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The scale of data generated for mass-spectrometry-based proteomics

and modern acquisition strategies poses a challenge to bioinformatic
analysis. Search engines need to make optimal use of the data for biological
discoveries while remaining statistically rigorous, transparent and
performant. Here we present alphaDIA, amodular open-source search
framework for data-independent acquisition (DIA) proteomics. We
developed afeature-free identification algorithm that performs machine
learning directly on the raw signal and is particularly suited for detecting
patternsin data produced by time-of-flight instruments. Benchmarking
demonstrates competitive identification and quantification performance.
While the method supports empirical spectral libraries, we propose a search
strategy named DIA transfer learning that uses fully predicted libraries.
This entails continuously optimizing a deep neural network for predicting
machine-specific and experiment-specific properties, enabling the generic
DIA analysis of any post-translational modification. AlphaDIA provides a
high performance and accessible framework running locally or in the cloud,

opening DIA analysis to the community.

Proteomics entails the study of key players of life—proteins—and their
translation, composition of isoforms, post-translational modification
(PTM) and degradation’. As proteomes are composed of thousands
of different proteoforms, which produce hundreds of thousands
of peptides in bottom-up proteomics, handling complexity is cen-
tral to mass spectrometry (MS)-based proteomics acquisition and
bioinformatic analysis.

Until recently, data-dependent acquisition (DDA) was the acqui-
sition method of choice. The direct relationship between selected
precursors and relatively pure fragmentation spectra, combined with
its mature ecosystem of search engines, results in confident peptide
identifications””. It has therefore establised itself evenin the most chal-
lengingapplicationslike complex patterns of PTMs or theinterpretation

of interprotein crosslinks®’. Yet, selecting only asingle peptide at a time
comes at the cost of increased data acquisition time and stochastic
sampling of precursors across liquid chromatography (LC)-MS runs®,

In contrast to DDA, data-independent acquisition (DIA) allows
the selection of multiple peptides in parallel, originally in the form of
cycles of fixed-width, relatively wide selection windows”". This results
in systematic sequencing of all available peptides only limited by sensi-
tivity. Repeated scanning of the same mass range yields complete elu-
tion profiles of both the precursors and the fragments. This increases
dynamicrange and allows for faster acquisitionand deeper proteome
characterization down to the single-cell level"". The principal chal-
lenge of DIAis the increased spectral complexity as multiple peptides
fragment together leading to convoluted spectra. Thus, DIA data by
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Fig.1| Overview of the alphaDIA framework. a, Components of alphaDIA

and theintegration into the alphaPept ecosystem. AlphaDIA uses alphaRaw

and alphaTims®* for accessing raw data from all major vendors. Importing and
prediction of spectral libraries are facilitated by alphaBase and alphaPeptDeep®.
After successful search, LFQ is performed using directLFQ*’. Two leftmost mass
spectrometry instrument illustrations created with BioRender. b—f, TIMS DIA
data acquired using optimal dia-PASEF* are searched using a peptide-centric

algorithm. b, The library entry for asingle peptide sequence is selected for

search. ¢, Fragment spectra containing the precursor of interest are extracted
and converted into a dense matrix in spectrum space. d, Information from
fragments mapping to the precursor of interest are combined in a continuous
score. ML, machine learning. e, AlphaDIA defines candidate peak groups

with discrete integration boundaries (top row: intensities, bottom row: mass
deviation from theoretical mass). f, Aggregating signal across the integration
boundaries inion mobility and retention time reveals the peptide spectrum. For
further scoring, AlphaPeptDeep spectrum predictions are used.

nature require algorithms to deconvolute overlapping fragmentation
patterns and assign peptide identifications.

Initially, DIA involved generating an empirical, sample-specific
spectral library, usually acquired by offline fractionation of samples
and DDA acquisition or spectrum-centric processing'>'*. Deconvolution
of coisolated peptidesintoindividual spectra effectively reduces them
to DDA-like data, amenable to the plethora of proven DDA methods.
However, peptide-centric approaches, in which each spectrum of
the library is matched to the complex DIA data, achieve higher per-
formance especially if paired with deep-learning-based scoring of
identifications as pioneered by Demichev et al.”*™". Deep learning
also allows the prediction of libraries in silico, obviating the need for

sample-specific empirical libraries®'. However, for optimal perfor-
mance, this has so far required DDA data on the same MS platform
and experimental method. This is particularly the case for spectra of
post-translationally modified peptides as support for DIA libraries is
only emerging? ™,

Despite the enormous potential of DIA, the fact that spectraare not
easily manually interpretable has hindered full acceptance, especially
asresearchers must generally rely on afew closed-source algorithms.
Flexible and openalgorithms would clearly be beneficial to extend the
reach, transparency and acceptance of DIA and allow incorporating cre-
ative new processing algorithms into existing software frameworks>~’.
This becomes especially necessary as the most recent generation of

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://www.biorender.com

Article

https://doi.org/10.1038/s41587-025-02791-w

instrument uses time-of-flight (TOF) detectors, which are sensitive
down to the single-molecule level*®*’. Raw files easily contain billions
of detector events, often with no clearly visible peaks and up to four
dimensions of separation®. Handling these data has usually required
data reduction of the ion mobility dimension, introducing feature
boundaries or centroiding®*?, which may all lead to loss of information.
We found that this presents formidable challenges whenimplementing
novelscan modes that make data processing even more demanding® .

Therefore, to enable open, performant and extensible process-
ing of high complexity DIA data, we propose a processing framework
that builds on current developmentsin deep learning. Our algorithms
view a DIA experiment as a high-dimensional snapshot of the peptide
spectrumspace. This representationisamenable to DIA methodsonall
major instrument platforms and naturally covers simple DIAmethods,
aswell asion mobility, variable windows, sliding quadrupole windows
andyet-to-be-developed acquisition modes. Integral to this generalized
representation, the data are processed without areductioninretention
time or mobility resolution. Instead, our feature-free approach per-
forms machinelearning directly on the raw signal, combingall available
information before making discrete identifications. Furthermore, we
propose aDIA transfer learning strategy based on our recently published
alphaPeptDeep library. Transfer learning adapts the peptide library
directly to the instrument and sample workflow*®. This closer coupling
of deeplearningbeyondlibrary prediction may become characteristic
of the next generation of search engines®. We showcase performance
and versatility by extending DIA to arbitrary peptide PTMs, closing the
gap between the versatility of DDA and the performance of DIA.

Results

We present alphaDIA, a modular, open-source framework for DIA
search. It builds on the scientific python stack and the alphaPept®®
ecosystem allowing flexible search strategies and default workflows
accessible through a Python API, Jupyter notebooks, acommand line
interface or an easily installable graphical user interface (Fig. 1a and
Methods). AlphaDIA covers the entire workflow from raw files to report-
ing protein quantities and can process files and proprietary formats
from all major vendors. It was designed for ‘one-stop processing’ of
large cohorts, running natively on Windows, Linux and Mac orina
distributed fashion in the cloud with Slurm or Docker.

Feature-free processing for high-dimensional TOF data

Apart from state-of-the-art DIA processing, the impetus for alphaDIA
was the shift toward fast, sensitive and stochastic TOF detectors, pre-
senting novel algorithmic challenges and opportunities. AlphaDIA’s
feature-free and peptide-centric searchisillustrated by the identifica-
tion of the peptide LLELTSSYSPDVSDYK?* from timsTOF Ultra dia-PASEF
(parallelaccumulationserial fragmentation) data (Extended DataFig.1).
First, we select all MS1 and MS2 spectra that contribute evidence for
this precursor (Fig.1b). Adense representation of the spectrumspaceis
used toscore potential peak group candidates, which does notinvolve
feature building or centroiding (Fig. 1c,d). Instead, signals are aggre-
gated across retention time, ion mobility and fragments using learned
convolution kernels. Discrete peak groups are determined only after
all this evidence has been collected (Fig. 1e). In this way, noisy TOF
datainwhichindividual fragment signals are not distinguishable from
background can still be processed (Extended Data Fig. 2). The agree-
mentwiththe predicted spectrumgives evidence for aconfidentiden-
tification only when the signal in the peak groups is integrated into a
spectrum of matched fragments (Fig. 1f).

Deep-learning-based search for proteome characterization

AlphaDIA uses deep-learning-based target-decoy competition and
iterative calibration to search complex proteomes with spectral
libraries. For each target precursor entry with a given sequence and
charge state, a paired decoy peptide is created using a mutation

pattern (Methods). Each peak group is scored by a collection of up
to 47 features using a fully connected neural network (NN) (Fig. 2a).
False precursor identifications are controlled using a count-based
false discovery rate (FDR), calculated from the probabilities predicted
by the NN (Fig. 2b,c). Measured properties such as retention time, ion
mobility and m/zratios are iteratively calibrated to the observed data
on a high-confidence subset of precursors, using nonlinear locally
estimated scatterplot smoothing (LOESS) regression with polyno-
mial basis functions (Fig. 2d-f and Supplementary Fig. 1). AlphaDIA
uses spectrum-centric fragment competition to ensure that fragment
information is only used for single-precursor identification, even when
multiple library entries match the same observed signal (Methods). To
assess the performance of this algorithm, we performed alibrary-based
search usinga previously published spectral library® from fractionated
Hela lysate that was searched with MSFragger. On a 21-min gradient
with 60 samples per day (SPD) of HeLa cell lysate measured on a tim-
sTOF Ultrawith dia-PASEF, our algorithmidentified more than 73,000
precursors withunique sequence and charge, corresponding to almost
6,800 protein groups (Fig. 2g-i). For label-free quantification (LFQ),
we integrated the recently developed directLFQ algorithm*®, which
resulted in a median coefficient of variation (CV) of 7.7% for protein
groups and aPersonR > 0.99 acrossreplicates (Fig. 2j,k). This suggests
thatalphaDIA cansearch and quantify complex protein mixtures with
excellent depth and quantitative precision.

AlphaDIA adapts to instruments and acquisition methods
Recently, DIA has been coupled to sophisticated data acquisition
schemes where the quadrupole isolation window scans nearly con-
tinuously through the m/z or m/z and ion mobility space™?**’. The
methods, termed synchro-PASEF or midia-PASEF hold the promise
of much improved precursor specificity and quantitative accuracy;
however, this has been difficult to realize because of a lack of flexible
algorithms handling the thousands of individual isolation windows
per DIA cycle. AlphaDIA’s processing algorithm and alphaRaw’s effi-
cient datahandlingallow using all synchro scans that contribute signal
for a given precursor, considering its isotope distribution as a prior
(Fig. 3a). Using the masses and abundance of the precursor isotopes,
wemodel the behavior of the quadrupole, resulting in atemplate with
the expected intensity distribution across synchro scan observations
(Fig.3b). Thistemplateincludes theslicing of the isotope distribution
by the quadrupole, which must be recapitulatedin the intensity profiles
of the fragments (Fig. 3c). This comparison of the fragment profile
with the template contributes to our deep-learning-based identifica-
tionscore and enables the analysis of complex proteomes (Fig.3d and
Extended DataFig.3). This first processing algorithm for sliding quadru-
pole data could be extended from synchro-PASEF to similar acquisition
schemes such as midia-PASEF or scanning SWATH (sequential window
acquisition of all theoretical fragmentions).

Next, we wanted to extend the reach of alphaDIA to other prot-
eomic platforms and methods. For instance, our algorithms adapted
naturally to fixed-window and variable-window DIA data from quad-
rupole Orbitrap analyzers. The absence of ion mobility reduces the
search space to aone-dimensional search across retention time while
still using all valid MS2 observations for a given precursor (Fig. 3e).
As before, after discrete peak group candidates have been identi-
fied (Fig. 3f), the spectrum-centric view allows detailed scoring using
alphaPeptDeep-predicted spectra (Fig. 3g). Additionally, alphaDIA can
process Orbitrap and Orbitrap Astral data with wide, narrow, variable
oroverlapping DIAwindows. It can likewise process Sciex SWATH data
(Extended DataFig.4).

AlphaDIA matches popular packages in library-based search

Having established the ability of alphaDIA for in-depth analysis of
complex proteomes and its adaptability to diverse platforms, we next
wanted to directly benchmark its performance against other common
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Fig. 2| Central search engine components. a, Classifier features and their
importance for the supervised target-decoy competition. Featureimportance
is defined as percentage drop of precursor identifications at 0.1% FDR across
replicate training with random initial parameters (n =100; box plot defined as
per Methods). b, Deep NN output probability for decoy peptides. ¢, Number of
precursorsidentified as a function of the g-value cutoff. d, Nonlinear calibration
of retention times using LOESS regression (Supplementary Fig.1and Methods).

log,, 200 ng Hela 1

RT, retention time. e, Collection of polynomial basis functions combined using
local kernels. f, Retention time deviation after calibration. g-k, Results for the
library-based search of HeLa lysates measured with dia-PASEF. g, Number of
precursors identified ata1% FDRin three replicates. h, Precursors shared across
replicates. i, Protein groups identified at given CVs. j, Distribution of protein
group CVs (n=3).k, Pearson correlation of precursor intensities across samples.

DIA search engines. To avoid potential bias, we build upon a recently
published benchmarking study from the Shui group, in which mouse
brain membrane isolates were spiked into a complex background of
yeast proteinsinvarying ratios and measured on a quadrupole orbitrap
(QE-HF) and atimsTOF*. The authors generated empirical libraries with
MS Fragger* and optimized search parameters for DIA-NN, Spectronaut
and MaxDIA (Fig. 4a).

On the basis of the provided libraries, alphaDIA identified up
to 50,600 mouse peptides in the QE data across all samples and up
to 81,500 on the timsTOF (Extended Data Fig. 5). Inferring proteins

from uniquely identified peptide involves considerations that can
influence the number of reported protein groups*. AlphaDIA allows
strict (maximum parsimony) or commonly used heuristic grouping
(Methods). With the latter, we identified 5,366 proteins (QE-HF) and
7,649 (timsTOF) protein groups across all samples, matching and even
exceeding the other algorithms (Fig. 4b,c). Thisis alsoreflected across
replicates for single conditions. AlphaDIA quantified the most protein
groupsinatleast three of five replicates for most ratios while maintain-
ing comparable CVs and accuracy as judged by the proteome mixing
ratios (Fig. 4d and Supplementary Figs. 2 and 3).
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Fig. 3| AlphaDIA enables flexible processing for different acquisition methods.
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withsequence GTDDSMTLQSQK is sliced by the quadrupole, resulting in fragment
signal across two synchro scans. b, Slicing patterns are resolved by calculating

the expected distribution of fragment signal in form of a template matrix. The
template matrix is calculated by transforming the individual precursor isotope
signal with the quadrupole transmission function of the synchro scans.

¢, Observed fragment signal across the two synchro scans. d, For each of the two

Retention time (min)

synchro scans, the elution and ion mobility XICs are compared. Comparison of
the fragment signal to the template provides evidence of the identification of
peptides. e, Application of the processing algorithm to variable-window DIA data
withoution mobility separation ona quadrupole Orbitrap analyzer (QE-HF).

For the given precursor, all valid MS2 scans contributing evidence are selected.

f, Elution profile of fragment and precursor ions for the precursor of interest.

g, Observed and predicted fragment intensities after integration of the peak area
(top) and mass accuracy for the same precursor (bottom).

To prevent over-reporting by sophisticated DIA database search-
ing strategies based on internal target-decoy FDR estimates, results
canbeexternally validated by including additional proteome databases
fromspecies not presentin the sample*. As in the benchmarking study,
we performed anentrapment search with an Arabidopsislibrary added
inincreasing proportionsto the target library. On both MS platforms,

even for 100% entrapment, Arabidopsis identifications matched the
chosen target FDR of 1% at the protein level (Fig. 4e,f). At this protein
FDR, false-positive precursors are even less likely, appearing only at
0.1%globally. This contrasted with some of the other tested tools, which
reported up to threefold more false-positive Arabidopsisidentifications
than intended at the chosen FDR target (Supplementary Fig. 4). The
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increased library size only minimally decreased overall identifications
foralphaDIA. We conclude that, for library-based search, alphaDIA pro-
vides at least competitive performance with common search engines
while maintaining a reliable and conservative FDR.

Predicted library search with alphaPeptDeep

While empirical libraries benefit from implicitly capturing instru-
ment and workflow specific properties, the key advantage of
deep-learning-predicted libraries of theentire proteome databaseis that
iteliminates cumbersome library measurement altogether. We recently
introduced alphaPeptDeep, an open-source, transformer-based deep
learning framework for predicting all MS-relevant peptide properties
from their sequences®.

With these state-of-the-art predicted libraries, we devised a
two-step search workflow in alphaDIA consisting of library refine-
ment and quantification (Fig. 5a). Furthermore, we reasoned that
our feature-free search should adapt well to the high-sensitivity
TOF data generated by the Orbitrap Astral MS instrument. For
benchmarking, we acquired and searched bulk Hela samples with
an alphaPeptDeep-predicted library containing 3.6 million tryptic
precursors. AlphaDIA identified on average more than 120,000 pre-
cursors, matching or exceeding the performance of the other tested
search engines (Fig. 5b). As comparison of inferred protein num-
bers in bottom-up proteomics depends on the chosen algorithm,
which is not public for the other tools, we wanted to provide an
upper and lower limit with heuristic grouping and more conservative
maximum-parsimony-based inference (Methods). Remarkably, in
the 60-SPD method (21 min) this corresponded to the identification
0f 9,800 protein groups with heuristic grouping and close to 8,600

proteins without grouping (Fig. 5d). The great depth of proteome
characterization was also reflected in the data completeness across
replicates (Extended Data Fig. 6). We validated the FDR control of
this more complex two-step workflow by appending the Arabidopsis
library, which externally confirmed rigorous control of false-positive
identifications (1.08% at protein level and 0.2% at precursor level;
Fig. 5f). While searches of fully predicted tryptic libraries are usually
faster than acquisition for non-ion-mobility data (Fig. Se), the explicit
modeling of theion mobility dimension leads toincreased processing
times (>1h per file) for large libraries and will need improvement in
future versions of AlphaDIA.

To compareidentified proteins across search engines, we mapped
peptide sequences to the UniProt reference proteome. Reassur-
ingly, more than 78,000 peptides and 8,100 proteins (counting only
nonambiguous matches) were jointly identified by all tested tools
(Fig. 5g). AlphaDIA had the highest number of uniquely identified
peptides among search engines, manifesting in high sequence cover-
age (median of eight peptides per protein; Fig. 5h) and few proteins
with only single-peptide evidence across the tested search engines
(Extended DataFig. 7).

To assess the accuracy of LFQ, we used the established strategy**
of three species proteomes mixed in defined ratios, acquired on the
Orbitrap Astral. Fully predicted library search combined with directLFQ
recapitulated the expected ratios with excellent precisionand accuracy
(Fig. 5i and Extended Data Fig. 8).

Multiplexed DIA has recently shown great potential to increase
throughput and depth**¢, To analyze such data, identifications must
be transferred between the channels, which involves an additional
channel FDR. We benchmarked it to a DIA dataset in which HelLa
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Fig. 5| Searching complex proteomes acquired on the Orbitrap Astral with
fully predicted spectral libraries. a, Six replicates of 200-ng HeLa bulk data were
analyzed on the Orbitrap Astral with a 60-SPD (21 min) gradient. A fully predicted
alphaPeptDeep library was used for a two-step search in alphaDIA. Different
search engines were used for comparison. Evosep liquid chromatography
illustration created with BioRender. b, Mean precursorsidentified across

search engines (n = 6) ¢, Mean modified peptides identified across processing
methods (n = 6)d, Protein groups identified at given CV cutoffs. e, Analysis

time for different processing steps when analyzed with on a32-core machine.

f, Arabidopsis entrapment search using the fully predicted library workflow. The
share ofidentified Arabidopsis proteins at 1% target-decoy FDR is shown. g, Venn
diagram showing the overlap of proteotypic peptides across processing methods.
h, Analysis of protein overlap between processing methods. Peptides were
mapped back to the same reference proteome, discarding ambiguous matches.
The median number of peptides per proteinis shown. i, Mixed-species experiment
for establishing quantitative accuracy. Human, yeast and E. coli proteomes were
combined in defined ratios and protein ratios are shown for proteins quantified in
atleast three of five replicates (box plot defined as per Methods).
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Fig. 6 | DIA transfer learning for discovery of modified peptides. a, A custom
deep learning model was trained for every experiment using the identifications
from the DIA search engine. Evosep liquid chromatography illustration created
with BioRender. b, Multiple properties were optimized, resulting in smaller and
better matching spectral libraries. ¢, Observed and predicted retention times for
dimethylated precursors before transfer learning. d, DIA transfer learning for the
retention times of dimethylated peptides. During training by stochastic gradient
descent, a20% validation set of precursors was held out to mitigate overfitting

and ensure generalization to the peptide space of interest. e, Retention times
after transfer learning. f, Comparison of the number of unique peptides
identified with the pretrained base model (default) to the transfer learned

model after retention time and MS2 transfer learning. g, Distribution of absolute
retention time errors for the pretrained base model (default), the nonlinear
calibration within alphaDIA and after transfer learning. h, Comparison of spectral
correlation before and after MS2 transfer learning. i, Number of unique observed
modifications by type.

cells were labeled as heavy and light using stable isotope labeling
by amino acids in cell culture (SILAC) and analyzed on a QE-HFX*’
(Extended Data Fig. 9). Proportions of identifications in ‘light only’,
‘heavy only’ and ‘light and heavy’ were very similar to the previous DDA
and DIAresults, validating our channel FDR. Interestingly, on the same
data, the absolute number of identified peptides was threefold higher
than in the original paper, reflecting advances in DIA search over the
last years in general and specifically in alphaDIA.

DIA transfer learning allows search with unseen PTMs

To date, fully predicted libraries address many of the needs of DIA
workflows but their pretrained prediction models are still best suited
to the sample and instrument types that were used in training. This
makes it necessary to train custom models for different situations

(forexample, PTMs), as they generally change retention and fragmen-
tation behavior compared to the unmodified peptide. We reasoned
that close integration of prediction by deep learning and the search
engine might have the potential learn to adapt to such differences, an
approach that we call DIA transfer learning. The subsequent search
with alphaDIA confidently identified precursors and their spectrawere
first collected into a training dataset. The general pretrained models
forretentiontime, fragmentation spectraand charge were fine-tuned
onthe experiment-specific training dataset (Fig. 6a,b). Thisresulted in
acustommodel, reflecting the behavior of peptides on the individual
LC-MSsetup. Ahold-out validation and test dataset ensured generali-
zation and prevented overfitting.

To assess the potential of transfer learning, we first appliedittoa
dataset of dimethylated HeLa peptides, an example of amodification
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that is known to alter retention times and fragmentation behavior
(Methods and Fig. 6¢). We found that transfer learning accurately mod-
eled the effects of the lysine and N-terminal dimethylation onretention
time behavior, improving R? from 0.69 to 0.99 (Fig. 6d-i).

Using the transfer learned model resulted in a total of 96,000
unique precursor and 8,613 proteinidentifications, a48% increase over
the 65,000 precursors identified without transfer learning and a 25%
increase in protein groups (Fig. 6d,e and Supplementary Fig. 5). This
gaininidentificationsis drivenadditively by bothimproved predictions
of retention times fromamedian prediction error of 317 sdown to only
11sand anincrease inthe median correlation to predicted spectrafrom
0.5t00.85 (Fig. 6g,h).

Given these large improvements, we wished to ascertain that
they were not the result of overfitting, despite the use of a hold-out
validation and test dataset. Similarly to before, we used entrapment
with the Arabidopsis proteome library followed by transfer learn-
ing with all precursors, including false-positive Arabidopsis hits
(Extended DataFig.10a). Remarkably, even successive rounds of trans-
fer learningled to more confident precursorsidentifications and <0.5%
false Arabidopsisidentifications at1% FDR (Extended Data Fig.10b-d).
Uponinspection, we found that predictions of target hits showed sub-
stantialimproved agreement with observed data, whereas the opposite
wastrue of false-positive Arabidopsis hits (Extended Data Fig.10e-g).
Thisimplies that end-to-end transfer learning generalizes to the pep-
tide behavior in the actual experiment, improvingidentifications and
control of false discoveries at the same time.

Discussion

AlphaDIA addresses critical DIA challenges including spectral data
complexity and the need for robust algorithms handling high-
dimensional data.

Our results demonstrate that already the first public version of
alphaDIA matches and, in many cases, surpasses existing software
toolsinterms of performance and versatility.

AlphaDIA’s feature-free processing method is central to its per-
formance and flexibility. Traditional DIA processing methods rely
on predefined feature boundaries, which can lead to information
loss, especially with the high sensitivity and the stochastic nature
of TOF detectors. By contrast, alphaDIA’s approach aggregates sig-
nals across multiple dimensions, ensuring that all relevant data are
used before making discrete identifications. Additionally, alphaDIA
extends the reach of DIA to novel acquisition modes. Together
with its open-source architecture, alphaDIA enables the commu-
nity to quickly iterate between experimental innovations and their
algorithmicimplementation.

Our benchmarking against established tools using both empirical
and predicted libraries showcases alphaDIA’s equal or superior per-
formance. This holds true across platforms and experimental designs
including the Orbitrap Astral, where alphaDIA identified over 120,000
precursorsand 9,800 protein groups ina 60-SPD format.

One of the most innovative aspects of alphaDIA is its transfer
learning capability. Through integration with the transformer models
of alphaPeptDeep, alphaDIA closes the loop between spectral library
predictionand DIA search. Our approach allows the model to adapt to
experiment-specific conditions, enhancing the accuracy of peptide
identifications. We showcased this ona dataset of dimethylated HeLa
peptides demonstrating substantial improvements in retention time
prediction and spectral correlation, resulting in a 48% increase in
unique precursor identifications and a25% increase in protein groups
compared tousing pretrained models alone. This allows the application
of DIAsearch to hithertoinaccessible areas such as post-translationally
modified proteins without PTM specific pretraining or to the better
identification of HLA peptides. We demonstrated that transfer learn-
ing not only improves overall identifications but even improves FDR
control, ensuring reliable results. The value of this approachis further

validated by the independent and parallel development of Carafe,
highlighting a convergence in the field toward transfer learning as a
standard tool in DIA processing*®.

The advancements presented by alphaDIA pave the way for
more comprehensive and accurate proteomic analyses, which will
beimportant as MS technology continues to evolve. The framework’s
open-source nature ensures that it can be continuously improved and
extended by the scientific community, fostering innovation and col-
laboration®. We, therefore, aim to establish alphaDIA as a cornerstone
for the next generation of DIA analysis, closely coupled to the develop-
ments in artificial intelligence.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-025-02791-w.
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Methods

Calibration and optimization of retention time, ion mobility
andm/z

During search, AlphaDIA calibrates library properties such asretention
time, ion mobility, precursor m/z, fragment m/zand search tolerances.
Calibration removes the systematic deviation of observed and library
values. Optimization reduces the search space to improve the confi-
denceinidentifications and to accelerate the search. Initial parameters
areanMSltolerance of 30 ppm, MS2 tolerance of 30 ppm, 0.11/K,ion
mobility tolerance and 50% retention time tolerance.

AlphaDIA supports search space optimization with fixed target
values such as a mass tolerance of 7 ppm and automatic optimiza-
tion to give optimal search results. By default, mass tolerances are
optimized with targeted optimization and retention time while ion
mobility tolerances undergo automatic optimization. First, all targeted
optimizations are performed at the same time, followed by separate
automated optimizations of the remaining properties.

For each optimization, the searchis performed batch-wise, start-
ing with the first 8,000 precursors and using an exponential batch
plan (16,000,32,000, 64,000, ...) until200 precursors are identified
at1% FDR. For targeted optimization, the search space of the property
of interest is updated to the 95% percentile of the precursors identi-
fied at 1% FDR. For automated optimization, the search space of the
property of interest is set to the 99% percentile of the precursors
identified at 1% FDR and a figure of merit is logged. MS1 error opti-
mization uses the correlation of the observed and predicted isotope
intensity profile as afigure of merit. For MS2, retention time and ion
mobility use the precursor proportion of the library detected at 1%
FDR as a figure of merit. Optimization is stopped if the property of
interest does not change substantially. The optimal value based on
the figure of merit is used.

Calibration of systematic deviations happens in parallel on the
basis of the subset of confident precursors identified at 1% FDR.
Library-encoded values are calibrated to match the dataset distribu-
tion using LOESS regression. For calibration of fragment m/z values,
upto 5,000 (but atleast 500) of the best fragments according to their
extracted ion chromatogram (XIC) correlation are used.

LOESS regression with uniformly distributed kernels is used for
each property to be calibrated (Supplementary Fig. 1). Regression is
performed onfirst-degree and second-degree polynomial basis func-
tions of the calibratable property. For m/z and ion mobility, two local
estimators with tricubic kernels are used. For retention time predic-
tion, six estimators with tricubic kernels are used. The architecture is
built on the scikit-learn package and can be configured to use different
hyperparameters and arbitrary predictors for calibration.

Scoring of precursors and decoys using convolution kernels
and supervised classification

AlphaDIA uses atwo-step scoring machine learning algorithmtoiden-
tify the best potential peak group for every library entry. The first
step builds on a collection of weighted convolution kernels, learned
during optimization and calibration of the spectral library. For every
precursor of interest, MS1 scans and MS2 scans contributing infor-
mation toward the identification are identified from the DIA cycle
pattern of the acquisition method. On the basis of a certain number
of highest-intensity fragments in the library (default: 12), dense rep-
resentations of the search space in ion mobility and retention time
dimension are assembled. To identify putative peak groups for each
precursor, a set of convolution kernels, reflecting the expected dis-
tribution in retention time, ion mobility and fragment intensity, are
learned during calibration and optimization. The convolution of the
search space is performed in Fourier space for fast processing and a
single score is calculated as a log sum across kernels and fragments.
Local maxima are identified using a simple peak-picking algorithm
and retention time and ion mobility boundaries of the peak group of

interest are defined from the joint scoring function. These candidates
are subsequently rescored for FDR estimation.

As the second step, AlphaDIA uses target-decoy competition
for scoring the quality of precursor spectrum matches. Upon library
import, paired known false-positive decoy peptides are created for
every target. By default, a mutation pattern GAVLIFMPWSCTYHKR
QENDBJOUXZ>LLLVVLLLLTSSSSLLNDQEVVVVVV is used. For every
library entry, target and decoy, the best high-scoring matches from
the convolution kernel score are used for supervised classification.
Upto47featuresare calculated for each peak group match, reflecting
the merit of the identification. A multilayer perceptron (MLP) deep NN
with layer sizes 0f 100, 50, 20 and 5 and a total of 47 input dimensions
(10,810 parameters) is trained to predict the probability of being a false
decoy identification. Training is performed with stochastic gradient
descent for ten epochs with a batch size of 5,000 and learning rate of
0.001. While training on an 80% training set, a 20% test set is held out
to mitigate overfitting. On the basis of the final score, the best (lowest)
decoy probability peak group is retained for every library entry and a
count-based FDRis calculated.

FDR calculation

AlphaDIA uses a count-based FDR on the level for assigning confi-
dence to precursor, peptide, protein and channels. Identifications
aregivenasaset of target and decoy identifications P = {pg,p1, ..., p;},
all associated with aground-truth decoy status decoy : P — {true, false}
andadeep-learning-derived decoy score y : P—R.Forevery precursor
with index i, the number of targets with lower or equal
decoy probability,

Nearget = |{p | Jj(p) SY(pi) B decoy (P) = false”’

and the number of decoys with lower or equal decoy probability,

Ndecoy = [P1 Y (P) <Y (i), decoy (p) = true}|,

are calculated. Furthermore, the total numbers of targets and decoys
inthe set are calculated as follows:

Niarger = {pldecoy (p) = false}|

Ndecoy = l{pldecoy (p) = true}]
Thelocal count-based g value is given as follows:

_ ndecoy Ntarget

T Ntarget Ndecoy
This is converted to the FDR using the minimum g value where a
precursor was accepted:

FDR; = min(g;,{g.1.y () > Yy (pp)}

By default, all identifications are filtered on a run-level 1% FDR
precursor threshold and global 1% protein group-level threshold.

Spectrum-centric fragment competition

Competition of precursors for a fragment ion is used as a
spectrum-centric element to mitigate double use of fragments for
multiple identifications from the same spectra. Following initial FDR
calculation, precursor candidates are filtered at 5% FDR and split into
groups of potentially fragment sharing. This is determined by the
quadrupolecycle pattern. Then, precursor candidates and their elution
width at half maximum are compared so that precursors with overlap-
pingelution width at half maximum have nomore than k,,, = 1shared
fragment masses within the chosen MS2 mass accuracy 6ys,. If two or
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more precursor candidates share more fragments than permitted, the
precursor candidate with the lowest decoy score is used.

Proteininference

Reporting all proteins whose sequence can be matched to any iden-
tified peptide can lead to inflation of false discoveries on the pro-
tein level®'. Following the approach outlined by Nesvizhskii et al.>?,
we consider a precursor as a single piece of evidence and the task of
protein inference is then to assemble these precursors into proteins
while controlling the accumulation of spurious protein identifica-
tions. AlphaDIA aims to implement a simple and transparent infer-
ence approach, allowing for three inference modes: library, maximum
parsimony and heuristic. Apart fromthe library mode, which uses the
inference performed during empirical library creation, protein infer-
enceis based onanimplementation of the ‘greedy set cover’ algorithm
with grouping by default (heuristic) and without grouping for strict
inference (maximum parsimony).

In brief, alphaDIA’s protein inference starts with a table of identi-
fied precursors. Each precursor is associated with a set of genes and
proteins and based on user choice, the inference is performed on the
gene or protein level (default: gene). Whileacommon peptide precursor
may matchmany proteins, a proteotypic peptide will match one single
protein. During grouping, the precursor and protein arrays are reshaped
intoa protein-centric view, where each proteinis associated with one set
of precursors. Then, proteins are sorted by the length of their precursor
setindescending order, and the protein with the largest number of pre-
cursorsremoved fromthe lists as the first query. The query is compared
to all remaining subject proteins. From each subject precursor set, all
precursors matching the query set are removed. If a protein’s precursor
set becomes empty, it is considered redundant and dropped. After all
precursor sets have been compared, the process repeats by reordering
the list and extracting the next query. After completion, retained que-
ries are denoted master proteins, necessary to explain all discovered
precursors. Instrict maximum parsimony mode all master proteins are
simply reshaped to precursor-centric format, linking each precursor to
onesingle protein ID. Inthe heuristic mode, the list of master proteins
is used to remove all non-master proteins from the initial precursor
table, effectively leaving each precursor with aset of associated proteins
comprised solely of master proteins. Thereby, the same precursor can
be claimed by different proteins, creating protein groups (see also the
tutorial notebookin the GitHub repository).

Protein FDR

Protein FDR is performed on the protein groups calculated during
protein inference. For all target and decoy protein groups, seven fea-
turesare calculated: the total number of precursors across runs for the
protein group, the mean decoy score for precursors acrossruns for the
protein group, the number of unique peptides for the protein group,
the number of unique precursors for the protein group, the number
of runs the protein group was found in, the lowest decoy score across
precursors for the protein group and the highest decoy score across
precursors for the protein group. We use an MLP to classify decoy pro-
tein groups from target protein groups. Correct training is ensured by
a20% held-out test set. Protein group FDRs are calculated on a global
level using the FDR mechanism described above.

Library refinement for fully predicted libraries

AlphaDIA uses an established two-step search strategy for library
refinement”. Following an initial search of all or a subset of raw files,
protein inference and FDR are determined as configured by the user.
All precursors are automatically filtered at 1% local precursor FDR and
global 1% protein group FDR, accumulated into a spectral library and
finally saved to the project folder. For each precursor, the identification
withthe best (lowest) decoy probability is used. By default, MS2 quan-
tities are used as annotated in the original library. If transfer learning

accumulation is used, custom user specified fragment types can be
selected and observed MS2 intensities are extracted. This spectral
library is then used for the second search with full MS2-based target-
decoy scoring without any relaxed FDR parameters. For protein infer-
enceand FDR, library-annotated protein groups are used.

Transfer learning

To create transfer learning libraries, precursors identified at 1% pre-
cursor and protein FDR are selected for requantification. Precursors
are requantified for user-defined fragmention types (a, b, ¢, x, y, z,
modificationloss, etc.) and a user-defined maximum charge (default:
2). Extracted fragment quantities are accumulated across samples and
ordered by their decoy probability. For each unique modified precur-
sor, the observations with the three lowest decoy scores are selected.
AlphaDIA also creates a high-quality subset where only precursors with
amedian fragment correlation greater than 0.5 areincluded. For these
precursors, we only retain fragments whose correlation values exceed
75% of the median fragment correlation of the respective precursor.
Theimplementation of transfer learning library is globally sequential.
Atany given time, we can limit the implementation to only parallelize
across alimited number of processes. This approach allows the process
to scale without storing all runs in memory.

For transfer learning, we prioritized robustness to ensure per-
formance instead of requiring users to define hyperparameters. The
transfer learning dataset is split into training (70%), validation (20%)
and test (10%) sets and trained for a maximum of 50 epochs. After
eachtrainingepoch, werunatestepoch forassessing the testloss and
data-specific test metrics. AlphaDIA uses acustom learning rate sched-
uler with two phases. The first phase is awarm-up period (default: five
epochs) during which the learning rate gradually increases to a maxi-
mum value (default: 0.005). After this warm-up phase, the learning rate
scheduler halvesthelearningrateif the training loss does not notably
improve (default: >5% test loss) within a patience period (default: three
epochs). Additionally, we use asimple early stopping mechanism that
interrupts training if the validation loss starts to diverge or does not
notably improve (default: 12 epochs).

After training, the deep learning model is stored on disk and can
be loaded as necessary. Retention time and ion mobility fine-tuning
are supervised by calculating the L, loss, R? and 95th percentile of
the absolute error on the training data. MS2 fine-tuning is super-
vised by calculating the L, loss, Pearson correlation coefficient,
spectral angle and Spearman correlation on the test data. Charge
fine-tuning is supervised by calculating the cross-entropy loss,
accuracy, precision and recall on the test data. All training and test
metrics are reported to the user. The specific implementation and
details of the test metrics can be found in the open-source code on
GitHub (www.github.com/MannLabs/alphadia).

Sample preparation of HeLa bulk digests

HelLa S3 cells (American Type Culture Collection) were cultured in
DMEM (Life Technologies) supplemented with 20 mM glutamine, 10%
FBS and 1% penicillin-streptomycin. After washing the cells in PBS
and cell lysis, the proteins were reduced, alkylated and digested by
trypsin (Sigma-Aldrich) and LysC (WAKO) (1:100 enzyme to protein,
w/w)inonestep. The peptides were dried and resuspendedin 0.1% trif-
luoroacetic acid and 2% acetonitrile; then, 200 ng of digest was loaded
onto Evotips (Evosep). The Evotips were prepared by activation with
1-propanol, washed with 0.1% formic acid (FA) and 99.9% acetonitrile
and equilibrated with 0.1% FA. After loading the samples, tips were
washed once with 0.1% FA.

Sample preparation of dimethylated peptides for transfer
learning

Hela cells were cultured as described above. A HeLa cell pellet was
lysed by boiling for 10 minin 1% SDC in 60 mM TEAB pH 8.5, followed
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by sonication in a Branson type instrument, Heinemann Sonifier 250
(Schwibisch Gmiind), operating at 20% duty cycle and 3-4 outputs
for 1 min and boiling for 5 min again. After cooling to room tempera-
ture, the protein concentration was determined using the trypto-
phan fluorescence-based WF assay in the microtiter plate format
using white Nunc 96-well plates with a flat bottom (Thermo Fisher
Scientific, 136101). After diluting the lysate to 1 pg pl™ in lysis buffer,
disulfide bonds were reduced by adding TCEP to afinal concentration
of 10 mM and briefly incubating for 10 min. Denatured protein lysate
was digested by ArgC Ultra (Promega) and LysC (WAKO) at 1:250 and
1:100 (enzyme to protein) ratios to the lysate at 37 °C for 3 h, respec-
tively. The peptides were labeled with a dimethyl group using 100 pl
of 1 ug pl™ digested peptides and adding 4 pl of 4% formaldehyde and
4 pl of 0.6 M NaBH,CN solution. The mixture was incubated at room
temperature and, every 10 min, 2.8 pl (2 pg of peptides) was sampled
until 60 minand added to17.2 pl of a1 %solution of trifluoroacetic acid
to quenchthereaction.

Sample preparation for the mixed-species experiments

For the mixed-species experiment, three different mixtures with vary-
ing mixing ratios of HeLa tryptic digest (Pierce, 1862824), Saccharo-
myces cerevisiae tryptic digest (Promega, V746A) and Escherichia coli
tryptic digest (Waters, 186003196) were prepared: sample A, 10:1:10
human, yeast and E. coli; sample B, 10:10:1 human, yeast and E. coli;
sample C, 10:4:7 human, yeast and £. coli. Five replicates containing
210 ng were loaded per condition.

Peptide loading onto C-18 tips

C-18 tips (Evotip Pure, Evosep) were loaded with the Bravo robot (Agi-
lent), followed by activation with 1-propanol, washing two times with
50 pl buffer B (99.9% acetonitrile and 0.1% FA), activation with 1-pro-
panol and two wash steps with 50 pl of buffer A (99.9% H,0 and 0.1% FA).
In between, Evotips were spun at 700g for 1 min. For sample loading,
Evotips were prepared with 70 pl of buffer A and a short spin at 700g.
Samples were loaded in 20 pl with the indicated concentration into
the remaining buffer A and spun at 700g for 1 min, unless described
otherwise. After sample loading, Evotips were washed with 50 pl of
buffer A and stored with 150 pl of buffer A after ashort spinat 700g at
4 °Cuntil MS acquisition.

MS data acquisition of dia-PASEF and synchro-PASEF data

We used the Evosep One LC system to separate peptide mixtures at
varying throughputs using standardized gradients. These gradients
consisted of 0.1% FA and 99.9% water (v/v) and 0.1% FA with 99.9% ace-
tonitrile (v/v) as the mobile phases. For the 60-SPD runs, peptides were
separated on a Pepsep column (8 cm x 150 pm inner diameter, 1.5 pm
C18; Bruker Daltonics) connected to a 10-um (inner diameter) fused
silica emitter (Bruker Daltonics). For the Whisper 40-SPD runs, we
used an Aurora Elite nanoflow column (15 cm x 75 pm inner diameter,
1.7 pum C18; lonOpticks).

The system was coupled with a timsTOF MS instrument (Bruker
Daltonics) to acquire data in dia-PASEF and synchro-PASEF modes.
Sample loads above 25 ng were analyzed using a timsTOF Pro2 and
those below 25 ng were analyzed using a timsTOF Ultra. The dia-PASEF
and synchro-PASEF methods were optimized using our Python tool,
py_diAID*. This tool maximizes precursor coverage by optimally posi-
tioning the acquisition scheme over the precursor cloud and enhances
sampling efficiency by adjusting the isolation window widths according
to precursor density.

The dia-PASEF method covers an m/zrange from300t01,200 with
eight dia-PASEF scans and two isolation window positions per scan
(cycle time: 0.98 s). The synchro-PASEF method covers an m/z range
from140to1,350 with four diagonal synchro scans (cycle time: 0.53 s).
The method files are deposited to the datarepository. Inboth modes,
the fragment scans are acquired with an m/zrange from100to 1,700.

Furthermore, ions are accumulated and ejected at 100-ms intervals
from the TIMS tunnel. The methods cover an ion mobility range from
1.3t00.7 Vcm™, calibrated with Agilent ESI tuning mix ions (m/z, 1/K,:
622.02,0.98V cm™>922.01,1.19 Vcm ™ 1221.99,1.38 Vcm ). The col-
lision energy was linearly decreased in relation to the ion mobility
elution, from 59 eV atanion mobility of 1.6 Vcm™to20 eVat 0.6 Vem™,

MS data acquisition of SWATH data on the Sciex 7600
Triplicates of 200-ng HeLa bulk digest were loaded onto C-18 tips as
described above and analyzed using an Evosep One system (Evosep)
coupled to a 7600 ZenoTOF MS instrument (Sciex) using Sciex OS
(version 3.3 or higher). Peptides were separated by the 60-SPD method
gradient (Evosep) on a PepSep reverse-phase column (8 cm x 150 pum)
packed with 1.5 um of C18 beads (Bruker Daltonics) at 50 °C connected
to the low micro electrode for 1-10 pl min™. The mobile phases were
0.1% FA in LC-MS-grade water (buffer A) and 99.9% acetonitrile and
0.1%FA (buffer B). The ZenoTOF MSinstrument was equipped with the
Optiflowion source using a spray voltage of 4.5kV, ion source gas1of
15 psi,ionsource gas 2 of 60 psi, curtain gas of 35 psi, collision-activated
dissociation gas of 7 and a temperature of 200 °C. SWATH data were
acquired using the following parameters: TOF MS start mass of 400 Da,
stop mass of 1,500 Da, TOF MS accumulation time of 50 ms, TOF MSMS
start mass of 140 Da, stop mass 0f 1750 Da, accumulation time of 13 ms
with dynamic collision energy turned on, a charge state of 2, Zeno
pulsing enabled and 60 variable SWATH windows covering the mass
range of 400-900 m/z.

MS data acquisition of mixed-species samples on the Orbitrap
Astral

For mixed-species experiments, five replicates of samples A, Band C
wereloaded onto C-18tips as described above. Samples were analyzed
using an Evosep One system (Evosep) coupled to a Orbitrap Astral MS
instrument (Thermo Scientific) using Thermo Tune software (version
1.0 orhigher). Peptides were separated by the 60-SPD method gradient
(Evosep) on a PepSep reverse-phase column (8 cm x 150 um) packed
with1.5 pm of C18 beads (Bruker Daltonics) at 50 °C. The analytical col-
umn was connected to a stainless-steel emitter withinner diameter of
30 um (EV1086). The mobile phases were 0.1% FAin LC-MS-grade water
(buffer A) and 99.9% acetonitrile and 0.1% FA (buffer B). The Orbitrap
Astral MS instrument was equipped witha FAIMS Prointerface and an
EASY-Spray source (both Thermo Scientific). Acompensation voltage
of -40 Vand atotal carrier gas flow of 3.5 L min were used and an elec-
trospray voltage of 2.0 kV was applied forionization. The MS1 spectra
wererecorded using the Orbitrap analyzer at 120,000 resolution from
m/z380 to 980 using an automatic gain control (AGC) target of 500%
and a maximum injection time of 3 ms. The Astral analyzer was used
for MS/MS scansin data-independent mode with 3-Thnonoverlapping
isolation windows with ascan range of 150-2,000 m/z. The precursor
accumulation time was 3 ms with an AGC target of 500%. The isolated
ions were fragmented using higher-energy collision dissociation (HCD)
with 25% normalized collision energy (NCE).

MS data acquisition of HeLa bulk data on the Orbitrap Astral

For analysis of HeLa bulk digest, 200 ng of lysate was loaded onto
C-18 tipsin six replicates as described above. Samples were analyzed
using an Evosep One system (Evosep) coupled to a Orbitrap Astral MS
instrument (Thermo Scientific) using Thermo Tune software (version
1.0 or higher). Peptides were separated by the 60-SPD method gradient
(Evosep) onan AuroraRapid reverse-phase column (80 mm x 0.15 mm)
packed with 1.7 pm of C18 beads (IlonOpticks) at 50 °C. The mobile
phases were 0.1% FA in LC-MS-grade water (buffer A) and 99.9% ace-
tonitrileand 0.1% FA (buffer B). The Orbitrap Astral MS instrument was
equipped with a FAIMS Pro interface and an EASY-Spray source (both
Thermo Scientific). Acompensation voltage of —40 Vand atotal carrier
gas flow of 3.5 L min™ were used and an electrospray voltage of 1.9 kV
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was applied for ionization. The MS1 spectra were recorded using the
Orbitrap analyzerat120,000 resolution from m/z380 to 980 using an
AGCtarget of 500% and a maximum injection time of 3 ms. The Astral
analyzer was used for MS/MS scansin data-independent mode with 2-Th
nonoverlappingisolation windows withascanrange of 150-2000 m/z.
The precursor accumulation time was 3 ms with an AGC target of 500%.
Theisolated ions were fragmented using HCD with 25% NCE.

MS data acquisition of dimethylated peptides on the

Orbitrap Astral

MS data acquisition was performed as described for mixed-species
samplesonthe Orbitrap Astral, unless described otherwise. For each of
the six timepoints, triplicates of 50 ng of labeled peptide were injected.
Samples were separated by the Whisper 40-SPD method gradient
(Evosep) on an Aurora Elite TS column (15 cm, 75 pm inner diameter;
AUR3-15075C18-TS, lonOpticks) at 50 °C. An electrospray voltage of
1.9 kV was applied. The MS1 resolution was 240,000 with a maximum
injection time of 100 ms and 6 ms for MS/MS.

Search and analysis of dia-PASEF and synchro-PASEF data with
alphaDIA

Data were searched with version 1.5.5 of alphaDIA using a previously
published® empirical HeLa library. A default single-step search was
used with the following parameters: target MS1 tolerance, 15 ppm;
target MS2 tolerance, 15 ppm; number of target candidates, 5. For
synchro-PASEF, quant_all = true was set and a quant_window of six
scans was used. All precursors with run-level FDR of 1% and protein
groups withaglobal FDR of 1% were accepted. CVs were calculated on
non-log-transformed directLFQ-normalized quantities.

Search and analysis of ZenoTOF data with alphaDIA

Datawere searched with version1.5.5 of alphaDIA using the HeLalibrary
mentioned above. A default single-step search was used with the fol-
lowing parameters: target MS1 tolerance, 15 ppm; target MS2 toler-
ance, 15 ppm; number of target candidates, 3; target retention time
tolerance, 300 s. All precursors with run-level FDR of 1% and protein
groups with global FDR of 1% were accepted. CVs were calculated on
non-log-transformed directLFQ-normalized quantities.

Search and analysis of empirical library data from Lou et al.
Rawfiles, libraries and FASTA files were used as provided in the original
publication*. All datawere searched with alphaDIA 1.5.5 using default
parameters. For timsTOF data, the following parameters were changed:
target MSl1tolerance, 15 ppm; target MS2 tolerance, 15 ppm; number of
target candidates; quant_window, 6; group level, genes, scans; target
retention time tolerance, 500 s. For QE-HF, the data search was per-
formed with a target MS1 tolerance of 5 ppm, target MS2 tolerance of
10 ppm, five target candidates, a quant_window of six scans, group level
of genes and scans and atarget retention time tolerance of 600 s. Data
for benchmarked tools were used as provided in the original publica-
tion. Analysis was performed as described in the original publication
except for reassignment of proteins. Instead, search-engine-specific
protein grouping was used. For alphaDIA, precursors passing a local
1% FDR and protein groups passing a global 1% FDR were accepted.

Search and analysis of HeLa bulk data with fully predicted
spectral libraries

For fully predicted library benchmarking, Spectronaut version
18.6.231227.55695, DIA-NN version 2.1.0, CHIMERYS® version 4.2.1
and alphaDIA version 1.10.2 were used. All analysis was performed
using the same FASTA file of reviewed human proteins without isoforms
(December 1, 2023). On all platforms, the search was performed for
tryptic precursors with carbamidomethyl modification at cysteine as
a fixed modification and variable methionine oxidation and protein
N-terminal acetylation with a maximum of two occurrences. Charge

states of 2-4 were included with sequence lengths between 7 and 35 aa
with a single missed cleavage. For CHIMERYS, only peptides with up
to 30 aa were used as the tool does not support 35 aa. For alphaDIA,
automatic library prediction by alphaPeptDeep was used with the
Lumos model for an NCE of 25. AlphaDIA used default parameters for
atwo-step search with the following changes: target MS1 tolerance,
4 ppm; target MS2 tolerance, 7 ppm. All data were analyzed at a1%
FDR threshold as enforced by the search engine. CVs were calculated
on non-log-transformed intensities as provided by the search engine
for all proteins.

For entrapment analysis, an Arabidopsis FASTA with reviewed
sequences and no isoforms was downloaded from UniProt (February
2,2024).The searchwas performed as described above with heuristic
inference. After the search, all shared precursorsincludingisoleucine-
leucine pairs were identified. Protein groups with shared precursors
were discarded.

Search and analysis of mixed-species data with fully predicted
spectral libraries

For all three species, reviewed nonisoform proteomes were down-
loaded from UniProt (February 21, 2024). Proteins were in silico
digested using tryptic cleavage with carbamidomethyl modificationat
cysteine as afixed modification and variable methionine oxidation and
protein N-terminal acetylation with a maximum of two occurrences.
Charge states of 2-4 were included with sequence lengths between
7 and 35 aa with a single missed cleavage. The library was predicted
using the alphaPeptDeep Lumos model at 25 NCE. AlphaDIA 1.5.4 was
used with default parameters for a two-step search with the follow-
ing changes: number of target candidates, 5; target MSl1 tolerance,
5 ppm; target MS2 tolerance, 10 ppm; target retention time tolerance,
200 sfor thefirst pass and 100 s for the second pass. Heuristic protein
inference was used on the gene level. Proteins with shared sequences
were removed as described above. For benchmarking accuracy, the
median LFQ ratio was calculated for protein groups identified in at
least three replicates.

Search and analysis of SILAC data with fully predicted spectral
libraries

Data were searched with version 1.5.5 of alphaDIA. A fully predicted
human library was generated with alphaPeptDeep as described above
but for an NCE of 27. The library was multiplexed across the light
channel without additional modifications and a heavy channel with
isotopic labeling of arginine (+10.008269) and lysine (+8.014199). A
single-step search was performed using alphaDIA with default param-
eters other than the following changes: target MS1 tolerance, 5 ppm;
target MS2 tolerance, 20 ppm; target retentiontime tolerance, 600 s;
channel_wise_fdr=true.

Search and analysis of dimethylated samples using transfer
learning

Afully predicted humanlibrary was generated onthe basis of areviewed
human UniProtlibrary (December1,2023) with the general pretrained
alphaPeptDeep model not trained on dimethylated peptides. The
peptides were modified with methionine oxidation and protein
N-terminal acetylation as variable modifications with a maximum of
two. N-terminal and lysine dimethylation were set as fixed modifica-
tions. Transfer search was performed using alphaDIA 1.5.5 with default
parameters other than the following changes: number of target can-
didates, 1; target MS1 tolerance, 4 ppm; target MS2 tolerance, 7 ppm;
target retention time tolerance, 1,200 s. Transfer learning quantifica-
tionwas enabled and set to b and yions withamaximum charge of 2and
the top three occurrences for every modified sequence. The generated
transfer learninglibrary was used for training with the default training
scheme described above. For evaluation, the original pretrained model,
the transfer learned retention time model, the transfer learned MS2
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modeland the fully transfer learned model were evaluated for search.
Allsearches were performed with the same parameters as the transfer
searchapartfromatargetretention timetolerance of 100 sfor searches
with the updated model.

Search and analysis of transfer learning entrapments

For evaluation of transfer learning on FDRs, entrapment experiments
with known false-positive Arabidopsis peptides were performed on the
unmodified HeLa bulk samples acquired on the Orbitrap Astral. The
entrapment library was generated as described above for the two-step
search with N-terminal glutamate and glutamine to pyroglutamate
conversionadded as variable modifications. Raw files were searched
with alphaDIA 1.5.5 using default parameters other than the follow-
ing changes: number of target candidates, 1; target MS1 tolerance,
4 ppm;target MS2 tolerance, 7 ppm; target retention time tolerance,
1,200 s. Transfer learning quantification was enabled and set to b and
yionswith amaximum charge of 2 and the top three occurrences for
every modified sequence. Transfer learning was performed using all
human and Arabidopsis precursors identified at the 1% FDR cutoff.
The transfer learning model was then reused for a second search
with anupdated target retention time tolerance of 150 s. The process
was repeated twice and the identifications after every search were
analyzed for the number of false-positive Arabidopsisidentifications
asdescribed above.

Data analysis and plotting

Allanalyses were performed using Python 3.11.11onmacOS 14.3.0. Data
manipulation and analysis were conducted using pandas 2.2.3, NumPy
1.26.4 and SciPy 1.15.2. Statistical analysis and machine learning were
performed using scikit-learn1.6.1. Data visualization was created using
matplotlib 3.9.0 and seaborn 0.13.2. Unless specified otherwise, box
plots extend from the first quartile (Q1) to the third quartile (Q3) with
the median shown as line. Whiskers extend from 1.5 times the inter-
quartile range below Q1 to 1.5 times the interquartile range above Q3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Allraw dataandsearchresults were deposited to the ProteomeXchange
Consortium repository with the MassIVE identifiers MSV0O00095138
and MSV000098448. Original benchmarking data for library search
as used from Lou et al.” were obtained from ProteomeXchange with
identifier PXD034709.

Code availability

All code presented herein as part of alphaDIA is free software acces-
sible under the permissive Apache license. Source code for AlphaDIA
(www.github.com/MannLabs/alphadia), alphaRaw (www.github.com/
MannLabs/alpharaw) and alphaBase (www.github.com/MannLabs/
alphabase) can be found on GitHub.
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Extended Data Fig. 2| Fragment signal across ion mobility and retention time
for the precursor LLELTSSYSPDVSDYK?. a, For each fragment all signal within
the 15ppm of calibrated mass tolerance is shown as well as the final integration
boundaries of the identified precursor. Due to the high sensitivity of time-of-
flight detectors fragment signal might only correspond to few ion copies. This
leads to stochastic sampling of ions and discontinuous signal across retention

time and ion mobility. Distinguishing fragment signal from other ion species

is challenging and prevents to determine clear peak boundaries. This requires
an algorithm which does not need a minimum number of data points or certain
peak shape. Itis likewise important to combine evidence across fragments for
determination of peak group boundaries.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Comparison of peptide and protein identification after
remapping to Uniprot. To compare protein search performance independent
of protein grouping effects, search engine results were mapped back to the
human Uniprot reference proteome. Peptide and protein level identifications
were compared for all peptides (a-f) as well as for only non-ambiguous peptide
matches (g-1). a,g, Distribution of peptides per protein across all searched
samples for. b,h, Venn diagram comparing unique peptides identified by the
different search engines. ¢, Venn diagram comparing protein groups identified

by different search engines, without performing protein inference. i, Venn
diagram comparing proteins identified by different search engines with protein
specific evidence. d,j Number of peptides identified at 1% FDR on average per
sample (mean) and across all samples (total). e, k, Number of proteins identified
at1% FDR on average per sample (mean) and across all samples (total). f1,
Proteinsidentified at 1% FDR backed by only a single peptide sequence across
all samples.
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Extended Data Fig. 8 | Quantitative accuracy benchmark using mixed species
proteomes on the Orbitrap Astral. a, Five replicates of three samples were
prepared with Yeast, E.coliand human proteomes mixed in defined ratios. Ratios
are shown for proteins quantified in at least three out of five replicates. (boxplot

defined as per Methods) b, Comparison of median protein group intensities at 1%
FDR between sample A and B. ¢, Comparison of median protein group intensities
at1% FDR between sample A and B. d, Comparison of median protein group
intensities at 1% FDR between sample C and B.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

0 XX X OO

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

L1X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Thermo Tune version 1.0 or higher was used for data acquisition on Thermo Fisher instruments, Sciex OS 3.3 or higher was used for data
acquisition on Sciex instruments. On Bruker instruments Bruker HyStar (v6.0), timsControl (v4.0.5_9ef8626_1) were used.

Data analysis The software presented as part of this manuscript, alphaDIA is available at github.com/MannLabs/alphadia/. The following versions of
alphaDIA were used with their use described in the methods section: alphadia v1.5.4,v1.5.5, v1.10.2. Further Spectronaut v18.6, DIA-NN 2.1.0
and Chimerys53 4.2.1 were used. All analyses were performed using Python 3.11.11 on macOS 14.3.0. Data manipulation and analysis were
conducted using pandas 2.2.3, NumPy 1.26.4, and SciPy 1.15.2. Statistical analysis and machine learning were performed using scikit-learn
1.6.1. Data visualization was created using matplotlib 3.9.0 and seaborn 0.13.2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All raw data and search results have been deposited to the ProteomeXchange Consortium repository with the MassIVE identifier MSV000095138. Original
benchmarking data for library search as used from lou et al. 2023 was used from Proteomexange with identifier PXD034709.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or n/a
other socially relevant

groupings

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. The goal of this study was to investigate technological differences rat her than
biological effects. Common model organisms (Hela) were selected to investigate the performance of DIA search methods in typical
proteomics experiments.

Data exclusions  No data were excluded from the analyses.

Replication At least triplicate measurements were used for benchmarks involving the number of identified peptides or proteins. For quantitative
benchmarks at least five replicates were used. This approach provides good balance between measurement time and statistically robust data.

Randomization  Samples measured with different methods were queued in alternating order (method 1, method 2, method 1, method 2, ... ) to minimize
potential technical bias caused by factors like column degradation or mass spectrometer performance drift over time.

Blinding No blinding was performed as the study was of technical nature and no observer bias is expected.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research
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Cell line source(s) The cell line Hela was purchased from DSMZ (No. ACC 57, https://www.dsmz.de/collection/catalogue/details/culture/
ACC-57) and originates from an epithelial cervix carcinoma of a 31-year-old woman in 1951.

Authentication The cell line has not been authenticated in the course of this study.
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  No, these cell lines do not belang to the commonly misidentified cell lines.
(See ICLAC register)

Plants

Seed stocks No plants where used in the study.

Novel plant genotypes  n/a

Authentication n/a
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