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The biological mechanisms through which most nonprotein-coding genetic
variants affect disease risk are unknown. To investigate gene-regulatory
mechanisms, we mapped blood gene expression and splicing quantitative trait
loci (QTLs) through bulk RNA sequencing in 4,732 participants and integrated
protein, metabolite and lipid data from the same individuals. We identified
cis-QTLs for the expression 0f 17,233 genes and 29,514 splicing events (in 6,853
genes). Colocalization analyses revealed 3,430 proteomic and metabolomic
traits with a shared association signal with either gene expression or splicing.
We quantified the relative contribution of the genetic effects at loci with
shared etiology, observing 222 molecular phenotypes significantly mediated
by gene expression or splicing. We uncovered gene-regulatory mechanisms
atdisease lociwith therapeuticimplications, such as WARS1in hypertension,
IL7R in dermatitis and /IFNAR2in COVID-19. Our study provides an open-access
resource onthe shared genetic etiology across transcriptional phenotypes,
molecular traits and health outcomes in humans (https://IntervalRNA.org.uk).

The majority of genetic variants associated with common diseases
and other complex traitsidentified through genome-wide association
studies (GWAS) lie in nonprotein-coding sequences'. Consequently, the
molecular mechanisms that underpin many of these genotype-pheno-
type associations are unclear. Molecular quantitative trait locus (QTL)
mapping studies, which identify genetic determinants of transcript,
protein or metabolite abundance, can address this knowledge gap
by identifying the molecular intermediaries that mediate genetically
driven disease risk. These studies can provide specific hypotheses for
functional validation experiments?>.

Molecular QTL data canbe used for arange of biomedical applica-
tions. Forexample, they have the potential to identify and validate new
therapeutic targets and pathways, inform about the biological mecha-
nisms of drug action and safety, highlight new therapeuticindications
and reveal clinically relevant biomarkers*™,

Many previous studies have carried out QTL mapping withinasin-
gle molecular domain such as gene or protein expression’ 2. However,
QTL data from multi-omic modalities are needed to fully understand
the causal molecular chain of events fromgenetic variation to complex
trait phenotypes”. Moreover, the availability of multimodal dataina
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single population sample enhances the interpretation and validity of
causal inference analyses. For example, mediation analysis in a single
cohort presents a strategy for identifying phenotypes that share a
common genetic pathway and quantifying the proportion of the total
genetic effect on those phenotypes'.

Here we use the INTERVAL study'®, a bioresource of approxi-
mately 50,000 blood donors with extensive multidimensional ‘omics’
profiling, to identify gene expression and splicing QTLs based on
peripheral blood RNA sequencing (RNA-seq; n =4,732 individuals).
Then, we integrate the QTL data with additional molecular QTL data
derived from the same study (Fig. 1). These data include plasma pro-
tein levels measured through an antibody-based proximity exten-
sion assay (Olink Target panels, n = 4,662-4,981 individuals)"”"® and
an aptamer-based multiplex protein assay (SomaScan v3, n=3,301)°,
aswell as serum metabolite levels measured using an untargeted mass
spectrometry platform (Metabolon HD4, n=14,296)" and a nuclear
magnetic resonance spectroscopy platform (Nightingale Health,
n=40,849)"%.

Our data reveal genetic effects on the expression and splicing
of local and distant genes. We assess shared genetic etiology across
molecular traits and health outcomes using statistical colocalization.
We further investigate the genetic effects on downstream molecular
phenotypes through transcriptional events by conducting mediation
analyses. Based on these analyses, we develop an open-access por-
tal that enables exploration of this compendium of molecular QTLs
(https://IntervalRNA.org.uk).

Results

Geneticregulation of local gene expression and splicing

We performed bulk RNA-seq on peripheral blood collected from 4,732
blood donorsrecruited as part of the INTERVAL study (Methods). The
expression levels 0f 19,173 autosomal genes and 111,937 de novo tran-
script splicing phenotypes (hereinreferred to as ‘splicing events’) from
differential intron usage ratios in 11,016 genes were quantified. Then,
we mapped local (cis) expression QTLs (eQTLs) within +1 Mb of the
transcription start site (TSS) and splicing QTLs (sQTLs) within +500
kilobase pairs (kb) of the center of the spliced region.

We identified 17,233 genes (89.9% of the 19,166 tested) with at
least one significant cis-eQTL (cis-eGene) at a false-discovery rate
(FDR) < 0.05 (Supplementary Tables1and 2; Methods). Stepwise con-
ditional analyses for each cis-eQTL revealed 56,959 independent signals
(53,457 unique lead variants), with a median of three independent
signals per gene (range = 1-23; Supplementary Tables 1 and 3; Meth-
ods). We compared our results to those from the eQTLGen consortium
study given in ref. 9 (n = 31,684 individuals). z scores from eQTL lead
SNPs were highly correlated between these studies (Pearson’s r=0.9;
SupplementaryFig.1and Supplementary Tables 2 and 4), highlighting
the consistency of eQTL discovery results across independent datasets
and mapping technologies.

Next, we identified 29,514 splicing events with a cis-sQTL at
FDR < 0.05 (Supplementary Tables 1 and 5). These splicing events
with a cis-sQTL were mapped to 6,853 genes (cis-sGenes) withamedian
of three splicing events observed per cis-sGene (range = 1-128). This
included 543 cis-sGenes that were notidentified as cis-eGenes. Across
all splicing events with cis-sQTLs, these had a median length of 1,549
base pairs (bp) and excised a protein-coding sequencein 32.4% of cases
(theremainder related to intronic and UTR excisions). The median dis-
tance fromthe cis-sQTL lead variants to the center of the splicing event
was 187 bp upstream, with lead variants forming abimodal distribution
around the start and end of the sGene (Fig. 2a).

After conditional analysis for each cis-sQTL, we identified 47,050
independent signals (34,205 unique lead variants), with a median of
one independent signal per cis-sQTL (range =1-20; Supplementary
Tables 1and 6). To characterize independent variant effects on tran-
script splicing, we compared primary (that is, the most significant

independent QTL) and secondary (thatis, all otherindependent QTLs)
cis-sQTLs. Primary cis-sQTL signals were enriched within the gene body
of sGenes compared to secondary signals (P=2.84 x 10", chi-squared
test; Fig. 2a and Supplementary Fig. 2). Primary cis-sQTL signals were
more enriched toward the transcription end site (median of 17.36 kb
downstream of the TSS) compared to cis-eQTLs with amedian of 5.51 kb
downstream of the TSS (P=8.42 x 107%°, two-sided Wilcoxon test; Sup-
plementary Fig. 2). These observations align with previous analyses
for isoform ratio QTLs?. Next, we compared the identified sGenes
with those from the Genotype-Tissue Expression (GTEx) Consortium?*
whole-blood dataset (n = 670 individuals). Of the 3,013 sGenes discov-
ered by GTEX, 89.0% of the 2,677 we tested were also found as sGenesin
our analysis, inadditionto 4,470 new sGenes (Supplementary Table 7).
These results demonstrate the value of quantifying de novo splicing
excision events and the substantially larger sample size.

For a given gene, to test whether corresponding cis-eQTLs and
cis-sQTLswere underpinned by the same genetic variant, we performed
colocalization analyses. This revealed 3,979 genes (of 6,252 tested) with
colocalized signals (Methods). We found that 49.0% (n =13,490) of
tested splicing events had sQTLs that colocalized withan eQTL for the
same gene (Supplementary Table 8). However, of the eQTL-colocalizing
splicing events withmultiple independent sQTL signals, 82% had addi-
tional sQTL loci that did not colocalize with eQTLs. Splicing events with
sQTL that did not colocalize with an eQTL were located further down-
stream of the TSS (median 20.33 kb downstream) compared to sQTL
signals that did colocalize (median12.61 kb downstream; P=9.8 x 107°,
two-sided Wilcoxon test; Supplementary Fig. 3).

Genetic effects on distal gene expression and splicing

Next, we investigated the distal (¢rans) regulatory effect of genetic
variants (>5 Mb from the TSS/splicing event). First, we performed an
untargeted, all-versus-all trans-eQTL and trans-sQTL analysis. We found
ahigh correlation of trans-eQTL zscores for SNP-gene pairs also tested
by the eQTLGen consortium study’ (Pearson’s r= 0.9; Supplemen-
tary Fig.4). As our study has lower statistical power than eQTLGen, we
focused onreplicating the 2,924 most significant trans-eQTL associa-
tions from eQTLGen with P<1x107%°, Of these, we replicated 63% at
P<1x107%in INTERVAL. We note that the incomplete overlap may be
duetodifferencesin dataanalysis strategies, including accounting for
blood cell counts in the association model’.

Given the extreme multiple testing burden for genome-wide
trans-QTL analyses, we focused on the 53,457 conditionally independ-
ent lead cis-expression SNPs (eSNPs), as these provide a potential
mechanism through which a cis-acting variant can also affect genes
in trans. In this targeted analysis, we identified 2,058 trans-eGenes at
the Bonferroni-corrected threshold of P <5 x10™ (Fig. 2b and Sup-
plementary Tables 1, 2 and 9). These trans-eQTLs corresponded to
2,498 cis-eQTLs, with a median of three trans-eGenes per cis-eQTL
(range =1-284). Some of the cis-eGenes were associated with many
trans-eGenes, such as PLAGI (n =284 genes), HYMAI (n=284) and
FUCA2 (n=267). Cis-eGenes with a concurrent trans-association were
significantly enriched for 32 gene ontology (GO) terms, compared to
all cis-eGenes. Most of the terms related to transcription regulation
and immune response, with ‘metal ion binding’ showing the strong-
est enrichment (P=2.6 x 10%; Supplementary Table 10). To further
explore these transcriptional regulation mechanisms, we annotated
the genes using the Human Transcription Factors database®. We
found a significant enrichment in sequence-specific transcription
factors, representing 14.3% of all cis-eGenes with a trans-association
(357/2,498, P=1.83 x107%; Methods). We investigated protein domain
annotations for the observed transcription factors and detected a
significant enrichment for the C2H2 zinc finger domain (P=9.74 x10~°
after Bonferroni multiple-testing correction), specifically with the
Kriippel-associated box domain (P=3.04 x 10°; Supplementary Fig. 5).
For example, the PLAGI gene, which is an important regulator of the
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Fig.1| Overview of the multi-omic data available in the INTERVAL study and external cohorts, as well as the main analytical approaches. The images depicting
‘genotypes’ (the figure is created with NIAID NIH Bioart) and ‘proteins’ (Protein Data Bank (PDB) code 2F6W) were reproduced from public databases. COVID-19 HGI,

COVID-19 host genetics initiative; MAF, minor allele frequency.

human hematopoietic stem cell dormancy and self-renewal®, codes
for a protein with a C2H2 zinc finger domain. We also noted the same
enrichment for trans-eGenes (P =5.73 x 107), although the molecular
mechanisms are unclear and need further investigation.

To uncover genetic expression effects impacting distal down-
stream transcript splicing, we performed a targeted trans-analysis
using the same 53,457 conditionally independent lead cis-eSNPs
as in the trans-eQTL analysis. The analysis identified significant
trans-associations for 644 splicing events (209 trans-sGenes) at the
Bonferroni-corrected threshold of P < 8.36 x 102 This comprised 758
unique trans-splicing SNPs (sSNPs), corresponding to 566 cis-eGenes
(Fig.2band Supplementary Tables1and 11). Of the 644 splicing events
regulatedin trans, 240 (in 91genes) were not observed to beregulated
in cis, increasing the total number of splicing events with QTLs. We
observed 11 cis-eGenes that were implicated by their cis-eQTLs in the
regulation of more than ten sGenesin trans. For example, we observed
that the cis-eQTL for the RNA-binding splice factor QK/was associated
with 18 sGenes in trans (the most of any eGene; Fig. 2c). Across all tis-
suesin GTEX, there were only 29 trans-sQTL associations, of which only
two were presentin whole blood, that s, the trans-splicing of FYBI via
the QK cis-eQTL and the trans-splicing of ABHD3 for which they did
not detect an associated cis-effect for the trans-sSNP?, Here we rep-
licated both of these previous trans-sGene observations. For ABHD3,
we demonstrate in addition that this trans-sSNP is also a cis-eSNP
for the splicing factor TFIPII and its antisense long noncoding RNA
TFIP11-DT, potentially regulating the splicing of this gene in trans.
Reports of the preliminary overlap of trans-sQTL associations with
previous experimental validation are given in Supplementary Note
and Supplementary Table 12. Across the whole dataset, cis-eGenes of
trans-sSNPs were significantly enriched for ten GO terms, including
‘nucleosome assembly’ (P=2.78 x 107%) and ‘RNA polymerase Il activity’
(P=1.40 x107%; Supplementary Table 10).

Shared genetic etiology across molecular traits
We next compared transcriptional QTLs to the other omics QTLs
derived from subsets of participants from the INTERVAL study. These
datainclude plasma protein QTLs (pQTLs) from the Olink Target and
SomasScan panels, as well as metabolite QTLs (mQTLs) from the Metabo-
lon and Nightingale Health platforms.

To determine whether genetic signals at a given locus across
omics layers reflect shared genetic or distinct causal variants, we per-
formed statistical colocalization analyses (Methods). These analyses

revealed colocalization between either a cis-eQTL or cis-sQTL and
cis-QTL for120 Olink-measured proteins (65.9% of analyzed proteins),
404 SomaScan-measured proteins (63.7%), 224 Nightingale-measured
metabolites (99.1%) and 495 Metabolon-measured metabolites (81.5%;
Fig. 3a and Supplementary Tables 13-16). We found colocalized sig-
nals across all assessed proteomic and metabolomic traits for 1,229
cis-eGenes and 649 cis-sGenes (1,516 unique genes). For Olink- and
SomaScan-measured proteins, genetic effect directions were more
consistent (P=5.4 x107°, one-sided Fisher’s exact test) for colocal-
izing eQTL-pQTL pairs (78.9% with consistent effect directions) than
noncolocalizing pairs (59.0%). The uncoupling of eQTLs and pQTLs
has previously been observed” and could be due, for example, to
post-transcriptional or post-translational mechanisms.

Ofthe 99 eQTL-pQTL pairs (364 sQTL-pQTL pairs) analyzed for
colocalization in both Olink and SomaScan platforms, we found that
45(127) had acolocalized signal in both platforms, 19 (57) on the Olink
platform only and 9 (41) on the SomaScan platform only (Supple-
mentary Tables 17 and 18). We annotated these colocalization results
with cross-assay correlations reported previously* and found sig-
nificantly higher cross-assay correlations for eQTL/sQTL-pQTL pairs
with a colocalized signal for both platforms compared to eQTL-pQTL
pairs with a colocalized signal for only one platform (eQTL-pQTL
pairs, P=3.1x10"*;sQTL-pQTL pairs, P=1.4 x107; one-sided Wilcoxon
rank-sumtest). This indicates that the differences we observed in colo-
calizationresults might be due to differences in protein measurements
between the two platforms.

Next, we created a network to explore and visualize the inter-
connectedness among colocalized transcriptional and molecular
phenotypes (Fig.3b), linking each phenotype by their colocalizations.
For example, we found seven splicing events in the OASI gene with
cis-sQTLs that colocalized with both the cis-eQTLs for this gene and
the OAS1pQTLs.

To investigate the potential mechanisms by which genetic vari-
antsimpact protein levels through splicing, we annotated the protein
domains affected by splicing events. We observed that nearly half of
splicing events that colocalized with pQTLs (41.0%, 401 of 977) excised
annotated protein-coding sequences. Splicing has been shown to
modulate circulating protein levels through changesin secretion by the
inclusion or exclusion of transmembrane domains®. This is exemplified
by a splicing event that removes exon 6 of the FAS gene, a cell surface
receptor for the FAS-ligand (FASL) cytokine. The resulting protein, lack-
ing atransmembrane domain, is secreted’® and competitively inhibits
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TES, transcription end site.

FASL binding, leading to decreased apoptosis. We identified both
cis-eQTLsfor FAS and cis-sQTLs for this splicing event, but these signals
were distinct and did not colocalize (maximum posterior probabil-
ity = 0.02). The cis-sQTLs for excision of the transmembrane domain
strongly colocalized with the pQTL (posterior probability =1.00).
Similarly, the interleukin-6 and interleukin-7 receptors (IL-6R and
IL-7R, respectively) have previously been reported to produce secreted
isoforms through the excision of transmembrane domains*?*°, Here we
show thatthe pQTLsfor IL-6Rand IL-7R colocalized with cis-sQTLs excis-
ing these transmembrane domain-encoding exons, in the absence of
cis-eQTL colocalization (Fig. 3b). This observation emphasizes therole
of transcript splicing as amechanismindependent of total transcript
abundance through which genetic variation can modify downstream
molecular phenotypes. Furthermore, we observed a pQTL colocal-
izing with an sQTL for the excision of atransmembrane domainin the

encoding messenger RNA (mRNA) in 69 proteins (98 unique splicing
events), with 60.2% of these independent sQTL signals (n=100/166) not
colocalizing with eQTLs for the same gene (Supplementary Table 19).
For example, this is observed in o-1 antitrypsin encoded by SERPINA1
and apolipoprotein L1encoded by APOLI1. Of these 69 transmembrane
proteins, the majority were annotated as being single-pass, with only
four (ENTPD1, ADGRE2, ADGRES and ADGRE1) being multipass trans-
membrane proteins.

To maximize statistical power for colocalization, we extended
our analyses to the SomaScan-pQTL and Olink-pQTL datasets from
deCODE® (n =35,559 individuals and n = 4,719 proteins) and the UK
Biobank Pharma Proteomics Project'> (UKB-PPP; n = 54,219 individu-
alsand n=2,941proteins), respectively. Colocalization analyses were
performed between 1,608 Olink- and 1,410 SomaScan-measured pro-
teinsand our transcriptional phenotypes, increasing the discovery of
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signal with acis-eQTL or/and a cis-sQTL. b, Network graph of all pairwise colocalization results. Highlighted examples on the right-hand side include OASI1, IL6R

and WARSI.

pQTL-eQTL/sQTL colocalizations from 120 to 1,203 Olink-measured
proteins and from 404 to 984 SomaScan-measured proteins. We
observed a substantial overlap of eGenes and splicing events with
QTLs colocalizing between our internal and the larger external pQTL
cohorts. In UKB-PPP, we replicated 95.1% and 79.3% of eQTLs and sQTLs
colocalizations, respectively,and in deCODE, 87.0% and 80.3% of eQTLs
and sQTLs, respectively (Supplementary Tables 13-15; web portal).

Mapping causal transcriptional events on molecular
phenotypes

To assess the causality of the transcriptional phenotypes on down-
stream molecular phenotypes, we performed mediation analyses

focusing on colocalizing molecular traits assayed in the INTERVAL
study (Fig. 4a; Methods). The expression of 143 cis-eGenes signifi-
cantly mediated the effect of 413 cis-eSNPs on 202 downstream
molecular phenotypes, including 101 SomaScan-measured proteins,
54 Olink-measured proteins, 39 Nightingale-measured metabolites
and 8 Metabolon-measured metabolites. In total, this comprised 525
significant eQTL mediation models (variant-gene-molecular phe-
notype triplets; Fig. 4b). Similarly, we observed 106 splicing event
phenotypes in 47 sGenes that significantly mediated the effect of
152 cis-sSNPs on 50 downstream molecular phenotypes, includ-
ing 32 SomaScan-measured proteins, 16 Olink-measured proteins,
1 Nightingale-measured metabolite and 1 Metabolon-measured
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and levels of molecular phenotypes. The images depicting ‘independent genomic
variants’ (the figure is created with NIAID NIH Bioart) and ‘molecular phenotypes’
(PDB code 2F6W) were reproduced from public databases. b, Total number of
detected molecular phenotypes mediated by sQTLs and eQTLs. ¢, Colocalization

of sQTLs excising the transmembrane domains of the interleukin receptors

IL6R and IL17RA and mediation with plasma protein quantities (n = 3,024 for
ILI7RA and n = 3,072 for IL6R). The central point represents the mediation effect
estimate. Error bars represent the upper and lower 95% confidence intervals of
the estimated effects. d, Schematic representation of the splicing events excising
transmembrane domains of the interleukin receptors /L6R and ILI7RA.

metabolite, comprising 241significant sSQTL mediation models (Sup-
plementary Tables 20 and 21).

Previous reports showed that the missense variant rs2228145
affectsIL-6R ectodomain shedding by the alteration of one of the cleav-
age sites of ADAM10/ADAM17 metalloproteinases®-**. In line with this
finding, we observed the previously mentioned /L6R transmembrane

splicing event mediated a minority of the effect of the lead SNP
(rs12126142), whichiis in high LD (r*> 0.99; D’ > 0.99) with this mis-
sense variant, on Olink-measured plasma protein abundance (4.67%,
P=1.12x107* Fig. 4c,d). This suggests a potential dual action of the
sSNP or tagged variants on removing this domain and, hence, creating a
solubleisoformbybothsplicing and proteolytic pathways. Conversely,
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the colocalized signal (lead cis-sSNP rs34495746) between splicing of
the transmembrane domain of /LI7RA and levels of its plasma protein
was found to have most of the effect mediated by transcript splicing
(90.41%, P=1.14 x 10™*; Fig. 4c). Consistent with this observation,
neither the lead SNP nor any strong tagging SNPs (> > 0.8) were mis-
sense variants.

Deconvoluting molecular mechanisms underlying GWAS loci

Molecular QTLs can provide insights into the mechanisms underlying
genetic variants that influence disease risk*’. We performed colocali-
zation analyses with genetic association signals for 20 disease pheno-
types from the FinnGen project (release 9)*, prioritized based on their

relevance to the circulatory system and available sample size (that is,
>1,000 cases; Supplementary Table 22).

Disease-associated signals colocalized with 649 cis-eGenes and
365 cis-sGenes (1,035 splicing events) across all tested traits (Sup-
plementary Tables 23 and 24). Many of these independent signals
(136/981 for cis-eQTLs and 304/1589 for cis-sQTLs) also colocalized
with pQTLs and mQTLs, revealing the regulatory pathways underly-
ing the complex trait-associated variants. For example, a cis-sQTL
for the transmembrane domain splicing of /L7R colocalized with an
associationlocus for dermatitis and eczema, aswellasa pQTL for IL-7R
in UKB-PPP (Fig. 5a). This analysis implicates soluble isoforms of [L-7R
generated by alternative splicing in this condition. The alternative
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allele of rs6897932 (T) is associated with decreased excision of the IL7R
transmembrane domain, lower levels of IL-7R in plasma and reduced
risk of dermatitis and eczema. This allele has been previously shown
toassociate with decreased lymphocyte count™ and decreased risk of
multiple sclerosis®, suggesting consistent therapeutic implications.

Tryptophanyl-tRNA synthetase 1 (encoded by WARSI) exists in
both secreted and intracellular forms*, with downstream impacts
on vascular permeability®®. Here we found a cis-sQTL for excision of
exon 10 of WARSI (encoding a portion of the tRNA synthetase protein
domain), which colocalized with both the WARS1 pQTLs and risk for
hypertensionin FinnGen (Fig. 5a). The alternative allele of rs724391(C)
isassociated with decreased excision of exon 10, higher plasma protein
levels of WARS1 and increased risk of hypertension.

Finally, we also performed a genetic look-up analysis of all inde-
pendent signals at the identified cis-eQTLs and cis-sQTLs using data
from the Open Target Genetics Portal (v22.10). We present the results
onour web portal.

Transcriptional mechanisms underlying COVID-19 GWAS loci
Most of the whole-blood RNAis derived from circulatingimmune cells.
Given the importance of the host immune response in COVID-19, we
conducted colocalization analyses of the identified eQTLs and sQTLs
with geneticlociassociated with COVID-19 susceptibility and severity
available from the pan-biobank COVID-19 Host Genetics Initiative®. We
found colocalized signals with COVID-19 loci for 67 cis-eGenes and 42
cis-sGenes (91 splicing events; Supplementary Tables 25 and 26 and
Fig. 5b), of which 17 overlapped.

Previous analyses have identified genetic variants that impact
splicing of OASI (refs. 40,41). These variants have subsequently been
implicated in influencing COVID-19 severity*. Consistent with these
data, we observed colocalization of an eQTL and sQTLs for seven splic-
ingevents at the OAS1locus with COVID-19 (Fig. 5¢). Adjusting for OAS1
gene expression levels did not ablate the sQTL signals (P<1x107"),
suggesting the presence of multiple independent transcriptional
mechanisms at this locus. In addition, we found colocalization for
these eQTLs and sQTLs with the OAS1 pQTL, suggesting that genetic
variants mediate disease risk through transcriptional changes impact-
ing soluble protein levels.

Furthermore, the GWAS signals for COVID-19 susceptibility and
severity at the IFNAR2 locus (encoding the interferon o/ receptor 2)
colocalized with a cis-eQTL, and cis-sQTLs associated with 10 splicing
events in this gene (Supplementary Fig. 6). This included a splicing
event excising exons 8 and 9, encoding the IFNAR2 transmembrane
domain. Rare (stop-gain) mutations in exon 9 of this gene leading to
loss of function have been previously reported to increase the risk of
severe COVID-19 infection*’. While IFNAR2 was not measured by the
proteomic assays, isoforms of IFNAR2 lacking the transmembrane
domain are known to generate a soluble protein isoform*, and sig-
nificantly higher quantities of soluble IFNAR2 have been observed
in the serum of patients with severe COVID-19 (ref. 44). However, the
role of splicing in this gene on disease severity has not been previously
reported. Notably, the colocalizing IFNAR2eQTLs are also trans-sQTLs
for five splicing eventsin/FI27, four of which do not have an association
incis. Our results provide evidence for amechanism whereby common
variants regulating splicing of IFNAR2 could be contributing to disease
severity through impacts on protein solubility.

Discussion

Nonprotein-coding genetic variants have animportantrolein the genet-
ics of complex traits, accounting for 90% of common trait heritability™*.
Genome-wide, multilayered molecular QTL data can help elucidate
the functional impact of trait-associated variants and their regula-
tory networks that underpin complex disease biology. To thisend, we
discovered eQTLs for 17,233 genes and sQTLs for 29,514 splicing phe-
notypesin 6,853 genes in peripheral blood through RNA-seq of 4,732

individuals. This included nonprimary signals for 81% of cis-eGenes
and 49% of cis-sGenes, substantially increasing knowledge of the inde-
pendent genetic determinants of gene expressionin whole blood. We
combined these datawith mQTL and pQTL datain the same participants
of the INTERVAL study to map the genetic basis for disease phenotypes.
Notably, 52% of independent eQTL colocalizations and 28% of signifi-
cant mediations involved nonprimary eQTL signals. Similarly, 31% of
independent sQTL colocalizations and 30% of significant mediations
involved nonprimary sQTL signals. These data demonstrate the value
of the conditional analysis performed. Finally, we performed a down-
sampling analysis to provide guidance toward the expected eQTL and
sQTL discovery for future studies (Supplementary Fig. 7a,b).

In comparison to eQTLs, the genetic determinants of splicing
have been less thoroughly explored, in particular, how they impact
downstream molecular phenotypes and disease risk. Our data sup-
port previous findings that splicing QTLs are major contributors to
complex traits*®. Through mapping sQTLs alongside eQTLs, we iden-
tified additional independent mechanisms by which genetic variants
can influence mRNA and protein levels. For example, the 98 splicing
events that colocalized with pQTLs (such as IL-6R and IL-7R) excised
protein-coding sequences encoding transmembrane domains. Many
ofthese pQTLs did not colocalize with eQTLs, suggesting that the sSQTLs
provide the pivotal mechanistic insight, given that genetic effects on
splicing are more highly shared between tissues than genetic effects on
expression®. Furthermore, by identifying and using de novo excision
events from the RNA-seq data, we increased the resolution beyond
established transcript annotations.

Using the multi-omic data in the INTERVAL study, we systemati-
cally performed mediation analyses to evaluate causality in the context
of colocalized genetic association signals with molecular traits. In total,
we observed 222 molecular phenotypes significantly mediated by gene
expression or splicing, providing an additional layer of evidence to
delineate functional mechanisms. For instance, we found thatansQTL
excising the extracellular domain of CD33 mediated most of the effect
of the sSNP on CD33 soluble protein levels. Mediation analyses are
important to define the mode of action of the genetic effects underly-
ing association loci identified in GWAS, as well as the magnitude and
direction of their relative effects on downstream phenotypes.

Our study has limitations. First, while we have focused on one
definition of transcript splicing due to the annotation-free approach
benefiting the downstream analyses, other methodologies may shed
light on other aspects of transcript splicing. Second, statistical power
was limited to mapping genome-wide eQTLs and sQTLs in trans. As
trans-QTLs are challenging to replicate and distinguish from cell type
heterogeneity in bulk RNA-seq studies’, we prioritized the identified
conditionally independent lead cis-eSNPs for our trans-QTL analyses
to prioritize the mechanism of upregulated gene expression modi-
fying the expression and splicing of downstream genes. While we
showastrong correlation of effect sizes for SNP-gene pairs also tested
by the eQTLGen consortium (phase I), large-scale meta-analyses of
trans-QTL datasets will be required to create a resource of replicated
associations, such asthatbeing prepared by the eQTLGen consortium
(phase II; https://www.eqtlgen.org/). To aid in these efforts, we have
provided full trans-QTL summary statistics on our web portal. Third,
our analyses comprised proteins quantified in plasma, rather than
intracellular proteins. Thus, the interpretation of the effects of gene
expression and splicing QTLs on proteins may be due to impacts on
both quantity and solubility of the resulting protein, and other regu-
latory mechanisms, such as the stability of the mRNA and protein in
addition to translational efficiency, may not be captured. However,
additional data would be needed to address this. Fourth, the intrinsic
properties of the different molecular data types can create challenges
ininterpretation. For example, there is a considerable correlation
structure between metabolite levels*. As such, we found that the major-
ity of mQTLs (96%) colocalized with either a cis-eQTL or cis-sQTL.
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Conversely, mQTLs showed mediation by cis-eQTLs or cis-sQTLs less
frequently than pQTLs (thatis, 6.8% versus 32.6% for mQTLs and pQTLs,
respectively). Finally, our cohort comprised individuals of European
ancestry. More work is needed to establish the translatability of our
findings to other ancestries.

Previous studies showed thatlocal regulation of gene expression
is largely shared across tissues*® and that larger, well-powered eQTL
studiesinasurrogate tissue may identify more trait-colocalizing eQTLs
thansmaller studies in the target tissue*’. Hence, these results provide
a scientific rationale for the generation of increasingly large-scale
QTL datain easily accessible tissues, such as peripheral blood. In our
study, we further demonstrate the value of such a dataset when inte-
grating data from multiple molecular phenotypes in the same indi-
viduals and linking these to external health outcomes to help address
the variant-to-function challenge. Similar application to population
biobanksis warranted, and with the emerging availability of concomi-
tantmolecular dataat the single-cell level across awide range of tissues,
single-cell-QTL mapping at the population scale willbecome feasible.
Such data will enable us to dissect gene-regulatory networks at much
greater resolution across specific cell types and dynamic processes™".
Together, these improved molecular QTL data will further enhance the
interpretation of GWAS signals®. While GWAS signals have previously
been observed to be depleted for eQTLs>, we demonstrate that the
broader approaches used in this study, such as the increased sample
size, the resolution of nonprimary signals and the additional signals
captured by the sQTLs, have the potential toincrease discovery of the
molecular mechanisms underlying GWAS association.

Online content
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maries, source data, extended data, supplementary information,
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Methods

Study participants

The INTERVAL study is a prospective cohort study of approximately
50,000 participants nested withinarandomized trial of varying blood
donation intervals''®. Between 2012 and 2014, blood donors aged
18 years and older were recruited at 25 centers of England’s National
Health Service Blood and Transplant (NHSBT). All participants gave
written informed consent before joining the study, and the National
Research Ethics Service approved this study (11/EE/0538). Participants
were generally in good health, as blood donation criteria exclude
individuals with a history of major diseases (for example, myocardial
infarction, stroke, cancer, HIV and hepatitis B or C) and who have had
arecentillness or infection. Participants completed an online ques-
tionnaire comprising questions on demographic characteristics (for
example, age, sex and ethnicity), lifestyle (for example, alcohol and
tobacco consumption), self-reported height and weight, diet and use
of medications. Demographic details are provided in Supplementary
Table 27.

Blood collection

Blood samples were collected from all INTERVAL participants at base-
lineand also from ~60% of participants ~24 months after baseline. For a
subset of -5,000 participants at the 24-month time point, an aliquot of
3 mlof wholeblood was collected in Tempus Blood RNA Tubes (Thermo
Fisher Scientific), following the manufacturer’sinstructions, and then
transferred at ambient temperature to the UK Biocentre. Samples were
stored at -80 °C until use.

RNA extraction

RNA extraction was performed by QIAGEN Genomic Services using
QIAGEN’s proprietary silica technology. The quality control (QC) of
the extracted RNA was performed by spectrophotometric measure-
ment on an Infinite 200 Microplate Reader (Tecan). RNA integrity
number (RIN) values were determined using a TapeStation 4200 sys-
tem (Agilent), following the manufacturer’s protocol. Samples with
a concentration <20 ng pl™ and a RIN value <4 were excluded from
further analyses.

Automated RNA-seq library preparation

Samples were quantified with a QuantiFluor RNA System (Promega)
using a Mosquito LV liquid handling platform (SPT Labtech), Bravo
automation system (Agilent) and FLUOstar Omega plate reader (BMG
Labtech) and then cherry-picked to 200 ngin 50 pl (=4 ng pl™) usinga
liquid handling platform (Tecan Freedom EVO). Next, mRNA was iso-
lated using aNEBNext Poly(A) mRNA Magnetic Isolation Module (New
England Biosciences, NEB) and then resuspended in nuclease-free
water. Globindepletion was performed using a KAPA RiboErase Globin
Kit (Roche).RNA library preparation was done usinga NEBNext Ultra
IIRNA Library Prep Kit for [llumina (NEB) on a Bravo NGS workstation
automation system (Agilent). PCR was performed using a KapaHiFi
HotStart ReadyMix (Roche) and unique dual-indexed tag barcodes on
aBravo NGS workstation automation system (Agilent). We applied the
following PCR program: 45 sat 98 °C, 14 cycles of 15sat 98 °C, 30 s at
65°Cand30sat72°C,followedby 60 sat72°C.Usinga Zephyr liquid
handling platform (PerkinElmer), PCR products were purified using
AMPure XP SPRIbeads (Agencourt) at a 0.8:1bead-to-sample ratio and
theneluted in20 pl of elution buffer (Qiagen). RNA-seq libraries were
quantified with an AccuClear Ultra High Sensitivity dsDNA Quantita-
tion Kit (Biotium) using aMosquito LV liquid handling platform (SPT
Labtech), Bravo automation system (Agilent) and FLUOstar Omega
platereader (BMG Labtech). Then, libraries were pooled up to 95-plex
in equimolar amounts on a Biomek NX-8 liquid handling platform
(Beckman Coulter), quantified using a High Sensitivity DNA Kit on
a 2100 Bioanalyzer (Agilent) and then normalized to 2.8 nM before
sequencing.

RNA-seq and data preprocessing

Samples were sequenced using 75 bp paired-end sequencing reads
(reverse stranded) on a NovaSeq 6000 system (S4 flow cell, Xp work-
flow; lllumina). The sequencing data were deplexed into separate
compressed reference-oriented alignment map (CRAM) files for each
library in a lane. Adapters that had been hard-clipped before align-
ment were reinserted as soft-clipped postalignment, and duplicated
fragments were marked in the CRAM files. The data preprocessing,
including sequence QC and STAR alignments, was performed with the
Nextflow pipeline publicly available at https://github.com/wtsi-hgi/
nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.nf,
including the specific aligner parameters. We assessed the sequence
data quality using FastQC (v0.11.8). Samples mismatched between
RNA-seqand genotyping data within the cohort were identified using
QTLtools MBV (v1.2)**. Reads were aligned to the GRCh38 human ref-
erence genome (Ensembl GTF annotation v99) using STAR (v2.7.3a)".
The STAR index was built against GRCh38 Ensembl GTF v99 using
the option -jdbOverhang 75. STAR was run in a two-pass setup with
standard ENCODE options to increase mapping accuracy: (1) a first
alignment step of all samples was used to discover new splice junctions,
(2) splice junctions of all samples from the first step were collected
and merged into a single list, (3) a second step realigned all samples
using the merged splice junctions list asinput. We used featureCounts
(v2.0.0)** to obtain a count matrix.

QC of gene expression data

Sequencing was performed across 15 batches. We filtered samples of
poor quality by removing samples with a read depth below 10 million
uniquely mapped reads. On average, each sample had 25.3 million
unique reads (interquartile range = 21.5-26.9, including batches 1and
15 for which libraries were sequenced twice). A relatedness matrix
was obtained using the PLINK (v1.9)°” -make-rel ‘square’ command
on pruned genotype data, and a cutoff threshold of 0.1 was used to
define related individuals. For each pair of related individuals, one
individual was arbitrarily removed. After QC, atotal of n = 46 samples
were removed. After the sample QC, we filtered lowly expressed genes
by retaining genes with >0.5 counts per million (CPM) in >1% of the
samples, inline with the filter applied by the eQTLGen consortium’.In
our dataset,a CPM value of 0.5 roughly equates to having 5 countsina
sample with the lowest read depth (10 million uniquely mapped reads)
or47 countsinasample with the highest read depth (94 million reads).
We further excluded globin genes, rRNA genes and pseudogenes. After
QC, thefinal gene expression dataset included 19,173 autosomal genes
(13,874 of which are protein-coding) across a total of 4,732 individuals.

Normalization of gene expression data

Before the eQTL analysis, the count data were normalized using the
trimmed mean of M values (TMM)*® implemented in the R package
edgeR (v3.24.3). The TMM-normalized values were further converted
into fragments per kilobase of transcript per million mapped reads
(FPKM) values (log,-transformed) to take gene length into account.
Next, for each gene, the normalized log,-FPKM values across samples
were transformed via the ranked-based inverse normal transforma-
tion function ‘rntransform’ implemented in the R package GenABEL
(v1.8-0)*’. Inverse normal transformation was applied to ensure the
expression values followed a normal distribution.

Splicing data generation

Splice junctions were extracted from aligned RNA-seq BAMs for the
4,732 individuals using Regtools (v0.5.2)*° junctions extract (param-
eters: ‘-s1-m 50’). Introns represented by extracted splice junctions
were then clustered into groups based on overlapping start or end
sites, with the Leafcutter pipeline (v0.2.9)** (leafcutter_cluster_reg-
tools.py, parameters: -m 100 -M 50 -1100000 -p 0.01’). Clustered
introns were then prepared for sQTL analysis with Leafcutter
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prepare_phenotype_table.py to convert intron counts to normalized
ratios and compute ten splicing principal components (PCs). Introns
were matched to regions of Ensembl v99 genes and protein domains
annotated with R v4.0.3 using a custom pipeline (described in Data
availability). Total observed introns (n = 956,722) were filtered to
those that were autosomal, overlapping an expressed gene body, with
CPM > 0.5inatleast 24 individuals, and sufficient variance (minimum
two filtered splice event phenotypes per cluster), resulting in 111,937
filtered splicing event phenotypes, in11,016 genes (see Supplementary
Fig. 8 for asummary of splicing event QC).

DNA extraction, genotyping and imputation

Inbrief, DNA extracted from buffy coat samples collected from INTER-
VAL participants at the study baseline was used to assay approximately
830,000 variants on the Affymetrix Axiom UK Biobank genotyping
array®’. Genotyping and sample QC were performed as previously
described®. Before imputation, additional variant filtering steps were
performed to establish a high-quality imputation scaffold, including
654,966 autosomal, nonmonomorphic, bi-allelic variants with Hardy-
Weinberg equilibrium (HWE) P> 5 x 107%, with a call rate of >99% across
the INTERVAL genotyping batches in which a variant passed QCand a
global call rate of >75% across all INTERVAL genotyping batches. Next,
variants were phased using SHAPEIT3 and imputed using a combined
1000 Genomes Phase 3-UK10K reference panel. Imputation was per-
formed viathe Sanger Imputation Server (https:/imputation.sanger.
ac.uk) and resulted in 87,696,888 imputed variants. For the present
analysis,imputed genotypes were lifted over toreference build GRCh38
using CrossMap (v0.3.4)°*and the Ensembl chain file provided with the
package. Imputed genotypes were hard-called with PLINK (v2.00a2-
32-bit)” using the default parameters. Before analysis, the dataset was
restricted to individuals with RNA-seq and filtered to remove genetic
variants with HWE exact test P<1x 107¢, genotype missingness >0.05
or minor allele frequency < 0.5%.

Identification of sample swaps and cross-contamination

The Match BAM to VCF (MBV) method from QTLTools** was used to
identify sample mix-ups and cross-contamination. MBV directly com-
pares each aligned RNA-seq BAM file to all the genotypes in the VCF
file and computes the proportion of concordant heterozygous and
homozygous sites. To reduce computation time, we only focused on
chromosome1.Based on the concordance (close to 100%) between the
genotype data and RNA-seq samples, we identified and corrected ten
pairs of mislabeled samples. We removed seven RNA-seq samples that
did notshow a clear high concordance (the highest was <50%) with any
particular genotype sample—either due to cross-contamination or the
actual matching genotypes were not available.

PEER factor and splicing PC analysis

We used the probabilistic estimation of expression residuals (PEER)
method®, implemented in the R package peer v.1.0 (downloaded
from https://github.com/PMBio/peer), to detect and correct eQTL
mapping for latent batch effects and other unknown confounders.
PEER factors were estimated while accounting for age, sex, body mass
index and 19 blood cell traits (Supplementary Table 28) as known
confounders. PEER was run for 50 factors, converging at 148 itera-
tions. For inclusion in the eQTL analysis, we selected the number of
PEER factors based on the following two criteria: (1) discovery of the
largest number of cis-eGenes and (2) additional gain in cis-eGenes
with incremental increase in PEER factors (Supplementary Fig. 9a).
We found that the relationship between the increase in the number of
discovered cis-eGenes and the incremental increase in PEER factorsis
similar to that observed in the GTEx whole-blood dataset®. Therefore,
weincluded 35PEER factorsin our eQTL analysis, consistent with GTEx.
We used asimilar approach to determine the optimal number of PCs to
includeinthe sQTL analysis, testing 0-10 PCs. We found that cis-sQTL

discovery only increased slightly with the number of PCsincluded with
no obvious threshold (Supplementary Fig. 9b). Given that ten PCs
were established as a previous default for sQTL mapping*?, we opted
toinclude ten splicing PCs.

Mapping ofeQTLs and sQTLs

eQTLs and splicing QTLs were called using tensorQTL (v1.0.6)°* and
postprocessed with a custom pipeline®. The covariates integrated
into the regression model are listed and described in Supplementary
Tables 27 and 28. In brief, these included (1) demographic variables
such as age at blood sampling, sex and body mass index at baseline
(because it was not collected at the time of blood sampling), (2) tech-
nical variables such as RIN, read depth and season of blood sampling,
(3) ten genotype PCs and 35 PEER factors (for eQTLs) or ten splicing
PCs (for sQTLs) and (4) 19 different blood cell traits. For the cis-eQTL
analysis, variants were defined as being in cis with a gene if they were
located within a window of +1 Mb from the TSS. For the sQTL analysis,
the window was set to £500 kb from the center of the splicing event
to balance primary and secondary sQTL discovery. Feature annota-
tion, including TSS position, was obtained from Ensembl v99 (Janu-
ary 2020). For both cis-eQTL and cis-sQTL analyses, multiple-testing
correction was applied in tensorQTL as follows: (1) for each gene (or
splicing event), the adjusted lowest P value was estimated using a 3
distribution approximation from a permutation procedure (10,000
permutations)®’; (2) Benjamini-Hochberg FDR correction was applied
to the B-approximated Pvalues across genes (or splicing events), and
the FDR g value threshold was set to 5%. For each significant gene (or
splicing event), anominal P-value threshold was estimated to identify
significant SNPs. To demonstrate how increased sample size assists
in cis-eQTL and cis-sQTL discovery, random samples of patients in
n =500 increments were subsetted and QTL mapping was performed
with the same inputs as the full cis-QTL analyses, with the output
being the number of significant genes (or splice phenotypes) with a
significant eQTL (or sQTL). Conditional analysis was performed for
each cis-eGene (or splicing event phenotype with a cis-sQTL) using
GCTA-COJOv1.94.0beta (January 2022)*"“%, The program took as input
the gene cis-eQTL (or cis-sQTL) summary statistics, the INTERVAL
imputed genotype data for cis-variants and the P-value threshold used
to identify the cis-eGene (or splicing QTL). A trans-eQTL analysis was
performed on the list of lead SNPs from cis-eGenes independent sig-
nals. The trans-regions were defined as genomic regions outside of
the +5Mb window from the TSS. The Bonferroni multiple-testing cor-
rectionmethod (thatis, P= 0.05/number of tested trans-associations)
was applied to identify significant trans-associations. While previous
work has demonstrated that trans-QTL analyses may be susceptible
to artifacts due to read cross-mapping between similar genes®, our
quantificationapproach using only uniquely mapped readsled to only
asmall fraction of our trans-QTL results (that s, 12.2% of trans-eQTLs
and 23.6% of trans-sQTLs) involving genes that were flagged for
sequence similarity. For the trans-QTL analyses, we also assessed if
there were PEER factors or splicing PCs associated with cis-eSNPs.
We did not detect any significant associations (P < 9.4 x 1078, Bon-
ferroni multiple-testing correction across 53,457 cis-eSNPs and ten
splicing PCs) between cis-eSNPs and splicing PCs. However, we found
that ten cis-eSNPs were significantly associated with five PEER factors
(P<2.7x1078, Bonferroni multiple-testing correction across 53,457
cis-eSNPs and 35 PEER factors). As a sensitivity analysis, we performed
the trans-eQTL analyses with and without these five PEER factors. We
showed a high correlation of z scores for trans-eQTL involving these
ten SNPs before and after removing these PEER factors fromthe model
(Pearson correlation = 0.80; Supplementary Fig.10). We identified sig-
nificant associations of cis-eSNPs with an additional 121 trans-eGenes.
Overall, we identified a higher number of trans-eGenes by integrating
all 35 PEER factors in the model (that s, 2,058 trans-eGenes instead of
1,811 trans-eGenes).
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Validation of cis-eQTL and cis-sQTL results

Results from the cis-eQTL analysis were compared to the results
obtained in the eQTLGen study’, which are available at https:/www.
eqtlgen.org/cis-eqtls.html. Inour comparison, we explored the percent-
age of overlap of cis-eGenes and the effect direction of genetic associa-
tions. For the overlap of cis-eGenes, we focused on the list of 15,722 genes
that were tested in both INTERVAL and eQTLGen. For the comparison
of effect directions, we computed the correlation of zscores for SNPs
that were the most significantin INTERVAL for each gene and that were
alsotested ineQTLGen. Results fromsQTL analysis were collapsed tothe
sGene level for comparison to GTEx whole-blood sQTLs (v.8)**, which
areavailable at https://gtexportal.org/home/datasets.

Enrichment analyses

Enrichment analyses were performed using a one-sided Fisher’s exact
test on QTL results annotated with GO terms’® (downloaded in May
2022) and the Human Transcription Factors database?. We tested
for enrichment within cis-eGenes with a trans-association with gene
expression or splicing using significant cis-eGenes as background.
Benjamini-Hochberg FDR correction was applied to identify signifi-
cantenrichment.

Colocalization analysis

Colocalization analysis was performed using the results of conditional
analysis from GCTA-COJO*"® and the R package Coloc (v5.1.0.1)" on pair-
wise independent QTL signals following the pwCoCo methodology™.
The colocalization analysis window was the entire cis-window, that is,
+1 Mb for eQTLs and +500 kb for sQTLs. Prior probabilities were kept
as the default values, thatis, P,=1x107*, P,=1x10"*and P,,=1x1075,
Colocalized results were defined with the thresholds PP3 + PP4 > 0.9 and
PP4/PP3 >3,PP3 and PP4 being the posterior probabilities of hypotheses
3and4 asoutlined previously™. For colocalization analysis with external
omics data, summary statistics were downloaded fromeach study (see
Supplementary Table 29 for the description of the different omics stud-
ies). A previous study performed simulations showing that the impact of
complete sample overlap on colocalization results was negligible with
200 individuals and, therefore, will be even smaller with large sample
sizes as used here’. Before colocalization analysis, (1) proteins were
annotated using the R package biomaRt (v2.46.3) to obtain correspond-
inggenesin Ensemblv99 (January 2020), and (2) significant pQTLs and
mQTL were filtered. For pQTLs, P-value thresholds per feature were
defined by a two-step multiple-testing correction’”, For mQTLs, we
used a Bonferroni-adjusted P-value threshold of P< 5 x 1078, corrected
for the number of metabolites analyzed.

Mediation analysis

Mediation analyses were conducted using the natural effects model
implemented in the R package Medflex (v0.6-7)". In the models, we
defined (1) theindependent lead cis-eQTL (or cis-sQTL) SNP (coded as
0,1and2)astheindependent (exposure) variable, (2) the gene expres-
sion level (or splicing event phenotype) of the cis-eGene/-sGene as
the mediator and (3) the molecular trait as the dependent (outcome)
variable. Gene expression (or splicing event phenotype) residuals
were computed after adjusting for the same covariates as we used
for eQTL/sQTL mapping, while molecular traits were adjusted for
covariates described by each study (Supplementary Table 29). For all
mediation analyses, samples with missing genotype or molecular data
were removed. Standard errors were computed based on the robust
sandwich estimator. Significant direct, indirect and total effects were
identified after Bonferroni multiple-testing correction between each
molecular phenotype assay.

Interactive QTL web portal
To facilitate the accessibility of the results, a web portal was built to
enable the exploration of eQTL and sQTLs. Summary statistics and

expression phenotypes wereimported into aMariaDB (v10.2.38) data-
base; code was written to facilitate their retrieval in PHP (v7.2.34) with
jQuery (v3.5.1) and styled with Bootstrap (v3.4.1). Tables are powered
by DataTables (v1.13.3). Locus and QTL plots are visualized with Locus-
ZoomJS (v0.13.4) and plotly (v2.9.0), respectively.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. No
data were excluded from the analyses, except due to the QC steps
detailed above. The experiments were not randomized, and the investi-
gators were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The INTERVAL study data used in this paper are available to bona fide
researchers from ceu-dataaccess@medschl.cam.ac.uk. The dataaccess
policy for the data has been approved by the ethics committee and is
available at https://www.donorhealth-btru.nihr.ac.uk/ wp-content/
uploads/2020/04/Data-Access-Policy-v1.0-14Apr2020.pdf. Therelease
of data is regulated by the Blood Donors Studies BioResource Data
Access Committee (DAC). The DAC will review the project’s scientific
excellence and alignment of the proposal with the overall aims of the
database; theresearch team’s experience and capability to conduct the
proposed study; and the suitability of the dataand any risk to participant
confidentiality. The dataaccess process takes approximately 2 months.
The newly generated RNA-seq data (n = 4,732 INTERVAL participants)
have beendeposited at the European Genome-phenome Archive under
the accession EGAD00001008015. The results from the genetic asso-
ciation, colocalization and mediation analyses are available at https://
IntervalRNA.org.uk. The summary statistics are also made available
on the above web portal, as well as mirrored on Zenodo (https://doi.
0rg/10.1101/2023.11.25.23299014)”. Our data used annotation from
Ensembl (https://www.ensembl.org/). For enrichment analyses, we
used the public databases GO (https://geneontology.org/)”° and The
Human Transcription Factors (https://humantfs.ccbr.utoronto.ca/)*.

Code availability

All original code has been deposited on GitHub (https://github.com/
INTERVAL-RNAseq/manuscript-scripts) and a static version archived
onZenodo (https://doi.org/10.5281/zenod0.14015194)%,
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