |, ̂y (p) > ̂y ( pi)})

By default, all identifications are filtered on a run-level 1% FDR 
precursor threshold and global 1% protein group-level threshold.

Spectrum-centric fragment competition
Competition of precursors for a fragment ion is used as a 
spectrum-centric element to mitigate double use of fragments for 
multiple identifications from the same spectra. Following initial FDR 
calculation, precursor candidates are filtered at 5% FDR and split into 
groups of potentially fragment sharing. This is determined by the 
quadrupole cycle pattern. Then, precursor candidates and their elution 
width at half maximum are compared so that precursors with overlap-
ping elution width at half maximum have no more than kmax = 1 shared 
fragment masses within the chosen MS2 mass accuracy δMS2. If two or 
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more precursor candidates share more fragments than permitted, the 
precursor candidate with the lowest decoy score is used.

Protein inference
Reporting all proteins whose sequence can be matched to any iden-
tified peptide can lead to inflation of false discoveries on the pro-
tein level51. Following the approach outlined by Nesvizhskii et al.52, 
we consider a precursor as a single piece of evidence and the task of 
protein inference is then to assemble these precursors into proteins 
while controlling the accumulation of spurious protein identifica-
tions. AlphaDIA aims to implement a simple and transparent infer-
ence approach, allowing for three inference modes: library, maximum 
parsimony and heuristic. Apart from the library mode, which uses the 
inference performed during empirical library creation, protein infer-
ence is based on an implementation of the ‘greedy set cover’ algorithm 
with grouping by default (heuristic) and without grouping for strict 
inference (maximum parsimony).

In brief, alphaDIA’s protein inference starts with a table of identi-
fied precursors. Each precursor is associated with a set of genes and 
proteins and based on user choice, the inference is performed on the 
gene or protein level (default: gene). While a common peptide precursor 
may match many proteins, a proteotypic peptide will match one single 
protein. During grouping, the precursor and protein arrays are reshaped 
into a protein-centric view, where each protein is associated with one set 
of precursors. Then, proteins are sorted by the length of their precursor 
set in descending order, and the protein with the largest number of pre-
cursors removed from the lists as the first query. The query is compared 
to all remaining subject proteins. From each subject precursor set, all 
precursors matching the query set are removed. If a protein’s precursor 
set becomes empty, it is considered redundant and dropped. After all 
precursor sets have been compared, the process repeats by reordering 
the list and extracting the next query. After completion, retained que-
ries are denoted master proteins, necessary to explain all discovered 
precursors. In strict maximum parsimony mode all master proteins are 
simply reshaped to precursor-centric format, linking each precursor to 
one single protein ID. In the heuristic mode, the list of master proteins 
is used to remove all non-master proteins from the initial precursor 
table, effectively leaving each precursor with a set of associated proteins 
comprised solely of master proteins. Thereby, the same precursor can 
be claimed by different proteins, creating protein groups (see also the 
tutorial notebook in the GitHub repository).

Protein FDR
Protein FDR is performed on the protein groups calculated during 
protein inference. For all target and decoy protein groups, seven fea-
tures are calculated: the total number of precursors across runs for the 
protein group, the mean decoy score for precursors across runs for the 
protein group, the number of unique peptides for the protein group, 
the number of unique precursors for the protein group, the number 
of runs the protein group was found in, the lowest decoy score across 
precursors for the protein group and the highest decoy score across 
precursors for the protein group. We use an MLP to classify decoy pro-
tein groups from target protein groups. Correct training is ensured by 
a 20% held-out test set. Protein group FDRs are calculated on a global 
level using the FDR mechanism described above.

Library refinement for fully predicted libraries
AlphaDIA uses an established two-step search strategy for library 
refinement15. Following an initial search of all or a subset of raw files, 
protein inference and FDR are determined as configured by the user. 
All precursors are automatically filtered at 1% local precursor FDR and 
global 1% protein group FDR, accumulated into a spectral library and 
finally saved to the project folder. For each precursor, the identification 
with the best (lowest) decoy probability is used. By default, MS2 quan-
tities are used as annotated in the original library. If transfer learning 

accumulation is used, custom user specified fragment types can be 
selected and observed MS2 intensities are extracted. This spectral 
library is then used for the second search with full MS2-based target–
decoy scoring without any relaxed FDR parameters. For protein infer-
ence and FDR, library-annotated protein groups are used.

Transfer learning
To create transfer learning libraries, precursors identified at 1% pre-
cursor and protein FDR are selected for requantification. Precursors 
are requantified for user-defined fragment ion types (a, b, c, x, y, z, 
modification loss, etc.) and a user-defined maximum charge (default: 
2). Extracted fragment quantities are accumulated across samples and 
ordered by their decoy probability. For each unique modified precur-
sor, the observations with the three lowest decoy scores are selected. 
AlphaDIA also creates a high-quality subset where only precursors with 
a median fragment correlation greater than 0.5 are included. For these 
precursors, we only retain fragments whose correlation values exceed 
75% of the median fragment correlation of the respective precursor. 
The implementation of transfer learning library is globally sequential. 
At any given time, we can limit the implementation to only parallelize 
across a limited number of processes. This approach allows the process 
to scale without storing all runs in memory.

For transfer learning, we prioritized robustness to ensure per-
formance instead of requiring users to define hyperparameters. The 
transfer learning dataset is split into training (70%), validation (20%) 
and test (10%) sets and trained for a maximum of 50 epochs. After 
each training epoch, we run a test epoch for assessing the test loss and 
data-specific test metrics. AlphaDIA uses a custom learning rate sched-
uler with two phases. The first phase is a warm-up period (default: five 
epochs) during which the learning rate gradually increases to a maxi-
mum value (default: 0.005). After this warm-up phase, the learning rate 
scheduler halves the learning rate if the training loss does not notably 
improve (default: >5% test loss) within a patience period (default: three 
epochs). Additionally, we use a simple early stopping mechanism that 
interrupts training if the validation loss starts to diverge or does not 
notably improve (default: 12 epochs).

After training, the deep learning model is stored on disk and can 
be loaded as necessary. Retention time and ion mobility fine-tuning 
are supervised by calculating the L1 loss, R2 and 95th percentile of 
the absolute error on the training data. MS2 fine-tuning is super-
vised by calculating the L1 loss, Pearson correlation coefficient, 
spectral angle and Spearman correlation on the test data. Charge 
fine-tuning is supervised by calculating the cross-entropy loss, 
accuracy, precision and recall on the test data. All training and test 
metrics are reported to the user. The specific implementation and 
details of the test metrics can be found in the open-source code on 
GitHub (www.github.com/MannLabs/alphadia).

Sample preparation of HeLa bulk digests
HeLa S3 cells (American Type Culture Collection) were cultured in 
DMEM (Life Technologies) supplemented with 20 mM glutamine, 10% 
FBS and 1% penicillin–streptomycin. After washing the cells in PBS 
and cell lysis, the proteins were reduced, alkylated and digested by 
trypsin (Sigma-Aldrich) and LysC (WAKO) (1:100 enzyme to protein, 
w/w) in one step. The peptides were dried and resuspended in 0.1% trif-
luoroacetic acid and 2% acetonitrile; then, 200 ng of digest was loaded 
onto Evotips (Evosep). The Evotips were prepared by activation with 
1-propanol, washed with 0.1% formic acid (FA) and 99.9% acetonitrile 
and equilibrated with 0.1% FA. After loading the samples, tips were 
washed once with 0.1% FA.

Sample preparation of dimethylated peptides for transfer 
learning
HeLa cells were cultured as described above. A HeLa cell pellet was 
lysed by boiling for 10 min in 1% SDC in 60 mM TEAB pH 8.5, followed 
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by sonication in a Branson type instrument, Heinemann Sonifier 250 
(Schwäbisch Gmünd), operating at 20% duty cycle and 3–4 outputs 
for 1 min and boiling for 5 min again. After cooling to room tempera-
ture, the protein concentration was determined using the trypto-
phan fluorescence-based WF assay in the microtiter plate format 
using white Nunc 96-well plates with a flat bottom (Thermo Fisher 
Scientific, 136101). After diluting the lysate to 1 μg μl−1 in lysis buffer, 
disulfide bonds were reduced by adding TCEP to a final concentration 
of 10 mM and briefly incubating for 10 min. Denatured protein lysate 
was digested by ArgC Ultra (Promega) and LysC (WAKO) at 1:250 and 
1:100 (enzyme to protein) ratios to the lysate at 37 °C for 3 h, respec-
tively. The peptides were labeled with a dimethyl group using 100 μl 
of 1 μg μl−1 digested peptides and adding 4 μl of 4% formaldehyde and 
4 μl of 0.6 M NaBH3CN solution. The mixture was incubated at room 
temperature and, every 10 min, 2.8 μl (2 μg of peptides) was sampled 
until 60 min and added to 17.2 μl of a 1 % solution of trifluoroacetic acid 
to quench the reaction.

Sample preparation for the mixed-species experiments
For the mixed-species experiment, three different mixtures with vary-
ing mixing ratios of HeLa tryptic digest (Pierce, 1862824), Saccharo-
myces cerevisiae tryptic digest (Promega, V746A) and Escherichia coli 
tryptic digest (Waters, 186003196) were prepared: sample A, 10:1:10 
human, yeast and E. coli; sample B, 10:10:1 human, yeast and E. coli; 
sample C, 10:4:7 human, yeast and E. coli. Five replicates containing 
210 ng were loaded per condition.

Peptide loading onto C-18 tips
C-18 tips (Evotip Pure, Evosep) were loaded with the Bravo robot (Agi-
lent), followed by activation with 1‐propanol, washing two times with 
50 μl buffer B (99.9% acetonitrile and 0.1% FA), activation with 1‐pro-
panol and two wash steps with 50 μl of buffer A (99.9% H2O and 0.1% FA). 
In between, Evotips were spun at 700g for 1 min. For sample loading, 
Evotips were prepared with 70 μl of buffer A and a short spin at 700g. 
Samples were loaded in 20 μl with the indicated concentration into 
the remaining buffer A and spun at 700g for 1 min, unless described 
otherwise. After sample loading, Evotips were washed with 50 μl of 
buffer A and stored with 150 μl of buffer A after a short spin at 700g at 
4 °C until MS acquisition.

MS data acquisition of dia-PASEF and synchro-PASEF data
We used the Evosep One LC system to separate peptide mixtures at 
varying throughputs using standardized gradients. These gradients 
consisted of 0.1% FA and 99.9% water (v/v) and 0.1% FA with 99.9% ace-
tonitrile (v/v) as the mobile phases. For the 60-SPD runs, peptides were 
separated on a Pepsep column (8 cm × 150 μm inner diameter, 1.5 μm 
C18; Bruker Daltonics) connected to a 10-μm (inner diameter) fused 
silica emitter (Bruker Daltonics). For the Whisper 40-SPD runs, we 
used an Aurora Elite nanoflow column (15 cm × 75 μm inner diameter, 
1.7 μm C18; IonOpticks).

The system was coupled with a timsTOF MS instrument (Bruker 
Daltonics) to acquire data in dia-PASEF and synchro-PASEF modes. 
Sample loads above 25 ng were analyzed using a timsTOF Pro2 and 
those below 25 ng were analyzed using a timsTOF Ultra. The dia-PASEF 
and synchro-PASEF methods were optimized using our Python tool, 
py_diAID39. This tool maximizes precursor coverage by optimally posi-
tioning the acquisition scheme over the precursor cloud and enhances 
sampling efficiency by adjusting the isolation window widths according 
to precursor density.

The dia-PASEF method covers an m/z range from 300 to 1,200 with 
eight dia-PASEF scans and two isolation window positions per scan 
(cycle time: 0.98 s). The synchro-PASEF method covers an m/z range 
from 140 to 1,350 with four diagonal synchro scans (cycle time: 0.53 s). 
The method files are deposited to the data repository. In both modes, 
the fragment scans are acquired with an m/z range from 100 to 1,700. 

Furthermore, ions are accumulated and ejected at 100-ms intervals 
from the TIMS tunnel. The methods cover an ion mobility range from 
1.3 to 0.7 V cm−2, calibrated with Agilent ESI tuning mix ions (m/z, 1/K0: 
622.02, 0.98 V cm−2; 922.01, 1.19 V cm−2; 1221.99, 1.38 V cm−2). The col-
lision energy was linearly decreased in relation to the ion mobility 
elution, from 59 eV at an ion mobility of 1.6 V cm−2 to 20 eV at 0.6 V cm−2.

MS data acquisition of SWATH data on the Sciex 7600
Triplicates of 200-ng HeLa bulk digest were loaded onto C-18 tips as 
described above and analyzed using an Evosep One system (Evosep) 
coupled to a 7600 ZenoTOF MS instrument (Sciex) using Sciex OS 
(version 3.3 or higher). Peptides were separated by the 60-SPD method 
gradient (Evosep) on a PepSep reverse-phase column (8 cm × 150 μm) 
packed with 1.5 μm of C18 beads (Bruker Daltonics) at 50 °C connected 
to the low micro electrode for 1–10 μl min−1. The mobile phases were 
0.1% FA in LC–MS-grade water (buffer A) and 99.9% acetonitrile and 
0.1% FA (buffer B). The ZenoTOF MS instrument was equipped with the 
Optiflow ion source using a spray voltage of 4.5 kV, ion source gas 1 of 
15 psi, ion source gas 2 of 60 psi, curtain gas of 35 psi, collision-activated 
dissociation gas of 7 and a temperature of 200 °C. SWATH data were 
acquired using the following parameters: TOF MS start mass of 400 Da, 
stop mass of 1,500 Da, TOF MS accumulation time of 50 ms, TOF MSMS 
start mass of 140 Da, stop mass of 1750 Da, accumulation time of 13 ms 
with dynamic collision energy turned on, a charge state of 2, Zeno 
pulsing enabled and 60 variable SWATH windows covering the mass 
range of 400–900 m/z.

MS data acquisition of mixed-species samples on the Orbitrap 
Astral
For mixed-species experiments, five replicates of samples A, B and C 
were loaded onto C-18 tips as described above. Samples were analyzed 
using an Evosep One system (Evosep) coupled to a Orbitrap Astral MS 
instrument (Thermo Scientific) using Thermo Tune software (version 
1.0 or higher). Peptides were separated by the 60-SPD method gradient 
(Evosep) on a PepSep reverse-phase column (8 cm × 150 μm) packed 
with 1.5 μm of C18 beads (Bruker Daltonics) at 50 °C. The analytical col-
umn was connected to a stainless-steel emitter with inner diameter of 
30 µm (EV1086). The mobile phases were 0.1% FA in LC–MS-grade water 
(buffer A) and 99.9% acetonitrile and 0.1% FA (buffer B). The Orbitrap 
Astral MS instrument was equipped with a FAIMS Pro interface and an 
EASY-Spray source (both Thermo Scientific). A compensation voltage 
of −40 V and a total carrier gas flow of 3.5 L min−1 were used and an elec-
trospray voltage of 2.0 kV was applied for ionization. The MS1 spectra 
were recorded using the Orbitrap analyzer at 120,000 resolution from 
m/z 380 to 980 using an automatic gain control (AGC) target of 500% 
and a maximum injection time of 3 ms. The Astral analyzer was used 
for MS/MS scans in data-independent mode with 3-Th nonoverlapping 
isolation windows with a scan range of 150–2,000 m/z. The precursor 
accumulation time was 3 ms with an AGC target of 500%. The isolated 
ions were fragmented using higher-energy collision dissociation (HCD) 
with 25% normalized collision energy (NCE).

MS data acquisition of HeLa bulk data on the Orbitrap Astral
For analysis of HeLa bulk digest, 200 ng of lysate was loaded onto 
C-18 tips in six replicates as described above. Samples were analyzed 
using an Evosep One system (Evosep) coupled to a Orbitrap Astral MS 
instrument (Thermo Scientific) using Thermo Tune software (version 
1.0 or higher). Peptides were separated by the 60-SPD method gradient 
(Evosep) on an Aurora Rapid reverse-phase column (80 mm × 0.15 mm) 
packed with 1.7 μm of C18 beads (IonOpticks) at 50 °C. The mobile 
phases were 0.1% FA in LC–MS-grade water (buffer A) and 99.9% ace-
tonitrile and 0.1% FA (buffer B). The Orbitrap Astral MS instrument was 
equipped with a FAIMS Pro interface and an EASY-Spray source (both 
Thermo Scientific). A compensation voltage of −40 V and a total carrier 
gas flow of 3.5 L min−1 were used and an electrospray voltage of 1.9 kV 
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was applied for ionization. The MS1 spectra were recorded using the 
Orbitrap analyzer at 120,000 resolution from m/z 380 to 980 using an 
AGC target of 500% and a maximum injection time of 3 ms. The Astral 
analyzer was used for MS/MS scans in data-independent mode with 2-Th 
nonoverlapping isolation windows with a scan range of 150–2000 m/z. 
The precursor accumulation time was 3 ms with an AGC target of 500%. 
The isolated ions were fragmented using HCD with 25% NCE.

MS data acquisition of dimethylated peptides on the  
Orbitrap Astral
MS data acquisition was performed as described for mixed-species 
samples on the Orbitrap Astral, unless described otherwise. For each of 
the six timepoints, triplicates of 50 ng of labeled peptide were injected. 
Samples were separated by the Whisper 40-SPD method gradient 
(Evosep) on an Aurora Elite TS column (15 cm, 75 µm inner diameter; 
AUR3-15075C18-TS, IonOpticks) at 50 °C. An electrospray voltage of 
1.9 kV was applied. The MS1 resolution was 240,000 with a maximum 
injection time of 100 ms and 6 ms for MS/MS.

Search and analysis of dia-PASEF and synchro-PASEF data with 
alphaDIA
Data were searched with version 1.5.5 of alphaDIA using a previously 
published39 empirical HeLa library. A default single-step search was 
used with the following parameters: target MS1 tolerance, 15 ppm; 
target MS2 tolerance, 15 ppm; number of target candidates, 5. For 
synchro-PASEF, quant_all = true was set and a quant_window of six 
scans was used. All precursors with run-level FDR of 1% and protein 
groups with a global FDR of 1% were accepted. CVs were calculated on 
non-log-transformed directLFQ-normalized quantities.

Search and analysis of ZenoTOF data with alphaDIA
Data were searched with version 1.5.5 of alphaDIA using the HeLa library 
mentioned above. A default single-step search was used with the fol-
lowing parameters: target MS1 tolerance, 15 ppm; target MS2 toler-
ance, 15 ppm; number of target candidates, 3; target retention time 
tolerance, 300 s. All precursors with run-level FDR of 1% and protein 
groups with global FDR of 1% were accepted. CVs were calculated on 
non-log-transformed directLFQ-normalized quantities.

Search and analysis of empirical library data from Lou et al.
Raw files, libraries and FASTA files were used as provided in the original 
publication41. All data were searched with alphaDIA 1.5.5 using default 
parameters. For timsTOF data, the following parameters were changed: 
target MS1 tolerance, 15 ppm; target MS2 tolerance, 15 ppm; number of 
target candidates; quant_window, 6; group level, genes, scans; target 
retention time tolerance, 500 s. For QE-HF, the data search was per-
formed with a target MS1 tolerance of 5 ppm, target MS2 tolerance of 
10 ppm, five target candidates, a quant_window of six scans, group level 
of genes and scans and a target retention time tolerance of 600 s. Data 
for benchmarked tools were used as provided in the original publica-
tion. Analysis was performed as described in the original publication 
except for reassignment of proteins. Instead, search-engine-specific 
protein grouping was used. For alphaDIA, precursors passing a local 
1% FDR and protein groups passing a global 1% FDR were accepted.

Search and analysis of HeLa bulk data with fully predicted 
spectral libraries
For fully predicted library benchmarking, Spectronaut version 
18.6.231227.55695, DIA-NN version 2.1.0, CHIMERYS53 version 4.2.1 
and alphaDIA version 1.10.2 were used. All analysis was performed 
using the same FASTA file of reviewed human proteins without isoforms 
(December 1, 2023). On all platforms, the search was performed for 
tryptic precursors with carbamidomethyl modification at cysteine as 
a fixed modification and variable methionine oxidation and protein 
N-terminal acetylation with a maximum of two occurrences. Charge 

states of 2–4 were included with sequence lengths between 7 and 35 aa 
with a single missed cleavage. For CHIMERYS, only peptides with up 
to 30 aa were used as the tool does not support 35 aa. For alphaDIA, 
automatic library prediction by alphaPeptDeep was used with the 
Lumos model for an NCE of 25. AlphaDIA used default parameters for 
a two-step search with the following changes: target MS1 tolerance, 
4 ppm; target MS2 tolerance, 7 ppm. All data were analyzed at a 1% 
FDR threshold as enforced by the search engine. CVs were calculated 
on non-log-transformed intensities as provided by the search engine 
for all proteins.

For entrapment analysis, an Arabidopsis FASTA with reviewed 
sequences and no isoforms was downloaded from UniProt (February 
2, 2024). The search was performed as described above with heuristic 
inference. After the search, all shared precursors including isoleucine–
leucine pairs were identified. Protein groups with shared precursors 
were discarded.

Search and analysis of mixed-species data with fully predicted 
spectral libraries
For all three species, reviewed nonisoform proteomes were down-
loaded from UniProt (February 21, 2024). Proteins were in silico 
digested using tryptic cleavage with carbamidomethyl modification at 
cysteine as a fixed modification and variable methionine oxidation and 
protein N-terminal acetylation with a maximum of two occurrences. 
Charge states of 2–4 were included with sequence lengths between 
7 and 35 aa with a single missed cleavage. The library was predicted 
using the alphaPeptDeep Lumos model at 25 NCE. AlphaDIA 1.5.4 was 
used with default parameters for a two-step search with the follow-
ing changes: number of target candidates, 5; target MS1 tolerance, 
5 ppm; target MS2 tolerance, 10 ppm; target retention time tolerance, 
200 s for the first pass and 100 s for the second pass. Heuristic protein 
inference was used on the gene level. Proteins with shared sequences 
were removed as described above. For benchmarking accuracy, the 
median LFQ ratio was calculated for protein groups identified in at 
least three replicates.

Search and analysis of SILAC data with fully predicted spectral 
libraries
Data were searched with version 1.5.5 of alphaDIA. A fully predicted 
human library was generated with alphaPeptDeep as described above 
but for an NCE of 27. The library was multiplexed across the light 
channel without additional modifications and a heavy channel with 
isotopic labeling of arginine (+10.008269) and lysine (+8.014199). A 
single-step search was performed using alphaDIA with default param-
eters other than the following changes: target MS1 tolerance, 5 ppm; 
target MS2 tolerance, 20 ppm; target retention time tolerance, 600 s; 
channel_wise_fdr = true.

Search and analysis of dimethylated samples using transfer 
learning
A fully predicted human library was generated on the basis of a reviewed 
human UniProt library (December 1, 2023) with the general pretrained 
alphaPeptDeep model not trained on dimethylated peptides. The 
peptides were modified with methionine oxidation and protein 
N-terminal acetylation as variable modifications with a maximum of 
two. N-terminal and lysine dimethylation were set as fixed modifica-
tions. Transfer search was performed using alphaDIA 1.5.5 with default 
parameters other than the following changes: number of target can-
didates, 1; target MS1 tolerance, 4 ppm; target MS2 tolerance, 7 ppm; 
target retention time tolerance, 1,200 s. Transfer learning quantifica-
tion was enabled and set to b and y ions with a maximum charge of 2 and 
the top three occurrences for every modified sequence. The generated 
transfer learning library was used for training with the default training 
scheme described above. For evaluation, the original pretrained model, 
the transfer learned retention time model, the transfer learned MS2 
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model and the fully transfer learned model were evaluated for search. 
All searches were performed with the same parameters as the transfer 
search apart from a target retention time tolerance of 100 s for searches 
with the updated model.

Search and analysis of transfer learning entrapments
For evaluation of transfer learning on FDRs, entrapment experiments 
with known false-positive Arabidopsis peptides were performed on the 
unmodified HeLa bulk samples acquired on the Orbitrap Astral. The 
entrapment library was generated as described above for the two-step 
search with N-terminal glutamate and glutamine to pyroglutamate 
conversion added as variable modifications. Raw files were searched 
with alphaDIA 1.5.5 using default parameters other than the follow-
ing changes: number of target candidates, 1; target MS1 tolerance, 
4 ppm; target MS2 tolerance, 7 ppm; target retention time tolerance, 
1,200 s. Transfer learning quantification was enabled and set to b and 
y ions with a maximum charge of 2 and the top three occurrences for 
every modified sequence. Transfer learning was performed using all 
human and Arabidopsis precursors identified at the 1% FDR cutoff. 
The transfer learning model was then reused for a second search 
with an updated target retention time tolerance of 150 s. The process 
was repeated twice and the identifications after every search were 
analyzed for the number of false-positive Arabidopsis identifications 
as described above.

Data analysis and plotting
All analyses were performed using Python 3.11.11 on macOS 14.3.0. Data 
manipulation and analysis were conducted using pandas 2.2.3, NumPy 
1.26.4 and SciPy 1.15.2. Statistical analysis and machine learning were 
performed using scikit-learn 1.6.1. Data visualization was created using 
matplotlib 3.9.0 and seaborn 0.13.2. Unless specified otherwise, box 
plots extend from the first quartile (Q1) to the third quartile (Q3) with 
the median shown as line. Whiskers extend from 1.5 times the inter-
quartile range below Q1 to 1.5 times the interquartile range above Q3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw data and search results were deposited to the ProteomeXchange 
Consortium repository with the MassIVE identifiers MSV000095138 
and MSV000098448. Original benchmarking data for library search 
as used from Lou et al.41 were obtained from ProteomeXchange with 
identifier PXD034709.

Code availability
All code presented herein as part of alphaDIA is free software acces-
sible under the permissive Apache license. Source code for AlphaDIA 
(www.github.com/MannLabs/alphadia), alphaRaw (www.github.com/
MannLabs/alpharaw) and alphaBase (www.github.com/MannLabs/
alphabase) can be found on GitHub.
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Extended Data Fig. 1 | alphaDIA search results for library-based search of 
triplicate bulk HeLa dia-PASEF data. Data was acquired at 60SPD (21 min) on the 
timsTOF Ultra. a, Overview of the MS2 window distribution scheme of optimal dia-
PASEF. b, Precursor selected as example in Fig. 1b–f. c, Correlation of LFQ protein 

quantities across replicates. d, Number of precursors identified in each replicate 
at 1% FDR. e, Reproducibility of precursor identification across replicates. Number 
of precursors identified in at least 1, 2 or 3 replicates f, Precision of protein 
quantification. Number of protein groups for given CV cutoffs.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Fragment signal across ion mobility and retention time 
for the precursor LLELTSSYSPDVSDYK2+. a, For each fragment all signal within 
the 15ppm of calibrated mass tolerance is shown as well as the final integration 
boundaries of the identified precursor. Due to the high sensitivity of time-of-
flight detectors fragment signal might only correspond to few ion copies. This 
leads to stochastic sampling of ions and discontinuous signal across retention 

time and ion mobility. Distinguishing fragment signal from other ion species 
is challenging and prevents to determine clear peak boundaries. This requires 
an algorithm which does not need a minimum number of data points or certain 
peak shape. It is likewise important to combine evidence across fragments for 
determination of peak group boundaries.
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Extended Data Fig. 3 | Processing of synchro-PASEF data with alphaDIA. 
Analysis of bulk HeLa lysate with synchro-PASEF on the timsTOF Ultra. a, In 
synchro-PASEF the quadrupole is continuously scanning across the mass range 
while ions elute from the TIMS trap. In this method, four synchro scans of variable 

width are being used. b, Correlation of protein groups quantified between 
two replicates of HeLa lysate c, Number of precursors identified at 1% FDR per 
replicate. d, Data completeness given by precursors identified in a minimum 
number of replicates. e, Coefficient of variation (CV) for protein groups.
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Extended Data Fig. 4 | Analysis of Sciex swath data acquired on the ZenoTOF 
7600. Bulk HeLa lysate was analyzed with 21 min of active gradient. a, Overview 
of the acquisition method used for data acquisition. The position of MS2 
quadrupole windows is shown for a single DIA cycle. b, Correlation of protein 

groups quantified between two replicates of HeLa lysate c, Number of precursors 
identified at 1% FDR per replicate. d, Data completeness given by precursors 
identified in a minimum number of replicates. e, Coefficient of variation (CV) for 
protein groups.
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Extended Data Fig. 5 | Benchmarking library based search in a complex 
background. a, Experimental setup as described by Lou et al.33 Mouse brain 
isolate digests were spiked into a complex yeast proteome background in 
different ratios and measured in five technical replicates. b, Protein groups 

identified at 1% FDR on the Bruker timsTOF. c, Protein groups identified at 1% 
FDR on the Thermo Fisher QE-HF. d, Unique modified peptides identified 1% FDR 
across replicates on the Bruker timsTOF. e, Unique modified peptides identified 
1% FDR across replicates on the Thermo Fisher QE-HF.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02791-w

Extended Data Fig. 6 | Comparison of data completeness across search engines. a, Data completeness of precursor identifications across replicates. b, Data 
completeness of modified peptide identifications across replicates. c, Data completeness of protein identifications across runs.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of peptide and protein identification after 
remapping to Uniprot. To compare protein search performance independent 
of protein grouping effects, search engine results were mapped back to the 
human Uniprot reference proteome. Peptide and protein level identifications 
were compared for all peptides (a-f) as well as for only non-ambiguous peptide 
matches (g-l). a,g, Distribution of peptides per protein across all searched 
samples for. b,h, Venn diagram comparing unique peptides identified by the 
different search engines. c, Venn diagram comparing protein groups identified 

by different search engines, without performing protein inference. i, Venn 
diagram comparing proteins identified by different search engines with protein 
specific evidence. d,j Number of peptides identified at 1% FDR on average per 
sample (mean) and across all samples (total). e,k, Number of proteins identified 
at 1% FDR on average per sample (mean) and across all samples (total). f,l, 
Proteins identified at 1% FDR backed by only a single peptide sequence across  
all samples.
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Extended Data Fig. 8 | Quantitative accuracy benchmark using mixed species 
proteomes on the Orbitrap Astral. a, Five replicates of three samples were 
prepared with Yeast, E.coli and human proteomes mixed in defined ratios. Ratios 
are shown for proteins quantified in at least three out of five replicates. (boxplot 

defined as per Methods) b, Comparison of median protein group intensities at 1% 
FDR between sample A and B. c, Comparison of median protein group intensities 
at 1% FDR between sample A and B. d, Comparison of median protein group 
intensities at 1% FDR between sample C and B.
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Extended Data Fig. 9 | Validation of identification in SILAC labeled samples. 
SILAC data is from a method optimization study by the Garcia group that was 
originally analyzed by EncyclopeDIA and an empirical library50. This is compared 
to a fully alphaPeptDeep predicted library and database search by AlphaDIA. 
Triplicates results from the original paper are plotted in the left-hand panels and 
the AlphaDIA results on the same data in the right-hand panels. a, Percentage of 

false identifications in the heavy channel are median of 1.6% with EncyclopeDIA 
and 0.0043% with alphaDIA, which identified a threefold more precursors. b, 
For the combined sample, the heavy to light ratios are similar (46.7% heavy in 
EncyclopeDIA to 48.1% heavy in alphaDIA). c, After extended incorporation both 
analyses found similar percentage of light peptides (7.1% light in EncyclopeDIA vs 
6.0% light in alphaDIA).
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Extended Data Fig. 10 | Entrapment validation of end-to-end transfer 
learning across four iterations. a, Overview of the validation workflow. A 
Human and Arabidopsis fasta file digest was used for fully predicted library 
search. All identified precursors at 1% FDR were subsequently used for DIA 
transfer learning, including false positive Arabidopsis identifications. This 
process was repeated twice, using the transfer learned deep-learning model for 
library prediction. b, Total unique identified precursors across six replicates. 
Precursors mapping to both species, including leucine and isoleucine pairs 
were removed. c, Total unique identified protein groups. d, Entrapment FDR 

given as the percentage of false positive Arabidopsis identifications. e, MS2 
spectral angle for precursors before and after transfer learning. Median spectral 
angle is shown for each plot (nHuman=283,383, nArabidopsis = 234, boxplot according 
to Methods). f, Retention time deviation in seconds before and after transfer 
learning. The median retention time deviation is shown across three replicates 
(nHuman=283,383, nArabidopsis = 234, boxplot according to Methods). g, Predicted vs 
observed retention time following transfer learning. False positive Arabidopsis 
identifications are highlighted.
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