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GWAS of multiple neuropathology 
endophenotypes identifies new risk loci  
and provides insights into the genetic risk  
of dementia
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J. Anthony Brandon2,4, Madeline L. Page    2,4, Timothy J. Hohman    5,6, 
Shubhabrata Mukherjee    7, Richard P. Mayeux    8, Lindsay A. Farrer    9,10,11,12,13, 
Gerard D. Schellenberg14,15, Jonathan L. Haines16,17, Walter A. Kukull    18, 
Kwangsik Nho19,20,21, Andrew J. Saykin    20,22, David A. Bennett23,24, 
Julie A. Schneider    23,24,25, The National Alzheimer’s Coordinating Center*,  
The Alzheimer’s Disease Genetics Consortium*, Mark T. W. Ebbert    2,4,26,110, 
Peter T. Nelson2,27,110 & David W. Fardo    1,2,110 

Genome-wide association studies (GWAS) have identified >80 Alzheimer’s 
disease and related dementias (ADRD)-associated genetic loci. However, the 
clinical outcomes used in most previous studies belie the complex nature of 
underlying neuropathologies. Here we performed GWAS on 11 ADRD-related 
neuropathology endophenotypes with participants drawn from the following 
three sources: the National Alzheimer’s Coordinating Center, the Religious 
Orders Study and Rush Memory and Aging Project, and the Adult Changes 
in Thought study (n = 7,804 total autopsied participants). We identified 
seven independent significantly associated loci, of which three were new 
(COL4A1, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were 
significantly associated with at least one neuropathology after false-discovery 
rate adjustment. Genetic colocalization analyses identified pleiotropic effects 
and quantitative trait loci. Methylation in the cerebral cortex at two sites near 
APOC2 was associated with cerebral amyloid angiopathy. Studies that include 
neuropathology endophenotypes are an important step in understanding the 
mechanisms underlying genetic ADRD risk.

Amnestic dementia, often diagnosed as late-onset Alzheimer’s dis-
ease (LOAD), is increasingly recognized to be a heterogeneous clinical 
syndrome that may reflect multiple underlying heritable pathological 
processes1–3. LOAD genome-wide association studies (GWAS) have 
primarily used clinical diagnosis or proxy phenotypes based on family 
history of dementia4–7. While these GWAS have been immensely suc-
cessful, identifying over 80 disease-associated genetic loci6, the use of 
clinical phenotypes complicates interpretation and partly obscures 

the complex and common reality of mixed neuropathologies in aged 
individuals3,8. To complement the successes from previous studies, 
GWAS using neuropathology endophenotypes (NPEs) is an essential 
next step to identify loci that drive specific Alzheimer’s disease and 
related dementias (ADRD)-associated pathologic mechanisms9.

Amyloid plaques and neurofibrillary tangles (NFT), together 
known as Alzheimer’s disease (AD) neuropathologic changes (ADNC), 
are present at autopsy in most brains from patients diagnosed 
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Examining the genetic risk factors of each subtype of neuropa-
thology can provide an important and complementary approach  
to large GWAS of clinical- and family history-based outcomes for 
studying LOAD/ADRD risk. Previous GWAS of NPEs have confirmed 
known LOAD risk loci and have identified new neuropathology risk 
loci22–27. Some NPEs, particularly LATE-NC, have yet to be studied 
systematically using GWAS. Here we performed GWAS on 11 NPEs 
using three high-quality data sources with both autopsy and geno-
type data. We also performed downstream functional analyses to 
explore potential biological functional mechanisms of newly identi-
fied risk loci and provide insight into previously identified putative 
AD risk loci.

Results
Participant and NPE characteristics
Genotype and neuropathology data were analyzed from the follow-
ing three autopsy data sources: (1) the National Alzheimer’s Coordi-
nating Center (NACC; n = 5,940), (2) the Religious Orders Study and 
Rush Memory and Aging Project (ROSMAP; n = 1,183) and (3) the Adult 
Changes in Thought (ACT; n = 681) study (Fig. 1). In total, 7,804 unique 
participants were included in our analyses. The number of participants 
included in each GWAS ranged from 6,363 for amyloid-β plaques to 
7,786 for Consortium to Establish a Registry for Alzheimer’s Disease 
(CERAD) neuritic amyloid plaque score, except for LATE-NC, which had 
a smaller sample due to the more recent discovery and evaluation of 
TDP-43 pathology (n = 3,112; Table 1).

with clinical LOAD, but ~20% of clinically diagnosed patients do 
not have ADNC, and >50% of those with ADNC have comorbid 
non-AD pathologies3,10. For example, transactive response (TAR) 
DNA-binding protein 43-kDa (TDP-43) pathology was found in >50% 
of elderly autopsied individuals11 in a community-based cohort study. 
Limbic-predominant age-related TDP-43 encephalopathy (LATE) is an 
amnestic dementia syndrome defined by a distinguishing pattern of 
LATE-neuropathological change (LATE-NC) characterized by TDP-43 
proteinopathy that is most severe in the medial temporal lobes3,12,13. 
Hippocampal sclerosis of aging is characterized by neuronal death, 
gliosis and atrophy of the hippocampus beyond normal ranges based 
on levels of ADNC, commonly co-occurs with LATE-NC, and is associ-
ated with severe cognitive impairment12,14.

Cerebrovascular pathologies also contribute to cognitive decline 
and dementia and are prevalent among elderly autopsied research 
participants15. Cerebral amyloid angiopathy (CAA) is characterized by 
amyloid-β deposition in cerebral blood vessels16. CAA often co-occurs 
with ADNC but can independently contribute to cerebral injury15,16. 
Infarcts of both grossly visible arteries and microscopically exam-
ined vessels (the latter referred to as microinfarcts) are also common 
contributors to cognitive decline15,17. Cerebral large-vessel atheroscle-
rosis and small-vessel/arteriolar thickening (arteriolosclerosis) are 
associated with infarcts, white matter rarefaction and hippocampal 
sclerosis18,19 and contribute to cognitive decline20,21. Collectively, these 
factors reveal a complex web of pathologies that contribute to cogni-
tive impairment and dementia.
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NACC NPE GWAS
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Fig. 1 | Overview of GWAS meta-analysis study design. We performed GWAS 
meta-analyses of 11 NPEs across three data sources. White boxes represent 
data sources or summary statistics used in this study. Purple boxes represent 
individual steps throughout the genetic association analysis, and green 
boxes represent downstream functional analyses. The first stage of this 
analysis involved independent GWAS performed in parallel across the NACC 
neuropathology dataset, the ACT study and the combined ROSMAP. We then 
performed a meta-analysis using results from each individual GWAS using 
METAL. Variants reaching a suggestive threshold of association (P ≤ 1 × 10−5) in 
the meta-analysis were then carried forward for downstream analyses, including 

functional and colocalization analyses. Variants reaching the genome-wide 
significant threshold (P ≤ 5 × 10−8) and exhibiting ≥80% colocalization between 
two NPEs were followed up using existing methylation data to assess the 
association. All variants reaching genome-wide significance were considered 
associated with the respective NPE. We also report variants that reached a 
suggestive threshold (P ≤ 5 × 10−7) or reached the lower suggestive threshold 
(P ≤ 1 × 10−5) and were in a previously known disease-associated locus. GTEx, 
Genotype-Tissue Expression Project; QTL, quantitative trait locus; eQTL, 
expression QTL; sQTL, splicing QTL; mQTL, methylation QTL; AD, Alzheimer’s 
disease.
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The 11 studied NPEs included AD-related pathologies (CERAD 
score for neuritic amyloid plaques, amyloid-β plaques including diffuse 
plaques and Braak NFT staging28–30), non-AD neurodegenerative pro-
teinopathies (LATE-NC and Lewy bodies12,31), cerebrovascular patholo-
gies (CAA, gross infarcts, microinfarcts, circle of Willis atherosclerosis 
and arteriolosclerosis30,32) and hippocampal sclerosis32. NPEs com-
monly co-occurred, forming the following four identifiable clusters of 
pathologies: vascular, AD, LATE and Lewy body (Extended Data Fig. 1). 
Methods, Supplementary Methods and Supplementary Table 1 describe 
the applied phenotype definitions and harmonization approach.

GWAS meta-analysis of NPEs
We first performed GWAS on the 11 NPEs for the NACC, ROSMAP and ACT 
studies separately (Fig. 1). Genetic association analyses were performed 
with logistic or proportional-odds logistic regression mixed-effects 
models as appropriate (Methods). We then performed fixed-effects 
meta-analyses using METAL 2011-03-25 (ref. 33) on variants with minor 
allele frequencies ≥1% in at least one study33. Quantile–quantile plots 
and corresponding estimates of genomic inflation (λ values) did not 
suggest systematic bias (Extended Data Fig. 2).

In total, the meta-analysis revealed six loci with at least one 
variant meeting genome-wide significance (P < 5 × 10−8) across eight 
NPEs (amyloid-β plaques, arteriolosclerosis, atherosclerosis, Braak 
NFT stage, CAA, CERAD plaque score, hippocampal sclerosis and 
LATE-NC), with a total of 12 associations between genomic loci and 
NPEs (Fig. 2). Four of the six loci were from genes previously associated 
with late-onset ADRD (the broader APOE region, TMEM106B, GRN and 
BIN1; Fig. 2a–c,f,i,k), while two loci were new, where the lead variant was 
in or closest to LZTS1 and COL4A1, respectively (Fig. 2d,e). Although 
most meta-analyses had no significantly different effect size estimates 
across the three data sources, there were three with significant tests 
for heterogeneity (Table 2), all of which were associations with APOE.

We subsequently discovered a new locus near APOC2 within the 
broader APOE region that is associated with CAA after adjusting  
for APOE ϵ diplotypes (Fig. 2f). No loci reached genome-wide signi
ficance with gross infarcts, microinfarcts or Lewy body pathology 
(Fig. 2g–j).

Known ADRD-associated loci. As expected, the APOE region 
(rs429358) is associated with multiple NPEs at genome-wide signifi-
cance. Specifically, the APOE region (rs429358) is associated with (1) 
amyloid-β plaques (odds ratio (OR) = 1.98; P = 2.3 × 10−55; Table 2 and 
Fig. 2a), (2) Braak NFT stage (OR = 2.06, P = 9.7 × 10−89; Fig. 2b), (3) 
CERAD score (OR = 2.42, P = 4.7 × 10−103; Fig. 2c), (4) CAA (OR = 2.49, 
P = 4.4 × 10−138; Fig. 2f) and (5) LATE-NC (OR = 1.70, P = 1.7 × 10−14; Fig. 2i). 
Our results corroborate previous studies22,34 that described an associa-
tion between APOE and CAA.

BIN1 was associated with Braak NFT stage (rs6733839; OR = 1.21; 
P = 1.6 × 10−9; Table 2 and Fig. 2b), and variants within TMEM106B were 
associated with both LATE-NC (rs2043539; OR = 0.70, P = 5.8 × 10−11; 
Fig. 2i) and hippocampal sclerosis (rs7805419; OR = 0.65; P = 3. 2× 10−13; 
Fig. 2k). A locus in GRN was also associated with hippocampal sclerosis 
(rs5848; OR = 1.40, P = 3.2 × 10−8; Fig. 2k).

New loci outside the APOE region. We also discovered two new loci 
outside the broader APOE region that are associated with three NPEs. 
Associations identified in the NPE GWAS meta-analysis included a 
suggestive PIK3R5 intronic locus associated with Braak NFT stage 
(rs72807981; OR = 0.71, P = 1.3 × 10−7; Supplementary Table 8 and 
Figs. 2b and 3a,b; see Supplementary Results for details on sugges-
tive loci), an intronic LZTS1 locus associated with arteriolosclero-
sis (rs78909048; OR = 0.44, P = 5.8 × 10−10; Table 2 and Figs. 2d and 
3d,e) and a variant 12 kilobase pairs (kbp) upstream of COL4A1 associ-
ated with the circle of Willis atherosclerosis (rs2000660; OR = 0.73, 
P = 2.7 × 10−8; Figs. 2e and 3g,h).

We next characterized which cell type(s) in the human brain 
express the new genes identified. According to brainrnaseq.org35,36, 
PIK3R5 is most highly expressed in microglia (Fig. 3c), LZTS1 is most 
highly expressed in fetal astrocytes and endothelial cells (Fig. 3f) and 
COL4A1 is most highly expressed in fetal astrocytes, endothelial cells 
and neurons (Fig. 3i).

New locus association within the APOE region. Based on the 
meta-analysis, we observed 12 genetic locus-phenotype associations 
within the broader APOE region (defined as less than 500 kbp from the 
start or end site of APOE transcription) across five NPEs (amyloid 
plaques, Braak stage, CAA, CERAD score and LATE-NC), where APOE 
itself (rs429358) was the top variant in the region for all five NPEs 
(Fig. 2a–c,f,i). We performed additional analyses in this region adjusting 
for APOE ϵ diplotypes to determine whether any of the genome-wide 
significant signals within the broader APOE region remained 
significant.

In the APOE-adjusted analysis, the lead variant from the non-
adjusted analysis (rs429358), which tags the APOE ε4 allele (the 
well-known common variant with the strongest association with LOAD), 
was no longer associated with any of the five phenotypes. One locus 
with lead variant rs7247551 remained significantly associated with 
CAA (OR = 0.81; P = 8.0 × 10−12; Table 2 and Fig. 2f). rs7247551 is located 
between APOC2 and CLPTM1. No variants remained genome-wide sig-
nificantly associated with any other APOE-associated NPE. Sensitivity 
analyses showed that the effect size of rs7247551 did not significantly 
differ based on APOE diplotype in NACC, ROSMAP or ACT (Supplemen-
tary Results and Extended Data Fig. 3).

APOC2 replicates in an independent cohort. We obtained data from 
a recent GWAS of CAA in 815 participants with dementia in the Mayo 
Clinic Brain Bank. Using their data, we replicated the association 
between rs7247551 and CAA while adjusting for APOE ϵ diplotypes 
(P = 0.0012). We also confirmed that rs7247551 was indeed new and not 
in linkage disequilibrium (LD) with the variant previously reported in 
ref. 26 (rs5117; r2 < 0.01). Together, these results provide evidence for 
a new locus within the broader APOE region that is independent of the 
APOE ϵ diplotypes and is associated with CAA pathology burden. It 
further suggests that the genetic risk for CAA in the broader APOE 
region may differ from the AD-specific neuropathologies (neuritic 
amyloid plaques and NFT).

Associations of clinical and proxy AD risk loci with NPE
We further tested whether LOAD-associated loci identified in a recent 
ADRD GWAS were associated with any evaluated NPEs6. Reference 6 
identified a total of 83 distinct non-APOE loci (39 previously identified 
and 44 new) associated with ADRD (hereafter, ‘ADRD loci’), between 
76 and 78 of which had lead variants that met inclusion criteria in our 
study for each NPE. In total, 26 NPE-locus associations from 19 loci 
had adjusted P (Q values) ≤0.05 across the 11 NPEs. Of the 26 associa-
tions, 24 had concordant directions of effect with ref. 6 (Table 3 and 
Supplementary Table 2).

Notably, the pathognomonic AD pathologies, operationalized 
using Braak NFT stage and CERAD score, had concordant directions of 
effect with 68 and 59 of 77 ADRD loci, respectively, regardless of statisti-
cal significance. Five ADRD loci (BIN1, MME, HLA-DQA1, TMEM106B and 
CELF1/SPI1; Table 3) were significantly associated with the Braak NFT 
stage after multiple testing corrections. Two ADRD loci (PICALM and 
TPCN1) were associated with CAA. Eleven ADRD loci (CR1, BIN1, INPP5D, 
ZCWPW1/NYAP1, PTK2B, CELF1/SPI1, PICALM, SORL1, FERMT2, SNX1 and 
ABCA7) were significantly associated with the CERAD score after mul-
tiple testing corrections. Four ADRD loci (TMEM106B, IL34, GRN and 
MAPT) were significantly associated with hippocampal sclerosis, all of 
which except for IL34 (hippocampal sclerosis—OR = 0.74, P = 0.0019; 
AD—OR = 1.06, P = 5.6 × 10−6) were concordant in effect direction.  
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Table 1 | Demographic and pathology characteristics of the NACC, ROSMAP, ACT cohorts and combined sample

Characteristicsa NACC ROSMAP ACT Overall P valueb

(n = 5,940) (n = 1,183) (n = 681) (n = 7,804)

Sex

  Female 2,980 (50.2%) 798 (67.5%) 381 (55.9%) 4,159 (53.3%)
<0.001

  Male 2,960 (49.8%) 385 (32.5%) 300 (44.1%) 3,645 (46.7%)

Age of death (year)

  Mean (s.d.) 81.4 (9.81) 89.6 (6.48) 88.6 (6.61) 83.3 (9.73)
<0.001

  Median (minimum and maximum) 82 (39, 111) 90 (66, 108) 89 (70, 106) 84 (39, 111)

AD

  Not impaired 634 (10.7%) 363 (30.7%) 594 (87.2%) 1,591 (20.4%)

<0.001  AD/MCI 4,605 (77.5%) 776 (65.6%) 68 (10.0%) 5,449 (69.8%)

  Unknown/other dementia 701 (11.8%) 44 (3.7%) 19 (2.8%) 764 (9.8%)

Dementia

  No dementia 1,029 (17.3%) 649 (54.9%) 594 (87.2%) 2,272 (29.1%)

<0.001  Dementia 4,911 (82.7%) 511 (43.2%) 87 (12.8%) 5,509 (70.6%)

  Missing 0 (0%) 23 (1.9%) 0 (0%) 23 (0.3%)

APOE ε4 alleles

  0 2,710 (45.6%) 883 (74.6%) 489 (71.8%) 4,082 (52.3%)

<0.001
  1 2,547 (42.9%) 280 (23.7%) 174 (25.6%) 3,001 (38.5%)

  2 680 (11.4%) 20 (1.7%) 15 (2.2%) 715 (9.2%)

  Missing 3 (0.1%) 0 (0%) 3 (0.4%) 6 (0.1%)

AD-related NPEs

Amyloid-β plaques

  None 407 (6.9%) 222 (18.8%) 64 (9.4%) 693 (8.9%)

<0.001

  Mild 515 (8.7%) 351 (29.7%) 34 (5.0%) 900 (11.5%)

  Moderate 884 (14.9%) 278 (23.5%) 71 (10.4%) 1,233 (15.8%)

  Severe 3,079 (51.8%) 317 (26.8%) 141 (20.7%) 3,537 (45.3%)

  Missing 1,055 (17.8%) 15 (1.3%) 371 (54.5%) 1,441 (18.5%)

Braak NFT stage

  0 79 (1.3%) 12 (1.0%) 19 (2.8%) 110 (1.4%)

<0.001

  1 211 (3.6%) 75 (6.3%) 56 (8.2%) 342 (4.4%)

  2 365 (6.1%) 109 (9.2%) 111 (16.3%) 585 (7.5%)

  3 490 (8.2%) 281 (23.8%) 125 (18.4%) 896 (11.5%)

  4 860 (14.5%) 370 (31.3%) 130 (19.1%) 1,360 (17.4%)

  5 1,491 (25.1%) 307 (26.0%) 149 (21.9%) 1,947 (24.9%)

  6 2,431 (40.9%) 18 (1.5%) 87 (12.8%) 2,536 (32.5%)

  Missing 13 (0.2%) 11 (0.9%) 4 (0.6%) 28 (0.4%)

CERAD score

  None 578 (9.7%) 279 (23.6%) 155 (22.8%) 1,012 (13.0%)

<0.001

  Mild 509 (8.6%) 103 (8.7%) 174 (25.6%) 786 (10.1%)

  Moderate 1,071 (18.0%) 399 (33.7%) 169 (24.8%) 1,639 (21.0%)

  Severe 3,777 (63.6%) 391 (33.1%) 181 (26.6%) 4,349 (55.7%)

  Missing 5 (0.1%) 11 (0.9%) 2 (0.3%) 18 (0.2%)

Cerebrovascular NPEs

Arteriolosclerosis

  None 1,231 (20.7%) 407 (34.4%) 7 (1.0%) 1,645 (21.1%)

<0.001

  Mild 1,577 (26.5%) 398 (33.6%) 147 (21.6%) 2,122 (27.2%)

  Moderate 1,501 (25.3%) 277 (23.4%) 289 (42.4%) 2,067 (26.5%)

  Severe 621 (10.5%) 81 (6.8%) 132 (19.4%) 834 (10.7%)

  Missing 1,010 (17.0%) 20 (1.7%) 106 (15.6%) 1,136 (14.6%)
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Two ADRD loci (TMEM106B and GRN) were significantly associated with 
LATE-NC. Finally, two ADRD loci (TPCN1 and PLCG2) were significantly 
associated with microinfarcts. These results indicate that NPE studies 
largely corroborate the findings of large AD GWAS based on clinical and 
proxy phenotypes. Several ADRD loci, particularly MAPT (hippocampal 
sclerosis), TMEM106B and GRN (hippocampal sclerosis and LATE-NC), 
were associated only with non-AD pathology.

Identifying potential genetic mechanisms of NPE development
We also assessed possible mechanisms through which identified 
NPE-associated variants may be involved in disease risk.

Gene-prioritization and enrichment analyses. Using gene-based, 
pathway, and enrichment analyses, we identified APOE as significantly 
associated with NFT, diffuse plaques, CAA, neuritic plaques and LATE-NC 

Characteristicsa NACC ROSMAP ACT Overall P valueb

(n = 5,940) (n = 1,183) (n = 681) (n = 7,804)

Atherosclerosis

  None 1,251 (21.1%) 221 (18.7%) 33 (4.8%) 1,505 (19.3%)

<0.001

  Mild 2,027 (34.1%) 577 (48.8%) 182 (26.7%) 2,786 (35.7%)

  Moderate 1,507 (25.4%) 317 (26.8%) 407 (59.8%) 2,231 (28.6%)

  Severe 711 (12.0%) 60 (5.1%) 47 (6.9%) 818 (10.5%)

  Missing 444 (7.5%) 8 (0.7%) 12 (1.8%) 464 (5.9%)

CAA

  None 1,928 (32.5%) 253 (21.4%) 414 (60.8%) 2,595 (33.3%)

<0.001

  Mild 1,603 (27.0%) 482 (40.7%) 124 (18.2%) 2,209 (28.3%)

  Moderate 1,327 (22.3%) 261 (22.1%) 121 (17.8%) 1,709 (21.9%)

  Severe 707 (11.9%) 141 (11.9%) 20 (2.9%) 868 (11.1%)

  Missing 375 (6.3%) 46 (3.9%) 2 (0.3%) 423 (5.4%)

Gross infarcts

  Absent 4,402 (74.1%) 753 (63.7%) 477 (70.0%) 5,632 (72.2%)

<0.001  Present 1,146 (19.3%) 416 (35.2%) 204 (30.0%) 1,766 (22.6%)

  Missing 392 (6.6%) 14 (1.2%) 0 (0%) 406 (5.2%)

Microinfarcts

  Absent 4,475 (75.3%) 820 (69.3%) 346 (50.8%) 5,641 (72.3%)

<0.001  Present 1,160 (19.5%) 349 (29.5%) 330 (48.5%) 1,839 (23.6%)

  Missing 305 (5.1%) 14 (1.2%) 5 (0.7%) 324 (4.2%)

Non-AD NPEs

LATE-NC

  None 921 (15.5%) 509 (43.0%) 357 (52.4%) 1,787 (22.9%)

<0.001

  Mild 75 (1.3%) 194 (16.4%) 147 (21.6%) 416 (5.3%)

  Moderate 317 (5.3%) 117 (9.9%) 149 (21.9%) 583 (7.5%)

  Severe 50 (0.8%) 267 (22.6%) 9 (1.3%) 326 (4.2%)

  Missing 4,577 (77.1%) 96 (8.1%) 19 (2.8%) 4,692 (60.1%)

Lewy body

  None 3,749 (63.1%) 861 (72.8%) 539 (79.1%) 5,149 (66.0%)

<0.001

  Mild 199 (3.4%) 23 (1.9%) 20 (2.9%) 242 (3.1%)

  Moderate 732 (12.3%) 92 (7.8%) 60 (8.8%) 884 (11.3%)

  Severe 726 (12.2%) 157 (13.3%) 60 (8.8%) 943 (12.1%)

  Missing 534 (9.0%) 50 (4.2%) 2 (0.3%) 586 (7.5%)

Hippocampal sclerosis

  Absent 4,777 (80.4%) 1,053 (89.0%) 583 (85.6%) 6,413 (82.2%)

0.056  Present 572 (9.6%) 100 (8.5%) 79 (11.6%) 751 (9.6%)

  Missing 591 (9.9%) 30 (2.5%) 19 (2.8%) 640 (8.2%)

Cohort demographics—NACC participants had a higher percentage of patients diagnosed with mild cognitive impairment (MCI) or AD (78%) than ROSMAP (66%) or ACT (10%). NACC 
participants died at a younger age (mean age at death = 81 years) compared to ROSMAP (90 years) and ACT (89 years) participants and had more balanced participation between the sexes, with 
50% of NACC participants being female versus 68% and 58% in ROSMAP and ACT, respectively. NACC participants were also more likely to carry an APOE ϵ4 allele (54%) versus ROSMAP (25%) 
or ACT (28%; chi-square test, P < 0.001 for all mentioned comparisons; the only not significant test was hippocampal sclerosis with P = 0.056). Notably, NACC is based on data collected from 
over 30 ADRCs, which often recruit from clinic patients and their families. In contrast, the other studies recruited older persons without known dementia; ACT from the Seattle, WA area; ROS 
from members of the Catholic Church clergy; and MAP from northeastern Illinois. MCI, mild cognitive impairment. aExcept for the age of death, all distribution data are given as n and 
percentage. bExcept for the age of death (ANOVA), the P value from the chi-square test.

Table 1 (continued) | Demographic and pathology characteristics of the NACC, ROSMAP, ACT cohorts and combined sample
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Fig. 2 | Manhattan plots identify loci associated with each of the 11 NPEs 
included in this study. a–k, Manhattan plots are shown for amyloid-β plaques (a), 
Braak NFT stage (b), CERAD score for neuritic plaques (c), arteriolosclerosis (d), 
atherosclerosis in the circle of Willis (e), CAA (f), gross infarcts (g), microinfarcts 
(h), LATE-NC (i), Lewy body (j) and hippocampal sclerosis (k). The y axes denote 
the −log10(P value of meta-analysis two-sided z test) of the variant–phenotype 
association, and the x axes outline the chromosomal position, with alternate 
chromosomes represented in black and blue. Labels indicate the nearest gene at a 
locus. The horizontal lines define the genome-wide significance level (solid black, 
P = 5 × 10−8), near genome-wide significance level (dotted gold, P = 5 × 10−7), and 
suggestive significance level (P < 5 × 10−5) in loci with evidence of AD association 
from a previous study (for example, ref. 6; dotted purple). Points and gene 
symbols are coded with the same colors. Gray gene symbols indicate genome-
wide significant hits within the APOE region that did not survive conditional 
analysis. All GWAS are in cohorts of European ancestry and adjusted for age at 
death, sex, genotyping cohort and top ten genetic PCs. We identified seven 

genome-wide significant loci and 30 near genome-wide significant or suggestive 
loci. The genome-wide significant loci resulted in 12 associations with eight NPEs 
(amyloid-β plaques, arteriolosclerosis, atherosclerosis, Braak NFT stage, CAA, 
CERAD score, hippocampal sclerosis and LATE-NC). Four genes were previously 
associated with ADRD (APOE, BIN1, TMEM106B, GRN; a–c,f,i,k), while the three 
new loci were in or closest to LZTS1, COL4A1 and APOC2 (d–f). APOC2 is within the 
broader APOE region but remained significantly associated with CAA after 
adjusting for APOE ϵ diplotypes (f). Three NPEs (gross infarcts, microinfarcts and 
Lewy bodies) had zero genome-wide significant hits, but all three had near 
genome-wide significant and/or suggestive hits from either new or known loci. 
APOE was associated with a range of NPEs, including LATE-NC, which is not 
pathognomonic of AD. On the other hand, neither GRN nor TMEM106B (recently 
identified in ADRD GWAS) was associated with the AD pathognomonic NPEs but 
were specific to gross infarcts, LATE-NC and hippocampal sclerosis at either 
genome-wide or suggestive significance. sig., significant; assocs, associations; 
sugg., suggestive.
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(Supplementary Table 3)37. TMEM106B was associated with both hip-
pocampal sclerosis and LATE-NC. We further found that rs2000660 
(associated with the circle of Willis atherosclerosis) is located within 
an enhancer region 13 kbp upstream of COL4A1 transcription start 
site (Extended Data Fig. 4). Annotations from FAVOR identified a syn-
onymous, exonic single-nucleotide polymorphism (SNP), rs650724, in 
high LD (r2 = 0.86) with this lead variant that is highly conserved across 
mammals (mamPhCons = 0.987; Supplementary Table 4)38.

Genetic colocalization analysis. We investigated whether loci associ-
ated with multiple NPEs show evidence for genetic colocalization39. We 
identified two NPE pairs exhibiting genetic colocalization, including (1) 
Braak NFT stage and CERAD score (BIN1; probability of colocalization 
(PrC) > 99%; Extended Data Fig. 5) and (2) hippocampal sclerosis and 
LATE-NC (TMEM106B; PrC = 90%; Fig. 4a–c).

We also tested for colocalization between NPE loci and quantita-
tive trait loci (QTL). The TMEM106B locus (associated with hippocam-
pal sclerosis and LATE-NC) colocalized with TMEM106B expression 
in multiple tissues, including the cerebellar hemisphere (PrC = 91%; 
Fig. 4d,e). Two CpG sites located either within TMEM106B (cg09613507; 
Fig. 4f) or upstream (cg23422036; Fig. 4h) colocalized with both hip-
pocampal sclerosis (cg09613507-hippocampal sclerosis PrC = 94%, 
cg23422036-hippocampal sclerosis PrC = 94%; Fig. 4b,f,g) and LATE-NC 
(cg09613507-LATE-NC PrC = 89% and cg23422036-LATE-NC PrC = 95%; 
Fig. 4a,f–i). A hippocampal sclerosis-associated locus within GRN 
strongly colocalized with both LATE-NC and GRN expression in multiple 
tissues (PrC > 99.9%; Extended Data Fig. 6).

APOC2 colocalized with several traits, including methylation 
QTL (mQTL) for four CpG sites in ROSMAP (cg04401876, cg10169327, 
cg13119609 and cg09555818; PrC = 96–99%; Fig. 5a–i). The APOC2 
locus also colocalized with an expression of multiple genes in 
Genotype-Tissue Expression Project (GTEx), including APOE expres-
sion in the wall of the aorta (PrC = 94%), CLPTM1 expression in the skin 
of the leg and suprapubic region and APOC2 expression in 17 different 
tissues (for example, brain cortex, caudate, nucleus accumbens and 
cerebellum; PrC = 89–96%).

Multiple suggestive NPE loci showed evidence of colocalization 
with expression QTL (eQTL) in GTEx. In total, 50 NPE loci (lead variant 
P < 1 × 10−5) colocalized with various QTL types (that is, expression, 
methylation or splicing QTL [sQTL]; PrC ≥ 80%). A total of 407 NPE–QTL 
pairs colocalized across 47 tissues (Supplementary Table 5), many giv-
ing credence to previously discovered associations and insight into 
potential mechanisms. For example, rs1643235 (ABCC9) colocalized 

with hippocampal sclerosis and gene expression in multiple tissues, 
including the cortex (PrC = 80%), corroborating previous studies27,40,41 
because the ABCC9 SNP rs4148674 (r2 = 0.96 with rs1643235) was a 
robust eQTL for ABCC9 and the strongest ABCC9 region signal for 
association with hippocampal sclerosis (Extended Data Fig. 7).

Functional studies in ROSMAP. Using data from ROSMAP partici-
pants with DNA methylation and/or RNA-sequencing (RNA-seq) data 
available from the dorsolateral prefrontal cortex (DLPFC), we found 
that neither TMEM106B nor GRN expression was associated with hip-
pocampal sclerosis (P > 0.05), while decreased TMEM106B expression 
was associated with more severe LATE-NC pathology (P = 0.043; Fig. 4j). 
Of the two CpG sites that colocalized with hippocampal sclerosis and 
LATE-NC, hypermethylation of cg09613507 was associated with more 
severe LATE-NC pathology (P = 0.0093; Fig. 4k), while cg23422036 was 
not significantly associated (P = 0.10; Fig. 4l).

Additionally, we tested for association between CAA pathology 
and methylation levels at four CpG sites (cg09555818, cg04401876, 
cg10169327 and cg13119609) that colocalized with the chromosome 
19 (chr19) CAA risk locus (rs7247551). We first confirmed that all four 
CpG sites were significantly associated with rs7247551 (P < 0.0001) and 
had directions of effect consistent with those previously reported for 
ROSMAP42. Hypomethylation at cg09555818 (OR = 0.82, P = 0.003) and 
cg13119609 (OR = 0.78, P = 0.0006) were significantly associated with 
more severe CAA pathology (Fig. 5j). Both cg09555818 (P = 0.0063; 
Fig. 5k) and cg13119609 (P = 0.0069) were significantly associated 
with APOC2 expression.

Next, as APOC2 expression in multiple brain tissues colocalized 
with CAA in GTEx but not ROSMAP, we investigated whether there 
was a nominal association between APOC2 expression in the DLPFC 
and rs7247551. We found that the G allele of rs7247551 was nominally 
associated with increased APOC2 expression in the DLPFC (β = 0.072, 
P = 0.00013; Fig. 5l); however, the direction of effect was opposite of 
that found in brain tissues in GTEx (that is, the G allele of rs7247551 was 
associated with decreased APOC2 expression in GTEx; P = 7.2 × 10−7; 
Fig. 5m). Expression of APOC2 in the DLPFC was not associated with CAA 
in ROSMAP (OR = 0.98, P = 0.89). We performed an additional post hoc 
analysis for nominal APOE eQTL activity of rs7247551 in ROSMAP. We 
confirmed that rs7247551 was not associated with APOE expression in 
the DLPFC in ROSMAP (P = 0.81; Fig. 5n). APOC2 expression was also not 
significantly associated with the severity of CAA pathology in ROSMAP 
(P = 0.089; Fig. 5o). Notably, APOC2 is highly expressed, especially in 
microglia and oligodendrocytes (Fig. 5p).

Table 2 | Significant NPE-associated loci in GWAS meta-analysis of NACC, ROSMAP and ACT datasets

Phenotype Genea Variant Chr Positionb Min/maj ORc (95% CI) P value Het. P valued

Braak NFT stage BIN1 rs6733839 2 127,135,234 T/C 1.21 (1.14–1.29) 1.6 × 10−9 0.054

LATE-NC TMEM106B rs2043539 7 12,214,254 A/G 0.70 (0.63–0.78) 5.8 × 10−11 0.37

Hippocampal sclerosis TMEM106B rs7805419 7 12,242,825 C/T 0.65 (0.58–0.73) 3.2 × 10−13 0.25

Arteriolosclerosis LZTS1 rs78909048 8 20,279,428 G/A 0.44 (0.34–0.57) 5.8 × 10−10 0.85

Atherosclerosis COL4A1 rs2000660 13 110,136,094 A/G 0.73 (0.66–0.82) 2.7 × 10−8e 0.85

Hippocampal sclerosis GRN rs5848 17 44,352,876 T/C 1.40 (1.24–1.57) 3.2 × 10−8e 0.48

Braak NFT stage APOE rs429358 19 44,908,684 C/T 2.06 (1.92–2.21) 9.7 × 10−89 6.6 × 10−5

CAA APOE rs429358 19 44,908,684 C/T 2.49 (2.32–2.67) 4.4 × 10−138 4.2 × 10−4

CERAD score APOE rs429358 19 44,908,684 C/T 2.42 (2.23–2.62) 4.7 × 10−103 0.14

LATE-NC APOE rs429358 19 44,908,684 C/T 1.70 (1.48–1.95) 1.7 × 10−14 0.28

Amyloid-β plaques APOE rs429358 19 44,908,684 C/T 1.98 (1.82–2.16) 2.3 × 10−55 6.6 × 10−4

CAAf APOC2 rs7247551 19 44,951,509 G/A 0.81 (0.76–0.86) 8.0 × 10−12 0.42

Bold text indicates loci not previously associated with ADRD. CI, confidence interval; Min/maj, minor allele/major allele; Het., heterogeneity. aClosest protein-coding gene according to GENCODE 
release 40. bGenome positions are based on build HG38. cORs are with respect to minor alleles. dP value from the test for effect size heterogeneity across data sources. eReaches genome-wide 
significance within the single NPE but does not reach experiment-wide significance when adjusting for 11 NPEs (P = 5×10−8

11
= 4.55× 10−9). fResult from APOE diplotype-adjusted analysis.
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Potential effects via differential RNA splicing. Many human genes 
undergo alternative splicing43–45. Recent work in ref. 46 demonstrated 
that many medically relevant genes express multiple RNA isoforms that 
result in unique proteins, including genes involved in ADRD. Specific 
examples include APP, MAPT and BIN1, which express five, five and eight 
distinct RNA isoforms above noise levels, respectively, in the human fron-
tal cortex. Thus, we explored whether any genes associated with NPEs 
in this work express multiple RNA isoforms in the human frontal cortex.

While all loci that were associated with NPE have multiple anno-
tated RNA isoforms, ranging from 4 (LZTS1) to 24 (PICALM) per 
Ensembl, most of the genes exhibited expression for only a single iso-
form above noise levels, per data from ref. 46. Some expressed multiple 
RNA isoforms, but the isoforms were not predicted to result in distinct 
proteins (for example, LZTS1)—although recent data suggest that alter-
native untranslated regions have direct functional consequences47–49. 
BIN1, however, actively transcribes eight distinct RNA isoforms in the 
frontal cortex (Fig. 4m). BIN1 is also expressed in multiple brain cell 
types in humans, according to brainrnaseq.org35,36. Given the diversity 
of BIN1 isoforms simultaneously expressed, we need to understand 
whether specific isoforms are involved in disease, and we propose dif-
ferential RNA isoform expression as a potential mechanism through 
which disease genes may be affecting disease.

Discussion
The present study of 11 ADRD-related NPEs comprised 7,804 partici-
pants. These results provide an autopsy-based complement to previ-
ous studies based on clinical diagnoses and expand on the findings of 
previous genetic studies of dementias and neuropathologies2,6,22–24,26,41.  
In this work, we confirm previous findings that several loci associated 
with AD (including APOE) are also associated with non-ADNC patho-
genesis. Additionally, some of the known ADRD loci (that is, TMEM106B 
and GRN) did not associate with any of the classical AD-defining NPEs 
in this study. Thus, our results improve our collective understanding 
of the complex nature of ADRD and its genetic bases.

Sharpening the endophenotypes enabled the discovery of new hit 
genes that did not reach genome-wide significance in previous stud-
ies oriented toward studying AD clinical phenotypes. We identified 
clear genetic associations between specific neuropathologies and 
loci already associated with ADRD and three new NPE-associated loci. 
Yet, many questions remain and will require deeper investigation. For 
example, three of the NPEs studied (gross infarcts, microinfarcts and 
Lewy body pathology) did not have any locus reach genome-wide sig-
nificance in our study. Likely explanations for the lack of genome-wide 
associations for these three pathologies include (1) insufficient sample 
size, (2) the cohorts not being specifically designed to study these 
phenotypes, and (3) variability in the collection and scoring of these 

phenotypes over time and between research centers. Nonetheless, 
these three NPEs each had suggestive associations, including with 
known loci (Supplementary Results). Specifically, TMEM106B and APOE 
had suggestive associations with gross infarcts and Lewy body pathol-
ogy, respectively. APOE ?4 was previously associated with Lewy body 
pathology by a study discussed in ref. 50. As study cohorts grow larger, 
researchers will be able to re-assess these suggestive associations.

As expected, APOE variation was associated with ADNC, CAA and 
LATE-NC. Although LATE-NC is diagnostically characterized by TDP-43 
proteinopathy3,12,13, brains with a greater burden of neuritic amyloid 
plaques are more likely to have TDP-43 proteinopathy (and vice versa)12. 
Similarly, others have previously shown an association between APOE ? 
4 status and TDP-43 pathology in ROSMAP11. Unraveling the complex 
interaction between APOE and proteinopathies (including the sug-
gestive association to Lewy bodies) may provide a crucial insight into 
properly treating patients with these often comorbid pathologies.  
A study using a mouse model suggests that TDP-43 directly interacts 
with amyloid-β and promotes worse pathology51, but further studies 
are needed to better understand this interaction.

By adjusting for APOE ? diplotypes, we identified a new locus near 
APOC2 associated with CAA. Like APOE, APOC2 is part of the apolipo-
protein family and is involved in lipoprotein metabolism. Both genes 
directly bind fat droplets (chylomicrons)52,53 and are implicated in 
heart disease54—a known link to APOE and dementia. APOC2 and APOE 
expression is also coregulated through the same mechanisms in 
liver52,53. We replicated the association between APOC2 and CAA while 
adjusting for APOE in an independent sample of 815 Mayo Clinic Brain 
Bank participants used in ref. 26, providing additional evidence for 
the APOC2 locus being important for CAA pathology beyond the 
known effects of APOE ϵ haplotypes.

Previously, a study discussed in ref. 55 reported that a variant 
proximal to rs7247551 (rs10413089; 822 bp away) showed evidence 
of association with clinical AD independently of APOE ? status in their 
cohort but determined their results were inconclusive. Their original 
association did not survive multiple testing corrections, but the asso-
ciation replicated in an independent cohort. Summary statistics from 
ref. 6 reflect that rs7247551 was significantly associated with ADRD but 
did not report results of an independent analysis within the broader 
APOE region. Thus, the present study is the first to confirm that this 
association is independent of the known effects of APOE alleles. Both 
the potential association with clinical AD status found by ref. 55 and 
the association with CAA we report herein should be followed up in 
future studies.

Several variants in the APOC2 locus were lead eQTLs for APOC2 
brain expression in both GTEx and ROSMAP. Colocalization analysis 
confirmed that the new CAA risk locus shares a functional variant with 

Fig. 3 | New associations identified between PIK3R5 (suggestive), LZTS1 
and COL4A1 and Braak NFT stage, arteriolosclerosis and cerebral 
atherosclerosis, respectively. a, Braak stage association plot from NPE GWAS 
meta-analysis (n = 7,776) for the region around PIK3R5. Colored dots represent 
the chromosomal position (x axis, Mb) in hg38 coordinates and −log10(P value 
from meta-analysis two-sided z test; y axis) of each variant in the region. Dots are 
colored to represent the LD r2 with the lead variant (purple diamond) estimated 
with PLINK–r2 using 1000 Genomes phase 3 European-descended participants. 
The recombination rate was calculated using GRCh38 genetic map files 
downloaded from https://bochet.gcc.biostat.washington.edu/beagle/genetic_
maps/ and taking the ratio of difference of CM and Mb between positions. Boxes 
below data indicate the location of genes in the region. (Plot generated using 
LocusZoom73.) b, Association of PIK3R5 lead variant (rs72807981) with Braak 
stage for individual cohorts (NACC, n = 5,927 and ACT, n = 677; this variant was 
not present in ROSMAP) and meta-analysis (n = 6,604) using METAL (y axis). 
Points along the x axis represent OR of association, and error bars indicate 95% 
CI. c, Human brain cell-type expression profile of PIK3R5 in ref. 35. Columns 
represent mean FPKM. Error bars indicate the s.e. of measurement for each cell 

type based on the number of human samples sequenced for each type (fetal 
astrocytes, n = 6; mature astrocytes, n = 12; endothelial, n = 2; microglia, n = 3; 
neurons, n = 1 and oligodendrocytes, n = 5). PIK3R5 is primarily expressed in 
microglia. d, Arteriolosclerosis association plot from NPE GWAS meta-analysis 
(n = 6,668) for the region around LZTS1 (see a for interpretation). e, Association 
of LZTS1 lead variant (rs78909048) with arteriolosclerosis for individual 
cohorts (NACC, n = 4,930; ROSMAP, n = 1,163 and ACT, n = 575) and meta-analysis 
(n = 6,668) using METAL (y axis; see b for interpretation). f, Human brain 
cell-type expression profile of LZTS1 in ref. 35. LZTS1 is primarily expressed 
in fetal astrocytes and endothelial cells (see c for interpretation). g, Cerebral 
atherosclerosis association plot from NPE GWAS meta-analysis (n = 7,340) for the 
region around COL4A1 (see a for interpretation). h, Association of COL4A1 lead 
variant (rs2000660) with cerebral atherosclerosis for individual cohorts (NACC, 
n = 5,496; ROSMAP, n = 1,175 and ACT, n = 669) and meta-analysis (n = 7,340) using 
METAL (y axis; see b for interpretation). i, Human brain cell-type expression 
profile of COL4A1 in ref. 35. COL4A1 is preferentially expressed in fetal astrocytes 
and endothelial cells with lower expression in neurons (see c for interpretation). 
Mb, megabase.
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both APOC2 eQTL and nearby brain cortex mQTL. We confirmed that 
two of the CpG sites affected by the CAA risk locus, cg09555818 and 
cg13119609, were, in turn, significantly associated with CAA pathol-
ogy. Both CpG sites are located within the APOC4–APOC2 readthrough 
transcript region, overlapping APOC4 and APOC2. Our results are 
consistent with the hypothesis that the association between rs7247551 

and CAA risk may be driven by hypomethylation of CpG sites in the 
APOC2 region. Previous studies in other human cohorts also implicate 
hypomethylation at cg09555818 and cg13119609 in AD56–58. Collectively, 
these results provide evidence that APOC2 may be the target gene of 
the rs7247551 CAA risk locus, although more research must be done 
for verification.
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We also identified associations between known loci and multiple 
NPEs, including BIN1, APOE and TMEM106B. These associations pro-
vide context regarding their involvement in disease pathogenesis. 
One intronic locus of TMEM106B was significantly associated with 
both hippocampal sclerosis and LATE-NC, while a locus within GRN 
was associated with hippocampal sclerosis. Both genes are associated 
with frontotemporal lobar degeneration with TDP-43 inclusions59,60, 
hippocampal sclerosis61,62, and were recently associated with clinical 
AD5,6. We found that hippocampal sclerosis, LATE-NC, and clinical 
AD all colocalize at these two loci, suggesting that hippocampal 
sclerosis, LATE-NC and clinical AD likely share causal loci for these 
genes. Furthermore, hippocampal sclerosis (GRN and TMEM106B) 
and LATE-NC (TMEM106B) colocalized with brain eQTL and mQTL, 
and TMEM106B expression and methylation were associated with 
LATE-NC in downstream analyses. Notably, lead GRN and TMEM106B 
variants identified in GWAS of ADRD were not associated with the 

ADNC NPEs. Given that a substantial fraction of individuals diagnosed 
with dementia have LATE-NC or hippocampal sclerosis pathology 
(with estimates as high as ~50%)3, it is plausible that the associations 
found between these genes and clinical AD in recent GWAS are due 
to individuals with these non-AD pathologies who were diagnosed 
clinically with AD.

A locus ~30 kbp downstream of BIN1 on chr2q14 was significantly 
associated with Braak stage and suggestively associated with CERAD 
score for neuritic plaques. In previous GWAS, this locus was second only 
to APOE for strength of association with LOAD6. We verified through 
colocalization analysis that the same locus drives association signals 
with the Braak NFT stage and CERAD score. Interestingly, the lead 
variant in this locus, rs6733839, was not associated with nonneuritic 
amyloid plaques nor CAA, neither of which include tau deposits. Previ-
ous research supports the hypothesis that BIN1 is associated with LOAD 
through its effect on NFT rather than amyloid pathology63,64.

Table 3 | Associations between NPEs (using NACC, ROSMAP and ACT datasets) and known ADRD loci

NPE/Chr Locusa Positionb Variant Effect/
other 
allele

EAFc NPE 
ORd

NPE  
P valued

NPE Q 
valuee

ADRD 
ORf

ADRD  
P valuef

NPE–ADRD 
concordant 
effect direction

Braak NFT stage

  2 BIN1 127,135,234 rs6733839 T/C 0.42 1.21 1.6 × 10−9 1.2 × 10−7 1.18 6.5 × 10−90 Yes

  3 MME 155,069,722 rs16824536 A/G 0.05 0.75 0.00016 0.0058 0.92 3.8 × 10−6 Yes

  6 HLA-DQA1 32,615,322 rs6605556 A/G 0.16 0.85 0.00024 0.0058 0.91 1.0 × 10−17 Yes

  7 TMEM106B 12,229,967 rs13237518 A/C 0.42 1.11 0.0006 0.0093 0.96 5.1 × 10−7 No

  11 CELF1/SPI1 47,370,397 rs10437655 A/G 0.40 1.10 0.0063 0.044 1.06 8.2 × 10−12 Yes

CAA

  11 PICALM 86,157,598 rs3851179 T/C 0.35 0.89 0.00087 0.04 0.90 6.5 × 10−36 Yes

  12 TPCN1 113,281,983 rs6489896 T/C 0.07 1.23 0.001 0.04 1.08 2.5 × 10−6 Yes

CERAD score

  1 CR1 207,577,223 rs679515 T/C 0.20 1.14 0.0018 0.023 1.13 5.2 × 10−33 Yes

  2 BIN1 127,135,234 rs6733839 T/C 0.41 1.19 3.2 × 10−7 2.5 × 10−5 1.18 6.5 × 10−90 Yes

  2 INPP5D 233,117,202 rs10933431 C/G 0.22 0.88 0.0017 0.023 0.92 1.0 × 10−17 Yes

  7 ZCWPW1/NYAP1 100,334,426 rs7384878 T/C 0.29 0.90 0.0032 0.031 0.93 2.1 × 10−18 Yes

  8 PTK2B 27,362,470 rs73223431 T/C 0.37 1.12 0.0012 0.023 1.07 5.3 × 10−15 Yes

  11 CELF1/SPI1 47,370,397 rs10437655 A/G 0.40 1.10 0.0063 0.044 1.06 8.2 × 10−12 Yes

  11 PICALM 86,157,598 rs3851179 T/C 0.35 0.84 1.1 × 10−6 4.1 × 10−5 0.90 6.5 × 10−36 Yes

  11 SORL1 121,564,878 rs11218343 T/C 0.04 0.78 0.0057 0.044 0.85 1.0 × 10−14 Yes

  14 FERMT2 52,924,962 rs17125924 A/G 0.09 1.19 0.0038 0.033 1.09 5.8 × 10−10 Yes

  15 SNX1 64,131,307 rs3848143 A/G 0.22 1.13 0.0031 0.031 1.05 1.1 × 10−6 Yes

  19 ABCA7 1,050,875 rs12151021 A/G 0.33 1.15 0.0005 0.013 1.11 4.1 × 10−30 Yes

Hippocampal sclerosis

  7 TMEM106B 12,229,967 rs13237518 A/C 0.42 0.65 8.7 × 10−13 4.6 × 10−9 0.96 5.1 × 10−7 Yes

  16 IL34 70,660,097 rs4985556 A/C 0.11 0.74 0.0019 0.037 1.06 5.6 × 10−6 No

  17 GRN 44,352,876 rs5848 T/C 0.30 1.40 3.2 × 10−8 1.2 × 10−6 1.07 1.8 × 10−12 Yes

  17 MAPT 46,779,275 rs199515 C/G 0.21 0.77 0.00034 0.0087 0.94 6.0 × 10−9 Yes

LATE-NC

  7 TMEM106B 12,229,967 rs13237518 A/C 0.43 0.72 4.1 × 10−10 3.1 × 10−8 0.96 5.1 × 10−7 Yes

  17 GRN 44,352,876 rs5848 T/C 0.30 1.32 1.3 × 10−6 4.9 × 10−5 1.07 1.8 × 10−12 Yes

Microinfarct

  12 TPCN1 113,281,983 rs6489896 T/C 0.07 1.28 0.0013 0.049 1.08 2.5 × 10−6 Yes

  16 PLCG2 81,739,398 rs12446759 A/G 0.39 0.87 0.00055 0.042 0.94 3.6 × 10−12 Yes
aEither known locus or closest protein-coding gene according to GENCODE release 40. EAF, effect allele frequency. bPosition of the lead variant using GRCh38 assembly. cEAF in NPE 
meta-analysis. dNPE P values and OR are from meta-analysis. eNPE Q values are produced by applying Benjamini–Hochberg adjustments for each endophenotype separately. fADRD P values 
and OR are from ref. 6 stage I GWAS (n = 487,511). OR are with respect to the Bellenguez effect allele.
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LATE-NC on TMEM106B. We investigated whether loci associated with multiple 
NPEs show evidence for genetic colocalization using a Bayesian colocalization 
analysis approach implemented in the coloc R package72. a, The TMEM106B  
lead variant (rs2043539) reached genome-wide significance with LATE-NC.  
b,c, Hippocampal sclerosis colocalized with LATE-NC on TMEM106B (PrC = 90%). 
d,e, TMEM106B expression colocalized with LATE-NC (PrC = 91%). f–i, Two 
methylation QTL (mQTLs), cg09613507 (PrC = 89%; f,g) and cg23422036 
(PrC = 95%; h,i), also colocalized with LATE-NC. a, b, d, f and h show regional 
LocusZoom73 plots for each trait. Purple diamonds represent lead variants.  
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ROSMAP. j, Decreased TMEM106B expression was associated with more severe 
LATE-NC pathology (P = 0.043). Unless otherwise specified, for all boxplots, 
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cg09613507 was associated with more severe LATE-NC pathology (P = 0.0093). 
l, Methylation at cg23422036 was not significantly associated (P = 0.10). 
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the nuances of the genes purported to be driving disease. CDS, coding sequence; 
CTRL, control; CPM, counts per million; F, female; M, male; hipp. scler., 
hippocampal sclerosis; expr. cer., expression in cerebellum.
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colocalization analysis approach from Fig. 4 (coloc 5.2.2 R package72), we tested 
for colocalization between CAA and methylation sites using existing data from 
ROSMAP. a, Lead SNP rs7247551, near APOC2, reached genome-wide significance 
with CAA. b,d,f,h, The rs7247551 was also significantly associated with four mQTL. 
b–i, cg04401876 (PrC = 96%; b,c), cg10169327 (PrC = 96%; d,e), cg13119609 
(PrC = 99%; f,g) and cg09555818 (PrC = 97%; h,i) all colocalized with CAA.  
a, b, d, f and h show regional LocusZoom73 plots for each trait. c, e, g and i compare 
−log10(P) values between each trait compared to CAA −log10(P) values across the 
APOC2 rs7247551 locus. Variants in LD with the lead variant (purple diamond  
in a–i) are shaded in a–i according to the color legend on the left-hand side 
of a. j, Plots of normalized methylation level versus CAA pathology severity. 
Hypomethylation at cg09555818 (OR = 0.82, P = 0.003) and cg13119609 
(OR = 0.78, P = 0.0006) were significantly associated with more severe CAA 

pathology. Unless otherwise specified, for all boxplots, boxes outline the first 
quartile, median and third quartile. Whiskers extend up to 1.5× the distance 
between the first and third quartiles. k, Both cg09555818 (P = 0.0063; k) and 
cg13119609 (P = 0.0069; not shown) were significantly associated with APOC2 
expression. l,m, The rs7247551 G allele was significantly associated with increased 
APOC2 expression in the frontal cortex in ROSMAP (β = 0.072, P = 0.00013;  
l); however, the direction of effect was opposite of that found in brain tissues in 
GTEx (P = 7.2 × 10−7; m). n,o, The rs7247551 was not associated with APOE (P = 0.81;  
n) or APOC2 (P = 0.89; o) expression in frontal cortex in ROSMAP. p, APOC2 
is highly expressed, especially in microglia and oligodendrocytes. Columns 
represent mean FPKM. Error bars indicate the s.e. of measurement for each cell 
type based on the number of human samples sequenced for each type (fetal 
astrocytes, n = 6; mature astrocytes, n = 12; neurons, n = 1; oligodendrocytes, n = 5; 
endothelial, n = 2 and microglia, n = 3). expr., expression; norm., normalized.
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We also discovered intriguing new loci mapped to COL4A1 and 
LZTS1 associated with atherosclerosis in the circle of Willis and brain 
arteriolosclerosis, respectively.

One locus on chr13q34 with lead variant rs2000660 located 12 kbp 
upstream of COL4A1 was significantly associated with atherosclerosis 
in the circle of Willis. Previous research found that the COL4A1/COL4A2 
locus is associated with numerous vascular disease phenotypes, includ-
ing peripheral artery disease, coronary artery disease, stroke, arteriolar 
stiffness, rare familial cerebrovascular diseases and stroke65–67 In a 
recent GWAS, rs2000660 was a lead risk variant for migraines68. The 
relevance of the COL4A1 locus to cerebral vascular traits is thus highly 
supported by previous research, and the biological role of collagen IV in 
vascular disease is possibly related to the disruption of the extracellular 
matrix65. COL4A1 is preferentially expressed in astrocytes and endothe-
lial cells and codes for a component of collagen IV, an important com-
ponent of basal lamina. Endothelial cells are strongly implicated in 
atherosclerosis, and in recent years, researchers have suggested that 
astrocytes may also be directly involved in cerebrovascular disease69. 
The rs2000660 was not nominally associated with any other vascular 
NPE in our study, and a previous GWAS of circle of Willis atheroscle-
rosis using ROSMAP participants did not identify the COL4A1 as a risk 
locus24. The rs650724, a variant in high LD with rs2000660 (r2 = 0.84), is 
a synonymous coding variant (p.Ser1600Ser in ENST00000375820.10; 
p.Ser319Ser in ENST00000650424.1) within COL4A1. The rs2000660 
is also located within an enhancer for COL4A1, presenting possible 
molecular functional mechanisms driving association in this locus.

An intronic variant within PIK3R5 (rs72807981; chr17p13) met our 
suggestive threshold of association with the Braak NFT stage. PIK3R5 
codes for a phosphatidylinositol 3-kinase involved in cell growth, motil-
ity and survival. There is previous research suggesting that PIK3R5 is 
more highly expressed in aged adults with Braak NFT stages V and VI 
versus nondemented controls70. PIK3R5 is expressed preferentially 
in microglial cells in humans35, suggesting that its association with 
neurofibrillary pathology may be immune-mediated, although future 
work is needed to validate the association between PIK3R5 and NFT.

One new intronic locus in LZTS1 was found to be protective against 
brain arteriolosclerosis. The relatively modest literature regarding 
LZTS1 has focused mostly on cancers; however, LZTS1 is primarily 
expressed in endothelial cells and astrocytes, cell types relevant to 
vascular function and dysfunction. One paper suggests that LZTS1 is 
involved in neuronal delamination and development of glial-like cells 
during mammalian neocortical development71, but additional work 
related to LZTS1 and its function in the cerebrovasculature and brain 
parenchyma is needed.

In conclusion, we identified promising new loci associated with 
NPEs and replicated multiple known risk loci for ADRD using NPE-based 
GWAS. Our study demonstrates the importance of studying genetic 
risk factors of NPEs as a complement to studies of clinical and proxy 
phenotypes of LOAD.
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Methods
Participants
An overview of our study design is presented in Fig. 1. Each participat-
ing study previously obtained informed consent from participants 
or caregivers for participants with substantial cognitive impairment. 
Parent study protocols were approved by the local institutional review 
boards. This study was approved by the University of Kentucky Office 
of Research Integrity Institutional Review Board.

NACC. The present study used NACC data from 36 National Institute 
on Aging (NIA)-funded Alzheimer’s Disease Research Centers (ADRCs). 
Individual ADRCs use different recruitment strategies and perform 
autopsies on-site, but neuropathology data at each ADRC are collected 
using a standard form (https://files.alz.washington.edu/documenta-
tion/np11-form.pdf) and submitted to NACC where they are aggregated 
and anonymized. The NACC Neuropathology dataset based on the 
first version of this form was originally implemented in 2001 (ref. 30), 
and this analysis uses data from then through the March 2023 freeze. 
Participants were excluded if they did not have autopsy data available 
or if they were noted in the NACC Neuropathology dataset to have at 
least one of 19 conditions that could potentially bias results. These 
conditions include brain tumors, severe head trauma and frontotem-
poral lobar degeneration (see Supplementary Table 6 for the full list 
of variables used for exclusion criteria).

ROSMAP. ROSMAP consists of harmonized data from the following 
two longitudinal cohort studies: the Religious Orders Study (ROS) and 
the Rush Memory and Aging Project (MAP)74. ROS and MAP were both 
approved by the Institutional Review Board of Rush University Medi-
cal Center. All participants signed the Uniform Anatomic Gift Act, as 
well as informed and repository consents. ROS began in 1994 and has 
recruited over 1,500 Catholic priests, nuns and brothers across the 
United States. MAP started in 1997 and has enrolled more than 2,300 
community members in the greater Chicago area of northeastern Illi-
nois. The ROSMAP NP data used in this study were received from Rush 
University Medical Center in January 2020. Using KING 2.2.7 (ref. 75), 
we found that several participants in ROSMAP also had neuropathol-
ogy and genotype data available in NACC. In these cases, records in the 
NACC were preferentially kept.

ACT. The ACT study began in 1994 and recruited residents in the greater 
Seattle area aged 65 years and older without dementia at the time of 
enrollment76–79. The study has expanded to include three cohorts with 
continued enrollment using the original enrollment criteria and has a 
current total of 4,960 participants across all three cohorts. The ACT 
NP data used in this study were obtained from Kaiser Permanente in 
May 2023.

Genotype data and quality control
Genotype data for all cohorts underwent imputation using the 
Trans-Omics for Precision Medicine (TOPMed) Imputation Server 
1.7.3 and the TOPMed reference panel using Minimac 4 (refs. 80–82). 
Postprocessing was performed with BCFtools 1.10.2 (ref. 83) and 
SAMtools 1.10 (ref. 84), PLINK 1.9 and 2.0 (ref. 85), R 4.2.1 and 4.2.2 
(https://cran.r-project.org/), and R packages data.table 1.14.10 (https://
CRAN.R-project.org/package=data.table) and stringi 1.803 (ref. 86). 
The 3.4.2 NACC and ACT raw genotype data were obtained from the Sep-
tember 2020 freeze of the Alzheimer’s Disease Genetics Consortium 
(ADGC) in March 2021 and subsequently imputed. Pre-imputed ROS-
MAP genotype data were received from collaborators in the Hohman 
Lab at Vanderbilt University in December 2021. Genetic variants with 
minor allele frequency (MAF) < 0.1% and imputation quality scores of 
<0.8 were removed before further quality control measures. Due to 
the small sample sizes of participants with substantial non-European 
ancestry (based on proximity to 1000 Genomes ‘EUR’ superpopulation 

cluster in principal component (PC) analysis), especially in replication 
cohorts, these participants were excluded from the analysis. Standard 
GWAS quality control procedures were followed for variant and par-
ticipant inclusion (Supplementary Methods).

Defining and harmonizing NPEs for analysis
In total, we combined and/or harmonized 11 NPEs for analysis across 
the four studies. We note that there are differences in the way that some 
neuropathological data were collected across studies, and our strategy 
for harmonizing was informed by practical considerations for maximiz-
ing available sample sizes given the available endophenotypes. Thus, 
several synthetic NPEs were created by merging existing NPEs within a 
cohort or by harmonizing categorical variables from one cohort and con-
tinuous variables from another. Hippocampal sclerosis, microinfarcts 
and gross infarcts were recorded as binary case–control phenotypes. 
Arteriosclerosis, atherosclerosis, CAA, CERAD score for neuritic plaques, 
amyloid plaques, LATE-NC and Lewy body pathology were recorded as 
four-stage ordinal variables that either measured progressive severity 
of pathology (‘none’ < ‘mild’ < ‘moderate’ < ‘severe’) or progressing 
anatomical distribution of pathology. Braak NFT was recorded as a 
seven-stage ordinal variable that followed the anatomical distributional 
stages originally characterized in ref. 87. We provide a deeper description 
of our harmonization approach in the Supplementary Methods, and a 
detailed listing of variables harmonized across data sources to construct 
NPEs for analysis is available in Supplementary Table 1.

To assess the co-occurrence of NPEs in our data, we estimated 
polychoric correlations (an approach that assumes that observed 
ordinal or binary variables reflect latent normally distributed vari-
ables) between NPE pairs, followed by hierarchical clustering using the 
polycor 0.8-1 (ref. 88), psych89 and pheatmap 1.0.12 (ref. 90) R packages 
(Extended Data Fig. 1).

DNA methylation data
Preprocessed and quality-controlled DNA methylation data for 740 
ROSMAP participants were downloaded from Synapse.org (Synapse 
IDs: syn3157275 and syn3191087). DNA methylation preparation and 
quality control measures have been previously described91,92. Briefly, 
approximately 50 mg of frozen gray matter tissue from the DLPFC was 
sampled from each participant. DNA was then extracted and processed 
using the Illumina Infinium HumanMethylation450 BeadChip. Quality 
control measures included removing low-quality probes, removing 
participants with poor bisulfite-conversion efficiency and adjusting 
methylation levels by age, sex and batch, which adequately controlled 
for batch effects92. Missing methylation levels were imputed using 
100-nearest neighbors91,92.

RNA-seq data
Preprocessed and quality-controlled bulk-tissue RNA-seq data from 
the DLPFC of ROSMAP participants were downloaded from Syn-
apse.org (Synapse IDs: syn21088596, syn21323366, syn3505732 and 
syn3505724). As previously described, samples were prepared by sec-
tioning approximately 100 mg of gray matter tissue from the DLPFC 
and RNA extracted using the Qiagen MiRNeasy Mini (217004) protocol 
and then submitted for transcriptome library construction using the 
dUTP protocol and Illumina sequencing92. A total of 634 participants 
in seven batches were sequenced with an average sequencing depth 
of 50 million paired reads per sample92. Subsequent quality control 
and batch corrections were performed, and the final output of the 
RNA-Seq pipeline was fragments per kilobase of transcript per million 
mapped reads (FPKM)92.

Statistical analyses
Single-variant GWAS. We analyzed ordinal endophenotypes using 
proportional-odds logistic mixed-effects models implemented in the 
POLMM 0.2.3 (refs. 93,94) and GRAB 0.1.1 R packages93 and analyzed 
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binary variables similarly with logistic mixed-effects models imple-
mented in the SAIGE R package95. Fixed-effect covariates included age 
at death, sex, cohort and the first ten genetic PCs created using the PCA 
in Related Samples (PC-AiR) method in the GENESIS 2.26.0 R package96. 
We included a genetic relationship matrix (GRM) as a random effect 
to account for relatedness between participants. An additive mode of 
inheritance was assumed in all analyses.

Analysis of individual data sources proceeded in two stages. In 
stage one, GRM was constructed using a pruned set of independent 
variants, defined as having a pairwise r2 < 0.2 within moving windows 
of 15 kbp. Null models, which included fixed covariates and the GRM, 
were then fitted using the GWASTools 1.42.1 (ref. 97), SNPRelate 1.30.1 
(ref. 98), POLMM 0.2.3 (refs. 93,94), GRAB 0.1.1 (refs. 93,94) and/or 
SAIGE 1.1.3 (ref. 95) R packages. In stage two, score tests were performed 
on each variant with a saddle-point approximation used to calculate P 
values. We considered all variants with a P <5 × 10−8 to be genome-wide 
significant. To identify independent risk loci, we clumped results using 
the ‘--clump’ flag in PLINK 1.9 with the pairwise LD threshold set to 
r2 ≤ 0.05 (https://www.cog-genomics.org/plink/1.9/)85. Following analy-
ses of individual cohorts, we performed fixed-effects meta-analyses 
using METAL software using inverse-variance weighting on variants 
with MAF > 1% in at least one cohort33. Variants with a total minor allele 
count <20 after meta-analysis were then excluded.

Conditional analysis of the APOE region. The region surrounding the 
APOE gene on chr19 is consistently the single strongest genetic risk 
factor for LOAD in GWAS. Three common forms of the APOE gene—ϵ2, 
ϵ3 and ϵ4—are present in our study populations (see Table 1 for distribu-
tion of APOE alleles in participants), and the ϵ2 and ϵ4 alleles are associ-
ated with lower and higher risk of LOAD, respectively, relative to the ϵ
3 allele99. We therefore expected that variants in the APOE region, 
defined as the region within 200 kbp from the start and end transcrip-
tion sites of APOE, would be associated with multiple NPEs in our study. 
Moreover, we hypothesized that genetic variants in the APOE region 
may influence neuropathology risk independently of the effects of 
APOE ϵ alleles. To test this hypothesis, we re-analyzed variants in chr19 
while adjusting for APOE ϵ diplotype. We limited re-analysis to endo-
phenotypes with at least one genome-wide significant association 
signal within the APOE locus in the final meta-analysis of the three 
independent GWAS. APOE diplotypes were determined either using 
the rs7412 and rs429358 variants according to the SNPedia online ref. 
100 or taken directly from study data if available. Both rs7412 and 
rs429358 variants had high imputation quality scores (r2 = 0.997 and 
0.975, respectively). The ϵ3/ϵ3 diplotype was used as a reference, and 
we included fixed-effect indicator variables to adjust for ϵ2/ϵ2, ϵ2/ϵ3, 
ϵ3/ϵ4 and ϵ4/ϵ4 diplotypes. We chose this approach rather than adjust-
ing for counts of ϵ2 and ϵ4 alleles because it is robust to potential 
nonlinear effects of genotypes. We performed additional sensitivity 
analyses for loci identified through this approach (Supplementary 
Information).

Replication of known AD risk loci in NPE. We used the 83 ADRD loci 
presented in a recent large GWAS to investigate whether AD-associated 
loci were associated with NPE6. We restricted our comparison to AD 
loci with lead variants with MAF ≥ 0.01, leaving 76–78 loci for compari-
son for each NPE. LD for variants near the top-known AD-associated 
variants was evaluated using the R package LDLinkR 1.2.3 (ref. 101). We 
controlled the false-discovery rate for each NPE using the Benjamini–
Hochberg procedure102. Variants with an adjusted Q value ≤ 0.05 were 
considered significant.

FUMA and FAVOR annotation, gene-prioritization and functional 
enrichment pipeline. We mapped variants to genes and performed 
subsequent gene and gene-set analyses using the FUMA and FAVOR 
pipelines37,103. Variants were mapped to genes if they had P ≤ 1 × 10−5 

in the GWAS meta-analysis and were located within 10 kbp of a 
protein-coding gene’s transcription start or end sites. Gene-based 
analyses were performed using MAGMA 1.10. The top variant PCs that 
accounted for 99.9% of the variance in a gene’s region were used to test 
for significance using an F test. We considered genes with resulting 
P ≤ 2.5 × 10−6 to be significantly associated with NPE. Gene-set enrich-
ment analyses were performed using MAGMA104 gene-set analysis of 
Gene Ontology and curated gene sets from MSigDB105. Bonferroni P 
value corrections were made for each NPE individually.

Colocalization analyses. We used multiple sources of publicly avail-
able summary statistics from external studies as data sources for Bayes-
ian colocalization analyses. First, we downloaded Genotype-Tissue 
Expression Project (GTEx) v8 European ancestry QTL analysis sum-
mary statistics, which contains summary statistics for significant gene 
expression and splicing QTL variants (eQTL and sQTL, respectively) 
in 48 body tissues106. We also used gene expression and DNA mQTL 
analysis summary statistics from studies using tissue from the DLPFC 
of ROSMAP participants42. These studies examined the associations 
of genetic variants with molecular traits and provided curated lists of 
significant QTL variants. Finally, we downloaded the summary statis-
tics from a recent GWAS of LOAD for a targeted post hoc colocalization 
analysis in TMEM106B and GRN6.

For each NPE outcome in our study, we first created a list of genetic 
variants with P ≤ 1 × 10−5 in the GWAS meta-analysis. We then queried the 
lists of significant QTL variants in GTEx and ROSMAP using R (https://
cran.r-project.org/) and Python 3.8.16 and 3.10.8 (https://www.python.
org/) to identify neuropathology-associated QTL variants. For each 
genetic locus associated with NPEs that had at least one significant 
QTL in either GTEx or ROSMAP, we performed colocalization analysis 
using the ‘coloc.abf’ function in the coloc 5.2.2R package39. For ordinal 
variables, we chose dichotomizing cut points to determine case–con-
trol proportions. We used coloc’s default prior PrC of PrC = 1 × 10−5 
and considered a posterior PrC > 80% as a threshold for evidence of 
colocalization.

To investigate whether shared GWAS signals drive association 
among multiple NPEs, we also performed colocalization analysis on 
loci with variants satisfying P < 1 × 10−4 and concordant effect direction 
for at least two NPEs in the GWAS meta-analysis. Due to the absence 
of associations in the region in APOE-adjusted analyses for NPEs 
other than CAA, we excluded that region for NPE–NPE colocalization 
analyses.

Association analyses using DLPFC DNA methylation and bulk 
RNA-seq data from ROSMAP. ROSMAP participants had postmortem 
bulk-tissue samples collected from the DLPFC, which underwent DNA 
methylation quantification using the Illumina DNAMethylation450 
chip and gene expression and RNA-seq using the Illumina HiSeq 2000 
(ref. 92). In total, 708 ROSMAP participants had DNA methylation 
data available for analysis. We restricted analyses involving DNA 
methylation or RNA-seq data to NPE-associated loci that reached 
the genome-wide significance threshold in the meta-analysis and 
also colocalized with mQTL or eQTL in brain tissue in either GTEx 
or ROSMAP.

In our APOE ϵ-adjusted genetic association analysis, one locus near 
APOE remained significantly associated with CAA. This locus colocal-
ized with DNA methylation levels at four CpG sites in ROSMAP. To 
investigate whether these CpG sites were in turn associated with CAA 
pathology, we combined individual-level DNA methylation and neu-
ropathological data in ROSMAP for analysis. We used cumulative logit 
models using the ‘clm’ function implemented in the R package ordinal 
2023.13.12-04 (ref. 107) with the semi-quantitative CAA variable 
described above as the outcome for analysis. We performed four analy-
ses, with one of each of the four CpG sites tested as the independent 
variable of interest in each analysis. We adjusted for age, sex, ROS versus 
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MAP study, bisulfite-conversion efficiency, postmortem interval and 
APOE ϵ diplotype in each analysis. Similar models were used to test 
associations between hippocampal sclerosis and LATE-NC and meth-
ylation levels at CpG sites cg09613507 and cg23422036. Wald tests 
were performed on the resulting parameter estimates to test for sta-
tistical significance. We also performed post hoc analyses examining 
the association between these CpG sites and APOC2 expression in 
ROSMAP.

For genes with significant eQTL in GTEx or ROSMAP that colocal-
ized with NPE, we performed additional targeted analyses to assess the 
association between gene expression and NPE. We first assessed the 
association between NPE lead variants and gene expression in ROSMAP 
to confirm nominal eQTL status. We then performed generalized linear 
regression models between square-root or log-transformed mRNA 
expression and NPE outcomes adjusting for age at death, sex, PMI and 
RNA integrity number.

Plots from these analyses were generated using the R package 
ggplot2 (ref. 108).

Replication of CAA locus using Mayo Clinic neuropathology GWAS. 
We used data from Mayo Clinic Brain Bank participants available from 
ref. 26 study of the genetic risk factors of CAA (dataset heretofore 
referred to as MC-CAA) to attempt to replicate a new CAA locus in the 
present study in an independent sample26. Neuropathology and genetic 
variant data were downloaded from Synapse (Synapse IDs: 
syn10930250, syn21499318, syn21522653 and syn21547862). Eight 
participants were identified as duplicates between batches or with 
NACC participants and removed. While CAA is graded on a four-level 
ordinal scale in the present study, CAA in MC-CAA is graded as an aver-
age of CAA burden across five brain regions26. We therefore used linear 
regression with the outcome variable as sqrt(CAA) with the independ-
ent variable of interest being the number of G alleles of variant 
rs7247551. Covariates included APOE diplotype (ϵ3/ϵ3, ϵ2/ϵ4, ϵ2/ϵ3, ϵ3/ϵ4 
or ϵ4/ϵ4), sex, age at death (truncated at 90 years) and the first three 
genetic PCs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Meta-analysis summary statistics for each NPE studied will be 
made available through NIAGADS upon publication at https://dss.
niagads.org/. The authors are unable to share genotype or phe-
notype data from NACC, ADGC, ROSMAP or ACT due to data use 
restrictions. While these data were de-identified for study authors, 
these studies contain identifiable information on participants. 
ROSMAP data can be requested at https://www.radc.rush.edu and 
https://www.synapse.org. ADGC data can be requested from NIA-
GADS at https://www.niagads.org/resources/related-projects/
alzheimers-disease-genetics-consortium-adgc-collection. NACC 
neuropathology data can be requested at https://naccdata.org/. ACT 
data can be requested at https://actagingresearch.org/. Harmonized 
neuropathology data are available through NIAGADS at https://dss.
niagads.org/datasets/ng00067/. The results published here are in 
whole or in part based on data obtained from the AD Knowledge Por-
tal. Raw long-read RNA-seq data generated and used in this manu-
script are publicly available in both Synapse (https://www.synapse.
org/#!Synapse:syn52047893) and NIH SRA (accession: SRP456327). 
Processed long-read RNA-seq data can be easily downloaded or viewed 
at https://ebbertlab.com/brain_rna_isoform_seq.html.

Code availability
All code used for data preparation and analysis is available at https://
doi.org/10.5281/zenodo.11089995 (ref. 109).
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Extended Data Fig. 1 | Heatmap of the polychoric correlations of 11 
neuropathology endophenotypes. The y-axis (rows) and x-axis (columns) refer 
to the neuropathology endophenotype pairs with the hierarchical clustering 
generated by the polychoric correlations calculation. The red and blue color 
refers to high and low correlations between the neuropathology endophenotype 
pairs. The three positively correlated clusters of endophenotypes that match 

general expectations are highlighted by the black solid lines: a ‘vascular’ cluster 
consisting of gross infarcts, microinfarcts, arteriolosclerosis and atherosclerosis; 
an ‘Alzheimer’s disease’ cluster consisting of Braak NFT stage, neuritic plaques, 
amyloid-beta plaques and CAA; and a ‘LATE’ cluster consisting of LATE-NC and 
HS, respectively.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Quantile–quantile (QQ) plots for the 11 neuropathology 
endophenotype. The y-axis refers to the experimental −log10(P) from two-sided 
z test of the genome-wide association study (GWAS) meta-analysis. The x-axis 
refers to the theoretical −log10(P) based on percentile. Each point represents a 
single-nucleotide polymorphism (SNP). The line of identity (y = x) is shown in a 
black dashed line, indicating the expected alignment under the null hypothesis. 

Deviations from this line suggest possible inflation due to population structure 
or polygenic effects. The genomic inflation factor lambda (λ) is calculated for 
each phenotype indicating minimal inflation of test statistics. The λ estimates 
ranged from 0.9879 to 1.0047, and visual inspection of the QQ plots did not 
suggest any systematic bias in the data.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Forest plots of associations between CAA and lead 
variant (rs7247551) on chromosome 19 stratified by study and APOE ? 
diplotype. For each of the data sources (NACC n = 5,927, ROSMAP n = 1,172 and 
ACT n = 677), we re-analyzed the association between CAA and lead variant 
rs7247551 from the meta-analysis while stratifying by APOE ? diplotype and 
visually compared effect sizes across groups. Due to low sample sizes preventing 

model convergence, APOE ?4 carriers (diplotypes ?2/?4, ?3/?4, ?4/?4) were 
merged in analyses for ROSMAP and ACT. Points along the x-axis represent the 
estimated odds ratios, and error bars indicate 95% CI. Results demonstrate a 
consistent pattern of association between rs7247551 and CAA within each of the 
data sources used in our study.
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Extended Data Fig. 4 | Regional plot and the chromatin interaction plot of 
rs2000660 that is associated with cerebral atherosclerosis. Atherosclerosis 
association plot from NPE GWAS meta-analysis (n = 7,340) for the SNP of 
rs2000660. The x-axis refers to the position of the genome. In the top plot, the 
y-axis refers to the −log10(P) from meta-analysis two-sided Z test. The lead variant, 
rs2000660, is circled in black and colored in dark purple. Variants meeting the 

threshold of P < 1 × 10-5 were colored coded according to linkage disequilibrium 
r2 to rs200060. Other variants are colored in gray. The figures are generated by 
FUMA pipelines (https://fuma.ctglab.nl). In the bottom plot, the x-axis refers to 
the genome position, and the y-axis refers to the type of regulatory elements in 
the chromatin interaction plot for rs2000660.
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Extended Data Fig. 5 | CERAD score and Braak NFT stage colocalize on 
BIN1. Braak stage and CERAD association plot from NPE GWAS meta-analysis 
(n = 7,776–7,786) for the region around BIN1. Colored dots represent the 
chromosomal position (x-axis, Mb, megabase) in hg38 coordinates and −log10(P 
from meta-analysis two-sided z test; y-axis) of each variant in the region. Dots are 
colored to represent the linkage disequilibrium r2 with the lead variant (purple 

dot) estimated with PLINK–r2 using 1000 Genomes Phase 3 European-descended 
participants. The recombination rate was calculated using GRCh38 genetic map 
files downloaded from https://bochet.gcc.biostat.washington.edu/beagle/
genetic_maps/. Boxes below data indicate the location of genes in the region (plot 
generated using LocusZoom73).

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | GRN expression, hippocampal sclerosis and LATE-NC all 
colocalize on GRN. GRN gene expression, hippocampal sclerosis and LATE-NC 
association plot from NPE GWAS meta-analysis (n = 3,112–7,164) for the region 
around GRN. Colored dots represent the chromosomal position (x-axis, Mb, 
megabase) in hg38 coordinates and −log10(P from meta-analysis two-sided 
z test; y-axis) of each variant in the region. Dots are colored to represent the 

linkage disequilibrium r2 with the lead variant (purple dot) estimated with 
PLINK–r2 using 1000 Genomes Phase 3 European-descended participants. The 
recombination rate was calculated using GRCh38 genetic map files downloaded 
from https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/.  
Boxes below data indicate the location of genes in the region (plot generated 
using LocusZoom73).

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Hippocampal sclerosis and ABCC9 expression colocalize 
on ABCC9. ABCC9 gene expression and hippocampal sclerosis association plot 
from NPE GWAS meta-analysis (n = 7,164) for the region around ABCC9. Colored 
dots represent the chromosomal position (x-axis, Mb, megabase) in hg38 
coordinates and −log10(P from meta-analysis two-sided Z test; y-axis) of each 
variant in the region. Dots are colored to represent the linkage disequilibrium 

r2 with the lead variant (purple dot) estimated with PLINK–r2 using 1000 
Genomes Phase 3 European-descended participants. The recombination rate was 
calculated using GRCh38 genetic map files downloaded from https://bochet.gcc.
biostat.washington.edu/beagle/genetic_maps/. Boxes below data indicate the 
location of genes in the region (plot generated using LocusZoom73).
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