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Genetic factors associated with reasons for 
clinical trial stoppage

Olesya Razuvayevskaya1,2, Irene Lopez1,2, Ian Dunham1,2,3 & David Ochoa    1,2 

Many drug discovery projects are started but few progress fully through 
clinical trials to approval. Previous work has shown that human genetics 
support for the therapeutic hypothesis increases the chance of trial 
progression. Here, we applied natural language processing to classify 
the free-text reasons for 28,561 clinical trials that stopped before their 
endpoints were met. We then evaluated these classes in light of the 
underlying evidence for the therapeutic hypothesis and target properties. 
We found that trials are more likely to stop because of a lack of efficacy in the 
absence of strong genetic evidence from human populations or genetically 
modified animal models. Furthermore, certain trials are more likely to stop 
for safety reasons if the drug target gene is highly constrained in human 
populations and if the gene is broadly expressed across tissues. These 
results support the growing use of human genetics to evaluate targets for 
drug discovery programs.

The drug discovery endeavor is dominated by high attrition rates, 
and failure remains the most likely outcome throughout the pipe-
line1. A diverse set of factors can lead to failure, with lack of efficacy 
or unforeseen safety issues reportedly explaining 79% of setbacks 
in the clinic2. New approaches adopted across the industry have 
aimed to improve success rates by systematically assessing the avail-
able evidence throughout the research and clinical pipelines3,4. Sup-
port from human genetic evidence has been repeatedly associated 
with successful clinical trial progression5–8, ultimately supporting 
two-thirds of the drugs approved by the US Food and Drug Admin-
istration (FDA) in 2021 (ref. 9). Further understanding of the rea-
sons for success or failure in clinical trials could assist in reducing  
future attrition.

Systematically assessing the reasons for success or failure in 
clinical trials can be hampered by many factors. Several surveys have 
demonstrated a bias towards reporting positive results, with 78.3% of 
trials in the literature reporting successful outcomes10–12. Successful 
clinical trials are published significantly faster than trials reporting 
negative results13,14. However, access to negative results is crucial, not 
only for revealing efficacy tendencies and safety liabilities15 but also 
for retrospective review and benchmarking of predictive methods, 
including machine learning.

Since 2007, the FDA has required the submission of clinical trial 
results to ClinicalTrials.gov, a free-to-access global databank aimed at 
registering clinical research studies and their results16,17. For trials halted 
before their scheduled endpoint, ClinicalTrials.gov provides a freeform 
stopping reason: termination, suspension or withdrawal18. A team of 
researchers19 previously classified the reasons for 3,125 stopped trials 
and found that only 10.8% of trials stopped because of a clear negative 
outcome. By contrast, the majority (54.5%) fell into a set of reasons 
characterized as neutral in relation to the therapeutic hypothesis, such 
as patient recruitment or other business or administrative reasons19.

Here, we extended that work by training a natural language pro-
cessing (NLP) model to classify stopping reasons and used this model 
to classify 28,561 stopped trials. We integrated our classification with 
evidence associating the drug target and disease from the Open Targets 
Platform20, revealing that trials stopped for lack of efficacy or safety 
reasons were less supported by genetic evidence. Furthermore, oncol-
ogy trials involving drugs for which the target gene is constrained in 
human populations were more likely to stop for safety reasons, whereas 
drugs with targets with tissue-selective expression were less likely to 
pose safety risks. These observations confirm and extend previous 
studies recognizing the value of genetic information and selective 
expression in target selection.
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not included in the training set. Overall, the performance against the 
unseen data was lower but comparable to that of the cross-validated 
model (Fmicro ranging from 0.70 to 0.83 depending on the choice of 
the annotator) (Supplementary Table 4), demonstrating real-world 
performance and reduced risk of overfitting. Interestingly, the curators 
demonstrated a relatively low agreement for many classes in which the 
machine-learning model also showed relatively weak performance, 
such as studies stopped because of insufficient data or met endpoint 
(Methods and Extended Data Fig. 1).

Reasons reflect operational, clinical and biological 
constraints
Classification of the 28,561 stopped trials submitted to ClinicalTrials.
gov before 27 November 2021 was performed using our NLP model 
fine-tuned on all the manually curated sentences (Supplementary 
Table 5). In total, 99% of the trials were classified with at least one of 
the 15 potential reasons and mapped to one of six different higher-level 
outcomes (Fig. 1). ‘Insufficient enrollment’ remained the most common 
reason to stop a trial (36.67%), with other reasons before the accrual 
of any study results also occurring in a large number of studies. A total 
of 977 trials (3.38%) were classified as stopped because of ‘safety or 
side effects’, and 2,197 studies (7.6%) were stopped because of ‘nega-
tive’ reasons, such as those questioning the efficacy or value (futility). 
The incidence of each stop reason reflects the purpose of each phase 
(Extended Data Fig. 2). Studies stopped because of ‘negative’ outcomes 
more often impacted phase II (odds ratio (OR) = 1.9, P = 2.4 × 10−38) and 
phase III (OR = 2.6, P = 3.64 × 10−55), whereas studies stopped as a result 
of ‘safety or side effects’ declined in relative incidence after phase I 
(OR = 2.4, P = 9.63 × 10−23) (Supplementary Table 6). Trials stopped 
because of the relocation of the study or key staff occurred more than 
twice as often during early phase I, highlighting the importance of good 
clinical practices during the foundational stages. Of the studies that 
provided a stop reason, 48% were indicated for oncology. This large 
proportion is likely to be the combined result of the specific weight of 
oncology indications in the aggregated portfolio—27% of drug approv-
als in 2022—with the reported large incidence of clinical failures in 
oncology (32%) compared to other indications22,23.

Results
Interpretable classification of early stoppage reasons
To catalog the reasons behind the withdrawal, termination or suspen-
sion of clinical studies, we classified every free-text reason submitted 
to ClinicalTrials.gov using an NLP classifier. To build a training set for 
our model, we revisited the manual classification reported in a previous 
publication of 3,124 stopped trials based on the available submissions 
to ClinicalTrials.gov in May 2010 (ref. 19). The authors of that article 
classified every study with a maximum of three classes following an 
ontological structure (Supplementary Table 1). Each of the classes 
was also assigned a higher-level category representing the outcome 
implications for the clinical project. For example, 33.7% of the studies 
were classified as stopped owing to ‘insufficient enrollment’, a neutral 
outcome owing to its expected independence from the therapeutic 
hypothesis. When inspecting submitted reasons belonging to the 
same curated category, we observed a strong linguistic similarity, as 
revealed by clustering the cosine similarity of the sentence embeddings 
(Extended Data Fig. 1). Studies stopped because of reasons linked to 
lack of efficacy and studies stopped because of futility have a linguistic 
similarity of 0.98, with both classes manually classified as ‘negative’ 
outcomes. Based on this clustering, we redefined the classification 
by merging semantically similar classes represented by low numbers 
of annotated sentences. Moreover, we added 447 studies that were 
stopped as a result of the COVID-19 pandemic (Supplementary Table 2), 
resulting in a total of 3,571 studies manually classified into at least one 
of 17 stop reasons and explained by six different higher-level outcome 
categories.

By leveraging the consistent language used by the submitters, we 
fine-tuned the BERT model21 for the task of clinical trial classification 
into stop reasons (Methods). Overall, the model showed strong predic-
tive power in the cross-validated set (Fmicro = 0.91), performing strongly 
for the most frequent classes, such as ‘insufficient enrollment’ (F = 0.98) 
or ‘COVID-19’ (F = 1.00), but demonstrating decreased performance 
on linguistically complex reasons, such as trials stopped because of 
another study (F = 0.71) (Supplementary Table 3).

To further evaluate the model, we manually curated an additional 
set of 1,675 stop reasons from randomly selected studies that were 
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Moreover, oncology studies stopped more frequently as a 
result of safety or side effects and were rarely stopped because of the  
COVID-19 pandemic (Extended Data Fig. 3). Alternatively, COVID-19 
was the reported reason to stop respiratory studies at a higher rate than 
any other therapeutic area, possibly indicating increased operational 
difficulties.

Genetic support for stopped trials influences the outcome
To better understand the underlying reasons that might have caused the 
study to fail, we assessed the availability of different types of potentially 
causal genetic evidence for the intended pharmacological targets in 
the same indication (Extended Data Fig. 4). By using genetic evidence 
collated by the Open Targets Platform, we reproduced previous reports 
indicating that genetically supported studies are more likely to progress 
through the clinical pipeline (Fig. 2a)5,6. Interestingly, we also observed 
that stopped trials—among all the trials at any phase—are depleted in 
genetic support (OR = 0.73, P = 3.4 × 10−69). A similar lack of genetic evi-
dence was observed for the three types of stopped studies: withdrawn, 
terminated and suspended (Supplementary Table 7).

When stratifying the stopped studies by reason, trials halted 
because of negative outcomes—such as lack of efficacy or futility—
displayed a significant decrease of genetic support for the intended 
pharmacological target in the same indication (OR = 0.61, P = 6×10−18) 
(Fig. 2a). The depletion of genetic evidence on negative outcomes 
remains consistent when stratifying the indications by oncology 
(OR = 0.53) or non-oncology studies (OR = 0.75) (Extended Data Fig. 6), 
as well as when splitting by different sources of genetic evidence, 

including genome-wide association studies processed by the Open 
Targets Genetics Portal24, gene burden tests based on sequencing 
of large population cohorts25–27, ClinVar28, ClinGen Gene Validity29, 
Genomics England PanelApp30, gene2phenotype31, Orphanet32 and 
Uniprot33 (Extended Data Fig. 5).

Other predicted reasons for stopping the trials, such as insufficient 
enrollment, problems with the study design or business or administra-
tive reasons, also present a strong to moderate depletion of genetic 
evidence denoting potential reduced support for the therapeutic 
hypothesis (Fig. 2). We found that studies stopped as a result of coin-
cidental factors such as the COVID-19 pandemic have no association 
with the availability of genetic support for the intended target in the 
primary indication.

The observed associations between clinical trial outcomes and 
the availability of genetic support remain consistent when considering 
genetic information in mouse models (Fig. 2b). Trials that were stopped 
because of negative factors present the weakest support among all pre-
dicted reasons (OR = 0.7, P = 4 × 10−11) when genetic evidence is defined 
as the presence of a murine model in which the drug target homolo-
gous gene knockout causes a phenotype that mimics the indication, 
as reported by the International Mouse Phenotyping Consortium34.

Genetic factors associated with safety-associated stopped 
trials
Analysis of the classified stop reasons indicates that oncology trials 
are more likely to stop because of safety or side effects (OR = 2.14, 
P = 8.1 × 10−79; Supplementary Table 7). Moreover, for all trials predicted 
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to stop because of safety concerns, we found a significant enrich-
ment in targets associated with driver events reported by COSMIC35,  
ClinVar28 or IntOgen36 (Extended Data Fig. 7). Examining the target 
properties (Fig. 3), we found that studies targeting genes that are 
highly constrained in natural populations (GnomAD pLOEUF 16th 
percentile) are 1.5 times more likely to stop as a result of safety con-
cerns37. Furthermore, the risk of stopping because of safety declines 
as the genetic constraint of the target decreases. Similarly, we identi-
fied a 1.4-fold increased risk of stopping because of safety concerns 
when the targeted gene is classified as loss-of-function intolerant 
(pLI > 0.9). These findings are compatible with previous evidence 
indicating that constrained genes are associated with increased side 
effects38. We also identified functional genomic features that inform 
on increased safety risk. According to the human protein atlas, a similar 
1.3-fold increased risk is observed for genes expressed with low tissue 
specificity39. Instead, studies targeting tissue-enriched genes show a 
lower-than-expected (OR = 0.8, P = 1.8 × 10−4) likelihood of stopping 
because of safety. Finally, targets physically interacting with ten or more 
different partners according to the IntAct database (MI score > 0.42) 
present an increased risk of stopping as a result of safety concerns40. 
Further stratification of this analysis by indication denotes that these 
overall constraint signals impacting studies that are stopped because 
of safety are largely influenced by oncology trials.

Discussion
Genetic evidence is increasingly leveraged by the pharmaceutical 
industry to add support to the therapeutic hypothesis3,4,41,42. Adding 
to previous observations on the role of genetic factors in overall trial 
success5,6, we exploited under-used data from clinical trial records 

to better understand the opposite outcome: why clinical trials stop. 
Although the availability of genetic evidence might inform future suc-
cess, failure remains the most common outcome of clinical studies, 
and, to our knowledge, no systematic evidence exists on the relevance 
of genetics to de-risk negative results.

Recent reports indicate that 79% of clinical studies fail because 
of a lack of efficacy or safety2. Our analysis indicates that within the 
7.9% of studies that stop early because of withdrawal, termination or 
suspension, the proportion of trials that failed because of efficacy or 
safety is only 12.7%. Stopped studies are more likely to fail because of 
early coincidental factors that are not necessarily linked to biological 
plausibility; for example, the principal investigator relocates or there 
is insufficient enrollment in the trial. Notwithstanding the reduced 
relative risk of efficacy and safety as the main causes for stopping the 
trial, these studies provide a significant body of unsuccessful results 
that are probably explained by a weak therapeutic hypothesis. Con-
tinued expansion of the recording of negative results from clinical 
trials, including stoppages, will be valuable. To assist in this effort, we 
will continue to update the classification of stopped studies through 
the Open Targets Platform (https://platform.opentargets.org)20.  
Further investigation of the study outcomes for completed studies 
could expand our understanding of the reasons behind unsuccessful 
trials, particularly after accrual of the study results.

Our analysis exploits the classified stop reasons to understand 
the relative importance of the causes leading to failed studies. By 
using a case-control approach, we conclude that genetic support is 
not only predictive of clinical trial progression but also protective of 
early trial stoppage. We illustrate different ways in which genetic cau-
sality and genetic constraint can de-risk the target selection process. 
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However, many stopped trials, even when stopped for efficacy and 
safety reasons, might be explained by factors beyond the intended 
pharmacological target. Off-target effects, pharmacokinetics, drug 
delivery or toxicology are other risks not considered in this study that 
might also explain a set of negative outcomes. Another limitation of 
our study is that the reasons submitted to ClinicalTrials.gov might only 
represent a fraction of all the reasons contributing to the decision to 
halt the study. For example, we found that studies that were classified 
as stopped because of patient recruitment manifest weaker genetic 
support, an observation that we did not anticipate owing to the lack of 
an obvious link between enrollment and biological plausibility. Hence, 
we reason that a fraction of the stopped trials might present an overall 
lack of confidence in the therapeutic hypothesis, independently of the 
reported reason.

This study showcases how reflecting on past failures can inform 
the relative importance of the risks associated with early target identi-
fication and prioritization. Although clinical trial success is a discrete 
outcome, failure needs to be understood as a breakdown of many pos-
sible causes. A proper set of positive and negative outcomes such as 
the ones introduced in this work represent the groundwork necessary 
to implement quantitative or semi-automatic models to objectively 
de-risk any future studies.
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Methods
Inclusion and ethics
This study relied solely on aggregated genetic and clinical information 
available in public resources. It did not make use of individual-level 
data, and no specific ethics approval was required. Some of the data 
sources, including clinical study results, clinical curation of rare vari-
ants or genome-wide associations, might present biases towards Euro-
pean ancestries.

NLP classification of stopped clinical trials
To quantify the semantic structure of the reasons for clinical trial stop, 
we analyzed the classification of the stopped clinical trials developed 
in a previous publication19. We trained a long short-term memory net-
work to create the representations for each stop reason and averaged 
the embeddings across all examples of a particular class. The class 
embeddings were then used to calculate the cosine similarities among 
classes and were visualized using agglomerative hierarchical cluster-
ing (Extended Data Fig. 1). The hierarchical representation illustrates 
the clusters that are semantically close to each other, along with the 
number of examples per class and the parent category. Similar classes 
with fewer sentences were grouped together to ensure representative 
categories based on clinical expertise and semantic similarity. For 
example, the classes ‘study moved’ and ‘key staff left’ are semantically 
clustered together and attend to similar underlying reasons. The list 
of categories defined in the previous publication and their redefined 
groupings can be found in Supplementary Table 8.

To validate the model on new data and expand the training set, we 
performed a human annotation experiment of 1,675 additional Clinical-
Trials.gov studies that were not classified in the previous publication. 
We randomly assigned six sets of 250 unique stopped trials to each 
curator, including 25 overlapping trials, to estimate the inter-annotator 
agreement. Across 3 pairs of annotators, we estimated inter-annotator 
agreements of 0.8, 0.71 and 0.66 using the kappa statistic43.

Stop reason classification model
We fine-tuned the BERT model for the task of predicting the stop rea-
sons on the training set of 4,500 human-annotated stopped clinical 
trials21. We used a BERT uncased pre-trained model with a one-layer 
feed-forward classifier consisting of a ReLU layer between the input 
and output layers, in which the input and output layers represent 
linear layers. Fine-tuning was performed by using the HuggingFace 
transformer library44. The classifier uses 50 hidden units and the ReLU 
activation function.

We used the last hidden state at token ‘[CLS]’ to retrieve a repre-
sentation of the whole explanation and fed it into the classifier. We then 
applied ‘sigmoid’ over the logits to retrieve the probabilities. The best 
accuracy on the validation set was achieved while training the model 
for seven epochs with a batch size of 32, a learning rate of 5 × 10−5 and 
the Pytorch implementation of Adam’s optimizer with weights decay, 
in which the weight decay is set to the default value of 1 × 10−2. The test 
set was created stratified to ensure that the relative class frequencies 
were considered in each fold of the test set. Given that the nature of the 
task does not assume that the categories are mutually exclusive and the 
original and new annotation tasks allowed human annotators to mark 
up to three categories, we treated the top three probabilities returned 
by the model that are above a pre-defined threshold as correct answers.

Clinical studies
We collated all clinical trials from ClinicalTrials.gov as of 27 November 
2021 and classified the 28,561 stopped studies (withdrawn, suspended 
or terminated). Genetic traits and indications from clinical studies were 
harmonized using the Experimental Factor Ontology (EFO)45. When 
studies contained multiple indications, their similarity based on the 
EFO structure was evaluated. All indications were considered when 
indications were similar (for example, several oncology indications). 

When indications were dissimilar (for example, diabetes in malaria 
patients), the diseases were curated to annotate the appropriate indi-
cation for the study. Drugs reported as approved by the FDA were also 
considered to ensure the representation of medicines preceding the 
ClinicalTrials.gov resource. To map each drug or clinical candidate to 
its pharmacological targets, we leveraged the molecule mechanism 
of action from the ChEMBL database46. All possible annotations were 
used if a drug could be mapped to multiple targets. All drug targets 
were annotated against Ensembl gene IDs47 when possible. To per-
form subsequent analyses, only drugs with a known mechanism of 
action were considered. The resulting dataset contains 594,375 clinical 
target-disease records, capturing 71,419 unique target-disease associa-
tions and 57,775 target-disease pairs in studies that stopped early48.

Target-disease genetic support
We integrated 13 sources available in the Open Targets Platform in April 
2022 to extract a comprehensive list of genetically supported gene–dis-
ease associations. The genetic evidence was mapped to Ensembl gene 
identifiers and EFO identifiers as part of the Open Targets activities. 
To represent common disease genetics, we leveraged Open Targets 
Genetics24, a post-genome-wide association study analysis leverag-
ing different functional genomics features. In this study, we used all 
gene assignments based on a locus-to-gene score above 0.05 (ref. 
49). The other predominantly germline genetic sources included in 
this analysis are Gene Burden25–27, ClinVar28, Genomics England Pan-
elApp30, Gene2Phenotype31, Clingen Gene–Disease Validity29, Uniprot33 
and Orphanet32. We included COSMIC Cancer Hallmarks35, IntOgen 
cancer drivers36 and ClinVar somatic variants50 as sources of somatic 
genetic evidence. As a source to capture the effects of genetic variation 
in animal models, we included the mouse–human phenotypic map-
pings reported by the International Mouse Phenotyping Consortium34. 
Genetic evidence was ontologically expanded using the EFO, resulting 
in 3,654,109 genetically supported gene–trait pairs. This dataset rep-
resents a redundant view of the evidence, with its only purpose being 
to maximize the overlap with the clinical information and minimize 
the issues related to the sparsity in the annotation.

Target annotations
To analyze the target factors that could influence studies stopped 
because of safety or side effects, we also included a set of target anno-
tations that were independent of the study indication. Each gene was 
annotated with genetic constraint data from gnomAD, representing the 
functional impact of the presence of genetic variants, and split into six 
categories derived from gnomAD’s pLOEUF quantiles. We also analyzed 
the predicted loss-of-function intolerance, distinguishing genes as 
‘LoF-intolerant’ when the pLI score is above 0.9 and as ‘LoF tolerant’ 
when the pLI score was below 0.1 (ref. 37). Moreover, each target was 
classified in a bin based on the number of unique interacting part-
ners above an MI score threshold of 0.42 in the IntAct database40. This 
threshold corresponds to a physical interaction identified at least once 
in low-throughput studies or replicated in multiple high-throughput 
experiments. Additionally, target annotation for tissue specificity and 
distribution was retrieved from the baseline transcriptomic experi-
ments in the Human Protein Atlas database39. The assessment was per-
formed according to the categories defined by the Human Protein Atlas.

Statistics and reproducibility
No preliminary statistical analyses were conducted to determine sam-
ple sizes. The choice of clinical studies and genetic information fol-
lowed an unbiased procedure. The significance of each case-control 
study was computed using a two-sided Fisher's exact test using all 
available samples. No multiple testing correction was applied to the 
resulting P values. All statistical tests were computed using SciPy 
(v.1.11.4)50. The code to replicate the analyses is publicly available (see 
Code availability).
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The full training set is available for download at HuggingFace, including 
the curation from the previously published article19 and the COVID-19 
stopped studies51. The resulting model for download or interactive 
exploration can also be found in HuggingFace52. The dataset of the 
clinical trial stop reason predictions used in this study is available in 
Github53. The collection of clinical studies annotated with predicted 
stop reasons and genetic evidence can also be accessed on Hugging-
Face. Up-to-date predictions for newer clinical trial studies are updated 
quarterly in the Open Targets Platform.

Code availability
Code to reproduce the model and analysis are available on GitHub53.
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Extended Data Fig. 1 | Hierarchical clustering of stop reason similarity based on curation from Pak et al. and 447 additional stopped trials due to COVID-19. 
Distances were estimated as the cosine similarity of the averaged embeddings (see Methods section).
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Extended Data Fig. 2 | Association between the reasons to stop along 
each phase of the clinical development as reported by ClinicalTrials.gov. 
Underpowered reasons for stoppage were excluded. We used a two-tailed Fisher’s 
exact test to assess the significance of the associations, with a p-value threshold 

of 0.05 (n = 10,214 independent stopped trials). Significant associations are 
highlighted in blue. Error bars represent 95% confidence intervals for the odds 
ratio. All results are provided in Supplementary Table 6.
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Extended Data Fig. 3 | Percentage of stopped trials predicted to be halted 
due to Safety or side effects or the COVID-19 pandemic as a fraction of all the 
trials by predominant therapeutic area. Indications with multiple possible 

therapeutic areas were associated with the most severe area (for example 
Oncology). Overall incidence when considering all therapeutic areas was 5% for 
COVID-19 and 3.3% for Safety or side effects.
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Extended Data Fig. 4 | Representation of the data and analytical workflow defined to investigate the predictive value of genetics in all target/disease 
associations derived from clinical trials. Except for the baseline expression data, all datasets were sourced from the Open Targets 22.04 release. Detailed methods 
can be found in the Methods section.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01854-z

Extended Data Fig. 5 | Association between the availability of genetic evidence and clinical trial outcomes by genetic data source. X-axis displays the respective 
odds ratio and y-axis groups the studies by phase (red), stopped clinical trials (blue) and stopped clinical trials split by high-level stopping reason (green). Error bars 
represent 95% confidence intervals for the odds ratio.
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Extended Data Fig. 6 | Genetic support for stopped clinical trials in all 
indications, non-oncology and oncology. Each row represents a stopping 
reason, with the effect size in the form of odds ratio (OR) and its 95% confidence 
interval represented by the dot and error bar. An odds ratio (OR) > 1 suggests that 

trials stopped for a given reason are more likely to have genetic support, while an 
OR < 1 indicates depletion. The number of trials (n) supporting each estimate is 
provided. Statistical significance was assessed using a two-tailed Fisher’s exact 
test, with a significance threshold of p < 0.05 without multiple testing correction.
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Extended Data Fig. 7 | Association between the availability of genetic 
evidence and clinical trial outcomes by somatic data source. X-axis displays 
the respective odds ratio and y-axis groups the studies by phase (top row), 

stopped clinical trials (centre row) and stopped clinical trials split by high-level 
stopping reason (bottom row). Error bars represent 95% confidence intervals for 
the odds ratio.
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