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Revealing the underlying cell-state landscape from single-cell data
requires overcoming the critical obstacles of batch integration, denoising

and dimensionality reduction. Here we present CONCORD, a unified
framework that simultaneously addresses these challenges within a single
self-supervised model. At its core, CONCORD implements a probabilistic
sampling strategy that corrects batch effects through dataset-aware
sampling and enhances biological resolution through hard-negative
sampling. Using only a minimalist neural network with a single hidden layer
and contrastive learning, CONCORD surpasses state-of-the-art performance
without relying on deep architectures, auxiliary losses or external
supervision. It seamlessly integrates data across batches, technologies

and even species to generate high-resolution cell atlases. The resulting
latent representations are denoised and biologically meaningful, capturing
gene coexpression programs, revealing detailed lineage trajectories and
preserving both local geometric relationships and global topological
structures. We demonstrate CONCORD’s broad applicability across diverse
datasets, establishing it as a general-purpose framework for learning
unified, high-fidelity representations of cellular identity and dynamics.

Cells express thousands of genes to perform specialized functions and
maintain homeostasis. Gene expression is highly correlated, orches-
trated by intricate gene-regulatory networks and cell-cellinteractions
that constrain cellstoastructured, low-dimensional ‘state landscape’
within the high-dimensional gene expression space'’. Advances in
single-cell technologies, particularly single-cell RNA sequencing
(scRNA-seq), enable empirical mapping of this landscape. Emerg-
ing evidence suggests that such landscapes may contain diverse fea-
tures—including discrete clusters, continuous trajectories, branching
trees and cyclic transitions—reflecting the underlying organization
of cellular states**. However, the presence and arrangement of these
features are typically unknown a priori, underscoring the need for
computational methods that canrobustly capture their topology and

geometry to illuminate the principles of development, homeostasis
and disease progression.

Dimensionality reduction, a form of representation learning, is
commonly used to uncover the structure of the cell-state landscape.
By projecting high-dimensional datainto alower-dimensional space,
key structural patterns become more tractable to visualize and analyze.
However, conventional methods such as principal component analysis
(PCA), non-negative matrix factorization (NMF)® and factor analysis®
often overemphasize broad cell type distinctions at the expense of sub-
tlestates and can confound processes like differentiation with cell-cycle
progression. These challenges are exacerbated by batch effects, poorly
understood sources of technical variation that obscure or skew genu-
ine biological signals. Although an array of batch-correction tools

'Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA. *Tetrad Graduate Program, University

of California San Francisco, San Francisco, CA, USA. *Department of Cell and Systems Biology, University of Miami, Miami, FL, USA. *Autonomous
Therapeutics Inc., Rockville, MD, USA. ®Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

8Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA. ’Center for Cellular Construction, University of California San Francisco, San Francisco,

CA, USA. [ <le-mail: gin.zhu@ucsf.edu; zev.gartner@ucsf.edu

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-025-02950-z
http://orcid.org/0000-0001-5539-6071
http://orcid.org/0009-0009-1402-8235
http://orcid.org/0000-0002-6216-011X
http://orcid.org/0000-0003-1021-1234
http://orcid.org/0000-0001-7803-1219
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-025-02950-z&domain=pdf
mailto:qin.zhu@ucsf.edu
mailto:zev.gartner@ucsf.edu

Article

https://doi.org/10.1038/s41587-025-02950-z

such as Harmony’, Scanorama®, Seurat’, single-cell variational infer-
ence (scVI)", linked inference of genomic experimental relationships
(LIGER)" and mutual nearest neighbors (MNN)*> have been developed,
they frequently make strong assumptions about the structure of techni-
calvariation, leading to distortions from overcorrecting or undercor-
recting batch effects”™. Furthermore, many face scalability issues when
applied to massive atlas-level datasets.

Among emerging representation learning approaches, contras-
tive learning has recently shown promise for single-cell analysis™2°.
Initially developed for domains such as image and natural language
processing” >, these methods learn informative cell representations
by comparing similar (‘positive’) cells to dissimilar (‘negative’) ones
within minibatches—small subsets of cells iteratively sampled during
training. By differentiating each cell from othersin the minibatch, the
model learns features that distinguish distinct cellular states. Simul-
taneously, aligning augmented versions of the same cell (typically
generated through random masking) encourages the model to capture
robust gene coexpression patterns rather than relying on the expres-
sion of individual genes*. As a result, the learned representations are
intrinsically robust to technical noise and dropout—pervasive artifacts
insingle-cell datasets®—thereby improving downstream tasks such as
clustering and cell type classification™ ™.

However, current contrastive methods face fundamental limita-
tions: supervised approaches require extensive manual annotation and
struggle to generalize to novel states or continuous trajectories’?’,
whereas unsupervised methods typically form minibatches through
uniform sampling" ", leading to two major shortcomings. First, uni-
formsampling emphasizes broad differences (for example, major cell
types) whileunderrepresenting rare subpopulations or subtle distinc-
tions, resultingin poor resolution of fine-scale cellular states. Second,
mixing cells from different datasets within the same minibatch ampli-
fies dataset-specific technical differences—known as ‘batch effects’—
causingthe modeltoinadvertently encode these artifacts rather than
capturing biologically meaningful variation. While strategies involving
generative adversarial networks”**”, unsupervised domain adaptation
through backpropagation® and conditional variational autoencoders
(VAEs)” attempt to mitigate batch effects, their objective of minimiz-
ing dataset-specific differences inherently conflicts with contrastive
learning’s goal of maximizing differences between dissimilar cells,
frequently leading to incomplete batch-effect correction and poten-
tially introducing distortions to the latent space. This dilemmaraises
the question of whether contrastive learning can fully capture cellular
diversity while minimizing batch effects.

Here, we address this open question by transforming a limitation
of contrastive learning—its sensitivity to minibatch composition—
into a strength. Our central insight is that minibatch composition
fundamentally determines the outcome of contrastive learning. We
introduce CONCORD, a framework that redefines the contrastive
learning process through a probabilistic minibatch sampling strategy
combining dataset-aware sampling and hard-negative sampling. By
strategically composing each minibatch primarily with cells from the
same dataset, thereby preventing the model from learning technical
differences among batches while focusing on biological differences
among cells, CONCORD simultaneously enhances embedding resolu-
tion and mitigates batch-specific artifacts. In contrast to prior meth-
ods that rely on complex architectures or auxiliary losses for batch
correction, CONCORD achieves dimensionality reduction, denoising
and dataintegration solely through principled sampling. We demon-
strate its effectiveness using a minimalist, single-hidden-layer neural
network across simulated and real datasets spanning a range of bio-
logical and technical complexity. CONCORD consistently outperforms
state-of-the-art methods, producing high-resolution, denoised encod-
ings thatrobustly capture diverse structures—including clusters, loops,
trajectories and trees—reflecting bona fide biological processes even
when the data originate from multiple technologies, time points or

species. This versatile framework scales from small to large datasets,
generalizesto modalities beyond scRNA-seq and establishes arigorous
foundation for next-generation single-cell machine learning models
todrive diverse downstream biological discoveries.

Results

The CONCORD framework

Analyses of single-cell sequencing data suggest that gene expression
isnot randomly sampled; rather, gene-regulatory mechanismsimpose
strong constraints, producing dynamically changing gene coexpres-
sion patterns reflected as intricate structures in the low-dimensional
embedding of cells'**°. For example, at homeostasis, cells typically
form discrete clusters corresponding to stable types or states, with
adjacent clusters representing closely related states (Fig. 1a, left). In
developmental or pathological contexts—such as early embryogenesis,
tissue repair or tumorigenesis—cells often follow branching trajecto-
ries from progenitors to terminal fates, with semistable intermediate
states forming denser clusters (Fig. 1a, middle). Cyclic gene expression
programs, such as those regulating the cell cycle, giverise to loop-like
structures>” (Fig. 1a, right).

To capturetheseintricate structures, CONCORD uses contrastive
learning with a minibatch sampling strategy that differs from con-
ventional uniform sampling (Fig. 1b). First, to enhance resolution, we
adopt hard-negative sampling®, where each minibatchis enriched with
closelyrelated cells (Fig. 1c), encouraging the model to extract features
that distinguish these ‘hard negatives’. We implemented two variants of
thisapproach: ak-nearest neighbor (kNN)-based sampler, inspired by
and extending previous work*, and the hcl mode originally proposed
by Robinson et al.*>. The kNN-based sampler probabilistically draws
cellsfromboth their local neighborhoods and the global distribution.
Localsampling—guided by a coarse graph approximation of the cellular
state landscape—compels the model to contrast each cell with its neigh-
bors, enabling detection of subtle differences between closely related
states. Simultaneously, global sampling preserves abroad perspective
of major cell types, ensuring robust encoding of large-scale distinc-
tions. By iteratively presenting the model with local neighborhoods
(for example, T cells in one minibatch and epithelial cells in another)
alongside the global distribution, the model allocates capacity torep-
resentbothlarge-scale distinctions and nuanced local details, leading
toimproved resolution in thelearned latent space (Fig. 1c). Followinga
similar principle, the hclmode uses Monte Carloimportance sampling
to approximate the expected loss of hard-negative sampling without
explicit neighborhood-based sampling (Methods).

When applied to asingle dataset, contrastive learning effectively
captures biological variation in the latent space (Fig. 1d). However,
with uniform sampling across multiple datasets, both biological and
dataset-specific variations are encoded, yielding a latent space that
separates by dataset and cell type (Fig. 1e). To address this, we intro-
duce a dataset-aware sampler that restricts each minibatch to cells
from asingle dataset, ensuring contrasts reflect only biological differ-
ences—asinthesingle-dataset setting (Fig. 1f). Dataset-specific biases
are further diminished through random minibatch shuffling; if such
signals are encoded in one batch, they are disrupted and overwritten
by subsequent minibatches from other datasets. Consequently, only
biologically meaningful signals, such as gene coexpression patterns,
persist throughout training, producing a latent space that reflects
biological variation with minimal batch effects (Fig. 1f). In cases where
datasets have minimal or no shared cell states, a leaky dataset-aware
sampler enables soft alignment without imposing artificial harmoni-
zation, supporting flexible integration that respects dataset-specific
signals (Extended Data Fig. 1a). Notably, this approach does not per-
form any explicit modeling of batch effects; instead, it selectively
captures and encodes biological programs shared across datasets.
Unlike prior batch-correction strategies that struggle in contrastive
settings because of competing objectives, CONCORD integrates batch
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Fig.1| CONCORD minibatch sampling enables high-resolution, batch-effect-

mitigated representation learning of single-cell data. a, Schematic of hypothetical

cell-state landscapes and corresponding low-dimensional representations that
capture key structural features. b, Overview of the CONCORD framework, which

replaces the conventional minibatch sampler with ajoint hard-negative and dataset-

aware sampling scheme, enabling integrated, high-resolution representation
learning with a minimalist contrastive model. ¢, Uniform versus hard-negative
samplingin asimulated four-state dataset. Heat maps show simulated expression

Biological variation

and latent space, accompanied by density curves with black lines indicating
thedistribution of cells in an example minibatch under each scheme. Resulting
UMAPembeddings areshown. d, Contrastive learning on asingle dataset using

the conventional uniform sampler, which draws cells uniformly from the entire
dataset to formminibatches. e, Standard contrastive learning mixes cells from
different datasets within minibatches, amplifying batch effectsin the resulting latent
embedding. f, CONCORD mitigates batch effects by predominantly contrasting cells
within each dataset and randomly shuffling minibatches during training.
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correction directly into the contrastive learning process through its
sampling design, producing latent representations inherently robust
to batch effects.

Both the hard-negative and the dataset-aware samplers follow
a unified principle: probabilistically structuring minibatches to bal-
ance global biological diversity with local and dataset-specific vari-
ation. We integrate both samplers into a joint sampling framework,
wherethelikelihood of selecting a cell satisfies both sampling schemes
(Extended Data Fig. 1a,b and Methods). This generalized sampling
strategy fundamentally reconfigures contrastive learning, enabling
high-resolution representation learning and robust dataset integra-
tion within a single contrastive objective, and forms the core of the
CONCORD framework (Extended Data Fig. 1c). With this simple inno-
vation, CONCORD outperforms state-of-the-art methods using only
aminimalist encoder with a single hidden layer, demonstrating that
sampling designalone cantransform contrastive learning performance
onsingle-celldata—even without deep or complex architectures. This
simplicity reduces training data requirements, enhances robustness
andincreases interpretability of the learned latent space.

CONCORD learns denoised latent representations that
preserve underlying structures

Recovering biologically meaningful insights from single-cell data
requires preserving the underlying geometric and topological structure
of the gene expression space. To evaluate whether CONCORD meets
this criterion, we benchmarked its performance on a suite of simu-
lated datasets. As existing simulators often fail to generate complex
biological structures like branching or loops, we developed a custom
workflow to create realistic structures with flexible control over noise
and batch effects (Fig. 2a).

To assess the quality of learned representations, we established
a comprehensive evaluation pipeline. While standard benchmarks
like the single-cell integration benchmarking (scIB) framework>*
effectively measure label preservation and batch mixing, they are
often insufficient for evaluating the preservation of complex bio-
logical structures®?. We, therefore, supplemented them with prob-
ing classifiers***—astandard approach for evaluating representation
learning—to assess the conservation of biological labels in the latent
space. Additionally, to quantify structure fidelity, weincorporated geo-
metric metrics suchas trustworthiness and global distance correlation,
as well as topological data analysis (TDA) based on persistent homol-
ogy and Betti numbers (Fig. 2b). These metrics evaluate embedding at
complementary scales: trustworthiness quantifies local neighborhood
preservation, while persistent homology captures global topological
features—suchasclusters (Betti-0), loops (Betti-1) and voids (Betti-2).
Thesefeaturesare visualized in persistence diagrams and Betti curves,
wherestable structures appear aslong-lived featuresinthe persistence
diagram and extended plateaus in the Betti curve, whereas transient,
noise-induced features vanish quickly.

We evaluated both CONCORD variants on a simple, single-batch
simulation consisting of three well-separated clusters corrupted by
cluster-specific Gaussian noise (Fig. 2c and Extended Data Fig. 2a).
Compared to a broad set of dimensionality-reduction methods—
including diffusion map®’, NMF, factor analysis®, FastICA*, latent
Dirichlet allocation®, zero-inflated factor analysis (ZIFA)**, scVI'*®

and potential of heat diffusion for affinity-based trajectory embed-
ding (PHATE)*—CONCORD cleanly separated clusters, as reflected
in both the latent space and pairwise distance matrices. In contrast,
many methods failed to fully resolve the clusters or introduced spuri-
ous structures, such as trajectory-like artifacts (Fig. 2¢). Persistent
homology confirmed these observations; CONCORD’s Betti-O plateau
accurately reflected the expected three-cluster topology and closely
matched the noise-free reference, highlighting its strength in both
denoising and structure preservation.

On a more complex simulation with three loops and multiple
branching points (Fig.2d and Extended Data Fig. 2b), CONCORD faith-
fully recovered the complete topology. By contrast, other methods
either distorted the structure or failed to detect the correct number
of loops in Betti analysis, likely because of excessive noise retention.
Although PHATE produced avisually similar embedding, its Betti curve
identified only asingle persistentloop, indicating that critical topologi-
calfeatures were obscured inits latent space.

Quantitative evaluation of geometric and topological metrics con-
firmed that CONCORD consistently outperformed competing methods
(Fig. 2e,f). Notably, CONCORD maintained high trustworthiness across
awiderange of neighborhoodsizes, underscoring its ability to preserve
local geometry at multiple scales (Extended Data Fig. 2c,d). In contrast,
other methods exhibit considerable declinesin trustworthiness, indi-
cating aloss of fine-scale geometric relationships.

To assess the impact of hard-negative sampling, we simulated
a hierarchical branching tree (Fig. 2g and Extended Data Fig. 2e-g).
Without hard-negative sampling, subbranches were unresolved. Mod-
erate enrichment of hard negatives substantially improved resolu-
tion for both CONCORD variants, with the kNN mode being more
susceptible to excessive local focus, which obscured global distinctions
(Extended DataFig. 2f,g).

CONCORD learns a coherent, batch-effect-mitigated latent
representation

Batch effects often appear as dataset-specific global signals that can
obscurebiological variation.In CONCORD, these signals rapidly dimin-
ish during training when minibatches are restricted to single datasets
(Fig. 1f). Unlike conventional batch-correction methods that rely on
explicit alignment models, CONCORD makes minimal assumptions
about the source or form of batch effects and instead prioritizes learn-
ing coherent, biologically meaningful gene covariation patterns. This
leadsto more accurate preservation of biological structure while miti-
gating technical artifacts.

We first evaluated CONCORD on a simulated five-cluster dataset
with varying noise, batch effects and batch size imbalance (Fig. 3a
and Extended Data Fig. 3a). Across these conditions, CONCORD was
the only method to robustly recover all five clusters. This success is
attributable to its dataset-aware sampler, as using a conventional
uniform sampler (that is, the naive contrastive approach) resulted in
pronounced batch effects. In more challenging scenarios with more
batches and greater imbalance, CONCORD and Harmony were the
only methods that consistently separated the underlying clusters
(Extended DataFig. 3b).

Single-cell studies ofteninvolve continuous state transitions sam-
pled across different conditions, where cell states may only partially

Fig. 2| Benchmarking CONCORD and other dimensionality-reduction
methods across diverse structures. a, Schematic of the simulation pipeline,
which first produces a noise-free gene expression matrix based ona user-
defined datastructure, then introduces noise following a specified noise model
and finally applies batch effects. b, Schematic of the benchmarking pipeline.
Latent representations from each method are compared with the noise-free
ground truth to assess preservation of topological and geometric features.

The scIB metrics* and probing classifiers are used to evaluate biological label
conservation and batch harmonization. ¢, Performance of CONCORD and

competing methods on a three-cluster simulation with dimensions listed.

UMAP embeddings, cosine distance matrices and persistent homology analysis
(persistence diagram and Betti curves) are shown for each method. The H, point
atinfinity was excluded from the persistence diagram and curve. d, Performance
onacomplextrajectory with three loops, highlighting the same diagnostic plots
asinc.e,f, Summary of key geometric and topological performance metrics for
the cluster simulation (e) and the complex trajectory simulation (). g, KNN graph
visualization of the latent spaces from a complex-tree simulation, with zoomed-
in views of the highlighted branch.
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overlap. Methods that make explicitassumptions about the datastruc-
ture—such asrequiring matched clusters—often failin these scenarios
and produce distorted embeddings. We systematically tested this by
simulating batch effects on trajectories, loops and trees with vary-
ing degrees of state overlap (Fig. 3b—d and Extended Data Fig. 3c,d).
Many competing methods exhibited poor alignment and introduced
artificial structures. In contrast, both CONCORD variants consistently
recovered the correct topology with reduced noise, even when the
overlap between batches was minimal.

We further tested performance on a trajectory with 16 distinct
batch effects (Fig. 3e). While scVI and CONCORD both aligned the
batches, scVIshowed incomplete alignment at fine resolution. In con-
trast, CONCORD—particularly the kNN variant—achieved superior
alignment and noise reduction. Quantitative metrics confirmed these
observations; CONCORD preserved local geometry, evidenced by
high trustworthiness (Fig. 3e,f), while exhibiting lower global distance
correlation—a common trade-off in manifold learning****. Robustness
was further demonstrated in a stress test where models were trained
onafewrandomly selected batches and used to predict the remaining
ones (Fig.3g). CONCORD maintained strong alignment, whereas scVI's
performance degraded markedly as the number of training batches
decreased. This suggests CONCORD’s robustness stems from learn-
ing gene coexpression programs rather than explicitly modeling and
correcting batch effects.

Across all simulations, CONCORD achieved high biological label
conservation (Fig. 3h and Supplementary Table 1), with slightly lower
batch-correctionscoresbecauseit does not explicitly merge batches.
By contrast, although scVlachieved high batch-mixingscores, it often
produced overmixed embeddings that obscured underlying struc-
ture (Extended Data Fig. 3). The aggregate geometric score for CON-
CORD was reduced by its lower global distance correlation despite
consistently strong trustworthiness; however, for data with manifold
structures—such as single-cell data—global distances are often not
reflective of true distance relationships between cell states*. There-
fore, preservinglocal neighborhood fidelity is typically prioritized in
single-cell analysis***¢. Nevertheless, CONCORD consistently ranks
among the top methods for topological preservation, biological label
conservation and overall performance. These results demonstrate
that CONCORD provides a reliable and generalizable framework for
dimensionality reduction and batch correction, even when the data
structure is unknown or batch overlap is limited.

CONCORD aligns whole-organism developmental atlases and
resolves high-resolution lineage trajectories

To assess whether CONCORD captures biologically meaningful struc-
tures, we benchmarked it against popular integration methods on
Caenorhabditis elegans embryogenesis—a well-characterized system
withanearlyinvariant lineage tree* that is also conserved in the related

species Caenorhabditis briggsae*. Packer et al. initially generated a
lineage-resolved atlas of C. elegans*’, which was recently expanded
by Large et al. to include over 200,000 C. elegans cells and 190,000
C. briggsae cells*®. With expert-curated annotations generated through
iterative, labor-intensive zoom-in analyses and validated by fluores-
cenceimaging, these datasets provide anideal benchmark for evaluat-
ingwhether integration methods canaccurately reconstructand align
developmental trajectories across species.

We first tested CONCORD on the original C. elegans atlas*
(>90,000 cells) (Extended Data Fig. 4a). The resulting embedding
revealed disconnected trajectories among early-stage cells, which
we hypothesized reflected missing states. These gaps persisted even
afterincluding C. elegans cells from the expanded Large et al. dataset.
We, therefore, collected a new C. elegans dataset enriched for early
embryos; adding this dataset resolved the gaps and yielded a continu-
ous trajectory from zygote to terminal fates (Extended Data Fig. 4a).
Using the extensive cell type and lineage annotations, we bench-
marked CONCORD against other methods for batch correction and
label conservationand assessed its sensitivity to key hyperparameters
(Extended DataFig. 4b-e). CONCORD greatly outperformed existing
methods, with stable performance across the recommended hyperpa-
rameter range. Notably, the effect of hard-negative sampling mirrored
trends observed in simulations; moderate local enrichmentimproved
resolution, whereas excessive local sampling disrupted global structure
(Extended Data Fig. 4f).

When applied to over 410,000 cells from the combined
cross-species dataset and our new early-embryo collection, CON-
CORD generated a unified developmental atlas that closely matched
the expert annotations, achieving cross-species alignment and
resolving lineages at ultrahigh resolution (Fig. 4a,b). Both the hcland
kNN modes yielded similar, high-quality embeddings (Fig. 4a and
Extended Data Fig. 5a). Because scIB** could not scale to this dataset,
we quantified integration performance using probing classifiers to
assess batch mixing, cell type and lineage label preservation (Fig. 4c).
CONCORD excelled on these metrics, whereas other methods either
failed to fully align the species or lost resolution, consistent with visual
inspection of the uniform manifold approximation and projection
(UMAP) embeddings. As the complexity of the learned structure
exceeded the capacity of two-dimensional (2D) UMAP, we encourage
readers to explore the interactive three-dimensional (3D) visualiza-
tions (https://qinzhu.github.io/Concord_documentation/galleries/
cbce_show/#_tabbed 1 1).

Projectingthe lineage tree onto CONCORD’s embedding revealed
strong concordance with established lineage and fate relationships
(Extended DataFig. 5b). For example, the ASE, AS] and AUA neurons—
derived from AB progenitors—formed branching trajectories that
mirrored their truelineage structure (Fig. 4d). In contrast, other meth-
ods introduced discontinuities, failed to resolve key bifurcations or

Fig. 3| Benchmarking CONCORD and other data-integration methods across
diverse structures. a, Two-batch, five-cluster simulation with imbalanced batch
sizes. Heat maps show the noise-free ground truth and the input data with noise
and batch effects. Latent spaces from each method are visualized by UMAPs,
colored by batch. Full cluster simulation results are in Extended Data Fig. 3a,b.
‘Contrastive’ refers to naive contrastive learning that uses the same encoder
architecture and objective as CONCORD but with uniform sampling.

b, Trajectory simulation with varying degrees of state overlap between batches.
Theinputstructure is shown by a heat map and PCA. For each method, the latent
spaceisvisualized by akNN graph (k =15) colored by simulated time to assess
cross-batchintegration along the trajectory. ¢, Loop simulation with varying
degrees of state overlap between batches. kNN graphs are shown for the ground
truth (edges omitted) and for CONCORD and selected methods. Full results
arein Extended DataFig. 3c. d, Tree simulation with varying degrees of state
overlap between batches. kNN graphs are shown for the ground truth, CONCORD
and selected methods. Full results are in Extended DataFig. 3d. e, Trajectory

simulation with 16 batches, each with a different batch effect, as shown by the
heat map. kNN graphs (k =15) colored by batch are shown for each method’s
latent embedding. For scVIand both CONCORD modes (hcland kNN), kNN
graphs colored by simulated time are also shown. A table displaying detailed
benchmarking metrics is provided (metric definitions in Methods).

f, Trustworthiness across neighborhood sizes for the multibatch simulation in
e.g, Prediction with limited training data for scvVland CONCORD. A specified
number of batches were held out during training. We ran 5 replicates with
random batch withholding and quantified batch mixing using the kNN-based
batch classification error (k=30). Means and 95% confidence intervals are
plotted. h, Ranking of integration methods across simulated data, showing ranks
for batch correction, biological label conservation, topological and geometric
metrics, and overall score. For cluster simulations, Betti curves became noisy
when the number of clusters exceeded three and we did not find a robust way to
infer Betti numbers; therefore, topology scores were excluded for these datasets.
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generated artificial structures. Strikingly, CONCORD’s latent space
resolved ASE-left and ASE-right neurons, characterized by differen-
tial expression of GCY receptors (Fig. 4e). Although morphologi-
cally symmetric, these neurons exhibit functional asymmetry in
salt-sensing responses™',

To systematically assess preservation of lineage structure in the
latent space, we evaluated lineage purity and average lineage distance
within randomly selected kNN neighborhoods, with k ranging from
30t0300 (Fig.4f). Wereasoned thatif alatent representation reflects
lineage structure, each cell’s neighbors should belong predominantly
tothe samelineage or animmediate relative—captured by high purity
and low average lineage distance. CONCORD maintained high lineage
purity even at large values of k. Furthermore, neighboring cells from
different lineages were often close relatives, asreflected by alow aver-
agelineage distance. Incontrast, other methods produced embeddings
with substantially more mixed-lineage neighborhoods. Collectively,
these findingsindicate that the CONCORD latent space preserves genu-
ine lineage structures, enabling refinement of existing annotations
(Extended DataFig.5c) and highlighting its broader utility forinferring
bona fide differentiation trajectories in developmental studies®>*.

In addition to fate bifurcation in neuronal development, fate
convergence from different lineages is a common patternin C. ele-
gans organogenesis. In the context of muscle formation, CONCORD
accurately resolved how the MS, C and D lineages converge into
well-resolved subbranches of body wall muscle, as well as rare con-
vergence events such as the integration of ABplp/ABprp-derived and
MS-derived cells into intestinal muscle (mu_int) (Fig. 4g). Pharyn-
geal development—featuring complex branching and convergence
of AB-derived and MS-derived cells—was likewise resolved in detail
by CONCORD (for example, pm3-pm5 deriving from both AB and MS
lineages, and pm1-pm2 and pmé6-pm8 specific to AB/MS lineages),
whereas other methodsrecovered fewer fine-grained details (Fig. 4h).
Crucially, all analyses were performed directly in CONCORD’s global
latent space, without subset-specific highly variable gene (HVG) selec-
tion or realignment—steps that are often necessary for other methods.

Lastly, to test model generalizability, we trained CONCORD
and scVIon a subset of C. elegans batches and projected them onto
unseen C. elegans and all C. briggsae data (Fig. 4i). CONCORD suc-
cessfullyintegrated the held-out batches, aligned the two species and
resolved the majority of cell types. In contrast, scVI produced a mark-
edly lower-quality projection, with poor cross-species alignment and
diminished cell type resolution.

CONCORD captures cell cycle and differentiation trajectories
in mammalian intestinal development

Unlike C. elegans, where early divisions are largely driven by maternal
transcripts™, mammalian development involves extensive proliferation
coupled with ongoing differentiation. To assess whether CONCORD

can resolve these intertwined processes, we applied it to a single-cell
atlas of embryonic mouse intestinal development®, which spans mul-
tiple developmental stages, batches, spatial segments and enriched
cell populations—posing a challenging integration task because of
incomplete batch coverage.

CONCORD effectively integrated the data and resolved
fine-grained substructures across diverse cell types (Fig. 5a and
Extended DataFig. 6a). Both hcland kNN modes revealed loop-like pat-
ternswithinmany celltypes—asevidenced by persistenthomology—and
often missed by other methods (Fig. 5b—d and Extended Data Fig. 6b).
The majority of these loops correspond to cell-cycle progression, sup-
ported by progressive expression of cell-cycle gene programs along the
loops (Extended DataFig. 6b). For example, inintestinal epithelial cells,
CONCORD not only resolved rare subtypes such as enteroendocrine
cells but also revealed two parallel trajectories—each encompassing
both a cell-cycle loop and a differentiation path—corresponding to
stem cell proliferation and differentiation in spatially distinct regions
(Fig. 5b). These structures were not captured by other methods and
were supported by adult zonation markers such as Bex4 and Onecut2
(ref. 56), suggesting that CONCORD can detect epithelial zonation as
early asembryonic day 13.5.

Inthe enteric nervous system (ENS), CONCORD captured the cell
cycle of Sox10* progenitor cells and identified two distinct branches
of neuronal development marked by Etv1 and Bnc2, matching previous
observations” (Fig. 5c). These branches appear to converge through
shared expression of neuronal maturation genes broadly active at late
stages of both branches (Extended DataFig. 6¢).

In mesenchymal cells—which comprise a major fraction of this
dataset—CONCORD uncovered extensive heterogeneity within the
Pdgfra” and smooth muscle populations (Fig. 5d). These included four
consecutive cell-cycle loops marked by the expression of £bf1, Slit2,
Kit and Acta2, with gradual transitions between the loops. Notably,
EbfI and Slit2 have been linked to mesenchymal multipotency®*,
while Kit marks interstitial cells of Cajal and their progenitors®®. Unlike
traditional approaches where cell cycle often confounds cell type
annotation, CONCORD preserves both proliferation and differentia-
tion structure, enabling the identification of previously uncharacter-
ized subpopulations. The complexity of these structures necessitates
3D visualization and we encourage readers to explore the interactive
embeddings (https://qinzhu.github.io/Concord_documentation/
galleries/huycke_show/).

Unlike Seurat and scVI, which left many latent dimensions under-
used, CONCORD produced adense and interpretable latent space that
reflects rich biological structure and makes full use of its representa-
tional capacity (Fig. Se). Each latent dimension typically encapsulates
multiple gene coexpression programs, which can be interpreted at
either single-cell or cell-state resolution using gradient-based attribu-
tion methods® in a context-dependent manner (Fig. 5f). For instance,

Fig.4|Benchmarking CONCORD onC. elegansandC. briggsae
embryogenesis atlas. a, UMAPs from CONCORD and other integration methods,
colored by inferred embryo time and species. Zoomed-in UMAPs for scVland
CONCORD (hcl) show approximately matched regions, colored by lineage and
species. b, Global 2D and 3D CONCORD (hcl) embeddings colored by cell type
andinferred embryo time. ¢, Overlap between expert-curated cell type and
lineage annotations. A histogram shows lineage annotations concentrated in
early-stage cells and cell type annotations predominantly in late-stage cells.
Integration performance was evaluated separately for early-stage cells (lineage
labels) and late-stage cells (cell type labels) using probing classifiers. d, Global
3D UMAPs of CONCORD, scVIand Harmony, highlighting cells mapped to the
lineage subtree that give rise to ASE, AS] and AUA neurons. For each method,
the most representative view was selected. e, Heat map showing the top 50
most variable latent dimensions in the ASE, ASJ and AUA neuron subset for scVI,
Harmony and CONCORD (hcl). Expression of gcy-5and gcy-14is overlaidona
zoomed UMAP recomputed from the CONCORD latent space. f, Lineage purity
and average lineage distance computed across 2,000 randomly selected kNN

neighborhoods for each method. For each randomly sampled anchor cell, we
retrieve its k-nearest neighbors in the embedding and compare their lineage
relationships to the lineage graph. Purity is the fraction of neighbors assigned to
the same lineage as the anchor; average lineage distance is the mean hop distance
onthelineage tree from the anchor toits neighbors. Box plots show the median
(center line), quartiles (box limits), 1.5x the interquartile range (whiskers) and
outliers (points). g, Zoomed-in UMAPs for mesoderm (excluding pharynx),
highlighting major input lineages and cell types. Each lineage is represented

by its cluster medoid; edges connect parental lineages to daughters following
thelineage tree. h, Zoomed-in UMAPs for pharynx, annotated by cell type and
broad input lineages. Selected lineage paths to pm1/2, pm3-pm5and pm7 are
highlighted. i, scVland CONCORD were trained on the combined C. elegans data
from Packer etal.*” and our newly collected batch and then used to project the
full atlas including C. elegans and C. briggsae data from Large et al.**. Resulting
UMAPs are colored by species and integration performance was evaluated with
probing classifiers. Acc., accuracy; annot., annotation; avg., average.
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Fig. 5| Benchmarking CONCORD on mammalian intestine development. a, The
2D and 3D UMAP visualizations of CONCORD (kNN mode) latent space, colored
by cell type and cell-cycle phase, with UMAPs from scVl and Seurat (colored by
celltype) for comparison. b, Zoomed-in views of epithelial cells in the 3D global
UMAP, colored by cell subtype, zonation and expression of zonation-specific
markers (Bex4 and Onecut2). A red marker and arrow indicate the viewing

angle within the 3D global UMAP. Persistence diagrams are shown for scVl and
CONCORD. ¢, Zoomed-in view of ENS cells, colored by cell-cycle phase and

cell state or branch annotations, based on Morarach et al.”’, along with state-
specific marker expression. A red marker and arrow indicate the viewing angle.

Persistence diagrams are shown for CONCORD and scVI.d, Zoomed-in view of
Pdgfra- mesenchymal cells and smooth muscle cells, colored by cell-cycle phase,
subtype annotation and selected subtype-specific markers. Ared marker and
arrow indicate the viewing angle. e, Heat map of latent representations generated
by CONCORD (kNN), Seurat and scVI. f, Interpretation of the CONCORD latent
space using gradient-based attribution techniques. Activation of Z,, in epithelial
and ENS cellsis attributed to the coexpression of epithelial-specific and neuron-
specific gene sets in their respective contexts. Gene Ontology (GO) enrichment
analysis of these gene sets is shown. FDR, false discovery rate.

latent neuron46 (Z,,) isactivated inboth epithelial cellsand ENS cells
but attribution analysis revealed that it is driven by two distinct sets
of highly coexpressed genes depending on the cellular context (Fig. 5f
and Extended Data Fig. 6¢). In epithelial cells, Z,, activation is linked
to goblet-cell-specific genes enriched in glycosylation pathways,
whereas, in ENS cells, it reflects neuronal maturation genes expressed
in late-stage neurons. Notably, neither gene set shows strong expres-
sionoutsideits respective context,demonstrating that the CONCORD
latent space captures biologically meaningful, context-specific gene
coexpression programs.

CONCORD generalizes across modalities and scales
CONCORD’s domain-agnostic design allows it to be applied to diverse
data modalities beyond scRNA-seq. We tested this on a challenging
single-cell ATAC-seq benchmark dataset comprising peripheral blood
mononuclear cells (PBMCs) from two donors profiled across eight
different technologies® (Fig. 6a). On both quantitative metrics and
visualinspection of the embeddings, CONCORD yielded much better
batch correction and biological label conservation than other methods,
including the original study’s Harmony-based analysis (Fig. 6b,c and
Extended Data Fig. 7a,b).

The CONCORD embedding revealed fine-grained immune sub-
types not present in the original annotations. To validate these, we
refined the cell type labels using paired scRNA-seq and scMultiome
data and projected them back onto the scATAC-seq embedding
through shared scMultiome cells (Fig. 6¢). Strikingly, refined clusters
in scRNA-seq (for example, naive and memory B cells) corresponded
precisely to clusters uncovered by CONCORD in scATAC-seq. This
validation also uncovered amisannotationin the original study, where
CD8" naiveT cellswere incorrectly labeled as CD4"* T cells. Therefore,
CONCORD greatly improved analysis on existing scCATAC datasets.
Notably, CONCORD achieved this high-resolution result using only
simple log normalization, forgoing the complex, modality-specific
data transformations often required for scATAC-seq analysis.

When applied to a breast cancer tumor microenvironment sam-
ple profiled with Xenium, 3’ and 5’ scRNA-seq and fixed RNA profil-
ing technologies®*—sharing only 307 genes—CONCORD in hcl mode
achieved markedly better integration and cell type resolution than
other approaches (Fig. 6d and Extended Data Fig. 7c). A key finding
of the original study was that two DCIS (ductal carcinoma in situ)

subtypes exhibit distinct adjacent microenvironments; DCIS-1 is
bordered by both KRT15* and ACTA2* myoepithelial cells, whereas
DCIS-2isencircled exclusively by ACTA2* myoepithelial cells (Fig. 6e).
Notably, without access to spatial coordinates, CONCORD recapitu-
lated these adjacency patterns by revealing differential connectivity
between DCIS and myoepithelial clusters—consistent with signal bleed
or segmentation-related transcript carryover commonly observed in
spatial single-cell assays®*.

Lastly, we benchmarked CONCORD on six additional scRNA-seq
datasets curated by the Open Problems in single-cell analysis
initiative®, including Tabula Sapiens (>1 million cells)**. CONCORD
consistently achieved top performance across these datasets
(Fig. 6f and Supplementary Table 2) while running substantially
faster and with modest RAM/VRAM requirements (Fig. 6g and
Extended Data Fig. 7d). By contrast, several methods—including
LIGER, Scanorama and Seurat—failed to run at atlas scale because
of heavy resource demands or violations of method assumptions.
CONCORD-derived 2D UMAP embeddings for these datasets are pro-
vided in Extended Data Fig. 8 and additional examples, tutorials and
resources are available on the CONCORD documentation website
(https://qinzhu.github.io/Concord_documentation/).

Discussion

Minibatch gradient descent underpins modern machine learning,
including large language models, foundation models and diffusion
models. Growing evidence suggests that the composition of these mini-
batches can influence model performance® . In contrastive learning,
where eachsampleis contrasted against others within a minibatch, this
effectis amplified, especially in biological datasets spanning multiple
batches, where naive sampling can exacerbate batch effects and distort
learned representations. Yet, in contrastive learning for single-cell data,
uniform random sampling remains the norm, limiting the method’s
ability to capture biologically meaningful structure.

Our centralinsightis that, in contrastive learning, minibatch com-
position not only influences but fundamentally shapes the outcome.
By rethinking how minibatches are assembled, we turn contrastive
learning’s sensitivity to minibatch composition into a strength.

At the core of CONCORD is a unified probabilistic sampler that
integrates hard-negative sampling with dataset-aware sampling.
Hard-negative sampling markedly enhances the representational

Fig. 6 | Performance of CONCORD across modalities and scales. a, Schematic
of the PBMC scATAC-seq benchmarking experiment spanning multiple
technologies and experimental batches®. b, Summary scores for all integration
methods on the PBMC scATAC-seq data; detailed metric values are provided

in Extended Data Fig. 7b. ¢, The t-distributed stochastic neighbor embeddings
from the original publication (Harmony integration) and embeddings produced
by scVland CONCORD, colored by batch and original cell type annotations. To
refine annotations, we analyzed paired scRNA-seq datasets with CONCORD and
projected the refined labels onto the scATAC-seq embedding through shared
scMultiome cells. d, Schematic of the experimental design for the breast cancer
tumor microenvironment sample, where a single formalin-fixed paraffin-
embedded tissue block was analyzed with multiple technologies®’. UMAP
embeddings derived from the CONCORD and scVIlatent spaces are colored by
batch and original cell type annotations. Full results for all integration methods

areshownin Extended Data Fig. 7c. e, Hematoxylin and eosin image and overlay
of cell type annotations based on Xenium data, reproduced under the Creative
Commons Attribution 4.0 International License from the original publication®®
without modification. The experiment was performed in replicate on two serial
sections and one representative section is shown here. f, Ranking of integration
method performance across all real-world benchmarking datasets, excluding
datasets where scIB metrics could not be robustly computed. Each method was
scored onboth batch correction and biological label conservation metrics, and
the overall rank was computed on the basis of the average score. Missing values
indicate methods that failed to run because of excessive resource demands or
violated model assumptions. g, Runtime of integration methods across all real-
world benchmarking datasets. *Harmony was run using a reduced-dimensional
PCA projection, whereas all other methods were applied to gene expression
matrices with 5,000-10,000 variable features.
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power of the contrastive model, enabling it to capture intricate gene
coexpression programs that separate closely related cell states. The
dataset-aware sampler enriches each minibatch with cells from a sin-
gle dataset, allowing the model to learn biological variation with-
out entangling batch effects. Unlike traditional methods that rely on

of single-cell data
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matched clusters or explicit batch-effect models, CONCORD mitigates
batch effects solely through principled sampling and training. As a
result, it aligns cells based on shared covarying features—a hallmark
—makingitespecially robust when datasets have
minimal overlap or unusual geometric and topological structures.
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The dataset-aware strategy integrates seamlessly with either the hcl
or kNN hard-negative sampling variants, with both configurations
yielding robust batch correction and faithful structure preservation
across diverse benchmarks.

CONCORD achieves state-of-the-art performance using aminimal-
isticencoder architecture, demonstrating that substantial gains canbe
achieved through rational sampling and training alone, without relying
ondeep architectures, complex objectives or supervision. Across both
simulated and real datasets of varying scales and modalities, CONCORD
consistently learns latent spaces that are denoised, interpretable and
topologically faithful. In whole-organism embryogenesis atlases, it
accurately reconstructs fate bifurcations and lineage convergences,
enabling detailed tracing from progenitor cells to terminal states. In
contrast, existing methods often misalign these datasets, lose resolu-
tion or fragment continuous trajectories. In mammalian intestinal
development, CONCORD captures complex hierarchies, spatial zona-
tionand cell-cycle loops—all within a single integrated analysis. Unlike
traditional workflows that regress out cell-cycle effects, CONCORD
preserves and resolves both proliferative and differentiation programs,
facilitating investigations into their interplay. Its interpretable latent
space further enables gradient-based attribution analyses, allowing
gene-level mechanistic insights at single-cell or cell type resolution.

CONCORD features aspeed-optimized, memory-efficient design.
Key components including a vectorized sampling algorithm, native
sparse matrix supportand out-of-core dataloading enable it to readily
analyze million-cell atlases that may exceed available system memory.
While the current implementation emphasizes simplicity, the frame-
work s fully extensible to more complex architectures such as deeper
neural networks or transformers’ to support more intricate data
modalities or biological contexts. This minimalist design reduces the
number of tunable parameters, although several hyperparameters,
such as Py in the KNN mode and {3 in the hcl mode that control the
degree of hard-negative sampling, remain critical for optimal perfor-
mance. Our benchmarking provides practical guidance for their tun-
ing, showing that balanced local and global sampling—achieved with
moderate P, or f—ensures robust performance across datasets. We
currently adopt the hclmode as the default because of its robust perfor-
mance acrossreal-world datasets and lower parameter complexity but
will continue to explore additional sampling strategies and maintain
best-practice guidelines on the CONCORD documentation website.

Beyond the core contrastive encoder, CONCORD supports
optional decoder and classifier modules for gene-level batch correc-
tion, label transfer and annotation-guided representation learning.
Preliminary results suggest that these built-in utilities benefit from
the model’s robust latent space, although further validation is ongo-
ing. In addition, the batch-aligned, information-rich latent space can
bereadily leveraged by established downstream methods—for exam-
ple, through gradient-based attribution to uncover context-specific
gene coexpression programs or through tools such as CellANOVA® to
recover subtle biological signals and batch-corrected gene expression
afterintegration.

As CONCORD aligns datasets by leveraging shared gene coexpres-
sion structures, its performance may be compromised when these
structures are substantially distorted by batch effects. For example,
we observed suboptimal alignment between single-nucleus and
whole-cell scRNA-seq data, likely reflecting systematic differences in
gene covariance structure caused by transcript localization. Similarly,
feature selection strategies and the biological context of theinputcan
influence alignment outcomes. For instance, when integrating tumor
microenvironment datasets across individuals, using only tumor cells
may yield different alignment patterns compared to integrating all cell
typesinthe tumor microenvironment, as HVG selection and the result-
ing coexpression structure depend on the cellular context.

Importantly, the principles underlying CONCORD are not
limited to single-cell sequencing. The fundamental challenge of

disentangling technical artifacts from meaningful biological het-
erogeneity is shared across many high-dimensional data modali-
ties, including spatial proteomics and high-content imaging. These
data types are also characterized by rich covarying features. Thus,
the joint dataset-aware and hard-negative sampling framework
presented here provides a powerful and generalizable strategy for
learning robust representations from diverse and complex biologi-
cal datasets, paving the way for deeper, integrated analyses across
experiments and technologies.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-025-02950-z.
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Methods
Self-supervised contrastive learning and sparse coding
Weimplemented CONCORD in PyTorch, building on aself-supervised
contrastive learning framework inspired by SimCLR* and SimCSE?,
but with a unique dataset-aware and hard-negative sampling design.
The core training objective is the normalized temperature-scaled
cross-entropy (NT-Xent)*, applied to cell representations generated
through random masking.

Theoretically, contrastive learning with ReLU networks and ran-
dom masking augmentation can provably recover underlying sparse
features from data approximated as follows:

X=Mz+¢

where Mz represents the sparse signal with ||z||, = O(1) and € denotes
noise”*. CONCORD adopts similar conditions, using LeakyReLU activa-
tions and independent random masking augmentations to capture
gene coexpression patterns while suppressing noise.

This sparse coding approach generalizes beyond traditional
dimensionality-reduction methods such as NMF, PCA, factor analy-
sis and VAEs. Unlike these methods, it does not enforce orthogonal-
ity on M (as in PCA), require non-negativity constraints (as in NMF),
assume a probabilistic generative model (as in factor analysis and
VAEs) or impose Gaussian priors on the latent space (as in standard
VAEs). Instead, it assumes an intrinsic low-rank structure shaped by
gene coexpression programs, as supported by single-cell studies® ",
By relaxing constraints on orthogonality, non-negativity and Gaussian
priors, the contrastive learning framework is better positioned to cap-
ture diverse gene-regulatory programs that deviate from conventional
assumptions. Moreover, random masking enhances robustness to
scRNA-seq dropout and improves biological interpretability, allowing
the latent space to more faithfully encode diverse cell states.

Model architecture

CONCORD emphasizes architectural flexibility and minimalism.
For all benchmarking analyses presented in this study, we used
asingle-hidden-layer encoder to demonstrate performance gains
attributable to sampling and training alone. However, the architec-
ture is fully extensible; users may substitute the encoder with more
advanced models—such as deeper neural networks or transformers—
to accommodate different data modalities or capture higher-order
biological structures.

(1) Dataaugmentation
Input gene expression values are normalized by total count and
log-transformed. Two complementary augmentation strategies
areapplied to each minibatch.

 Feature-wise masking randomly sets the expression of a
specific gene to zero across all cells in the minibatch with a
user-defined probability, simulating systematic gene dropout.

« Element-wise masking randomly sets the expression of
specific genes to zero in individual cells with a user-defined
probability, mimicking localized noise or missing data.

Both strategies encourage the encoder to reply on gene coexpression
patterns rather thanindividual gene signals, improving generalization
and robustness to noise.

(2) Encoder
The encoder maps masked gene expression vectors to
low-dimensional embeddings. By default, it isimplemented
as a fully connected network with one hidden layer, although
the number of layers or neurons can be adjusted. An optional
learnable feature-weighting module may precede the encoder
to assign sparse, interpretable weights to genes.

(3) Normalization and activation
Each linear layer is followed by layer normalization and a
user-configurable activation function (default: LeakyReLU).
Layer normalization operates across features within each
sample, providing robustness to variation across minibatches;
therefore, it is preferable to batch normalization”, although the
latter is also supported.

(4) Optional decoder and classifier

A decoder can be appended to the latent embeddings to recon-
struct batch-corrected gene expression profiles. It can be trained
jointly with the encoder or after encoder pretraining. To prevent rein-
troduction of batch effects into the latent space, a distinct, learnable
dataset embedding is appended during decoding, preserving the
batch-effect-free nature of the representation.

A classification head, implemented as a multilayer perceptron
with a cross-entropy loss, can optionally be attached to the encoder
for supervised tasks such as cell type annotation or doublet detection.
Theclassifier may be trained on a pretrained encoder or jointly with it
toenhance cell type separationin the latent space. While joint training
improves class separation, it may impose strong priors that disrupt
trajectory continuity. To mitigate overfitting, a training-validation
split with early stopping is recommended during classifier training.

Contrastive objective
We adopt the noise-contrastive estimation framework with the NT-Xent
loss?'. Givenaminibatch of B cells, two augmented views are generated
for each sample, producing embeddings z; and z. from the encoder.
The NT-Xentloss encourages the model to pull positive pairs (different
views of the same sample) closer while pushing negative pairs (views
from different samples) apart.

For a concatenated minibatch of 2B embeddings z = [z;; z+ ], the
loss is computed as follows:

2B
C= 2_13 S log| — SPEERZIID |
k=1 z:m=1,m;aék exp (s (zx,2m) /IT)

T,
272+

where s(z;, zi+) = denotes the cosine similarity and Tis a tem-

A

perature hyperparameter that controls the trade-off between local
separationand global uniformity of the embeddings™. The denomina-
tor sums over all other embeddings in the minibatch, approximating
negatives sampled from the empirical data distribution P.

The loss is efficiently implemented using matrix operations: the
logit matrix L = zz"/T is computed, diagonal entries are set to — to
exclude self-similarities and the cross-entropy loss is applied with
positive indices corresponding to z. for each z,.

Dataset and neighborhood-aware probabilistic sampler

At the core of CONCORD is a probabilistic minibatch sampler that
determines how cells are grouped and contrasted during training.
Unlike conventional contrastive learning frameworks that rely on
uniform random sampling, CONCORD introduces a unified, generaliz-
ablesampling strategy that simultaneously (1) performs hard-negative
sampling in either kNN or hcl mode and (2) restricts each minibatch
primarily to cells from asingle dataset. This principled design reshapes
the outcome of contrastive learning, enabling the model to produce a
coherent, high-resolution and batch-effect-mitigated representation
of the cell-state landscape.

(1) kNN mode
We begin by coarsely approximating the global data manifold
using a kNN graph, where k is a user-defined parameter (typi-
cally moderately large). The graph can be initialized from nor-
malized gene expression values, a PCA projection ora CONCORD
batch-corrected embedding generated with the dataset-aware

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-025-02950-z

sampler. By default, we run CONCORD with the dataset-aware
sampler for two epochs, followed by the remaining epochs with
jointsampling. For scalability, we use the Faiss library” for efficient
neighbor retrieval in large datasets. The kNN graph then guides
neighborhood-aware sampling, modulated by a user-defined
neighborhood enrichment probability P . To construct mini-
batches that are both dataset and neighborhood enriched, we
partition each minibatch into four subsets—in-dataset neigh-
bors, in-dataset global samples, out-of-dataset neighbors and
out-of-dataset global samples (Extended Data Fig. 1b). A ‘core
sample’ is randomly selected from one dataset to anchor both
neighborhood and dataset-aware sampling. The four subsets are
thensampled accordingto P, (probability of sampling within the
same dataset) and P,y as follows:

« In-dataset neighbors: P,P,\\B cells from the same dataset and
within the core cell’s kNN neighborhood.

« In-dataset global samples: P4 (1 — Py ) B uniformly sampled
cells from the same dataset, outside the neighborhood.

« Out-of-dataset neighbors: (1 — Py)PnB cells from other
datasets that fall within the core cell’s kNN neighborhood.

 Out-of-dataset global samples: (1 — Py)(1 — Piyn)B uniformly
sampled cells from all other datasets.

(2) hclmode

Unlike kNN mode, which explicitly samples cells from a
precomputed neighborhood graph, hcl mode reweights the
contribution of negative samples directly in the contrastive
loss according to their similarity to the anchor. This effectively
emphasizes hard negatives—cells whose embeddings lie close
to the anchor— enabling the model to better resolve subtle
differences between closely related states without explicitly
altering the minibatch sampling procedure.

Formally, hcl mode implements the hard-negative sampling
algorithm from Robinson et al.”, using importance sampling to
approximate the expected hard-negative loss directly within the
contrastive objective. Given an anchor embedding z,, negative
samples z,, are drawn from a mixed hard-negative distribution:

qp (Zm) o exp (Bs (2 zm) IT) P (zm) ,

where the similarity s (z, z,,) = 2]z, (With embeddings ¢,-normalized)
and f>0isaconcentration parameter. The exponential termactsasa
von Mises-Fisher kernel; larger 8 concentrates probability mass on
points closer to the anchor (harder negatives), while 8=0recovers the
uniform sampler over the data distribution P.

Because sampling directly from g, is computationally inefficient,
we apply importance weights within the contrastive loss to approxi-
mate the expected contribution under g;. Specifically, the contrastive
lossunder hcl mode is:

13 exp (s Zx. 2¢) /T)
“na = 25 24~ 'Og(exp @ze) /1) + 2B = D)E,, g, [eXP(SZr2)/ D] ) |

This omits the optional debiasing term from Equation 4 in Robinson
et al.’?, which uses the class prior 7, to correct for false negatives. We
set 7, =0, asthe high heterogeneity of single-cell data makes sampling
identical molecular states within a minibatch unlikely.

The expectation is computed using Monte Carlo
importance sampling:

exp ((1+B)s@zzm)/T)
Zg ?

[Ez,,,~qﬂ [eXp(S(zk, Zm)/T)] = Ezm~P
where

Zy = E,.p[exp (BS i z) IT)]

is the partition function, estimated empirically as

. 1 2B-2
Zﬂ = m mZ:JI exp (ﬂs(zk,zm) /T) .

Let

Ly =5Zk2zn) /T

denote the original negative logits. The reweighted logits are then

L, = (1+ B) Ly — log(Z,y).

whichreplaces /,,in the NT-Xent denominator.

Tointegrate the hcl hard-negative sampler with the dataset-aware
sampler, we apply the hcl contrastive loss to minibatches constructed
under the dataset-aware probability distribution (determined by P,)
rather than the uniform distribution P, thereby enabling simultane-
ous batch correction by focusing contrasts primarily within datasets.
In practice, hcl is more sensitive to Py, performing best under strict
intra-dataset sampling (P;=1.0). This likely occurs because strong
weighting of nearby neighbors can penalize correct alignments when
cross-batch neighbors represent the same biological state.

Both CONCORD sampling variants areimplemented using vector-
ized operationsin PyTorchand NumPy, optimizing memory efficiency
and minimizing computational overhead. This ensures scalability to
large datasets and enables rapid training.

Model training

Mini-batches are constructed using the probabilistic sampler, shuffled and
optimizedwiththeNT-Xentloss usingthe Adam optimizer’. Interestinglyand
in contrast to trends commonly observed in computer vision, CONCORD’s
performance did notimprove with very large minibatch izes (relative to the
totalnumber of cells). For example, in the C. elegans dataset (>90,000 cells),
performance peaked atmoderatesizes (256-512) and declinedwhenthebatch
sizeexceeded 1,000 (Extended DataFig.4€). Wehypothesize that thisbehavior
arisesbecausethebenefitsofhard-negative samplingaredilutedinexcessively
largebatches. Asbatchsizeincreases, the minibatchdistributionapproaches
theglobal datadistribution, diminishing theeffect of hard-negativesampling.
Accordingly, forallbenchmarkinganalyses, weadoptedamoderatebatchsize
of256,which consistently achieved top performanceacross diverse datasets
while maintaining high computational efficiency. This configuration also
minimizes VRAMrequirements (Extended DataFig. 7d), allowing CONCORD
torunefficiently onwidely available GPUs.

Inadditionto the core contrastive objective, optional loss terms,
including mean-squared error for reconstruction, cross-entropy loss
for classificationand L, or L, regularization for feature-weighting mod-
ules, can be incorporated with user-defined weights. A learning-rate
scheduler is applied to gradually reduce the learning rate over time,
promoting stable convergence.

Simulation pipeline
We developed a versatile simulation pipeline to generate synthetic
single-cell gene expression data with diverse underlying structures.
Unlike conventional simulators that primarily produce discrete clus-
ters, our pipeline accommodates abroad range of topologies, includ-
ing linear trajectories, branching trees, loops and intersecting paths,
frequently observed in real single-cell datasets.

The pipeline proceeds in three sequential stages, as illustrated
inFig.2a.

(1) Ground-truth data model
In the first stage, the state simulator constructs a noise-free data
matrix [N x D], where Nis the number of cells and D is the number
of genes, according to a user-defined structure:
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« Clusters: Cells form discrete groups characterized by unique
gene programs, optionally including shared or ubiquitously
expressed genes.

 Trajectories: Cells exhibit gradual shifts in gene expression,
emulating cell differentiation processes.

« Loops and intersecting paths: Continuous trajectories that
close into loops or intersect, representing cyclic or conver-
gent biological processes.

+ Trees: Hierarchical, branching lineages representing
progenitor-to-terminal fate differentiation, configurable by
branching factor and depth.

(2) Noise model

Expression values are then sampled from user-selected
distributions (for example, Gaussian, Poisson, log-normal or
negative binomial), introducing realistic variability and
dropout patterns. Users can control parameters such as
baseline expression, dispersion (noise level) and dropout
probability and may optionally enforce non-negativity or
integer rounding to yield a noisy data matrix [N x D].

~

(3) Batchmodel

~

Inthe final stage, an optional batch simulator introduces dataset-
specific technical variability to mimic batch effects. For each
batch, auser-specified effect typeis applied, enabling simulation
of various technical artifacts. Supported effect types include
the following;:

« Variance inflation: Multiplies each entry by 1+ N (0, 0?), where
ois the dispersion parameter.

« Batch-specific distribution: Adds noise sampled from a speci-
fied distribution (for example, normal, Poisson, negative bino-
mial or log-normal) with configurable mean and dispersion.

« Uniform dropout: Randomly sets a fixed fraction of values
to zero.

« Value-dependent dropout: Drops values with probability
exp (—\x?), where Ais the level parameter and x is the expres-
sion value.

« Down-sampling: Subsamples unique molecular identifier
counts to a specified ratio, simulating reduced sequencing
depth.

« Scaling factor: Multiplies the entire matrix by a scalar to shift
overall expression levels.

+ Batch-specific expression: Adds distribution-based noise to a
random subset of genes.

- Batch-specific features: Appends new genes unique to each
batch, with expression sampled from a specified distribution.

Multiple simulated batches are then concatenated into a single
dataset, with adjustable degrees of batch overlap to mimic realistic
sampling scenarios, producing the final data matrix [N x D]with noise
and batch effects.

By combining diverse gene expression structures with configur-
able noise and batch models, this simulation pipeline can approxi-
mate a broad spectrum of biological and technical scenarios. It, thus,
serves as a powerful testbed for benchmarking data integration,
dimensionality-reduction and trajectory-inference methods under
controlled yet biologically realistic conditions.

Benchmarking pipeline

We developed a comprehensive benchmarking pipeline
to evaluate the performance of CONCORD and competing
dimensionality-reduction and data-integration methods. This
framework integrates geometric, topological, biological label con-
servation and batch-correction metrics to provide a multifaceted
assessment of embedding quality.

(1) Topological assessments: To quantify preservation of topologi-
cal structure, we performed persistent homology analysis using
Giotto-TDA (version 0.5.1)”". Persistent homology captures
structural features across multiple scales by constructing Vieto-
ris-Rips complexes over increasing radii, yielding persistence
diagrams and corresponding Betti curves. Persistence diagrams
encode the lifespan of topological features, such as connected
components (Betti-0), loops (Betti-1) and voids (Betti-2). Betti
curves were derived from these diagrams and interpolated onto
acommon filtration grid (100 bins) to ensure comparability
across methods.

For each homology dimension, we computed the mode of the
Betti curve (representing the most persistent Betti number
across scales) and compared it to the ground-truth topology
using the L, distance, defining the Betti number accuracy as

Accuracy =1/(1+L,y).

We also quantified Betti curve stability as

Stability = 1/ (1 + Var),

where Var denotes the variance of Betti values across the filtration grid.
Stability scores were averaged across homology dimensions to measure
overall topological robustness (ranging from O for highly variable to
1for perfectly stable curves). The final topology score was defined as
aweighted average:

Scorep, = 0.8 x Betti number accuracy + 0.2 x Betti curve stability.

(2) Geometric assessments: To evaluate geometric fidelity, we
computed Pearson correlations between pairwise distances
in the latent space and those in the corresponding noise-free
reference data, quantifying global structure preservation.
For local structure, we used trustworthiness’, a measure of how
well neighborhood relationships are preserved after dimen-
sionality reduction. Trustworthiness values range from O (poor
preservation) to 1 (perfect preservation). We averaged across
neighborhood sizes (k=10-100, step 10) and plotted trustwor-
thiness as a function of k to visualize performance across scales.

(3) Batch-correction metrics: We adopted established metrics
from the scIB metrics package (version 0.5.2)* to assess
batch-correction performance.

+ Graph connectivity: Evaluates whether cells with the same bio-
logical label form a connected component in the integrated
kNN graph (range 0-1; higher is better).

« Integrationlocal inverse Simpson’s index (iLISI): Estimates
the effective number of batches within local neighborhoods
(range 0-1; higher indicates better mixing).

« kNN batch-effect test (KBET): Tests whether the batch com-
position within a cell’s neighborhood matches the global
expectation. The average rejection rate is subtracted from 1
(range 0-1; higher indicate better batch mixing).

* PCR comparison (principal component regression): Quanti-
fies the variance contribution of batch effects by regressing
principal components on batch labels, comparing before and
after integration (rescaled to 0-1).

« Silhouette batch (batch average silhouette width (ASW)):
Computes the ASW using batch labels, taking the absolute
value per cell before subtracting from 1. The score is averaged
within each cell type and then across types (range O (strong
separation) to 1 (ideal integration)).
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(4) Biological label conservation: To assess preservation of biologi-
cal variation and cell type separation, we used a series of scIB
metrics.

« Isolated labels: Assesses handling of rare or batch-specific
labels using F1score and ASW, scaled to 0-1 (higher scores
indicate better separation of isolated labels).

« Leiden ARI (adjusted Rand index): Measures agreement
between true biological labels and Leiden clusters, ranging
from O (random) to 1 (perfect match).

» Leiden NMI (normalized mutual information): Quantifies
shared information between true labels and Leiden clusters,
ranging from O (no overlap) to 1 (perfect correspondence).

« Silhouette label (cell type ASW): Evaluates cell type separa-
tion using average silhouette width on true labels, scaled to
0-1 (higher values indicate well-separated, cohesive cell type
clusters).

« Celltypelocalinverse Simpson’s index (cLISI): Estimates cell
type purity in local neighborhoods, rescaled to 0-1 (higher
scores indicate better separation).

Because scIB primarily assumes discrete labels, it does not fully
capture hierarchical or continuous systems. For simulationsinvolving
trajectories or loops, we first applied Leiden clustering to the noise-free
datatodefine ‘clusters’ as ground truth or used ‘branch’ labels in tree
simulations. Under these conditions, scIB metrics were applied in a
coarse-grained manner to provide approximate evaluations.

(5) Probing classifiers: To further assess embedding quality, we
implemented probing classifiers, a standard approachin
evaluating representation learning methods. Two probes were
implemented: aKNN probe and a linear probe. The KNN probe
trains a kNN classifier on 80% of the data and evaluates on the
held-out 20%. The linear probe trains a single fully connected
layer on the fixed embeddings using AdamW optimization, with
cross-entropy loss for classification. Training follows an 80:20
training-validation split with early stopping (default patience:
five epochs) to prevent overfitting.

We applied these probes to evaluate both biological label con-
servation and batch mixing. For biological label conservation, probe
performance was quantified using classification accuracy. For batch
mixing, the classification error (1 - accuracy) was used, as higher error
indicates stronger batch mixing. However, on datasets withimbalanced
batch compositionor coverage, high classificationerror cansometimes
reflect overcorrection. Therefore, batch classification error was only
used to assess batch mixing when scIB metrics could not be computed
(for example, C. elegans and C. briggsae atlas). Label classification
accuracy was included under biological label conservation metrics
for all evaluations.

All datasets underwent total count normalization, log transforma-
tionand selection of highly variable features (5,000 for all Open Prob-
lems datasets; 10,000 for the C. elegans/C. briggsae datasets, intestine
atlasand PBMC scATAC-seq data). Theresulting matrices were used as
input for all integration algorithms except Harmony, which requires
PCA-projected coordinates.

CONCORD (version 1.0.8) was used for data integration, dimen-
sionality reduction, simulation and benchmarking. Additional
dimensionality-reduction analyses were performed using scikit-learn
(version 1.5.1), PHATE (version 1.0.11) and ZIFA (https://github.com/
epierson9/ZIFA). Comparative data-integration analyses were con-
ducted using scVI (version 1.2.2.post2), Scanorama (version 1.7.4),
Harmony-pytorch (version 0.1.8), PyLiger (version 0.2.4), Seurat (ver-
sion 5.3.0) and Scanpy (version1.10.1).

All methods were benchmarked using latent spaces of equal
dimensionality: 30 for simulated datasets, 50 for most real-world data-
sets and 300 for complex datasets—such as the C. elegans/C. briggsae

atlas and Tabula Sapiens—to capture the full diversity of cell states.
To ensure fair comparison, all methods were executed on the same
Amazon EC2 environment equipped with an NVIDIA Tesla T4 GPU.

For analyses and visualization, we additionally used AnnData
(version 0.10.6), SciPy (version 1.15.2), FAISS (version 1.8.0), PyTorch
(version 2.2.1), NumPy (version 1.26.4), UMAP-learn (version 0.5.7),
pandas (version 2.2.3), seaborn (version 0.13.2), gseapy (version1.1.4),
plottable (version 0.1.5) and matplotlib (version 3.10.1).

Transcriptomic profiling of early C. elegans embryos by
scRNA-seq

Wild-type Bristol N2 strain of the nematode C. elegans (hermaphrodite;
source: Caenorhabditis Genetics Center, University of Minnesota) was
used in this study. Worms were grown on nematode growth medium
plates and synchronized by bleaching. Eggs were hatched on 10-cm
plates and were grown until the L3 or L4 stage. To enrich for early
embryos, plates were incubated at 12 °C for 48 h. Adult worms were
lysed by bleaching and embryos were dissociated into single cells as
previously described”. Cells were loaded onto a Chromium GEM-X
single-cell 3’ Chip kit v4 with GEM-X Universal 3’ gene expression v4
reagents (10x Genomics,1000686). Libraries were prepared following
the 10x Genomics protocol, sequenced on NovaSeq X and processed
with CellRanger (version 9.0.1) using the WBcel235 transcriptome. A
total of 12,899 cells were recovered, with a median of approximately
69,000 reads per cell.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Single-cell RNA-seq data of C. elegans early embryos were deposited
to the Gene Expression Omnibus (GEO) under accession number
GSE305031. Public datasets analyzed in this study include the Human
Lung Atlas compiled by Luecken et al.** and obtained from the scIB
metrics website (https://scib-metrics.readthedocs.io/en/stable/note-
books/lung_example.html), GTEX (version 9)*°, HypoMap®', Immune
Cell Atlas®, mouse pancreaticislet®, Tabula Sapiens® sourced from the
OpenProblemsin Single-Cell Analysis website (https://openproblems.
bio/benchmarks/batch_integration?version=v2.0.0), the C. elegans
embryogenesis atlas*’ downloaded from the GEO under accession
number GSE126954, the joint C. elegans and C. briggsae dataset*® avail-
able from the GEO under accession number GSE292756, and the mouse
intestinal developmental atlas® acquired from the GEO under accession
number GSE233407.

Code availability

CONCORD s available from GitHub (https://github.com/Gartner-Lab/
Concord) under the MIT License. All benchmarking codes used to
generate results in this paper were also deposited to GitHub (https://
github.com/Gartner-Lab/Concord_benchmark). Full documenta-
tion of CONCORD can be found online (https://qinzhu.github.io/
Concord_documentation/).
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Extended Data Fig. 2 | Benchmarking CONCORD and other dimensionality
reduction methods across diverse structures. a, Heatmaps of simulated
expression for the three-cluster structure and the corresponding CONCORD
latent encoding in Acl or KNN modes. b, Heatmaps of simulated expression for
the trajectory-loop structure and the corresponding CONCORD latent encoding
in hcl or KNN modes. ¢, Trustworthiness measured across neighborhood sizes
(k) inthe three-cluster simulation. In the noise-free reference, within-cluster
neighbors are assigned at random, so trustworthiness is <1. CONCORD (h, k)
denotes the hcland kNN modes, respectively. d, Trustworthiness measured
across neighborhood sizes in the complex trajectory-loop simulation.

e, Heatmaps of simulated expression for the complex-tree structure shown in

Fig.2g, alongside the corresponding CONCORD latent encodings under
amoderate degree of hard-negative enrichmentin hc/and kNN modes.

f, KNN-graph visualizations of latent spaces from the complex tree simulation,
generated using naive contrastive learning and the Ac/and kNN modes of
CONCORD with varying degrees of hard-negative enrichment. Zoomed-in views
highlightimproved resolution of a representative branch achieved through hard-
negative sampling. g, Trustworthiness across neighborhood sizes for Ac/and kNN
modes in the complex-tree simulation, evaluated under varying degrees of hard-
negative sampling. Aninset for k < 20 highlights improved local neighborhood
preservation with hard-negative sampling.
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Extended Data Fig. 3| Benchmarking CONCORD and other data-integration
methods across diverse structures. a, Two-batch, five-cluster simulations with
increasing batch-size imbalance and complete overlap of cell states. Heatmaps
of theinput data (dimensions indicated) and UMAPs of the ground truth and
eachmethod’s latent space are shown, with cells colored by batch. b, Cluster
simulations with increased batch number and imbalance, with partial overlap of
cell states across batches. Heatmaps of the input data and UMAPs of the ground

truth and each method’s latent space are shown, with cells colored by batch.
LIGER failed on the third simulation due to violated model assumptions. ¢, Loop
simulations with varying degrees of state overlap between batches. kNN graphs
(k=15; edges omitted) colored by batch are shown for the ground truth and
each method. d, Tree simulations with varying degrees of state overlap between
batches. kNN graphs (k = 30; edges omitted) colored by batch are shown for the
ground truth and each method.
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Extended Data Fig. 4 | Performance of CONCORD on C. elegans atlas. a, UMAPs
of the C. elegans atlas from Packer et al.*’ generated from the CONCORD latent
space. Gaps among early-stage cells are apparent; adding our newly collected
C.elegans dataset enriched for early embryos fills these gaps, yielding
continuous trajectories. The combined UMAP s colored by inferred embryo time
andbatch. b, Overlap between expert-curated cell-type and lineage annotations.
Ahistogram shows that lineage annotations are concentrated in early-stage
cells, whereas cell-type annotations are predominantly in late-stage cells.

¢, Integration performance of CONCORD and other methods, evaluated
separately for early-stage cells with lineage annotations and late-stage cells with
cell-type annotations. See Methods for metric definitions. d, Performance of

the two CONCORD modes (hcl and kNN) across combinations of element- and
feature-masking ratios, assessed by average classification accuracy using linear
and kNN probes. e, Performance of both modes across key hyperparameters,
quantified by the average of label-classification accuracy and batch-classification
error. Each runvaries one hyperparameter while fixing the rest (default value
indicated on plot). Scores from other methods are included for comparison.

f, UMAPsiillustrating results with the dataset-aware sampler alone (no hard
negatives) and with moderate versus excessive hard-negative sampling for
hcland kNN modes. Moderate local sampling improves cell-type and lineage
resolution, whereas excessive local sampling without balanced global sampling
disrupts global structure.
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lineage tree and its projection onto the CONCORD (hcl) embedding. Lineage
annotations from Large et al. were mapped to the C. elegans lineage tree (with
some ambiguous mappings due to symmetry). Each lineage is represented by its
cluster medoid on the UMAP; lines connect each parent lineage to its daughters

following the lineage tree. Subtrees for major lineage groups are shown
separately. ¢, Label refinement in the CONCORD latent space via KNN majority
vote. For each cell, we examine its k = 30 nearest neighbors; if >50% of neighbors
carry expert-curated lineage/cell-type labels, we assign the neighborhood’s
majority label to unlabeled cells (and relabel when the majority disagrees). We
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Extended Data Fig. 6 | Benchmarking CONCORD on mammalian intestine
development. a, UMAP embeddings derived from the latent spaces of CONCORD
and other integration methods for the mouse intestinal developmental atlas®,
colored by broad cell type, batch, cell-cycle phase, developmental stage, and
zonation. b, For epithelial and smooth-muscle cells, loop-like trajectories were
identified and pseudotime was assigned along each circular path. Heatmaps
show top differentially expressed genes (DEGs) along each loop, as well as

DEGs distinguishing the two zonation-specific epithelial loops. Persistence
diagrams derived from each method’s latent representations are shown for

both cell types. ¢, Expression patterns of the top-ranked genes contributing to
Neuron 46 activation in the ENS context (top) and epithelial context (bottom), as
determined by gradient-based attribution. Expression values were capped at the
99th percentile for visualization.
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Extended Data Fig. 7 | See next page for caption.
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Extended DataFig. 7| Performance of CONCORD across modalitiesandscales.  batch.d, RAM and VRAM usage of different integration methods. For all methods

a, UMAPs of PBMC scATAC-seq data before and after integration by CONCORD except Seurat, we report ARAM (end-start RSS) because Python does not
and other methods, colored by original cell-type annotations and by batch. support resetting peak RSS mid-process. For Seurat, peak RAM was measured
b, Full benchmarking statistics for the PBMC scATAC-seq dataset. ¢, UMAPs of using the peakRAMR package (version1.0.2). VRAM usage is shown only for GPU-

breast cancer tumor microenvironment data generated from the latent spacesof ~ enabled methods. Missing values indicate methods that failed due to excessive
CONCORD and other integration methods, colored by cell type and technology/ resource demands or violated model assumptions.
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Extended Data Fig. 8| Performance of CONCORD on public human and mouse
scRNA-seq datasets. UMAP embeddings derived from each method’s latent
space are shown for all datasets and colored by batch and cell type. a, Lung atlas
spanning multiple spatial regions, donors, and two scRNA-seq protocols*. b,
GTEX v9: human single-nucleus RNA-seq data from eight tissue types across 16
individuals®. ¢, HypoMap: single-cell atlas of the murine hypothalamus (-~ 380k

cells) across four assays®'. d, Immune cell atlas: human immune cells from 16
tissues and 12 donors®’. e, Mouse pancreatic islet: SCRNA-seq atlas comprising
56 samples across sex, age, and diabetes models®. f, Tabula Sapiens: human cell
atlas of over 1.1 M cells from 28 organs of 24 normal human donors®®. Missing
plotsindicate runs that failed due to excessive resource demands or violated
model assumptions.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

0 XX X OO
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Give P values as exact values whenever suitable.
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection  CellRanger (v9.0.1) was used to preprocess single-cell sequencing data.

Data analysis CONCORD (v1.0.8) was used for data integration, dimensionality reduction, simulation, and benchmarking, and is archived at https://pypi.org/
project/concord-sc/1.0.8/; the latest version is available at https://github.com/Gartner-Lab/Concord. All benchmarking codes used to
generate results in this manuscript are deposited at https://github.com/Gartner-Lab/Concord_benchmark. Additional dimensionality
reduction analyses were performed using scikit-learn (v1.5.1), PHATE (v1.0.11), and ZIFA (https://github.com/epierson9/ZIFA). Comparative
data integration analyses were conducted using scVI (v1.2.2.post2), Scanorama (v1.7.4), Harmony-pytorch (v0.1.8), PyLiger (v0.2.4), Seurat
(v5.3.0), and Scanpy (v1.10.1). Additional analyses and visualizations were performed using AnnData (v0.10.6), SciPy (v1.15.2), FAISS (v1.8.0),
PyTorch (v2.2.1), NumPy (v1.26.4), scib-metrics (v0.5.2), giotto-tda (v0.5.1), UMAP-learn (v0.5.7), pandas (v2.2.3), seaborn (v0.13.2), gseapy
(v1.1.4), plottable (v0.1.5), peakRAM (v1.0.2), and matplotlib (v3.10.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single-cell RNA-seq data of C. elegans early embryos have been deposited in the Gene Expression Omnibus (GEO) under accession number GSE305031. Public
datasets analyzed in this study include: the human lung atlas, compiled by Luecken et al.33 and obtained from the scIB-metrics website (https://scib-
metrics.readthedocs.io/en/stable/notebooks/lung_example.html); GTEX v9, HypoMap, immune cell atlas, mouse pancreatic islet, Tabula Sapiens datasets, sourced
from the Open Problems in Single-Cell Analysis website (https://openproblems.bio/benchmarks/batch_integration?version=v2.0.0); the C. elegans embryogenesis
atlas, downloaded from GEO under accession GSE126954; the joint C. elegans and C. briggsae dataset, available under GEO accession GSE292756; and the mouse
intestinal developmental atlas, acquired from GEO under accession GSE233407.
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Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has
been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size A total of 12,899 single cells were recovered from wild-type C. elegans N2 embryos. This sample size was chosen to achieve near-complete
coverage of early embryonic cell states, as established in prior single-cell studies of C. elegans embryogenesis (e.g., Packer et al., Science
2019). No formal statistical sample size calculation was performed, as the dataset encompasses the full cellular diversity of the developing
embryo.

Data exclusions  No data were excluded from the analysis.

Replication Single-cell collections were performed once—comprising a single library preparation and sequencing run—from multiple independent
embryos. All analyses, including cell state diversity and lineage relationships, were consistent across biological replicates, leveraging the
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invariant lineage structure of C. elegans.
Randomization  Worms were randomly collected for embryo dissociation. No predefined experimental groups or interventions were applied.
Blinding Not applicable. Data collection and computational analyses were not influenced by group assignment, as no experimental groups or

treatment conditions were applied. All analyses were performed using standardized and automated pipelines, making investigator blinding
unnecessary.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
)
(e
D
1®)
O
=
o
=
_
(D
1®)
O
=
(@]
wn
(e
=
3
Q
A

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XX XOXKX >
OoO0xXOOO

Plants

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Wild-type Bristol N2 strain of the nematode Caenorhabditis elegans (hermaphrodite; source: Caenorhabditis Genetics Center,
University of Minnesota; developmental stage: early embryos).

Wild animals The study did not involve wild animals.

Reporting on sex The study used hermaphroditic C. elegans; sex was not a factor in study design or analysis, as the N2 strain is predominantly self-
fertilizing hermaphrodites.

Field-collected samples  The study did not involve field-collected samples.

Ethics oversight No ethical approval or guidance was required, as the study involved invertebrates (Caenorhabditis elegans), which are not subject to
animal welfare regulations under institutional or national guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtres foreach seed stock-tised-or-novel- genotype generated—Describe-anyexperiments-tused-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,

off-target gene editing) were examined.
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