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Revealing a coherent cell-state landscape 
across single-cell datasets with CONCORD
 

Qin Zhu    1  , Zuzhi Jiang    1,2, Binyamin Zuckerman    3, Leor Weinberger3,4, 
Matt Thomson    5 & Zev J. Gartner    1,6,7 

Revealing the underlying cell-state landscape from single-cell data 
requires overcoming the critical obstacles of batch integration, denoising 
and dimensionality reduction. Here we present CONCORD, a unified 
framework that simultaneously addresses these challenges within a single 
self-supervised model. At its core, CONCORD implements a probabilistic 
sampling strategy that corrects batch effects through dataset-aware 
sampling and enhances biological resolution through hard-negative 
sampling. Using only a minimalist neural network with a single hidden layer 
and contrastive learning, CONCORD surpasses state-of-the-art performance 
without relying on deep architectures, auxiliary losses or external 
supervision. It seamlessly integrates data across batches, technologies 
and even species to generate high-resolution cell atlases. The resulting 
latent representations are denoised and biologically meaningful, capturing 
gene coexpression programs, revealing detailed lineage trajectories and 
preserving both local geometric relationships and global topological 
structures. We demonstrate CONCORD’s broad applicability across diverse 
datasets, establishing it as a general-purpose framework for learning 
unified, high-fidelity representations of cellular identity and dynamics.

Cells express thousands of genes to perform specialized functions and 
maintain homeostasis. Gene expression is highly correlated, orches-
trated by intricate gene-regulatory networks and cell–cell interactions 
that constrain cells to a structured, low-dimensional ‘state landscape’ 
within the high-dimensional gene expression space1,2. Advances in 
single-cell technologies, particularly single-cell RNA sequencing 
(scRNA-seq), enable empirical mapping of this landscape. Emerg-
ing evidence suggests that such landscapes may contain diverse fea-
tures—including discrete clusters, continuous trajectories, branching 
trees and cyclic transitions—reflecting the underlying organization 
of cellular states3,4. However, the presence and arrangement of these 
features are typically unknown a priori, underscoring the need for 
computational methods that can robustly capture their topology and 

geometry to illuminate the principles of development, homeostasis 
and disease progression.

Dimensionality reduction, a form of representation learning, is 
commonly used to uncover the structure of the cell-state landscape. 
By projecting high-dimensional data into a lower-dimensional space, 
key structural patterns become more tractable to visualize and analyze. 
However, conventional methods such as principal component analysis 
(PCA), non-negative matrix factorization (NMF)5 and factor analysis6 
often overemphasize broad cell type distinctions at the expense of sub-
tle states and can confound processes like differentiation with cell-cycle 
progression. These challenges are exacerbated by batch effects, poorly 
understood sources of technical variation that obscure or skew genu-
ine biological signals. Although an array of batch-correction tools 
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species. This versatile framework scales from small to large datasets, 
generalizes to modalities beyond scRNA-seq and establishes a rigorous 
foundation for next-generation single-cell machine learning models 
to drive diverse downstream biological discoveries.

Results
The CONCORD framework
Analyses of single-cell sequencing data suggest that gene expression 
is not randomly sampled; rather, gene-regulatory mechanisms impose 
strong constraints, producing dynamically changing gene coexpres-
sion patterns reflected as intricate structures in the low-dimensional 
embedding of cells1–3,30. For example, at homeostasis, cells typically 
form discrete clusters corresponding to stable types or states, with 
adjacent clusters representing closely related states (Fig. 1a, left). In 
developmental or pathological contexts—such as early embryogenesis, 
tissue repair or tumorigenesis—cells often follow branching trajecto-
ries from progenitors to terminal fates, with semistable intermediate 
states forming denser clusters (Fig. 1a, middle). Cyclic gene expression 
programs, such as those regulating the cell cycle, give rise to loop-like 
structures3,31 (Fig. 1a, right).

To capture these intricate structures, CONCORD uses contrastive 
learning with a minibatch sampling strategy that differs from con-
ventional uniform sampling (Fig. 1b). First, to enhance resolution, we 
adopt hard-negative sampling32, where each minibatch is enriched with 
closely related cells (Fig. 1c), encouraging the model to extract features 
that distinguish these ‘hard negatives’. We implemented two variants of 
this approach: a k-nearest neighbor (kNN)-based sampler, inspired by 
and extending previous work33, and the hcl mode originally proposed 
by Robinson et al.32. The kNN-based sampler probabilistically draws 
cells from both their local neighborhoods and the global distribution. 
Local sampling—guided by a coarse graph approximation of the cellular 
state landscape—compels the model to contrast each cell with its neigh-
bors, enabling detection of subtle differences between closely related 
states. Simultaneously, global sampling preserves a broad perspective 
of major cell types, ensuring robust encoding of large-scale distinc-
tions. By iteratively presenting the model with local neighborhoods 
(for example, T cells in one minibatch and epithelial cells in another) 
alongside the global distribution, the model allocates capacity to rep-
resent both large-scale distinctions and nuanced local details, leading 
to improved resolution in the learned latent space (Fig. 1c). Following a 
similar principle, the hcl mode uses Monte Carlo importance sampling 
to approximate the expected loss of hard-negative sampling without 
explicit neighborhood-based sampling (Methods).

When applied to a single dataset, contrastive learning effectively 
captures biological variation in the latent space (Fig. 1d). However, 
with uniform sampling across multiple datasets, both biological and 
dataset-specific variations are encoded, yielding a latent space that 
separates by dataset and cell type (Fig. 1e). To address this, we intro-
duce a dataset-aware sampler that restricts each minibatch to cells 
from a single dataset, ensuring contrasts reflect only biological differ-
ences—as in the single-dataset setting (Fig. 1f). Dataset-specific biases 
are further diminished through random minibatch shuffling; if such 
signals are encoded in one batch, they are disrupted and overwritten 
by subsequent minibatches from other datasets. Consequently, only 
biologically meaningful signals, such as gene coexpression patterns, 
persist throughout training, producing a latent space that reflects 
biological variation with minimal batch effects (Fig. 1f). In cases where 
datasets have minimal or no shared cell states, a leaky dataset-aware 
sampler enables soft alignment without imposing artificial harmoni-
zation, supporting flexible integration that respects dataset-specific 
signals (Extended Data Fig. 1a). Notably, this approach does not per-
form any explicit modeling of batch effects; instead, it selectively 
captures and encodes biological programs shared across datasets. 
Unlike prior batch-correction strategies that struggle in contrastive 
settings because of competing objectives, CONCORD integrates batch 

such as Harmony7, Scanorama8, Seurat9, single-cell variational infer-
ence (scVI)10, linked inference of genomic experimental relationships 
(LIGER)11 and mutual nearest neighbors (MNN)12 have been developed, 
they frequently make strong assumptions about the structure of techni-
cal variation, leading to distortions from overcorrecting or undercor-
recting batch effects13. Furthermore, many face scalability issues when 
applied to massive atlas-level datasets.

Among emerging representation learning approaches, contras-
tive learning has recently shown promise for single-cell analysis14–20. 
Initially developed for domains such as image and natural language 
processing21–23, these methods learn informative cell representations 
by comparing similar (‘positive’) cells to dissimilar (‘negative’) ones 
within minibatches—small subsets of cells iteratively sampled during 
training. By differentiating each cell from others in the minibatch, the 
model learns features that distinguish distinct cellular states. Simul-
taneously, aligning augmented versions of the same cell (typically 
generated through random masking) encourages the model to capture 
robust gene coexpression patterns rather than relying on the expres-
sion of individual genes24. As a result, the learned representations are 
intrinsically robust to technical noise and dropout—pervasive artifacts 
in single-cell datasets25—thereby improving downstream tasks such as 
clustering and cell type classification15–17.

However, current contrastive methods face fundamental limita-
tions: supervised approaches require extensive manual annotation and 
struggle to generalize to novel states or continuous trajectories19,20, 
whereas unsupervised methods typically form minibatches through 
uniform sampling14–17, leading to two major shortcomings. First, uni-
form sampling emphasizes broad differences (for example, major cell 
types) while underrepresenting rare subpopulations or subtle distinc-
tions, resulting in poor resolution of fine-scale cellular states. Second, 
mixing cells from different datasets within the same minibatch ampli-
fies dataset-specific technical differences—known as ‘batch effects’—
causing the model to inadvertently encode these artifacts rather than 
capturing biologically meaningful variation. While strategies involving 
generative adversarial networks17,26,27, unsupervised domain adaptation 
through backpropagation28 and conditional variational autoencoders 
(VAEs)29 attempt to mitigate batch effects, their objective of minimiz-
ing dataset-specific differences inherently conflicts with contrastive 
learning’s goal of maximizing differences between dissimilar cells, 
frequently leading to incomplete batch-effect correction and poten-
tially introducing distortions to the latent space. This dilemma raises 
the question of whether contrastive learning can fully capture cellular 
diversity while minimizing batch effects.

Here, we address this open question by transforming a limitation 
of contrastive learning—its sensitivity to minibatch composition—
into a strength. Our central insight is that minibatch composition 
fundamentally determines the outcome of contrastive learning. We 
introduce CONCORD, a framework that redefines the contrastive 
learning process through a probabilistic minibatch sampling strategy 
combining dataset-aware sampling and hard-negative sampling. By 
strategically composing each minibatch primarily with cells from the 
same dataset, thereby preventing the model from learning technical 
differences among batches while focusing on biological differences 
among cells, CONCORD simultaneously enhances embedding resolu-
tion and mitigates batch-specific artifacts. In contrast to prior meth-
ods that rely on complex architectures or auxiliary losses for batch 
correction, CONCORD achieves dimensionality reduction, denoising 
and data integration solely through principled sampling. We demon-
strate its effectiveness using a minimalist, single-hidden-layer neural 
network across simulated and real datasets spanning a range of bio-
logical and technical complexity. CONCORD consistently outperforms 
state-of-the-art methods, producing high-resolution, denoised encod-
ings that robustly capture diverse structures—including clusters, loops, 
trajectories and trees—reflecting bona fide biological processes even 
when the data originate from multiple technologies, time points or 
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Fig. 1 | CONCORD minibatch sampling enables high-resolution, batch-effect-
mitigated representation learning of single-cell data. a, Schematic of hypothetical 
cell-state landscapes and corresponding low-dimensional representations that 
capture key structural features. b, Overview of the CONCORD framework, which 
replaces the conventional minibatch sampler with a joint hard-negative and dataset-
aware sampling scheme, enabling integrated, high-resolution representation 
learning with a minimalist contrastive model. c, Uniform versus hard-negative 
sampling in a simulated four-state dataset. Heat maps show simulated expression 

and latent space, accompanied by density curves with black lines indicating 
the distribution of cells in an example minibatch under each scheme. Resulting 
UMAP embeddings are shown. d, Contrastive learning on a single dataset using 
the conventional uniform sampler, which draws cells uniformly from the entire 
dataset to form minibatches. e, Standard contrastive learning mixes cells from 
different datasets within minibatches, amplifying batch effects in the resulting latent 
embedding. f, CONCORD mitigates batch effects by predominantly contrasting cells 
within each dataset and randomly shuffling minibatches during training.
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correction directly into the contrastive learning process through its 
sampling design, producing latent representations inherently robust 
to batch effects.

Both the hard-negative and the dataset-aware samplers follow 
a unified principle: probabilistically structuring minibatches to bal-
ance global biological diversity with local and dataset-specific vari-
ation. We integrate both samplers into a joint sampling framework, 
where the likelihood of selecting a cell satisfies both sampling schemes 
(Extended Data Fig. 1a,b and Methods). This generalized sampling 
strategy fundamentally reconfigures contrastive learning, enabling 
high-resolution representation learning and robust dataset integra-
tion within a single contrastive objective, and forms the core of the 
CONCORD framework (Extended Data Fig. 1c). With this simple inno-
vation, CONCORD outperforms state-of-the-art methods using only 
a minimalist encoder with a single hidden layer, demonstrating that 
sampling design alone can transform contrastive learning performance 
on single-cell data—even without deep or complex architectures. This 
simplicity reduces training data requirements, enhances robustness 
and increases interpretability of the learned latent space.

CONCORD learns denoised latent representations that 
preserve underlying structures
Recovering biologically meaningful insights from single-cell data 
requires preserving the underlying geometric and topological structure 
of the gene expression space. To evaluate whether CONCORD meets 
this criterion, we benchmarked its performance on a suite of simu-
lated datasets. As existing simulators often fail to generate complex 
biological structures like branching or loops, we developed a custom 
workflow to create realistic structures with flexible control over noise 
and batch effects (Fig. 2a).

To assess the quality of learned representations, we established 
a comprehensive evaluation pipeline. While standard benchmarks 
like the single-cell integration benchmarking (scIB) framework34 
effectively measure label preservation and batch mixing, they are 
often insufficient for evaluating the preservation of complex bio-
logical structures35,36. We, therefore, supplemented them with prob-
ing classifiers37,38—a standard approach for evaluating representation 
learning—to assess the conservation of biological labels in the latent 
space. Additionally, to quantify structure fidelity, we incorporated geo-
metric metrics such as trustworthiness and global distance correlation, 
as well as topological data analysis (TDA) based on persistent homol-
ogy and Betti numbers (Fig. 2b). These metrics evaluate embedding at 
complementary scales: trustworthiness quantifies local neighborhood 
preservation, while persistent homology captures global topological 
features—such as clusters (Betti-0), loops (Betti-1) and voids (Betti-2). 
These features are visualized in persistence diagrams and Betti curves, 
where stable structures appear as long-lived features in the persistence 
diagram and extended plateaus in the Betti curve, whereas transient, 
noise-induced features vanish quickly.

We evaluated both CONCORD variants on a simple, single-batch 
simulation consisting of three well-separated clusters corrupted by 
cluster-specific Gaussian noise (Fig. 2c and Extended Data Fig. 2a). 
Compared to a broad set of dimensionality-reduction methods—
including diffusion map39, NMF5, factor analysis6, FastICA40, latent 
Dirichlet allocation41, zero-inflated factor analysis (ZIFA)42, scVI10 

and potential of heat diffusion for affinity-based trajectory embed-
ding (PHATE)43—CONCORD cleanly separated clusters, as reflected 
in both the latent space and pairwise distance matrices. In contrast, 
many methods failed to fully resolve the clusters or introduced spuri-
ous structures, such as trajectory-like artifacts (Fig. 2c). Persistent 
homology confirmed these observations; CONCORD’s Betti-0 plateau 
accurately reflected the expected three-cluster topology and closely 
matched the noise-free reference, highlighting its strength in both 
denoising and structure preservation.

On a more complex simulation with three loops and multiple 
branching points (Fig. 2d and Extended Data Fig. 2b), CONCORD faith-
fully recovered the complete topology. By contrast, other methods 
either distorted the structure or failed to detect the correct number 
of loops in Betti analysis, likely because of excessive noise retention. 
Although PHATE produced a visually similar embedding, its Betti curve 
identified only a single persistent loop, indicating that critical topologi-
cal features were obscured in its latent space.

Quantitative evaluation of geometric and topological metrics con-
firmed that CONCORD consistently outperformed competing methods 
(Fig. 2e,f). Notably, CONCORD maintained high trustworthiness across 
a wide range of neighborhood sizes, underscoring its ability to preserve 
local geometry at multiple scales (Extended Data Fig. 2c,d). In contrast, 
other methods exhibit considerable declines in trustworthiness, indi-
cating a loss of fine-scale geometric relationships.

To assess the impact of hard-negative sampling, we simulated 
a hierarchical branching tree (Fig. 2g and Extended Data Fig. 2e–g). 
Without hard-negative sampling, subbranches were unresolved. Mod-
erate enrichment of hard negatives substantially improved resolu-
tion for both CONCORD variants, with the kNN mode being more 
susceptible to excessive local focus, which obscured global distinctions 
(Extended Data Fig. 2f,g).

CONCORD learns a coherent, batch-effect-mitigated latent 
representation
Batch effects often appear as dataset-specific global signals that can 
obscure biological variation. In CONCORD, these signals rapidly dimin-
ish during training when minibatches are restricted to single datasets 
(Fig. 1f). Unlike conventional batch-correction methods that rely on 
explicit alignment models, CONCORD makes minimal assumptions 
about the source or form of batch effects and instead prioritizes learn-
ing coherent, biologically meaningful gene covariation patterns. This 
leads to more accurate preservation of biological structure while miti-
gating technical artifacts.

We first evaluated CONCORD on a simulated five-cluster dataset 
with varying noise, batch effects and batch size imbalance (Fig. 3a 
and Extended Data Fig. 3a). Across these conditions, CONCORD was 
the only method to robustly recover all five clusters. This success is 
attributable to its dataset-aware sampler, as using a conventional 
uniform sampler (that is, the naive contrastive approach) resulted in 
pronounced batch effects. In more challenging scenarios with more 
batches and greater imbalance, CONCORD and Harmony were the 
only methods that consistently separated the underlying clusters 
(Extended Data Fig. 3b).

Single-cell studies often involve continuous state transitions sam-
pled across different conditions, where cell states may only partially 

Fig. 2 | Benchmarking CONCORD and other dimensionality-reduction 
methods across diverse structures. a, Schematic of the simulation pipeline, 
which first produces a noise-free gene expression matrix based on a user-
defined data structure, then introduces noise following a specified noise model 
and finally applies batch effects. b, Schematic of the benchmarking pipeline. 
Latent representations from each method are compared with the noise-free 
ground truth to assess preservation of topological and geometric features. 
The scIB metrics34 and probing classifiers are used to evaluate biological label 
conservation and batch harmonization. c, Performance of CONCORD and 

competing methods on a three-cluster simulation with dimensions listed. 
UMAP embeddings, cosine distance matrices and persistent homology analysis 
(persistence diagram and Betti curves) are shown for each method. The H0 point 
at infinity was excluded from the persistence diagram and curve. d, Performance 
on a complex trajectory with three loops, highlighting the same diagnostic plots 
as in c. e,f, Summary of key geometric and topological performance metrics for 
the cluster simulation (e) and the complex trajectory simulation (f). g, kNN graph 
visualization of the latent spaces from a complex-tree simulation, with zoomed-
in views of the highlighted branch.
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overlap. Methods that make explicit assumptions about the data struc-
ture—such as requiring matched clusters—often fail in these scenarios 
and produce distorted embeddings. We systematically tested this by 
simulating batch effects on trajectories, loops and trees with vary-
ing degrees of state overlap (Fig. 3b–d and Extended Data Fig. 3c,d). 
Many competing methods exhibited poor alignment and introduced 
artificial structures. In contrast, both CONCORD variants consistently 
recovered the correct topology with reduced noise, even when the 
overlap between batches was minimal.

We further tested performance on a trajectory with 16 distinct 
batch effects (Fig. 3e). While scVI and CONCORD both aligned the 
batches, scVI showed incomplete alignment at fine resolution. In con-
trast, CONCORD—particularly the kNN variant—achieved superior 
alignment and noise reduction. Quantitative metrics confirmed these 
observations; CONCORD preserved local geometry, evidenced by 
high trustworthiness (Fig. 3e,f), while exhibiting lower global distance 
correlation—a common trade-off in manifold learning44,45. Robustness 
was further demonstrated in a stress test where models were trained 
on a few randomly selected batches and used to predict the remaining 
ones (Fig. 3g). CONCORD maintained strong alignment, whereas scVI’s 
performance degraded markedly as the number of training batches 
decreased. This suggests CONCORD’s robustness stems from learn-
ing gene coexpression programs rather than explicitly modeling and 
correcting batch effects.

Across all simulations, CONCORD achieved high biological label 
conservation (Fig. 3h and Supplementary Table 1), with slightly lower 
batch-correction scores because it does not explicitly merge batches. 
By contrast, although scVI achieved high batch-mixing scores, it often 
produced overmixed embeddings that obscured underlying struc-
ture (Extended Data Fig. 3). The aggregate geometric score for CON-
CORD was reduced by its lower global distance correlation despite 
consistently strong trustworthiness; however, for data with manifold 
structures—such as single-cell data—global distances are often not 
reflective of true distance relationships between cell states43. There-
fore, preserving local neighborhood fidelity is typically prioritized in 
single-cell analysis43,46. Nevertheless, CONCORD consistently ranks 
among the top methods for topological preservation, biological label 
conservation and overall performance. These results demonstrate 
that CONCORD provides a reliable and generalizable framework for 
dimensionality reduction and batch correction, even when the data 
structure is unknown or batch overlap is limited.

CONCORD aligns whole-organism developmental atlases and 
resolves high-resolution lineage trajectories
To assess whether CONCORD captures biologically meaningful struc-
tures, we benchmarked it against popular integration methods on 
Caenorhabditis elegans embryogenesis—a well-characterized system 
with a nearly invariant lineage tree47 that is also conserved in the related 

species Caenorhabditis briggsae48. Packer et al. initially generated a 
lineage-resolved atlas of C. elegans49, which was recently expanded 
by Large et al. to include over 200,000 C. elegans cells and 190,000 
C. briggsae cells48. With expert-curated annotations generated through 
iterative, labor-intensive zoom-in analyses and validated by fluores-
cence imaging, these datasets provide an ideal benchmark for evaluat-
ing whether integration methods can accurately reconstruct and align 
developmental trajectories across species.

We first tested CONCORD on the original C. elegans atlas49 
(>90,000 cells) (Extended Data Fig. 4a). The resulting embedding 
revealed disconnected trajectories among early-stage cells, which 
we hypothesized reflected missing states. These gaps persisted even 
after including C. elegans cells from the expanded Large et al. dataset. 
We, therefore, collected a new C. elegans dataset enriched for early 
embryos; adding this dataset resolved the gaps and yielded a continu-
ous trajectory from zygote to terminal fates (Extended Data Fig. 4a). 
Using the extensive cell type and lineage annotations, we bench-
marked CONCORD against other methods for batch correction and 
label conservation and assessed its sensitivity to key hyperparameters 
(Extended Data Fig. 4b–e). CONCORD greatly outperformed existing 
methods, with stable performance across the recommended hyperpa-
rameter range. Notably, the effect of hard-negative sampling mirrored 
trends observed in simulations; moderate local enrichment improved 
resolution, whereas excessive local sampling disrupted global structure 
(Extended Data Fig. 4f).

When applied to over 410,000 cells from the combined 
cross-species dataset and our new early-embryo collection, CON-
CORD generated a unified developmental atlas that closely matched 
the expert annotations, achieving cross-species alignment and 
resolving lineages at ultrahigh resolution (Fig. 4a,b). Both the hcl and 
kNN modes yielded similar, high-quality embeddings (Fig. 4a and 
Extended Data Fig. 5a). Because scIB34 could not scale to this dataset, 
we quantified integration performance using probing classifiers to 
assess batch mixing, cell type and lineage label preservation (Fig. 4c). 
CONCORD excelled on these metrics, whereas other methods either 
failed to fully align the species or lost resolution, consistent with visual 
inspection of the uniform manifold approximation and projection 
(UMAP) embeddings. As the complexity of the learned structure 
exceeded the capacity of two-dimensional (2D) UMAP, we encourage 
readers to explore the interactive three-dimensional (3D) visualiza-
tions (https://qinzhu.github.io/Concord_documentation/galleries/
cbce_show/#__tabbed_1_1).

Projecting the lineage tree onto CONCORD’s embedding revealed 
strong concordance with established lineage and fate relationships 
(Extended Data Fig. 5b). For example, the ASE, ASJ and AUA neurons—
derived from AB progenitors—formed branching trajectories that 
mirrored their true lineage structure (Fig. 4d). In contrast, other meth-
ods introduced discontinuities, failed to resolve key bifurcations or 

Fig. 3 | Benchmarking CONCORD and other data-integration methods across 
diverse structures. a, Two-batch, five-cluster simulation with imbalanced batch 
sizes. Heat maps show the noise-free ground truth and the input data with noise 
and batch effects. Latent spaces from each method are visualized by UMAPs, 
colored by batch. Full cluster simulation results are in Extended Data Fig. 3a,b. 
‘Contrastive’ refers to naïve contrastive learning that uses the same encoder 
architecture and objective as CONCORD but with uniform sampling.  
b, Trajectory simulation with varying degrees of state overlap between batches. 
The input structure is shown by a heat map and PCA. For each method, the latent 
space is visualized by a kNN graph (k = 15) colored by simulated time to assess 
cross-batch integration along the trajectory. c, Loop simulation with varying 
degrees of state overlap between batches. kNN graphs are shown for the ground 
truth (edges omitted) and for CONCORD and selected methods. Full results 
are in Extended Data Fig. 3c. d, Tree simulation with varying degrees of state 
overlap between batches. kNN graphs are shown for the ground truth, CONCORD 
and selected methods. Full results are in Extended Data Fig. 3d. e, Trajectory 

simulation with 16 batches, each with a different batch effect, as shown by the 
heat map. kNN graphs (k = 15) colored by batch are shown for each method’s 
latent embedding. For scVI and both CONCORD modes (hcl and kNN), kNN 
graphs colored by simulated time are also shown. A table displaying detailed 
benchmarking metrics is provided (metric definitions in Methods).  
f, Trustworthiness across neighborhood sizes for the multibatch simulation in 
e. g, Prediction with limited training data for scVI and CONCORD. A specified 
number of batches were held out during training. We ran 5 replicates with 
random batch withholding and quantified batch mixing using the kNN-based 
batch classification error (k = 30). Means and 95% confidence intervals are 
plotted. h, Ranking of integration methods across simulated data, showing ranks 
for batch correction, biological label conservation, topological and geometric 
metrics, and overall score. For cluster simulations, Betti curves became noisy 
when the number of clusters exceeded three and we did not find a robust way to 
infer Betti numbers; therefore, topology scores were excluded for these datasets.
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generated artificial structures. Strikingly, CONCORD’s latent space 
resolved ASE-left and ASE-right neurons, characterized by differen-
tial expression of GCY receptors (Fig. 4e). Although morphologi-
cally symmetric, these neurons exhibit functional asymmetry in 
salt-sensing responses50,51.

To systematically assess preservation of lineage structure in the 
latent space, we evaluated lineage purity and average lineage distance 
within randomly selected kNN neighborhoods, with k ranging from 
30 to 300 (Fig. 4f). We reasoned that if a latent representation reflects 
lineage structure, each cell’s neighbors should belong predominantly 
to the same lineage or an immediate relative—captured by high purity 
and low average lineage distance. CONCORD maintained high lineage 
purity even at large values of k. Furthermore, neighboring cells from 
different lineages were often close relatives, as reflected by a low aver-
age lineage distance. In contrast, other methods produced embeddings 
with substantially more mixed-lineage neighborhoods. Collectively, 
these findings indicate that the CONCORD latent space preserves genu-
ine lineage structures, enabling refinement of existing annotations 
(Extended Data Fig. 5c) and highlighting its broader utility for inferring 
bona fide differentiation trajectories in developmental studies52,53.

In addition to fate bifurcation in neuronal development, fate 
convergence from different lineages is a common pattern in C. ele-
gans organogenesis. In the context of muscle formation, CONCORD 
accurately resolved how the MS, C and D lineages converge into 
well-resolved subbranches of body wall muscle, as well as rare con-
vergence events such as the integration of ABplp/ABprp-derived and 
MS-derived cells into intestinal muscle (mu_int) (Fig. 4g). Pharyn-
geal development—featuring complex branching and convergence 
of AB-derived and MS-derived cells—was likewise resolved in detail 
by CONCORD (for example, pm3–pm5 deriving from both AB and MS 
lineages, and pm1–pm2 and pm6–pm8 specific to AB/MS lineages), 
whereas other methods recovered fewer fine-grained details (Fig. 4h). 
Crucially, all analyses were performed directly in CONCORD’s global 
latent space, without subset-specific highly variable gene (HVG) selec-
tion or realignment—steps that are often necessary for other methods.

Lastly, to test model generalizability, we trained CONCORD 
and scVI on a subset of C. elegans batches and projected them onto 
unseen C. elegans and all C. briggsae data (Fig. 4i). CONCORD suc-
cessfully integrated the held-out batches, aligned the two species and 
resolved the majority of cell types. In contrast, scVI produced a mark-
edly lower-quality projection, with poor cross-species alignment and 
diminished cell type resolution.

CONCORD captures cell cycle and differentiation trajectories 
in mammalian intestinal development
Unlike C. elegans, where early divisions are largely driven by maternal 
transcripts54, mammalian development involves extensive proliferation 
coupled with ongoing differentiation. To assess whether CONCORD 

can resolve these intertwined processes, we applied it to a single-cell 
atlas of embryonic mouse intestinal development55, which spans mul-
tiple developmental stages, batches, spatial segments and enriched 
cell populations—posing a challenging integration task because of 
incomplete batch coverage.

CONCORD effectively integrated the data and resolved 
fine-grained substructures across diverse cell types (Fig. 5a and 
Extended Data Fig. 6a). Both hcl and kNN modes revealed loop-like pat-
terns within many cell types—as evidenced by persistent homology—and 
often missed by other methods (Fig. 5b–d and Extended Data Fig. 6b). 
The majority of these loops correspond to cell-cycle progression, sup-
ported by progressive expression of cell-cycle gene programs along the 
loops (Extended Data Fig. 6b). For example, in intestinal epithelial cells, 
CONCORD not only resolved rare subtypes such as enteroendocrine 
cells but also revealed two parallel trajectories—each encompassing 
both a cell-cycle loop and a differentiation path—corresponding to 
stem cell proliferation and differentiation in spatially distinct regions 
(Fig. 5b). These structures were not captured by other methods and 
were supported by adult zonation markers such as Bex4 and Onecut2 
(ref. 56), suggesting that CONCORD can detect epithelial zonation as 
early as embryonic day 13.5.

In the enteric nervous system (ENS), CONCORD captured the cell 
cycle of Sox10⁺ progenitor cells and identified two distinct branches 
of neuronal development marked by Etv1 and Bnc2, matching previous 
observations57 (Fig. 5c). These branches appear to converge through 
shared expression of neuronal maturation genes broadly active at late 
stages of both branches (Extended Data Fig. 6c).

In mesenchymal cells—which comprise a major fraction of this 
dataset—CONCORD uncovered extensive heterogeneity within the 
Pdgfra− and smooth muscle populations (Fig. 5d). These included four 
consecutive cell-cycle loops marked by the expression of Ebf1, Slit2, 
Kit and Acta2, with gradual transitions between the loops. Notably, 
Ebf1 and Slit2 have been linked to mesenchymal multipotency58,59, 
while Kit marks interstitial cells of Cajal and their progenitors60. Unlike 
traditional approaches where cell cycle often confounds cell type 
annotation, CONCORD preserves both proliferation and differentia-
tion structure, enabling the identification of previously uncharacter-
ized subpopulations. The complexity of these structures necessitates 
3D visualization and we encourage readers to explore the interactive 
embeddings (https://qinzhu.github.io/Concord_documentation/
galleries/huycke_show/).

Unlike Seurat and scVI, which left many latent dimensions under-
used, CONCORD produced a dense and interpretable latent space that 
reflects rich biological structure and makes full use of its representa-
tional capacity (Fig. 5e). Each latent dimension typically encapsulates 
multiple gene coexpression programs, which can be interpreted at 
either single-cell or cell-state resolution using gradient-based attribu-
tion methods61 in a context-dependent manner (Fig. 5f). For instance, 

Fig. 4 | Benchmarking CONCORD on C. elegans and C. briggsae 
embryogenesis atlas. a, UMAPs from CONCORD and other integration methods, 
colored by inferred embryo time and species. Zoomed-in UMAPs for scVI and 
CONCORD (hcl) show approximately matched regions, colored by lineage and 
species. b, Global 2D and 3D CONCORD (hcl) embeddings colored by cell type 
and inferred embryo time. c, Overlap between expert-curated cell type and 
lineage annotations. A histogram shows lineage annotations concentrated in 
early-stage cells and cell type annotations predominantly in late-stage cells. 
Integration performance was evaluated separately for early-stage cells (lineage 
labels) and late-stage cells (cell type labels) using probing classifiers. d, Global 
3D UMAPs of CONCORD, scVI and Harmony, highlighting cells mapped to the 
lineage subtree that give rise to ASE, ASJ and AUA neurons. For each method, 
the most representative view was selected. e, Heat map showing the top 50 
most variable latent dimensions in the ASE, ASJ and AUA neuron subset for scVI, 
Harmony and CONCORD (hcl). Expression of gcy-5 and gcy-14 is overlaid on a 
zoomed UMAP recomputed from the CONCORD latent space. f, Lineage purity 
and average lineage distance computed across 2,000 randomly selected kNN 

neighborhoods for each method. For each randomly sampled anchor cell, we 
retrieve its k-nearest neighbors in the embedding and compare their lineage 
relationships to the lineage graph. Purity is the fraction of neighbors assigned to 
the same lineage as the anchor; average lineage distance is the mean hop distance 
on the lineage tree from the anchor to its neighbors. Box plots show the median 
(center line), quartiles (box limits), 1.5× the interquartile range (whiskers) and 
outliers (points). g, Zoomed-in UMAPs for mesoderm (excluding pharynx), 
highlighting major input lineages and cell types. Each lineage is represented 
by its cluster medoid; edges connect parental lineages to daughters following 
the lineage tree. h, Zoomed-in UMAPs for pharynx, annotated by cell type and 
broad input lineages. Selected lineage paths to pm1/2, pm3–pm5 and pm7 are 
highlighted. i, scVI and CONCORD were trained on the combined C. elegans data 
from Packer et al.49 and our newly collected batch and then used to project the 
full atlas including C. elegans and C. briggsae data from Large et al.48. Resulting 
UMAPs are colored by species and integration performance was evaluated with 
probing classifiers. Acc., accuracy; annot., annotation; avg., average.
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latent neuron 46 (Z46) is activated in both epithelial cells and ENS cells 
but attribution analysis revealed that it is driven by two distinct sets 
of highly coexpressed genes depending on the cellular context (Fig. 5f 
and Extended Data Fig. 6c). In epithelial cells, Z46 activation is linked 
to goblet-cell-specific genes enriched in glycosylation pathways, 
whereas, in ENS cells, it reflects neuronal maturation genes expressed 
in late-stage neurons. Notably, neither gene set shows strong expres-
sion outside its respective context, demonstrating that the CONCORD 
latent space captures biologically meaningful, context-specific gene 
coexpression programs.

CONCORD generalizes across modalities and scales
CONCORD’s domain-agnostic design allows it to be applied to diverse 
data modalities beyond scRNA-seq. We tested this on a challenging 
single-cell ATAC-seq benchmark dataset comprising peripheral blood 
mononuclear cells (PBMCs) from two donors profiled across eight 
different technologies62 (Fig. 6a). On both quantitative metrics and 
visual inspection of the embeddings, CONCORD yielded much better 
batch correction and biological label conservation than other methods, 
including the original study’s Harmony-based analysis (Fig. 6b,c and 
Extended Data Fig. 7a,b).

The CONCORD embedding revealed fine-grained immune sub-
types not present in the original annotations. To validate these, we 
refined the cell type labels using paired scRNA-seq and scMultiome 
data and projected them back onto the scATAC-seq embedding 
through shared scMultiome cells (Fig. 6c). Strikingly, refined clusters 
in scRNA-seq (for example, naive and memory B cells) corresponded 
precisely to clusters uncovered by CONCORD in scATAC-seq. This 
validation also uncovered a misannotation in the original study, where 
CD8⁺ naive T cells were incorrectly labeled as CD4⁺ T cells. Therefore, 
CONCORD greatly improved analysis on existing scATAC datasets. 
Notably, CONCORD achieved this high-resolution result using only 
simple log normalization, forgoing the complex, modality-specific 
data transformations often required for scATAC-seq analysis.

When applied to a breast cancer tumor microenvironment sam-
ple profiled with Xenium, 3′ and 5′ scRNA-seq and fixed RNA profil-
ing technologies63—sharing only 307 genes—CONCORD in hcl mode 
achieved markedly better integration and cell type resolution than 
other approaches (Fig. 6d and Extended Data Fig. 7c). A key finding 
of the original study was that two DCIS (ductal carcinoma in situ) 

subtypes exhibit distinct adjacent microenvironments; DCIS-1 is 
bordered by both KRT15⁺ and ACTA2⁺ myoepithelial cells, whereas 
DCIS-2 is encircled exclusively by ACTA2⁺ myoepithelial cells (Fig. 6e). 
Notably, without access to spatial coordinates, CONCORD recapitu-
lated these adjacency patterns by revealing differential connectivity 
between DCIS and myoepithelial clusters—consistent with signal bleed 
or segmentation-related transcript carryover commonly observed in 
spatial single-cell assays64.

Lastly, we benchmarked CONCORD on six additional scRNA-seq 
datasets curated by the Open Problems in single-cell analysis 
initiative65, including Tabula Sapiens (>1 million cells)66. CONCORD 
consistently achieved top performance across these datasets 
(Fig. 6f and Supplementary Table 2) while running substantially 
faster and with modest RAM/VRAM requirements (Fig. 6g and 
Extended Data Fig. 7d). By contrast, several methods—including 
LIGER, Scanorama and Seurat—failed to run at atlas scale because 
of heavy resource demands or violations of method assumptions. 
CONCORD-derived 2D UMAP embeddings for these datasets are pro-
vided in Extended Data Fig. 8 and additional examples, tutorials and 
resources are available on the CONCORD documentation website 
(https://qinzhu.github.io/Concord_documentation/).

Discussion
Minibatch gradient descent underpins modern machine learning, 
including large language models, foundation models and diffusion 
models. Growing evidence suggests that the composition of these mini-
batches can influence model performance67,68. In contrastive learning, 
where each sample is contrasted against others within a minibatch, this 
effect is amplified, especially in biological datasets spanning multiple 
batches, where naive sampling can exacerbate batch effects and distort 
learned representations. Yet, in contrastive learning for single-cell data, 
uniform random sampling remains the norm, limiting the method’s 
ability to capture biologically meaningful structure.

Our central insight is that, in contrastive learning, minibatch com-
position not only influences but fundamentally shapes the outcome. 
By rethinking how minibatches are assembled, we turn contrastive 
learning’s sensitivity to minibatch composition into a strength.

At the core of CONCORD is a unified probabilistic sampler that 
integrates hard-negative sampling with dataset-aware sampling. 
Hard-negative sampling markedly enhances the representational 

Fig. 5 | Benchmarking CONCORD on mammalian intestine development. a, The 
2D and 3D UMAP visualizations of CONCORD (kNN mode) latent space, colored 
by cell type and cell-cycle phase, with UMAPs from scVI and Seurat (colored by 
cell type) for comparison. b, Zoomed-in views of epithelial cells in the 3D global 
UMAP, colored by cell subtype, zonation and expression of zonation-specific 
markers (Bex4 and Onecut2). A red marker and arrow indicate the viewing 
angle within the 3D global UMAP. Persistence diagrams are shown for scVI and 
CONCORD. c, Zoomed-in view of ENS cells, colored by cell-cycle phase and 
cell state or branch annotations, based on Morarach et al.57, along with state-
specific marker expression. A red marker and arrow indicate the viewing angle. 

Persistence diagrams are shown for CONCORD and scVI. d, Zoomed-in view of 
Pdgfra− mesenchymal cells and smooth muscle cells, colored by cell-cycle phase, 
subtype annotation and selected subtype-specific markers. A red marker and 
arrow indicate the viewing angle. e, Heat map of latent representations generated 
by CONCORD (kNN), Seurat and scVI. f, Interpretation of the CONCORD latent 
space using gradient-based attribution techniques. Activation of Z46 in epithelial 
and ENS cells is attributed to the coexpression of epithelial-specific and neuron-
specific gene sets in their respective contexts. Gene Ontology (GO) enrichment 
analysis of these gene sets is shown. FDR, false discovery rate.

Fig. 6 | Performance of CONCORD across modalities and scales. a, Schematic 
of the PBMC scATAC-seq benchmarking experiment spanning multiple 
technologies and experimental batches62. b, Summary scores for all integration 
methods on the PBMC scATAC-seq data; detailed metric values are provided 
in Extended Data Fig. 7b. c, The t-distributed stochastic neighbor embeddings 
from the original publication (Harmony integration) and embeddings produced 
by scVI and CONCORD, colored by batch and original cell type annotations. To 
refine annotations, we analyzed paired scRNA-seq datasets with CONCORD and 
projected the refined labels onto the scATAC-seq embedding through shared 
scMultiome cells. d, Schematic of the experimental design for the breast cancer 
tumor microenvironment sample, where a single formalin-fixed paraffin-
embedded tissue block was analyzed with multiple technologies63. UMAP 
embeddings derived from the CONCORD and scVI latent spaces are colored by 
batch and original cell type annotations. Full results for all integration methods 

are shown in Extended Data Fig. 7c. e, Hematoxylin and eosin image and overlay 
of cell type annotations based on Xenium data, reproduced under the Creative 
Commons Attribution 4.0 International License from the original publication63 
without modification. The experiment was performed in replicate on two serial 
sections and one representative section is shown here. f, Ranking of integration 
method performance across all real-world benchmarking datasets, excluding 
datasets where scIB metrics could not be robustly computed. Each method was 
scored on both batch correction and biological label conservation metrics, and 
the overall rank was computed on the basis of the average score. Missing values 
indicate methods that failed to run because of excessive resource demands or 
violated model assumptions. g, Runtime of integration methods across all real-
world benchmarking datasets. *Harmony was run using a reduced-dimensional 
PCA projection, whereas all other methods were applied to gene expression 
matrices with 5,000–10,000 variable features.
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power of the contrastive model, enabling it to capture intricate gene 
coexpression programs that separate closely related cell states. The 
dataset-aware sampler enriches each minibatch with cells from a sin-
gle dataset, allowing the model to learn biological variation with-
out entangling batch effects. Unlike traditional methods that rely on 

matched clusters or explicit batch-effect models, CONCORD mitigates 
batch effects solely through principled sampling and training. As a 
result, it aligns cells based on shared covarying features—a hallmark 
of single-cell data69–71—making it especially robust when datasets have 
minimal overlap or unusual geometric and topological structures. 
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The dataset-aware strategy integrates seamlessly with either the hcl 
or kNN hard-negative sampling variants, with both configurations 
yielding robust batch correction and faithful structure preservation 
across diverse benchmarks.

CONCORD achieves state-of-the-art performance using a minimal-
istic encoder architecture, demonstrating that substantial gains can be 
achieved through rational sampling and training alone, without relying 
on deep architectures, complex objectives or supervision. Across both 
simulated and real datasets of varying scales and modalities, CONCORD 
consistently learns latent spaces that are denoised, interpretable and 
topologically faithful. In whole-organism embryogenesis atlases, it 
accurately reconstructs fate bifurcations and lineage convergences, 
enabling detailed tracing from progenitor cells to terminal states. In 
contrast, existing methods often misalign these datasets, lose resolu-
tion or fragment continuous trajectories. In mammalian intestinal 
development, CONCORD captures complex hierarchies, spatial zona-
tion and cell-cycle loops—all within a single integrated analysis. Unlike 
traditional workflows that regress out cell-cycle effects, CONCORD 
preserves and resolves both proliferative and differentiation programs, 
facilitating investigations into their interplay. Its interpretable latent 
space further enables gradient-based attribution analyses, allowing 
gene-level mechanistic insights at single-cell or cell type resolution.

CONCORD features a speed-optimized, memory-efficient design. 
Key components including a vectorized sampling algorithm, native 
sparse matrix support and out-of-core data loading enable it to readily 
analyze million-cell atlases that may exceed available system memory. 
While the current implementation emphasizes simplicity, the frame-
work is fully extensible to more complex architectures such as deeper 
neural networks or transformers72 to support more intricate data 
modalities or biological contexts. This minimalist design reduces the 
number of tunable parameters, although several hyperparameters, 
such as PkNN in the kNN mode and β in the hcl mode that control the 
degree of hard-negative sampling, remain critical for optimal perfor-
mance. Our benchmarking provides practical guidance for their tun-
ing, showing that balanced local and global sampling—achieved with 
moderate PkNN or β—ensures robust performance across datasets. We 
currently adopt the hcl mode as the default because of its robust perfor-
mance across real-world datasets and lower parameter complexity but 
will continue to explore additional sampling strategies and maintain 
best-practice guidelines on the CONCORD documentation website.

Beyond the core contrastive encoder, CONCORD supports 
optional decoder and classifier modules for gene-level batch correc-
tion, label transfer and annotation-guided representation learning. 
Preliminary results suggest that these built-in utilities benefit from 
the model’s robust latent space, although further validation is ongo-
ing. In addition, the batch-aligned, information-rich latent space can 
be readily leveraged by established downstream methods—for exam-
ple, through gradient-based attribution to uncover context-specific 
gene coexpression programs or through tools such as CellANOVA13 to 
recover subtle biological signals and batch-corrected gene expression 
after integration.

As CONCORD aligns datasets by leveraging shared gene coexpres-
sion structures, its performance may be compromised when these 
structures are substantially distorted by batch effects. For example, 
we observed suboptimal alignment between single-nucleus and 
whole-cell scRNA-seq data, likely reflecting systematic differences in 
gene covariance structure caused by transcript localization. Similarly, 
feature selection strategies and the biological context of the input can 
influence alignment outcomes. For instance, when integrating tumor 
microenvironment datasets across individuals, using only tumor cells 
may yield different alignment patterns compared to integrating all cell 
types in the tumor microenvironment, as HVG selection and the result-
ing coexpression structure depend on the cellular context.

Importantly, the principles underlying CONCORD are not 
limited to single-cell sequencing. The fundamental challenge of 

disentangling technical artifacts from meaningful biological het-
erogeneity is shared across many high-dimensional data modali-
ties, including spatial proteomics and high-content imaging. These 
data types are also characterized by rich covarying features. Thus, 
the joint dataset-aware and hard-negative sampling framework 
presented here provides a powerful and generalizable strategy for 
learning robust representations from diverse and complex biologi-
cal datasets, paving the way for deeper, integrated analyses across 
experiments and technologies.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-025-02950-z.
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Methods
Self-supervised contrastive learning and sparse coding
We implemented CONCORD in PyTorch, building on a self-supervised 
contrastive learning framework inspired by SimCLR21 and SimCSE22, 
but with a unique dataset-aware and hard-negative sampling design. 
The core training objective is the normalized temperature-scaled 
cross-entropy (NT-Xent)21, applied to cell representations generated 
through random masking.

Theoretically, contrastive learning with ReLU networks and ran-
dom masking augmentation can provably recover underlying sparse 
features from data approximated as follows:

x = Mz + ε

where Mz represents the sparse signal with ||z||0 = Õ(1) and ε denotes 
noise24. CONCORD adopts similar conditions, using LeakyReLU activa-
tions and independent random masking augmentations to capture 
gene coexpression patterns while suppressing noise.

This sparse coding approach generalizes beyond traditional 
dimensionality-reduction methods such as NMF, PCA, factor analy-
sis and VAEs. Unlike these methods, it does not enforce orthogonal-
ity on M (as in PCA), require non-negativity constraints (as in NMF), 
assume a probabilistic generative model (as in factor analysis and 
VAEs) or impose Gaussian priors on the latent space (as in standard 
VAEs). Instead, it assumes an intrinsic low-rank structure shaped by 
gene coexpression programs, as supported by single-cell studies69–71. 
By relaxing constraints on orthogonality, non-negativity and Gaussian 
priors, the contrastive learning framework is better positioned to cap-
ture diverse gene-regulatory programs that deviate from conventional 
assumptions. Moreover, random masking enhances robustness to 
scRNA-seq dropout and improves biological interpretability, allowing 
the latent space to more faithfully encode diverse cell states.

Model architecture
CONCORD emphasizes architectural flexibility and minimalism. 
For all benchmarking analyses presented in this study, we used 
a single-hidden-layer encoder to demonstrate performance gains 
attributable to sampling and training alone. However, the architec-
ture is fully extensible; users may substitute the encoder with more 
advanced models—such as deeper neural networks or transformers—
to accommodate different data modalities or capture higher-order 
biological structures.

	(1)	 Data augmentation
�Input gene expression values are normalized by total count and 
log-transformed. Two complementary augmentation strategies 
are applied to each minibatch.

•	 �Feature-wise masking randomly sets the expression of a 
specific gene to zero across all cells in the minibatch with a 
user-defined probability, simulating systematic gene dropout.

•	 �Element-wise masking randomly sets the expression of 
specific genes to zero in individual cells with a user-defined 
probability, mimicking localized noise or missing data.

Both strategies encourage the encoder to reply on gene coexpression 
patterns rather than individual gene signals, improving generalization 
and robustness to noise.

	(2)	 Encoder 
The encoder maps masked gene expression vectors to 
low-dimensional embeddings. By default, it is implemented 
as a fully connected network with one hidden layer, although 
the number of layers or neurons can be adjusted. An optional 
learnable feature-weighting module may precede the encoder 
to assign sparse, interpretable weights to genes.

	(3)	 Normalization and activation 
Each linear layer is followed by layer normalization and a 
user-configurable activation function (default: LeakyReLU). 
Layer normalization operates across features within each 
sample, providing robustness to variation across minibatches; 
therefore, it is preferable to batch normalization73, although the 
latter is also supported.

	(4)	 Optional decoder and classifier

A decoder can be appended to the latent embeddings to recon-
struct batch-corrected gene expression profiles. It can be trained 
jointly with the encoder or after encoder pretraining. To prevent rein-
troduction of batch effects into the latent space, a distinct, learnable 
dataset embedding is appended during decoding, preserving the 
batch-effect-free nature of the representation.

A classification head, implemented as a multilayer perceptron 
with a cross-entropy loss, can optionally be attached to the encoder 
for supervised tasks such as cell type annotation or doublet detection. 
The classifier may be trained on a pretrained encoder or jointly with it 
to enhance cell type separation in the latent space. While joint training 
improves class separation, it may impose strong priors that disrupt 
trajectory continuity. To mitigate overfitting, a training–validation 
split with early stopping is recommended during classifier training.

Contrastive objective
We adopt the noise-contrastive estimation framework with the NT-Xent 
loss21. Given a minibatch of B cells, two augmented views are generated 
for each sample, producing embeddings zk and zk+ from the encoder. 
The NT-Xent loss encourages the model to pull positive pairs (different 
views of the same sample) closer while pushing negative pairs (views 
from different samples) apart.

For a concatenated minibatch of 2B embeddings z = [zk; zk+ ], the 
loss is computed as follows:

ℒ = 1
2B

2B
∑
k=1

− log( exp (s (zk, zk+ ) /T )
∑2B
m=1,m≠k exp (s (zk, zm) /T )

) ,

where s (zk, zk+ ) =
zTk zk+

||zk ||||zk+ ||
 denotes the cosine similarity and T is a tem-

perature hyperparameter that controls the trade-off between local 
separation and global uniformity of the embeddings74. The denomina-
tor sums over all other embeddings in the minibatch, approximating 
negatives sampled from the empirical data distribution P.

The loss is efficiently implemented using matrix operations: the 
logit matrix L = zzT/T  is computed, diagonal entries are set to −∞ to 
exclude self-similarities and the cross-entropy loss is applied with 
positive indices corresponding to zk+ for each zk.

Dataset and neighborhood-aware probabilistic sampler
At the core of CONCORD is a probabilistic minibatch sampler that 
determines how cells are grouped and contrasted during training. 
Unlike conventional contrastive learning frameworks that rely on 
uniform random sampling, CONCORD introduces a unified, generaliz-
able sampling strategy that simultaneously (1) performs hard-negative 
sampling in either kNN or hcl mode and (2) restricts each minibatch 
primarily to cells from a single dataset. This principled design reshapes 
the outcome of contrastive learning, enabling the model to produce a 
coherent, high-resolution and batch-effect-mitigated representation 
of the cell-state landscape.

	(1)	 kNN mode
�We begin by coarsely approximating the global data manifold 
using a kNN graph, where k is a user-defined parameter (typi-
cally moderately large). The graph can be initialized from nor-
malized gene expression values, a PCA projection or a CONCORD 
batch-corrected embedding generated with the dataset-aware 
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sampler. By default, we run CONCORD with the dataset-aware 
sampler for two epochs, followed by the remaining epochs with 
joint sampling. For scalability, we use the Faiss library75 for efficient 
neighbor retrieval in large datasets. The kNN graph then guides 
neighborhood-aware sampling, modulated by a user-defined 
neighborhood enrichment probability PkNN. To construct mini-
batches that are both dataset and neighborhood enriched, we 
partition each minibatch into four subsets—in-dataset neigh-
bors, in-dataset global samples, out-of-dataset neighbors and 
out-of-dataset global samples (Extended Data Fig. 1b). A ‘core 
sample’ is randomly selected from one dataset to anchor both 
neighborhood and dataset-aware sampling. The four subsets are 
then sampled according to Pd (probability of sampling within the 
same dataset) and PkNN as follows:

•	 In-dataset neighbors: PdPkNNB cells from the same dataset and 
within the core cell’s kNN neighborhood.

•	 In-dataset global samples: Pd (1 − PkNN)B uniformly sampled 
cells from the same dataset, outside the neighborhood.

•	 Out-of-dataset neighbors: (1 − Pd)PkNNB cells from other 
datasets that fall within the core cell’s kNN neighborhood.

•	 Out-of-dataset global samples: (1 − Pd)(1 − PkNN)B uniformly 
sampled cells from all other datasets.

	(2)	 hcl mode

�Unlike kNN mode, which explicitly samples cells from a 
precomputed neighborhood graph, hcl mode reweights the 
contribution of negative samples directly in the contrastive 
loss according to their similarity to the anchor. This effectively 
emphasizes hard negatives—cells whose embeddings lie close 
to the anchor— enabling the model to better resolve subtle 
differences between closely related states without explicitly 
altering the minibatch sampling procedure.
�Formally, hcl mode implements the hard-negative sampling 
algorithm from Robinson et al.32, using importance sampling to 
approximate the expected hard-negative loss directly within the 
contrastive objective. Given an anchor embedding zk, negative 
samples zm are drawn from a mixed hard-negative distribution:

qβ (zm) ∝ exp (βs (zk, zm) /T)P (zm) ,

where the similarity s (zk, zm) = zTkzm (with embeddings 𝓁𝓁2-normalized) 
and β > 0 is a concentration parameter. The exponential term acts as a 
von Mises–Fisher kernel; larger β concentrates probability mass on 
points closer to the anchor (harder negatives), while β = 0 recovers the 
uniform sampler over the data distribution P.

Because sampling directly from qβ is computationally inefficient, 
we apply importance weights within the contrastive loss to approxi-
mate the expected contribution under qβ. Specifically, the contrastive 
loss under hcl mode is:

ℒhcl =
1
2B

2B
∑
k=1

− log ( exp (s (zk, zk+ ) /T)
exp (s (zk, zk+ ) /T) + (2B − 2)𝔼𝔼zm∼qβ [exp(s(zk, zm)/T)]

) .

This omits the optional debiasing term from Equation 4 in Robinson 
et al.32, which uses the class prior τ+ to correct for false negatives. We 
set τ+ = 0, as the high heterogeneity of single-cell data makes sampling 
identical molecular states within a minibatch unlikely.

T h e  exp e c t a t i o n  i s  co m p u te d  u s i n g  M o n te  C a r l o 
importance sampling:

𝔼𝔼zm∼qβ [exp(s(zk, zm)/T)] = 𝔼𝔼zm∼P [
exp ((1 + β) s (zk, zm) /T)

Zβ
] ,

where

Zβ = 𝔼𝔼zm∼P[exp (βs (zk, zm) /T)]

is the partition function, estimated empirically as

̂Zβ =
1

2B − 2

2B−2
∑
m=1

exp (βs (zk, zm) /T) .

Let

lm = s (zk, zm) /T

denote the original negative logits. The reweighted logits are then

l′m = (1 + β) lm − log( ̂Zβ),

which replaces lm in the NT-Xent denominator.
To integrate the hcl hard-negative sampler with the dataset-aware 

sampler, we apply the hcl contrastive loss to minibatches constructed 
under the dataset-aware probability distribution (determined by Pd) 
rather than the uniform distribution P, thereby enabling simultane-
ous batch correction by focusing contrasts primarily within datasets. 
In practice, hcl is more sensitive to Pd, performing best under strict 
intra-dataset sampling (Pd = 1.0). This likely occurs because strong 
weighting of nearby neighbors can penalize correct alignments when 
cross-batch neighbors represent the same biological state.

Both CONCORD sampling variants are implemented using vector-
ized operations in PyTorch and NumPy, optimizing memory efficiency 
and minimizing computational overhead. This ensures scalability to 
large datasets and enables rapid training.

Model training
Mini-batches are constructed using the probabilistic sampler, shuffled and 
optimized with the NT-Xent loss using the Adam optimizer76. Interestingly and 
in contrast to trends commonly observed in computer vision, CONCORD’s 
performance did not improve with very large minibatch sizes (relative to the 
total number of cells). For example, in the C. elegans dataset (>90,000 cells), 
performance peaked at moderate sizes (256–512) and declined when the batch 
size exceeded 1,000 (Extended Data Fig. 4e). We hypothesize that this behavior 
arises because the benefits of hard-negative sampling are diluted in excessively 
large batches. As batch size increases, the minibatch distribution approaches 
the global data distribution, diminishing the effect of hard-negative sampling. 
Accordingly, for all benchmarking analyses, we adopted a moderate batch size 
of 256, which consistently achieved top performance across diverse datasets 
while maintaining high computational efficiency. This configuration also 
minimizes VRAM requirements (Extended Data Fig. 7d), allowing CONCORD 
to run efficiently on widely available GPUs.

In addition to the core contrastive objective, optional loss terms, 
including mean-squared error for reconstruction, cross-entropy loss 
for classification and L1 or L2 regularization for feature-weighting mod-
ules, can be incorporated with user-defined weights. A learning-rate 
scheduler is applied to gradually reduce the learning rate over time, 
promoting stable convergence.

Simulation pipeline
We developed a versatile simulation pipeline to generate synthetic 
single-cell gene expression data with diverse underlying structures. 
Unlike conventional simulators that primarily produce discrete clus-
ters, our pipeline accommodates a broad range of topologies, includ-
ing linear trajectories, branching trees, loops and intersecting paths, 
frequently observed in real single-cell datasets.

The pipeline proceeds in three sequential stages, as illustrated 
in Fig. 2a.

	(1)	 Ground-truth data model
�In the first stage, the state simulator constructs a noise-free data 
matrix [N × D], where N is the number of cells and D is the number 
of genes, according to a user-defined structure:
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•	 �Clusters: Cells form discrete groups characterized by unique 
gene programs, optionally including shared or ubiquitously 
expressed genes.

•	 �Trajectories: Cells exhibit gradual shifts in gene expression, 
emulating cell differentiation processes.

•	 �Loops and intersecting paths: Continuous trajectories that 
close into loops or intersect, representing cyclic or conver-
gent biological processes.

•	 �Trees: Hierarchical, branching lineages representing 
progenitor-to-terminal fate differentiation, configurable by 
branching factor and depth.

	(2)	 Noise model 
Expression values are then sampled from user-selected 
distributions (for example, Gaussian, Poisson, log-normal or 
negative binomial), introducing realistic variability and 
dropout patterns. Users can control parameters such as 
baseline expression, dispersion (noise level) and dropout 
probability and may optionally enforce non-negativity or 
integer rounding to yield a noisy data matrix [N × D].

	(3)	 Batch model

�In the final stage, an optional batch simulator introduces dataset- 
specific technical variability to mimic batch effects. For each 
batch, a user-specified effect type is applied, enabling simulation 
of various technical artifacts. Supported effect types include 
the following:

•	 Variance inflation: Multiplies each entry by 1 + N (0,σ2), where 
σ is the dispersion parameter.

•	 Batch-specific distribution: Adds noise sampled from a speci-
fied distribution (for example, normal, Poisson, negative bino-
mial or log-normal) with configurable mean and dispersion.

•	 Uniform dropout: Randomly sets a fixed fraction of values  
to zero.

•	 Value-dependent dropout: Drops values with probability 
exp (−λx2), where λ is the level parameter and x is the expres-
sion value.

•	 Down-sampling: Subsamples unique molecular identifier 
counts to a specified ratio, simulating reduced sequencing 
depth.

•	 Scaling factor: Multiplies the entire matrix by a scalar to shift 
overall expression levels.

•	 Batch-specific expression: Adds distribution-based noise to a 
random subset of genes.

•	 Batch-specific features: Appends new genes unique to each 
batch, with expression sampled from a specified distribution.

Multiple simulated batches are then concatenated into a single 
dataset, with adjustable degrees of batch overlap to mimic realistic 
sampling scenarios, producing the final data matrix [N × D] with noise 
and batch effects.

By combining diverse gene expression structures with configur-
able noise and batch models, this simulation pipeline can approxi-
mate a broad spectrum of biological and technical scenarios. It, thus, 
serves as a powerful testbed for benchmarking data integration, 
dimensionality-reduction and trajectory-inference methods under 
controlled yet biologically realistic conditions.

Benchmarking pipeline
We developed a comprehensive benchmarking pipeline 
to evaluate the performance of CONCORD and competing 
dimensionality-reduction and data-integration methods. This 
framework integrates geometric, topological, biological label con-
servation and batch-correction metrics to provide a multifaceted 
assessment of embedding quality.

	(1)	 Topological assessments: To quantify preservation of topologi-
cal structure, we performed persistent homology analysis using 
Giotto-TDA (version 0.5.1)77. Persistent homology captures 
structural features across multiple scales by constructing Vieto-
ris–Rips complexes over increasing radii, yielding persistence 
diagrams and corresponding Betti curves. Persistence diagrams 
encode the lifespan of topological features, such as connected 
components (Betti-0), loops (Betti-1) and voids (Betti-2). Betti 
curves were derived from these diagrams and interpolated onto 
a common filtration grid (100 bins) to ensure comparability 
across methods. 
For each homology dimension, we computed the mode of the 
Betti curve (representing the most persistent Betti number 
across scales) and compared it to the ground-truth topology 
using the L1 distance, defining the Betti number accuracy as

Accuracy = 1/ (1 + L1) .

 
We also quantified Betti curve stability as

Stability = 1/ (1 + Var) ,

where Var denotes the variance of Betti values across the filtration grid. 
Stability scores were averaged across homology dimensions to measure 
overall topological robustness (ranging from 0 for highly variable to 
1 for perfectly stable curves). The final topology score was defined as 
a weighted average:

Scoretopo = 0.8 × Betti number accuracy + 0.2 × Betti curve stability.

	(2)	 Geometric assessments: To evaluate geometric fidelity, we 
computed Pearson correlations between pairwise distances 
in the latent space and those in the corresponding noise-free 
reference data, quantifying global structure preservation. 
For local structure, we used trustworthiness78, a measure of how 
well neighborhood relationships are preserved after dimen-
sionality reduction. Trustworthiness values range from 0 (poor 
preservation) to 1 (perfect preservation). We averaged across 
neighborhood sizes (k = 10–100, step 10) and plotted trustwor-
thiness as a function of k to visualize performance across scales.

	(3)	 Batch-correction metrics: We adopted established metrics 
from the scIB metrics package (version 0.5.2)34 to assess 
batch-correction performance.

•	 Graph connectivity: Evaluates whether cells with the same bio-
logical label form a connected component in the integrated 
kNN graph (range 0–1; higher is better).

•	 Integration local inverse Simpson’s index (iLISI): Estimates 
the effective number of batches within local neighborhoods 
(range 0–1; higher indicates better mixing).

•	 kNN batch-effect test (KBET): Tests whether the batch com-
position within a cell’s neighborhood matches the global 
expectation. The average rejection rate is subtracted from 1 
(range 0–1; higher indicate better batch mixing).

•	 PCR comparison (principal component regression): Quanti-
fies the variance contribution of batch effects by regressing 
principal components on batch labels, comparing before and 
after integration (rescaled to 0–1).

•	 Silhouette batch (batch average silhouette width (ASW)): 
Computes the ASW using batch labels, taking the absolute 
value per cell before subtracting from 1. The score is averaged 
within each cell type and then across types (range 0 (strong 
separation) to 1 (ideal integration)).
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	(4)	 Biological label conservation: To assess preservation of biologi-
cal variation and cell type separation, we used a series of scIB 
metrics.

•	 Isolated labels: Assesses handling of rare or batch-specific 
labels using F1 score and ASW, scaled to 0–1 (higher scores 
indicate better separation of isolated labels).

•	 Leiden ARI (adjusted Rand index): Measures agreement 
between true biological labels and Leiden clusters, ranging 
from 0 (random) to 1 (perfect match).

•	 Leiden NMI (normalized mutual information): Quantifies 
shared information between true labels and Leiden clusters, 
ranging from 0 (no overlap) to 1 (perfect correspondence).

•	 Silhouette label (cell type ASW): Evaluates cell type separa-
tion using average silhouette width on true labels, scaled to 
0–1 (higher values indicate well-separated, cohesive cell type 
clusters).

•	 Cell type local inverse Simpson’s index (cLISI): Estimates cell 
type purity in local neighborhoods, rescaled to 0–1 (higher 
scores indicate better separation).

Because scIB primarily assumes discrete labels, it does not fully 
capture hierarchical or continuous systems. For simulations involving 
trajectories or loops, we first applied Leiden clustering to the noise-free 
data to define ‘clusters’ as ground truth or used ‘branch’ labels in tree 
simulations. Under these conditions, scIB metrics were applied in a 
coarse-grained manner to provide approximate evaluations.
	(5)	 Probing classifiers: To further assess embedding quality, we 

implemented probing classifiers, a standard approach in 
evaluating representation learning methods. Two probes were 
implemented: a KNN probe and a linear probe. The KNN probe 
trains a kNN classifier on 80% of the data and evaluates on the 
held-out 20%. The linear probe trains a single fully connected 
layer on the fixed embeddings using AdamW optimization, with 
cross-entropy loss for classification. Training follows an 80:20 
training–validation split with early stopping (default patience: 
five epochs) to prevent overfitting.

We applied these probes to evaluate both biological label con-
servation and batch mixing. For biological label conservation, probe 
performance was quantified using classification accuracy. For batch 
mixing, the classification error (1 − accuracy) was used, as higher error 
indicates stronger batch mixing. However, on datasets with imbalanced 
batch composition or coverage, high classification error can sometimes 
reflect overcorrection. Therefore, batch classification error was only 
used to assess batch mixing when scIB metrics could not be computed 
(for example, C. elegans and C. briggsae atlas). Label classification 
accuracy was included under biological label conservation metrics 
for all evaluations.

All datasets underwent total count normalization, log transforma-
tion and selection of highly variable features (5,000 for all Open Prob-
lems datasets; 10,000 for the C. elegans/C. briggsae datasets, intestine 
atlas and PBMC scATAC-seq data). The resulting matrices were used as 
input for all integration algorithms except Harmony, which requires 
PCA-projected coordinates.

CONCORD (version 1.0.8) was used for data integration, dimen-
sionality reduction, simulation and benchmarking. Additional 
dimensionality-reduction analyses were performed using scikit-learn 
(version 1.5.1), PHATE (version 1.0.11) and ZIFA (https://github.com/
epierson9/ZIFA). Comparative data-integration analyses were con-
ducted using scVI (version 1.2.2.post2), Scanorama (version 1.7.4), 
Harmony-pytorch (version 0.1.8), PyLiger (version 0.2.4), Seurat (ver-
sion 5.3.0) and Scanpy (version 1.10.1).

All methods were benchmarked using latent spaces of equal 
dimensionality: 30 for simulated datasets, 50 for most real-world data-
sets and 300 for complex datasets—such as the C. elegans/C. briggsae 

atlas and Tabula Sapiens—to capture the full diversity of cell states. 
To ensure fair comparison, all methods were executed on the same 
Amazon EC2 environment equipped with an NVIDIA Tesla T4 GPU.

For analyses and visualization, we additionally used AnnData 
(version 0.10.6), SciPy (version 1.15.2), FAISS (version 1.8.0), PyTorch 
(version 2.2.1), NumPy (version 1.26.4), UMAP-learn (version 0.5.7), 
pandas (version 2.2.3), seaborn (version 0.13.2), gseapy (version 1.1.4), 
plottable (version 0.1.5) and matplotlib (version 3.10.1).

Transcriptomic profiling of early C. elegans embryos by 
scRNA-seq
Wild-type Bristol N2 strain of the nematode C. elegans (hermaphrodite; 
source: Caenorhabditis Genetics Center, University of Minnesota) was 
used in this study. Worms were grown on nematode growth medium 
plates and synchronized by bleaching. Eggs were hatched on 10-cm 
plates and were grown until the L3 or L4 stage. To enrich for early 
embryos, plates were incubated at 12 °C for 48 h. Adult worms were 
lysed by bleaching and embryos were dissociated into single cells as 
previously described79. Cells were loaded onto a Chromium GEM-X 
single-cell 3′ Chip kit v4 with GEM-X Universal 3′ gene expression v4 
reagents (10x Genomics, 1000686). Libraries were prepared following 
the 10x Genomics protocol, sequenced on NovaSeq X and processed 
with CellRanger (version 9.0.1) using the WBcel235 transcriptome. A 
total of 12,899 cells were recovered, with a median of approximately 
69,000 reads per cell.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Single-cell RNA-seq data of C. elegans early embryos were deposited 
to the Gene Expression Omnibus (GEO) under accession number 
GSE305031. Public datasets analyzed in this study include the Human 
Lung Atlas compiled by Luecken et al.34 and obtained from the scIB 
metrics website (https://scib-metrics.readthedocs.io/en/stable/note-
books/lung_example.html), GTEX (version 9)80, HypoMap81, Immune 
Cell Atlas82, mouse pancreatic islet83, Tabula Sapiens66 sourced from the 
Open Problems in Single-Cell Analysis website (https://openproblems.
bio/benchmarks/batch_integration?version=v2.0.0), the C. elegans 
embryogenesis atlas49 downloaded from the GEO under accession 
number GSE126954, the joint C. elegans and C. briggsae dataset48 avail-
able from the GEO under accession number GSE292756, and the mouse 
intestinal developmental atlas55 acquired from the GEO under accession 
number GSE233407.

Code availability
CONCORD is available from GitHub (https://github.com/Gartner-Lab/
Concord) under the MIT License. All benchmarking codes used to 
generate results in this paper were also deposited to GitHub (https://
github.com/Gartner-Lab/Concord_benchmark). Full documenta-
tion of CONCORD can be found online (https://qinzhu.github.io/
Concord_documentation/).
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Extended Data Fig. 1 | The CONCORD framework. a, Schematic of the CONCORD 
mini-batch sampling framework. A dataset-aware sampler enriches each 
mini-batch with cells from a single dataset and is combined with a hard-negative 
sampler to support both data integration and enhanced resolution. Two 
hard-negative variants can be paired with the dataset-aware sampler: the kNN 
mode, which performs explicit local and global sampling based on a kNN graph of 
cells; and the hcl mode, which computes the expected hard-negative loss directly 
within the contrastive objective (see Methods). b, Joint probabilistic sampler 
(kNN mode). A probabilistic mini-batch sampler is constructed in which the 
likelihood of selecting a cell reflects the combined probabilities of dataset-aware 

(Pd) and neighborhood-aware sampling (PkNN). c, During training, each cell is 
augmented twice through random feature-wise and element-wise masking,  
and the contrastive loss is computed on latent encodings of mini-batches  
drawn by the joint probabilistic sampler. The model architecture used in this 
study is a minimalist neural network with a single hidden layer, though the 
framework supports more complex designs. Optional modules include a 
decoder with a learnable dataset embedding for batch-free gene-expression 
reconstruction, and a classifier for cell-type classification or annotation-guided 
representation learning.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Benchmarking CONCORD and other dimensionality 
reduction methods across diverse structures. a, Heatmaps of simulated 
expression for the three-cluster structure and the corresponding CONCORD 
latent encoding in hcl or kNN modes. b, Heatmaps of simulated expression for  
the trajectory-loop structure and the corresponding CONCORD latent encoding 
in hcl or kNN modes. c, Trustworthiness measured across neighborhood sizes 
(k) in the three-cluster simulation. In the noise-free reference, within-cluster 
neighbors are assigned at random, so trustworthiness is < 1. CONCORD (h, k) 
denotes the hcl and kNN modes, respectively. d, Trustworthiness measured 
across neighborhood sizes in the complex trajectory-loop simulation.  
e, Heatmaps of simulated expression for the complex-tree structure shown in  

Fig. 2g, alongside the corresponding CONCORD latent encodings under  
 a moderate degree of hard-negative enrichment in hcl and kNN modes.  
f, kNN-graph visualizations of latent spaces from the complex tree simulation, 
generated using naïve contrastive learning and the hcl and kNN modes of 
CONCORD with varying degrees of hard-negative enrichment. Zoomed-in views 
highlight improved resolution of a representative branch achieved through hard-
negative sampling. g, Trustworthiness across neighborhood sizes for hcl and kNN 
modes in the complex-tree simulation, evaluated under varying degrees of hard-
negative sampling. An inset for k < 20 highlights improved local neighborhood 
preservation with hard-negative sampling.
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Extended Data Fig. 3 | Benchmarking CONCORD and other data-integration 
methods across diverse structures. a, Two-batch, five-cluster simulations with 
increasing batch-size imbalance and complete overlap of cell states. Heatmaps 
of the input data (dimensions indicated) and UMAPs of the ground truth and 
each method’s latent space are shown, with cells colored by batch. b, Cluster 
simulations with increased batch number and imbalance, with partial overlap of 
cell states across batches. Heatmaps of the input data and UMAPs of the ground 

truth and each method’s latent space are shown, with cells colored by batch. 
LIGER failed on the third simulation due to violated model assumptions. c, Loop 
simulations with varying degrees of state overlap between batches. kNN graphs 
(k = 15; edges omitted) colored by batch are shown for the ground truth and 
each method. d, Tree simulations with varying degrees of state overlap between 
batches. kNN graphs (k = 30; edges omitted) colored by batch are shown for the 
ground truth and each method.
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Extended Data Fig. 4 | Performance of CONCORD on C. elegans atlas. a, UMAPs 
of the C. elegans atlas from Packer et al.49 generated from the CONCORD latent 
space. Gaps among early-stage cells are apparent; adding our newly collected  
C. elegans dataset enriched for early embryos fills these gaps, yielding 
continuous trajectories. The combined UMAP is colored by inferred embryo time 
and batch. b, Overlap between expert-curated cell-type and lineage annotations. 
A histogram shows that lineage annotations are concentrated in early-stage  
cells, whereas cell-type annotations are predominantly in late-stage cells.  
c, Integration performance of CONCORD and other methods, evaluated 
separately for early-stage cells with lineage annotations and late-stage cells with 
cell-type annotations. See Methods for metric definitions. d, Performance of 

the two CONCORD modes (hcl and kNN) across combinations of element- and 
feature-masking ratios, assessed by average classification accuracy using linear 
and kNN probes. e, Performance of both modes across key hyperparameters, 
quantified by the average of label-classification accuracy and batch-classification 
error. Each run varies one hyperparameter while fixing the rest (default value 
indicated on plot). Scores from other methods are included for comparison. 
f, UMAPs illustrating results with the dataset-aware sampler alone (no hard 
negatives) and with moderate versus excessive hard-negative sampling for 
hcl and kNN modes. Moderate local sampling improves cell-type and lineage 
resolution, whereas excessive local sampling without balanced global sampling 
disrupts global structure.
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Extended Data Fig. 5 | CONCORD analysis of C. elegans/C.briggsae 
embryogenesis atlas. a, 2D and 3D UMAPs of the CONCORD latent space 
(kNN mode), colored by cell type and inferred embryo time. b, C. elegans 
lineage tree and its projection onto the CONCORD (hcl) embedding. Lineage 
annotations from Large et al. were mapped to the C. elegans lineage tree (with 
some ambiguous mappings due to symmetry). Each lineage is represented by its 
cluster medoid on the UMAP; lines connect each parent lineage to its daughters 

following the lineage tree. Subtrees for major lineage groups are shown 
separately. c, Label refinement in the CONCORD latent space via kNN majority 
vote. For each cell, we examine its k = 30 nearest neighbors; if ≥50% of neighbors 
carry expert-curated lineage/cell-type labels, we assign the neighborhood’s 
majority label to unlabeled cells (and relabel when the majority disagrees). We 
iterate this procedure twice so newly assigned labels can vote. This recovers 
labels for many unlabeled cells and flags likely mis-annotations.
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Extended Data Fig. 6 | Benchmarking CONCORD on mammalian intestine 
development. a, UMAP embeddings derived from the latent spaces of CONCORD 
and other integration methods for the mouse intestinal developmental atlas55, 
colored by broad cell type, batch, cell-cycle phase, developmental stage, and 
zonation. b, For epithelial and smooth-muscle cells, loop-like trajectories were 
identified and pseudotime was assigned along each circular path. Heatmaps 
show top differentially expressed genes (DEGs) along each loop, as well as 

DEGs distinguishing the two zonation-specific epithelial loops. Persistence 
diagrams derived from each method’s latent representations are shown for 
both cell types. c, Expression patterns of the top-ranked genes contributing to 
Neuron 46 activation in the ENS context (top) and epithelial context (bottom), as 
determined by gradient-based attribution. Expression values were capped at the 
99th percentile for visualization.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Performance of CONCORD across modalities and scales. 
a, UMAPs of PBMC scATAC-seq data before and after integration by CONCORD 
and other methods, colored by original cell-type annotations and by batch. 
 b, Full benchmarking statistics for the PBMC scATAC-seq dataset. c, UMAPs of 
breast cancer tumor microenvironment data generated from the latent spaces of 
CONCORD and other integration methods, colored by cell type and technology/

batch. d, RAM and VRAM usage of different integration methods. For all methods 
except Seurat, we report ΔRAM (end–start RSS) because Python does not 
support resetting peak RSS mid-process. For Seurat, peak RAM was measured 
using the peakRAM R package (version 1.0.2). VRAM usage is shown only for GPU-
enabled methods. Missing values indicate methods that failed due to excessive 
resource demands or violated model assumptions.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Performance of CONCORD on public human and mouse 
scRNA-seq datasets. UMAP embeddings derived from each method’s latent 
space are shown for all datasets and colored by batch and cell type. a, Lung atlas 
spanning multiple spatial regions, donors, and two scRNA-seq protocols34. b, 
GTEX v9: human single-nucleus RNA-seq data from eight tissue types across 16 
individuals80. c, HypoMap: single-cell atlas of the murine hypothalamus ( ~ 380k 

cells) across four assays81. d, Immune cell atlas: human immune cells from 16 
tissues and 12 donors82. e, Mouse pancreatic islet: scRNA-seq atlas comprising 
56 samples across sex, age, and diabetes models83. f, Tabula Sapiens: human cell 
atlas of over 1.1 M cells from 28 organs of 24 normal human donors66. Missing 
plots indicate runs that failed due to excessive resource demands or violated 
model assumptions.
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