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Many drug discovery projects are started but few progress fully through
clinical trials to approval. Previous work has shown that human genetics
support for the therapeutic hypothesisincreases the chance of trial
progression. Here, we applied natural language processing to classify

the free-text reasons for 28,561 clinical trials that stopped before their
endpoints were met. We then evaluated these classes inlight of the
underlying evidence for the therapeutic hypothesis and target properties.
We found that trials are more likely to stop because of alack of efficacy in the
absence of strong genetic evidence from human populations or genetically
modified animal models. Furthermore, certain trials are more likely to stop

for safety reasons if the drug target gene is highly constrained in human
populations and if the gene is broadly expressed across tissues. These
results support the growing use of human genetics to evaluate targets for
drug discovery programs.

The drug discovery endeavor is dominated by high attrition rates,
and failure remains the most likely outcome throughout the pipe-
line'. A diverse set of factors can lead to failure, with lack of efficacy
or unforeseen safety issues reportedly explaining 79% of setbacks
in the clinic’. New approaches adopted across the industry have
aimed to improve success rates by systematically assessing the avail-
able evidence throughout the research and clinical pipelines**. Sup-
port from human genetic evidence has been repeatedly associated
with successful clinical trial progression® ™, ultimately supporting
two-thirds of the drugs approved by the US Food and Drug Admin-
istration (FDA) in 2021 (ref. 9). Further understanding of the rea-
sons for success or failure in clinical trials could assist in reducing
future attrition.

Systematically assessing the reasons for success or failure in
clinical trials can be hampered by many factors. Several surveys have
demonstrated a bias towards reporting positive results, with 78.3% of
trials in the literature reporting successful outcomes' . Successful
clinical trials are published significantly faster than trials reporting
negative results'*. However, access to negative results is crucial, not
only for revealing efficacy tendencies and safety liabilities" but also
for retrospective review and benchmarking of predictive methods,
including machine learning.

Since 2007, the FDA has required the submission of clinical trial
results to ClinicalTrials.gov, afree-to-access global databank aimed at
registering clinical research studies and their results'®"”. For trials halted
beforetheirscheduled endpoint, ClinicalTrials.gov provides afreeform
stopping reason: termination, suspension or withdrawal’®. A team of
researchers' previously classified the reasons for 3,125 stopped trials
and found that only 10.8% of trials stopped because of a clear negative
outcome. By contrast, the majority (54.5%) fell into a set of reasons
characterized as neutralinrelation to the therapeutic hypothesis, such
as patient recruitment or other business or administrative reasons”.

Here, we extended that work by training a natural language pro-
cessing (NLP) model to classify stopping reasons and used this model
to classify 28,561 stopped trials. We integrated our classification with
evidence associating the drugtarget and disease from the Open Targets
Platform®, revealing that trials stopped for lack of efficacy or safety
reasons wereless supported by genetic evidence. Furthermore, oncol-
ogy trials involving drugs for which the target gene is constrained in
human populations were more likely to stop for safety reasons, whereas
drugs with targets with tissue-selective expression were less likely to
pose safety risks. These observations confirm and extend previous
studies recognizing the value of genetic information and selective
expressionintarget selection.
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Fig.1| Classification of stopped reasons for 28,561 clinical trialsin
ClinicalTrials.gov. Predicted trial stop reasons are shown in rows with counts of
trials per start year, clinical phase or therapeutic area shown by the colorin each
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cell. The outcome groupings of the stopped reasons are shown using the color
next to the stopped reason label. Note that trials start potentially many years
before they are stopped.

Results

Interpretable classification of early stoppage reasons

To catalog the reasons behind the withdrawal, termination or suspen-
sion of clinical studies, we classified every free-text reason submitted
to ClinicalTrials.gov using an NLP classifier. To build a training set for
our model, we revisited the manual classification reportedin a previous
publication of 3,124 stopped trials based on the available submissions
to ClinicalTrials.gov in May 2010 (ref. 19). The authors of that article
classified every study with a maximum of three classes following an
ontological structure (Supplementary Table 1). Each of the classes
was also assigned a higher-level category representing the outcome
implications for the clinical project. For example, 33.7% of the studies
were classified as stopped owing to ‘insufficient enrollment’, aneutral
outcome owing to its expected independence from the therapeutic
hypothesis. When inspecting submitted reasons belonging to the
same curated category, we observed a strong linguistic similarity, as
revealed by clustering the cosine similarity of the sentence embeddings
(Extended Data Fig. 1). Studies stopped because of reasons linked to
lack of efficacy and studies stopped because of futility have a linguistic
similarity of 0.98, with both classes manually classified as ‘negative’
outcomes. Based on this clustering, we redefined the classification
by merging semantically similar classes represented by low numbers
of annotated sentences. Moreover, we added 447 studies that were
stopped as aresult of the COVID-19 pandemic (Supplementary Table 2),
resultinginatotal of 3,571 studies manually classified into at least one
of17 stop reasons and explained by six different higher-level outcome
categories.

By leveraging the consistent language used by the submitters, we
fine-tuned the BERT model* for the task of clinical trial classification
into stop reasons (Methods). Overall, the model showed strong predic-
tive power in the cross-validated set (F,.., = 0.91), performing strongly
forthe most frequent classes, such as ‘insufficient enrollment’ (F= 0.98)
or ‘COVID-19’ (F=1.00), but demonstrating decreased performance
on linguistically complex reasons, such as trials stopped because of
another study (F= 0.71) (Supplementary Table 3).

To further evaluate the model, we manually curated an additional
set of 1,675 stop reasons from randomly selected studies that were

notincluded in the training set. Overall, the performance against the
unseen data was lower but comparable to that of the cross-validated
model (F;.,, ranging from 0.70 to 0.83 depending on the choice of
the annotator) (Supplementary Table 4), demonstrating real-world
performance and reduced risk of overfitting. Interestingly, the curators
demonstrated arelatively low agreement for many classesin which the
machine-learning model also showed relatively weak performance,
such as studies stopped because of insufficient data or met endpoint
(Methods and Extended DataFig. 1).

Reasonsreflect operational, clinical and biological
constraints

Classification of the 28,561 stopped trials submitted to ClinicalTrials.
gov before 27 November 2021 was performed using our NLP model
fine-tuned on all the manually curated sentences (Supplementary
Table 5). In total, 99% of the trials were classified with at least one of
the 15 potential reasons and mapped to one of six different higher-level
outcomes (Fig.1). ‘Insufficient enrollment’ remained the most common
reason to stop a trial (36.67%), with other reasons before the accrual
ofanystudyresults also occurringinalarge number of studies. A total
of 977 trials (3.38%) were classified as stopped because of ‘safety or
side effects’, and 2,197 studies (7.6%) were stopped because of ‘nega-
tive’ reasons, such as those questioning the efficacy or value (futility).
The incidence of each stop reason reflects the purpose of each phase
(Extended DataFig. 2). Studies stopped because of ‘negative’ outcomes
more oftenimpacted phase Il (odds ratio (OR) =1.9,P=2.4 x 10"*%) and
phaselll (OR = 2.6, P=3.64 x107°), whereas studies stopped asaresult
of ‘safety or side effects’ declined in relative incidence after phase |
(OR=2.4,P=9.63 x107?*) (Supplementary Table 6). Trials stopped
because of the relocation of the study or key staff occurred more than
twice as often during early phase |, highlighting the importance of good
clinical practices during the foundational stages. Of the studies that
provided a stop reason, 48% were indicated for oncology. This large
proportionislikely to be the combined result of the specific weight of
oncologyindicationsinthe aggregated portfolio—27% of drug approv-
alsin 2022—with the reported large incidence of clinical failures in
oncology (32%) compared to other indications??*,
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Fig.2| Association between the availability of genetic evidence and clinical
trial outcomes. a,b, Genetic evidence support for clinical trials either from
human genetics studies (a) or the International Mouse Phenotyping Consortium
mouse knockouts (KO) that phenocopy the human disease (b). The panels show
the odds ratio (OR) of support for the target-disease hypothesis from genetics
evidence for all clinical trials split by phase (top row), stopped clinical trials
(center row) and stopped clinical trials split by higher-level stopping reason

(bottom row). The significance of the association between genetic evidence and
trial outcome was assessed using a two-tailed Fisher’s exact test, with a P value
threshold of 0.05 without multiple testing correction. The panels show the OR
and 95% confidence intervals (Cls) for the association between genetic evidence
and each subclass of trial. Significant ORs of >1 indicate enrichment and <1
indicate depletion.

Moreover, oncology studies stopped more frequently as a
result of safety or side effects and were rarely stopped because of the
COVID-19 pandemic (Extended Data Fig. 3). Alternatively, COVID-19
wasthereported reasontostop respiratory studies at ahigher rate than
any other therapeuticarea, possibly indicating increased operational
difficulties.

Genetic support for stopped trials influences the outcome
Tobetterunderstand the underlying reasons that might have caused the
study tofail, we assessed the availability of different types of potentially
causal genetic evidence for the intended pharmacological targets in
the sameindication (Extended Data Fig. 4). By using genetic evidence
collated by the Open Targets Platform, we reproduced previous reports
indicatingthat genetically supportedstudies are morelikely to progress
through the clinical pipeline (Fig. 2a)*°. Interestingly, we also observed
that stopped trials—among all the trials at any phase—are depleted in
geneticsupport (OR=0.73,P=3.4 x10™%°). Asimilar lack of genetic evi-
dence was observed for the three types of stopped studies: withdrawn,
terminated and suspended (Supplementary Table 7).

When stratifying the stopped studies by reason, trials halted
because of negative outcomes—such as lack of efficacy or futility—
displayed a significant decrease of genetic support for the intended
pharmacological target in the same indication (OR = 0.61, P= 6x107'8)
(Fig. 2a). The depletion of genetic evidence on negative outcomes
remains consistent when stratifying the indications by oncology
(OR =0.53) ornon-oncology studies (OR = 0.75) (Extended DataFig. 6),
as well as when splitting by different sources of genetic evidence,

including genome-wide association studies processed by the Open
Targets Genetics Portal*, gene burden tests based on sequencing
of large population cohorts** %, Clinvar®, ClinGen Gene Validity*’,
Genomics England PanelApp®°, gene2phenotype®, Orphanet® and
Uniprot® (Extended Data Fig. 5).

Other predicted reasons for stopping the trials, such as insufficient
enrollment, problems with the study design or business or administra-
tive reasons, also present a strong to moderate depletion of genetic
evidence denoting potential reduced support for the therapeutic
hypothesis (Fig. 2). We found that studies stopped as a result of coin-
cidental factors such as the COVID-19 pandemic have no association
with the availability of genetic support for the intended target in the
primary indication.

The observed associations between clinical trial outcomes and
theavailability of genetic support remain consistent when considering
geneticinformationin mouse models (Fig.2b). Trials that were stopped
because of negative factors present the weakest support amongall pre-
dictedreasons (OR=0.7,P=4 x10™) when genetic evidence is defined
as the presence of a murine model in which the drug target homolo-
gous gene knockout causes a phenotype that mimics the indication,
asreported by the International Mouse Phenotyping Consortium®.

Genetic factors associated with safety-associated stopped
trials

Analysis of the classified stop reasons indicates that oncology trials
are more likely to stop because of safety or side effects (OR =2.14,
P=8.1x107; Supplementary Table 7). Moreover, for all trials predicted
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Fig. 3 | Risk of stopping a clinical trial owing to safety or side effects examined
by therapeutic area and target properties. We evaluated the significance

of the association between trials stopping because of safety or side effects

and eachvariable (therapeutic area, relative genetic constraint as defined by
GnomAD, tissue specificity as defined by the Human Protein Atlas and network

connectivity with data from IntAct) with a two-tailed Fisher’s exact test, witha
Pvalue threshold of 0.05 without multiple testing correction. OR > 1 represents
anincreased risk of study stopping and OR < 1represents protection against
stopping. Error bars, 95% CI; LoF, loss of function. Detailed results are presented
inSupplementary Table 7.

to stop because of safety concerns, we found a significant enrich-
ment in targets associated with driver events reported by COSMIC®,
Clinvar®® or IntOgen*® (Extended Data Fig. 7). Examining the target
properties (Fig. 3), we found that studies targeting genes that are
highly constrained in natural populations (GnomAD pLOEUF 16th
percentile) are 1.5 times more likely to stop as a result of safety con-
cerns”. Furthermore, the risk of stopping because of safety declines
as the genetic constraint of the target decreases. Similarly, we identi-
fied a1.4-fold increased risk of stopping because of safety concerns
when the targeted gene is classified as loss-of-function intolerant
(pLI>0.9). These findings are compatible with previous evidence
indicating that constrained genes are associated with increased side
effects®®. We also identified functional genomic features that inform
onincreased safety risk. According to the human protein atlas, a similar
1.3-foldincreased risk is observed for genes expressed with low tissue
specificity®. Instead, studies targeting tissue-enriched genes show a
lower-than-expected (OR = 0.8, P=1.8 x 10™*) likelihood of stopping
because of safety. Finally, targets physically interacting with ten or more
different partners according to the IntAct database (Ml score > 0.42)
present an increased risk of stopping as a result of safety concerns*’.
Further stratification of this analysis by indication denotes that these
overall constraint signalsimpacting studies that are stopped because
of safety are largely influenced by oncology trials.

Discussion

Genetic evidence is increasingly leveraged by the pharmaceutical
industry to add support to the therapeutic hypothesis*****2, Adding
to previous observations on the role of genetic factors in overall trial
success>®, we exploited under-used data from clinical trial records

to better understand the opposite outcome: why clinical trials stop.
Although the availability of genetic evidence mightinform future suc-
cess, failure remains the most common outcome of clinical studies,
and, to our knowledge, no systematic evidence exists on the relevance
of genetics to de-risk negative results.

Recent reports indicate that 79% of clinical studies fail because
of alack of efficacy or safety”. Our analysis indicates that within the
7.9% of studies that stop early because of withdrawal, termination or
suspension, the proportion of trials that failed because of efficacy or
safety is only 12.7%. Stopped studies are more likely to fail because of
early coincidental factors that are not necessarily linked to biological
plausibility; for example, the principal investigator relocates or there
is insufficient enrollment in the trial. Notwithstanding the reduced
relative risk of efficacy and safety as the main causes for stopping the
trial, these studies provide a significant body of unsuccessful results
that are probably explained by a weak therapeutic hypothesis. Con-
tinued expansion of the recording of negative results from clinical
trials, including stoppages, will be valuable. To assist in this effort, we
will continue to update the classification of stopped studies through
the Open Targets Platform (https://platform.opentargets.org)®.
Further investigation of the study outcomes for completed studies
could expand our understanding of the reasons behind unsuccessful
trials, particularly after accrual of the study results.

Our analysis exploits the classified stop reasons to understand
the relative importance of the causes leading to failed studies. By
using a case-control approach, we conclude that genetic support is
not only predictive of clinical trial progression but also protective of
early trial stoppage. Weiillustrate different ways in which genetic cau-
sality and genetic constraint can de-risk the target selection process.
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However, many stopped trials, even when stopped for efficacy and
safety reasons, might be explained by factors beyond the intended
pharmacological target. Off-target effects, pharmacokinetics, drug
delivery or toxicology are other risks not considered in this study that
might also explain a set of negative outcomes. Another limitation of
our study is that the reasons submitted to ClinicalTrials.gov might only
represent a fraction of all the reasons contributing to the decision to
halt the study. For example, we found that studies that were classified
as stopped because of patient recruitment manifest weaker genetic
support, anobservation that we did not anticipate owing to the lack of
anobvious link between enrollment and biological plausibility. Hence,
wereasonthatafraction of the stopped trials might present an overall
lack of confidence inthe therapeutic hypothesis,independently of the
reported reason.

This study showcases how reflecting on past failures can inform
therelative importance of the risks associated with early target identi-
fication and prioritization. Although clinical trial successis a discrete
outcome, failure needs to be understood as abreakdown of many pos-
sible causes. A proper set of positive and negative outcomes such as
theonesintroducedin thisworkrepresent the groundwork necessary
to implement quantitative or semi-automatic models to objectively
de-risk any future studies.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-024-01854-z.
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Methods

Inclusion and ethics

Thisstudy relied solely on aggregated genetic and clinicalinformation
available in public resources. It did not make use of individual-level
data, and no specific ethics approval was required. Some of the data
sources, including clinical study results, clinical curation of rare vari-
ants or genome-wide associations, might present biases towards Euro-
pean ancestries.

NLP classification of stopped clinical trials

To quantify the semantic structure of the reasons for clinical trial stop,
we analyzed the classification of the stopped clinical trials developed
inaprevious publication'®. We trained along short-term memory net-
work to create the representations for each stop reason and averaged
the embeddings across all examples of a particular class. The class
embeddings were thenused to calculate the cosine similaritiesamong
classes and were visualized using agglomerative hierarchical cluster-
ing (Extended Data Fig. 1). The hierarchical representation illustrates
the clusters that are semantically close to each other, along with the
number of examples per class and the parent category. Similar classes
with fewer sentences were grouped together to ensure representative
categories based on clinical expertise and semantic similarity. For
example, the classes ‘study moved’ and ‘key staff left’ are semantically
clustered together and attend to similar underlying reasons. The list
of categories defined in the previous publication and their redefined
groupings can be found in Supplementary Table 8.

Tovalidate the model on new dataand expand the training set, we
performed ahuman annotation experiment of 1,675 additional Clinical-
Trials.gov studies that were not classified in the previous publication.
We randomly assigned six sets of 250 unique stopped trials to each
curator, including 25 overlapping trials, to estimate the inter-annotator
agreement. Across 3 pairs of annotators, we estimated inter-annotator
agreements of 0.8, 0.71and 0.66 using the kappa statistic*.

Stop reason classification model

We fine-tuned the BERT model for the task of predicting the stop rea-
sons on the training set of 4,500 human-annotated stopped clinical
trials”. We used a BERT uncased pre-trained model with a one-layer
feed-forward classifier consisting of a ReLU layer between the input
and output layers, in which the input and output layers represent
linear layers. Fine-tuning was performed by using the HuggingFace
transformer library**. The classifier uses 50 hidden units and the ReLU
activation function.

We used the last hidden state at token ‘[CLS] to retrieve a repre-
sentation of the whole explanation and fed itinto the classifier. We then
applied ‘sigmoid’ over the logits toretrieve the probabilities. The best
accuracy on the validation set was achieved while training the model
for seven epochs with a batch size of 32, a learning rate of 5 x 10 and
the Pytorchimplementation of Adam’s optimizer with weights decay,
inwhich the weight decay is set to the default value of 1x 102 The test
set was created stratified to ensure that the relative class frequencies
were considered in each fold of the test set. Given that the nature of the
task does not assume that the categories are mutually exclusive and the
originaland new annotation tasks allowed human annotators tomark
uptothree categories, we treated the top three probabilities returned
by the modelthatare above a pre-defined threshold as correct answers.

Clinical studies

We collated all clinical trials from ClinicalTrials.gov as of 27 November
2021and classified the 28,561 stopped studies (withdrawn, suspended
orterminated). Genetic traits and indications from clinical studies were
harmonized using the Experimental Factor Ontology (EFO)*. When
studies contained multiple indications, their similarity based on the
EFO structure was evaluated. All indications were considered when
indications were similar (for example, several oncology indications).

When indications were dissimilar (for example, diabetes in malaria
patients), the diseases were curated to annotate the appropriate indi-
cation for the study. Drugs reported as approved by the FDA were also
considered to ensure the representation of medicines preceding the
ClinicalTrials.gov resource. To map each drug or clinical candidate to
its pharmacological targets, we leveraged the molecule mechanism
of action from the ChEMBL database*. All possible annotations were
used if a drug could be mapped to multiple targets. All drug targets
were annotated against Ensembl gene IDs* when possible. To per-
form subsequent analyses, only drugs with a known mechanism of
actionwere considered. The resulting dataset contains 594,375 clinical
target-disease records, capturing 71,419 unique target-disease associa-
tions and 57,775 target-disease pairs in studies that stopped early*®.

Target-disease genetic support

Weintegrated 13 sources availablein the Open Targets Platformin April
2022toextractacomprehensive list of genetically supported gene-dis-
ease associations. The genetic evidence was mapped to Ensembl gene
identifiers and EFO identifiers as part of the Open Targets activities.
To represent common disease genetics, we leveraged Open Targets
Genetics™, a post-genome-wide association study analysis leverag-
ing different functional genomics features. In this study, we used all
gene assignments based on a locus-to-gene score above 0.05 (ref.
49). The other predominantly germline genetic sources included in
this analysis are Gene Burden®?, ClinVar®®, Genomics England Pan-
elApp®, Gene2Phenotype®, Clingen Gene-Disease Validity®’, Uniprot™®
and Orphanet®. We included COSMIC Cancer Hallmarks®, IntOgen
cancer drivers® and ClinVar somatic variants® as sources of somatic
geneticevidence. Asasource to capture the effects of genetic variation
in animal models, we included the mouse-human phenotypic map-
pings reported by the International Mouse Phenotyping Consortium®.
Genetic evidence was ontologically expanded using the EFO, resulting
in 3,654,109 genetically supported gene-trait pairs. This dataset rep-
resents aredundant view of the evidence, withits only purpose being
to maximize the overlap with the clinical information and minimize
theissues related to the sparsity in the annotation.

Target annotations

To analyze the target factors that could influence studies stopped
because of safety or side effects, we alsoincluded a set of target anno-
tations that were independent of the study indication. Each gene was
annotated with genetic constraint datafromgnomAD, representing the
functionalimpact of the presence of genetic variants, and split into six
categories derived from gnomAD’s pLOEUF quantiles. We also analyzed
the predicted loss-of-function intolerance, distinguishing genes as
‘LoF-intolerant’ when the pLI score is above 0.9 and as ‘LoF tolerant’
when the pLI score was below 0.1 (ref. 37). Moreover, each target was
classified in a bin based on the number of unique interacting part-
ners above an Ml score threshold of 0.42 in the IntAct database*°. This
threshold correspondsto a physicalinteractionidentified at least once
inlow-throughput studies or replicated in multiple high-throughput
experiments. Additionally, target annotation for tissue specificity and
distribution was retrieved from the baseline transcriptomic experi-
ments in the Human Protein Atlas database®. The assessment was per-
formed accordingtothe categories defined by the Human Protein Atlas.

Statistics and reproducibility

No preliminary statistical analyses were conducted to determine sam-
ple sizes. The choice of clinical studies and genetic information fol-
lowed an unbiased procedure. The significance of each case-control
study was computed using a two-sided Fisher's exact test using all
available samples. No multiple testing correction was applied to the
resulting P values. All statistical tests were computed using SciPy
(v.1.11.4)°°. The code to replicate the analyses is publicly available (see
Code availability).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The full training setis available for download at HuggingFace, including
the curation from the previously published article’ and the COVID-19
stopped studies®. The resulting model for download or interactive
exploration can also be found in HuggingFace®’. The dataset of the
clinical trial stop reason predictions used in this study is available in
Github®. The collection of clinical studies annotated with predicted
stop reasons and genetic evidence can also be accessed on Hugging-
Face.Up-to-date predictions for newer clinical trial studies are updated
quarterly in the Open Targets Platform.

Code availability

Code to reproduce the model and analysis are available on GitHub*>.
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Extended Data Fig. 1| Hierarchical clustering of stop reason similarity based on curation from Pak et al. and 447 additional stopped trials due to COVID-19.
Distances were estimated as the cosine similarity of the averaged embeddings (see Methods section).
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Extended Data Fig. 2| Association between the reasons to stop along

each phase of the clinical development as reported by ClinicalTrials.gov.
Underpowered reasons for stoppage were excluded. We used a two-tailed Fisher’s
exact test to assess the significance of the associations, with a p-value threshold

of 0.05(n=10,214 independent stopped trials). Significant associations are
highlighted in blue. Error bars represent 95% confidence intervals for the odds
ratio. All results are provided in Supplementary Table 6.
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Extended Data Fig. 5| Association between the availability of genetic evidence and clinical trial outcomes by genetic data source. X-axis displays the respective
odds ratio and y-axis groups the studies by phase (red), stopped clinical trials (blue) and stopped clinical trials split by high-level stopping reason (green). Error bars

Outcome - All studies o Stopped studies

All studies
OT Genetics Portal

Phase IV
Phase I+

Phase |1+ 1

All studies
GEL PanelApp

Phase IV A
Phase |11+ 1

Phase |1+ 1

All studies
Clingen (Gene validity)

Phase IV A
Phase I+ 1

Phase I+

-

Stopped studies
OT Genetics Portal

Suspended 1
Terminated 1

Withdrawn 4

——
.

L g

Stopped studies
GEL PanelApp

Suspended A
Terminated

Withdrawn 4

—e—

-

Stopped studies
Clingen (Gene validity)

Suspended 1
Terminated

Withdrawn

—e—
-

-

Reason implication
OT Genetics Portal

Safety 1
Suspicious 1
Invalid -
Neutral 4
Negative 1

et

-

-

)
---

Reason implication
GEL PanelApp

Safety 1
Suspicious 1
Invalid 1
Neutral 4
Negative 1

1o
-
——
- |

——

Reason implication
Clingen (Gene validity)

Safety 1
Suspicious A
Invalid 1
Neutral 4
Negative 1

0.1

represent 95% confidence intervals for the odds ratio.

-~ Reason implication

All studies
Gene Burden

Phase IV | —~
Phase Ill+ 4 -
Phase |1+ 1 -
All studies
gene2phenotype
Phase IV A o
Phase Il1+ 4 L.
Phase I1+ 1 -~
All studies
Uniprot (gene-disease)
Phase IV A o
Phase Ill+ ‘e
Phase II+ o
Stopped studies
Gene Burden
Suspended 1 —.—.—
Terminated —
Withdrawn 4 —
Stopped studies
gene2phenotype
Suspended —0——
Terminated A -
Withdrawn ——
Stopped studies
Uniprot (gene-disease)
Suspended 1 —.—.—
Terminated .
Withdrawn A -
Reason implication
Gene Burden
Safety 1 —
Suspicious e
Invalid - _—
Neutral ——
Negative ———
Reason implication
gene2phenotype
Safety 1 ——
Suspicious —
Invalid - ———
Neutral -
Negative { ——o—— :
Reason implication
Uniprot (gene-disease)
Safety 1 ——
Suspicious -
Invalid —e—
Neutral ->
Negative 1 —e— .
0.3 1.0 3.0
Odds Ratio

All studies
Clinvar
Phase IV | Lo
Phase Ill+ e
Phase |1+ 1 o
All studies
Orphanet
Phase IV A .
Phase I+ e
Phase |1+ 1 o
All studies
Uniprot (variants)
Phase IV A o
Phase Ill+ 1 e
Phase II+ o !
Stopped studies
ClinVar
Suspended —~—
Terminated o
Withdrawn 4 .
Stopped studies
Orphanet
Suspended —0——
Terminated .
Withdrawn 1 -
Stopped studies
Uniprot (variants)
Suspended 1 —Ov—
Terminated o
Withdrawn A - !
Reason implication
ClinVar
Safety 1 e
Suspicious 1 -
Invalid - —
Neutral o
Negative -
Reason implication
Orphanet
Safety 1 —e—
Suspicious ——
Invalid - —
Neutral -
Negative 1 —— |
Reason implication
Uniprot (variants)
Safety 1 -
Suspicious 1 -
Invalid ——
Neutral .
Negative 1 -
0.1 0.3 1.0 3.0

Nature Genetics



http://www.nature.com/naturegenetics

Article https://doi.org/10.1038/s41588-024-01854-z

Odds Ratio
0;5 1;0 3;0 n OR (95% Cl) P-value
COVID-19 —.-'— 37 0.91 (0.65-1.27) 0.62298
Safety - -o- 192 0.86 (0.75-1)  0.05637
n 1
S Business or ;
.% administrative o 756 0.79 (0.73-0.85) 2.6e-10
Q '
e} '
E Study design A -0~ 178 0.68 (0.58-0.79) 1.7e-07
< i
Insufficient :
enrolment | [ J 947 0.61 (0.57-0.65) < 1e-40
Negative - 284 0.61 (0.54-0.69) 6.0e-18
COoVID-194 =—0—— 29 0.63 (0.43-0.92) 0.01358
Safety - —o= 75  0.92(0.72-1.16) 0.51799
5 |
o usiness or | : B _
g administrative L 2 : 389 0.74 (0.67-0.83) 9.6e-09
c '
S ‘
< Study design { —@— | 67 0.49 (0.38-0.62) 2.2e-10
=z 1
Insufficient :
enrolment | L g | 469 0.73 (0.66-0.8) 8.6e-12
Negative -o- 167 0.75 (0.64-0.88) 0.00026
COVID-19 -‘—.— 8 1.89 (0.91-3.95) 0.08663
Safety A - 117 0.98 (0.82-1.19) 0.92419
> Business or | ‘
_8’ administrative @ 367 0.89 (0.8-0.99) 0.02604
S
Q
5 Study design A —C= 111 0.95 (0.79-1.16) 0.66510
Insufficient
enrolment | L 4 : 478 0.6 (0.55-0.66) 3.2e-30
Negative{ =@ 117 0.53 (0.44-0.64) 2.5e-13
Extended DataFig. 6 | Genetic support for stopped clinical trialsin all trials stopped for agiven reason are more likely to have genetic support, while an
indications, non-oncology and oncology. Each row represents a stopping OR <1lindicates depletion. The number of trials (n) supporting each estimate is
reason, with the effect size in the form of odds ratio (OR) and its 95% confidence provided. Statistical significance was assessed using a two-tailed Fisher’s exact

interval represented by the dot and error bar. An odds ratio (OR) > 1suggeststhat test, withasignificance threshold of p < 0.05 without multiple testing correction.

Nature Genetics


http://www.nature.com/naturegenetics

Article https://doi.org/10.1038/s41588-024-01854-z

COSMIC (CGC) ClinVar (Somatic) IntOgen
Phase IV {® i . 5 - ;
| | |z
: : : )
Phase 11+ - ° ' o : L4 ' c
, , , S
, , , @
1 1 1 v
Phase I+ - o ° | ° :
Terminated A Lo . . g
! : | ©
H H H 3
Suspended 1 - - - o
, , . c
1 1 1 (=]
Withdrawn - [ . . o
Safety 1 . . e . e
_ E E E o
Invalid 1 s ‘o- o o
| : : 8
: H H =1
Suspicious 1 L] 4 * 3
. . . ©
H H H o
: : : o)
Neutral - ) ° . =
i : ' 5
Negative - Lo - -
0.1 0.3 1.0 0.1 0.3 1.0 0.1 0.3 1.0
Odds Ratio
Extended Data Fig. 7 | Association between the availability of genetic stopped clinical trials (centre row) and stopped clinical trials split by high-level
evidence and clinical trial outcomes by somatic datasource. X-axis displays stopping reason (bottom row). Error bars represent 95% confidence intervals for
the respective odds ratio and y-axis groups the studies by phase (top row), the odds ratio.

Nature Genetics


http://www.nature.com/naturegenetics

nature portfolio

Corresponding author(s): David Ochoa

Last updated by author(s): Jun 10, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX O 0 OX O XOS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All the code necessary to prepare the data for analysis is available in Github doi:10.5281/ZENODO.11966097.

Data analysis All the code necessary to perform the analysis is available in Github doi:10.5281/ZENODO.11966097.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The full training set is available for download at HuggingFace, including the Pak et al. curation and the COVID-19 stopped studies (10.57967/HF/2600). The resulting
model for download or interactive exploration can also be found in HuggingFace (10.57967/HF/2599 ). Freeze of the clinical trial stop reason predictions used in this
study is available in Github (10.5281/ZENODO0.11966097). The collection of clinical studies annotated with predicted stop reasons and genetic evidence can also be
accessed on Hugging Face. Up-to-date predictions for newer clinical trial studies are updated quarterly in the Open Targets Platform.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A




Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

>
Q
]
(e
D
1®)
O
=
o
c
-
(D
1®)
O
=
5
(@]
wn
(e
3
=
Q
A

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Based on the availability of clinical studies for each comparison. More details in each individual test.
Data exclusions  No data exclusions

Replication Not applicable

Randomization  Not applicable

Blinding Not applicable

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study

Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
Animals and other organisms

Clinical data

Dual use research of concern

Plants

XXNXXNXNXX s
OoOoOoooQ




Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

S
Q
9
c
=
@

©
(@)
=
o
=
-
™

©
(@)
=1
>

Q
wm
c
3
=
Y
=

<




	Genetic factors associated with reasons for clinical trial stoppage

	Results

	Interpretable classification of early stoppage reasons

	Reasons reflect operational, clinical and biological constraints

	Genetic support for stopped trials influences the outcome

	Genetic factors associated with safety-associated stopped trials


	Discussion

	Online content

	Fig. 1 Classification of stopped reasons for 28,561 clinical trials in ClinicalTrials.
	Fig. 2 Association between the availability of genetic evidence and clinical trial outcomes.
	Fig. 3 Risk of stopping a clinical trial owing to safety or side effects examined by therapeutic area and target properties.
	Extended Data Fig. 1 Hierarchical clustering of stop reason similarity based on curation from Pak et al.
	Extended Data Fig. 2 Association between the reasons to stop along each phase of the clinical development as reported by ClinicalTrials.
	Extended Data Fig. 3 Percentage of stopped trials predicted to be halted due to Safety or side effects or the COVID-19 pandemic as a fraction of all the trials by predominant therapeutic area.
	Extended Data Fig. 4 Representation of the data and analytical workflow defined to investigate the predictive value of genetics in all target/disease associations derived from clinical trials.
	Extended Data Fig. 5 Association between the availability of genetic evidence and clinical trial outcomes by genetic data source.
	Extended Data Fig. 6 Genetic support for stopped clinical trials in all indications, non-oncology and oncology.
	Extended Data Fig. 7 Association between the availability of genetic evidence and clinical trial outcomes by somatic data source.




