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Gene expression quantitative trait loci are widely used to infer relationships 
between genes and central nervous system (CNS) phenotypes; however, 
the effect of brain disease on these inferences is unclear. Using 2,348,438 
single-nuclei profiles from 391 disease-case and control brains, we report 
13,939 genes whose expression correlated with genetic variation, of which 
16.7–40.8% (depending on cell type) showed disease-dependent allelic 
effects. Across 501 colocalizations for 30 CNS traits, 23.6% had a disease 
dependency, even after adjusting for disease status. To estimate the 
unconfounded effect of genes on outcomes, we repeated the analysis using 
nondiseased brains (n = 183) and reported an additional 91 colocalizations 
not present in the larger mixed disease and control dataset, demonstrating 
enhanced interpretation of disease-associated variants. Principled 
implementation of single-cell Mendelian randomization in control-only 
brains identified 140 putatively causal gene–trait associations, of which 
11 were replicated in the UK Biobank, prioritizing candidate peripheral 
biomarkers predictive of CNS outcomes.

Translating genome-wide association study (GWAS) loci to therapies 
requires knowledge of the causal genes, their directionality of effect 
and the cell types in which they act. In this study, we aimed to infer these 
relationships by implementing a principled approach to Mendelian 
randomization (MR) using single-cell expression quantitative trait 
loci (eQTL) as genetic anchors1,2. MR is a statistical and methodological 
framework for inferring putatively causal effects rooted in the naturally 
randomized allocation of genetic variants instrumenting exposures, 
such as the level of expression of a gene3.

Previous research mapping eQTLs at the single-cell level has high-
lighted dynamic cell state-dependent influences on gene regulation4, 
and prior work using bidirectional MR has suggested that most 
disease-associated gene expression changes occur as a consequence 
of disease rather than as a cause5. For central nervous system (CNS) 
phenotypes, disease-based brain tissue samples have contributed to 
several studies reporting putatively causal associations between tran-
script levels and CNS outcomes at both bulk-tissue6 and single-cell7,8 
levels, but the potential impact of using diseased samples for causal 
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discussed in ref. 11, we refitted each of the discovered eGenes for each 
cell type against its top regulatory SNP (eSNP) based on the eQTL P value 
using linear mixed effects (LME) models (Fig. 2a). First, we evaluated the 
null model (M0), where the expression of each gene was fitted against 
clinical covariates (age at death, sex, PMI and disease status as fixed 
effects). To account for diagnosis-specific variation within each sample 
source, we used a nested random effect for ‘disease status’ on ‘sample 
source’. These effects are important to consider due to potential bias 
from the brain bank itself and from the clinical diagnosis, which might 
vary between pathologists and cannot be captured by adding sample 
source as a fixed effect. We then tested the SNP–gene model (M1) with a 
similar model configuration, except with the addition of the genotype 
to model an eQTL association. If the M1 was a better fit than M0, we con-
sidered this a ‘pass’ and a validation of the initial genome-wide eQTL 
result. Across all cell types, all but one association (rs10762316—HK1 
expression in inhibitory neurons) was statistically more adequate than 
the null model (without an SNP). Furthermore, eQTL P values from the 
M1 model correlated well with the discovery P values, suggesting that 
the inclusion of nested random effects has a negligible impact on the 
overall associations (Supplementary Fig. 7).

We then tested whether any of the cis-eQTL associations were 
better modeled with an interaction term between the disease diag-
nosis (D) and the genotype (G) (M2). Depending on cell type, we found 
that an average of 16.7–40.8% of eQTL associations had a signifi-
cant interaction with disease (that is, a likelihood ratio test (LRT) q 
value < 0.05 in favor of the interaction model M2; Fig. 2b,c and Sup-
plementary Table 2). Specific examples of disease-dependent allelic 
associations with gene expression are shown for microglial, astro-
cyte, oligodendrocyte and excitatory neuron eQTLs in Fig. 2d–g, 
respectively. In the case of the association between rs117934759 
and PTPN12 expression in microglia (Fig. 2d; LRT—P = 1.72 × 10−16, 
q = 4.14 × 10−14), the eQTL association was strongly influenced by 
Alzheimer’s disease (AD) samples (ADinteraction, P = 1.11 × 10−10). The 
association between rs6538127 and NAV3 expression in astrocytes 
(Fig. 2e; LRT—P = 1.23 × 10−6, q = 4.93 × 10−5) was influenced by 
both multiple sclerosis (MSinteraction P = 2.02 × 10−5) and AD samples  
(ADinteraction P = 2.94 × 10−3), while rs7932358 and ARHGAP20 expres-
sion in oligodendrocytes (Fig. 2f; LRT—P = 4.75 × 10−8, q = 2.10 × 10−6) 
was influenced by all three disease states (Parkinson’s disease 
(PD)interaction, P = 3.57 × 10−4; MSinteraction, P = 1.39 × 10−3; ADinteraction, 
P = 8.96 × 10−6). Associations were also observed across disease-case 
and control categories, as in the example of rs60935857 and ZNF880 
expression in excitatory neurons (Fig. 2g; PDinteraction, P = 2.24 × 10−6; 
control, P = 2.60 × 10−15). In most cases, the majority of interactions 
were influenced by a single disease (4,004 of 6,663 total interactions, 
60.1%), and a lesser proportion of interactions were influenced by all 
three diseases (506, 7.6%). Where interactions were influenced by a 
single disease, PD was the most common. Microglia were the only cell 
type where the majority of interactions were driven by AD cases (Sup-
plementary Fig. 8), highlighting the impact of Alzheimer’s pathology 
on microglial gene regulation12.

Overall, these results are consistent with the interpretation that 
adjusting for disease status and random effects does not adequately 
account for the influence of brain disease on genetic regulation of gene 
expression in the human brain. The consequences of this are important 
because the relationship between allelic effects on gene expression 
and disease is critical to the interpretation of eQTL pathogenicity4.

Genetic colocalization analysis
Colocalization is a statistical method that seeks to identify biological 
mediators of disease by assessing whether exposures, such as the level 
of expression of a gene in a particular cell type and a clinical pheno-
type, share a common causal variant13,14. To explore the impact of brain 
disease on colocalization, we integrated single-cell-type cis-eQTLs 
derived from the full dataset of mixed disease (n = 208) and control 

inference analysis has been largely unassessed. While the use of dis-
eased brain samples can increase sample size and statistical power, 
where the disease itself causes gene expression changes, their use 
might obscure pathways relevant to disease etiology or prioritize 
spurious associations from reverse causation5.

Here we highlight dynamic allelic effects on gene expression aris-
ing from the presence of brain disease and show how these influence the 
results of downstream analyses that seek to inform biological media-
tors of brain disease. Using a unique set of control brains with no history 
of CNS disease and normal neuropathology, we show that a principled 
approach to MR using control brain samples can provide estimates of 
the direction of an effect of a gene on CNS outcomes unconfounded by 
disease state and enhance the interpretation of GWAS loci.

Results
Datasets and eQTL discovery
We analyzed single-nuclei gene expression data (single-nuclei RNA 
sequencing (snRNA-seq)) based on postmortem brain tissue samples 
from 409 genotyped adult donors. Following quality control, data 
harmonization and cell-type annotation, we retained 2,348,438 single 
nuclei from 391 individuals (median nuclei per individual = 4,391 and 
mean = 6,006; Supplementary Fig. 1). The donors consisted of 183 
participants with no history of brain disease and normal appearances of 
the brain on neuropathological examination and 208 participants who 
had died with a documented neurological diagnosis. Single-cell-type 
cis-eQTLs were identified using a linear model implemented in Matrix-
EQTL9 as previously described8. This analysis was based on residual 
gene expression after adjusting for clinical covariates (age at death, 
sex, postmortem interval (PMI), disease status and sample source) and 
optimized principal components (PCs), all treated as fixed covariates 
for each cell type. In total, we tested 5.20 million single-nucleotide 
polymorphisms (SNPs) for cis-gene regulation in eight brain cell types 
(excitatory neurons, inhibitory neurons, astrocytes, microglia, oligo-
dendrocytes, oligodendrocyte precursor cells (OPCs), endothelial 
cells and pericytes; Fig. 1a and Supplementary Fig. 2).

Across the 391 mixed disease-case and control participants, we 
captured 1.82 million single-cell-type cis-eQTLs at false discovery 
rate (FDR) < 5%, representing one or more regulatory SNP (eSNP) for 
13,939 unique genes (30,027 eGenes in aggregate; Fig. 1b and Sup-
plementary Table 1). Of these, 5,454 (39.1%) were identified in only a 
single cell type (Supplementary Fig. 3). Only eight genes shared their 
genetic regulation across all eight cell types. SNP–transcript associa-
tions were distributed above the expected uniform distribution (Sup-
plementary Fig. 4). The number of cells profiled for a particular cell 
type linearly correlated with the number of eGenes for that cell type 
(Pearson correlation r = 0.92, P = 1.14 × 10−3; Supplementary Fig. 5). As 
previously reported7, we observed an enrichment of cis-eQTLs around 
the target gene transcription start site (Supplementary Fig. 6). Most 
cis-eQTLs (72.9–88.7% depending on cell type) replicated (FDR < 5%) 
in a large (6,523 participants) cortex tissue-level eQTL study10, of which 
90.0–98.3% had the same direction of effect (Fig. 1c). Notably, analysis 
of cis-eQTLs at a single-cell-type level identified 4,898 more eGenes 
compared to cis-eQTL discovery using an equivalently sized ‘bulk’ tis-
sue analysis based on aggregating counts across all cell types (Fig. 1d).

Assessment of disease status on cis-eQTLs
Because the primary objective of this work was to identify genetically 
regulated exposures that influence disease risk, we first aimed to 
understand the effect of brain disease on the genetic regulation of gene 
expression in the human brain. In particular, for datasets consisting of 
mixed disease-case and control samples, which has been the standard 
experimental design to date7,8, whether the usual approach of adjusting 
gene expression for disease status adequately accounts for the effects 
of disease on brain gene expression. Using our combined dataset of 
391 disease and control participants and following the methodology 
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Fig. 1 | Study design and eQTL analysis. a, Overview of study workflow, created 
using BioRender.com. b, Total eGenes per cell type (top, darker bar) versus 
eGenes unique to that cell type (bottom, lighter bar). c, Replication of single-cell-
type cis-eQTLs (number of eQTLs per cell type indicated by bubble size) using cis-
eQTLs from human cortex bulk RNA-seq dataset (MetaBrain) for both replication 

(x axis) and directionality (y axis). d, Overlap of single-cell-type eGenes with 
eGenes from the same single-cell dataset but with counts aggregated across 
cells to simulate an equivalently sized ‘bulk-tissue’ gene expression dataset 
(pseudobulk).
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(n = 183) brains (following adjustment for disease status as previously 
implemented by others7,8) with GWAS data from 41 distinct neurologi-
cal, psychiatric, behavioral and structural brain phenotypes (listed 
in Supplementary Table 3). We applied COLOC13 to all chromosomal 
regions containing a genome-wide significant (P < 5.0 × 10−8) asso-
ciation with a phenotype, based on a 1 Mb window around the lead 
GWAS SNP.

In total, we identified 501 colocalizations at PP.H4 > 0.8 between 
the genetic regulation of a gene in a particular cell type (gene/cell-type 
pair) and genetic risk to one or more of 30 CNS phenotypes (gene/
cell-type/trait triplets; Fig. 3a and Supplementary Table 4). The majority 
of colocalizations (74.4%) mapped to a single cell type. In total, 61 of 
249 unique genes (24.5%) colocalized with one (or more) phenotype 
across multiple cell types, for example, ICA1L and CNS white matter 
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hyperintensities (WMH), which colocalized in astrocytes (PP.H4 = 0.88), 
excitatory neurons (PP.H4 = 0.89), inhibitory neurons (PP.H4 = 0.85) 
and OPCs (PP.H4 = 0.89). There was a strong correlation between the 
number of colocalizations for a particular phenotype and the number 
of genome-wide significant GWAS loci for that phenotype (Pearson 
correlation r = 0.93, P = 2.52 × 10−18; Supplementary Fig. 9). Repeated 
analysis using cis-eQTLs calculated on ‘pseudo-bulked’ expression 
across all cell types revealed that less than half of the colocalizations 
would have been detected in an equivalently sized bulk-tissue dataset 
(Fig. 3b). Conversely, a small proportion (12.9%) of colocalization was 
only detected when combining expression signals across all cell types.

The largest number of colocalizations were for schizophrenia 
(ncoloc = 86) and intelligence (ncoloc = 79), followed by AD (ncoloc = 35). 
Several colocalizations were shared across phenotypic categories, sug-
gesting potential shared etiology (Supplementary Fig. 10). In Fig. 3c–e, 
we show the cell-type-specific colocalization probabilities (PP.H4 > 0.8) 
for AD, highlighting several genes known to confer risk to AD such as 
BIN1 (PP.H4microglia = 1.0), RASGEF1C (PP.H4microglia = 1.0) and PICALM 
(PP.H4microglia = 1.0), as well as less well-established AD risk genes such 
as SNX31 (PP.H4astrocytes = 0.99), JAZF1 (PP. H4microglia = 0.98; Fig. 3d) and 
EGFR (PP.H4astrocytes = 1.0; Fig. 3e).

We then investigated the impact of disease on colocalization using 
the interaction framework described above based on the lead colocal-
ized SNP proposed by COLOC. Because this assessment was conducted 
on a small number of genes in each cell type, we considered nominal 
LRT P value < 0.05 indicative of an interaction between disease diagno-
sis and allelic regulation of gene expression. Across the full set of 501 
colocalizations, 118 (23.6%) showed an interaction between their lead 
colocalized SNP and disease status (Fig. 4a and Supplementary Table 5). 
For example, for the colocalized triplet TP53INP1–oligodendrocytes–
AD (PP.H4 = 0.91), the lead COLOC SNP rs4582532 showed a significant 
preference for the interaction model (LRT, P = 1.45 × 10−2), influenced 
by PD samples (PDinteraction, P = 8.83 × 10−3; Figs. 4c,d). Similarly, the lead 
colocalized SNP rs1691364 for the triplet RAB38–excitatory–neurons–
FTD (PP.H4 = 0.81) showed a preference for the interaction model 
(LRT, P = 1.10 × 10−3) with interaction effects from PD and AD samples 
(PDinteraction, P = 1.56 × 10−3; ADinteraction, P = 3.49 × 10−2; Figs. 4e,f).

MR
The above-mentioned analysis highlights the presence of dynamic 
disease-dependent effects on genetic regulation of gene expression 

in the human brain. In contrast, a principled implementation of 
eQTL-anchored MR requires gene expression profiles that are uncon-
founded by disease status. We, therefore, restricted our MR analy-
sis to the subset of 183 control participants with no clinical history 
of brain disease and no evidence of brain disease on neuropatho-
logical examination. Using only control samples, we repeated the 
single-cell-type cis-eQTL discovery using the same methodology as 
for the full dataset based on residual expression adjusted for clinical 
covariates (age at death, sex, PMI and sample source as fixed effects) 
and optimized PCs as fixed covariates for each cell type. We identi-
fied 10,470 eGenes (FDR < 5%) across the eight cell types, represent-
ing 7,204 unique eGenes (Supplementary Fig. 11 and Supplementary 
Table 6). As previously, most eGenes (5,046, 70.0%) were observed in 
only a single cell type.

Despite normal neuropathology and no history of neurological 
disease, we considered the possibility that occult (premanifest) brain 
disease might still be present in control samples, particularly in sam-
ples from aged participants. To explore potential age-related allelic 
effects on gene expression, we applied the interaction methodology 
described above and selected age as the covariate that interacts with 
the genotype. Taking the lead cis-eQTL SNP for each eGene, 1,605 
(15.3%) were significantly better modeled with age–genotype as an 
interaction term (q < 0.05). This proportion varied greatly by cell type, 
ranging from 7.9% (292 of 3,698) in excitatory neurons to 45.1% (83 of 
184) in pericytes (Supplementary Table 7). Across all age-interaction 
eQTLs, 10.8–29.4% (depending on cell type) overlapped with disease–
interaction eQTLs, and these loci were therefore excluded from the 
downstream MR analysis.

To select appropriate instruments for MR, we first repeated the 
colocalization analysis using control-only eQTLs under the single 
causal variant hypothesis (PP.H4) and using the same 41 CNS phe-
notypes assessed above. In total, we identified 256 colocalizations 
(PP.H4 > 0.8) across 26 CNS phenotypes (Supplementary Table 8), of 
which 91 (35.5%) were not present in the larger, higher-powered mixed 
disease-case and control eQTL dataset (Fig. 4h and Supplementary 
Fig. 12). For example, the colocalization triplet PEX13–excitatory–
neurons–MS was only present in the control cohort (PP.H4 = 0.87) 
despite a sample size less than half the full dataset (PP.H4fulldataset = 0.08; 
Fig. 4g). Analysis of the lead SNP for this colocalization, rs1177284,  
revealed a significant interaction with all disease categories  
(LRT, P = 3.66 × 10−3; ADinteraction, P = 4.08 × 10−2; PDinteraction, P = 1.83 × 10−2; 

Fig. 2 | Modeling of disease–interaction cis-eQTLs. a, Overview of the statistical 
framework. For each single-cell-type cis-eQTL tested, we first assessed a null 
model (M0), testing the association of the gene with clinical and technical 
covariates. We then tested whether the base model (M1), which includes the 
use of genotype to model the observed SNP–transcript association, was better 
suited compared to the null model. We repeated this comparison between the 
base model and the disease–interaction model (M2), testing whether the use of 
an interaction term on diagnosis was more appropriate. b, Percentage of cis-
eQTLs with a significant disease interaction (that is, q value < 0.05 in favor of the 
interaction model M2) for each cell type. c, QQ plots of observed versus expected 
LRT P values calculated on M1 versus M2, for each cell type, showing significant 

deviation from the expected distribution. d–g, Examples of single-cell-type 
cis-eQTLs from the full cohort (n = 391) where the SNP–gene association has a 
significant disease interaction for microglia (d), astrocytes (e), oligodendrocytes 
(f) and excitatory neurons (g). The P values for ‘all’ represent the t statistic for the 
M1 models, whereas the P values for AD, PD and MS represent the P value from the 
interaction with genotype within the M2 model. The ‘control’ P value represents 
the effect of genotype on expression after accounting for interaction effects. 
Elements of the boxes show the center line (median), box limits represent upper 
and lower quartiles and whiskers represent upper and lower quartils ±1.5× IQR.  
All data points have been included. QQ, quantile-quantile plots; IQR, 
interquartile range.

Fig. 3 | Colocalization analysis for brain phenotypes using cell-type eQTLs.  
a, Summary of colocalizations (PP.H4 > 0.8) per cell type and trait. Each bar chart 
is colored by cell type. Y axes indicate the number of colocalizations in that cell 
type. Asterisks indicate the cell type with most colocalizations with a particular  
trait. b, Number of unique colocalized (PP.H4) genes from single-cell-type and  
‘pseudobulk’ eQTL data. c, Single cell-type colocalizations (PP.H4 > 0.8) for 
AD (genes on x axis and cell types on y axis). d, Colocalization Manhattan plots 
for the association of JAZF1 expression in microglia and AD risk. Each point 
represents the −log10(P) for an SNP and its association with gene expression 
(top) and disease risk (bottom). e, Colocalization Manhattan plots for the 
association of EGFR expression in astrocytes and AD risk. ADHD, attention 

deficit hyperactivity disorder; ALS, amyotrophic lateral sclerosis; AN, anorexia 
nervosa; AUDIT, alcohol use disorder; INT, intelligence; SCZ, schizophrenia; BIP, 
bipolar disorder; HL, hearing loss; CBV, cerebellar volume; CSA, cortical surface 
area; FTD, frontotemporal dementia (behavioral variant); HV L/R, hippocampal 
volume (left/right); ICV, intracranial volume; INS, insomnia; LAN, reading and 
language skills; LBD, Lewy body dementia; MCP, multisite chronic pain; MDD, 
major depressive disorder; NDD, neurodegenerative disease; NEUR, neuroticism; 
PVS, perivascular space burden; RLS, restless legs syndrome; SCV, subcortical 
volume; SD, sleep duration; STR, stroke; THV, whole thalamus volume; chr, 
chromosome.
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MSinteraction, P = 4.51 × 10−2; Fig. 4h). This highlights the value of 
control-only human brain gene expression data in enabling enhanced 
interpretation of disease-associated variants.

Following colocalization analysis, we performed linkage disequi-
librium pruning (r2 < 0.01) based on the lead SNP from COLOC and 
retained independent SNP–transcript associations as instrumental 

variables (IVs; >90% of exposures retained a single IV). Before MR, we 
assessed the robustness of the selected IVs using the F statistic15 and 
retained IVs with an F statistic >15 (Supplementary Fig. 13). Excluding 
the MAPT and HLA loci, we found significant MR evidence for an asso-
ciation between genetically proxied transcript levels in a specific cell 
type and a trait for 94 unique genes across 22 diverse CNS phenotypes  
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(140 gene/cell type/trait triplets; Fig. 5a and Supplementary Table 9). 
The majority (81.9%) of genes inferred to have a putative causal associa-
tion with a CNS trait were found in a single cell type. For 13 genes, there 
was evidence that a change in expression was associated with more 
than one CNS phenotype (Supplementary Fig. 14).

While careful selection of IVs, as described above, minimizes the 
risk of spurious MR findings, the application of single-instrument MR 
is sensitive to the particular choice of variants and ignores the major-
ity of genetic data in the colocalized region. As a technical validation 
of these results, therefore, we implemented the multi-instrument 
MR method principal components analysis–inverse variance weight-
ing (PCA-IVW)16, which takes account of the full set of variants in the 
colocalized region. Of the 140 significant MR hits, 138 (98.6%) were 
replicated using PCA–IVW with the same direction of effect (Supple-
mentary Table 9).

In addition to inferring associations between genes, cell types 
and outcomes, MR in control participants informs the directionality of 
the relationships unconfounded by disease-induced changes in gene 
expression. Knowledge of the directionality of a putatively causal rela-
tionship is critical to informing the therapeutic strategy (target activa-
tion or inactivation). For example, among the genes with MR evidence 
of association with AD (Fig. 5b), genetically predicted increased EGFR 
expression is associated with increased AD risk (MR—PIVW = 2.35 × 10−9, 
βIVW = 0.14), supporting the potential for repurposing brain-penetrant 
EGFR inhibitors to the treatment of AD17. Similarly, we observed an 
association between genetically predicted increased expression of 
GPNMB and PD in astrocytes (MR—PIVW = 1.02 × 10−8, βIVW = 0.27) and 
OPCs (PIVW = 1.47 × 10−8, βIVW = 0.15), and this directionality of effect 
between GPNMB and PD was recently supported by the experimental 
demonstration that loss of GPNMB activity reduces cellular internaliza-
tion of fibrillar α-synuclein and related pathogenicity18.

Evaluation of single-cell MR inferences in the human proteome
Because associations between genetically proxied transcripts and 
outcomes are expected to be mediated by a gene’s protein product, we 
assessed the extent to which the association of a CNS outcome with an 
exposure converges across both transcript and protein levels. Here we 
first used data on circulating blood protein levels from the UK Biobank 
Pharma Proteomics Project (UKB-PPP)19, which assayed 2,923 plasma 
proteins in 54,219 participants. Of the 94 genes with single-cell MR 
evidence to support a causal association with one or more CNS phe-
notypes, 15 (16.0%) had a measurable protein in plasma, representing 
20 gene–trait pairs. For each pair, we re-assessed the evidence for a 
single causal variant between the protein’s expression in plasma and 
its paired CNS outcome, finding replicable colocalization for 16 (80%) 
of the gene–trait pairs at PP.H4 > 0.8. Exposure IVs were selected as 
described above, with median of 7 independent IVs per plasma protein 
(range = 1–9). Using two-sample MR, 11 of 20 gene–trait pairs (55%) had 
a significant association between the change in the level of the gene’s 
protein product in plasma and the same CNS outcome identified by 

single-cell MR (Fig. 5c,d, Supplementary Table 10 and Supplementary 
Fig. 15). Examples of proteins with a significant association between 
a change in their level in plasma and a CNS phenotype that were also 
putatively causal in single-cell MR include CR1-AD (IVWplasma protein—
P = 2.10 × 10−2, β = 0.11), GPNMB-PD (IVWplasma protein—P = 1.80 × 10−7, 
β = 0.34) and TNFRSF1A-MS (IVWplasma protein—P = 1.02 × 10−13, β = 2.14). 
The independent replication of these and other (Fig. 5c,d) single-cell 
MR inferences using plasma proteins highlights them not just as candi-
date drug targets for disease modification but as candidate peripheral 
biomarkers for use as intermediate phenotypes predictive of clinical 
outcomes following therapeutic intervention.

Given the sparsity of proteins assayed by UKB-PPP, we attempted 
to validate genes associated with CNS outcomes by single-cell MR 
using a second proteomic resource derived from the brains of 330 
older adults20. Although of limited replication value due to the inclu-
sion of disease cases (31% of participants had a diagnosis of AD) and 
the unavailability of genome-wide SNP data precluding independent 
colocalization analysis, of the 94 single-cell MR genes identified in our 
study, 44 (46.8%) had a measurable protein level (50 gene–trait pairs). 
From these, we selected proteins with significant (FDR < 5%) protein 
QTLs (pQTLs) and retained independent IVs (r2 < 0.01) for 21 proteins 
representing 22 gene–trait pairs. Of these 22 pairs, 20 (90.9%) had a 
significant (IVW P < 0.05) association to the same trait as predicted 
by single-cell MR, including GPNMB-PD (IVWbrain protein—P = 2.48 × 10−8, 
β = 0.39), SCFD1-amyotrophic lateral sclerosis (IVWbrain protein—
P = 1.14 × 10−13, β = 1.61) and ICA1L-WMH (IVWbrain protein—P = 2.51 × 10−13, 
β = 1.27; Fig. 5e, Supplementary Table 11 and Supplementary Fig. 16).

Discussion
MR analysis using molecular phenotypes offers an approach to prior-
itize drug targets, inform the cell types in which they act and identify 
biomarkers predictive of clinical outcomes. A key finding from our 
study was the extent to which brain disease impacts the relationship 
between genetic variation and gene expression in individual cell types 
and the implications of this for interpreting eQTL pathogenicity. Nota-
bly, we show that disease-dependent allelic effects on gene expression 
are not fully accounted for by adjusting gene expression for disease 
status, which has been the standard approach to date (for example, 
refs. 7,21). In contrast, a principled implementation of MR requires 
genetic variants instrumenting proximal molecular exposures that 
predate the onset of disease. To identify the effect of genes in single 
cell types unconfounded by brain disease, we undertook a principled 
analysis using only nondiseased control human brain samples. Across 
26 diverse CNS phenotypes, we identified 256 gene–cell-type–trait 
triplets supported by colocalization, of which 35.5% were not detected 
in the larger, better-powered mixed disease-case and control dataset. 
This highlights the value of control-only samples in the interpreta-
tion of eQTL pathogenicity, as well as the potential for putatively 
causative associations to be obscured when mixing disease-case and 
control samples.

Fig. 4 | Impact of disease on colocalizations. a, Overview of colocalizations 
(PP.H4 > 0.8) aggregated across cell types for 30 CNS traits, indicating the total 
number of colocalizations for a given trait and the proportion with a disease 
interaction. b, Colocalization between TP53INP1 expression in oligodendrocytes 
and AD in the full cohort (left, PP.H4 = 0.91) and the control-only cohort  
(right, PP.H4 = 0.04). Each point represents the −log10(P) for an SNP and its 
association with the gene (top) and disease (bottom). c, Cis-eQTL plot showing 
the effect of disease samples in the full cohort (n = 391) on the association 
between the lead colocalized SNP rs4582532 and TP53INP1 expression in 
oligodendrocytes. The P values for ‘all’ represent the t statistic for the M1 models, 
whereas the P values for AD, PD and MS represent the P value from the interaction 
with genotype within the M2 model. The ‘control’ P value represents the  
effect of genotype on expression after accounting for interaction effects.  
d, Colocalization between RAB38 expression in excitatory neurons and 

behavioral frontotemporal dementia in the full cohort (left, PP.H4 = 0.81) and 
the control-only cohort (right, PP.H4 = 0.06). e, Cis-eQTL plot showing the effect 
of disease samples in the full cohort (n = 391) on the association between the 
colocalized lead SNP rs16913634 and RAB38 expression in excitatory neurons. 
Elements of the boxes show the center line (median), box limits represent upper 
and lower quartiles and whiskers represent upper and lower quartiles ±1.5× IQR. 
All data points have been included. f, Colocalization between PEX13 expression in 
excitatory neurons and MS in the full cohort (left, PP.H4 = 0.08) and the control-
only cohort (right, PP.H4 = 0.87). g, Cis-eQTL plot showing the effect of disease 
samples in the full cohort (n = 391) on the association between the colocalized 
lead SNP rs11772842 and PEX13 expression in excitatory neurons. h, Comparison 
of colocalizations discovered in the full mixed disease-case and control dataset 
(n = 391) versus control samples only (n = 183).

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs4582532
https://www.ncbi.nlm.nih.gov/snp/?term=rs16913634
https://www.ncbi.nlm.nih.gov/snp/?term=rs11772842


Nature Genetics | Volume 57 | February 2025 | 358–368 365

Article https://doi.org/10.1038/s41588-024-02050-9

Methodologically, we used colocalization to identify a single com-
mon genetic region in a particular cell type before IV selection for MR. 
As noted by others, the inclusion of cis-regulated instruments identi-
fied by prior colocalization has the advantage of limiting the likelihood 
of confounding by horizontal pleiotropy, and target-indication pairs 
selected based on combined evidence from both colocalization and 
MR have a higher likelihood of regulatory approval after clinical tri-
als22. Following colocalization, we selected independent variants at 

the colocalized locus as genetic instruments. Although this avoids 
inflating the MR results from multiple correlated instruments, the 
number of independent instruments for gene exposure in a single 
cell type was often small, limiting our ability to effectively control for 
false discovery23.

A key question arising from our observation of disease effects on 
allelic associations with gene expression is whether gene–trait associa-
tions informed by genetic regulation of gene expression in diseased 
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Fig. 5 | MR results for brain phenotypes at gene and protein expression levels. 
a, Overview of significant MR results (IVW fixed effects P < 0.05 or Wald ratio  
for single instruments). Trait abbreviations are as per Fig. 3b. b, IVW effect  
size and directionality for genes with MR evidence for an association between  
the change in gene expression in the indicated cell type and risk of AD.  
Each point represents the IVW effect size for a given cell type, with error bars 
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size means an increase in expression is associated with an increase in disease risk 

(and vice versa), whereas a negative effect size indicates an inverse association 
between gene expression and disease risk. c, Overview of single-cell gene–trait 
pairs replicated by colocalization analysis and/or MR using plasma pQTLs 
derived from the UKB-PPP. d, Overview of MR IVW P value associations for pQTLs 
in plasma compared to the corresponding single-cell MR IVW P value (x axis) at 
−log10 scale. e, Overview of MR IVW P value associations for pQTLs in brain (y axis) 
compared to corresponding single-cell MR IVW P value (x axis) at −log10 scale.
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brain samples represent plausible causative associations. A causative 
interpretation would require either that the genetic regulation of 
the exposure in a cell type is unaltered between disease and control 
samples or that the effects of genetic variation are exerted only in the 
presence of pathology. In the latter scenario, risk alleles could be con-
ceived as an ‘Achilles’ heel’24, accelerating disease progression in the 
presence of pathology such that they manifest as disease susceptibil-
ity alleles in genetic association studies. As such, we propose that the 
study of both control and disease samples is complementary in terms 
of identifying plausible drug targets for risk mitigation and disease 
treatment. However, because treatment targets may be repurposed for 
risk mitigation and vice versa, it is incumbent on researchers to clarify 
the relationships between exposures and outcomes in both diseased 
and nondiseased brains.

Although the value of single-cell gene expression data is well- 
established, we highlight that of the hundreds of colocalizations 
reported here, less than half would have been detected using cis-eQTLs 
derived from an equivalently sized bulk-tissue gene expression data-
set. Conversely, we noted that a small proportion of eGenes were only 
detected when combining gene expression signals across all cell types, 
suggesting leveraging shared genetic regulation across cell types may 
provide additional useful gains in power to detect some SNP–transcript 
associations, albeit at the expense of information about cell-type 
specificity.

In situations where multiple cell types are implicated in a par-
ticular target-indication pairing, our analytical framework is unable 
to determine if this reflects a causal mechanism manifesting across 
multiple cell types or simply shared genetic regulation across different 
cell types. A further limitation is the lack of available large GWAS for 
many brain phenotypes. In this study, we only included genome-wide 
significant GWAS loci and implemented a strict PP.H4 cut-off of 0.8 or 
higher. In some circumstances, exploratory discovery analyses at more 
liberal GWAS P values and lower PP.H4 cut-offs may be an appropriate 
first step.

In contrast to the limited power of current single-cell brain data-
sets, the UKB-PPP is a well-powered proteomic dataset for pQTL map-
ping in human plasma. Of the 140 gene–trait associations identified 
by single-cell MR in control participants, only 20 included a target 
protein measurable in plasma, but of these, we observed high rates 
of replication (80% for colocalization and 55% by MR). Given the sub-
stantial power of UKB-PPP to detect multiple independent IVs for these 
proteins (median of 7 per candidate target), UKB-PPP provides a robust 
and independent replication of the single-cell-type MR inferences for 
these targets. The high level of replication in plasma also supports the 
principle that assay of circulating proteins identified by MR in the brain 
may also have value as peripheral biomarkers predictive of clinical 
outcome and therapeutic response.

In addition to providing a principled framework for assessing 
causal relationships, our implementation of MR provides informa-
tion on the directionality of the association between exposure and 
outcome in a specific cell type. Knowledge of the direction of effect 
is necessary to guide the directionality of the therapeutic interven-
tion, while knowledge of the cell types via which genes act can aid the 
design of more precise preclinical experiments, including the assess-
ment of target engagement in relevant tissues. The identification of 
shared risk factors across disease categories presents opportunities 
for shared preventative strategies, drug repurposing and prediction 
of adverse events25.

In conclusion, this study reports a generalizable framework for 
the principled conduct of MR in single cell types. The study advances 
our understanding of the influence of disease on eQTLs in the human 
brain and highlights the importance of considering disease effects 
when assessing eQTL pathogenicity. We prioritize candidate targets 
for brain disease in their cellular context, and by using healthy control 
brain tissue, we establish a resource for the unbiased and enhanced 

interpretation of GWAS risk alleles for human brain disease, structure 
and behavior.
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Methods
Ethics statement
We complied with all relevant statutory and ethical regulations 
approved by the Imperial College Research Ethics Committee regard-
ing the use of human postmortem tissue.

Dataset summary
snRNA-seq and genotype data were generated on 409 deceased individ-
uals of European ancestry from four datasets. These include ‘MRC_60’ 
(new samples generated in-house, 60 control individuals), ‘Roche_PD’ 
(new samples generated in-house, 92 individuals, including 70 PD 
cases and 22 controls), ‘Bryois_192’ (192 total, including 105 mixed 
disease and 87 control cases obtained from their recent publication7) 
and ‘MATTHEWS’ (new samples generated in-house consisting of 65 
individuals split into 38 AD cases and 27 controls), a subset of which 
have been used in published work26,27. Following quality control (QC) 
and data harmonization, we retained samples from a total of 391 indi-
viduals (183 control brains and 208 diseased brains).

Samples
Ethics approval for the work carried out on postmortem human brain 
tissue was given by the Wales REC3 Ethics Committee (REC reference 18/
WA/0238). Study analyses complied with the Imperial College Research 
Ethics Committee (ICREC reference 14/02/11). At the individual brain 
banks, postmortem, fresh tissue samples were snap-frozen in liquid 
nitrogen vapor for 20 min before being stored in a −80 °C freezer for 
the long term. Immunohistochemistry was undertaken on all samples 
using adjacent brain tissue (same block) and assessed for β-amyloid, 
Tau, TDP43, α-synuclein and p62. All hematoxylin and eosin stains were 
performed by hand. In the selection of control samples, we excluded 
all samples with a premortem history of neurological or psychiatric 
disease (at any time), and in all cases, there was no evidence of neu-
rodegenerative or other significant diseases on neuropathological 
examination.

Nuclei isolation and snRNA-seq
For the MRC_60 dataset, snRNA-seq data were generated at the Imperial 
College on the prefrontal cortex and hippocampus samples ascertained 
from 60 unrelated participants ascertained from the Imperial College, 
Oxford University, Edinburgh University or Amsterdam Medical Center 
brain tissue banks. Nuclei were isolated as previously described28, with 
a slightly extended douncing during tissue lysis (see ref. 29 for detailed 
protocol). Then, snRNA-seq data were generated using the 10x Single 
Cell Next GEM Chip targeting a minimum of 5,000 nuclei per sample 
and libraries prepared using the Chromium Single Cell 3′ Library and 
Gel Bead v3 kit according to the manufacturer’s instructions. cDNA 
libraries were sequenced using the Illumina NovaSeq 6000 system at 
a minimum sequencing depth of 30,000 paired-end reads per nucleus.

For the Roche_PD dataset, nuclei were isolated using the Nuclei 
Pure Prep Nuclei Isolation Kit (Sigma-Aldrich) with the following modi-
fications. The tissue was lysed in nuclei pure lysis solution with 0.1% 
Triton X-100, 1 mM dithiothreitol (DTT) and 0.4 U μl−1 SUPERaseIn 
RNase Inhibitor (Thermo Fisher Scientific) freshly added before use 
and homogenized with the help of first a 23G and then a 29G syringe. 
Cold 1.8 M sucrose cushion solution, prepared immediately before 
use with the addition of 1 mM DTT and 0.4 U μl−1 RNase Inhibitor, was 
added to the suspensions before they were filtered through a 30 μm 
strainer. The lysates were then carefully and slowly layered on top of 
1.8 M sucrose cushion solution previously added into new Eppendorf 
tubes. Samples were centrifuged for 45 min at 16,000g at 4 °C. Pel-
lets were resuspended in nuclei storage buffer with RNase inhibitor, 
transferred in new Eppendorf tubes and centrifuged twice for 5 min at 
500g at 4 °C. Finally, purified nuclei were resuspended in nuclei storage 
buffer with RNase inhibitor, stained with trypan blue and counted using 
Countess II (Life Technology). After the count, nuclei permeabilization 

was carried out following the demonstrated protocol for single-cell 
multiome ATAC + Gene Expression sequencing from 10× Genomics.  
A total of 12,000 estimated nuclei from each sample were used for  
the transposition step and then loaded on the Chromium Next GEM  
Single Cell Chip J. ATAC library and gene expression library construc-
tion was performed using the Chromium Next GEM Single Cell Mul-
tiome ATAC + Gene Expression kit according to the manufacturer’s 
instructions. Libraries were sequenced using the Illumina NovaSeq 
6000 System and the NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles), 
aiming at a minimum sequencing depth of 30k reads per nucleus.

For the MATTHEWS dataset, homologous fresh frozen brain tis-
sue blocks from the entorhinal cortex, middle temporal gyrus and 
somatosensory cortex were cryosectioned at 80 μm, 200 mg of gray 
matter was collected in RNAse-free Eppendorf tube and nuclei were 
isolated as previously described26. All steps were carried out on ice or 
at 4 °C. Tissue was homogenized in buffer (1% Triton X-100, 0.4 U μl−1 
RNAseIn + 0.2 U μl−1 SUPERaseIn, 1 μl (1 mg ml−1) DAPI) using a 2 ml glass 
douncer. The homogenate was centrifuged at 4 °C for 8 min at 500g, 
and the supernatant was removed. The pellet then was resuspended in 
a homogenization buffer and filtered through a 70 μm filter followed 
by density gradient centrifugation at 13,000g for 40 min. The super-
natant was removed, and nuclei were washed and filtered in PBS buffer 
(PBS + 0.5 mg ml−1 BSA + 0.4 U μl−1 RNAseIn + 0.2 U μl−1 SUPERaseIn). 
Nuclei were pelleted, washed twice in PBS buffer and resuspended in 
1 ml PBS buffer. In total, 100 μl of nuclei solution was set aside on ice 
for single nuclear processing. Isolated nuclei stained with acridine 
orange dye were counted on a LUNA-FL Dual Fluorescence Cell Counter 
(Logos Biosystems, L20001). Approximately 7,000 nuclei were used 
for 10× Genomics Chromium Single Cell 3′ processing and library 
generation. All steps were conducted according to the 10x Genomics 
Chromium Single Cell 3′ Reagent Kits v3 User Guide, with eight cycles 
of cDNA amplification until fragmentation, where 25 ng of amplified 
cDNA per sample was taken through for fragmentation. The final index 
PCR was conducted at 14 cycles. cDNA and library prep concentrations 
were measured using the Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific, Q32851), and DNA and library preparations were assessed 
using the Bioanalyzer High-Sensitivity DNA Kit (Agilent Technolo-
gies, 5067-4627). Pooled samples at equimolar concentrations were 
sequenced on an Illumina HiSeq 4000 according to the standard 10x 
Genomics protocol.

Genotyping
For the MRC_60 dataset, donor DNA from samples processed at the 
Imperial College were genotyped using the Illumina Infinium Global 
Screening Array (v2.0). The Roche_PD dataset was genotyped with the 
same method described previously, as well as the Bryois_192 dataset 
(which includes whole-genome sequencing)7. For the MATTHEWS 
dataset, DNA was extracted from human postmortem tissue using the 
DNeasy kit (Qiagen) with the recommended protocol. Briefly, samples 
were lysed overnight with proteinase K. Lysate was loaded into DNeasy 
Mini spin columns with supplied buffers for centrifugation rounds 
before the elution of DNA. DNA concentration was determined using a 
NanoDrop (Thermo Fisher Scientific) and Qubit assay (Thermo Fisher 
Scientific). Genotyping was performed at Cambridge Genomic Services 
at the University of Cambridge with the UK Biobank Axiom Array. All 
genotypes then underwent imputation on the Michigan Imputation 
Server (v.1.6.3) using the Haplotype Reference Consortium (v.r1.1) 
reference panel of the European population30,31 with a prephasing using 
Eagle (v.2.4)32 and imputation using Minimac4 (ref. 31).

Genotype data from each vcf underwent a series of quality con-
trol steps using PLINK (v.2.0)33. SNPs with an imputation score <0.4 
were removed from the analysis, as well as SNPs with missingness >5%. 
Multi-allelic (>2 alleles) SNPs were also excluded from the analysis, as 
well as SNPs deviating from Hardy–Weinberg equilibrium (P < 1 × 10−6). 
We also restricted SNPs in autosomal chromosomes 1–22 and removed 

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/nuccore/L20001
https://www.uniprot.org/uniprot/Q32851


Nature Genetics

Article https://doi.org/10.1038/s41588-024-02050-9

any individuals with more than 2% missing genotypes. Before merg-
ing, each vcf underwent a final check using bcftools (v.1.18)34 against 
the latest ENSEMBL hg38 genome build fasta file35, flipping alleles 
and genotype calls for mismatches. Following merging, we excluded 
all individuals with kinship >0.2 (indicating duplicated individuals). 
Finally, we retained 5.20 million high-quality SNPs in 391 individuals.

Single-cell analysis
Both the raw sequencing files from the MATTHEWS datasets and 
Bryois_192 were mapped using CellRanger to the GRCh38 reference 
genome as previously described7,26. For the MRC_60 dataset, the raw 
sequencing reads were mapped to the GRCh38 genome and quantified 
gene counts as unique molecular identifiers (UMIs) using Cell Ranger 
count (v.5.0.1). We counted reads mapping to introns as well as exons 
by --include-introns option in Cell Ranger (v.5.0.1). As shown in the 
earlier studies, this results in a greater number of genes detected per 
nucleus, as well as better cell-type classification36,37. Finally, the refer-
ence genome was created using Cell Ranger mkref (v.5.0.1) with default 
settings38. In addition, sample pools were demultiplexed based on their 
genotype using the Demuxlet algorithm with the default settings, as 
previously described39,40. The variable SNPs between the pooled indi-
viduals were used to determine which cell belongs to which individual 
and to identify doublets. Droplets called doublet by Demuxlet were 
removed from downstream analyses. For the Roche_PD dataset, raw 
FASTQs were aligned to the GRCh38 genome using CellRanger-ARC 
count (v.2.0.2). After mapping, RNA counts were extracted to construct 
Seurat objects.

On the MATTHEWS, MRC_60 and Roche_PD datasets, we also 
assessed the proportion of empty droplets using the EmptyDrops tool 
(from DropletUtils v.1.22) package, retaining nuclei with an FDR < 0.01 
(ref. 41). Seurat objects were generated using Seurat (v4)42, retaining 
nuclei with at least 500 UMIs in 300 features and with less than 5% 
mitochondrial content. We further identified doublets using Doublet-
Finder (v.2.0), which were then removed43. Finally, all samples within 
each dataset were integrated using reciprocal PCA within Seurat. The 
final QC’d merged Seurat object within each dataset was then used 
to assign cell types using canonical markers, specifically excitatory 
neurons (SLC17A7 and SATB2), inhibitory neurons (GAD1 and GAD2), 
astrocytes (AQP4 and FGFR3), microglia (C1QB and CSF1R), OPC (PDG-
FRA and VCAN), oligodendrocytes (MAG and MOG), pericytes (RGS5) 
and endothelial cells (CLDN5). Finally, we performed ambient RNA 
removal using DecontX44 using default parameters and cell-type labels 
and obtained corrected counts for each cell in all datasets (including 
Bryois_192).

eQTL mapping
The ambient RNA-corrected count matrices were extracted from each 
annotated cell type, after which the counts for all cells were summed 
per individual to obtain a single aggregated count value per cell type 
per individual (pseudobulking). Only individuals with at least ten cells 
in a specific cell type were included. Following aggregation, we normal-
ized count matrices using a log transformation on the counts per mil-
lion values obtained using the edgeR package (v.3.42)45. To increase the 
comparability across transcripts, we scaled the expression matrices. 
Consequently, the interpretation of the expression values is that each 
unit represents a change in one s.d. Only genes expressed in at least 5% 
of individuals were kept for further analysis.

For both the controls-only and full datasets, the mapping of 
cis-eQTLs was performed in two steps. We first fitted a linear model 
for the expression of each gene against clinical and technical covari-
ates, which included age, sex, PMI, sample source and diagnosis as fixed 
effects, from which we obtained the residual gene expression. Cis-eQTL 
discovery was performed using MatrixEQTL (v2.3)9 and a cis-distance 
of 1 Mb as input to the cisDist parameter, including all technical and 
clinical covariates. We included genotype PCs to account for potential 

population structure and tested the optimal number of expression PCs 
on the residual expression, specifically for each cell type to be added 
as linear covariates for a final model:

E ∼ G + expression PCs (1 − n) + genotype PCs (1 − 5) ,

where E is the residual gene expression corrected for covariates, G is the 
genotype dosage for a specific SNP and PCs (1 – n) are dependent on the 
maximum eGenes discovered for n PCs in a specific cell type. We then 
filtered the MatrixEQTL outputs by FDR using the Benjamini–Hochberg 
method46 for both sets of eQTL discoveries.

Interaction modeling
From the eQTL discovery on the full dataset (controls + disease cases), 
we obtained all the eQTLs for each cell type below 5% FDR. Using the 
top SNP for each gene, we re-assessed the reported associations using 
an LME model with the use of the lmerTest package (v.3.1)47.

We first tested an LME model that can be categorized as the null 
model (M0), modeling the gene versus all covariates:

E ∼ 1 + diagnosis + age + PMI + sex + (1 + diagnosis|sample source)

+expression PCs(1 − n) + genotype PCs(1 − 5).

The replication model (M1), which includes the addition of geno-
type G to replicate the MatrixEQTL model:

E ∼ 1 + G + diagnosis + age + PMI + sex + (1 + diagnosis|sample source)

+expression PCs (1 − n) + genotype PCs (1 − 5) .

Finally, the interaction model (M2) to test for interactions between 
diagnosis D and genotype G:

E ∼ 1 + G × diagnosis + age + PMI + sex + (1 + diagnosis|sample source)

+expression PCs (1 − n) + genotype PCs (1 − 5) .

For each model, we performed an LRT implemented in the package 
lmerTest (v3.1)47 between the baseline and the more complex model 
(M0 versus M1, and if significant, M1 versus M2)48 to assess which model 
better fits a particular SNP–gene association. In the LRT, a significant 
test (P < 0.05) suggests that a complex model is statistically more 
appropriate.

For the models using age as an interaction term, we restricted 
the analyses to the control-only dataset for simplicity, as it may not be 
possible to disentangle the combined effect of age and the presence 
of disease. In this scenario, we used the following model:

E ∼ 1 + G ∗ age + PMI + sex + (1|sample source)

+expression PCs (1 − n) + genotype PCs (1 − 5) .

Finally, we performed multiple-testing correction on the LRT P 
values by using the q value package (v.2.34)49 and labeled each associa-
tion with an LRT q value < 0.05 as better modeled with an interaction 
term, as implemented previously11.

Genetic colocalization
We first processed summary statistics from each GWAS study using 
the format_sumstats function from the MungeSumstats package 
(v.1.10.1)50 to harmonize column names. In cases where effect sizes 
and s.e. were missing, we enforced the imputation of these values 
using the impute_se = TRUE and impute_beta = TRUE parameters of the 
format_sumstats function. In the majority of cases, we also lifted over 
the SNP positions from hg19 to hg38. To select regions for colocaliza-
tion analysis, we first scanned each GWAS using the ld_clump function 
of the ieugwasr (v.1.0.1)51 package to retain the top variant in windows 
of 1 Mb and avoid overlapping regions. We then repopulated each 
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window with the full set of SNPs from the GWAS summary statistics to 
get a full set of regions to test in a colocalization setting. Regions with 
less than 100 SNPs were excluded from colocalization analysis. In addi-
tion, we aggregated genes in the MAPT and HLA loci in our results by 
cell type/trait given the potential inaccuracy in individual transcript 
quantification at these loci52–54, but report each of these individually 
in Supplementary Tables 4 and 8.

For each trait, we obtained the MatrixEQTL outputs and inter-
sected the SNPs with the GWAS summary statistics. We then iteratively 
performed genetic colocalization using the coloc.abf function from 
the COLOC package (v.5.2.3)13, each time testing one cell-type/gene 
combination (such as microglia/PICALM) as trait 1 against the GWAS 
as trait 2. For example, in a single region of 1 Mb containing five genes, 
we would perform 5 (number of genes) × 8 (number of cell types) = 40 
colocalization tests. To estimate sdY, we used available minor allele 
frequency (MAF) information from each SNP for each study; sdY was 
set as 1 for eQTL associations given the standardization of expression 
values before eQTL mapping. In addition, we specified type = ‘cc’ for 
case–control traits and type = ‘quant’ for quantitative traits as well as 
the cis-eQTL set. For downstream analyses, we retained colocalizations 
with a posterior probability (PP.H4) above 0.8.

MR
Using the colocalization results of the control-only dataset, we car-
ried out MR on traits (cell type/gene/GWAS) with a colocalization 
PP.H4 > 0.8. In addition, genes in the HLA and MAPT loci were excluded 
completely. Centering the filtering around the proposed lead SNP by 
the colocalization analysis as the IV, we kept all eQTLs with an associa-
tion to the gene below 5% FDR and confirmed that the F statistic values 
were all above 15 to ensure that all IVs were robust (Supplementary 
Fig. 13). To ensure independence between candidate instruments, we 
further excluded correlated genetic variants (r2 > 0.01). We then applied 
two-sample MR using the mr_ivw function from the MendelianRand-
omization package (v.0.10)55, as more than 90% of traits only retained a 
single IV, where the analysis is equivalent to the Wald ratio. In all cases, 
we used the cell-type-specific effect sizes as the exposure and the GWAS 
effect size as the outcome, where results with IVW P value < 0.05 were 
considered significant.

To further cross-validate these results, we implemented  
PCA–IVW16. Briefly, this method summarizes the genetic associations 
of all genetic variants within the region into orthogonal PCs. Correla-
tion matrices were obtained using the ld_matrix_local() function from 
the ieugwasr package, using the 1000 Genomes European reference 
dataset51. We first decomposed the genetic correlation matrix into 
PCs that explain 99.9% of the variance across the set of genetic vari-
ants, which were then used as independent IVs for MR analysis using 
the IVW method.

Assessment of MR genes at the protein level
We obtained the full published genome-wide summary statistics for 
each assessed protein in the brain proteome study detailed in ref. 4, 
as well as all proteins (2,940) in the European (discovery) cohort as 
reported by the UKB-PPP19, and kept summary statistics that inter-
sected with our MR genes. Because the reported summary statistics 
only included nominal P values in the UKB-PPP summary statistics, we 
performed multiple-testing corrections on the associations using the 
R (v.4.3.3) p.adjust() function specifying FDR46. To independently test 
a causal association between genetically regulated protein levels and a 
trait, we applied the same methodology as for the cell-type eQTLs. We 
took all SNPs within the genome-wide significant regions of each trait 
(500 kb of each side of the lead GWAS SNP for a total 1 Mb window) and 
filtered associations <5% FDR. We then removed correlated genetic vari-
ants (r2 > 0.01) using the ld_clump() method from the ieugwasr package 
and then harmonized the effect sizes based on reported effect alleles 
(A1) in the pQTL summary statistics and GWAS summary statistics  

(A2 after formatting with MungeSumstats). We then performed MR 
using the mr_allmethods() function on the inputs and retained asso-
ciations with IVW P value < 0.05 (ref. 55). In addition, we performed 
genetic colocalization on the UKB-PPP associations (which supplied 
genome-wide effect sizes and s.e.) using the same method as the cell- 
type eQTL colocalizations, specifying the prior probability p_12 = 0.01 
given our previous evidence of cell-type-specific colocalization.

Figures
Most figure panels were generated programmatically in R using the 
package ggplot2 (ref. 56) or with BioRender (full license) (Fig. 1).

Statistics and reproducibility
Statistical analyses have been described throughout the manuscript, 
figure legends and Methods, and performed using R (v.4.3.3), including 
associated packages (Methods). Version numbers from each package 
have been included. No statistical analysis was used to predetermine 
sample size, and excluded samples are described in the Methods.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw snRNA-seq and genotype data from the Bryois_192 dataset are 
available as per their publication at the European Genome–Phenome 
Archive (EGA) under accession code EGAS00001006345 (ref. 7). Raw 
snRNA-seq and genotype data from the MATTHEWS dataset are hosted 
at Synapse under accession code syn54083444. Newly generated raw 
snRNA-seq and associated genotype data (MRC_60 and Roche_PD) 
are available under accession code EGAS50000000687. Genotype 
data are considered personal data and are therefore under protected 
access by the host repository (EGA), where access is subject to the 
submission of an application delineating the scope of the project and 
the data required (full details on the portal). Applications are aimed to 
be reviewed within 2 weeks.

Processed single-cell expression counts for each dataset and the full 
set of eQTL summary statistics for both the full and control-only data-
sets are available at https://zenodo.org/records/13343729. The full set 
of published GWAS summary statistics used for the colocalization and 
MR analysis as well as links to the original publications are described 
in Supplementary Table 3.

Code availability
The code used for the analysis presented in this study can be found at 
https://github.com/johnsonlab-ic/singlecell-MR (ref. 57).
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Data collection No software was used for data collection.

Data analysis Packages or software used in this manuscript include the following; Michigan Imputation Server (version 1.6.3), Eagle (2.4), plink (2.0), 
bcftools (1.18), Cellranger (5.0.1), Cellranger-ARC (2.0.2), DropletUtils (1.22), Seurat (v4), DoubletFinder (2.0), edgeR (3.4.2), MatrixEQTL (2.3), 
lmerTest (3.1),qvalue (2.34),MungeSumstats (1.10.1),ieugwasr (1.0.1), coloc (5.2.3), MendelianRandomization (0.10).  
 
Scripts used for data analysis are available here. https://github.com/johnsonlab-ic/singlecell-MR

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
April 2023

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
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Raw snRNA-seq and genotype data from the Bryois_192 dataset is available as per their publication at the European Genome-Phenome Archive (EGA) under 
accession code EGAS00001006345 [7]. Raw snRNA-seq and genotype data from the MATTHEWS dataset is hosted at Synapse under accession code syn54083444. 
Newly generated raw snRNA-seq and associated genotype data (MRC_60 and Roche_PD) is available under accession code EGAS50000000687. Genotype data is 
considered personal data and is therefore under protected access by the host repository (EGA), where access is subject to the submission of an application 
delineating the scope of the project and the data required (full details on the portal). Applications are aimed to be reviewed within two weeks. 
 
Processed single-cell expression counts for each dataset and the full set of eQTL summary statistics for both the full and control-only datasets are available at 
https://zenodo.org/records/13343729 . The full set of published GWAS summary statistics  used for the colocalisation and MR analysis as well as links to the original 
publications are described in Supplementary Table 3.  
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Ethics oversight Imperial College Research Ethics reference: ICREC_14_2_11

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We performed snRNA-seq on all brain samples available to us, yielding N=409 individuals (391 post quality control). It is the largest dataset to 
date with almost equal sizes of controls (N = 183) and disease cases (N = 208), allowing to isolate disease-specific effects of feQTLs at cell-type 
specific level.

Data exclusions Nuclei with less than 500 UMIs in 300 features, and more than 5% Mitochondrial content were excluded. Related individuals based on 
genotypic data were excluded, and individuals with less than 10 nuclei for a single cell-type were removed.

Replication Replication was made by comparing eQTL discovery to a large-scale eQTL study performed in bulk brain tissue (N = 6,523). Between 
72.9-88.7% of cell-type eQTLs (depending on cell type) replicated at FDR < 5%, of which 90.0–98.3 had the same direction of effect.

Randomization Grouping was done based on diagnosis, determined by neuropathology. eQTL discovery was conducted on the full dataset (N = 391) and on 
the controls-only dataset (N = 183). No other grouping or selection was made. 

Blinding Blinding was not implemented to group allocation. However, in our case, the analysis focused on objective genetic and expression data, 
where researcher bias is unlikely to influence the outcome. Our study design required knowledge of group allocation to conduct separate 
analyses for controls and the full cohort, which is standard in genetic studies aiming to capture eQTLs across different biological conditions.
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