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The contribution of genetic determinants 
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The biological mechanisms through which most nonprotein-coding genetic 
variants affect disease risk are unknown. To investigate gene-regulatory 
mechanisms, we mapped blood gene expression and splicing quantitative trait 
loci (QTLs) through bulk RNA sequencing in 4,732 participants and integrated 
protein, metabolite and lipid data from the same individuals. We identified 
cis-QTLs for the expression of 17,233 genes and 29,514 splicing events (in 6,853 
genes). Colocalization analyses revealed 3,430 proteomic and metabolomic 
traits with a shared association signal with either gene expression or splicing. 
We quantified the relative contribution of the genetic effects at loci with 
shared etiology, observing 222 molecular phenotypes significantly mediated 
by gene expression or splicing. We uncovered gene-regulatory mechanisms 
at disease loci with therapeutic implications, such as WARS1 in hypertension, 
IL7R in dermatitis and IFNAR2 in COVID-19. Our study provides an open-access 
resource on the shared genetic etiology across transcriptional phenotypes, 
molecular traits and health outcomes in humans (https://IntervalRNA.org.uk).

The majority of genetic variants associated with common diseases 
and other complex traits identified through genome-wide association 
studies (GWAS) lie in nonprotein-coding sequences1. Consequently, the 
molecular mechanisms that underpin many of these genotype–pheno-
type associations are unclear. Molecular quantitative trait locus (QTL) 
mapping studies, which identify genetic determinants of transcript, 
protein or metabolite abundance, can address this knowledge gap 
by identifying the molecular intermediaries that mediate genetically 
driven disease risk. These studies can provide specific hypotheses for 
functional validation experiments2,3.

Molecular QTL data can be used for a range of biomedical applica-
tions. For example, they have the potential to identify and validate new 
therapeutic targets and pathways, inform about the biological mecha-
nisms of drug action and safety, highlight new therapeutic indications 
and reveal clinically relevant biomarkers4–6.

Many previous studies have carried out QTL mapping within a sin-
gle molecular domain such as gene or protein expression7–12. However, 
QTL data from multi-omic modalities are needed to fully understand 
the causal molecular chain of events from genetic variation to complex 
trait phenotypes13. Moreover, the availability of multimodal data in a 
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independent QTL) and secondary (that is, all other independent QTLs) 
cis-sQTLs. Primary cis-sQTL signals were enriched within the gene body 
of sGenes compared to secondary signals (P = 2.84 × 10−314, chi-squared 
test; Fig. 2a and Supplementary Fig. 2). Primary cis-sQTL signals were 
more enriched toward the transcription end site (median of 17.36 kb 
downstream of the TSS) compared to cis-eQTLs with a median of 5.51 kb 
downstream of the TSS (P = 8.42 × 10−259, two-sided Wilcoxon test; Sup-
plementary Fig. 2). These observations align with previous analyses 
for isoform ratio QTLs21. Next, we compared the identified sGenes 
with those from the Genotype-Tissue Expression (GTEx) Consortium22 
whole-blood dataset (n = 670 individuals). Of the 3,013 sGenes discov-
ered by GTEx, 89.0% of the 2,677 we tested were also found as sGenes in 
our analysis, in addition to 4,470 new sGenes (Supplementary Table 7). 
These results demonstrate the value of quantifying de novo splicing 
excision events and the substantially larger sample size.

For a given gene, to test whether corresponding cis-eQTLs and 
cis-sQTLs were underpinned by the same genetic variant, we performed 
colocalization analyses. This revealed 3,979 genes (of 6,252 tested) with 
colocalized signals (Methods). We found that 49.0% (n = 13,490) of 
tested splicing events had sQTLs that colocalized with an eQTL for the 
same gene (Supplementary Table 8). However, of the eQTL-colocalizing 
splicing events with multiple independent sQTL signals, 82% had addi-
tional sQTL loci that did not colocalize with eQTLs. Splicing events with 
sQTL that did not colocalize with an eQTL were located further down-
stream of the TSS (median 20.33 kb downstream) compared to sQTL 
signals that did colocalize (median 12.61 kb downstream; P = 9.8 × 10−70, 
two-sided Wilcoxon test; Supplementary Fig. 3).

Genetic effects on distal gene expression and splicing
Next, we investigated the distal (trans) regulatory effect of genetic 
variants (>5 Mb from the TSS/splicing event). First, we performed an 
untargeted, all-versus-all trans-eQTL and trans-sQTL analysis. We found 
a high correlation of trans-eQTL z scores for SNP–gene pairs also tested 
by the eQTLGen consortium study9 (Pearson’s r = 0.9; Supplemen-
tary Fig. 4). As our study has lower statistical power than eQTLGen, we 
focused on replicating the 2,924 most significant trans-eQTL associa-
tions from eQTLGen with P < 1 × 10−20. Of these, we replicated 63% at 
P < 1 × 10−6 in INTERVAL. We note that the incomplete overlap may be 
due to differences in data analysis strategies, including accounting for 
blood cell counts in the association model9.

Given the extreme multiple testing burden for genome-wide 
trans-QTL analyses, we focused on the 53,457 conditionally independ-
ent lead cis-expression SNPs (eSNPs), as these provide a potential 
mechanism through which a cis-acting variant can also affect genes 
in trans. In this targeted analysis, we identified 2,058 trans-eGenes at 
the Bonferroni-corrected threshold of P < 5 × 10−11 (Fig. 2b and Sup-
plementary Tables 1, 2 and 9). These trans-eQTLs corresponded to 
2,498 cis-eQTLs, with a median of three trans-eGenes per cis-eQTL 
(range = 1–284). Some of the cis-eGenes were associated with many 
trans-eGenes, such as PLAG1 (n = 284 genes), HYMAI (n = 284) and 
FUCA2 (n = 267). Cis-eGenes with a concurrent trans-association were 
significantly enriched for 32 gene ontology (GO) terms, compared to 
all cis-eGenes. Most of the terms related to transcription regulation 
and immune response, with ‘metal ion binding’ showing the strong-
est enrichment (P = 2.6 × 10−30; Supplementary Table 10). To further 
explore these transcriptional regulation mechanisms, we annotated 
the genes using the Human Transcription Factors database23. We 
found a significant enrichment in sequence-specific transcription 
factors, representing 14.3% of all cis-eGenes with a trans-association 
(357/2,498, P = 1.83 × 10−38; Methods). We investigated protein domain 
annotations for the observed transcription factors and detected a 
significant enrichment for the C2H2 zinc finger domain (P = 9.74 × 10−9 
after Bonferroni multiple-testing correction), specifically with the 
Krüppel-associated box domain (P = 3.04 × 10−10; Supplementary Fig. 5). 
For example, the PLAG1 gene, which is an important regulator of the 

single population sample enhances the interpretation and validity of 
causal inference analyses. For example, mediation analysis in a single 
cohort presents a strategy for identifying phenotypes that share a 
common genetic pathway and quantifying the proportion of the total 
genetic effect on those phenotypes14.

Here we use the INTERVAL study15,16, a bioresource of approxi-
mately 50,000 blood donors with extensive multidimensional ‘omics’ 
profiling, to identify gene expression and splicing QTLs based on 
peripheral blood RNA sequencing (RNA-seq; n = 4,732 individuals). 
Then, we integrate the QTL data with additional molecular QTL data 
derived from the same study (Fig. 1). These data include plasma pro-
tein levels measured through an antibody-based proximity exten-
sion assay (Olink Target panels, n = 4,662–4,981 individuals)17,18 and 
an aptamer-based multiplex protein assay (SomaScan v3, n = 3,301)5, 
as well as serum metabolite levels measured using an untargeted mass 
spectrometry platform (Metabolon HD4, n = 14,296)10 and a nuclear 
magnetic resonance spectroscopy platform (Nightingale Health, 
n = 40,849)19,20.

Our data reveal genetic effects on the expression and splicing 
of local and distant genes. We assess shared genetic etiology across 
molecular traits and health outcomes using statistical colocalization. 
We further investigate the genetic effects on downstream molecular 
phenotypes through transcriptional events by conducting mediation 
analyses. Based on these analyses, we develop an open-access por-
tal that enables exploration of this compendium of molecular QTLs 
(https://IntervalRNA.org.uk).

Results
Genetic regulation of local gene expression and splicing
We performed bulk RNA-seq on peripheral blood collected from 4,732 
blood donors recruited as part of the INTERVAL study (Methods). The 
expression levels of 19,173 autosomal genes and 111,937 de novo tran-
script splicing phenotypes (herein referred to as ‘splicing events’) from 
differential intron usage ratios in 11,016 genes were quantified. Then, 
we mapped local (cis) expression QTLs (eQTLs) within ±1 Mb of the 
transcription start site (TSS) and splicing QTLs (sQTLs) within ±500 
kilobase pairs (kb) of the center of the spliced region.

We identified 17,233 genes (89.9% of the 19,166 tested) with at 
least one significant cis-eQTL (cis-eGene) at a false-discovery rate 
(FDR) < 0.05 (Supplementary Tables 1 and 2; Methods). Stepwise con-
ditional analyses for each cis-eQTL revealed 56,959 independent signals 
(53,457 unique lead variants), with a median of three independent 
signals per gene (range = 1–23; Supplementary Tables 1 and 3; Meth-
ods). We compared our results to those from the eQTLGen consortium 
study given in ref. 9 (n = 31,684 individuals). z scores from eQTL lead 
SNPs were highly correlated between these studies (Pearson’s r = 0.9; 
Supplementary Fig. 1 and Supplementary Tables 2 and 4), highlighting 
the consistency of eQTL discovery results across independent datasets 
and mapping technologies.

Next, we identified 29,514 splicing events with a cis-sQTL at 
FDR < 0.05 (Supplementary Tables 1 and 5). These splicing events 
with a cis-sQTL were mapped to 6,853 genes (cis-sGenes) with a median 
of three splicing events observed per cis-sGene (range = 1–128). This 
included 543 cis-sGenes that were not identified as cis-eGenes. Across 
all splicing events with cis-sQTLs, these had a median length of 1,549 
base pairs (bp) and excised a protein-coding sequence in 32.4% of cases 
(the remainder related to intronic and UTR excisions). The median dis-
tance from the cis-sQTL lead variants to the center of the splicing event 
was 187 bp upstream, with lead variants forming a bimodal distribution 
around the start and end of the sGene (Fig. 2a).

After conditional analysis for each cis-sQTL, we identified 47,050 
independent signals (34,205 unique lead variants), with a median of 
one independent signal per cis-sQTL (range = 1–20; Supplementary 
Tables 1 and 6). To characterize independent variant effects on tran-
script splicing, we compared primary (that is, the most significant 
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human hematopoietic stem cell dormancy and self-renewal24, codes 
for a protein with a C2H2 zinc finger domain. We also noted the same 
enrichment for trans-eGenes (P = 5.73 × 10−5), although the molecular 
mechanisms are unclear and need further investigation.

To uncover genetic expression effects impacting distal down-
stream transcript splicing, we performed a targeted trans-analysis 
using the same 53,457 conditionally independent lead cis-eSNPs 
as in the trans-eQTL analysis. The analysis identified significant 
trans-associations for 644 splicing events (209 trans-sGenes) at the 
Bonferroni-corrected threshold of P < 8.36 × 10−12. This comprised 758 
unique trans-splicing SNPs (sSNPs), corresponding to 566 cis-eGenes 
(Fig. 2b and Supplementary Tables 1 and 11). Of the 644 splicing events 
regulated in trans, 240 (in 91 genes) were not observed to be regulated 
in cis, increasing the total number of splicing events with QTLs. We 
observed 11 cis-eGenes that were implicated by their cis-eQTLs in the 
regulation of more than ten sGenes in trans. For example, we observed 
that the cis-eQTL for the RNA-binding splice factor QKI was associated 
with 18 sGenes in trans (the most of any eGene; Fig. 2c). Across all tis-
sues in GTEx, there were only 29 trans-sQTL associations, of which only 
two were present in whole blood, that is, the trans-splicing of FYB1 via 
the QKI cis-eQTL and the trans-splicing of ABHD3 for which they did 
not detect an associated cis-effect for the trans-sSNP22. Here we rep-
licated both of these previous trans-sGene observations. For ABHD3, 
we demonstrate in addition that this trans-sSNP is also a cis-eSNP 
for the splicing factor TFIP11 and its antisense long noncoding RNA 
TFIP11-DT, potentially regulating the splicing of this gene in trans. 
Reports of the preliminary overlap of trans-sQTL associations with 
previous experimental validation are given in Supplementary Note 
and Supplementary Table 12. Across the whole dataset, cis-eGenes of 
trans-sSNPs were significantly enriched for ten GO terms, including 
‘nucleosome assembly’ (P = 2.78 × 10−6) and ‘RNA polymerase II activity’ 
(P = 1.40 × 10−5; Supplementary Table 10).

Shared genetic etiology across molecular traits
We next compared transcriptional QTLs to the other omics QTLs 
derived from subsets of participants from the INTERVAL study. These 
data include plasma protein QTLs (pQTLs) from the Olink Target and 
SomaScan panels, as well as metabolite QTLs (mQTLs) from the Metabo-
lon and Nightingale Health platforms.

To determine whether genetic signals at a given locus across 
omics layers reflect shared genetic or distinct causal variants, we per-
formed statistical colocalization analyses (Methods). These analyses 

revealed colocalization between either a cis-eQTL or cis-sQTL and 
cis-QTL for 120 Olink-measured proteins (65.9% of analyzed proteins), 
404 SomaScan-measured proteins (63.7%), 224 Nightingale-measured 
metabolites (99.1%) and 495 Metabolon-measured metabolites (81.5%; 
Fig. 3a and Supplementary Tables 13–16). We found colocalized sig-
nals across all assessed proteomic and metabolomic traits for 1,229 
cis-eGenes and 649 cis-sGenes (1,516 unique genes). For Olink- and 
SomaScan-measured proteins, genetic effect directions were more 
consistent (P = 5.4 × 10−10, one-sided Fisher’s exact test) for colocal-
izing eQTL–pQTL pairs (78.9% with consistent effect directions) than 
noncolocalizing pairs (59.0%). The uncoupling of eQTLs and pQTLs 
has previously been observed25 and could be due, for example, to 
post-transcriptional or post-translational mechanisms.

Of the 99 eQTL–pQTL pairs (364 sQTL–pQTL pairs) analyzed for 
colocalization in both Olink and SomaScan platforms, we found that 
45 (127) had a colocalized signal in both platforms, 19 (57) on the Olink 
platform only and 9 (41) on the SomaScan platform only (Supple-
mentary Tables 17 and 18). We annotated these colocalization results 
with cross-assay correlations reported previously26 and found sig-
nificantly higher cross-assay correlations for eQTL/sQTL–pQTL pairs 
with a colocalized signal for both platforms compared to eQTL–pQTL 
pairs with a colocalized signal for only one platform (eQTL–pQTL 
pairs, P = 3.1 × 10−4; sQTL–pQTL pairs, P = 1.4 × 10−7; one-sided Wilcoxon 
rank-sum test). This indicates that the differences we observed in colo-
calization results might be due to differences in protein measurements 
between the two platforms.

Next, we created a network to explore and visualize the inter-
connectedness among colocalized transcriptional and molecular 
phenotypes (Fig. 3b), linking each phenotype by their colocalizations. 
For example, we found seven splicing events in the OAS1 gene with 
cis-sQTLs that colocalized with both the cis-eQTLs for this gene and 
the OAS1 pQTLs.

To investigate the potential mechanisms by which genetic vari-
ants impact protein levels through splicing, we annotated the protein 
domains affected by splicing events. We observed that nearly half of 
splicing events that colocalized with pQTLs (41.0%, 401 of 977) excised 
annotated protein-coding sequences. Splicing has been shown to 
modulate circulating protein levels through changes in secretion by the 
inclusion or exclusion of transmembrane domains27. This is exemplified 
by a splicing event that removes exon 6 of the FAS gene, a cell surface 
receptor for the FAS-ligand (FASL) cytokine. The resulting protein, lack-
ing a transmembrane domain, is secreted28 and competitively inhibits 
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FASL binding, leading to decreased apoptosis. We identified both 
cis-eQTLs for FAS and cis-sQTLs for this splicing event, but these signals 
were distinct and did not colocalize (maximum posterior probabil-
ity = 0.02). The cis-sQTLs for excision of the transmembrane domain 
strongly colocalized with the pQTL (posterior probability = 1.00). 
Similarly, the interleukin-6 and interleukin-7 receptors (IL-6R and 
IL-7R, respectively) have previously been reported to produce secreted 
isoforms through the excision of transmembrane domains29,30. Here we 
show that the pQTLs for IL-6R and IL-7R colocalized with cis-sQTLs excis-
ing these transmembrane domain-encoding exons, in the absence of 
cis-eQTL colocalization (Fig. 3b). This observation emphasizes the role 
of transcript splicing as a mechanism independent of total transcript 
abundance through which genetic variation can modify downstream 
molecular phenotypes. Furthermore, we observed a pQTL colocal-
izing with an sQTL for the excision of a transmembrane domain in the 

encoding messenger RNA (mRNA) in 69 proteins (98 unique splicing 
events), with 60.2% of these independent sQTL signals (n = 100/166) not 
colocalizing with eQTLs for the same gene (Supplementary Table 19). 
For example, this is observed in α-1 antitrypsin encoded by SERPINA1 
and apolipoprotein L1 encoded by APOL1. Of these 69 transmembrane 
proteins, the majority were annotated as being single-pass, with only 
four (ENTPD1, ADGRE2, ADGRE5 and ADGRE1) being multipass trans-
membrane proteins.

To maximize statistical power for colocalization, we extended 
our analyses to the SomaScan-pQTL and Olink-pQTL datasets from 
deCODE8 (n = 35,559 individuals and n = 4,719 proteins) and the UK 
Biobank Pharma Proteomics Project12 (UKB-PPP; n = 54,219 individu-
als and n = 2,941 proteins), respectively. Colocalization analyses were 
performed between 1,608 Olink- and 1,410 SomaScan-measured pro-
teins and our transcriptional phenotypes, increasing the discovery of 
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pQTL–eQTL/sQTL colocalizations from 120 to 1,203 Olink-measured 
proteins and from 404 to 984 SomaScan-measured proteins. We 
observed a substantial overlap of eGenes and splicing events with 
QTLs colocalizing between our internal and the larger external pQTL 
cohorts. In UKB-PPP, we replicated 95.1% and 79.3% of eQTLs and sQTLs 
colocalizations, respectively, and in deCODE, 87.0% and 80.3% of eQTLs 
and sQTLs, respectively (Supplementary Tables 13–15; web portal).

Mapping causal transcriptional events on molecular 
phenotypes
To assess the causality of the transcriptional phenotypes on down-
stream molecular phenotypes, we performed mediation analyses 

focusing on colocalizing molecular traits assayed in the INTERVAL 
study (Fig. 4a; Methods). The expression of 143 cis-eGenes signifi-
cantly mediated the effect of 413 cis-eSNPs on 202 downstream 
molecular phenotypes, including 101 SomaScan-measured proteins, 
54 Olink-measured proteins, 39 Nightingale-measured metabolites 
and 8 Metabolon-measured metabolites. In total, this comprised 525 
significant eQTL mediation models (variant-gene-molecular phe-
notype triplets; Fig. 4b). Similarly, we observed 106 splicing event 
phenotypes in 47 sGenes that significantly mediated the effect of 
152 cis-sSNPs on 50 downstream molecular phenotypes, includ-
ing 32 SomaScan-measured proteins, 16 Olink-measured proteins, 
1 Nightingale-measured metabolite and 1 Metabolon-measured 
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metabolite, comprising 241 significant sQTL mediation models (Sup-
plementary Tables 20 and 21).

Previous reports showed that the missense variant rs2228145 
affects IL-6R ectodomain shedding by the alteration of one of the cleav-
age sites of ADAM10/ADAM17 metalloproteinases31,32. In line with this 
finding, we observed the previously mentioned IL6R transmembrane 

splicing event mediated a minority of the effect of the lead SNP 
(rs12126142), which is in high LD (r2 > 0.99; D′ > 0.99) with this mis-
sense variant, on Olink-measured plasma protein abundance (4.67%, 
P = 1.12 × 10−4; Fig. 4c,d). This suggests a potential dual action of the 
sSNP or tagged variants on removing this domain and, hence, creating a 
soluble isoform by both splicing and proteolytic pathways. Conversely, 
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the colocalized signal (lead cis-sSNP rs34495746) between splicing of 
the transmembrane domain of IL17RA and levels of its plasma protein 
was found to have most of the effect mediated by transcript splicing 
(90.41%, P = 1.14 × 10−43; Fig. 4c). Consistent with this observation, 
neither the lead SNP nor any strong tagging SNPs (r2 > 0.8) were mis-
sense variants.

Deconvoluting molecular mechanisms underlying GWAS loci
Molecular QTLs can provide insights into the mechanisms underlying 
genetic variants that influence disease risk33. We performed colocali-
zation analyses with genetic association signals for 20 disease pheno-
types from the FinnGen project (release 9)34, prioritized based on their 

relevance to the circulatory system and available sample size (that is, 
≥1,000 cases; Supplementary Table 22).

Disease-associated signals colocalized with 649 cis-eGenes and 
365 cis-sGenes (1,035 splicing events) across all tested traits (Sup-
plementary Tables 23 and 24). Many of these independent signals 
(136/981 for cis-eQTLs and 304/1589 for cis-sQTLs) also colocalized 
with pQTLs and mQTLs, revealing the regulatory pathways underly-
ing the complex trait-associated variants. For example, a cis-sQTL 
for the transmembrane domain splicing of IL7R colocalized with an 
association locus for dermatitis and eczema, as well as a pQTL for IL-7R 
in UKB-PPP (Fig. 5a). This analysis implicates soluble isoforms of IL-7R 
generated by alternative splicing in this condition. The alternative 
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allele of rs6897932 (T) is associated with decreased excision of the IL7R 
transmembrane domain, lower levels of IL-7R in plasma and reduced 
risk of dermatitis and eczema. This allele has been previously shown 
to associate with decreased lymphocyte count35 and decreased risk of 
multiple sclerosis36, suggesting consistent therapeutic implications.

Tryptophanyl-tRNA synthetase 1 (encoded by WARS1) exists in 
both secreted and intracellular forms37, with downstream impacts 
on vascular permeability38. Here we found a cis-sQTL for excision of 
exon 10 of WARS1 (encoding a portion of the tRNA synthetase protein 
domain), which colocalized with both the WARS1 pQTLs and risk for 
hypertension in FinnGen (Fig. 5a). The alternative allele of rs724391 (C) 
is associated with decreased excision of exon 10, higher plasma protein 
levels of WARS1 and increased risk of hypertension.

Finally, we also performed a genetic look-up analysis of all inde-
pendent signals at the identified cis-eQTLs and cis-sQTLs using data 
from the Open Target Genetics Portal (v22.10). We present the results 
on our web portal.

Transcriptional mechanisms underlying COVID-19 GWAS loci
Most of the whole-blood RNA is derived from circulating immune cells. 
Given the importance of the host immune response in COVID-19, we 
conducted colocalization analyses of the identified eQTLs and sQTLs 
with genetic loci associated with COVID-19 susceptibility and severity 
available from the pan-biobank COVID-19 Host Genetics Initiative39. We 
found colocalized signals with COVID-19 loci for 67 cis-eGenes and 42 
cis-sGenes (91 splicing events; Supplementary Tables 25 and 26 and 
Fig. 5b), of which 17 overlapped.

Previous analyses have identified genetic variants that impact 
splicing of OAS1 (refs. 40,41). These variants have subsequently been 
implicated in influencing COVID-19 severity41. Consistent with these 
data, we observed colocalization of an eQTL and sQTLs for seven splic-
ing events at the OAS1 locus with COVID-19 (Fig. 5c). Adjusting for OAS1 
gene expression levels did not ablate the sQTL signals (P < 1 × 10−16), 
suggesting the presence of multiple independent transcriptional 
mechanisms at this locus. In addition, we found colocalization for 
these eQTLs and sQTLs with the OAS1 pQTL, suggesting that genetic 
variants mediate disease risk through transcriptional changes impact-
ing soluble protein levels.

Furthermore, the GWAS signals for COVID-19 susceptibility and 
severity at the IFNAR2 locus (encoding the interferon α/β receptor 2) 
colocalized with a cis-eQTL, and cis-sQTLs associated with 10 splicing 
events in this gene (Supplementary Fig. 6). This included a splicing 
event excising exons 8 and 9, encoding the IFNAR2 transmembrane 
domain. Rare (stop–gain) mutations in exon 9 of this gene leading to 
loss of function have been previously reported to increase the risk of 
severe COVID-19 infection42. While IFNAR2 was not measured by the 
proteomic assays, isoforms of IFNAR2 lacking the transmembrane 
domain are known to generate a soluble protein isoform43, and sig-
nificantly higher quantities of soluble IFNAR2 have been observed 
in the serum of patients with severe COVID-19 (ref. 44). However, the 
role of splicing in this gene on disease severity has not been previously 
reported. Notably, the colocalizing IFNAR2 eQTLs are also trans-sQTLs 
for five splicing events in IFI27, four of which do not have an association 
in cis. Our results provide evidence for a mechanism whereby common 
variants regulating splicing of IFNAR2 could be contributing to disease 
severity through impacts on protein solubility.

Discussion
Nonprotein-coding genetic variants have an important role in the genet-
ics of complex traits, accounting for 90% of common trait heritability45. 
Genome-wide, multilayered molecular QTL data can help elucidate 
the functional impact of trait-associated variants and their regula-
tory networks that underpin complex disease biology. To this end, we 
discovered eQTLs for 17,233 genes and sQTLs for 29,514 splicing phe-
notypes in 6,853 genes in peripheral blood through RNA-seq of 4,732 

individuals. This included nonprimary signals for 81% of cis-eGenes 
and 49% of cis-sGenes, substantially increasing knowledge of the inde-
pendent genetic determinants of gene expression in whole blood. We 
combined these data with mQTL and pQTL data in the same participants 
of the INTERVAL study to map the genetic basis for disease phenotypes. 
Notably, 52% of independent eQTL colocalizations and 28% of signifi-
cant mediations involved nonprimary eQTL signals. Similarly, 31% of 
independent sQTL colocalizations and 30% of significant mediations 
involved nonprimary sQTL signals. These data demonstrate the value 
of the conditional analysis performed. Finally, we performed a down-
sampling analysis to provide guidance toward the expected eQTL and 
sQTL discovery for future studies (Supplementary Fig. 7a,b).

In comparison to eQTLs, the genetic determinants of splicing 
have been less thoroughly explored, in particular, how they impact 
downstream molecular phenotypes and disease risk. Our data sup-
port previous findings that splicing QTLs are major contributors to 
complex traits46. Through mapping sQTLs alongside eQTLs, we iden-
tified additional independent mechanisms by which genetic variants 
can influence mRNA and protein levels. For example, the 98 splicing 
events that colocalized with pQTLs (such as IL-6R and IL-7R) excised 
protein-coding sequences encoding transmembrane domains. Many 
of these pQTLs did not colocalize with eQTLs, suggesting that the sQTLs 
provide the pivotal mechanistic insight, given that genetic effects on 
splicing are more highly shared between tissues than genetic effects on 
expression22. Furthermore, by identifying and using de novo excision 
events from the RNA-seq data, we increased the resolution beyond 
established transcript annotations.

Using the multi-omic data in the INTERVAL study, we systemati-
cally performed mediation analyses to evaluate causality in the context 
of colocalized genetic association signals with molecular traits. In total, 
we observed 222 molecular phenotypes significantly mediated by gene 
expression or splicing, providing an additional layer of evidence to 
delineate functional mechanisms. For instance, we found that an sQTL 
excising the extracellular domain of CD33 mediated most of the effect 
of the sSNP on CD33 soluble protein levels. Mediation analyses are 
important to define the mode of action of the genetic effects underly-
ing association loci identified in GWAS, as well as the magnitude and 
direction of their relative effects on downstream phenotypes.

Our study has limitations. First, while we have focused on one 
definition of transcript splicing due to the annotation-free approach 
benefiting the downstream analyses, other methodologies may shed 
light on other aspects of transcript splicing. Second, statistical power 
was limited to mapping genome-wide eQTLs and sQTLs in trans. As 
trans-QTLs are challenging to replicate and distinguish from cell type 
heterogeneity in bulk RNA-seq studies9, we prioritized the identified 
conditionally independent lead cis-eSNPs for our trans-QTL analyses 
to prioritize the mechanism of upregulated gene expression modi-
fying the expression and splicing of downstream genes. While we 
show a strong correlation of effect sizes for SNP–gene pairs also tested 
by the eQTLGen consortium (phase I), large-scale meta-analyses of 
trans-QTL datasets will be required to create a resource of replicated 
associations, such as that being prepared by the eQTLGen consortium 
(phase II; https://www.eqtlgen.org/). To aid in these efforts, we have 
provided full trans-QTL summary statistics on our web portal. Third, 
our analyses comprised proteins quantified in plasma, rather than 
intracellular proteins. Thus, the interpretation of the effects of gene 
expression and splicing QTLs on proteins may be due to impacts on 
both quantity and solubility of the resulting protein, and other regu-
latory mechanisms, such as the stability of the mRNA and protein in 
addition to translational efficiency, may not be captured. However, 
additional data would be needed to address this. Fourth, the intrinsic 
properties of the different molecular data types can create challenges 
in interpretation. For example, there is a considerable correlation 
structure between metabolite levels47. As such, we found that the major-
ity of mQTLs (96%) colocalized with either a cis-eQTL or cis-sQTL. 
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Conversely, mQTLs showed mediation by cis-eQTLs or cis-sQTLs less 
frequently than pQTLs (that is, 6.8% versus 32.6% for mQTLs and pQTLs, 
respectively). Finally, our cohort comprised individuals of European 
ancestry. More work is needed to establish the translatability of our 
findings to other ancestries.

Previous studies showed that local regulation of gene expression 
is largely shared across tissues48 and that larger, well-powered eQTL 
studies in a surrogate tissue may identify more trait-colocalizing eQTLs 
than smaller studies in the target tissue49. Hence, these results provide 
a scientific rationale for the generation of increasingly large-scale 
QTL data in easily accessible tissues, such as peripheral blood. In our 
study, we further demonstrate the value of such a dataset when inte-
grating data from multiple molecular phenotypes in the same indi-
viduals and linking these to external health outcomes to help address 
the variant-to-function challenge. Similar application to population 
biobanks is warranted, and with the emerging availability of concomi-
tant molecular data at the single-cell level across a wide range of tissues, 
single-cell-QTL mapping at the population scale will become feasible. 
Such data will enable us to dissect gene-regulatory networks at much 
greater resolution across specific cell types and dynamic processes50,51. 
Together, these improved molecular QTL data will further enhance the 
interpretation of GWAS signals52. While GWAS signals have previously 
been observed to be depleted for eQTLs53, we demonstrate that the 
broader approaches used in this study, such as the increased sample 
size, the resolution of nonprimary signals and the additional signals 
captured by the sQTLs, have the potential to increase discovery of the 
molecular mechanisms underlying GWAS association.
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Methods
Study participants
The INTERVAL study is a prospective cohort study of approximately 
50,000 participants nested within a randomized trial of varying blood 
donation intervals15,16. Between 2012 and 2014, blood donors aged 
18 years and older were recruited at 25 centers of England’s National 
Health Service Blood and Transplant (NHSBT). All participants gave 
written informed consent before joining the study, and the National 
Research Ethics Service approved this study (11/EE/0538). Participants 
were generally in good health, as blood donation criteria exclude 
individuals with a history of major diseases (for example, myocardial 
infarction, stroke, cancer, HIV and hepatitis B or C) and who have had 
a recent illness or infection. Participants completed an online ques-
tionnaire comprising questions on demographic characteristics (for 
example, age, sex and ethnicity), lifestyle (for example, alcohol and 
tobacco consumption), self-reported height and weight, diet and use 
of medications. Demographic details are provided in Supplementary 
Table 27.

Blood collection
Blood samples were collected from all INTERVAL participants at base-
line and also from ~60% of participants ~24 months after baseline. For a 
subset of ~5,000 participants at the 24-month time point, an aliquot of 
3 ml of whole blood was collected in Tempus Blood RNA Tubes (Thermo 
Fisher Scientific), following the manufacturer’s instructions, and then 
transferred at ambient temperature to the UK Biocentre. Samples were 
stored at −80 °C until use.

RNA extraction
RNA extraction was performed by QIAGEN Genomic Services using 
QIAGEN’s proprietary silica technology. The quality control (QC) of 
the extracted RNA was performed by spectrophotometric measure-
ment on an Infinite 200 Microplate Reader (Tecan). RNA integrity 
number (RIN) values were determined using a TapeStation 4200 sys-
tem (Agilent), following the manufacturer’s protocol. Samples with 
a concentration <20 ng μl−1 and a RIN value <4 were excluded from 
further analyses.

Automated RNA-seq library preparation
Samples were quantified with a QuantiFluor RNA System (Promega) 
using a Mosquito LV liquid handling platform (SPT Labtech), Bravo 
automation system (Agilent) and FLUOstar Omega plate reader (BMG 
Labtech) and then cherry-picked to 200 ng in 50 μl (=4 ng μl−1) using a 
liquid handling platform (Tecan Freedom EVO). Next, mRNA was iso-
lated using a NEBNext Poly(A) mRNA Magnetic Isolation Module (New 
England Biosciences, NEB) and then resuspended in nuclease-free 
water. Globin depletion was performed using a KAPA RiboErase Globin 
Kit (Roche). RNA library preparation was done using a NEBNext Ultra 
II RNA Library Prep Kit for Illumina (NEB) on a Bravo NGS workstation 
automation system (Agilent). PCR was performed using a KapaHiFi 
HotStart ReadyMix (Roche) and unique dual-indexed tag barcodes on 
a Bravo NGS workstation automation system (Agilent). We applied the 
following PCR program: 45 s at 98 °C, 14 cycles of 15 s at 98 °C, 30 s at 
65 °C and 30 s at 72 °C, followed by 60 s at 72 °C. Using a Zephyr liquid 
handling platform (PerkinElmer), PCR products were purified using 
AMPure XP SPRI beads (Agencourt) at a 0.8:1 bead-to-sample ratio and 
then eluted in 20 μl of elution buffer (Qiagen). RNA-seq libraries were 
quantified with an AccuClear Ultra High Sensitivity dsDNA Quantita-
tion Kit (Biotium) using a Mosquito LV liquid handling platform (SPT 
Labtech), Bravo automation system (Agilent) and FLUOstar Omega 
plate reader (BMG Labtech). Then, libraries were pooled up to 95-plex 
in equimolar amounts on a Biomek NX-8 liquid handling platform 
(Beckman Coulter), quantified using a High Sensitivity DNA Kit on 
a 2100 Bioanalyzer (Agilent) and then normalized to 2.8 nM before 
sequencing.

RNA-seq and data preprocessing
Samples were sequenced using 75 bp paired-end sequencing reads 
(reverse stranded) on a NovaSeq 6000 system (S4 flow cell, Xp work-
flow; Illumina). The sequencing data were deplexed into separate 
compressed reference-oriented alignment map (CRAM) files for each 
library in a lane. Adapters that had been hard-clipped before align-
ment were reinserted as soft-clipped postalignment, and duplicated 
fragments were marked in the CRAM files. The data preprocessing, 
including sequence QC and STAR alignments, was performed with the 
Nextflow pipeline publicly available at https://github.com/wtsi-hgi/
nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.nf, 
including the specific aligner parameters. We assessed the sequence 
data quality using FastQC (v0.11.8). Samples mismatched between 
RNA-seq and genotyping data within the cohort were identified using 
QTLtools MBV (v1.2)54. Reads were aligned to the GRCh38 human ref-
erence genome (Ensembl GTF annotation v99) using STAR (v2.7.3a)55. 
The STAR index was built against GRCh38 Ensembl GTF v99 using 
the option -jdbOverhang 75. STAR was run in a two-pass setup with 
standard ENCODE options to increase mapping accuracy: (1) a first 
alignment step of all samples was used to discover new splice junctions, 
(2) splice junctions of all samples from the first step were collected 
and merged into a single list, (3) a second step realigned all samples 
using the merged splice junctions list as input. We used featureCounts 
(v2.0.0)56 to obtain a count matrix.

QC of gene expression data
Sequencing was performed across 15 batches. We filtered samples of 
poor quality by removing samples with a read depth below 10 million 
uniquely mapped reads. On average, each sample had 25.3 million 
unique reads (interquartile range = 21.5–26.9, including batches 1 and 
15 for which libraries were sequenced twice). A relatedness matrix 
was obtained using the PLINK (v1.9)57 -make-rel ‘square’ command 
on pruned genotype data, and a cutoff threshold of 0.1 was used to 
define related individuals. For each pair of related individuals, one 
individual was arbitrarily removed. After QC, a total of n = 46 samples 
were removed. After the sample QC, we filtered lowly expressed genes 
by retaining genes with >0.5 counts per million (CPM) in ≥1% of the 
samples, in line with the filter applied by the eQTLGen consortium9. In 
our dataset, a CPM value of 0.5 roughly equates to having 5 counts in a 
sample with the lowest read depth (10 million uniquely mapped reads) 
or 47 counts in a sample with the highest read depth (94 million reads). 
We further excluded globin genes, rRNA genes and pseudogenes. After 
QC, the final gene expression dataset included 19,173 autosomal genes 
(13,874 of which are protein-coding) across a total of 4,732 individuals.

Normalization of gene expression data
Before the eQTL analysis, the count data were normalized using the 
trimmed mean of M values (TMM)58 implemented in the R package 
edgeR (v3.24.3). The TMM-normalized values were further converted 
into fragments per kilobase of transcript per million mapped reads 
(FPKM) values (log2-transformed) to take gene length into account. 
Next, for each gene, the normalized log2-FPKM values across samples 
were transformed via the ranked-based inverse normal transforma-
tion function ‘rntransform’ implemented in the R package GenABEL 
(v1.8-0)59. Inverse normal transformation was applied to ensure the 
expression values followed a normal distribution.

Splicing data generation
Splice junctions were extracted from aligned RNA-seq BAMs for the 
4,732 individuals using Regtools (v0.5.2)60 junctions extract (param-
eters: ‘-s 1 -m 50’). Introns represented by extracted splice junctions 
were then clustered into groups based on overlapping start or end 
sites, with the Leafcutter pipeline (v0.2.9)52 (leafcutter_cluster_reg-
tools.py, parameters: ‘-m 100 -M 50 -l 100000 -p 0.01’). Clustered 
introns were then prepared for sQTL analysis with Leafcutter 

http://www.nature.com/naturegenetics
https://github.com/wtsi-hgi/nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.nf
https://github.com/wtsi-hgi/nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.nf


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02096-3

prepare_phenotype_table.py to convert intron counts to normalized 
ratios and compute ten splicing principal components (PCs). Introns 
were matched to regions of Ensembl v99 genes and protein domains 
annotated with R v4.0.3 using a custom pipeline (described in Data 
availability). Total observed introns (n = 956,722) were filtered to 
those that were autosomal, overlapping an expressed gene body, with 
CPM > 0.5 in at least 24 individuals, and sufficient variance (minimum 
two filtered splice event phenotypes per cluster), resulting in 111,937 
filtered splicing event phenotypes, in 11,016 genes (see Supplementary 
Fig. 8 for a summary of splicing event QC).

DNA extraction, genotyping and imputation
In brief, DNA extracted from buffy coat samples collected from INTER-
VAL participants at the study baseline was used to assay approximately 
830,000 variants on the Affymetrix Axiom UK Biobank genotyping 
array61. Genotyping and sample QC were performed as previously 
described61. Before imputation, additional variant filtering steps were 
performed to establish a high-quality imputation scaffold, including 
654,966 autosomal, nonmonomorphic, bi-allelic variants with Hardy–
Weinberg equilibrium (HWE) P > 5 × 10−6, with a call rate of >99% across 
the INTERVAL genotyping batches in which a variant passed QC and a 
global call rate of >75% across all INTERVAL genotyping batches. Next, 
variants were phased using SHAPEIT3 and imputed using a combined 
1000 Genomes Phase 3-UK10K reference panel. Imputation was per-
formed via the Sanger Imputation Server (https://imputation.sanger.
ac.uk) and resulted in 87,696,888 imputed variants. For the present 
analysis, imputed genotypes were lifted over to reference build GRCh38 
using CrossMap (v0.3.4)62 and the Ensembl chain file provided with the 
package. Imputed genotypes were hard-called with PLINK (v2.00a2-
32-bit)57 using the default parameters. Before analysis, the dataset was 
restricted to individuals with RNA-seq and filtered to remove genetic 
variants with HWE exact test P < 1 × 10−6, genotype missingness >0.05 
or minor allele frequency < 0.5%.

Identification of sample swaps and cross-contamination
The Match BAM to VCF (MBV) method from QTLTools54 was used to 
identify sample mix-ups and cross-contamination. MBV directly com-
pares each aligned RNA-seq BAM file to all the genotypes in the VCF 
file and computes the proportion of concordant heterozygous and 
homozygous sites. To reduce computation time, we only focused on 
chromosome 1. Based on the concordance (close to 100%) between the 
genotype data and RNA-seq samples, we identified and corrected ten 
pairs of mislabeled samples. We removed seven RNA-seq samples that 
did not show a clear high concordance (the highest was <50%) with any 
particular genotype sample—either due to cross-contamination or the 
actual matching genotypes were not available.

PEER factor and splicing PC analysis
We used the probabilistic estimation of expression residuals (PEER) 
method63, implemented in the R package peer v.1.0 (downloaded 
from https://github.com/PMBio/peer), to detect and correct eQTL 
mapping for latent batch effects and other unknown confounders. 
PEER factors were estimated while accounting for age, sex, body mass 
index and 19 blood cell traits (Supplementary Table 28) as known 
confounders. PEER was run for 50 factors, converging at 148 itera-
tions. For inclusion in the eQTL analysis, we selected the number of 
PEER factors based on the following two criteria: (1) discovery of the 
largest number of cis-eGenes and (2) additional gain in cis-eGenes 
with incremental increase in PEER factors (Supplementary Fig. 9a). 
We found that the relationship between the increase in the number of 
discovered cis-eGenes and the incremental increase in PEER factors is 
similar to that observed in the GTEx whole-blood dataset22. Therefore, 
we included 35 PEER factors in our eQTL analysis, consistent with GTEx. 
We used a similar approach to determine the optimal number of PCs to 
include in the sQTL analysis, testing 0–10 PCs. We found that cis-sQTL 

discovery only increased slightly with the number of PCs included with 
no obvious threshold (Supplementary Fig. 9b). Given that ten PCs 
were established as a previous default for sQTL mapping52, we opted 
to include ten splicing PCs.

Mapping of eQTLs and sQTLs
eQTLs and splicing QTLs were called using tensorQTL (v1.0.6)64 and 
postprocessed with a custom pipeline65. The covariates integrated 
into the regression model are listed and described in Supplementary 
Tables 27 and 28. In brief, these included (1) demographic variables 
such as age at blood sampling, sex and body mass index at baseline 
(because it was not collected at the time of blood sampling), (2) tech-
nical variables such as RIN, read depth and season of blood sampling, 
(3) ten genotype PCs and 35 PEER factors (for eQTLs) or ten splicing 
PCs (for sQTLs) and (4) 19 different blood cell traits. For the cis-eQTL 
analysis, variants were defined as being in cis with a gene if they were 
located within a window of ±1 Mb from the TSS. For the sQTL analysis, 
the window was set to ±500 kb from the center of the splicing event 
to balance primary and secondary sQTL discovery. Feature annota-
tion, including TSS position, was obtained from Ensembl v99 ( Janu-
ary 2020). For both cis-eQTL and cis-sQTL analyses, multiple-testing 
correction was applied in tensorQTL as follows: (1) for each gene (or 
splicing event), the adjusted lowest P value was estimated using a β 
distribution approximation from a permutation procedure (10,000 
permutations)66; (2) Benjamini–Hochberg FDR correction was applied 
to the β-approximated P values across genes (or splicing events), and 
the FDR q value threshold was set to 5%. For each significant gene (or 
splicing event), a nominal P-value threshold was estimated to identify 
significant SNPs. To demonstrate how increased sample size assists 
in cis-eQTL and cis-sQTL discovery, random samples of patients in 
n = 500 increments were subsetted and QTL mapping was performed 
with the same inputs as the full cis-QTL analyses, with the output 
being the number of significant genes (or splice phenotypes) with a 
significant eQTL (or sQTL). Conditional analysis was performed for 
each cis-eGene (or splicing event phenotype with a cis-sQTL) using 
GCTA-COJO v1.94.0beta ( January 2022)67,68. The program took as input 
the gene cis-eQTL (or cis-sQTL) summary statistics, the INTERVAL 
imputed genotype data for cis-variants and the P-value threshold used 
to identify the cis-eGene (or splicing QTL). A trans-eQTL analysis was 
performed on the list of lead SNPs from cis-eGenes independent sig-
nals. The trans-regions were defined as genomic regions outside of 
the ±5 Mb window from the TSS. The Bonferroni multiple-testing cor-
rection method (that is, P = 0.05/number of tested trans-associations) 
was applied to identify significant trans-associations. While previous 
work has demonstrated that trans-QTL analyses may be susceptible 
to artifacts due to read cross-mapping between similar genes69, our 
quantification approach using only uniquely mapped reads led to only 
a small fraction of our trans-QTL results (that is, 12.2% of trans-eQTLs 
and 23.6% of trans-sQTLs) involving genes that were flagged for 
sequence similarity. For the trans-QTL analyses, we also assessed if 
there were PEER factors or splicing PCs associated with cis-eSNPs. 
We did not detect any significant associations (P < 9.4 × 10−8, Bon-
ferroni multiple-testing correction across 53,457 cis-eSNPs and ten 
splicing PCs) between cis-eSNPs and splicing PCs. However, we found 
that ten cis-eSNPs were significantly associated with five PEER factors 
(P < 2.7 × 10−8, Bonferroni multiple-testing correction across 53,457 
cis-eSNPs and 35 PEER factors). As a sensitivity analysis, we performed 
the trans-eQTL analyses with and without these five PEER factors. We 
showed a high correlation of z scores for trans-eQTL involving these 
ten SNPs before and after removing these PEER factors from the model 
(Pearson correlation = 0.80; Supplementary Fig. 10). We identified sig-
nificant associations of cis-eSNPs with an additional 121 trans-eGenes. 
Overall, we identified a higher number of trans-eGenes by integrating 
all 35 PEER factors in the model (that is, 2,058 trans-eGenes instead of 
1,811 trans-eGenes).
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Validation of cis-eQTL and cis-sQTL results
Results from the cis-eQTL analysis were compared to the results 
obtained in the eQTLGen study9, which are available at https://www.
eqtlgen.org/cis-eqtls.html. In our comparison, we explored the percent-
age of overlap of cis-eGenes and the effect direction of genetic associa-
tions. For the overlap of cis-eGenes, we focused on the list of 15,722 genes 
that were tested in both INTERVAL and eQTLGen. For the comparison 
of effect directions, we computed the correlation of z scores for SNPs 
that were the most significant in INTERVAL for each gene and that were 
also tested in eQTLGen. Results from sQTL analysis were collapsed to the 
sGene level for comparison to GTEx whole-blood sQTLs (v.8)22, which 
are available at https://gtexportal.org/home/datasets.

Enrichment analyses
Enrichment analyses were performed using a one-sided Fisher’s exact 
test on QTL results annotated with GO terms70 (downloaded in May 
2022) and the Human Transcription Factors database23. We tested 
for enrichment within cis-eGenes with a trans-association with gene 
expression or splicing using significant cis-eGenes as background. 
Benjamini–Hochberg FDR correction was applied to identify signifi-
cant enrichment.

Colocalization analysis
Colocalization analysis was performed using the results of conditional 
analysis from GCTA-COJO67,68 and the R package Coloc (v5.1.0.1)71 on pair-
wise independent QTL signals following the pwCoCo methodology72. 
The colocalization analysis window was the entire cis-window, that is, 
±1 Mb for eQTLs and ±500 kb for sQTLs. Prior probabilities were kept 
as the default values, that is, P1 = 1 × 10−4, P2 = 1 × 10−4 and P12 = 1 × 10−5. 
Colocalized results were defined with the thresholds PP3 + PP4 ≥ 0.9 and 
PP4/PP3 ≥ 3, PP3 and PP4 being the posterior probabilities of hypotheses 
3 and 4 as outlined previously71. For colocalization analysis with external 
omics data, summary statistics were downloaded from each study (see 
Supplementary Table 29 for the description of the different omics stud-
ies). A previous study performed simulations showing that the impact of 
complete sample overlap on colocalization results was negligible with 
200 individuals and, therefore, will be even smaller with large sample 
sizes as used here73. Before colocalization analysis, (1) proteins were 
annotated using the R package biomaRt (v2.46.3) to obtain correspond-
ing genes in Ensembl v99 ( January 2020), and (2) significant pQTLs and 
mQTL were filtered. For pQTLs, P-value thresholds per feature were 
defined by a two-step multiple-testing correction74,75. For mQTLs, we 
used a Bonferroni-adjusted P-value threshold of P < 5 × 10−8, corrected 
for the number of metabolites analyzed.

Mediation analysis
Mediation analyses were conducted using the natural effects model 
implemented in the R package Medflex (v0.6-7)76. In the models, we 
defined (1) the independent lead cis-eQTL (or cis-sQTL) SNP (coded as 
0, 1 and 2) as the independent (exposure) variable, (2) the gene expres-
sion level (or splicing event phenotype) of the cis-eGene/-sGene as 
the mediator and (3) the molecular trait as the dependent (outcome) 
variable. Gene expression (or splicing event phenotype) residuals 
were computed after adjusting for the same covariates as we used 
for eQTL/sQTL mapping, while molecular traits were adjusted for 
covariates described by each study (Supplementary Table 29). For all 
mediation analyses, samples with missing genotype or molecular data 
were removed. Standard errors were computed based on the robust 
sandwich estimator. Significant direct, indirect and total effects were 
identified after Bonferroni multiple-testing correction between each 
molecular phenotype assay.

Interactive QTL web portal
To facilitate the accessibility of the results, a web portal was built to 
enable the exploration of eQTL and sQTLs. Summary statistics and 

expression phenotypes were imported into a MariaDB (v10.2.38) data-
base; code was written to facilitate their retrieval in PHP (v7.2.34) with 
jQuery (v3.5.1) and styled with Bootstrap (v3.4.1). Tables are powered 
by DataTables (v1.13.3). Locus and QTL plots are visualized with Locus-
ZoomJS (v0.13.4) and plotly (v2.9.0), respectively.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No 
data were excluded from the analyses, except due to the QC steps 
detailed above. The experiments were not randomized, and the investi-
gators were not blinded to allocation during experiments and outcome 
assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The INTERVAL study data used in this paper are available to bona fide 
researchers from ceu-dataaccess@medschl.cam.ac.uk. The data access 
policy for the data has been approved by the ethics committee and is 
available at https://www.donorhealth-btru.nihr.ac.uk/ wp-content/
uploads/2020/04/Data-Access-Policy-v1.0-14Apr2020.pdf. The release 
of data is regulated by the Blood Donors Studies BioResource Data 
Access Committee (DAC). The DAC will review the project’s scientific 
excellence and alignment of the proposal with the overall aims of the 
database; the research team’s experience and capability to conduct the 
proposed study; and the suitability of the data and any risk to participant 
confidentiality. The data access process takes approximately 2 months. 
The newly generated RNA-seq data (n = 4,732 INTERVAL participants) 
have been deposited at the European Genome-phenome Archive under 
the accession EGAD00001008015. The results from the genetic asso-
ciation, colocalization and mediation analyses are available at https://
IntervalRNA.org.uk. The summary statistics are also made available 
on the above web portal, as well as mirrored on Zenodo (https://doi.
org/10.1101/2023.11.25.23299014)77. Our data used annotation from 
Ensembl (https://www.ensembl.org/). For enrichment analyses, we 
used the public databases GO (https://geneontology.org/)70 and The 
Human Transcription Factors (https://humantfs.ccbr.utoronto.ca/)23.

Code availability
All original code has been deposited on GitHub (https://github.com/
INTERVAL-RNAseq/manuscript-scripts) and a static version archived 
on Zenodo (https://doi.org/10.5281/zenodo.14015194)65.

References
54.	 Fort, A. et al. MBV: a method to solve sample mislabeling 

and detect technical bias in large combined genotype and 
sequencing assay datasets. Bioinformatics 33, 1895–1897 (2017).

55.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29, 15–21 (2013).

56.	 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general 
purpose program for assigning sequence reads to genomic 
features. Bioinformatics 30, 923–930 (2014).

57.	 Chang, C. C. et al. Second-generation PLINK: rising to the 
challenge of larger and richer datasets. Gigascience 4, 7 (2015).

58.	 Robinson, M. D. & Oshlack, A. A scaling normalization method for 
differential expression analysis of RNA-seq data. Genome Biol. 11, 
R25 (2010).

59.	 Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: 
an R library for genome-wide association analysis. Bioinformatics 
23, 1294–1296 (2007).

60.	 Cotto, K. C. et al. Integrated analysis of genomic and 
transcriptomic data for the discovery of splice-associated variants 
in cancer. Nat. Commun. 14, 1589 (2023).

http://www.nature.com/naturegenetics
https://www.eqtlgen.org/cis-eqtls.html
https://www.eqtlgen.org/cis-eqtls.html
https://gtexportal.org/home/datasets
https://www.donorhealth-btru.nihr.ac.uk/wp-content/uploads/2020/04/Data-Access-Policy-v1.0-14Apr2020.pdf
https://www.donorhealth-btru.nihr.ac.uk/wp-content/uploads/2020/04/Data-Access-Policy-v1.0-14Apr2020.pdf
https://ega-archive.org/datasets/EGAD00001008015
https://IntervalRNA.org.uk
https://IntervalRNA.org.uk
https://doi.org/10.1101/2023.11.25.23299014
https://doi.org/10.1101/2023.11.25.23299014
https://www.ensembl.org/
https://geneontology.org/
https://humantfs.ccbr.utoronto.ca/
https://github.com/INTERVAL-RNAseq/manuscript-scripts
https://github.com/INTERVAL-RNAseq/manuscript-scripts
https://doi.org/10.5281/zenodo.14015194


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02096-3

61.	 Astle, W. J. et al. The allelic landscape of human blood cell 
trait variation and links to common complex disease. Cell 167, 
1415–1429 (2016).

62.	 Zhao, H. et al. CrossMap: a versatile tool for coordinate 
conversion between genome assemblies. Bioinformatics 30, 
1006–1007 (2014).

63.	 Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using 
probabilistic estimation of expression residuals (PEER) to obtain 
increased power and interpretability of gene expression analyses. 
Nat. Protoc. 7, 500–507 (2012).

64.	 Taylor-Weiner, A. et al. Scaling computational genomics to 
millions of individuals with GPUs. Genome Biol. 20, 228  
(2019).

65.	 Persyn, E. & Tokolyi, A. INTERVAL-RNAseq manuscript-scripts 
v1.0.0. Zenodo https://doi.org/10.5281/zenodo.14015194  
(2024).

66.	 Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, 
O. Fast and efficient QTL mapper for thousands of molecular 
phenotypes. Bioinformatics 32, 1479–1485 (2016).

67.	 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool 
for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 
76–82 (2011).

68.	 Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS 
summary statistics identifies additional variants influencing 
complex traits. Nat. Genet. 44, 369–375 (2012).

69.	 Saha, A. & Battle, A. False positives in trans-eQTL and 
co-expression analyses arising from RNA-sequencing alignment 
errors. F1000Res 7, 1860 (2018).

70.	 Ashburner, M. et al. Gene ontology: tool for the unification of 
biology. Nat. Genet. 25, 25–29 (2000).

71.	 Giambartolomei, C. et al. Bayesian test for colocalisation between 
pairs of genetic association studies using summary statistics. 
PLoS Genet. 10, e1004383 (2014).

72.	 Zheng, J. et al. Phenome-wide Mendelian randomization mapping 
the influence of the plasma proteome on complex diseases. Nat. 
Genet. 52, 1122–1131 (2020).

73.	 Mitchelmore, J., Grinberg, N. F., Wallace, C. & Spivakov, M. 
Functional effects of variation in transcription factor binding 
highlight long-range gene regulation by epromoters. Nucleic 
Acids Res. 48, 2866–2879 (2020).

74.	 Peterson, C. B., Bogomolov, M., Benjamini, Y. & Sabatti, 
C. TreeQTL: hierarchical error control for eQTL findings. 
Bioinformatics 32, 2556–2558 (2016).

75.	 Huang, Q. Q., Ritchie, S. C., Brozynska, M. & Inouye, M. Power, 
false discovery rate and Winner’s Curse in eQTL studies. Nucleic 
Acids Res. 46, e133 (2018).

76.	 Steen, J., Loeys, T., Moerkerke, B. & Vansteelandt, S. medflex: 
an R package for flexible mediation analysis using natural effect 
models. J. Stat. Softw. 76, 1–46 (2017).

77.	 Tokolyi, A. & Persyn, E. INTERVAL eQTL & sQTL summary statistics 
[Data set]. Zenodo https://doi.org/10.1101/2023.11.25.23299014 
(2023).

Acknowledgements
Participants in the INTERVAL randomized controlled trial were 
recruited with the active collaboration of NHSBT England (https://
www.nhsbt.nhs.uk/), which has supported fieldwork and other 
elements of the trial. DNA extraction and genotyping were cofunded 
by the National Institute for Health and Care Research (NIHR), 
the NIHR BioResource (https://bioresource.nihr.ac.uk/) and the 
NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). 
RNA-seq was funded as part of an alliance between the University of 
Cambridge and the AstraZeneca Centre for Genomics Research, as 
well as by the NIHR Cambridge Biomedical Research Centre (BRC-
1215-20014). Olink Target assays (Neurology panel) were funded 

by Biogen. SomaLogic assays were funded by Merck & Co and the 
NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). 
Metabolon HD4 assays were funded by the NIHR BioResource, NIHR 
Cambridge Biomedical Research Centre (BRC-1215-20014), Wellcome 
Trust (number 206194) and BioMarin Pharmaceutical. Nightingale 
Health assays were funded by the European Commission Framework 
Programme 7 (HEALTH-F2-2012-279233). The academic coordinating 
center for INTERVAL was supported by core funding from the NIHR 
Blood and Transplant Research Unit (BTRU) in Donor Health and 
Genomics (NIHR BTRU-2014-10024), NIHR BTRU in Donor Health 
and Behavior (NIHR203337), UK Medical Research Council (MR/
L003120/1), British Heart Foundation (SP/09/002, RG/13/13/30194, 
RG/18/13/33946 and RG/F/23/110103), BHF Chair Award 
(CH/12/2/29428) and NIHR Cambridge BRC (BRC-1215-20014 and 
NIHR203312). A complete list of the investigators and contributors to 
the INTERVAL trial is provided in ref. 16. The academic coordinating 
center thanks blood donor center staff and blood donors for 
participating in the INTERVAL trial. This work was supported by Health 
Data Research UK, which is funded by the UK Medical Research 
Council, Engineering and Physical Sciences Research Council, 
Economic and Social Research Council, Department of Health 
and Social Care (England), Chief Scientist Office of the Scottish 
Government Health and Social Care Directorates, Health and Social 
Care Research and Development Division (Welsh Government), 
Public Health Agency (Northern Ireland), British Heart Foundation 
and Wellcome. The views expressed are those of the authors and 
not necessarily those of the NIHR or the Department of Health and 
Social Care. The Wellcome Sanger Institute is supported by core 
funding from the Wellcome Trust (206194 and 220540/Z/20/A). We 
thank the Wellcome Sanger Institute’s Scientific Operations team for 
their contribution to sequencing data generation. For Open Access, 
the authors have applied a CC BY public copyright license to any 
Author Accepted Manuscript version arising from this submission. 
This work was performed using resources provided by the Cambridge 
Service for Data Driven Discovery (CSD3) operated by the University 
of Cambridge Research Computing Service (https://www.csd3.cam.
ac.uk/), provided by Dell EMC and Intel using Tier-2 funding from 
the Engineering and Physical Sciences Research Council (capital 
grant EP/P020259/1), and DiRAC funding from the Science and 
Technology Facilities Council (https://dirac.ac.uk/). We thank the 
participants and investigators of the UK Biobank study who made 
this work possible (resource applications 26041 and 65851). A.T. is 
supported by the Wellcome Trust (PhD studentship 222548/Z/21/Z). 
E.P. is funded by the EU/EFPIA Innovative Medicines Initiative Joint 
Undertaking BigData@Heart (grant 116074) and by the NIHR BTRU 
in Donor Health and Behavior (NIHR203337). S.C.R. is funded by a 
BHF Programme Grant (RG/18/13/33946) and the NIHR Cambridge 
BRC (BRC-1215-20014 and NIHR203312). Y.X. is supported by the 
UK Economic and Social Research Council (ES/T013192/1). J.E.P. 
is supported by a Medical Research Foundation Fellowship (MRF-
057-0003-RG-PETE-C0799). J.D. holds a British Heart Foundation 
Professorship and a NIHR Senior Investigator Award. M.I. is supported 
by the Munz Chair of Cardiovascular Prediction and Prevention and 
the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014 
and NIHR203312), and is also supported by the UK Economic and 
Social Research Council (ES/T013192/1).

Author contributions
A.T., E.P., M.I., E.E.D. and D.S.P. conceived the study design and 
wrote the paper. A.T. and E.P. conducted statistical analyses. A.P.N. 
performed the QC of RNA-seq data. G.N. and V.I. performed the 
preprocessing of RNA-seq data. J.M. made substantial contributions 
to the QTL mapping. A.T. developed the interactive web portal. K.L.B., 
T.V., M.T., D.S., X.J., S.A.L., S.C.R., Y.X., J.E.P. and A.S.B. provided critical 
comments on the paper. B.F., M.A.Q., D.R. and S.A.J.T. performed 

http://www.nature.com/naturegenetics
https://doi.org/10.5281/zenodo.14015194
https://doi.org/10.1101/2023.11.25.23299014
https://www.nhsbt.nhs.uk/
https://www.nhsbt.nhs.uk/
https://bioresource.nihr.ac.uk/
https://www.csd3.cam.ac.uk/
https://www.csd3.cam.ac.uk/
https://dirac.ac.uk/


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02096-3

RNA-seq experiments. B.B.S., C.D.W., H.R., S.P., D.J.G., D.J.R., E.D.A., 
N.S. and J.D. provided materials and data resources. K.L.B. and A.S.B. 
provided critical suggestions to the study design. M.I., E.E.D. and D.S.P. 
supervised the project. All authors reviewed and approved the final 
version of the paper.

Competing interests
M.A.Q. is on the Key Opinion Leader panel for New England Biolabs. 
B.B.S. and H.R. are employees and stockholders of Biogen. C.D.W. 
is an employee and stockholder of Johnson & Johnson. S.P. and 
D.S.P. are employees and stockholders of AstraZeneca. D.J.G. is an 
employee and stockholder of BioMarin Pharmaceutical. D.J.R. is an 
employee of NHSBT. J.E.P. has received hospitality and travel expenses 
to speak at Olink-sponsored academic meetings (none within the 
past 5 years). A.S.B. has received grants outside of this work from 
AstraZeneca, Bayer, Biogen, BioMarin and Sanofi. M.I. is a trustee of 
the Public Health Genomics Foundation, a member of the Scientific 
Advisory Board of Open Targets and has a research collaboration with 

AstraZeneca that is unrelated to this study. The other authors declare 
no competing interests.

Additional information
Supplementary information The online version contains 
supplementary material available at  
https://doi.org/10.1038/s41588-025-02096-3.

Correspondence and requests for materials should be addressed to 
Dirk S. Paul.

Peer review information Nature Genetics thanks Stephen 
Montgomery, Yi Xing and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Peer reviewer reports are 
available.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02096-3
http://www.nature.com/reprints


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Dirk S. Paul

Last updated by author(s): Nov 14, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Genotyping and RNA-seq data collection was performed using the standard vendor bioinformatic pipeline for the Affymetrix Axiom UK 
Biobank genotyping array and the NovaSeq 6000 respectively. Details for the collection of previously generated protein and metabolite data 
are listed in Supplementary Table 29, and associated manuscripts. Covariate and population meta-data were previously collected as described 
in 10.1016/S0140-6736(17)31928-1.

Data analysis Software: CrossMap v0.3.4, FastQC v0.11.8,  featureCounts v2.0.0, GCTA-COJO v1.94.0beta (January 2022), Leafcutter v0.2.9, PLINK v1.9, 
PLINK v2.00a2-32-bit, QTLtools MBV v1.2, R v4.0.3, regtools v0.5.2, SHAPEIT3, STAR v2.7.3a, tensorQTL v1.0.6. 
R packages: biomaRt v2.46.3, coloc v5.1.0.1, edgeR v3.24.3, GenABEL v1.8-0, medflex v0.6-7, peer v.1.0. 
Interactive QTL web-portal: Bootstrap v3.4.1, DataTables v1.13.3, jquery v3.5.1, LocusZoomJS v0.13.4, MariaDB v10.2.38, PHP v7.2.34, plotly 
v2.9.0. 
Further information about the software and R packages used for data analyses are provided in the Methods section of the manuscript. The 
main code for analyses is available at https://github.com/INTERVAL-RNAseq/manuscript-scripts.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The INTERVAL study data used in this paper are available to bona fide researchers from ceu-dataaccess@medschl.cam.ac.uk. The data access policy for the data is 
available at http://www.donorhealth-btru.nihr.ac.uk/project/bioresource. The newly generated RNA-sequencing data (n=4,732 INTERVAL participants) have been 
deposited at the European Genome-phenome Archive (EGA) under the accession number EGAD00001008015. The results from the genetic association, 
colocalization and mediation analyses are available in the Supplementary Tables, and online at https://IntervalRNA.org.uk. The full summary statistics are also made 
available on the above web portal, as well as mirrored on Zenodo (10354433). For external and previously computed summary statistics for proteins and 
metabolites, these accession details are listed in Supplementary Table 29 and associated manuscripts. GTEX v8 summary statistics were downloaded from the 
online repository (https://gtexportal.org/), and eQTLGen (Phase 1) from their repository (https://www.eqtlgen.org/). The GRCh38 reference genome was sourced 
from NCBI (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/) and annotations from the Ensembl V99 GTF (https://www.ensembl.org/). For 
enrichment analyses, we used the public databases Gene Ontology (https://geneontology.org/) and the Human Transcription Factors database (https://
humantfs.ccbr.utoronto.ca/).

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Study participants were recruited as part of the INTERVAL study. For the analysis of the RNA-sequencing data, there were 
2,105 female and 2,627 male participants.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Participants from the INTERVAL study were recruited across England, UK. After quality control of the genotype data, 
remaining participants were from European ancestry only. No prior ethnicity information was used for filtering participants.

Population characteristics Participants were generally in good health as blood donation criteria excluded individuals with a history of major diseases 
(e.g., myocardial infarction, stroke, cancer, HIV, and hepatitis B or C) and who had a recent illness or infection. Participant age 
ranged from 20-79, with a median of 58. Additional population demographic characteristics are described in Supplementary 
Table 27.

Recruitment Between 2012 and 2014, blood donors aged 18 years and older were recruited at 25 centers of England’s National Health 
Service Blood and Transplant (NHSBT).

Ethics oversight All participants gave informed consent before joining the study and the National Research Ethics Service approved this study 
(11/EE/0538).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Raw RNA-sequencing data included 4,778 individuals. After quality control, the RNA-sequencing data included 4,732 individuals. No 
methodology was used to predetermine sample size, though this study is more than 7 times larger than previous similar studies. Sample sizes 
of external datasets that were integrated in the different analyses are described in the Supplementary Table 29.

Data exclusions We filtered samples of poor quality by removing samples with a read depth below 10 million uniquely mapped reads. A relatedness matrix 
was obtained using the PLINK v1.9 -make-rel ‘square’ command on pruned genotype data, and a cut-off threshold of 0.1 was used to define 
related individuals. For each pair of related individuals, one individual was arbitrarily removed. After quality control, a total of N=46 samples 
were removed.

Replication We did not replicate our eQTL and sQTL mapping in a separate dataset but validated our results by performing a comparison with results 
obtained from external studies (i.e., eQTLGen Consortium and GTEx Consortium studies). We observed Pearson's r=0.9 for cis-eQTL z-score 
overlap with eQTLGen, and Pearson's r=0.9 for trans-eQTLs. For cis-sQTLs, 89.0% of the 2,677 GTEX whole blood sGenes we also tested were 
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also found as sGenes in our analysis. For trans-sQTLs, there were only 2 results in GTEX whole blood, both of which we replicated.

Randomization Participants were randomly selected from the INTERVAL study, a cohort comprising presumably healthy blood donors, irrespective to 
covariate status.

Blinding Blinding was not relevant to this study as there was no case-control status.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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