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Gene expression quantitative trait loci are widely used to infer relationships
between genes and central nervous system (CNS) phenotypes; however,
the effect of brain disease on these inferencesis unclear. Using 2,348,438
single-nuclei profiles from 391 disease-case and control brains, we report
13,939 genes whose expression correlated with genetic variation, of which
16.7-40.8% (depending on cell type) showed disease-dependent allelic
effects. Across 501 colocalizations for 30 CNS traits, 23.6% had a disease
dependency, even after adjusting for disease status. To estimate the

unconfounded effect of genes on outcomes, we repeated the analysis using
nondiseased brains (n=183) and reported an additional 91 colocalizations
not present in the larger mixed disease and control dataset, demonstrating

enhanced interpretation of disease-associated variants. Principled
implementation of single-cell Mendelian randomizationin control-only
brainsidentified 140 putatively causal gene-trait associations, of which
11werereplicated in the UK Biobank, prioritizing candidate peripheral
biomarkers predictive of CNS outcomes.

Translating genome-wide association study (GWAS) loci to therapies
requires knowledge of the causal genes, their directionality of effect
andthecelltypesinwhich they act.In thisstudy, we aimed to infer these
relationships by implementing a principled approach to Mendelian
randomization (MR) using single-cell expression quantitative trait
loci (eQTL) as genetic anchors*. MR is a statistical and methodological
framework for inferring putatively causal effects rooted in the naturally
randomized allocation of genetic variants instrumenting exposures,
such as the level of expression of a gene’.

Previous research mapping eQTLs at the single-cell level has high-
lighted dynamic cell state-dependent influences on gene regulation®,
and prior work using bidirectional MR has suggested that most
disease-associated gene expression changes occur as a consequence
of disease rather than as a cause’. For central nervous system (CNS)
phenotypes, disease-based brain tissue samples have contributed to
several studies reporting putatively causal associations between tran-
script levels and CNS outcomes at both bulk-tissue® and single-cell”®
levels, but the potential impact of using diseased samples for causal
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inference analysis has been largely unassessed. While the use of dis-
eased brain samples can increase sample size and statistical power,
where the disease itself causes gene expression changes, their use
might obscure pathways relevant to disease etiology or prioritize
spurious associations from reverse causation”.

Here we highlight dynamic allelic effects on gene expression aris-
ing fromthe presence of brain disease and show how these influence the
results of downstream analyses that seek to inform biological media-
tors of braindisease. Using aunique set of control brains with no history
of CNS disease and normal neuropathology, we show thataprincipled
approach to MR using control brain samples can provide estimates of
the direction of an effect of agene on CNS outcomes unconfounded by
disease state and enhance the interpretation of GWAS loci.

Results

Datasets and eQTL discovery

We analyzed single-nuclei gene expression data (single-nuclei RNA
sequencing (SnRNA-seq)) based on postmortem brain tissue samples
from 409 genotyped adult donors. Following quality control, data
harmonizationand cell-type annotation, we retained 2,348,438 single
nuclei from 391 individuals (median nuclei per individual = 4,391 and
mean = 6,006; Supplementary Fig. 1). The donors consisted of 183
participants with no history of brain disease and normal appearances of
the brainonneuropathological examinationand 208 participants who
had died with a documented neurological diagnosis. Single-cell-type
cis-eQTLs wereidentified using alinear model implemented in Matrix-
EQTL’ as previously described®. This analysis was based on residual
gene expression after adjusting for clinical covariates (age at death,
sex, postmortem interval (PMI), disease status and sample source) and
optimized principal components (PCs), all treated as fixed covariates
for each cell type. In total, we tested 5.20 million single-nucleotide
polymorphisms (SNPs) for cis-gene regulation in eight brain cell types
(excitatory neurons, inhibitory neurons, astrocytes, microglia, oligo-
dendrocytes, oligodendrocyte precursor cells (OPCs), endothelial
cells and pericytes; Fig. 1a and Supplementary Fig. 2).

Across the 391 mixed disease-case and control participants, we
captured 1.82 million single-cell-type cis-eQTLs at false discovery
rate (FDR) < 5%, representing one or more regulatory SNP (eSNP) for
13,939 unique genes (30,027 eGenes in aggregate; Fig. 1b and Sup-
plementary Table 1). Of these, 5,454 (39.1%) were identified in only a
single cell type (Supplementary Fig. 3). Only eight genes shared their
genetic regulation across all eight cell types. SNP-transcript associa-
tionswere distributed above the expected uniformdistribution (Sup-
plementary Fig. 4). The number of cells profiled for a particular cell
type linearly correlated with the number of eGenes for that cell type
(Pearson correlationr=0.92, P=1.14 x10%; Supplementary Fig. 5). As
previously reported’, we observed an enrichment of cis-eQTLs around
the target gene transcription start site (Supplementary Fig. 6). Most
cis-eQTLs (72.9-88.7% depending on cell type) replicated (FDR < 5%)
inalarge (6,523 participants) cortex tissue-level eQTL study'®, of which
90.0-98.3% had the same direction of effect (Fig. 1c). Notably, analysis
of cis-eQTLs at a single-cell-type level identified 4,898 more eGenes
comparedto cis-eQTL discovery using an equivalently sized ‘bulk’ tis-
sue analysis based on aggregating counts across all cell types (Fig. 1d).

Assessment of disease status on cis-eQTLs

Because the primary objective of this work was to identify genetically
regulated exposures that influence disease risk, we first aimed to
understand the effect of brain disease on the genetic regulation of gene
expressioninthe humanbrain. In particular, for datasets consisting of
mixed disease-case and control samples, which has been the standard
experimental design to date”®, whether the usual approach of adjusting
gene expression for disease status adequately accounts for the effects
of disease on brain gene expression. Using our combined dataset of
391 disease and control participants and following the methodology

discussedinref.11, werefitted each of the discovered eGenes for each
celltype againstits top regulatory SNP (eSNP) based onthe eQTL Pvalue
using linear mixed effects (LME) models (Fig. 2a). First, we evaluated the
null model (M,), where the expression of each gene was fitted against
clinical covariates (age at death, sex, PMI and disease status as fixed
effects). To account for diagnosis-specific variation within eachsample
source, we used a nested random effect for ‘disease status’ on ‘sample
source’. These effects are important to consider due to potential bias
fromthebrainbankitself and from the clinical diagnosis, whichmight
vary between pathologists and cannot be captured by adding sample
source as afixed effect. We then tested the SNP-gene model (M) witha
similar model configuration, except with the addition of the genotype
tomodelaneQTL association. Ifthe M; was abetter fit than M,,, we con-
sidered this a ‘pass’ and a validation of the initial genome-wide eQTL
result. Across all cell types, all but one association (rs10762316—HK1
expressionin inhibitory neurons) was statistically more adequate than
the nullmodel (without an SNP). Furthermore, eQTL Pvalues from the
M, model correlated well with the discovery Pvalues, suggesting that
the inclusion of nested random effects has a negligible impact on the
overall associations (Supplementary Fig. 7).

We then tested whether any of the cis-eQTL associations were
better modeled with an interaction term between the disease diag-
nosis (D) and the genotype (G) (M,). Depending on cell type, we found
that an average of 16.7-40.8% of eQTL associations had a signifi-
cant interaction with disease (that is, a likelihood ratio test (LRT) ¢
value < 0.05 in favor of the interaction model M,; Fig. 2b,c and Sup-
plementary Table 2). Specific examples of disease-dependent allelic
associations with gene expression are shown for microglial, astro-
cyte, oligodendrocyte and excitatory neuron eQTLs in Fig. 2d-g,
respectively. In the case of the association between rs117934759
and PTPNI2 expression in microglia (Fig. 2d; LRT-P=1.72 x 107",
g =4.14 x10™), the eQTL association was strongly influenced by
Alzheimer’s disease (AD) samples (ADjceractions P =1.11 X 107°). The
association between rs6538127 and NAV3 expression in astrocytes
(Fig. 2e; LRT-P=1.23x107%, ¢ =4.93 x107°) was influenced by
both multiple sclerosis (MS;eraction P = 2.02 x 107°) and AD samples
(AD;peraction P = 2.94 x107%), while rs7932358 and ARHGAP20 expres-
sioninoligodendrocytes (Fig. 2f; LRT-P=4.75x107%,¢=2.10 x10°°)
was influenced by all three disease states (Parkinson’s disease
(PD)interaction' P=3.57x 10_4: Msinteraction' P=1.39 x 10_3; ADinteractionr
P=28.96 x107°). Associations were also observed across disease-case
and control categories, asinthe example of rs60935857 and ZNF880
expression in excitatory neurons (Fig. 2g; PDjeractions P = 2.24 X 1075;
control, P=2.60 x 1075). In most cases, the majority of interactions
were influenced by asingle disease (4,004 of 6,663 total interactions,
60.1%), and alesser proportion of interactions were influenced by all
three diseases (506, 7.6%). Where interactions were influenced by a
single disease, PD was the most common. Microglia were the only cell
type where the majority of interactions were driven by AD cases (Sup-
plementary Fig. 8), highlighting the impact of Alzheimer’s pathology
onmicroglial gene regulation.

Overall, these results are consistent with the interpretation that
adjusting for disease status and random effects does not adequately
account for theinfluence of brain disease on genetic regulation of gene
expressioninthe human brain. The consequences of this areimportant
because the relationship between allelic effects on gene expression
and disease is critical to the interpretation of eQTL pathogenicity*.

Genetic colocalization analysis

Colocalizationis a statistical method that seeks to identify biological
mediators of disease by assessing whether exposures, such as the level
of expression of a gene in a particular cell type and a clinical pheno-
type, share acommon causal variant™', To explore the impact of brain
disease on colocalization, we integrated single-cell-type cis-eQTLs
derived from the full dataset of mixed disease (n=208) and control
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Fig.1|Study design and eQTL analysis. a, Overview of study workflow, created
using BioRender.com. b, Total eGenes per cell type (top, darker bar) versus
eGenes unique to that cell type (bottom, lighter bar). ¢, Replication of single-cell-

type cis-eQTLs (number of eQTLs per cell type indicated by bubble size) using cis-

eQTLs from human cortex bulk RNA-seq dataset (MetaBrain) for both replication

(xaxis) and directionality (y axis). d, Overlap of single-cell-type eGenes with
eGenes from the same single-cell dataset but with counts aggregated across
cellsto simulate an equivalently sized ‘bulk-tissue’ gene expression dataset
(pseudobulk).
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(n=183) brains (following adjustment for disease status as previously
implemented by others”®) with GWAS data from 41 distinct neurologi-
cal, psychiatric, behavioral and structural brain phenotypes (listed
in Supplementary Table 3). We applied COLOC" to all chromosomal
regions containing a genome-wide significant (P < 5.0 x107®) asso-
ciation with a phenotype, based on a1 Mb window around the lead
GWAS SNP.

Intotal, we identified 501 colocalizations at PP.H4 > 0.8 between
thegeneticregulation ofageneinaparticular cell type (gene/cell-type
pair) and genetic risk to one or more of 30 CNS phenotypes (gene/
cell-type/trait triplets; Fig. 3a and Supplementary Table 4). The majority
of colocalizations (74.4%) mapped to a single cell type. In total, 61 of
249 unique genes (24.5%) colocalized with one (or more) phenotype
across multiple cell types, for example, ICAIL and CNS white matter
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Fig. 2| Modeling of disease-interaction cis-eQTLs. a, Overview of the statistical
framework. For each single-cell-type cis-eQTL tested, we first assessed a null
model (M,), testing the association of the gene with clinical and technical
covariates. We then tested whether the base model (M,), whichincludes the

use of genotype to model the observed SNP-transcript association, was better
suited compared to the null model. We repeated this comparison between the
base model and the disease-interaction model (M,), testing whether the use of
aninteraction term on diagnosis was more appropriate. b, Percentage of cis-
eQTLswith asignificant disease interaction (that s, g value < 0.05in favor of the
interaction model M,) for each cell type. ¢, QQ plots of observed versus expected
LRT Pvalues calculated on M, versus M,, for each cell type, showing significant

deviation from the expected distribution. d-g, Examples of single-cell-type
cis-eQTLs from the full cohort (n = 391) where the SNP-gene association has a
significant disease interaction for microglia (d), astrocytes (e), oligodendrocytes
(f) and excitatory neurons (g). The Pvalues for ‘all’ represent the ¢ statistic for the
M, models, whereas the Pvalues for AD, PD and MS represent the Pvalue from the
interaction with genotype within the M, model. The ‘control’ Pvalue represents
the effect of genotype on expression after accounting for interaction effects.
Elements of the boxes show the center line (median), box limits represent upper
and lower quartiles and whiskers represent upper and lower quartils +1.5x IQR.
Alldata points have beenincluded. QQ, quantile-quantile plots; IQR,
interquartile range.

hyperintensities (WMH), which colocalizedin astrocytes (PP.H4 = 0.88),
excitatory neurons (PP.H4 = 0.89), inhibitory neurons (PP.H4 = 0.85)
and OPCs (PP.H4 = 0.89). There was a strong correlation between the
number of colocalizations for a particular phenotype and the number
of genome-wide significant GWAS loci for that phenotype (Pearson
correlation r=0.93, P=2.52 x107%%; Supplementary Fig. 9). Repeated
analysis using cis-eQTLs calculated on ‘pseudo-bulked’ expression
across all cell types revealed that less than half of the colocalizations
would have been detected inan equivalently sized bulk-tissue dataset
(Fig.3b). Conversely, asmall proportion (12.9%) of colocalization was
only detected when combining expression signals across all cell types.

The largest number of colocalizations were for schizophrenia
(ncoi0c = 86) and intelligence (n .. = 79), followed by AD (140 = 35).
Several colocalizations were shared across phenotypic categories, sug-
gesting potential shared etiology (Supplementary Fig.10). InFig.3c-e,
we show the cell-type-specific colocalization probabilities (PP.H4 > 0.8)
for AD, highlighting several genes known to confer risk to AD such as
BINI (PP.H4 i rog1 = 1.0), RASGEFIC (PP.H4 01 = 1.0) and PICALM
(PP.H4 ;100 = 1.0), as well as less well-established AD risk genes such
as SNX3I (PP.H4 g roytes = 0.99), JAZFI (PP. H4 1101 = 0.98; Fig. 3d) and
EGFR (PP.H4 11100015 = 1.0; Fig. 3€).

Wetheninvestigated theimpact of disease on colocalization using
theinteraction framework described above based on thelead colocal-
ized SNP proposed by COLOC. Because this assessment was conducted
on a small number of genes in each cell type, we considered nominal
LRT Pvalue < 0.05indicative of aninteraction between disease diagno-
sis and allelic regulation of gene expression. Across the full set of 501
colocalizations, 118 (23.6%) showed an interaction between their lead
colocalized SNP and disease status (Fig. 4a and Supplementary Table 5).
For example, for the colocalized triplet TP53INP1-oligodendrocytes-
AD (PP.H4 =0.91), thelead COLOC SNP rs4582532 showed a significant
preference for the interaction model (LRT, P=1.45 x 107%), influenced
by PD samples (PD;eractions P = 8-83 x 107%; Figs. 4¢,d). Similarly, the lead
colocalized SNPrs1691364 for the triplet RAB38-excitatory-neurons—
FTD (PP.H4 = 0.81) showed a preference for the interaction model
(LRT, P=1.10 x107%) with interaction effects from PD and AD samples
(PDiperactions P = 1.56 X 1073 ADyycraction P = 349 X 107 Figs. 4e,f).

MR
The above-mentioned analysis highlights the presence of dynamic
disease-dependent effects on genetic regulation of gene expression

in the human brain. In contrast, a principled implementation of
eQTL-anchored MRrequires gene expression profiles that are uncon-
founded by disease status. We, therefore, restricted our MR analy-
sis to the subset of 183 control participants with no clinical history
of brain disease and no evidence of brain disease on neuropatho-
logical examination. Using only control samples, we repeated the
single-cell-type cis-eQTL discovery using the same methodology as
for the full dataset based on residual expression adjusted for clinical
covariates (age at death, sex, PMIand sample source as fixed effects)
and optimized PCs as fixed covariates for each cell type. We identi-
fied 10,470 eGenes (FDR < 5%) across the eight cell types, represent-
ing 7,204 unique eGenes (Supplementary Fig. 11 and Supplementary
Table 6). As previously, most eGenes (5,046, 70.0%) were observed in
only asingle cell type.

Despite normal neuropathology and no history of neurological
disease, we considered the possibility that occult (premanifest) brain
disease might still be present in control samples, particularly in sam-
ples from aged participants. To explore potential age-related allelic
effects on gene expression, we applied the interaction methodology
described above and selected age as the covariate that interacts with
the genotype. Taking the lead cis-eQTL SNP for each eGene, 1,605
(15.3%) were significantly better modeled with age-genotype as an
interaction term (g < 0.05). This proportion varied greatly by cell type,
ranging from 7.9% (292 of 3,698) in excitatory neurons to 45.1% (83 of
184) in pericytes (Supplementary Table 7). Across all age-interaction
eQTLs,10.8-29.4% (depending on cell type) overlapped with disease—
interaction eQTLs, and these loci were therefore excluded from the
downstream MR analysis.

To select appropriate instruments for MR, we first repeated the
colocalization analysis using control-only eQTLs under the single
causal variant hypothesis (PP.H4) and using the same 41 CNS phe-
notypes assessed above. In total, we identified 256 colocalizations
(PP.H4 > 0.8) across 26 CNS phenotypes (Supplementary Table 8), of
which 91(35.5%) were not present in the larger, higher-powered mixed
disease-case and control eQTL dataset (Fig. 4h and Supplementary
Fig. 12). For example, the colocalization triplet PEX13-excitatory-
neurons—MS was only present in the control cohort (PP.H4 = 0.87)
despite asample size less than halfthe full dataset (PP.H4¢,;4acasec = 0.08;
Fig. 4g). Analysis of the lead SNP for this colocalization, rs1177284,
revealed a significant interaction with all disease categories
(LRT, P=3.66 x 107%; AD, eraction P = 4.08 X 102 PDeraction, P = 1.83 X 102

Fig. 3| Colocalization analysis for brain phenotypes using cell-type eQTLs.
a, Summary of colocalizations (PP.H4 > 0.8) per cell type and trait. Each bar chart
iscolored by cell type. Y axes indicate the number of colocalizations in that cell
type. Asterisks indicate the cell type with most colocalizations with a particular
trait. b, Number of unique colocalized (PP.H4) genes from single-cell-type and
‘pseudobulk’ eQTL data. ¢, Single cell-type colocalizations (PP.H4 > 0.8) for

AD (genes onx axis and cell types on y axis). d, Colocalization Manhattan plots
for the association of JAZF1 expression in microgliaand AD risk. Each point
represents the —log,,(P) for an SNP and its association with gene expression
(top) and disease risk (bottom). e, Colocalization Manhattan plots for the
association of EGFR expression in astrocytes and AD risk. ADHD, attention

deficit hyperactivity disorder; ALS, amyotrophic lateral sclerosis; AN, anorexia
nervosa; AUDIT, alcohol use disorder; INT, intelligence; SCZ, schizophrenia; BIP,
bipolar disorder; HL, hearing loss; CBV, cerebellar volume; CSA, cortical surface
area; FTD, frontotemporal dementia (behavioral variant); HV L/R, hippocampal
volume (left/right); ICV, intracranial volume; INS, insomnia; LAN, reading and
language skills; LBD, Lewy body dementia; MCP, multisite chronic pain; MDD,
major depressive disorder; NDD, neurodegenerative disease; NEUR, neuroticism;
PVS, perivascular space burden; RLS, restless legs syndrome; SCV, subcortical
volume; SD, sleep duration; STR, stroke; THV, whole thalamus volume; chr,
chromosome.
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control-only human braingene expression datain enabling enhanced
interpretation of disease-associated variants.

Following colocalization analysis, we performed linkage disequi-
librium pruning (> < 0.01) based on the lead SNP from COLOC and
retained independent SNP-transcript associations as instrumental
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variables (IVs; >90% of exposures retained a single IV). Before MR, we
assessed the robustness of the selected IVs using the F statistic" and
retained IVs with an F statistic >15 (Supplementary Fig. 13). Excluding
the MAPT and HLA loci, we found significant MR evidence for an asso-
ciation between genetically proxied transcript levels in a specific cell
type and atrait for 94 unique genes across 22 diverse CNS phenotypes
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(140 gene/cell type/trait triplets; Fig. 5a and Supplementary Table 9).
The majority (81.9%) of genes inferred to have a putative causal associa-
tionwitha CNStrait were foundinasingle celltype.For13 genes, there
was evidence that a change in expression was associated with more
than one CNS phenotype (Supplementary Fig. 14).

While careful selection of IVs, as described above, minimizes the
risk of spurious MR findings, the application of single-instrument MR
is sensitive to the particular choice of variants and ignores the major-
ity of genetic data in the colocalized region. As a technical validation
of these results, therefore, we implemented the multi-instrument
MR method principal components analysis-inverse variance weight-
ing (PCA-IVW)', which takes account of the full set of variants in the
colocalized region. Of the 140 significant MR hits, 138 (98.6%) were
replicated using PCA-IVW with the same direction of effect (Supple-
mentary Table 9).

In addition to inferring associations between genes, cell types
and outcomes, MR in control participantsinforms the directionality of
the relationships unconfounded by disease-induced changes in gene
expression. Knowledge of the directionality of a putatively causal rela-
tionshipis critical toinforming the therapeutic strategy (target activa-
tionorinactivation). For example, among the genes with MR evidence
of association with AD (Fig. 5b), genetically predicted increased EGFR
expressionisassociated withincreased AD risk (MR—P,y,, =2.35x107°,
Bww = 0.14), supporting the potential for repurposing brain-penetrant
EGFR inhibitors to the treatment of AD". Similarly, we observed an
association between genetically predicted increased expression of
GPNMB and PD in astrocytes (MR—P,,,y =1.02 x 1078, B,y = 0.27) and
OPCs (P =147 x1078, B,,w = 0.15), and this directionality of effect
between GPNMB and PD was recently supported by the experimental
demonstration thatloss of GPNMB activity reduces cellular internaliza-
tion of fibrillar a-synuclein and related pathogenicity'®.

Evaluation of single-cell MR inferences in the human proteome
Because associations between genetically proxied transcripts and
outcomes are expected to be mediated by agene’s protein product, we
assessed the extent to which the association of a CNS outcome with an
exposure converges across bothtranscript and proteinlevels. Here we
firstused data oncirculatingblood protein levels from the UK Biobank
Pharma Proteomics Project (UKB-PPP)”, which assayed 2,923 plasma
proteins in 54,219 participants. Of the 94 genes with single-cell MR
evidence to support a causal association with one or more CNS phe-
notypes, 15 (16.0%) had ameasurable proteinin plasma, representing
20 gene-trait pairs. For each pair, we re-assessed the evidence for a
single causal variant between the protein’s expression in plasma and
its paired CNS outcome, finding replicable colocalization for 16 (80%)
of the gene-trait pairs at PP.H4 > 0.8. Exposure IVs were selected as
described above, with median of 7independent IVs per plasma protein
(range =1-9). Using two-sample MR, 11 of 20 gene-trait pairs (55%) had
asignificant association between the change in the level of the gene’s
protein product in plasma and the same CNS outcome identified by

single-cell MR (Fig. 5¢,d, Supplementary Table 10 and Supplementary
Fig.15). Examples of proteins with a significant association between
achange in their level in plasma and a CNS phenotype that were also
putatively causal in single-cell MR include CR1-AD (IVW,yj,5ma protein—
P=2.10x102, B=0.11), GPNMB-PD (IVW,s51ms procein—P = 1.80 X 107,
B=0.34) and TNFRSFIA-MS (IVW ,jpqma proein—P = 1.02 X 1072, B =2.14).
The independent replication of these and other (Fig. 5c,d) single-cell
MRinferences using plasma proteins highlights them not just as candi-
date drugtargets for disease modification but as candidate peripheral
biomarkers for use as intermediate phenotypes predictive of clinical
outcomes following therapeutic intervention.

Giventhe sparsity of proteins assayed by UKB-PPP, we attempted
to validate genes associated with CNS outcomes by single-cell MR
using a second proteomic resource derived from the brains of 330
older adults®. Although of limited replication value due to the inclu-
sion of disease cases (31% of participants had a diagnosis of AD) and
the unavailability of genome-wide SNP data precluding independent
colocalization analysis, of the 94 single-cell MR genes identified in our
study, 44 (46.8%) had ameasurable protein level (50 gene-trait pairs).
From these, we selected proteins with significant (FDR < 5%) protein
QTLs (pQTLs) and retained independent IVs (r* < 0.01) for 21 proteins
representing 22 gene-trait pairs. Of these 22 pairs, 20 (90.9%) had a
significant (IVW P < 0.05) association to the same trait as predicted
by single-cell MR, including GPNMB-PD (IVW,4in protein—P = 2.48 x 107%,
B=0.39), SCFD1-amyotrophic lateral sclerosis (IVWy,,in protein—
P=1.14x10"%, B=1.61) and ICAIL-WMH (IVW,;in prorein—P=2.51x 1072,
[ =1.27;Fig. 5e, Supplementary Table 11 and Supplementary Fig. 16).

Discussion

MR analysis using molecular phenotypes offers an approach to prior-
itize drugtargets, inform the cell typesin which they act and identify
biomarkers predictive of clinical outcomes. A key finding from our
study was the extent to which brain disease impacts the relationship
between genetic variation and gene expressioninindividual cell types
and theimplications of this for interpreting eQTL pathogenicity. Nota-
bly, we show that disease-dependent allelic effects on gene expression
are not fully accounted for by adjusting gene expression for disease
status, which has been the standard approach to date (for example,
refs. 7,21). In contrast, a principled implementation of MR requires
genetic variants instrumenting proximal molecular exposures that
predate the onset of disease. To identify the effect of genes in single
celltypes unconfounded by brain disease, we undertook a principled
analysis using only nondiseased control human brain samples. Across
26 diverse CNS phenotypes, we identified 256 gene-cell-type-trait
triplets supported by colocalization, of which 35.5% were not detected
inthelarger, better-powered mixed disease-case and control dataset.
This highlights the value of control-only samples in the interpreta-
tion of eQTL pathogenicity, as well as the potential for putatively
causative associations to be obscured when mixing disease-case and
control samples.

Fig. 4 |Impact of disease on colocalizations. a, Overview of colocalizations
(PP.H4 > 0.8) aggregated across cell types for 30 CNS traits, indicating the total
number of colocalizations for a given trait and the proportion with a disease
interaction. b, Colocalization between TP53INPI expression in oligodendrocytes
and AD in the full cohort (left, PP.H4 = 0.91) and the control-only cohort

(right, PP.H4 = 0.04). Each point represents the —log,,(P) for an SNP and its
association with the gene (top) and disease (bottom). ¢, Cis-eQTL plot showing
the effect of disease samples in the full cohort (n = 391) on the association
between the lead colocalized SNP rs4582532 and TP53INPI expression in
oligodendrocytes. The Pvalues for ‘all’ represent the ¢ statistic for the M; models,
whereas the Pvalues for AD, PD and MS represent the Pvalue from the interaction
with genotype within the M, model. The ‘control’ Pvalue represents the

effect of genotype on expression after accounting for interaction effects.

d, Colocalization between RAB38 expression in excitatory neurons and

behavioral frontotemporal dementia in the full cohort (left, PP.H4 = 0.81) and
the control-only cohort (right, PP.H4 = 0.06). e, Cis-eQTL plot showing the effect
of disease samples in the full cohort (n = 391) on the association between the
colocalized lead SNP rs16913634 and RAB38 expression in excitatory neurons.
Elements of the boxes show the center line (median), box limits represent upper
and lower quartiles and whiskers represent upper and lower quartiles +1.5x IQR.
All data points have been included. f, Colocalization between PEX13 expression in
excitatory neurons and MSin the full cohort (left, PP.H4 = 0.08) and the control-
only cohort (right, PP.H4 = 0.87). g, Cis-eQTL plot showing the effect of disease
samples in the full cohort (n =391) on the association between the colocalized
lead SNP rs11772842 and PEX13 expression in excitatory neurons. h, Comparison
of colocalizations discovered in the full mixed disease-case and control dataset
(n=391) versus control samples only (n=183).
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Methodologically, we used colocalization toidentify asingle com-
mon geneticregionina particular cell type beforeIV selection for MR.
As noted by others, the inclusion of cis-regulated instruments identi-
fied by prior colocalization has the advantage of limiting the likelihood
of confounding by horizontal pleiotropy, and target-indication pairs
selected based on combined evidence from both colocalization and
MR have a higher likelihood of regulatory approval after clinical tri-

the colocalized locus as genetic instruments. Although this avoids
inflating the MR results from multiple correlated instruments, the
number of independent instruments for gene exposure in a single
cell type was often small, limiting our ability to effectively control for
false discovery?®.

Akey question arising from our observation of disease effects on
allelicassociations with gene expressionis whether gene-trait associa-
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Fig. 5| MRresults for brain phenotypes at gene and protein expression levels.
a, Overview of significant MR results (IVW fixed effects P < 0.05 or Wald ratio

for single instruments). Trait abbreviations are as per Fig. 3b. b, IVW effect

size and directionality for genes with MR evidence for an association between
the change in gene expression in the indicated cell type and risk of AD.

Each point represents the IVW effect size for a given cell type, with error bars
(effect size +1.96x s.e.) indicating the 95% confidence interval. A positive effect
size means anincrease in expression is associated with anincrease in disease risk

(and vice versa), whereas a negative effect size indicates an inverse association
between gene expression and disease risk. ¢, Overview of single-cell gene-trait
pairs replicated by colocalization analysis and/or MR using plasma pQTLs
derived from the UKB-PPP.d, Overview of MR IVW Pvalue associations for pQTLs
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brainsamples represent plausible causative associations. A causative
interpretation would require either that the genetic regulation of
the exposure in a cell type is unaltered between disease and control
samples or that the effects of genetic variation are exerted only in the
presence of pathology. In the latter scenario, risk alleles could be con-
ceived as an ‘Achilles” heel’”, accelerating disease progression in the
presence of pathology such that they manifest as disease susceptibil-
ity alleles in genetic association studies. As such, we propose that the
study of both control and disease samplesis complementary in terms
of identifying plausible drug targets for risk mitigation and disease
treatment. However, because treatment targets may be repurposed for
risk mitigation and vice versa, itisincumbent on researchers to clarify
the relationships between exposures and outcomes in both diseased
and nondiseased brains.

Although the value of single-cell gene expression data is well-
established, we highlight that of the hundreds of colocalizations
reported here, less than half would have been detected using cis-eQTLs
derived from an equivalently sized bulk-tissue gene expression data-
set. Conversely, we noted that asmall proportion of eGenes were only
detected when combining gene expression signals across all cell types,
suggesting leveraging shared genetic regulation across cell types may
provide additional useful gains in power to detect some SNP-transcript
associations, albeit at the expense of information about cell-type
specificity.

In situations where multiple cell types are implicated in a par-
ticular target-indication pairing, our analytical framework is unable
to determine if this reflects a causal mechanism manifesting across
multiple celltypes or simply shared genetic regulation across different
cell types. A further limitation is the lack of available large GWAS for
many brain phenotypes. In this study, we only included genome-wide
significant GWAS loci and implemented a strict PP.H4 cut-off of 0.8 or
higher. In some circumstances, exploratory discovery analyses at more
liberal GWAS Pvalues and lower PP.H4 cut-offs may be anappropriate
first step.

In contrast to the limited power of current single-cell brain data-
sets, the UKB-PPPis a well-powered proteomic dataset for pQTL map-
ping in human plasma. Of the 140 gene-trait associations identified
by single-cell MR in control participants, only 20 included a target
protein measurable in plasma, but of these, we observed high rates
of replication (80% for colocalization and 55% by MR). Given the sub-
stantial power of UKB-PPP to detect multiple independent IVs for these
proteins (median of 7 per candidate target), UKB-PPP provides arobust
andindependentreplication of the single-cell-type MR inferences for
thesetargets. The high level of replicationin plasmaalso supports the
principle that assay of circulating proteinsidentified by MR in the brain
may also have value as peripheral biomarkers predictive of clinical
outcome and therapeutic response.

In addition to providing a principled framework for assessing
causal relationships, our implementation of MR provides informa-
tion on the directionality of the association between exposure and
outcome in a specific cell type. Knowledge of the direction of effect
is necessary to guide the directionality of the therapeutic interven-
tion, while knowledge of the cell types viawhich genes act canaid the
design of more precise preclinical experiments, including the assess-
ment of target engagement in relevant tissues. The identification of
shared risk factors across disease categories presents opportunities
for shared preventative strategies, drug repurposing and prediction
of adverse events®.

In conclusion, this study reports a generalizable framework for
the principled conduct of MR in single cell types. The study advances
our understanding of the influence of disease on eQTLs in the human
brain and highlights the importance of considering disease effects
when assessing eQTL pathogenicity. We prioritize candidate targets
forbraindiseaseintheir cellular context, and by using healthy control
brain tissue, we establish a resource for the unbiased and enhanced

interpretation of GWAS risk alleles for humanbrain disease, structure
and behavior.
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Methods

Ethics statement

We complied with all relevant statutory and ethical regulations
approved by the Imperial College Research Ethics Committee regard-
ing the use of human postmortem tissue.

Dataset summary

snRNA-seqand genotype datawere generated on 409 deceased individ-
uals of European ancestry from four datasets. These include ‘MRC_60’
(newsamples generated in-house, 60 control individuals), ‘Roche_PD’
(new samples generated in-house, 92 individuals, including 70 PD
cases and 22 controls), ‘Bryois_192’ (192 total, including 105 mixed
disease and 87 control cases obtained from their recent publication’)
and ‘MATTHEWS’ (new samples generated in-house consisting of 65
individuals splitinto 38 AD cases and 27 controls), a subset of which
have been used in published work®*. Following quality control (QC)
and data harmonization, we retained samples from a total of 391 indi-
viduals (183 control brains and 208 diseased brains).

Samples

Ethics approval for the work carried out on postmortem human brain
tissue was given by the Wales REC3 Ethics Committee (REC reference 18/
WA/0238).Study analyses complied with the Imperial College Research
Ethics Committee (ICREC reference 14/02/11). At the individual brain
banks, postmortem, fresh tissue samples were snap-frozen in liquid
nitrogen vapor for 20 min before being stored in a -80 °C freezer for
thelongterm. Immunohistochemistry was undertaken on all samples
using adjacent brain tissue (same block) and assessed for -amyloid,
Tau, TDP43, a-synucleinand p62. All hematoxylin and eosin stains were
performed by hand. In the selection of control samples, we excluded
all samples with a premortem history of neurological or psychiatric
disease (at any time), and in all cases, there was no evidence of neu-
rodegenerative or other significant diseases on neuropathological
examination.

Nuclei isolation and snRNA-seq
Forthe MRC_60 dataset, snRNA-seq datawere generated at the Imperial
College onthe prefrontal cortex and hippocampus samples ascertained
from 60 unrelated participants ascertained from the Imperial College,
Oxford University, Edinburgh University or Amsterdam Medical Center
brain tissue banks. Nuclei were isolated as previously described?, with
aslightly extended douncing during tissue lysis (see ref. 29 for detailed
protocol). Then, snRNA-seq data were generated using the 10x Single
Cell Next GEM Chip targeting a minimum of 5,000 nuclei per sample
and libraries prepared using the Chromium Single Cell 3’ Library and
Gel Bead v3 kit according to the manufacturer’s instructions. cDNA
libraries were sequenced using the lllumina NovaSeq 6000 system at
aminimumsequencing depthof 30,000 paired-end reads per nucleus.
For the Roche_PD dataset, nuclei were isolated using the Nuclei
PurePrep NucleilsolationKit (Sigma-Aldrich) with the following modi-
fications. The tissue was lysed in nuclei pure lysis solution with 0.1%
Triton X-100, 1 mM dithiothreitol (DTT) and 0.4 U pl” SUPERaseln
RNase Inhibitor (Thermo Fisher Scientific) freshly added before use
and homogenized with the help of first a23G and then a 29G syringe.
Cold 1.8 M sucrose cushion solution, prepared immediately before
use with the addition of 1ImM DTT and 0.4 U pl™ RNase Inhibitor, was
added to the suspensions before they were filtered through a 30 pm
strainer. The lysates were then carefully and slowly layered on top of
1.8 M sucrose cushion solution previously added into new Eppendorf
tubes. Samples were centrifuged for 45 min at 16,000g at 4 °C. Pel-
lets were resuspended in nuclei storage buffer with RNase inhibitor,
transferredin new Eppendorftubes and centrifuged twice for 5 min at
500gat4 °C. Finally, purified nuclei were resuspended in nuclei storage
buffer with RNase inhibitor, stained with trypan blue and counted using
Countess Il (Life Technology). After the count, nuclei permeabilization

was carried out following the demonstrated protocol for single-cell
multiome ATAC + Gene Expression sequencing from 10x Genomics.
A total 0f 12,000 estimated nuclei from each sample were used for
the transposition step and then loaded on the Chromium Next GEM
Single Cell ChipJ. ATAC library and gene expression library construc-
tion was performed using the Chromium Next GEM Single Cell Mul-
tiome ATAC + Gene Expression kit according to the manufacturer’s
instructions. Libraries were sequenced using the Illumina NovaSeq
6000 System and the NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles),
aiming at aminimum sequencing depth of 30k reads per nucleus.

For the MATTHEWS dataset, homologous fresh frozen brain tis-
sue blocks from the entorhinal cortex, middle temporal gyrus and
somatosensory cortex were cryosectioned at 80 um, 200 mg of gray
matter was collected in RNAse-free Eppendorf tube and nuclei were
isolated as previously described”. All steps were carried out onice or
at 4 °C. Tissue was homogenized in buffer (1% Triton X-100, 0.4 U pl™
RNAseln + 0.2 U pl™ SUPERaseln, 1 pl (1 mg mI™) DAPI) using a2 mlglass
douncer. The homogenate was centrifuged at 4 °C for 8 min at 500g,
and the supernatant was removed. The pellet then wasresuspendedin
ahomogenization buffer and filtered through a 70 pm filter followed
by density gradient centrifugation at 13,000g for 40 min. The super-
natant was removed, and nuclei were washed and filtered in PBS buffer
(PBS + 0.5 mg mI™ BSA + 0.4 U ul* RNAseln + 0.2 U pl™ SUPERaseln).
Nuclei were pelleted, washed twice in PBS buffer and resuspended in
1 ml PBS buffer. In total, 100 pl of nuclei solution was set aside on ice
for single nuclear processing. Isolated nuclei stained with acridine
orange dye were counted on a LUNA-FL Dual Fluorescence Cell Counter
(Logos Biosystems, L20001). Approximately 7,000 nuclei were used
for 10x Genomics Chromium Single Cell 3’ processing and library
generation. All steps were conducted according to the 10x Genomics
Chromium Single Cell 3’ Reagent Kits v3 User Guide, with eight cycles
of cDNA amplification until fragmentation, where 25 ng of amplified
cDNA per sample was taken through for fragmentation. The finalindex
PCRwas conducted at14 cycles.cDNA and library prep concentrations
were measured using the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific, Q32851), and DNA and library preparations were assessed
using the Bioanalyzer High-Sensitivity DNA Kit (Agilent Technolo-
gies, 5067-4627). Pooled samples at equimolar concentrations were
sequenced on an lllumina HiSeq 4000 according to the standard 10x
Genomics protocol.

Genotyping

For the MRC_60 dataset, donor DNA from samples processed at the
Imperial College were genotyped using the Illumina Infinium Global
Screening Array (v2.0). The Roche_PD dataset was genotyped with the
same method described previously, as well as the Bryois_192 dataset
(which includes whole-genome sequencing)’. For the MATTHEWS
dataset, DNA was extracted from human postmortem tissue using the
DNeasy kit (Qiagen) with the recommended protocol. Briefly, samples
were lysed overnight with proteinase K. Lysate was loaded into DNeasy
Mini spin columns with supplied buffers for centrifugation rounds
before the elution of DNA. DNA concentration was determined using a
NanoDrop (Thermo Fisher Scientific) and Qubit assay (Thermo Fisher
Scientific). Genotyping was performed at Cambridge Genomic Services
at the University of Cambridge with the UK Biobank Axiom Array. All
genotypes then underwent imputation on the Michigan Imputation
Server (v.1.6.3) using the Haplotype Reference Consortium (v.rl.1)
reference panel of the European population®**' with a prephasing using
Eagle (v.2.4)** and imputation using Minimac4 (ref. 31).

Genotype data from each vcf underwent a series of quality con-
trol steps using PLINK (v.2.0)**. SNPs with an imputation score <0.4
were removed from the analysis, as well as SNPs with missingness >5%.
Multi-allelic (>2 alleles) SNPs were also excluded from the analysis, as
wellas SNPs deviating from Hardy-Weinberg equilibrium (P<1x 107%).
Wealsorestricted SNPsinautosomal chromosomes1-22 and removed
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any individuals with more than 2% missing genotypes. Before merg-
ing, each vcf underwent a final check using beftools (v.1.18)** against
the latest ENSEMBL hg38 genome build fasta file*, flipping alleles
and genotype calls for mismatches. Following merging, we excluded
all individuals with kinship >0.2 (indicating duplicated individuals).
Finally, we retained 5.20 million high-quality SNPs in 391 individuals.

Single-cell analysis

Both the raw sequencing files from the MATTHEWS datasets and
Bryois_192 were mapped using CellRanger to the GRCh38 reference
genome as previously described”. For the MRC_60 dataset, the raw
sequencing reads were mapped to the GRCh38 genome and quantified
gene counts as unique molecular identifiers (UMIs) using Cell Ranger
count (v.5.0.1). We counted reads mapping to introns as well as exons
by --include-introns option in Cell Ranger (v.5.0.1). As shown in the
earlier studies, this results in a greater number of genes detected per
nucleus, as well as better cell-type classification®*¥. Finally, the refer-
ence genome was created using Cell Ranger mkref (v.5.0.1) with default
settings®. Inaddition, sample pools were demultiplexed based on their
genotype using the Demuxlet algorithm with the default settings, as
previously described**°. The variable SNPs between the pooled indi-
viduals were used to determine which cell belongs to which individual
and to identify doublets. Droplets called doublet by Demuxlet were
removed from downstream analyses. For the Roche_PD dataset, raw
FASTQs were aligned to the GRCh38 genome using CellRanger-ARC
count (v.2.0.2). After mapping, RNA counts were extracted to construct
Seurat objects.

On the MATTHEWS, MRC_60 and Roche_PD datasets, we also
assessed the proportion of empty droplets using the EmptyDrops tool
(from DropletUtils v.1.22) package, retaining nuclei withan FDR < 0.01
(ref. 41). Seurat objects were generated using Seurat (v4)*, retaining
nuclei with at least 500 UMIs in 300 features and with less than 5%
mitochondrial content. We further identified doublets using Doublet-
Finder (v.2.0), which were then removed®. Finally, all samples within
each dataset were integrated using reciprocal PCA within Seurat. The
final QC'd merged Seurat object within each dataset was then used
to assign cell types using canonical markers, specifically excitatory
neurons (SLC17A7 and SATB2), inhibitory neurons (GAD1 and GAD2),
astrocytes (AQP4 and FGFR3), microglia (C1QB and CSFIR), OPC (PDG-
FRA and VCAN), oligodendrocytes (MAG and MOG), pericytes (RGSS5)
and endothelial cells (CLDNS5). Finally, we performed ambient RNA
removal using DecontX** using default parameters and cell-type labels
and obtained corrected counts for each cell in all datasets (including
Bryois_192).

eQTL mapping

The ambient RNA-corrected count matrices were extracted from each
annotated cell type, after which the counts for all cells were summed
per individual to obtain a single aggregated count value per cell type
perindividual (pseudobulking). Only individuals with at least ten cells
inaspecific celltype were included. Following aggregation, we normal-
ized count matrices using alog transformation on the counts per mil-
lion values obtained using the edgeR package (v.3.42)*. Toincrease the
comparability across transcripts, we scaled the expression matrices.
Consequently, theinterpretation of the expression valuesis thateach
unitrepresentsachangeinones.d. Only genes expressedinatleast 5%
of individuals were kept for further analysis.

For both the controls-only and full datasets, the mapping of
cis-eQTLs was performed in two steps. We first fitted a linear model
for the expression of each gene against clinical and technical covari-
ates, whichincluded age, sex, PMI, sample source and diagnosis as fixed
effects, from which we obtained the residual gene expression. Cis-eQTL
discovery was performed using MatrixEQTL (v2.3)? and a cis-distance
of 1 Mb as input to the cisDist parameter, including all technical and
clinical covariates. We included genotype PCs to account for potential

population structure and tested the optimal number of expression PCs
on the residual expression, specifically for each cell type to be added
aslinear covariates for a final model:

E ~ G + expression PCs (1 — n) + genotype PCs(1-15),

where Fistheresidual gene expression corrected for covariates, Gis the
genotype dosage for aspecificSNPand PCs (1 - n) are dependent onthe
maximum eGenes discovered for n PCs in a specific cell type. We then
filtered the MatrixEQTL outputs by FDR using the Benjamini-Hochberg
method* for both sets of eQTL discoveries.

Interaction modeling
Fromthe eQTL discovery on the full dataset (controls + disease cases),
we obtained all the eQTLs for each cell type below 5% FDR. Using the
top SNP for each gene, we re-assessed the reported associations using
an LME model with the use of the ImerTest package (v.3.1)".

We first tested an LME model that can be categorized as the null
model (M,), modeling the gene versus all covariates:

E ~ 1+ diagnosis + age + PMI + sex + (1 + diagnosis|sample source)

+expression PCs(1 — n) + genotype PCs(1 — 5).

The replication model (M,), which includes the addition of geno-
type Gtoreplicate the MatrixEQTL model:

E ~ 1+ G+ diagnosis + age + PMI + sex + (1 + diagnosis|sample source)

+expression PCs (1 — n) + genotype PCs(1-35).

Finally, the interaction model (M,) to test for interactions between
diagnosis D and genotype G:

E ~ 1+ G x diagnosis + age + PMI + sex + (1 + diagnosis|sample source)

+expression PCs (1 — n) + genotype PCs(1-5).

Foreachmodel, we performed an LRT implemented inthe package
ImerTest (v3.1)* between the baseline and the more complex model
(M, versus M,, and if significant, M, versus M,)*® to assess which model
better fits a particular SNP-gene association. In the LRT, a significant
test (P < 0.05) suggests that a complex model is statistically more
appropriate.

For the models using age as an interaction term, we restricted
the analysesto the control-only dataset for simplicity, asit may not be
possible to disentangle the combined effect of age and the presence
of disease. In this scenario, we used the following model:

E ~1+ G =age + PMI + sex + (1jsample source)

+expression PCs (1 — n) + genotype PCs(1-5).

Finally, we performed multiple-testing correction on the LRT P
values by using the g value package (v.2.34)*’ and labeled each associa-
tion with an LRT g value < 0.05 as better modeled with an interaction
term, asimplemented previously".

Genetic colocalization

We first processed summary statistics from each GWAS study using
the format_sumstats function from the MungeSumstats package
(v.1.10.1)*° to harmonize column names. In cases where effect sizes
and s.e. were missing, we enforced the imputation of these values
usingtheimpute_se = TRUE and impute_beta = TRUE parameters of the
format_sumstats function. Inthe majority of cases, we also lifted over
the SNP positions from hgl9 to hg38. To select regions for colocaliza-
tion analysis, we first scanned each GWAS using the Id_clump function
of theieugwasr (v.1.0.1)°' package to retain the top variantin windows
of 1Mb and avoid overlapping regions. We then repopulated each
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window with the full set of SNPs from the GWAS summary statistics to
getafull set of regions to testin a colocalization setting. Regions with
less than 100 SNPs were excluded from colocalization analysis. In addi-
tion, we aggregated genes in the MAPT and HLA loci in our results by
cell type/trait given the potential inaccuracy in individual transcript
quantification at these loci*>**, but report each of these individually
inSupplementary Tables 4 and 8.

For each trait, we obtained the MatrixEQTL outputs and inter-
sected the SNPs with the GWAS summary statistics. We then iteratively
performed genetic colocalization using the coloc.abf function from
the COLOC package (v.5.2.3)", each time testing one cell-type/gene
combination (such as microglia/PICALM) as trait 1 against the GWAS
astrait 2. For example, in asingle region of 1 Mb containing five genes,
we would perform 5 (number of genes) x 8 (number of cell types) =40
colocalization tests. To estimate sdY, we used available minor allele
frequency (MAF) information from each SNP for each study; sdY was
setas1foreQTL associations given the standardization of expression
values before eQTL mapping. In addition, we specified type = ‘cc’ for
case—-control traits and type = ‘quant’ for quantitative traits as well as
the cis-eQTL set. For downstream analyses, we retained colocalizations
with a posterior probability (PP.H4) above 0.8.

MR

Using the colocalization results of the control-only dataset, we car-
ried out MR on traits (cell type/gene/GWAS) with a colocalization
PP.H4 > 0.8.Inaddition, genesin the HLA and MAPT loci were excluded
completely. Centering the filtering around the proposed lead SNP by
the colocalization analysis asthe IV, we kept all eQTLs with an associa-
tiontothe genebelow 5% FDR and confirmed that the F statistic values
were all above 15 to ensure that all IVs were robust (Supplementary
Fig.13). Toensure independence between candidate instruments, we
further excluded correlated genetic variants (> > 0.01). We then applied
two-sample MR using the mr_ivw function from the MendelianRand-
omization package (v.0.10)*, as more than 90% of traits only retained a
single IV, where the analysisis equivalent to the Wald ratio. In all cases,
we used the cell-type-specific effect sizes as the exposure and the GWAS
effect size as the outcome, where results with IVW Pvalue < 0.05 were
considered significant.

To further cross-validate these results, we implemented
PCA-IVW', Briefly, this method summarizes the genetic associations
of all genetic variants within the region into orthogonal PCs. Correla-
tion matrices were obtained using the Ild_matrix_local() function from
the ieugwasr package, using the 1000 Genomes European reference
dataset’. We first decomposed the genetic correlation matrix into
PCs that explain 99.9% of the variance across the set of genetic vari-
ants, which were then used as independent IVs for MR analysis using
the VW method.

Assessment of MR genes at the protein level

We obtained the full published genome-wide summary statistics for
each assessed protein in the brain proteome study detailed in ref. 4,
as well as all proteins (2,940) in the European (discovery) cohort as
reported by the UKB-PPP", and kept summary statistics that inter-
sected with our MR genes. Because the reported summary statistics
onlyincluded nominal Pvaluesin the UKB-PPP summary statistics, we
performed multiple-testing corrections on the associations using the
R (v.4.3.3) p.adjust() function specifying FDR*. To independently test
acausal association between genetically regulated proteinlevelsand a
trait, we applied the same methodology as for the cell-type eQTLs. We
took all SNPs within the genome-wide significant regions of each trait
(500 kb of each side of thelead GWAS SNP for atotal 1 Mb window) and
filtered associations <5% FDR. We then removed correlated genetic vari-
ants (* > 0.01) using the Id_clump() method from the ieugwasr package
and then harmonized the effect sizes based on reported effect alleles
(A1) in the pQTL summary statistics and GWAS summary statistics

(A2 after formatting with MungeSumstats). We then performed MR
using the mr_allmethods() function on the inputs and retained asso-
ciations with IVW P value < 0.05 (ref. 55). In addition, we performed
genetic colocalization on the UKB-PPP associations (which supplied
genome-wide effect sizes and s.e.) using the same method as the cell-
type eQTL colocalizations, specifying the prior probability p_12=0.01
given our previous evidence of cell-type-specific colocalization.

Figures
Most figure panels were generated programmatically in R using the
package ggplot2 (ref. 56) or with BioRender (full license) (Fig. 1).

Statistics and reproducibility

Statistical analyses have been described throughout the manuscript,
figurelegends and Methods, and performed using R (v.4.3.3), including
associated packages (Methods). Version numbers from each package
have been included. No statistical analysis was used to predetermine
samplessize, and excluded samples are described in the Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw snRNA-seq and genotype data from the Bryois_192 dataset are
available as per their publication at the European Genome-Phenome
Archive (EGA) under accession code EGASO0001006345 (ref. 7). Raw
snRNA-seq and genotype datafrom the MATTHEWS dataset are hosted
atSynapse under accession code syn54083444. Newly generated raw
snRNA-seq and associated genotype data (MRC_60 and Roche_PD)
are available under accession code EGAS50000000687. Genotype
dataare considered personal data and are therefore under protected
access by the host repository (EGA), where access is subject to the
submission of an application delineating the scope of the project and
the datarequired (full details on the portal). Applications are aimed to
bereviewed within 2 weeks.

Processed single-cell expression counts for each dataset and the full
setof eQTL summary statistics for both the full and control-only data-
setsareavailable at https://zenodo.org/records/13343729. The full set
of published GWAS summary statistics used for the colocalization and
MR analysis as well as links to the original publications are described
inSupplementary Table 3.

Code availability
The code used for the analysis presented in this study can be found at
https://github.com/johnsonlab-ic/singlecell-MR (ref. 57).
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