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Family-based genome-wide association 
study designs for increased power and 
robustness
 

Junming Guan    1  , Tammy Tan2, Seyed Moeen Nehzati1,3, Michael Bennett    2, 
Patrick Turley    4,5, Daniel J. Benjamin    1,2,6 & Alexander Strudwick Young    1,6 

Family-based genome-wide association studies (FGWASs) use random, 
within-family genetic variation to remove confounding from estimates 
of direct genetic effects (DGEs). Here we introduce a ‘unified estimator’ 
that includes individuals without genotyped relatives, unifying standard 
and FGWAS while increasing power for DGE estimation. We also introduce 
a ‘robust estimator’ that is not biased in structured and/or admixed 
populations. In an analysis of 19 phenotypes in the UK Biobank, the unified 
estimator in the White British subsample and the robust estimator  
(applied without ancestry restrictions) increased the effective sample size 
for DGEs by 46.9% to 106.5% and 10.3% to 21.0%, respectively, compared to 
using genetic differences between siblings. Polygenic predictors derived 
from the unified estimator demonstrated superior out-of-sample prediction 
ability compared to other family-based methods. We implemented the 
methods in the software package snipar in an efficient linear mixed model 
that accounts for sample relatedness and sibling shared environment.

Genome-wide association studies (GWASs) have identified thousands 
of associations between genetic variants and human phenotypes1. 
Standard GWAS estimates the association between a phenotype and 
an allele by regression of individuals’ phenotypes onto the number of 
copies of the allele that they carry, with some adjustment for covari-
ates. Multiple phenomena contribute to the associations, which we call 
‘population effects’, as they reflect the genotype-phenotype association 
in the population2–5: causal effects of alleles (both of the tested variant 
and those in linkage disequilibrium (LD) with the tested variant) car-
ried by the individual on the individual, called direct genetic effects 
(DGEs); effects of alleles in relatives through the environment, called 
indirect genetic effects (IGEs) or genetic nurture6; and effects of other 
genetic and environmental factors that the tested variant is correlated 
with due to population stratification and assortative mating (AM)3,4,6–10.  
Biased sampling can also affect population effect estimates11.

If we consider the goal of GWAS to be estimation of DGEs, then the 
other contributing factors can be considered as confounds. Adjust-
ment for genetic principal components (PCs) and linear mixed models 
(LMMs) reduces confounding due to population stratification7,8 and 
AM12, but residual confounding often remains3,8,9,12. The consequences 
of this include (1) biased estimates of heritability and the traits’ shared 
genetic architectures (through genetic correlation estimates)13–16;  
(2) biased inferences from Mendelian randomization17; (3) bias in  
polygenic indices (PGIs, also called polygenic scores) that may con-
tribute to the drop in predictive accuracy when predicting across 
genetic ancestries18; and (4) biased inferences of natural selection9,16,19.

Family-based GWAS (FGWAS) adds parental genotypes to the 
regression used in GWAS (Methods). FGWAS thereby uses variation due 
to random segregations of genetic material during meiosis to estimate 
DGEs, removing confounding due to gene-environment correlation 

Received: 19 May 2023

Accepted: 5 February 2025

Published online: 10 March 2025

 Check for updates

1UCLA Anderson School of Management, Los Angeles, CA, USA. 2National Bureau of Economic Research, Cambridge, MA, USA. 3Department of 
Economics, New York University, New York, NY, USA. 4Department of Economics, University of Southern California, Los Angeles, CA, USA. 5Center for 
Economic and Social Research, University of Southern California, Los Angeles, CA, USA. 6Department of Human Genetics, UCLA David Geffen School of 
Medicine, Los Angeles, CA, USA.  e-mail: junm.guan@gmail.com; alextisyoung@gmail.com

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02118-0
http://orcid.org/0000-0003-3144-0757
http://orcid.org/0000-0002-0446-1029
http://orcid.org/0000-0003-3643-8605
http://orcid.org/0000-0002-2642-5416
http://orcid.org/0000-0001-9930-989X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-025-02118-0&domain=pdf
mailto:junm.guan@gmail.com
mailto:alextisyoung@gmail.com


Nature Genetics | Volume 57 | April 2025 | 1044–1052 1045

Technical Report https://doi.org/10.1038/s41588-025-02118-0

parental genotypes are imputed using phased data as in Young et al.3, 
and we add n1 singletons with their parental genotypes linearly 
imputed. Assuming that siblings’ phenotypes are uncorrelated condi-
tional on the regression covariates (that is the regression residuals are 
uncorrelated), adding n1 singletons gives an effective sample size 
1 + n1

2(3n0+n1)  times higher than using only the n0 sibling pairs (Supple-
mentary Note 2.1.1). The theoretical gain in effective sample size con-
verges to 50% as n1/n0 → ∞. Imputation as in Young et al.3 already gives 
a gain of up to one-third; thus the effective sample size of the unified 
estimator can be up to twice as large as the sib-difference estimator, 
and can be even higher when samples with genotyped parents are also 
available. The gain in effective sample size declines with the correlation 
between the siblings’ residuals and, when imputing from siblings with-
out phased data, with minor allele frequency (Fig. 1c,d).

We derive equivalent results for adding n1 singletons to n0 samples 
with one parent genotyped, where the missing parent’s genotype has 
been imputed using phased data as in Young et al.3. The effective sample 
size for DGEs is approximately 1 +

n1

(3n1+4n0)
 times higher than using  

the parent-offspring pairs alone, converging to 4/3 as n1/n0 → ∞.
One can obtain an estimate of the standard GWAS population 

effect, β, by β̂ = δ̂ + α̂ , where δ̂  and α̂  are the DGE and average NTC 
estimates from the unified estimator. By performing the analysis using 
all genotyped samples that would normally be used in a standard GWAS 
(Fig. 1a,b), one obtains an estimate of β almost identical to that from 
standard GWAS (correlation 0.998; Extended Data Fig. 1). Thus, by 
including singletons via linear imputation, we unify FGWAS and stand-
ard GWAS in one analysis.

We estimated DGEs with the unified estimator for the simulated 
phenotypes from Young et al.3, which simulated scenarios including 
AM and IGEs (Supplementary Note 1). We found the unified estimator 
increased the effective sample size for DGEs compared to using only 
the related sample and did not introduce any detectable bias.

Population-structure-robust estimator
The imputation proposed by Young et al.3 uses the allele frequency to 
impute unobserved parental alleles, becoming biased when there is 
population structure as it does not account for variation in allele fre-
quencies across subpopulations3. Young et al. showed that, in an island 
model of population structure, the estimator of DGEs from sibling 
pairs with parental genotypes imputed from phased data tends to 
δ̂ = δ + cα, where c is a function of Wright’s Fst (the proportion of vari-
ation at a locus due to between-population differences in allele frequen-
cies). When Fst is small, c ≈ Fst/2, implying the bias, cα, will be negligible 
for European genetic ancestry samples, where Fst has been estimated 
to be on the order of 10−3 (ref. 21). In contrast, standard GWAS estimates 
β = δ + 1+3Fst

1+Fst
α.

Here we develop two estimators that maximize power for estima-
tion of DGEs while being robust to population structure (Methods). We 
generalize an estimator proposed in Young et al. by partitioning the 
sample based on which parental alleles that were not transmitted to the 
focal, phenotyped individual (proband) we have observed: this gives 
four groups (Table 1 and Extended Data Fig. 2) depending on whether 
we have observed one or both nontransmitted (NT) parental alleles, 
and if only one has been observed, whether the NT allele is from the 
mother, father or unknown. We call this estimator the ‘nontransmitted 
(NT) estimator’. We prove that this estimator gives consistent estimates 
of DGEs under an island model of population structure (Supplemen-
tary Note 2.3.2). However, the NT estimator can give biased estimates 
when there are differences in allele frequencies between mothers and 
fathers (Supplementary Note 2.3.3), as in recently admixed samples.

We therefore developed the ‘robust estimator’ that uses only the 
random variation in offspring genotype given parental genotype, 
which is the principle underlying the properties of FGWAS with fully 
observed parental genotypes. This estimator, like the NT estimator, 
partitions the sample based on which NT alleles have been observed 

and nonrandom mating3,16. However, requiring both parents’ geno-
types limits the sample to which FGWAS can be applied. An alternate 
approach, which we call ‘sib-differences’, uses genetic differences 
between siblings to estimate DGEs16 (Methods), enabling use of samples 
with genotyped siblings but without genotyped parents to be used. 
However, sib-differences has lower power than FGWAS when parental 
genotypes are available3.

Young et al.3 proposed an alternative approach that could be 
applied to sibling data: treat parental genotypes as missing data and 
impute them according to Mendelian laws, and then use the imputed 
parental genotypes in place of the observed ones (Methods). Provided 
that the imputation is unbiased, the DGE estimates are unbiased and 
consistent3. This approach increases the effective sample size for DGEs 
by up to one-third compared to sib-differences. (The relative effective 
sample size of estimator a compared to estimator b is the ratio of the 
sampling variance of estimator b to estimator a; a relative effective 
sample size above 1 indicates greater power for estimator a compared 
to estimator b.) The imputation method enables the inclusion of any 
genotyped sample with at least one genotyped first-degree relative, 
including samples with one or both parent(s) genotyped but without 
genotyped siblings, further increasing power3.

However, the Young et al. method ignores most of the sample 
in datasets like the UK Biobank (UKB), where only ~10% have a geno-
typed first-degree relative20. Samples of individuals without geno-
typed first-degree relatives (hereafter ‘singletons’) can provide precise 
estimates of β, the population effect, as from standard GWAS. Under 
random mating3, β = δ + α, where δ is the DGE and α is the average coef-
ficient on the parents’ genotypes (Methods)—called the average non-
transmitted coefficient (NTC). A precise estimate of the population 
effect therefore puts a constraint on the set of plausible values the 
FGWAS parameters, δ and α, can take.

Following this intuition, we develop an FGWAS estimator that has 
increased power by including singletons through imputation. However, 
we show that strong population structure leads to bias in the DGE 
estimates. We also develop an estimator that is robust to population 
structure and admixture for use in genetically diverse samples. This 
estimator is more powerful than sib-differences because it includes 
samples with one or both parents genotyped but without genotyped 
siblings, and it uses parental genotypes when available for samples with 
genotyped siblings. We examine the estimators in simulations with dif-
ferent levels of population structure, enabling researchers to choose 
the appropriate analysis depending on their data. We demonstrate 
increased power for estimation of DGEs in the UKB and in out-of-sample 
PGI prediction in the Millennium Cohort Study (MCS).

Results
Including singletons in FGWAS
We extend the imputation method described in Young et al.3 to sin-
gletons. We observe two out of four parental alleles in a singleton’s  
genotype—as in a sibling pair that have inherited the same alleles 
from both mother and father, which is expected for one-quarter of 
the genome3. The two missing parental alleles are imputed using the 
allele frequency, resulting in imputed parental genotypes that are linear 
functions of the singletons’ genotypes (Methods).

Consider that we have a genotyped and phenotyped sample par-
titioned into two disjoint subsets: a subset with at least one genotyped 
first-degree relative (which we call the ‘related sample’), where missing 
parental genotypes have been imputed as in Young et al.3; and a single-
ton sample, where parental genotypes have been imputed linearly. 
The estimator that we propose, called the ‘unified estimator’, uses the 
imputed parental genotypes when they are not observed, including 
for the singleton sample (Fig. 1a,b and Methods).

In Supplementary Note 2.1, we derive theoretical results on the 
gain in effective sample size for DGEs from including singletons. Con-
sider the case where we have n0 independent sibling pairs whose 
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(Table 1). However, it differs in the regressions it performs. The robust 
estimator performs uniparental regressions for samples with one NT 
allele of known parent-of-origin observed; for example, for a sample 
with a mother genotyped, the regression is performed on the mater-
nally transmitted allele and the mother’s genotype, thereby only using 
the random variation in maternally inherited allele given maternal 
genotype to estimate the DGE.

The advantage of the robust estimator over using only sib- 
differences and/or samples with both parents genotyped is that it 
enables optimal use of samples with a single parent genotyped while 
not using any allele frequency information that can introduce bias in 
structured populations. When only siblings are genotyped with no 
parents, it becomes equivalent to sib-differences (Supplementary  
Note 2.5.1); and when all samples have both parents genotyped, it 
becomes FGWAS with fully observed parental genotypes.

Comparison of estimators in simulated populations
We examined the power (measured by effective sample size) and bias of 
the different estimators (Table 2) in simulations with different levels of 
population structure, as measured by Wright’s Fst. We simulated popu-
lations of 2,000 independent sibling pairs and 18,000 independent 

singletons, mimicking UKB data proportions. We considered two simu-
lation setups: (1) two equally sized subpopulations with ancestral allele 
frequencies equal to 0.5; and (2) 100 subpopulations with ancestral 
minor allele frequencies, f, drawn from a distribution with density 
proportional to 1/f for 0.05 < f < 0.5. In both scenarios, the allele fre-
quencies in the subpopulations were drawn from the Balding-Nichols 
distribution for Fst set at 0, 0.001, 0.01, or 0.1: Fst = 0.001 is roughly the 
level of differentiation between neighboring European populations21, 
and Fst = 0.1 is roughly the level of differentiation between European 
and East Asian ancestry populations22. The phenotypes were simulated 
without any causal genetic effects but with subpopulation membership 
explaining 50% of the variance (Methods).

The bias from population stratification confounding is due to 
the correlation between the subpopulation allele frequencies and the 
subpopulation phenotype means (Methods). Because allele frequen-
cies and phenotype means were sampled independently, the bias for 
an individual single-nucleotide polymorphism (SNP) has expectation 
zero (across repeated simulations) but has non-zero variance across 
SNPs (and repeated simulations). The magnitude of population strati-
fication confounding can therefore be evaluated by the nonsampling 
variance—the variance in the estimates not explained by sampling 
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Fig. 1 | Illustration of different standard and FGWAS estimators and 
theoretical gain in effective sample size for DGEs. a, We illustrate the different 
sample subsets used by different FGWAS and standard GWAS methods. We give 
the numbers for each subset for the UKB ‘White British’ sample for illustration. 
The sibling difference estimator uses samples with one or more siblings’ 
genotypes observed (35,259 individuals), whereas the Young et al. estimator uses 
all related samples, which also include individuals with both parents’ genotypes 
observed (894) and those with one parent’s genotype observed (5,316); in 
addition to the related samples, the standard GWAS and unified estimators also 
use singletons (368,629). b, Illustration of regressions performed by standard 
GWAS and the unified estimator. Through linear imputation of parental 
genotypes, the unified estimator incorporates singletons into the FGWAS 
regression, enabling use of the same sample as standard GWAS to estimate the 

parameter vector [δ, α]T. Although the design matrix for the singleton subset  
(in blue) in FGWAS is collinear, the design matrix for the related sample subset  
(in red) is not, so the stacked design matrix is not collinear. c,d, We show the 
effective sample size for the unified estimator applied to n0 = 20,000 sibling 
pairs and n1 singletons, relative to the effective sample size of using the sibling 
pairs alone with imputation. The parental genotypes in the sibling sample are 
imputed3 using phased data (c) and unphased data (d). The parental genotypes 
for the singletons are imputed linearly. The theoretical gain depends upon the 
correlation between the siblings’ residuals, which we show in c. When imputing 
using unphased data, the gain depends upon the minor allele frequency3,  
which we show in d for a fixed correlation between siblings’ residuals of 0.3.  
We confirmed the theoretical results using simulations (Supplementary Note 2.1).
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error, which must be due to population stratification bias, as there 
are no causal effects (Methods). We measure this relative to the non-
sampling variance for standard GWAS and Fst = 0.001, comparable to 
the level of stratification bias in a standard GWAS in a homogeneous 
ancestry sample. (We also give the mean Z2 statistic—which should be 1 
under the null—a common measure of test-statistic inflation in GWAS. 
However, the nonsampling variance provides a fairer comparison of 
levels of bias, as mean Z2 is also affected by sampling variance, which 
varies across estimators.)

For the two-subpopulation setup (Fig. 2), the sibling difference/
robust—here the robust estimator reduces to the sib-difference esti-
mator, as no parental genotypes are observed (Supplementary Note 
2.5.1)—and the NT estimators have no detectable bias from population 
stratification for any level of Fst (Fig. 2a–d), and the standard GWAS 
estimator has the most bias (Fig. 2a,c), with statistically significant bias 
for Fst ≥ 10−3. The unified and Young et al. estimators do not have detect-
able bias except for Fst = 0.1, with the unified estimator having greater 
bias than the Young et al. estimator (Fig. 2a–d). This result is expected 
because the unified estimator includes a large sample of singletons, 
for which the two unobserved parental alleles are imputed using the 
overall allele frequency, leading to bias in a structured population.

In the 100 subpopulation setup (Fig. 3), we also included stand-
ard GWAS with adjustment for 20, 50 and 99 inferred genetic PCs 
(Methods). (Because there are 100 subpopulations, 99 PCs should be 
sufficient to separate all subpopulations if inferred correctly7,23.) Unlike 
in the two subpopulation setup, we did not find statistically significant 
evidence (P < 0.05) of bias for any of the family-based estimators.  

This is likely to be because the magnitude of population stratifica-
tion confounding goes down with the number of subpopulations 
(Methods).

However, we found statistically significant evidence of bias for 
standard GWAS when Fst > 0 regardless of how many PCs we con-
trolled for, with one exception: when Fst = 0.1 and we controlled for 
99 PCs. The likely reason is that it is difficult to infer 99 PCs correctly 
without very large sample sizes when population structure is subtle 
(Fst ≤ 0.01) but becomes easier when population structure is stronger 
(as in the Fst = 0.1 scenario). This is related to the known phase transi-
tion whereby it becomes possible to accurately infer latent factors 
(for example, subpopulation membership) that structure random 
matrices (for example, SNP genotype matrices) once the sample size 
passes a certain threshold, depending on the strength of those latent 
factors7. In real-world genetic data, population structure exists on 
multiple scales, reflecting both recent and ancient structure, with 
genetic PCs only partly capturing subtle and recent structure2,10.

Bias-variance tradeoff for different estimators
We compare the estimators in a bias-variance framework (Fig. 4 and 
Extended Data Figs. 3 and 4) based on the two subpopulation simu-
lations. The Young et al. estimator boosts power compared to the 
sib-difference, robust and NT estimators but introduces a slight bias due 
to population structure that becomes detectable for Fst = 0.1. The uni-
fied estimator adds singletons, gaining power at the cost of increased 
bias due to population structure, but this only becomes apparent when 
Fst = 0.1. The standard GWAS estimator has greater effective sample size 

Table 1 | Groups and regressions for the NT and robust estimators

Group Example genotype data types NT alleles observed NT estimator regression Robust estimator 
regression

Maternal NT Mother-child pairs
Mother and sibling pair in IBD2

Maternal yij ∼ gij + ̂gp(i) + gm(i) yij ∼ gm
ij + gm(i)

Paternal NT Father-child pairs
Father and sibling pair in IBD2

Paternal yij ∼ gij + gp(i) + ̂gm(i) yij ∼ gp
ij + gp(i)

Both NT Sibling pairs in IBD0
Parent-offspring trios

Paternal and maternal yij ∼ gij + gpar(i) yij ∼ gij + gpar(i)

One NT Sibling pairs in IBD1 without genotyped parents Paternal or maternal yij ∼ gij + ̂gpar(i) yij ∼ gij + ḡsib(i)

We partition the sample with at least one NT parental allele observed into four groups (Extended Data Fig. 2), perform separate regressions in each group and meta-analyze the resulting DGE 
estimates (Methods). We show that the NT estimator is robust to an island model of population structure, but not to admixture, whereas the robust estimator is robust to both (Supplementary 
Notes 2.3 and 2.4). For the regression column, yij is the phenotype of sibling j in family i; gij the corresponding genotype; gm

ij  and gp
ij  are the maternally and paternally transmitted alleles; gp(i) and 

gm(i) are the paternal and maternal genotypes; gpar(i) = gp(i) + gm(i); a caret indicates a genotype that has been imputed from phased data as in Young et al.3; for example, ̂gpar(i) refers to the 
imputed sum of parental genotypes. ḡsib(i) is the mean genotype among all siblings in family i. (IBD0 is when siblings share no alleles by descent from their parents, IBD1 is when siblings share 
one allele by descent from their parents and IBD2 is when siblings share both alleles by descent from their parents.)

Table 2 | Summary of estimators

Estimator Data types used Procedure Sample size in UKB

Sibling difference Genotyped and phenotyped samples with at least one 
genotyped sibling

Regression of sibling phenotype differences onto 
sibling genotype differences, or regression onto 
deviation of sibling genotype from sibship mean16

35,259 (White British)
46,698 (all ancestry)

Robust Genotyped and phenotyped samples with at least one 
observed NT parental allele (Extended Data Fig. 2)

Perform separate regressions (Table 1) in each 
group and perform an inverse-variance-weighted, 
fixed-effects meta-analysis of DGE estimates

44,570 (White British)
51,875 (all ancestry)

NT Genotyped and phenotyped samples with at least one 
observed NT parental allele (Extended Data Fig. 2)

Perform separate regressions (Table 1) in each 
group and perform an inverse-variance-weighted, 
fixed-effects meta-analysis of DGE estimates

44,570 (White British)
51,875 (all ancestry)

Young et al. Genotyped and phenotyped samples, with genotyped 
first-degree relatives, in a homogeneous ancestry group

Fit FGWAS Model 1 or 2 (Methods) using imputed and/or 
observed parental genotypes

44,570 (White British)

Unified Genotyped and phenotyped samples, with or without 
relatives, in a homogeneous ancestry group

Fit FGWAS Model 1 or 2 (Methods) using imputed and/or 
observed parental genotypes

408,254 (White British)

Standard GWAS Genotyped and phenotyped samples, with or without 
relatives, in a homogeneous ancestry group

Regress proband genotypes on proband phenotypes 408,254 (White British)

The robust and NT estimators differ in the regressions they perform in each group (Table 1). See also Fig. 1 and Extended Data Fig. 2.
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than the other methods but at the cost of much greater bias in struc-
tured populations (Extended Data Fig. 3), in addition to other biases 
(such as from IGEs and AM3) that were not simulated here.

The simulation results show that the unified estimator has the 
greatest power out of the family-based estimators but shows bias 
when there is strong structure (Fst > 0.01). The NT estimator is the 
most powerful estimator that is robust to structure but is vulnerable to 
confounding when there has been recent admixture (Supplementary 
Note 2.3.3). Given the small difference in power between the robust and 
NT estimators, we recommend the robust estimator for strongly struc-
tured samples unless recent admixture can be conclusively ruled out.

LMM accounting for sample relatedness
We developed an LMM that includes random-effects specified by both 
sibship and a sparse genetic relatedness matrix (GRM), which is fast 
enough to perform genome-wide analyses in biobank-scale datasets 
while accounting for genetic relatedness and sibling shared environ-
ment (Methods). We give example runtimes in Supplementary Table 2.

Application of estimators to UKB
We applied the estimators to 19 phenotypes using UKB data (Methods 
and Table 2). We applied the Young et al. and unified estimators to 

the White British subsample (Fig. 1). We applied the sib-difference 
estimator to the sample with at least one genotyped sibling, and 
the robust estimator to the sample with at least one genotyped 
first-degree relative. No ancestry restrictions were applied for the 
robust and sib-difference estimators (Table 2)—although the result-
ing sample was 85.9% White British, it covered most of the genetic 
diversity captured by the first two PCs of 1000 Genomes24 genotype 
data (Extended Data Fig. 6).

We compared the estimators’ effective sample sizes (Fig. 5). The 
gain in effective sample size over sib-differences declined with the 
phenotypic correlation between siblings, as expected from theory3 
(Fig. 1c,d). Across the 19 phenotypes, the unified estimator had an 
effective sample size between 24.5% (height) and 42.6% (number of 
children in males) higher than the Young et al. estimator (Supple-
mentary Table 1). As the Young et al. estimator already gains between 
18.0% (height) and 45.3% (subjective well-being), this implies the 
unified estimator gains between 46.9% (height) and 106.5% (sub-
jective well-being) over sib-differences. By not imposing ancestry 
restrictions, the robust estimator uses a larger sample (51,875) than 
the Young et al. estimator (44,570). The robust estimator also uses a 
larger sample than the sib-difference estimator (46,698) due to inclu-
sion of samples without genotyped siblings, gaining between 10.3% 
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Fig. 2 | Bias and nonsampling variance of GWAS estimators for different levels 
of population structure. We simulated four different populations with different 
levels of structure, as measured by Wright’s Fst. Each population consisted of 
two equally sized subpopulations with 2,000 independent sibling pairs and 
18,000 singletons. Allele frequencies for the two subpopulations were simulated 
from the Balding-Nichols31 model with ancestral allele frequency set to 0.5 
(Methods). We simulated phenotypes with no causal genetic effects but where 
subpopulation membership explained 50% of the phenotypic variance, so that 
any deviation from the null distribution indicates population stratification 

confounding. a, Mean of squared Z-statistics across 20,000 SNPs for the four 
estimators, which are expected to be above 1 (dashed line) when there is bias 
due to population stratification. b, Same as a but with the standard GWAS 
removed. c, Mean of nonsampling variances (Methods) of the estimators relative 
to that observed for standard GWAS with Fst = 0.001, which gives a measure 
of the magnitude of bias due to population stratification, with values above 0 
indicating bias. d, Same as c but with the standard GWAS removed. Error bars 
display 95% jackknife confidence intervals over 20,000 SNPs.
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SNPs for the four estimators, which is expected to be above 1 (dashed line) when 
there is bias due to population stratification. b, Mean of nonsampling variances 
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(height) and 21.0% (number of children, female) in effective sample 
size (Supplementary Table 1).

Polygenic prediction in the MCS
We evaluated the performance of the different estimators for 
out-of-sample prediction of height, body mass index (BMI) and gen-
eral certificate of secondary education (GCSE) grades (a measure of 
educational achievement) using PGIs derived from DGE estimates 
(DGE PGIs) and population effect estimates (Methods). We found that 
all estimators yielded PGIs statistically significantly correlated with 
their respective phenotypes in the European ancestry (hereafter ‘EUR’) 
sample (Fig. 6a and Supplementary Table 4). Population-effect PGIs 
were substantially more predictive than DGE PGIs, as expected from the 
larger effective sample size of population effect estimates (Extended 
Data Fig. 3). Out of the DGE PGIs, the unified estimator gave the best 
predictions for BMI and GCSE grades and tied with the Young et al. 
estimator for height.

By adding parental PGIs, we estimated the ‘direct effects’ of PGIs 
in the EUR sample (Methods and Fig. 6b). The direct effect on GCSE 
grades of the population-effect educational attainment (EA) PGI was 
much smaller than the PGI’s population effect (Fig. 6a), consistent with 
previous studies6,25–27. In contrast, we did not observe smaller direct 

effects than population effects for the DGE PGIs, suggesting that factors 
not highly correlated with DGEs contribute to the prediction ability of 
population effect EA PGIs.

PGIs constructed from summary statistics derived in one genetic 
ancestry tend to predict phenotypes less well in other genetic 
ancestries18,28,29. Although differences in LD patterns and allele fre-
quencies have been argued to be the primary explanation, confound-
ing factors not shared across ancestries could contribute. Therefore, 
DGE PGIs may predict better across ancestries due to the removal of 
confounding factors.

We examined cross-ancestry prediction in a sample of 2,214 indi-
viduals of predominantly South Asian genetic ancestry (hereafter 
‘SAS sample’). The population-effect PGIs gave the most accurate 
predictions in the SAS sample for all phenotypes. However, for height, 
the best-performing DGE PGI (from the unified estimator) performed 
nearly as well as the population-effect PGI. As expected18,28, the predic-
tion accuracy of the population-effect PGIs was lower in the SAS sample 
than in the EUR sample. In contrast, for height and BMI, the prediction 
accuracy for the DGE PGIs was higher in the SAS sample than in the EUR 
sample (Fig. 6c). This difference was statistically significant for the uni-
fied estimator prediction on height (βSAS − βEUR = 0.085; standard error 
(s.e.) = 0.0392; P = 0.0305, two-sided Z-test) (Supplementary Table 4).
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Fig. 5 | Empirical gain in effective sample for DGEs. We compute the effective 
sample size of the different estimators in UKB data (Table 2 and Supplementary 
Table 1) relative to that of the sib-difference estimator (y-axis), so that a value 
of (1 + y) means a gain of 100y% in effective sample size over the sib-difference 
estimator (Methods). We give the phenotypic correlation between siblings on  
the x-axis, as theory indicates the gain in effective sample size should  
decline with this correlation (Fig. 1c). a, Effective sample size for the unified 
(actual n = 408,254) and Young et al. (actual n = 44,570) estimators relative  
to the sib-difference estimator (actual n = 35,259) within the White British 
ancestry subsample. b, Effective sample size for the robust estimator  

(actual n = 51,875) relative to sib-difference estimator (actual n = 46,698), applied 
to the relevant samples without ancestry restrictions. The Young et al. estimator 
is more powerful than the sib-difference estimator because it uses information 
on NT parental alleles inferred by Mendelian imputation3, and because it can 
incorporate individuals with one or both parents genotyped but without any 
siblings genotyped. The unified estimator gains over the Young et al. estimator 
by further including individuals without any genotyped first-degree relatives 
(singletons) through linear imputation (Fig. 1a,b). The robust estimator gains 
power over the sib-difference estimator by using parental genotypes for samples 
with one or both parents genotyped (Methods). HDL, high-density lipoprotein.
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Discussion
We introduced three family-based estimators of DGEs (Tables 1  
and 2): the ‘unified estimator’ (Fig. 1), which increases the effective 
sample size for DGEs by inclusion of singletons while producing esti-
mates of population effects equivalent to what would be obtained from 
standard GWAS in a homogeneous ancestry sample (Extended Data 
Fig. 1), and two estimators that are robust to population structure and 
are more powerful than sib-differences, the NT and robust estimators, 
with the robust estimator also being robust to admixture.

We compared the estimators in a bias-variance framework for 
simulated populations with different levels of population structure 
(Fig. 4). From this, we can order the different estimators (Table 2) based 
on increasing effective sample size (statistical power): sib-difference, 
robust, NT, Young et al., unified and standard GWAS. This reflects the 
ordering in terms of bias due to population structure/admixture, 
except for the sib-difference and robust estimators, which are both 
robust to population structure and admixture. We recommend the 
unified estimator for the homogeneous samples (Fst ≤ 0.01) typically 
used in standard GWAS and the robust estimator for samples with 
stronger structure (Fst > 0.01) and/or recent admixture.

We found that standard GWAS with PC adjustment generally did 
not fully control for stratification when structure was complex (100 
subpopulations). A related question is the degree to which stratifica-
tion confounding affects GWAS of rare variants, which track recent 
structure in the population that PCs derived from common variants 
do not capture well10,30. Although the estimators studied here could 
be applied to remove confounding from rare variant analyses, power 
will be limited at current sample sizes.

We investigated imputing missing parental genotypes using more 
distant relatives, such as cousins (Methods and Supplementary Note 
3). However, we found that imputation from more distant relatives 
introduces an unacceptable degree of confounding into DGE estimates. 
We therefore do not recommend imputation from more distant rela-
tives for DGE estimation.

We applied the estimators to 19 phenotypes in the UKB, dem-
onstrating that the unified estimator can give a substantial gain in 

effective sample size for DGEs over both the Young et al. estimator 
(up to 42.6%) and sib-differences (up to 106.5%). We applied the robust 
estimator to UKB samples without ancestry restrictions, giving effec-
tive sample sizes between 10.3% and 21.0% greater than sib-differences. 
Although not true for the UKB, the robust estimator could be more 
powerful than the unified estimator for samples that cannot be parti-
tioned into homogeneous ancestry subsamples.

We investigated the performance of polygenic predictors (PGIs) 
derived from the different estimators in EUR and SAS genetic ances-
try samples from the MCS (Fig. 6). The unified estimator generally 
performed the best out of the PGIs constructed from DGE estimates 
(DGE PGIs), reflecting its larger effective sample size. We found sug-
gestive evidence that DGE PGIs predict better across ancestries than 
population-effect PGIs. However, analysis of DGE PGIs in more non-EUR 
samples is needed before firm conclusions can be drawn.

We have presented a set of estimators that maximize power for 
estimating DGEs in different scenarios while having no or negligible 
confounding due to population stratification. We have implemented 
the estimators in a computationally efficient LMM that accounts for 
sample relatedness and shared sibling environment, available in the 
software package snipar (‘Code availability’). This will facilitate pro-
duction of powerful DGE estimates from diverse ancestries that can be 
used in downstream applications including estimation of heritability 
and genetic correlations13–15, inference of natural selection9,16,19 and 
Mendelian randomization17.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Our research conforms with all relevant ethical regulations. UKB has 
approval from the North West Multi-centre Research Ethics Committee 
as a Research Tissue Bank approval. This approval means that research-
ers do not require separate ethical clearance and can operate under the 
Research Tissue Bank approval (there are certain exceptions to this 
which are set out in the Access Procedures, such as recontact applica-
tions). The MCS has obtained ethical approval from NHS Research 
Ethics Committees.

FGWAS designs
FGWAS is defined by regression of phenotype onto genotype and 
parental genotype(s)3:

yij = δgij + αgpar(i) + ϵij (Model 1)

where yij is the phenotype of the sibling j in family i; gij is the corre-
sponding genotype; gpar(i) = gp(i) + gm(i) is the sum of paternal and mater-
nal genotypes; δ is the DGE; α is the average NTC; and ϵij is the residual. 
Because 𝔼𝔼𝔼gij|gp(i), gm(i)] = gpar(i)/2, and variation in offspring genotype 
around this expectation is due to random Mendelian segregations 
(where chromosomes segregate independently of each other and 
environment), estimates of DGEs from fitting Model 1 are free from 
confounding due to gene-environment correlation (including popula-
tion stratification) and correlations with genetic variants on other 
chromosomes due to nonrandom mating (including AM)3–5,32. The 
average NTC—so named because it equals the average of the coeffi-
cients on parental alleles not transmitted to the offspring in a regres-
sion of offspring phenotype onto transmitted and NT alleles—captures 
IGEs from relatives and confounding due to gene-environment cor-
relation and nonrandom mating3–5,25. (The FGWAS regression 
equation here only applies to the autosome. Although it would be 
possible to apply a similar approach to maternally inherited X chro-
mosomes, FGWAS analyses of other sex chromosomes or mitochon-
dria are not possible.)

Alternatively, one can fit a model that allows for different coef-
ficients on the paternal and maternal genotypes:

yij = δgij + αpgp(i) + αmgm(i) + ϵij (Model 2)

where αp and αm are, respectively, the paternal and maternal NTCs. 
Model 1 can be derived from Model 2 (with a change of residuals3), 
implying that α = (αp + αm) /2. Although Model 1 is sufficient to remove 
confounding from estimates of DGEs, irrespective of whether αp = αm, 
Model 2 may be preferred or required in certain contexts (Supplemen-
tary Note 2.2).

Standard GWAS performs a regression of phenotype onto geno-
type, giving an estimate of the population effect, β. Assuming random 
mating, it can be shown that3: β = δ + α. This provides a useful connec-
tion between the parameters of FGWAS and standard GWAS.

Fitting Models 1 and 2 entails restricting one’s sample to those 
with both parents genotyped, which is often only a small fraction (or 
none) of the sample. Genetic differences between siblings, which are 
randomly assigned, can be used instead12,16. For example, one can 
perform the following regression:

yi1 − yi2 = δ (gi1 − gi2) + ϵi1 − ϵi2. (Model 3)

Estimates of δ from this model, which we call ‘sib-differences’, 
are free from confounding due to nonrandom mating and most 
gene-environment correlation, the exception being (unlike esti-
mates from Models 1 and 2) confounding due to IGEs from siblings3. 
In addition, estimates of DGEs from Model 3 are less precise than those 
from Model 1 or 2 when applied to sibling data provided that the cor-
relation between siblings’ residuals is modeled, as in a generalized 

least-squares estimator3. Furthermore, estimation of Model 3 ignores 
samples with genotyped parent(s) but without genotyped siblings16.

Imputing missing parental genotypes for singletons
An alternative approach to estimating DGEs using sibling data was 
proposed by Young et al.3: treat parental genotypes as missing data 
and impute them according to Mendelian laws. For a sibling pair, 
the missing parental genotype, gpar(i), is imputed conditional on the 
identity-by-descent (IBD) state of the siblings; that is, whether the 
siblings have inherited the same or different alleles from each parent. 
Young et al. developed this approach, termed ‘Mendelian imputation’, 
for all samples with at least one genotyped first-degree relative, not just 
sibling pairs. The resulting imputed parental genotypes are then used 
in place of the observed ones in Model 1 or 2.

Here, we extend the Mendelian imputation approach to single-
tons, samples without a genotyped first-degree relative. We observe 
two out of four parental alleles in a singleton—the same as for a sibling 
pair in IBD2, meaning they have inherited the same alleles from both 
the mother and father3. Under random mating, the imputed parental 
genotypes are:

̂gpar(i) = 𝔼𝔼𝔼gpar(i)|gi] = gi + 2f; ̂gp(i) = 𝔼𝔼𝔼gp(i)|gi] = gi/2 + f = ̂gm(i) (1)

where the two unobserved alleles are imputed using the allele fre-
quency, f. If the imputed parental genotypes are unbiased, then the 
DGE estimates obtained when including singletons in Models 1 and 2 
will be unbiased and consistent, provided that the resulting regression 
design matrix is not collinear3. As the imputation from a singleton is 
linear, singleton data alone cannot be used to identify DGEs, because 
the design matrix would be collinear. Genotype-phenotype data from 
individuals with genotyped first-degree relatives, where a non-linear 
imputation of parental genotype(s) is possible3, is needed in addition 
to singletons.

Imputing parental genotypes using higher-degree relatives
The linear imputation (equation (1)) used for singletons in the uni-
fied estimator ignores information on parental genotypes from more 
distant relatives than siblings and parents, such as aunts/uncles and 
cousins. We investigated whether imputing missing parental genotypes 
using higher-degree relatives could improve estimation of DGEs.

We simulated cousin pairs and performed imputation of missing 
parental genotypes using the cousin pair’s genotypes (Supplementary 
Note 3). The imputed parental genotypes were approximately unbiased 
and more accurate than when imputing from a single offspring (as in 
the unified estimator). However, DGE estimates when using paren-
tal genotypes imputed from cousins showed substantial population 
stratification confounding even for relatively homogeneous ancestry 
samples (Fst ≥ 0.001) (Extended Data Fig. 5).

The reason that higher-degree relatives introduce bias is that 
they are separated by more than one meiosis. This implies that the 
genotype of the relative is not randomly assigned—and therefore 
not independent of confounds—conditional on the missing paren-
tal genotype. For example, your cousin’s genotype is not randomly 
assigned conditional on your parent’s genotype. This implies that the 
genotype of a cousin contains information not only on your parent’s 
genotype but also information that can reflect confounds such as 
population structure.

Population structure robust estimators
Young et al.3 proposed an alternative, imputation-based estimator for 
sibling-pair data that they argued should not be biased by population 
structure. This estimator partitioned the sibling pairs based on their 
IBD state and performed separate regressions for sibling pairs in IBD0 
(no alleles shared by descent from parents) and IBD1 (one allele shared 
by descent from parents) followed by an inverse-variance-weighted 
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meta-analysis of the DGE estimates. Young et al.3 showed this is more 
powerful than sib-differences, giving an effective sample size 1 + 1−r

6(1+r)
 

times greater, where r is the correlation of siblings’ residuals. However, 
this estimator has a smaller effective sample size than the primary 
estimator considered in Young et al.3, which includes sibling pairs in 
IBD2, at the cost of potential bias due to population structure.

The NT estimator we develop is a generalization of this estima-
tor that partitions the sample based upon which NT parental alleles 
have been observed (Table 1). Although the NT estimator is robust 
to an island model of population structure and more powerful than 
sib-differences even for sibling pair data (Supplementary Note 2.3.2), 
we found that it is biased when paternal and maternal allele frequencies 
differ, as in recently admixed samples (Supplementary Note 2.3.3).

The robust estimator is similar to the NT estimator, except 
that it performs different regressions in three of the four groups 
(Table 1). It performs uniparental regressions for the samples with 
one parental NT allele observed when the parent-of-origin is known. 
For a parent-offspring pair that are both heterozygous, phased data are 
required to determine the parent-of-origin3. For sibling pairs in IBD1 
without genotyped parents, the parent-of-origin of alleles is unknown, 
and we perform a regression controlling for the mean genotype in 
the sibship, equivalent to sib-differences (Supplementary Note 2.5). 
However, for sibling pairs in IBD1 with a genotyped parent, we parti-
tion the sample based on whether the allele shared by the siblings 
is from the observed parent or the missing parent: when the shared 
allele is from the missing parent, we perform uniparental regressions 
using the observed parental genotype and the alleles inherited by the 
siblings from that parent (for example, a sibling pair in IBD1 with a 
genotyped mother would be placed in the maternal NT group when 
the shared allele is from the father); but when the shared allele is from 
the observed parent, we are able to fully recover the missing parent’s 
alleles and place the siblings in the both NT group. (See Supplementary 
Note 5.2 from Young et al.3 for further details on determining shared 
alleles for cases with one parent and multiple full-sibling offspring with 
observed genotypes.)

Thus, to implement the robust estimator when some samples have 
one but not both parents’ genotypes observed, the imputation pro-
cedure in snipar with phased data should be performed first. This will 
determine how many NT parental alleles have been observed for each 
sample with a genotyped first-degree relative and the parent-of-origin 
of alleles for the samples with one parent genotyped.

Linear mixed model inference
Here, we develop an LMM that generalizes the LMM used in Young 
et al.3 and the LMM implemented in fastGWA33, which is specified by a 
sparse GRM. This approach ensures that residual correlations between 
siblings are modeled properly, ensuring statistically efficient estimates 
of DGEs are obtained while also modeling residual correlations between 
all pairs related above some threshold, thereby ensuring statistically 
efficient estimates with accurate standard errors are obtained when 
more complex relatedness is present in the sample33.

Stacking all observation vertically, for a dataset with N individuals 
in n families, the model is

y = Xθ + e′

where y is the N × 1 phenotype vector; X is the N × c matrix specifying 
the fixed effects, where the columns of X depend upon the covariates 
and estimator being used (Supplementary Note 2); θ is the correspond-
ing vector of fixed effects; and e′ is a random vector, which we specify 
below. For example, if fitting Model 2 without additional covariates, 
θ = [δ,αp,αm]

⊤
, and X has columns giving proband, (imputed or 

observed) paternal, and (imputed or observed) maternal genotypes. 
The random vector e′ is specified as

e′ = g + Zu + e

where

g ∼ 𝒩𝒩 (0,σ2gΠ) ;

Π is the (sparse) GRM; σ2g is the corresponding variance parameter; 
Z is an N × n sibship indicator matrix, with entry k, l equal to 1 if the kth 
individual is in sibship l and 0 otherwise; and u is an n × 1 normally 
distributed sibship-specific mean vector

u ∼ 𝒩𝒩 (0,σ2s In) ,

where σ2s  is the sibship covariance parameter. The sibship covariance 
component Zu is thus also normally distributed:

Zu ∼ 𝒩𝒩 (0,σ2s ZZ⊤) .

The residual variance vector has distribution:

e ∼ 𝒩𝒩 (0,σ2ϵ IN) .

Therefore, the variance-covariance matrix of y|X is V = σ2gΠ

+σ2s ZZ⊤ + σ2ϵ In.
The relatedness matrix, Π, can be either an SNP-based GRM or a 

GRM computed from IBD segments, such as output by KING34. By set-
ting elements of Π below a certain threshold, usually 0.05, to zero, the 
sparsity of the V matrix can be exploited so that restricted maximum 
likelihood (REML) inference of variance components and the general-
ized least-squares estimate of θ given the variance components are 
computationally feasible even for large-scale biobanks33 (Supplemen-
tary Table 2). For analyses in this paper, we used a relatedness matrix 
constructed from KING IBD segments with a 0.05 threshold. We chose 
this threshold as it enables accurate modeling of residual correlations 
between close relatives33,35 without requiring prohibitive memory 
usage and computation time. However, users can specify a different 
threshold to the software.

Variance component estimation
The variance component parameters σ2g,σ2s ,σ2ϵ  are estimated by maxi-
mizing the REML log likelihood function:

L = −(log |V| + log |C⊤V−1C| + y⊤Py)/2,

where C is the design matrix of fixed covariates, and

P = V−1 − V−1C(C⊤V−1C)−1C⊤V−1.

If no fixed covariates are included, C is a column vector of all 1s.
If the relatedness matrix Π is dense, then V is dense, leading to 

resource-demanding computation. To reduce the computational 
burden, we follow Jiang et al.33 and zero out entries in Π with related-
ness below a default threshold of 0.05. This results in a highly sparse 
matrix, enabling the use of efficient sparse matrix algorithms for like-
lihood evaluation. By using a gradient-free optimizer, REML variance 
component estimation can be done in just a few minutes for datasets as 
large as the UKB. Another possible benefit is that, by considering only 
close relatives, the correlations between close relatives are modeled 
more accurately than when using a SNP-based relatedness matrix that 
includes relatedness measures between all pairs15,33.

With a sparse V, we compute V−1 y and V−1 C using a sparse LU solver 
in SciPy (v1.7.2)36, without explicitly computing V−1. Then variance 
component parameters are optimized using the gradient-free L-BFGS 
algorithm36. One can choose to model only the sibship variance com-
ponent and the residual variance component as in Young et al.3, which 
also results in a sparse V matrix, so the same computational procedure 
can be used in this case.
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Estimating SNP effects
To include covariates in the genome-wide estimation of SNP effects, we 
project both genotypes and phenotypes onto the space orthogonal to 
the space spanned by the covariates, as in BOLT-LMM37:

X̃ = McX and ̃y = Mcy

where Mc = IN − C(C⊤C)−1C⊤  is the projection matrix. Then the effect 
estimates are given by

θ̂ = ( ̃X⊤V−1 ̃X)
−1

̃X⊤V−1 ̃y,

where

Var(θ̂) = ( ̃X⊤V−1 ̃X)
−1

is the sampling variance-covariance. By the Frisch-Waugh-Lovell Theo-
rem, this gives estimates of the SNP effects that are equivalent to per-
forming the joint-regression on the covariates and the proband and 
relative genotype(s).

The procedure for the NT and robust estimators is more com-
plicated, as we need to account for covariance across the estimates 
of DGEs from the different groups (Table 1) due to relatedness across 
the groups. We describe the procedure in Supplementary Note 2.4.1.

Simulations of structured populations
For different levels of Fst, we generated K subpopulations. We 
simulated SNPs from binomial distributions, where subpopulation 
allele frequencies were drawn from the Balding-Nichols model31: 

fk ∼ Beta( 1−Fst
Fst

f, 1−Fst
Fst

(1 − f )) , where fk is the allele frequency in sub-

population k and f = Ek𝔼 fk] is the overall allele frequency.

We investigated two different scenarios: a simple scenario with two 
subpopulations (K = 2), where each subpopulation has 20,000 families 
each with two siblings, and all overall allele frequencies are 0.5 (f = 0.5); 
and a more complex scenario with 100 subpopulations (K = 100), each 
with 1,000 families, and overall allele frequencies drawn from a distri-
bution proportional to 1/f for 0.5 > f > 0.05. We chose this distribution as 
it reflects the distribution of allele frequencies for a randomly mating 
population with constant effective size38. We simulated 20,000 SNPs 
for the first scenario and 4,000 SNPs for the second scenario.

We generated phenotypes with 50% of the phenotypic variance 
attributed to subpopulation phenotype means μk that we sampled 
independently from a mean-zero normal distribution: μk ∼ N(0,σ2μ) . 
The remaining 50% of the phenotypic variance was attributed to ran-
dom Gaussian noise, implying a correlation between siblings’ pheno-
types of 0.5. There are no causal effects (including DGEs) of the 
genotypes in this simulation, so any deviation from the null distribution 
is evidence of bias due to population stratification.

The average confounding bias due to population stratification in 
this model is zero, but the average magnitude of the confounding is 
non-zero for a finite number of subpopulations K. To see this, consider 
the overall covariance between the genotype g at an SNP l and pheno-
type Y, which is the covariance between the subpopulation genotype 
means (2fk) and subpopulation phenotype means (μk):

Cov (g,Y ) ≈ ∑
k

pk2 ( fk − f )μk,

where fk is the allele frequency in subpopulation k, f = ∑kpk fk  is the 
overall allele frequency, and pk is the fraction of families in subpopula-
tion k. The regression coefficient of genotype onto phenotype is 
therefore

βf =
Cov (g,Y )
Var (g) ≈

∑k pk2 ( fk − f )μk

Var (g) .

Because the allele frequencies and subpopulation phenotype 
means are sampled independently, the regression of phenotype onto 
genotype has expectation zero across the SNPs but varies around zero 
due to the finite number of subpopulations. We quantify this through 
the expected squared regression coefficient across SNPs with overall 
allele frequency f:

E𝔼β2
f
] ≈

∑k 4p
2
k
Fst f (1 − f )σ2μ
Var(g)2

,

where we have used the variance of the allele frequencies from the 
Balding-Nichols model (Fst f (1 − f )) to obtain this. If we assume equal 
subpopulation sizes, then pk = 1/K  and

E [β2
f
] ≈

4Fst f (1 − f )σ2μ
KVar(g)2

=
Fstσ

2
μ

Kf(1 − f )(1 + Fst)
2 ,

where we have used the fact3 that Var (g) = 2f (1 − f ) 𝔼1 + Fst] . The 
expected magnitude of the bias therefore decreases (towards zero) 
with the number of subpopulations, holding f, Fst, and σ2μ constant. If 
we consider the expected phenotypic variance explained (in a regres-
sion sense, that is the R2) by each variant, it does not depend upon 
overall allele frequency:

Var (g) E [β2
f
]

Var(Y ) ≈
2Fstσ2μ

K(1 + Fst)Var(Y )
.

For the simulations involving the unified estimator, we sought 
to mimic the fact that large biobanks such as the UKB consist mostly 
of singletons. For 90% of families, we randomly removed one sibling 
to obtain singletons, leaving 10% of families with two siblings. The 
sibling-difference/robust, NT, and Young et al. estimators were applied 
to the 10% of families with intact sibling pairs, whereas the unified 
estimator and standard univariate GWAS were applied to the combined 
sample of singletons and sibling pairs.

We also examine the performance of the estimators in a 
sibling-pair-only scenario: that is, 20,000 genotyped and phenotyped 
sibling pairs in each subpopulation (Extended Data Fig. 4). We applied 
the estimators to the resulting 40,000 sibling pairs. Note that in this 
scenario, there are no singletons, and the unified estimator is equiva-
lent to the Young et al. estimator.

To assess evidence for bias due to population stratification,  
we computed the mean of the squared Z-scores, that is, δ̂2/Var(δ̂)   
(or β̂2/Var( β̂) for standard GWAS estimates of ‘population effects’), of 
the estimated SNP effects produced by different estimators, which 
should be 1 in expectation under the null and will be above 1 in expecta-
tion if there is bias due to population stratification. (See above for a 
derivation of the expected squared bias for standard GWAS.) Although 
a mean Z2 statistic greater than 1 is a common measure of inflation in 
GWAS39,40, this statistic is not a completely fair way to compare the 
biases due to stratification across estimators that have different sam-
pling variances: for example, for estimators with the same bias but 
different sampling variances, the estimator with the smaller sampling 
variance would be expected to produce larger Z2 statistics on average. 
For this reason, we also examine the nonsampling variance of an esti-
mator ζ,B2

ζ
, across all L SNPs (L = 20,000 for first scenario and L = 4,000 

for the second scenario), which we estimate as

̂B
2
ζ =

1
L

L

∑
i=1

̂ζ 2
i
− 1

L

L

∑
i=1

Var( ̂ζi)(ζ = δ, orβ for standardGWAS). (2)

Denoting by b2
ζi

 the expected squared bias of an estimator ζ at an 
SNP i, the expectation of the estimator’s nonsampling variance is

𝔼𝔼𝔼 ̂B
2
ζ ] =

1
L

L

∑
i=1

b2
ζi
.
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Thus, ̂B
2
ζ  is an estimate of the magnitude of bias due to population 

stratification that can be fairly compared across estimators.

Analysis of UKB data
We selected 19 UKB phenotypes related to education, cognition, 
income and health. Phenotypes were derived from baseline meas-
urements. Note that ‘cognitive ability’ is derived from Field 20016 
(‘Fluid intelligence score’)20. Each phenotype was normalized to have 
mean 0 and variance 1 within each sex. More details can be found in 
Okbay et al.25.

We filtered out samples that had been flagged as having the fol-
lowing QC issues: excess relatives, sex chromosome aneuploidy, and/
or identified as outliers in heterozygosity or genotype missingness. 
We used the phased haplotypes for the UKB genotyping array SNPs 
provided as part of the UKB data release. We filtered out variants with 
minor allele frequencies less than 0.01 and with Hardy-Weinberg equi-
librium exact test P value less than 1 × 10−6, resulting in 658,720 SNPs. 
We inferred IBD segments shared between siblings and performed 
imputation using snipar41.

We implemented the estimators in the LMM described above41. We 
inferred sibling relationships using the KING (v2.2.5) software34 with 
the ‘–related –degree 1’ argument. The sparse GRM is derived from IBD 
segments inferred by KING with the argument ‘–ibdseg –degree 3’, with 
the relatedness threshold set at 0.05. For the Young et al. and unified 
estimators, we fit Model 2 for each SNP, substituting imputed parental 
genotypes for observed parental genotypes when not available. Details 
of the implementation of the sib-difference and robust estimators are in 
Supplementary Notes 2.4 and 2.5. We derived standard GWAS ‘popula-
tion effect’ estimates as the sum of the DGE and average NTC estimates 
from the unified estimator. We adjusted for age and 40 genetic PCs, 
and, for phenotypes not specific to one sex, we also adjusted for sex, 
the interaction between sex and age, and the interaction between sex 
and age up to the third order.

To compute the relative effective sample sizes of the different esti-
mators, we analyzed 10,911 SNPs on chromosome 22 (Fig. 5 and Supple-
mentary Table 1). For the Young et al., unified, robust, and sib-difference 
estimators, we computed genome-wide summary statistics for height, 
EA, and BMI, and summary statistics for SNPs on chromosome 22 for 
all other phenotypes (‘Data availability’).

We computed genetic correlations between DGE estimates 
from the four methods for height and EA, respectively, using LDSC 
(v1.0.1)39,42. All genetic correlation estimates are close to 1 (Supplemen-
tary Table 3): for example, rg between DGE estimates from the Young 
et al. and the robust estimator is 1.0034 (s.e. = 0.0053) for height and 
0.9925 (s.e. = 0.0265) for EA.

Polygenic prediction in the MCS
We chose the MCS43 as our validation sample because it is a nationally 
representative sample (of 8,202 individuals born around the year 
2000 in the United Kingdom) and the cohort members are too young 
to have participated in the UKB, ruling out sample overlap (although 
some older relatives of MCS cohort members could be present in the 
UKB). Furthermore, both parents’ genotypes are available for 3,421 
cohort members, and one parent’s genotype is available for 3,989 
cohort members.

We projected MCS samples onto the top 20 PCs derived from 1000 
Genomes data24 using the OADP algorithm44 implemented in bigsnpr 
(v1.12.2)45, and we determined the European and South Asian ancestry 
subsamples as those with 20 nearest neighbors all in 1000 Genomes 
EUR and SAS superpopulations, respectively (Extended Data Fig. 6 
shows a visualization of the sample PC distribution). We used PRS-CS 
(4 June 2021)46 and the provided UKB European LD panel to obtain 
posterior SNP weights for PGIs for BMI, height and EA.

We evaluated the performance on three widely studied quan-
titative phenotypes: BMI, height and educational achievement. 

Educational achievement is measured by mathematics and English 
GCSE grades, which are exams taken at age 16 by nearly all students in 
England (Methods and Supplementary Note 4). The MCS phenotypes 
were derived from sweep 7, which was performed when cohort mem-
bers were aged 17 years. The validation phenotypes were standardized 
to have mean zero and variance one within each sex. We used height 
and BMI measured at age 17. The educational achievement outcome 
was derived from the average of English and Mathematics GCSE grades 
transformed into Z-scores (Supplementary Note 4).

To estimate the ‘population effect’ of the PGI, we performed the 
following regression separately in EUR and SAS samples:

Yi = α0 + βPGIPGIi + Xb + ϵi

where Yi is the phenotype observation for genotyped individual i; PGIi is 
the PGI value; α0 is the intercept; βPGI is the population effect of the PGIs; 
X is the design matrix of the first 20 PCs; b is the vector of regression 
coefficients for the PCs; and ϵi is the residual. The population effect 
here is equivalent to a partial correlation coefficient because both 
phenotype and PGI have been scaled to have variance 1.

To estimate the ‘direct effect’ of the PGI25, we performed the fol-
lowing regression in the EUR sample:

Yi = α0 + δPGIPGIi + αPGI∶pPGIp(i) + αPGI∶mPGIm(i) + Xb + ϵi,

where PGIp(i) and PGIm(i)  are, respectively, the paternal and maternal 
PGIs (constructed using the same weights as the proband PGI); and 
αPGI∶p and αPGI∶m are, respectively, the paternal and maternal NT coef-
ficients of the PGI3. When a parent’s genotype was missing, the parent’s 
PGI was computed from imputed parental genotypes, as in Young et al.3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics from the different estimators applied to UKB 
data are available for download from the SSGAC data portal: https://
thessgac.com/. Applications for access to the UKB data can be made 
on the UKB website (http://www.ukbiobank.ac.uk/register-apply/). 
Applications for MCS data can be made by following the instruc-
tions here: https://cls.ucl.ac.uk/data-access-training/data-access/
accessing-data-directly-from-cls/. 1000 Genomes phase 3 data can 
be downloaded using the download_1000G function provided by the 
bigsnpr45 R package.

Code availability
The sibling and family-based GWAS estimators investigated here are 
implemented in the software package snipar: github.com/AlexTISY-
oung/snipar/. The specific code used for the results reported in this 
paper is available here41: https://github.com/AlexTISYoung/snipar/
releases/tag/v0.0.19.
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Extended Data Fig. 1 | Population effect estimates from standard GWAS and 
the unified estimator for BMI in UKB. We estimated population effects on BMI 
for SNPs on chromosome 22 in UKB using both standard GWAS and the unified 
estimator: β̂standard ’s were estimated from the standard GWAS and β̂unified ’s were 

calculated as the sum of the direct effect and average parental NTC estimates. 
The correlation of the two sets of estimates is 0.998. The 45° line (red solid line) 
represents β̂standard = β̂unified .
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Extended Data Fig. 2 | Disjoint groups analyzed by the non-transmitted 
estimator and the robust estimator. The non-transmitted estimator and the 
robust estimator partition individuals with at least one non-transmitted (NT) 
parental allele observed into four disjoint groups (Table 1). The ‘Both NT’ group is 
for individuals with both NT parental alleles observed, such as for sibling pairs in 
IBD0 and parent-offspring trios. The ‘One NT’ group is for siblings in IBD1 without 

any genotyped parents, where we have observed one NT parental allele, and it 
is the maternal or parental allele with equal probability. The ‘Paternal NT’ group 
is for individuals for whom we have observed the paternal NT allele but not the 
maternal, for example, genotyped father-child pairs. The ‘Maternal NT’ group 
is for individuals for whom we have observed the maternal NT allele but not the 
paternal NT allele, for example, genotyped mother-child pairs.
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a b
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Extended Data Fig. 3 | Bias-variance tradeoff on simulated sibling pairs and 
singletons. See Figs. 2 and 4 in the main text for details on simulation setup. 
The effective sample size (x-axis) is defined relative to that of the sib-difference 
or robust estimator (Table 2 in the main text) and should be equal to 1 (vertical 
dashed line) for the sib-difference or robust estimator and higher than 1 for 
the other estimators. Bias (y-axis) is measured as the nonsampling variance 
(Methods section in the main text) relative to that for standard GWAS with 

Fst = 0.001, and is expected to be above 0 (horizontal dashed line) when there is 
bias due to population stratification. Bias is presented as the mean with a 95% 
jackknife confidence interval over 20,000 SNPs. (a)-(d) bias-variance tradeoff 
comparison for the sibling difference method, robust estimator, Young et 
al., unified estimator, and standard GWAS with different levels of population 
structure, as measured by Fst.
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Extended Data Fig. 4 | Bias-variance tradeoff on simulated sibling pairs. We 
simulated populations and phenotypes as in Figs. 2 and 4 in the main text and 
Supplementary Fig. 3, except that we simulated 40,000 sibling pairs (20,000 
in each subpopulation). In this case, the unified estimator and the Young et al. 
estimator are equivalent, because there are no singletons. The effective sample 
size (x-axis) is defined relative to that of the sib-difference or robust estimator 
(Table 2 in the main text) and should be equal to 1 (vertical dashed line) for the 
sib-difference or robust estimator and higher than 1 for the other estimators. 

Bias (y-axis) is measured as the nonsampling variance (Methods section in the 
main text) relative to that for standard GWAS with Fst = 0.001, and is expected 
to be above 0 (horizontal dashed line) when there is bias due to population 
stratification. Bias is presented as the mean with a 95% jackknife confidence 
interval over 20,000 SNPs. (a)-(d) bias-variance tradeoff comparison for the 
sibling difference method, robust estimator, Young et al. estimator, and standard 
GWAS with different levels of population structure, as measured by Fst; (e)-(h) the 
same as (a)-(d) but with the standard GWAS removed for scale.
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Extended Data Fig. 5 | Mean Z2 statistic for direct genetic effects when 
imputing parental genotypes from cousins using the conditional Gaussian 
formula (Supplementary Note 3). Mean Z2 statistics, which are expected to be 
above 1 (dashed line) when there is bias due to population stratification, and the 
corresponding 95% jackknife confidence intervals over 3,000 SNPs are 

presented. For each Fst, we simulated 2 subpopulations, each with 2,500 
unrelated cousin pairs and 3,000 SNPs, where the subpopulation allele 
frequencies were drawn from the Balding-Nichols model: Beta(

1−Fst
2Fst

, 1−Fst
2Fst

); 
imputation of parental genotypes was carried out using the conditional  
Gaussian method.
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Extended Data Fig. 6 | The first and second principal components (PC1 and 
PC2) of UKB samples with at least one genotyped first-degree relative. There 
are 51,875 individuals with at least one genotyped relative in UKB, which can be 
analyzed using the robust estimator; 11.83% (6,135) are non-‘White British’ and 

88.17% (45,740) are ‘White British’. 46,698 individuals have at least one genotyped 
sibling and can be analyzed using the sib-difference estimator; 11.84% (5,528) are 
non-‘White British’ and 88.16% (41,170) are ‘White British’.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We only used publicly available datasets and therefore did not conduct data collection.

Data analysis For the UK Biobank GWAS analysis, we used a development branch of the Python package snipar to perform IBD state inference, parental 
genotype imputation and family-based GWAS (available at https://zenodo.org/records/14270274); we used the sparse LU solver for matrix 
inversion and the L-BFGS algorithm for variance component estimation, both implemented in the SciPy Python package[v1.7.1]; we used 
KING[v2.2.5] to perform IBD segment and relationship inference; we computed genetic correlations between direct genetic effect estimates 
from our prososed methods for height and educational attainment respectively using LDSC[v1.0.1]. 
For polygenic prediction in the Millennium Cohort Study: we used the OADP algorithm implemented in the R package bigsnpr[v1.12.2] 
(https://privefl.github.io/bigsnpr/) to infer sample ancestries; we used PRSCS[Jun 4, 2021] to calculate SNP weights; we used the pgs.py script 
in snipar to estimate direct effects of the PGIs.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Summary statistics from the different estimators applied to UK Biobank data are available for download from the SSGAC data portal: https://thessgac.com/. 
Applications for access to the UKB data can be made on the UKB website (http://www.ukbiobank.ac.uk/register-apply/). Applications for Millennium Cohort Study 
data can be made by following the instructions here: https://cls.ucl.ac.uk/data-access-training/data-access/accessing-data-directly-from-cls/. 1000 Genomes phase 
3 data can be downloaded using the download_1000G function provided by the bigsnpr R package.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Results in this study apply to both sexes except for sex-specific phenotypes. Sex was determined based on self-reporting and 
genotype data as described in the documentation on the UK Biobank and MCS datasets. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

For the UK Biobank data, we classified individuals into the 'white British' ancestry subsample using the flag provided by UK 
Biobank. For the Young et al. and unified estimator, we used individuals classified as 'White British' to make our results 
comparable to existing genome-wide association studies and to control for population structure.  
 
For the the Millennium Cohort Study, we classified individuals into European (EUR) and South Asian (SAS) using the OADP and 
KNN algorithms. We projected individuals onto genetic principal components derived from 1000 Genomes data and classified 
individuals as belonging to the EUR or SAS superpopulations if all 20 of their nearest neighbors in the 1000 Genomes data 
were from the EUR or SAS samples. We referred to these samples as 'EUR' and 'SAS' samples. 

Population characteristics The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 
500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The Millennium Cohort Study 
is a representative sample of individuals born in the UK in the year 2000 and their parents. 

Recruitment Recruitment is not applicable since we used existing datasets.

Ethics oversight UK Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC) as a Research Tissue Bank 
(RTB) approval. This approval means that researchers do not require separate ethical clearance and can operate under the 
RTB approval (there are certain exceptions to this which are set out in the Access Procedures, such as re-contact 
applications). The Millennium Cohort Study has obtained ethical approval from NHS Research Ethics Committees (RECs). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used genotyped individuals in the UK Biobank passing filters corresponding to specific methods: 
For the sib-difference method, we used all genotyped individuals passing quality control filters with at least one genotyped sibling: 46,698; 
For the robust estimator, we used all genotyped individuals passing quality control filters with at least one non-transmitted parental allele 
observed: 51,875; 
For the Young et al. estimator, we used all genotyped individuals of 'White British' ancestry (identified by the UK Biobank), passing quality 
control filters, and with at least one genotyped first-degree relative: 44,570; 
For the unified estimator, we used all genotyped individuals of 'White British' ancestry (identified by the UK Biobank) and passing quality 
control filters: 408,254. 
For the Millennium Cohort Study, we used all genotyped individuals of either European or South Asian ancestry identified by the OADP and 
KNN algorithms: 10416.

Data exclusions For analyses on UK Biobank, we filtered out individuals identified by UK Biobank as having excess relatives, excess heterozygosity, sex 
chromosome aneuploidy, and excess genotype missingness. 
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For the Millennium Cohort Study, we restricted our sample to individuals of European or South Asian ancestry identified by the OADP and 
KNN algorithms, to make our analyses comparable to existing studies on cross-ancestry polygenic prediction.

Replication Our UK Biobank analysis was performed to show the relative power of the different estimators in a large-scale biobank. Direct replication of 
these results is not relevant to the conclusions of our study. However, our Millennium Cohort Study analysis demonstrates that our UK 
Biobank analysis produced results with external validity by demonstrated statistically significant out-of-sample prediction ability for genetic 
predictors derived from our UK Biobank analysis.

Randomization Genetic materials are randomized during meioses; this randomization is used in family-based GWAS designs to remove confounding. 

Blinding Blinding is not applicable since we did not compare experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Methods
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