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Saturation genome editing maps the 
functional spectrum of pathogenic  
VHL alleles
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To maximize the impact of precision medicine approaches, it is critical 
to identify genetic variants underlying disease and to accurately 
quantify their functional effects. A gene exemplifying the challenge 
of variant interpretation is the von Hippel–Lindautumor suppressor 
(VHL). VHL encodes an E3 ubiquitin ligase that regulates the cellular 
response to hypoxia. Germline pathogenic variants in VHL predispose 
patients to tumors including clear cell renal cell carcinoma (ccRCC) and 
pheochromocytoma, and somatic VHL mutations are frequently observed 
in sporadic renal cancer. Here we optimize and apply saturation genome 
editing to assay nearly all possible single-nucleotide variants (SNVs) 
across VHL’s coding sequence. To delineate mechanisms, we quantify 
mRNA dosage effects and compare functional effects in isogenic cell lines. 
Function scores for 2,268 VHL SNVs identify a core set of pathogenic alleles 
driving ccRCC with perfect accuracy, inform differential risk across tumor 
types and reveal new mechanisms by which variants impact function. These 
results have immediate utility for classifying VHL variants encountered 
clinically and illustrate how precise functional measurements can resolve 
pleiotropic and dosage-dependent genotype–phenotype relationships 
across complete genes.

Delineating rare genetic variants underlying disease phenotypes 
remains a major challenge in human genetics. For the majority of 
cancer-associated genes, more variants of uncertain significance 
(VUS) have been reported than variants whose phenotypic effects are 
known1–4. In the context of both germline testing and tumor profiling, 
VUS represent a missed opportunity to improve patient care through 
precision medicine approaches.

Most variants observed are too rare to enable statistically robust 
genotype–phenotype associations. Computational models of variant 

effects have improved due to greater availability of training data and 
the use of machine learning5–10. However, such models are not accurate 
enough to dictate clinical decisions without additional evidence11. 
Mechanistic knowledge of variants in tumor suppressor genes can 
inform which individuals will benefit from preventative measures 
and guide therapeutic selection12–14. There is, however, a scarcity of 
functional data available for linking variants to phenotypes15.

The von Hippel–Lindau (VHL) tumor suppressor is a 213-amino 
acid protein encoded on chromosome 3p that functions as an E3 
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to ccRCC, hemangioblastoma and other neoplasms in a HIF-dependent 
manner. Type 2 variants, in contrast, are associated with high pheochro-
mocytoma risk and are most often missense variants. Attempts have 
been made to subclassify type 2 VHL disease further—type 2C disease 
is marked by pheochromocytomas only, type 2A disease includes 
hemangioblastomas and other benign tumors and type 2B disease 
further includes ccRCC20.

These clinical classifications have helped explain patterns of 
tumors in families, yet a complete molecular accounting of how dif-
ferent mutations confer distinct pathologies has remained elusive. 
In a curated database of VHL mutations21, many variants have been 
associated with both type 1 and type 2 disease. Other variants have been 
implicated in recessive diseases, such as congenital polycythemia or 
germline VHL deficiency22,23. Although protein-truncating variants typi-
cally cause type 1 disease, in rare instances, patients with nonsense vari-
ants have presented with type 2 disease24. Such discrepancies highlight 
the challenge of developing individualized surveillance and therapy 
plans for patients without functional evidence of variants’ effects.

In addition to variants known to cause VHL disease, there are over 
800 VUS in VHL reported in ClinVar3. It is unknown what fraction of 
these variants cause disease, and likewise how many variants yet to 
be reported may prove pathogenic. While genetic evidence may be 

ubiquitin ligase in complex with cullin-2, elongins C and B (ELOC and 
ELOB) and ring-box 1 (ref. 16). In normoxic conditions, VHL ubiquit-
inates the ɑ-subunit of hypoxia-inducible factor (HIF), targeting HIF 
for proteasomal degradation. In hypoxic conditions, HIF is protected 
from VHL-mediated degradation and signals to promote glycolysis 
and angiogenesis. Loss of VHL function due to mutation can lead to 
constitutive HIF activity and tumor development17.

Somatic VHL mutations are frequently observed in renal cell 
carcinomas (RCCs), most commonly clear cell RCC (ccRCC). Dur-
ing ccRCC evolution, chromosome 3p deletion typically precedes a 
loss-of-function (LoF) mutation to the remaining VHL allele, resulting 
in increased HIF activity18. VHL mutations have been observed in other 
types of RCC and extrarenal cancers, but their functional significance 
is less certain.

Pathogenic germline variants in VHL predispose patients to differ-
ent neoplasias in an autosomal dominant manner, a condition known as 
VHL disease19. Affected patients have varying susceptibilities to differ-
ent tumors, including ccRCC, pheochromocytoma and hemangioblas-
toma. The risk of each tumor depends largely on the specific germline 
variant. Classically, type 1 VHL disease variants lead to complete LoF 
and include whole-gene deletions, nonsense variants and frameshifting 
insertions and deletions (InDels). Type 1 variants predispose patients 

a

VHL mutation
No mutation

b

ec
22
0

P/LP
VUSClinVar

SGE
regions

VHL

Pe
r S

G
E 

re
gi

on

Variant synthesis,
library cloning

CRISPR design

Transfection, day 0 Day 6 Day 13 Day 20

SelectionEditing

Amplicon seq,
variant scoring

f

Function score

Va
ria

nt
s

0

10

20

30

−4 −3 −2 −1 0 1

SynonymousCanonical splice
Nonsense

+D
AB

N
o 

DA
B

Kidney

Other

−2.0 −1.5 −1.0 −0.5 0

Chronos CRISPR score for VHL (log2)

Pr
im

ar
y 

ca
nc

er

d
0

20

40

−4 −3 −2 −1 0 1

50 bp

−4

−3

−2

−1

0

In-frame Frameshift

In
D

el
 s

co
re

 (l
og

2)

In-frame Frameshift

−4

−3

−2

−1

0

HAP1 HAP1–HIF1A–KOP = 5.6 × 10–18

Fig. 1 | A highly optimized SGE protocol to assay VHL variants. a, CRISPR 
knockout screening data from the Cancer Dependency Map (DepMap)26 reveal 
VHL loss widely leads to reduced growth in cell lines lacking VHL mutations 
(n = 29 kidney-derived and n = 1,048 other lines; boxplot: center line, median; box 
limits, upper and lower quartiles; whiskers, 1.5× interquartile range; all points 
shown). b, CRISPR-induced editing of VHL was performed in HAP1 cells (day 0), 
and outcomes were quantified by NGS. Distributions of InDel scores, calculated 
as the log2 ratio of day 13 frequency to day 6 frequency, show frameshifting, 
and in-frame InDels are strongly depleted in parental HAP1 (left) compared to 
HAP1–HIF1A–knockout (–KO) (right) (median InDel score −3.20 versus −0.20, 
respectively; Wilcoxon rank-sum two-sided P = 5.6 × 10−18). c, The strategy to 
perform SGE across the complete coding sequence of VHL is shown, with ClinVar 

variant counts for all ‘pathogenic’ and ’likely pathogenic’ variants (red) and VUS 
(orange) displayed from gnomAD39. SGE regions were designed to tile exons 1–3, 
as well as a region of intron 1. A total of 480 SNVs in ClinVar are in SGE regions, 
of which 269 are VUS. (Introns not to scale.) d, For each SGE region, a library of 
oligos containing all possible SNVs was synthesized and cloned into a vector 
with homology arms to facilitate genomic integration via CRISPR-induced HDR. 
Variants present in cells were quantified over time via amplicon sequencing,  
and function scores were calculated to reflect variants’ effects on fitness.  
e,f, Function scores for synonymous, nonsense and canonical splice site SNVs 
are shown for a single SGE region (exon 2) assayed in normal media (e) or media 
supplemented with 2.5 µM DAB (f).
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converging on a near-complete set of pathogenic VHL alleles21, sub-
stantially more variants are predicted by computational models to be 
deleterious than have been linked to disease25. It is unclear whether such 
variants have yet to be encountered due to their rarity, whether they 
are incompatible with life or whether they are truly benign.

For patients harboring VHL variants whose phenotypic effects are 
unknown, well-calibrated functional data may prove useful in aiding 
diagnosis and management. The recently demonstrated efficacy of 
HIF2ɑ inhibitors for preventing ccRCC progression14 suggests quantify-
ing variants’ precise effects on HIF regulation may prove valuable for 
guiding therapeutic selection. More broadly, VHL serves as a powerful 
model to assess the extent to which functional data can recapitulate 
genotype–phenotype relationships in humans, owing to the fact that it 
is frequently mutated in ccRCC2 and the extensive knowledge regarding 
phenotypic effects of germline variants21.

Here we systematically measure the functional consequences of 
VHL variants across the complete gene by using saturation genome 
editing (SGE). In total, we scored 2,268 single-nucleotide variants 
(SNVs) for HIF-dependent effects on cellular fitness, defining LoF vari-
ants underlying ccRCC development with 100% accuracy. Our assay 
captures clinically meaningful differences in the degree of functional 
impairment among pathogenic alleles and reveals new mechanisms 
explaining genotype–phenotype associations, suggesting a role in 
improving diagnostic and therapeutic precision.

Results
An optimized SGE assay to precisely score VHL variants
To develop a high-throughput assay for VHL variants, we assessed the 
effect of VHL loss across cell lines. Except for kidney-derived lines, 
CRISPR-induced knockout of VHL almost uniformly reduces cell fitness 
(Fig. 1a)26,27. To investigate VHL’s essentiality in the haploid human line 

HAP1, InDels in exon 2 were generated with CRISPR and sequenced at 
multiple timepoints. Robust depletion of InDels over time confirmed 
the essentiality of VHL for normal HAP1 proliferation (Fig. 1b). The strong 
selection against InDels was eliminated by prior knockout of HIF1A 
(Fig. 1b), indicating VHL loss confers a HIF-dependent growth defect.

SGE is a method by which all possible SNVs in a genomic region are 
assayed in multiplex using CRISPR–Cas9 editing28. When SGE is per-
formed in HAP1, a single variant is engineered per haploid cell, allowing 
variants’ effects on growth to be quantified by next-generation sequenc-
ing (NGS). Seven SGE libraries were made to tile the coding sequence of 
VHL, as well as exon-proximal regions of introns and a region deep within 
intron 1 covering the 5′ end of a reported pseudoexon (Fig. 1c)29,30. Each 
library consisted of all possible SNVs in a region cloned into vectors with 
homology arms to facilitate genomic integration (Fig. 1d).

To measure more subtle growth effects, SGE experiments were 
performed using a highly optimized protocol modified from published 
work31 to feature improved transfection efficiency, a longer time course 
and addition of 10-deacetyl-baccatin-III (DAB) to maintain haploidy32 
(Fig. 1e,f, Extended Data Figs. 1 and 2 and Supplementary Note). Ampli-
con sequencing of genomic DNA (gDNA) collected on days 6 and 20 was 
used to calculate a ‘function score’ for each SNV reflective of cellular 
fitness (Methods). SNVs with significantly reduced function scores 
(that is, ‘depleted’ SNVs) were defined for each SGE region by applying 
a false discovery rate (FDR) of 0.01. After stringent quality filtering, 
function scores for n = 2,268 SNVs were obtained, comprising 85.4% 
of all possible SNVs in SGE regions (Supplementary Table 1).

Mapping LoF variants
The majority of variants designed but not scored map to the GC-rich 5′ 
region of exon 1, where the rate of editing was lowest (Extended Data 
Fig. 3a). In contrast to other coding regions, the 5′ region of exon 1 
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Fig. 2 | A complete map of SNV effects across VHL. a, Function scores across 
transfection replicates are plotted for n = 2,200 SNVs (Pearson’s R = 0.90).  
b, Replicate scores were averaged and normalized to obtain a final function score 
for each variant. The inset shows only synonymous, nonsense and canonical 
splice site SNVs. c, Function scores are plotted by coding sequence (CDS) 

position for each coding and intronic region assayed, with β-sheets and ɑ-helices 
of VHL’s secondary structure36 shown above. Scores of select well-studied VHL 
disease variants are indicated by amino acid substitution, with SGE data for 
additional variants of known phenotype in Supplementary Table 2.
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lacked significantly depleted SNVs, including nonsense variants 
(Extended Data Fig. 3b,c). This is consistent with a previously char-
acterized alternative translation initiation site at p.M54 producing a 
fully functional VHL isoform33, and corroborates the lack of pathogenic 
variants proximal to p.M54 in ClinVar (Fig. 1c).

Moving forward, we restricted analyses to n = 2,200 SNVs scored 
with high reproducibility by excluding SNVs assayed in the 5′-most 
SGE region (Fig. 2a,b). Among n = 115 remaining SNVs upstream of 
p.M54, none were significantly depleted. Likewise, no SNVs assayed 
in the 3′-untranslated region (UTR) or deep within intron 1 scored 
significantly (Fig. 2b,c). In contrast, between p.M54 and p.R200, all 
but one nonsense variant was depleted (n = 43, median score = −2.4), 
as were all canonical splice site SNVs (n = 24, median score = −2.3; 
Fig. 2b,c). Most missense variants scored neutrally, although 22.4% 
were depleted.

To better resolve mechanisms of functional impairment, we derived 
n = 1,626 ‘RNA scores’ for coding variants by performing targeted 
RNA-sequencing on day 6 and day 20 samples (Extended Data Fig. 4  

and Supplementary Table 1). RNA scores reflect SNVs’ effects on 
full-length VHL mRNA levels.

Comparison of RNA scores to function scores reveals only large 
reductions in mRNA confidently predict LoF (Fig. 3a). Indeed, 16 of 17 
SNVs with RNA scores below −3.0 were significantly depleted, reflecting 
a minimum mRNA dosage required for normal growth (Extended Data 
Fig. 4c). While RNA scores across timepoints were highly correlated, 
variants depleted in mRNA on day 6 tended to be less depleted on day 
20 (Extended Data Fig. 5a–e), suggesting selection for cells expressing 
sufficient VHL mRNA. Indeed, only 6 of 17 variants with day 6 RNA scores 
below −3.0 had day 20 RNA scores below −3.0.

Splicing predictions from SpliceAI10 were strongly correlated with 
RNA scores (Fig. 3b and Extended Data Fig. 5f). In total, 16 of 17 SNVs 
with RNA scores less than −3.0 had SpliceAI scores greater than 0.08 
(median of 0.61), whereas 83% of variants with RNA scores greater 
than −3.0 had SpliceAI scores of 0.00. The only variant with a low RNA 
score and a SpliceAI score of 0.00, c.414A>G, is a pathogenic variant 
known to promote exon 2 skipping34. While we cannot measure RNA 
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scores for intronic SNVs, SpliceAI scores also correlate highly with 
function scores for intronic variants (R = −0.90; Fig. 3c), implicating 
splice disruption as the mechanism driving functional effects. Of note, 
nonsense variants as a class were only minimally depleted in mRNA 
(median RNA score = −0.19; Extended Data Fig. 4a), indicating minimal 
nonsense-mediated decay.

We next explored the features of missense variants impacting 
function. While 55.8% of mutations in the protein core and 49.4% of 
mutations in the interface core were depleted, only 26.7% of peripheral 
interface mutations and 11.1% of surface mutations were depleted 
(Fig. 3d). FoldX-predicted35 ΔΔG values were higher for variants with 
low function scores (median ΔΔG = 3.63 for depleted SNVs versus 
median ΔΔG = 0.70 for other missense SNVs; Fig. 3e). Indeed, 76.9% 
of depleted missense variants had ΔΔG predictions greater than 
2.0, compared to 20.6% of missense variants not depleted by SGE. 
Restricting the analysis to significantly depleted missense variants, 
ΔΔG predictions correlate inversely with function scores (⍴ = −0.41), 
indicating the degree of destabilization is predictive of the level of 
functional impairment.

Overlaying function scores to the VHL structure36 reveals LoF 
missense variants tend to occur in β-sheets and ɑ-helices (Fig. 3f). 
Residues highly intolerant to missense variation include those forming 
the substrate recognition site as well as specific contacts with ELOC 
(Fig. 3g,h). Collectively, these findings indicate that most LoF variants 

exert effects by altering function at the protein level, with only large 
decreases in VHL mRNA sufficient to cause functional impairment.

For validation, SNVs spanning a wide range of function scores were 
introduced independently to HAP1 cells. Western blots confirmed that 
9 of 9 variants with significantly low function scores led to increased 
HIF1A expression (Extended Data Fig. 6). Two synonymous variants 
with low RNA scores, c.222C>A and c.462A>C, resulted in reduced VHL 
protein expression, but only c.462A>C led to clear HIF1A upregulation, 
consistent with its lower RNA score and function score. Overall, these 
data confirm that VHL variants depleted in SGE impair HIF1A regula-
tion in HAP1 cells.

Function scores distinguish VHL variants driving disease
To assess whether function scores predict variant pathogenicity, we 
performed several analyses. First, including all VHL variant annotations 
in ClinVar meeting assertion criteria, function scores distinguish ‘patho-
genic’ variants from ‘benign’ and ‘likely benign’ variants with 95.2% 
sensitivity and 97.9% specificity (Fig. 4a and Extended Data Fig. 7a,c,d). 
Notably, strong predictive performance is observed specifically for mis-
sense and splice region variants (Extended Data Fig. 7e,f). These broad 
analyses include variants with diverse phenotypes described in ClinVar.

Next, tumor sequencing data from cBioPortal1,2 were used to exam-
ine the functional effects of VHL mutations across human cancers. 
Over 93% of SNVs seen in at least one RCC sample of any type scored 
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than −0.23) classes.
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as depleted (Fig. 4b and Extended Data Fig. 7b). This was in contrast 
to VHL variants in other tumor types, which typically scored neutrally, 
with the exception of variants in pheochromocytomas and pancreatic 
neuroendocrine tumors (PNETs)—extrarenal tumors also linked to ger-
mline VHL mutations37. SNVs observed in more patients and at higher 
allele frequencies had significantly lower function scores, confirming 
variants depleted in SGE to be drivers of oncogenesis (Fig. 4c,d).

In contrast to SNVs identified in RCC, nearly all VHL SNVs present 
in population sequencing databases scored neutrally (Fig. 4e). For 
example, among n = 119 SNVs seen at least five times in total across 
the UK Biobank (UKB)38, gnomAD39 and TOPMed40 databases, no SNV 
scored below −0.40 (mean = −0.03, s.d. = 0.14). Likewise, the lowest 
function score for any SNV seen at least twice was −0.77. The narrow 
distribution of scores around zero indicates that the vast majority of 
variants seen more than once in population sequencing are unlikely 
to cause VHL disease.

Considering the inherent uncertainty in both germline and 
somatic variant classification, we defined a ‘gold-standard’ set of 
n = 120 ccRCC-associated variants supported by at least two inde-
pendent lines of evidence. SGE function scores perfectly separate 
these ccRCC-associated SNVs from n = 108 SNVs deemed ‘benign’ or 
‘likely benign’ in ClinVar and encountered in population sequencing 
(Fig. 4f). ClinVar lacks ‘benign’ and ‘likely benign’ missense variants in 

VHL. However, function scores also cleanly separate n = 73 missense 
SNVs in the gold-standard ccRCC set from n = 99 missense SNVs seen 
in population sequencing at least twice and not deemed ‘pathogenic’ 
or ‘likely pathogenic’ in ClinVar (Fig. 4g).

Together, these analyses indicate that function scores can be 
used as strong evidence to support variant classification. Toward this 
end, we defined four function classes reflective of variants’ scores 
in relation to gold-standard distributions (Methods). In summary, 
‘LOF1’ and ‘LOF2’ variants both have significantly low function scores, 
although only ‘LOF1’ variants scored comparably to gold-standard 
ccRCC variants. ‘Neutral’ variants scored similarly to gold-standard 
benign variants, whereas ‘intermediate’ variants were scored ambigu-
ously by SGE.

Of n = 430 SNVs reported as VUS or with conflicting interpretations 
in ClinVar, 39 (9.1%) scored as LOF1 or LOF2 (Fig. 4h and Extended Data 
Fig. 7g). A comparable fraction of SNVs absent from ClinVar scored 
as such (9.9% of n = 1,406 SNVs), many of which have been observed 
in ccRCC already. LOF1 variants were far more likely to be observed 
in ccRCC samples than LOF2 variants (n = 225 LOF1 SNVs seen in 1.30 
ccRCC samples on average versus n = 102 LOF2 SNVs seen in 0.11 sam-
ples on average; Extended Data Fig. 7h), indicating the degree of func-
tional impairment is strongly linked to the likelihood that a ccRCC will 
develop once a mutation arises somatically.
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independent of consequence. b, Function scores across isogenic lines showed no 
significant correlation (Spearman’s ρ = −0.06, P = 0.08). c, ‘Pathogenic’ and ‘likely 
pathogenic’ SNVs from ClinVar were grouped based on annotations in VHLdb21. 
SNVs associated only with type 1 VHL disease or ccRCC were deemed ‘type 1’ 
(n = 74 SNVs), whereas SNVs associated only with type 2 disease or predominantly 
pheochromocytoma were deemed ‘pheo-predominant’ (n = 29 SNVs, excluding 
SNVs associated with type 2B disease). The remaining pathogenic SNVs lacked 
unambiguous phenotypic data in VHLdb (n = 64 SNVs, ‘type unclear’). The 

boxplot shows function scores for SNVs in these categories, as well as for 
n = 2,033 other SNVs assayed, including variants either not deemed pathogenic 
in ClinVar or absent (one-way ANOVA, adjusted P = 0.00043 between ‘pheo-
predominant’ and ‘type unclear’; ****P < 1.0 × 10−10 for all other comparisons; 
boxplot: center line, median; box limits, upper and lower quartiles; whiskers,  
1.5× interquartile range; all points shown). d, Patients in the Freiburg VHL Registry 
with missense variants assayed by SGE (n = 321) were grouped based on the 
function class of their germline variant. Due to the high prevalence of p.Y98H in 
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(log-rank test for significance).
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Applying function classes to variants in cBioPortal reveals that 28 
of 83 SNVs not currently deemed ‘oncogenic’ likely promote cancer 
development (Extended Data Fig. 7i). Most of these 28 were identified 
in ccRCC. Conversely, of n = 150 SNVs currently deemed ‘oncogenic’, 
10.0% scored as neutral by SGE. Such SNVs were most often identified 
in tumors not associated with VHL mutations, which is consistent with 
these variants not driving disease. In light of these findings, SGE data 
have clear potential for improving the interpretation of variants seen 
in cancer.

Finally, we compared function scores for missense variants to 
outputs from computational predictors, including CADD25, REVEL5, 
EVE7, boostDM8 and VARITY9. Overall, SGE scores performed substan-
tially better at predicting pathogenic missense variants in ClinVar as 
well as missense variants in the gold-standard ccRCC set (Extended 
Data Fig. 8a,b). While missense variants scored lowly by SGE are gen-
erally well supported by computational prediction, many missense 
SNVs scored neutrally are predicted to be deleterious (Extended Data 
Fig. 8c–e). The absence of such discordantly scored variants from the 
gold-standard ccRCC set indicates that the computational models 
lack specificity for this phenotype, particularly for highly conserved 
variants.

Discovery of new mechanisms explaining clinical phenotypes
To ask whether function scores for SNVs might partially reflect 
HIF-independent effects, we repeated SGE experiments for SNVs in 
exons 2 and 3 in HIF1A-knockout cells (n = 797 SNVs). All variant effects 
were effectively eliminated (Fig. 5a,b), indicating function scores spe-
cifically reflect effects on HIF regulation.

Previous studies have shown that certain germline variants con-
ferring high pheochromocytoma risk cause less HIF upregulation41. 
Therefore, we grouped pathogenic variants by phenotypic annotations 
from the VHL Database (VHLdb)21. Variants associated only with type 
1 disease or ccRCC were deemed ‘type 1’, whereas variants associated 
only with type 2 disease or predominantly pheochromocytomas were 
deemed ‘pheo-predominant’. Critically, the median function score 
for type 1 SNVs was 2.9-fold lower than for pheo-predominant SNVs 
(Fig. 5c). Pathogenic variants not classifiable in this manner spanned 
a range of scores, as did SNVs absent from ClinVar. This result confirms 
that variants causing high pheochromocytoma risk typically impair HIF 
regulation to a lesser extent than variants associated with type 1 disease.

To evaluate whether SGE data may be useful for stratifying patients 
with VHL disease, we used the Freiburg VHL Registry to assess the 
age-related risk of ccRCC. We observed a markedly higher penetrance 
of ccRCC for patients with LOF1 variants compared to LOF2 variants 
(Fig. 5d and Extended Data Fig. 9). This finding was consistent across 
analyses, including all SNVs, missense SNVs only and SNVs lacking 
ClinVar interpretations. Collectively, these results show that SGE data 
can be useful for predicting differential tumor risk across tissues.

In light of the SGE data’s high predictive power, we reasoned 
function scores may be valuable for mechanistically resolving unex-
plained genotype–phenotype associations. We highlight two specific 
examples.

First, all nonsense SNVs located downstream of the 
C-terminal-most ɑ-helix scored neutrally by SGE. This suggests that 
the last 12 amino acids of VHL are dispensable for HIF regulation. How-
ever, numerous InDels have been identified in ccRCC samples between 
p.L201 and p.*214, calling the function of the region into question. Map-
ping ccRCC-associated InDels with function scores shows InDels down-
stream of the last depleted nonsense SNV share a common reading 
frame that results in a 41-amino acid C-terminal extension (Fig. 6a,b). 
This is much longer than extensions created by InDels in other reading 
frames and nonstop SNVs.

To investigate this, we analyzed CRISPR-induced InDels in HAP1 
and confirmed growth defects are reading frame-specific (Fig. 6c). 
We next engineered HAP1 lines expressing c.606dup, a ClinVar VUS 

leading to the 41-amino acid extension. Across clonal lines, we observed 
loss of VHL expression and upregulation of HIF1A by microscopy and 
western blot (Fig. 6d,e). A similar degree of HIF1A upregulation was 
observed for c.620_624del but not c.606del, confirming reading frame 
specificity. Collectively, these results indicate that between p.R200 
and p.*214, frameshifting InDels promote ccRCC development via a 
long C-terminal extension that destabilizes VHL.

A second observation concerns c.264G>A (p.W88*), a nonsense 
variant shown to segregate with VHL disease in a family24. c.264G>A 
is highly unusual among nonsense variants in that it was associated 
with type 2 disease marked by early onset pheochromocytomas. 
Interestingly, c.264G>A did not score as depleted in our assay (func-
tion score = −0.16), in contrast to all other nonsense variants between 
p.M54 and p.L198, including c.263G>A, a nonsense variant at the same 
codon that causes type 1 disease (function score = −2.53; Extended Data 
Fig. 10a). c.264G>A is also absent from cBioPortal ccRCCs. Together, 
the clinical evidence and SGE data suggest that c.264G>A may preserve 
some ability to regulate HIF.

We reasoned that this may be due to stop-codon readthrough 
(SCR). c.264G>A creates an opal codon, in context—5′-UGAC. Opal 
codons followed by pyrimidines are the most permissive to SCR42, 
a trend reflected in function scores (Extended Data Fig. 10b,c). We 
introduced c.264G>A by editing and observed faint residual expression 
of VHL by western blot (Fig. 6e). HIF1A expression was upregulated 
compared to controls, but to a lesser extent than in cell lines harboring 
c.263G>A or a frameshifting InDel.

To specifically assess SCR, we used a flow cytometry-based 
assay43 to compare c.264G>A to other VHL nonsense variants. Indeed, 
c.264G>A led to substantial readthrough, whereas c.263G>A did not 
(Fig. 6f and Extended Data Fig. 10d–f). We also tested c.351G>A, a sec-
ond variant that creates the same 4-bp stop-codon context as c.264G>A. 
Likewise, considerable readthrough was detected for c.351G>A but 
not c.350G>A, albeit less than observed for c.264G>A, consistent with 
c.351G>A having a lower function score. These experiments indicate 
that differences in residual expression of VHL nonsense variants can 
affect the degree of functional impairment. More broadly, these exam-
ples illustrate how highly accurate functional measurements reveal 
mechanisms underlying complex genotype–phenotype relationships.

Discussion
Here we applied a highly optimized SGE protocol to quantify the effects 
of nearly all SNVs across the complete coding sequence of VHL. Variant 
effects were dependent on HIF1A and predicted pathogenicity with 
high accuracy. Combined with human phenotypic data, the SGE data 
constitute a mechanistically informative variant effect map of VHL. 
Data for VHL SNVs scored by SGE are available to search and explore 
in relation to protein structure, computational predictors and disease 
association via https://vhl-board.onrender.com.

Despite improvements to the SGE protocol that promise to make 
the method more broadly applicable, limitations remain. Even with 
substantial optimization, we were unable to confidently score many 
variants introduced to the GC-rich, 5′-region of exon 1. However, the 
fact that no variants tested before p.M54 scored as depleted suggests 
this region harbors few, if any, SNVs of clinical importance.

Only a small fraction of pathogenic SNVs in ClinVar could not be 
distinguished from neutral variants using SGE data alone. The fact that 
none of these variants were observed in ccRCC suggests some fraction 
may be misclassified. However, type 2 VHL disease variants have been 
linked to HIF-independent effects that may be important for pheo-
chromocytoma development44,45. Such effects were not represented 
in our assay, as function scores were dependent on HIF1A expression. 
Despite this, the degree of functional impairment measured was highly 
predictive of specific features of VHL disease.

Overall, the high accuracy with which function scores distinguish 
pathogenic variants indicates the data may be used as strong evidence 
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to support the classification of germline variants11. With the recently 
proven efficacy of the HIF2ɑ-inhibitor belzutifan for the treatment 
of VHL disease14, accurate classification of pathogenic variants will 
facilitate access to better care. We anticipate function scores may 
also help stratify patients with VHL disease by the risk of specific 
tumors, as we have shown for ccRCC. Closely monitored cohorts will 
be valuable for exploring additional uses of the data, for instance, 
predicting tumor features, cancer progression, overall disease burden 
and treatment response.

We also envision our data being useful for adjudicating somatic 
VHL variants observed in tumors, especially in light of ongoing trials 
of belzutifan for sporadic ccRCC46. Across all cancers, low-scoring vari-
ants were predominantly found in tumors previously associated with 
VHL mutations (Fig. 4b–d). Although VHL mutations occur much less 
frequently in renal cancers other than ccRCC, our data support their 
functional significance when present, a finding that suggests molecular 
profiling may identify additional RCCs that would respond favorably to 
treatments targeting HIF signaling. Conversely, one in ten VHL variants 
deemed ‘oncogenic’ in cBioPortal scored neutrally by SGE, including 
several SNVs found in ccRCC. In these cases, treatments targeting HIF 
may provide less benefit.

The RNA scores determined by SGE provide a means of exam-
ining the interplay between dosage effects at the mRNA level and 
functional output. This is an important relationship in the context 

of VHL because variants leading to complete loss of protein activity 
cause type 1 VHL disease. We show relatively few coding variants 
reduce mRNA dosage enough to impair VHL function in the assay. 
While we cannot preclude the clinical significance of variants impact-
ing VHL mRNA levels to a lesser extent, particularly as they relate to 
recessive diseases such as congenital polycythemia22,29, this finding 
suggests only noncoding variants with large effects on mRNA expres-
sion should warrant suspicion for a dominantly inherited cancer 
predisposition syndrome. RNA scores may provide additional value 
for identifying rare variants contributing to recessive phenotypes, 
such as c.222C>A. This synonymous SNV linked to VHL deficiency23 
had a marginally low function score of −0.40 but was highly depleted 
in mRNA (RNA score = −4.5), consistent with its documented effect 
on splicing.

We failed to score several variants causing recessive polycythemia 
as depleted by SGE, consistent with the functional impairment caused 
by these variants being insufficient to predispose patients to tumor 
development. This includes recently described variants near the pseu-
doexon region of intron 1 (Supplementary Table 3), where we observed 
no LoF variants. This result suggests there are unlikely to be many 
undetected variants causing VHL disease or sporadic ccRCC in this 
region, but we cannot rule out the possibility that our cell model is 
inadequate for studying pseudoexon inclusion, as effects on splicing 
may differ between cell types.
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Collectively, this study and other recent implementations of 
SGE31,47,48 show how relatively simple assays reflective of cell-intrinsic 
effects can identify variants driving human disease with high accuracy. 
Our analysis also highlights how orthologous lines of evidence can be 
leveraged to minimize classification errors, as evidenced by the per-
fect concordance between function scores and gold-standard ccRCC 
classifications (Fig. 4f,g).

For VHL, the high predictive power of SGE stems from the accurate 
detection of LoF variants that cause reduced growth via upregulation 
of HIF1A. VHL’s ability to regulate HIF is crucial to its tumor suppressor 
function across tissues49, making the SGE phenotype relevant to cancer 
despite VHL loss leading to reduced HAP1 growth. It is notable that HAP1 
cells do not express EPAS1 (ref. 50), which encodes HIF2A. The roles 
of HIF1 and HIF2 are thought to be opposing in ccRCC development, 
with the former acting as a tumor suppressor and the latter promoting 
growth in vivo51–53. While our study does not address why VHL loss and 
subsequent HIF upregulation promote growth specifically in cells that 
give rise to ccRCC, the hypoxic environment of the kidney and renal 
lineage-specific transcription factors are thought to have important 
roles54,55. Therefore, a key challenge going forward will be to extend 
SGE to more cell types and assays.

With continued genomic profiling of patients and tumors and the 
growing use of multiplexed assays to systematically study variants56, 
our ability to map genotypes to phenotypes across a wide spectrum of 
functional effects will continue to improve. In this context, we antici-
pate that this analysis of VHL will prove highly valuable for clinical 
variant interpretation while also guiding future efforts to elucidate 
complex genotype–phenotype relationships across additional genes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01800-z.

References
1.	 Cerami, E. et al. The cBio cancer genomics portal: an open 

platform for exploring multidimensional cancer genomics data. 
Cancer Discov. 2, 401–404 (2012).

2.	 Gao, J. et al. Integrative analysis of complex cancer genomics 
and clinical profiles using the cBioPortal. Sci. Signal. 6,  
pl1 (2013).

3.	 Landrum, M. J. et al. ClinVar: public archive of interpretations of 
clinically relevant variants. Nucleic Acids Res. 44, D862–D868 
(2016).

4.	 Kuang, D. et al. Prioritizing genes for systematic variant effect 
mapping. Bioinformatics 36, 5448–5455 (2021).

5.	 Ioannidis, N. M. et al. REVEL: an ensemble method for predicting 
the pathogenicity of rare missense variants. Am. J. Hum. Genet. 
99, 877–885 (2016).

6.	 Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. &  
Kircher, M. CADD: predicting the deleteriousness of variants 
throughout the human genome. Nucleic Acids Res. 47,  
D886–D894 (2019).

7.	 Frazer, J. et al. Disease variant prediction with deep generative 
models of evolutionary data. Nature 599, 91–95 (2021).

8.	 Muiños, F., Martínez-Jiménez, F., Pich, O., Gonzalez-Perez, A. & 
Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. 
Nature 596, 428–432 (2021).

9.	 Wu, Y., Li, R., Sun, S., Weile, J. & Roth, F. P. Improved pathogenicity 
prediction for rare human missense variants. Am. J. Hum. Genet. 
108, 1891–1906 (2021).

10.	 Jaganathan, K. et al. Predicting splicing from primary sequence 
with deep learning. Cell 176, 535–548 (2019).

11.	 Richards, S. et al. Standards and guidelines for the interpretation 
of sequence variants: a joint consensus recommendation of the 
American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet. Med. 17, 405–424 
(2015).

12.	 Ludwig, K. K., Neuner, J., Butler, A., Geurts, J. L. & Kong, A. L. Risk 
reduction and survival benefit of prophylactic surgery in BRCA 
mutation carriers, a systematic review. Am. J. Surg. 212, 660–669 
(2016).

13.	 Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J. &  
Bolderson, E. PARP inhibitors: clinical relevance, mechanisms 
of action and tumor resistance. Front. Cell Dev. Biol. 8, 564601 
(2020).

14.	 Jonasch, E. et al. Belzutifan for renal cell carcinoma in von  
Hippel–Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021).

15.	 Findlay, G. M. Linking genome variants to disease: scalable 
approaches to test the functional impact of human mutations. 
Hum. Mol. Genet. 30, R187–R197 (2021).

16.	 Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour 
suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

17.	 Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires 
direct binding to the β-domain of the von Hippel–Lindau protein. 
Nat. Cell Biol. 2, 423–427 (2000).

18.	 Tippu, Z., Au, L. & Turajlic, S. Evolution of renal cell carcinoma. 
Eur. Urol. Focus 7, 148–151 (2021).

19.	 Varshney, N. et al. A review of von Hippel–Lindau syndrome.  
J. Kidney Cancer VHL 4, 20–29 (2017).

20.	 Maher, E. R., Neumann, H. P. & Richard, S. von Hippel–Lindau 
disease: a clinical and scientific review. Eur. J. Hum. Genet. 19, 
617–623 (2011).

21.	 Tabaro, F. et al. VHLdb: a database of von Hippel–Lindau protein 
interactors and mutations. Sci. Rep. 6, 31128 (2016).

22.	 Gordeuk, V. R. et al. Congenital disorder of oxygen sensing: 
association of the homozygous Chuvash polycythemia VHL 
mutation with thrombosis and vascular abnormalities but not 
tumors. Blood 103, 3924–3932 (2004).

23.	 Perrotta, S. et al. Effects of germline VHL deficiency on growth, 
metabolism, and mitochondria. N. Engl. J. Med. 382, 835–844 
(2020).

24.	 Zhang, M. et al. von Hippel–Lindau disease type 2 in a Chinese 
family with a VHL p.W88X truncation. Endocrine 48, 83–88 
(2015).

25.	 Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. 
CADD-splice-improving genome-wide variant effect prediction 
using deep learning-derived splice scores. Genome Med. 13,  
31 (2021).

26.	 Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 
564–576 (2017).

27.	 Blomen, V. A. et al. Gene essentiality and synthetic lethality in 
haploid human cells. Science 350, 1092–1096 (2015).

28.	 Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J.  
Saturation editing of genomic regions by multiplex homology- 
directed repair. Nature 513, 120–123 (2014).

29.	 Lenglet, M. et al. Identification of a new VHL exon and complex 
splicing alterations in familial erythrocytosis or von Hippel–
Lindau disease. Blood 132, 469–483 (2018).

30.	 Buffet, A. et al. Germline mutations in the new E1′ cryptic exon 
of the VHL gene in patients with tumours of von Hippel–Lindau 
disease spectrum or with paraganglioma. J. Med. Genet. 57, 
752–759 (2020).

31.	 Findlay, G. M. et al. Accurate classification of BRCA1 variants with 
saturation genome editing. Nature 562, 217–222 (2018).

32.	 Olbrich, T. et al. A chemical screen identifies compounds capable 
of selecting for haploidy in mammalian cells. Cell Rep. 28, 
597–604.e4 (2019).

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-024-01800-z


Nature Genetics | Volume 56 | July 2024 | 1446–1455 1455

Article https://doi.org/10.1038/s41588-024-01800-z

33.	 Schoenfeld, A., Davidowitz, E. J. & Burk, R. D. A second major 
native von Hippel–Lindau gene product, initiated from an internal 
translation start site, functions as a tumor suppressor. Proc. Natl 
Acad. Sci. USA 95, 8817–8822 (1998).

34.	 Flores, S. K. et al. Synonymous but not silent: a synonymous 
VHL variant in exon 2 confers susceptibility to familial 
pheochromocytoma and von Hippel–Lindau disease. J. Clin. 
Endocrinol. Metab. 104, 3826–3834 (2019).

35.	 Schymkowitz, J. et al. The FoldX web server: an online force field. 
Nucleic Acids Res. 33, W382–W388 (2005).

36.	 Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the 
VHL-ElonginC-ElonginB complex: implications for VHL tumor 
suppressor function. Science 284, 455–461 (1999).

37.	 Tirosh, A. et al. Association of VHL genotype with pancreatic 
neuroendocrine tumor phenotype in patients with von Hippel–
Lindau disease. JAMA Oncol. 4, 124–126 (2018).

38.	 Karczewski, K. J. et al. Systematic single-variant and gene-based 
association testing of thousands of phenotypes in 394,841 UK 
Biobank exomes. Cell Genom. 2, 100168 (2022).

39.	 Karczewski, K. J. et al. The mutational constraint spectrum 
quantified from variation in 141,456 humans. Nature 581, 434–443 
(2020).

40.	 Taliun, D. et al. Sequencing of 53,831 diverse genomes from the 
NHLBI TOPMed program. Nature 590, 290–299 (2021).

41.	 Clifford, S. C. et al. Contrasting effects on HIF-1α regulation by 
disease-causing pVHL mutations correlate with patterns of 
tumourigenesis in von Hippel–Lindau disease. Hum. Mol. Genet. 
10, 1029–1038 (2001).

42.	 Wangen, J. R. & Green, R. Stop codon context influences 
genome-wide stimulation of termination codon readthrough by 
aminoglycosides. eLife 9, e52611 (2020).

43.	 Toledano, I., Supek, F. & Lehner, B. Genome-scale quantification 
and prediction of pathogenic stop codon readthrough by small 
molecules. Preprint at bioRxiv https://doi.org/10.1101/2023.08. 
07.552350 (2023).

44.	 Lee, S. et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase 
and familial pheochromocytoma genes: developmental culling 
and cancer. Cancer Cell 8, 155–167 (2005).

45.	 Li, S. et al. EglN3 hydroxylase stabilizes BIM-EL linking VHL  
type 2C mutations to pheochromocytoma pathogenesis  
and chemotherapy resistance. Proc. Natl Acad. Sci. USA 116, 
16997–17006 (2019).

46.	 Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2α in 
renal cell carcinoma with belzutifan: a phase 1 trial and biomarker 
analysis. Nat. Med. 27, 802–805 (2021).

47.	 Erwood, S. et al. Saturation variant interpretation using CRISPR 
prime editing. Nat. Biotechnol. 40, 885–895 (2022).

48.	 Radford, E. J. et al. Saturation genome editing of DDX3X clarifies 
pathogenicity of germline and somatic variation. Nat. Commun. 
14, 7702 (2023).

49.	 Ohh, M., Taber, C. C., Ferens, F. G. & Tarade, D. Hypoxia-inducible 
factor underlies von Hippel–Lindau disease stigmata. eLife 11, 
e80774 (2022).

50.	 DepMap. Towards mapping the landscape of cancer 
vulnerabilities across all tumors. depmap.org/portal/depmap/ 
(2021).

51.	 Raval, R. R. et al. Contrasting properties of hypoxia-inducible 
factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal 
cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

52.	 Shen, C. et al. Genetic and functional studies implicate HIF1α as 
a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 
(2011).

53.	 Meléndez-Rodríguez, F. et al. HIF1α suppresses tumor cell 
proliferation through inhibition of aspartate biosynthesis. Cell 
Rep. 26, 2257–2265.e4 (2019).

54.	 Kaelin, W. G. Jr. von Hippel–Lindau disease: insights into oxygen 
sensing, protein degradation, and cancer. J. Clin. Invest. 132, 
e162480 (2022).

55.	 Patel, S. A. et al. The renal lineage factor PAX8 controls oncogenic 
signalling in kidney cancer. Nature 606, 999–1006 (2022).

56.	 Kuang, D. et al. MaveRegistry: a collaboration platform for 
multiplexed assays of variant effect. Bioinformatics 37, 3382–3383 
(2021).

57.	 Liu, F. et al. Case report: a synonymous VHL mutation (c.414A>G, 
p.Pro138Pro) causes pathogenic familial hemangioblastoma 
through dysregulated splicing. BMC Med. Genet. 21, 42 (2020).

58.	 Min, J.-H. et al. Structure of an HIF-1α–pVHL complex: 
hydroxyproline recognition in signaling. Science 296, 1886–1889 
(2002).

59.	 Jumper, J. et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 596, 583–589 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

1The Genome Function Laboratory, The Francis Crick Institute, London, UK. 2Renal Division, Department of Medicine, Medical Center—University of 
Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 3Genetics and Genome Biology Program, The Hospital for Sick Children, 
Toronto, Ontario, Canada. 4The Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK. 5Renal and Skin Units, The Royal Marsden Hospital, 
London, UK. 6Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK. 7Scientific Computing, The Francis Crick Institute, 
London, UK. 8Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. 9Division of Cancer Research, Department of Thoracic 
Surgery, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg, Germany. 10German Cancer Consortium (DKTK), Partner Site Freiburg, 
A Partnership Between DKFZ and University Medical Center Freiburg, Freiburg, Germany. 11Department of Physiology, University of Toronto, Toronto, 
Ontario, Canada. 12These authors contributed equally: Athina Ganner, Laura Cubitt, Reid Brewer, Dong-Kyu Kim.  e-mail: greg.findlay@crick.ac.uk

http://www.nature.com/naturegenetics
https://doi.org/10.1101/2023.08.07.552350
https://doi.org/10.1101/2023.08.07.552350
http://depmap.org/portal/depmap/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:greg.findlay@crick.ac.uk


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01800-z

Methods
Ethics and consent
This study complies with all relevant ethical regulations. Use of 
anonymized data from the Freiburg VHL Registry was approved by 
the ethics committee of Freiburg University (EK-FR 79/20), and all 
patients provided written informed consent.

Homology-directed DNA repair (HDR) library design and 
cloning
SGE experiments were designed as previously31 using VHL transcript 
ENTS000000256474.3 (CCDS2597). Six SGE regions were designed 
to cover the entire coding sequence, including exonic sequences 
and exon-proximal regions of introns. An additional SGE region 
was designed in intron 1 to cover positions associated with splicing 
alterations29.

Oligonucleotide libraries were designed for each SGE region. 
First, synonymous substitutions were designed at two CRISPR proto-
spacer adjacent motif (PAM) sequences to prevent Cas9 recutting 
following HDR and to distinguish HDR-derived SNVs in NGS. These 
substitutions were included in template sequences to which SNVs 
were introduced (Supplementary Table 4). An unedited genomic 
sequence was appended to facilitate PCR amplification and clon-
ing. The final libraries contained molecules representing all SNVs 
within each SGE region, spanning regions of hg38 chromosome 3 from 
10,141,841–10,142,202, 10,142,743–10,142,876, 10,146,499–10,146,644 
and 10,149,760–10,150,002.

For two SGE regions (exon 1–5′ and exon 1–3′), additional synony-
mous substitutions were added to reduce high-GC content in a second 
library. All oligonucleotide libraries were synthesized (Twist Biosci-
ence) in a pool and resuspended at 5 ng μl−1. Primers complementary to 
appended sequences were used to amplify SGE region-specific oligos 
with KAPA HiFi ReadyMix (Roche) in 25 μl reactions with 500 pg of 
oligonucleotide pool as template. All PCR reactions were monitored 
in real-time by spiking SYBR green (Thermo Fisher Scientific) into 
reactions at 0.4× final concentration, and cycling was stopped upon 
amplification.

For each SGE region, a homology arm plasmid was generated 
by PCR amplification of HAP1 gDNA and cloning of products into lin-
earized pUC19 (InFusion, Takara Bioscience). Homology arms were 
200–1,300 bp. Homology arm plasmids were subsequently linearized 
by inverse PCR using primers with 15–20 bp of overlap with amplified 
oligo libraries and 10 pg of template per 50 μl reaction. Products were 
DpnI-digested.

Amplified oligo pools and PCR-linearized homology arm vectors 
were purified using AMPure XP (Beckman Coulter). To generate final 
HDR libraries, amplified oligo libraries (50 ng) were InFusion-cloned 
into linearized pUC19-homology arm vectors (65 ng). The resulting 
products were transformed into stellar-competent Escherichia coli 
(Takara Bioscience). In total, 1% of transformed cells were plated on 
ampicillin to ensure adequate transformation efficiency (at least 
tenfold library coverage), and the remaining transformants were 
cultured overnight at 37°C in 150 ml of luria broth with carbenicillin 
(100 μg ml−1).

CRISPR gRNA and pegRNA cloning
Target sites for Streptococcus pyogenes Cas9 were designed for each 
SGE region to cleave within the coding sequence such that synon-
ymous substitutions could disrupt re-editing. gRNAs were cloned 
into pX459 as described60, including PlasmidSafe DNase (Lucigen) 
treatment. Products were transformed into stellar-competent E. coli. 
Sequence-verified plasmids were purified with the ZymoPure Maxiprep 
Kit (Zymo Research) and eluted in nuclease-free water (Invitrogen).

For epegRNA plasmid construction, eBlocks were purchased from 
Integrated DNA Technologies. The pU6-tevopreq1-PuroR vector was 
linearized by inverse PCR and gel-extracted using the GeneJet Gel 

Extraction Kit (Thermo Fisher Scientific). Each epegRNA was inte-
grated into the linearized vector using NEBuilder HiFi Assembly (NEB), 
and the product was transformed into One Shot TOP10 competent 
cells (Thermo Fisher Scientific). Plasmids were verified by Sanger 
sequencing.

Tissue culture: subculture routine
To perform SGE, HAP1 cells with a LIG4 frameshifting deletion 
(HAP1-LIG4-KO)31 were cultured with Iscove’s modified Dulbecco’s 
medium containing l-glutamine and 25 nM HEPES (Gibco) with 10% 
FBS (Gibco) and 1% Penicillin–Streptomycin (Gibco). Cells were thawed 
1 week before transfection and maintained under 80% confluency. For 
each passage, cells were washed twice with 1× DPBS (Gibco), trypsinized 
with 0.25% trypsin–EDTA (Gibco), resuspended in media, centrifuged 
at 300g for 5 min and resuspended. At least 6 million cells were split, 
either 1:5 across 2 days or 1:10 across 3 days. Apart from initial SGE 
experiments without DAB, 2.5 μM DAB (Stratech) was added to the 
media each passage.

Tissue culture: SGE experiments
One day before transfection, 15 million cells were seeded on a 10-cm 
dish in 10 ml of media. For each SGE region, cells were cotransfected 
with 30 μg of pX459 plasmid expressing a gRNA and 10 μg of HDR 
library. Xfect (Takara Bioscience) transfection reagent was used accord-
ing to the manufacturer’s protocol except for the following modifica-
tions: at transfection (day 0), cells were 80–90% confluent, 0.6 μl of 
Xfect polymer was used per microgram of DNA, 40 μg of total plasmid 
DNA was transfected per 10-cm dish and the final volume of transfec-
tion buffer, DNA and Xfect polymer was 800 μl.

Two replicate transfections were performed per SGE region. On 
day 1, cells were washed and transferred to a 15-cm dish with puromycin 
(Cayman Chemical) added to the media at 1 μg ml−1. During puromycin 
selection, DAB was not added. On day 4, the cells were passaged to 
media with DAB and without puromycin. Cells were collected on days 
6, 13 and 20, taking at least 10 million cells as pellets stored at −80°C.

Negative control samples for each SGE region were cotransfected 
with HDR library and a pX459 plasmid containing a gRNA targeting 
HPRT1. The same transfection conditions were used but scaled pro-
portionally to a six-well plate. Negative control samples were collected 
on day 6.

Tissue culture: generation of HAP1–HIF1A–KO cells
HAP1-LIG4-KO cells were transfected with pX459 targeting HIF1A. 
Cells were diluted to 0.8 cells per 100 μl and aliquoted into a 96-well 
plate. Light microscopy was used to identify wells with a single colony. 
gDNA was extracted from clones (DNeasy Blood & Tissue Kit; Qiagen), 
PCR-amplified and Sanger-sequenced. A HIF1A-knockout clone con-
taining a 7-bp deletion was selected as HAP1–HIF1A–KO.

Tissue culture: essentiality testing
To test essentiality, a pX459 vector expressing a gRNA targeting  
VHL exon 2 was transfected into HAP1-LIG4-KO (day 0) using 5 μg of 
DNA per well of a six-well plate in replicate. Samples were collected 
on days 6 and 13.

gDNA and RNA extraction
Collected cell pellets were thawed. QIAshredder columns (Qiagen) were 
used to homogenize cells, and the AllPrep DNA/RNA Kit (Qiagen) was 
used to purify RNA and gDNA, as per manufacturer protocol. Yields 
were measured using Nanodrop UV spectrometry and the Qubit BR 
DNA Kit (Thermo Fisher Scientific).

RNA preparation for sequencing
cDNA was generated from 5 μg RNA per sample using SuperScript 
IV First-Strand Synthesis (Invitrogen). A VHL-specific primer 
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complementary to the 3′-UTR was used for priming. cDNA samples 
were subsequently prepared for sequencing starting with PCR2.

PCR1: amplifying gDNA
PCR primers are provided in Supplementary Table 4. Per PCR, 2 μg of 
gDNA was amplified using at least one primer binding outside homol-
ogy arm regions. Annealing temperatures and cycling times were opti-
mized using gDNA from unedited HAP1. Up to eight 100 μl reactions 
were performed per SGE sample using KAPA HiFi 2× ReadyMix (Roche) 
with magnesium chloride added to 5 mM. Reactions for each sample 
were pooled and purified using AMPure XP (Beckman Coulter). The 
same procedure was carried out for negative controls and SGE samples 
from each timepoint.

PCR2: adding Nextera adapters
A nested PCR for each sample was performed using 1 μl of purified 
product from PCR1. Primers with Nextera sequencing adapters 
were designed for each SGE region to produce amplicons such that 
300-cycle Illumina kits would provide full-length coverage. Products 
were verified using gel electrophoresis and purified with AMPure XP 
(Beckman Coulter). The same reaction was performed to prepare HDR 
libraries for sequencing. cDNA samples were similarly amplified using 
cDNA-specific primers to yield amplicons spanning SGE regions and 
at least one exon junction.

Indexing and sequencing
Each sample was dual-indexed by PCR using custom indexes and puri-
fied using AMPure XP. Samples were quantified using Qubit HS (Invitro-
gen). Illumina protocols were followed to dilute and denature samples 
before sequencing on an Illumina NextSeq (mid- or high-output 
300-cycle kits). Approximately 5 million reads were allocated per SGE 
gDNA sample, except for samples from high-GC regions (exon 1–5′ and 
exon 1–3′), which were allocated 10 million reads. In total, 1 million,  
2 million and 3 million reads were allocated for the negative control, 
library and RNA samples, respectively. PhiX (20–30%; Illumina) was 
included in sequencing.

Deriving function scores for SNVs
A pipeline to process sequencing data to variant counts was used. 
Briefly, paired-end reads were adapter-trimmed and merged if the 
overlapping sequence matched perfectly (SeqPrep). Merged reads 
containing N bases were removed before alignment with needleall 
(EMBOSS v6.6.0.0) against a reference amplicon for each SGE region. 
The resulting SAM files were processed using custom scripts to calcu-
late SNV frequencies and annotate variants with data from CADD v1.6 
(hg19)25. For calculating function scores, reads for each variant were 
only included if at least one silent PAM edit was present.

In a series of quality filters, SNVs were removed from analysis if 
any of the following were true: SNV HDR library frequency was less 
than 1.0 × 10−4; SNV day 6 frequency in either replicate was less than 
1.0 × 10−5; SNV day 20 to day 6 log2 ratios were highly discordant across 
replicates (that is, a difference greater than 1.5, unless both less than 
−1.0); SNV day 13 to day 6 log2 ratio differed markedly from the day 20 
to day 13 log2 ratio (that is, a difference greater than 2.0, unless both less 
than −0.5); estimates of sequencing error suggested the ratio of SNV 
observations arising from error was greater than 0.5. Finally, where a 
variant was engineered in the same codon as a synonymous PAM edit, 
the variant was excluded if the resulting amino acid change was differ-
ent from what it would be without the PAM edit present.

To calculate function scores, the mean day 20 to day 6 log2 ratio for 
each variant across replicates was normalized to the sample’s median 
synonymous variant. Final function scores were then normalized across 
exons using the range of effect sizes observed for synonymous and 
nonsense variants. Scores per region were scaled linearly such that 
the median nonsense variant for the region equaled the global median 

nonsense variant and the median synonymous variant scaled to 0. 
(Only nonsense variants between p.54 and p.198 were used for scaling.)

Calculating RNA scores
RNA scores were determined for exonic variants using variant fre-
quencies in targeted sequencing of cDNA. Variant frequencies were 
calculated only from reads in which both the variant and at least one 
PAM edit indicative of HDR were present, and the sequence on either 
side of the target exon matched the reference transcript perfectly. RNA 
scores for day 6 and day 20 were derived by normalizing each coding 
SNV’s frequency in RNA to its frequency in the corresponding gDNA 
sample. Noncoding variants were not assigned RNA scores because 
such variants are not detectable in spliced transcripts. RNA scores 
were also not generated for variants in the exon 1–5′ SGE region. RNA 
scores were only assigned to SNVs that passed quality filtering for 
function scores.

Producing a single score set
For variants covered by overlapping SGE regions, final function scores 
and RNA scores were determined as follows: for variants in both exon 
1–5′ and exon 1-mid, the scores from the exon 1-mid experiment were 
used; for variants in both exon 1-mid and exon 1–3′, the mean of the 
scores was used; for variants in both exon 3–5′ and exon 3–3′, the mean 
of the scores was used.

Analysis of InDels
To analyze InDel selection, CIGAR strings from each timepoint were 
generated via global alignment. ‘InDel scores’ for each CIGAR string 
were defined as the log2 ratio of day 13 frequency to day 6 frequency, 
averaged across replicates. Only editing outcomes observed in more 
than 0.1% of reads with at most one InDel and 100 bp of matching 
sequence on the 5′ end of the alignment were included.

Statistics and reproducibility
Statistical tests were performed in R (v3.6.3) using RStudio (v1.4.1106). 
Unless indicated, all tests were two-sided. Sample sizes were deter-
mined by including all SNVs assayed across SGE regions provided they 
passed quality control. All analyses excluded no variants, samples or 
patients unless explicitly indicated. No blinding or randomization 
was performed.

To determine function score significance, a null model (assumed 
to be normal but not formally tested) was fit for each SGE region using 
all synonymous variants. Where RNA scores were ascertained, synony-
mous variants were excluded from null if their day 6 RNA score was less 
than −1.0. For experiments without RNA scores, all synonymous SNVs 
were included, and for the intron 1 SGE region, all SNVs were included 
in the null model. P values were calculated using the ‘pnorm’ function 
in R and adjusted using ‘p.adjust’ (Benjamini–Hochberg) to produce q 
values. An FDR of 0.01 was used to define significant scores.

DepMap analysis
CRISPR screening data for VHL was downloaded via https://depmap.
org/portal/. ‘Primary.Disease’ was used to define lines of kidney origin, 
and lines with VHL mutations defined as ‘Hotspot’, ‘Damaging’ or ‘Other 
nonconserving’ were labeled mutant for VHL.

Structural analysis
Exposure labels defining missense mutations as ‘protein core’, ‘interac-
tion core’, ‘interaction periphery’ and ‘surface’ were obtained61. FoldX35 
5.0 was downloaded (https://foldxsuite.crg.eu/) and run locally to 
calculate ΔΔG predictions. For this task, the VHL protein structure in 
complex with ELOC, ELOB and the HIF1A peptide (Protein Data Bank 
(PDB): 1LM8)58 was repaired using ‘RepairPDB’ before running ‘Posi-
tionScan’ to calculate ΔΔG values for all missense substitutions from 
p.R60 to p.Q209.
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For visualizing function scores in relation to structure, average 
function scores of missense SNVs at each residue from p.M54 were 
calculated, excluding variants with RNA scores below −2.0, and mapped 
to the VHL structure (PDB: 1LM8) in PyMol v2.5.4. AlphaFold’s colab 
notebook was used to model a structure for VHL with the C-terminus 
41-amino acid extension (https://colab.research.google.com/github/
deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb).

ClinVar and cBioPortal analyses
VHL entries with at least a one-star assertion criteria rating in ClinVar 
were obtained on 4 May 2023. Variants classified as both ‘pathogenic’ 
and ‘likely pathogenic’ were labeled ‘likely pathogenic’, and variants 
deemed both ‘benign’ and ‘likely benign’ were labeled ‘likely benign’.

cBioPortal data were accessed on 2 October 2022. Mutation data 
from the ‘curated set of nonredundant studies’ were exported by query-
ing samples with VHL mutations. Data were parsed to sum the number 
of times each variant was seen across each cancer type. For analyses 
involving allele frequencies in tumors, each independent sample was 
plotted. ccRCC samples ‘with sarcomatoid features’ were grouped with 
all ccRCC samples. To assign a single cancer type for coloring variants 
in multiple cancers, the following order of preference was used: ccRCC, 
pheochromocytoma, PNET, chromophobe RCC, papillary RCC, RCC 
not otherwise specified and other.

Population sequencing analysis
UKB variants in VHL were ascertained via GeneBass, which includes 
data from 394,841 individuals (7 June 2022 release). TOPMed (freeze 8)  
VHL variants were obtained, as were nonoverlapping gnomAD v2 and 
v3 datasets. A combined population allele count was defined as the 
sum of gnomAD v2 and v3 allele counts, TOPMed heterozygous allele 
counts and UKB allele counts.

Defining function classes
We derived four function classes for variants scored by SGE. First, 
variants with q values greater than 0.10 and function scores greater 
than −0.2188 (that is, greater than the fifth percentile of gold-standard 
neutral variants) were deemed ‘neutral’. Second, variants with func-
tion scores lower than −1.26 (that is, lower than the 95th percentile of 
gold-standard ccRCC variants) were deemed ‘LOF1’. Third, variants 
with q values less than 0.01 and function scores less than −0.3875 (the 
lowest scoring gold-standard neutral variant) were deemed ‘LOF2’. All 
remaining variants were deemed ‘Intermediate’.

VHLdb analysis
Mutation data from VHLdb21 were downloaded (28 July 2022) and 
parsed to count disease features of entries for each variant. Where 
there was only one possible match to SGE data, the nucleotide change 
was inferred from the amino acid substitution if only the latter was 
provided. When the provided nucleotide and protein changes were dis-
cordant, the entry was removed, as were entries flagged ‘needs revision’.

‘Pathogenic’ and ‘likely pathogenic’ variants in ClinVar, exclud-
ing variants with recessive phenotypes and those seen in two or more 
population control individuals, were assigned to categories of ‘type 
1’, ‘pheo-predominant’ or ‘type unclear’ by VHLdb disease type (if pro-
vided) and/or associated tumors. Variants only associated with type 1 
disease or ccRCC were deemed ‘type 1’. Variants associated only with 
type 2 disease or with more pheochromocytoma entries than ccRCC 
entries were deemed ‘pheo-predominant’. The remaining variants 
either had mixed associations, lacked phenotypic information or were 
explicitly type 2B variants. All were deemed ‘type unclear’.

Curated clinical phenotype data were obtained for benchmark-
ing61, including the number of kindreds analyzed, the occurrence of 
ccRCC and pheochromocytoma and the type of VHL disease. Variants 
in at least two kindreds were included, excluding those seen more than 
once in combined population sequencing unless annotated as type 2.

Comparisons to computational predictions
CADD scores (v1.6)25 were obtained for SNVs. The following scores were 
obtained for missense variants: REVEL scores5 (1 September 2022), 
boostDM scores for VHL variants in the ‘Renal Clear Cell Carcinoma’ 
model (12 August 2022), EVE scores (15 August 2022) and VARITY scores 
(16 August 2022). For comparisons between scores, only variants for 
which all metrics provided a score were used. This excluded variants 
before p.M54 and variants after p.A207 due to a lack of EVE scores. 
Receiver operating characteristic curves were generated in R using 
the ‘geom_roc’ function.

SpliceAI scores for each SNV were obtained among CADD annota-
tions. A single SpliceAI score per variant was defined as the maximum 
score among independent scores for ‘acceptor gain’, ‘acceptor loss’, 
‘donor gain’ and ‘donor loss’.

Clinical study design and statistical analysis
The Freiburg VHL Registry includes patients screened at least once 
until 2023 at the von Hippel–Lindau Outpatient Clinic of the Univer-
sity Medical Center Freiburg. As of 1 January 2024, the Freiburg VHL 
Registry included 552 participants with data on ccRCC status. The 
inclusion criterion for this retrospective analysis was the detection 
of a VHL germline mutation (class 4 or 5 according to the American 
College of Medical Genetics and Genomics and the Association for 
Molecular Pathology). Patients lacking clinical data were excluded. In 
total, 375 (67.9%) patients had a VHL mutation classified as LOF1 or LOF2 
by SGE (mean age ± s.d. = 45.5 years ± 17.6, 52% female). In total, 122 
participants had LOF1 mutations (age: 41.4 ± 14.3 years, 47.5% female). 
In total, 253 participants had a LOF2 mutation (age: 47.5 ± 18.7 years, 
54.2% female). In total, 46 different LOF1 mutations and 11 different 
LOF2 mutations were present.

Clinical data including age, gender and diagnostic results were 
recorded in a predefined database. Surveillance was performed accord-
ing to VHL disease guidelines (VHL Active Surveillance Guidelines) and 
included a magnetic resonance imaging or computed tomography 
scan of the abdomen. For ccRCC, the first radiologic description was 
considered the initial diagnosis. Registrants were grouped by the func-
tion class of their variant (LOF1 or LOF2). The Kaplan–Meier estimator 
was used to assess age-related ccRCC penetrance. Registrants without 
ccRCC were censored at the age of their last visit. Log-rank tests were 
used for pairwise comparisons of age-related penetrance curves using 
GraphPad Prism 10.1.2.

Generation of clonal lines with VHL variants
To engineer SNVs via HDR, oligonucleotides containing c.264G>A 
and c.606dup were ordered for InFusion cloning into homology arm 
vectors including synonymous edits at PAM sites. HAP1-LIG4-KO cells 
were transfected with pX459 and each vector in six-well plates. On day 
6 post-transfection, cells were split by limiting dilution into 96-well 
plates. Individual clones were sequenced to identify correctly edited 
lines. Additional lines harboring unintended edits were isolated as 
controls, including a negative control line with only a synonymous 
PAM edit, a line with a 10-bp insertion (c.332_333_insCTACCGAGGT, 
abbreviated ‘c.332ins10’) and a line with a frameshifting deletion 
(c.620_624del).

Additional lines were created by prime editing in HAP1 MLH1 
knockout cells (Horizon Discovery, HZGHC000343c022). On day 
0, 0.5 μg of each epegRNA and PEmax plasmid (Addgene, 180020) 
were cotransfected into 90,000 cells per well in a 12-well plate using 
FuGENE HD (Promega). On day 1, cells were treated with puromycin 
(Thermo Fisher Scientific) at 2 μg ml−1 and maintained for 2 days. On 
day 3, puromycin was removed and cells were incubated for one more 
day before being sorted into a 96-well plate using a Sony MA900 Cell 
Sorter. After 12 days, gDNA was extracted and Sanger-sequenced. 
Lines were verified to harbor SNVs without additional edits, includ-
ing c.228C>G, c.222C>A, c.191G>C, c.292T>C, c.334T>C, c.371C>A, 
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c.462A>C, c.539T>A, c.329A>C, c.302T>C, c.458T>C, c.263G>A and 
c.606del.

Western blots
To assess VHL and HIF1A protein expression, 0.3 million cells were 
seeded in six-well plates. After 2–3 days, cells were lysed in RIPA buffer 
(50 mM Tris–HCL at pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% sodium deoxy-
cholate, 1% NP-40 and 1% Triton X-100) containing protease inhibitors 
(Thermo Fisher Scientific). Protein concentration was determined by 
BCA assay (Thermo Fisher Scientific). In total, 20 μg of total protein 
was run per well using Mini Protein Gels (Thermo Fisher Scientific) 
and transferred to nitrocellulose membrane using iBlot 2 Dry Blotting 
System (Thermo Fisher Scientific). The membrane was blocked with a 
blocking solution containing 5% skim milk in Tris-buffered saline with 
Tween-20 (TBST; 100 mM Tris–HCl, 150 mM NaCl, 0.1% Tween-20,  
pH 7.5) at room temperature for 1 h. The membrane was then incubated 
at 4°C overnight with primary antibodies including mouse tubulin 
antibody (Sigma-Aldrich, T6199; 1:3,000), rabbit VHL antibody (Cell 
Signaling Technology, 68547; 1:1,1,000) and mouse HIF1A antibody 
(BD Transduction Laboratories, 610959; 1:1,000). After washing with 
TBST for 30 min, the membrane was incubated at room temperature 
for 1 h with the following secondary antibodies: goat anti-mouse 
IgG–HRP (Abcam, ab205719; 1:10,000) or goat anti-rabbit IgG–HRP 
(Sigma-Aldrich, AP307P; 1:10,000). After washing with TBST for 30 min, 
the membrane was treated with SuperSignal West Pico Plus Chemilumi-
nescent Substrate (Thermo Fisher Scientific, PI34577) and visualized 
on ChemiDoc XRS+ system (Bio-Rad).

Immunofluorescence microscopy
Cells plated on tissue culture-treated 35 mm imaging dishes (Ibidi) 
were washed with 1× DPBS (Gibco) and fixed with 10% neutral-buffered 
formalin (Sigma-Aldrich) for 10 min, then washed twice with ice-cold 
1× DPBS. Cell permeabilization was carried out using 0.2% Triton X-100 
(Thermo Fisher Scientific) for 10 min, followed by three washes with 1× 
PBST (1× DPBS and 0.1% Tween-20 (Thermo Fisher Scientific)). Samples 
were blocked by washing once and incubating in a blocking buffer (1× 
DPBS and 1% BSA (Sigma-Aldrich)) for 1 h. Samples were then incubated 
for 1 h at room temperature with primary antibodies in blocking buffer, 
including rabbit anti-VHL (Cell Signaling Technology, 68547; 1:200) 
and mouse anti-HIF1α (Novus Biologicals, NB100-105; 1:50). Dishes 
were washed three times with 1× DPBS for 5 min, then incubated for 
1 h at room temperature with secondary antibodies in blocking buffer 
and then washed three times with 1× DPBS. Secondary antibodies 
were donkey anti-rabbit IgG Alexa Fluor 555 (Thermo Fisher Scientific, 
A-31572; 1:500) and goat anti-mouse IgG Alexa Fluor 647 (Thermo Fisher 
Scientific, A-21235; 1:500). Cells were mounted using mounting medium 
containing DAPI (Ibidi) and imaged using a ×40 oil objective on a point 
scanning confocal microscope (Zeiss LSM880). Images were analyzed 
using Fiji ImageJ2 (v2.14.0).

SCR experiments
A dual-fluorophore SCR reporter cassette43 was cloned into a pUC19 
backbone with a cytomegalovirus promoter. The SCR reporter 
expresses a transcript encoding EGFP and mCherry, separated by a 
sequence of interest flanked by T2A sequences. VHL-derived sequences 
of 141 bp centered on select nonsense variants were cloned into the 
SCR reporter and transfected into HAP1-LIG4-KO cells. On day 5 
post-transfection, EGFP and mCherry expression were assessed by 
flow cytometry (BD Fortessa X20) for at least 150,000 cells. The frac-
tion of EGFP+ cells that were mCherry+ was determined (FlowJo v10.10) 
and normalized to a vector without a stop codon (pSCR-VHL-no-stop).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All function scores and RNA scores are included in Supplementary 
Table 1, as well as NGS read counts. Function scores are also available for 
visualization at https://vhl-board.onrender.com/ and have been depos-
ited to MAVE-DB62 (urn:mavedb:00000675-a) with RNA scores. Fastq 
files are publicly available (European Nucleotide Archive accession: 
PRJEB75229). Unprocessed western blots are included as Source Data.
Structural data (PDB: 1LM8) was accessed from the PDB (https://www.
rcsb.org/structure/1lm8). ClinVar, cBioPortal and VHLdb data are avail-
able at https://www.ncbi.nlm.nih.gov/clinvar/, https://www.cbioportal.
org/ and http://vhldb.bio.unipd.it/, respectively. UKB, TOPMed and 
gnomAD data are accessible at https://app.genebass.org/, https://bravo.
sph.umich.edu/freeze8/hg38/ and https://gnomad.broadinstitute.org/. 
CADD scores can be found at https://cadd.gs.washington.edu/download, 
and missense variant scores from REVEL, boostDM, EVE and VARITY are 
available at https://sites.google.com/site/revelgenomics/downloads, 
https://www.intogen.org/boostdm/search?ttype=RCCC&gene=VHL, 
https://evemodel.org/ and http://varity.varianteffect.org/, respectively. 
Source data are provided with this paper.

Code availability
Code used in this study is available on GitHub (https://github.com/
TheGenomeLab/VHL-SGE) and has been archived to Zenodo (https://
zenodo.org/records/11065771)63.
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Extended Data Fig. 1 | Optimizing SGE libraries to tile the complete VHL 
coding sequence. a, A schematic showing the seven SGE regions tiling across 
VHL. b,c, Frequency of SNVs plotted by position in the initial libraries for exon 
1–5′ (b) and exon 1–3′ (c). d,e, Histograms of variant frequency for the initial 

libraries for exon 1–5′ (d) and exon 1–3′ (e). Based on these distributions, 
additional synonymous SNVs were added to final library designs. f–l, Frequency 
of SNVs in the final SGE libraries used for each region.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Addition of DAB to SGE experiments improves data quality. Histograms of function scores for regions where SGE was performed in normal 
HAP1 growth media (top) and media supplemented with 2.5 µM DAB (bottom). Function scores span a greater range when derived using DAB.
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Extended Data Fig. 3 | An absence of LoF variants in the 5′ coding region of 
exon 1. a, The rate of editing by HDR as measured by NGS is plotted for each 
replicate SGE experiment, sampled on day 6 post-transfection. b, Function  
scores for variants in exon 1 are plotted by genomic position and colored by  

q value. Positions of the three different SGE regions tiling exon 1 are indicated on 
the x axis. c, Histograms of function scores colored by mutation consequence 
are shown for each SGE region. Nonsense variants consistently score lowly across 
SGE regions, with the exception of the exon 1–5′ region.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | A map of RNA scores for n = 1,626 SNVs in VHL. a, RNA 
scores, defined as each SNV’s abundance in cDNA normalized to its abundance 
in gDNA, are plotted by transcript position. RNA scores shown are from samples 
collected 6 days post-transfection. b, Day 6 RNA scores from individual replicates 

are highly correlated (Pearson’s R = 0.87). c, Comparison of function scores and 
RNA scores indicates that below an RNA score threshold of −3.0 (dashed line),  
6 of 7 synonymous variants were significantly depleted.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Comparing RNA scores across timepoints. a–c, Scores 
for n = 356 SNVs analyzed in exon 2 are plotted by transcript position. RNA scores 
are plotted for samples collected 6 days post-transfection (a) and 20 days post-
transfection (b). Function scores are plotted for the same set of exon 2 variants 
(c). d, RNA scores correlate across timepoints (Pearson’s R = 0.86). Many variants 
with low RNA scores on day 6 have relatively higher RNA scores on day 20. (y = x 
plotted as a dashed line for reference.) e, The ΔRNA score for each SNV, defined 
as the day 20 RNA score minus the day 6 RNA score, is plotted for n = 184 LOF1, 

n = 81 LOF2, n = 118 intermediate and n = 1,226 neutral SNVs. Variants with day 6 
RNA scores below the threshold of −3.0 are plotted separately for n = 10 LOF1, 
n = 5 LOF2 and n = 2 intermediate SNVs. (Boxplots: center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range; all points shown.)  
f, SpliceAI component scores predict specific splice alterations, including 
acceptor loss, acceptor gain, donor loss and donor gain. Component SpliceAI 
scores are plotted against RNA scores for exonic SNVs.
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Extended Data Fig. 6 | Expression of HIF1A and VHL in clonal HAP1 lines with 
variants assayed in SGE. a,b, Clonal HAP1 cell lines were isolated containing 
SNVs introduced independently via prime editing. Western blots were performed 
to assess VHL and HIF1A protein levels, with α-tubulin stained as a loading 
control. SNVs scored as significantly depleted in SGE (all except c.228C>G, 
c.222C>A and c.191G>C) showed increased levels of HIF1A expression compared 

to unedited HAP1 and cells expressing p.F76L, a variant scored neutrally by SGE. 
Of note, c.222C>A and c.462A>C had RNA scores of −4.45 and −5.82, respectively. 
Clonal variability may account for subtle differences between results from 
the SGE assay and the degree of HIF1A upregulation observed by western blot. 
(Results are representative of 2 independent blots per line.)

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Function scores accurately predict pathogenicity 
of germline and somatic variants. a, The distribution of function scores for 
missense and splice region SNVs reported in ClinVar is shown (n = 482 SNVs, 
including 129 ‘pathogenic’ and ‘likely pathogenic’ SNVs and 15 ‘likely benign’ 
SNVs). b, Missense and splice region SNVs observed in cBioPortal are plotted by 
function score (inset shows variants present in at least one sample). c,d, Receiver 
operating characteristic (ROC) curves are shown for the classification of ClinVar 
variants using SGE function scores. ‘Pathogenic’ SNVs (c) or ‘pathogenic’ and 
‘likely pathogenic’ SNVs (d) were distinguished from n = 190 ‘benign’ or ‘likely 
benign’ SNVs. e,f, The same analyses were repeated as in (c) and (d), restricting 
to only missense and splice region SNVs. g, Function classes, defined from SGE 
data, are illustrated to show performance at separating ClinVar variants by 

mutation consequence. Thresholds for distinguishing LOF1 (less than −1.26), 
LOF2 (less than −0.39) and neutral (greater than −0.23) classes are indicated. 
(Intermediately scored variants are not plotted.) h, The number of ccRCC  
entries in cBioPortal is plotted by function class for n = 225 LOF1, n = 102 LOF2, 
n = 173 intermediate and n = 1,700 neutral SNVs. (Boxplot: center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range;  
all points shown.) i, For each unique SNV in cBioPortal (n = 233 SNVs), function 
score is plotted versus the number of ccRCC samples in which the SNV was 
observed. Variants are split by OncoKB annotation and mutational hotspot  
status in cBioPortal, with thresholds for defining LOF1, LOF2 and neutral  
variants indicated.
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Extended Data Fig. 8 | Function scores for missense variants outperform 
predictions from computational models. a,b, ROC curves indicate the 
performance of different metrics at distinguishing disease-associated missense 
variants in VHL. The metrics evaluated were SGE function scores, REVEL scores5, 
boostDM scores from the VHL-ccRCC model8, EVE scores7, VARITY R scores9 and 
CADD scores25. Missense SNVs were included if scored by all metrics (that is, 
those present in SGE data from p.M54 to p.A207). In a, n = 65 missense variants 
deemed ‘pathogenic’ in ClinVar were distinguished from n = 87 missense SNVs 
deemed neutral (as in Fig. 4g). In b, missense variants present in the gold-
standard set of ccRCC-associated SNVs (n = 73) were classified against the same 
neutral set of variants as in (a). c, Function scores for n = 953 missense SNVs are 
plotted versus scores from each computational predictor, colored by ClinVar 

status. d, Function scores were used to define two sets of unseen variants (that 
is, those absent from ClinVar, cBioPortal, population sequencing and VHLdb). 
Each metric was assessed on its ability to distinguish unseen missense SNVs with 
function scores below −0.479 (n = 19) from the set of missense SNVs with function 
scores closest to 0 (n = 100). e, Missense variants classified by SGE as LOF1/LOF2 
or neutral were grouped by whether they were discordantly classified by 0, 1 to 
2 or all 3 top variant effect predictors (VARITY, EVE and REVEL). Function scores, 
EVE scores, vertebrate phyloP scores and FoldX predictions are shown across 
groups (boxplot: center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; all points shown except n = 22 SNVs with FoldX 
scores greater than 12.0 in the right panel).

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | Stratification of patients with VHL disease by SGE 
function class. a, Patients in the Freiburg VHL Registry were grouped according to 
whether their germline VHL variant was functionally classified as LOF1 or LOF2 by 
SGE, and a Kaplan–Meier estimator was used to assess differences in age-related  

ccRCC penetrance with log-rank test for significance (additional details in 
Methods). b, The same analysis and log-rank test were repeated including only 
patients with variants not reported to be pathogenic in ClinVar at time of analysis 
(that is, absent, VUS or conflicting interpretations).

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | Functional effects of nonsense variants in relation 
to position and stop codon context. a, Function scores are plotted by position 
in exon 1 of VHL and colored to highlight nonsense variants. All nonsense SNVs 
tested between c.160A and c.601C scored as depleted, except for c.264G>A, 
a variant associated with type 2 VHL disease24. b,c, Function scores for n = 40 
nonsense variants between c.160 and c.601 are plotted by termination codon (b) 
and 4-bp termination codon context (c). Differences between function scores 
by termination codon were tested using a one-way ANOVA. (Boxplot: center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile 
range; all points shown.) In c, the blue line indicates the mean score for each stop 
codon context and the size of each dot corresponds to the number of cBioPortal 

ccRCC samples in which the SNV has been observed. d, A dual-fluorophore stop-
codon readthrough (SCR) reporter assay was used to quantify readthrough of 
nonsense variants assayed by SGE. Nonsense variants with 138 bp of surrounding 
VHL sequence were cloned between EGFP and mCherry, such that mCherry 
expression only occurs if the nonsense codon fails to terminate translation. 
e,f, Flow cytometry data for live populations of single cells are shown for each 
plasmid tested, with gating to determine the fraction of transfected cells (EGFP+) 
positive for mCherry expression. Data were normalized to a control vector 
without a stop codon (pSCR-VHL-no-stop). Control plasmids are in (e), and 
plasmids containing VHL nonsense codons are in (f).

http://www.nature.com/naturegenetics
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