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Family-based genome-wide association studies (FGWASs) use random,
within-family genetic variation to remove confounding from estimates

of direct genetic effects (DGEs). Here we introduce a ‘unified estimator’
thatincludesindividuals without genotyped relatives, unifying standard
and FGWAS while increasing power for DGE estimation. We also introduce
a‘robust estimator’ thatis not biased in structured and/or admixed
populations. In an analysis of 19 phenotypes in the UK Biobank, the unified
estimator in the White British subsample and the robust estimator
(applied without ancestry restrictions) increased the effective sample size
for DGEs by 46.9%t0106.5% and 10.3% to 21.0%, respectively, compared to
using genetic differences between siblings. Polygenic predictors derived
from the unified estimator demonstrated superior out-of-sample prediction
ability compared to other family-based methods. We implemented the
methods in the software package snipar in an efficient linear mixed model
that accounts for sample relatedness and sibling shared environment.

Genome-wide association studies (GWASs) have identified thousands
of associations between genetic variants and human phenotypes'.
Standard GWAS estimates the association between a phenotype and
anallele by regression of individuals’ phenotypes onto the number of
copies of the allele that they carry, with some adjustment for covari-
ates. Multiple phenomena contribute to the associations, which we call
‘population effects’, asthey reflect the genotype-phenotype association
inthe population: causal effects of alleles (both of the tested variant
and those in linkage disequilibrium (LD) with the tested variant) car-
ried by the individual on the individual, called direct genetic effects
(DGEs); effects of alleles in relatives through the environment, called
indirect genetic effects (IGEs) or genetic nurture®; and effects of other
geneticand environmental factors that the tested variantis correlated
with due to population stratification and assortative mating (AM)>*¢7°,
Biased sampling can also affect population effect estimates.

If we consider the goal of GWAS to be estimation of DGEs, then the
other contributing factors can be considered as confounds. Adjust-
ment for genetic principal components (PCs) and linear mixed models
(LMMs) reduces confounding due to population stratification” and
AMY, but residual confounding often remains®**?, The consequences
ofthisinclude (1) biased estimates of heritability and the traits’ shared
genetic architectures (through genetic correlation estimates)®¢;
(2) biased inferences from Mendelian randomization”; (3) bias in
polygenicindices (PGls, also called polygenic scores) that may con-
tribute to the drop in predictive accuracy when predicting across
geneticancestries'®; and (4) biased inferences of natural selection®*",

Family-based GWAS (FGWAS) adds parental genotypes to the
regression used in GWAS (Methods). FGWAS thereby uses variation due
torandom segregations of genetic material during meiosis to estimate
DGEs, removing confounding due to gene-environment correlation
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and nonrandom mating™>'°. However, requiring both parents’ geno-
types limits the sample to which FGWAS can be applied. An alternate
approach, which we call ‘sib-differences’, uses genetic differences
betweensiblings to estimate DGEs™ (Methods), enabling use of samples
with genotyped siblings but without genotyped parents to be used.
However, sib-differences has lower power than FGWAS when parental
genotypes are available’.

Young et al.> proposed an alternative approach that could be
applied to sibling data: treat parental genotypes as missing data and
impute them according to Mendelian laws, and then use the imputed
parental genotypesin place of the observed ones (Methods). Provided
that the imputation is unbiased, the DGE estimates are unbiased and
consistent’. Thisapproachincreases the effective sample size for DGEs
by up to one-third compared to sib-differences. (The relative effective
sample size of estimator a compared to estimator b is the ratio of the
sampling variance of estimator b to estimator a; a relative effective
samplessize abovelindicates greater power for estimator a compared
to estimator b.) The imputation method enables the inclusion of any
genotyped sample with at least one genotyped first-degree relative,
including samples with one or both parent(s) genotyped but without
genotyped siblings, further increasing power”.

However, the Young et al. method ignores most of the sample
in datasets like the UK Biobank (UKB), where only ~-10% have a geno-
typed first-degree relative’. Samples of individuals without geno-
typed first-degree relatives (hereafter ‘singletons’) can provide precise
estimates of 8, the population effect, as from standard GWAS. Under
random mating’, 8 = 6 + «, where §is the DGE and ais the average coef-
ficient onthe parents’ genotypes (Methods)—called the average non-
transmitted coefficient (NTC). A precise estimate of the population
effect therefore puts a constraint on the set of plausible values the
FGWAS parameters, 6 and a, can take.

Following this intuition, we develop an FGWAS estimator that has
increased power by including singletons through imputation. However,
we show that strong population structure leads to bias in the DGE
estimates. We also develop an estimator that is robust to population
structure and admixture for use in genetically diverse samples. This
estimator is more powerful than sib-differences because it includes
samples with one or both parents genotyped but without genotyped
siblings, and it uses parental genotypes when available for samples with
genotyped siblings. We examine the estimators in simulations with dif-
ferent levels of population structure, enabling researchers to choose
the appropriate analysis depending on their data. We demonstrate
increased power for estimation of DGEsin the UKB and in out-of-sample
PGl prediction in the Millennium Cohort Study (MCS).

Results

Including singletons in FGWAS

We extend the imputation method described in Young et al.” to sin-
gletons. We observe two out of four parental alleles in a singleton’s
genotype—as in a sibling pair that have inherited the same alleles
from both mother and father, which is expected for one-quarter of
the genome?®. The two missing parental alleles are imputed using the
allele frequency, resulting inimputed parental genotypes that are linear
functions of the singletons’ genotypes (Methods).

Consider that we have a genotyped and phenotyped sample par-
titioned into two disjoint subsets: asubset with at least one genotyped
first-degreerelative (which we call the ‘related sample’), where missing
parental genotypes have beenimputed asin Young et al.’; and a single-
ton sample, where parental genotypes have been imputed linearly.
The estimator that we propose, called the ‘unified estimator’, uses the
imputed parental genotypes when they are not observed, including
for the singleton sample (Fig. 1a,b and Methods).

In Supplementary Note 2.1, we derive theoretical results on the
gainin effective sample size for DGEs fromincluding singletons. Con-
sider the case where we have n, independent sibling pairs whose

parental genotypes are imputed using phased dataasin Youngetal.?,
and we add n, singletons with their parental genotypes linearly
imputed. Assuming that siblings’ phenotypes are uncorrelated condi-
tionalonthe regression covariates (thatis the regression residuals are
uncorrglated), adding n, singletons gives an effective sample size
1+ 20y ny) times higher than using only the n, sibling pairs (Supple-
mentary Note 2.1.1). The theoretical gain in effective sample size con-
verges to 50% as n,/n, ~> -. Imputation as in Young et al.> already gives
again of up to one-third; thus the effective sample size of the unified
estimator can be up to twice as large as the sib-difference estimator,
and canbe even higher when samples with genotyped parents are also
available. The gainin effective sample size declines with the correlation
between thesiblings’ residuals and, when imputing fromsiblings with-
out phased data, with minor allele frequency (Fig. 1c,d).

We derive equivalent results for adding n, singletons to n,samples
with one parent genotyped, where the missing parent’s genotype has
beenimputed using phased dataasin Youngetal.’. The effective sample
size for DGEs is approximately 1 + (3’11:1'#0) times higher than using
the parent-offspring pairs alone, converging to4/3 as n,/n, - .

One can obtain an estimate of the standard GWAS population
effect, 8, by B = & + &, where & and & are the DGE and average NTC
estimates from the unified estimator. By performing the analysis using
allgenotyped samples that would normally be used in astandard GWAS
(Fig. 1a,b), one obtains an estimate of § almost identical to that from
standard GWAS (correlation 0.998; Extended Data Fig. 1). Thus, by
including singletons vialinear imputation, we unify FGWAS and stand-
ard GWAS in one analysis.

We estimated DGEs with the unified estimator for the simulated
phenotypes from Young et al.?, which simulated scenarios including
AM and IGEs (Supplementary Note 1). We found the unified estimator
increased the effective sample size for DGEs compared to using only
therelated sample and did not introduce any detectable bias.

Population-structure-robust estimator
Theimputation proposed by Young et al.’> uses the allele frequency to
impute unobserved parental alleles, becoming biased when there is
population structure as it does not account for variation in allele fre-
quencies across subpopulations’. Young et al. showed that, inan island
model of population structure, the estimator of DGEs from sibling
pairs with parental genotypes imputed from phased data tends to
& = 6 + ca, where cis afunction of Wright’s F,, (the proportion of vari-
ationatalocus duetobetween-populationdifferencesinallele frequen-
cies). When Fis small, c= F,/2,implying the bias, ca, will be negligible
for European genetic ancestry samples, where F, has been estimated
tobeonthe order of 1073 (ref. 21). In contrast, standard GWAS estimates
B=6+ %a

Here wé develop two estimators that maximize power for estima-
tion of DGEs while being robust to population structure (Methods). We
generalize an estimator proposed in Young et al. by partitioning the
sample based on which parental alleles that were not transmitted to the
focal, phenotyped individual (proband) we have observed: this gives
four groups (Table 1and Extended Data Fig. 2) depending on whether
we have observed one or both nontransmitted (NT) parental alleles,
and if only one has been observed, whether the NT allele is from the
mother, father or unknown. We call this estimator the ‘nontransmitted
(NT) estimator’. We prove that this estimator gives consistent estimates
of DGEs under an island model of population structure (Supplemen-
tary Note 2.3.2). However, the NT estimator can give biased estimates
whenthere are differencesin allele frequencies between mothers and
fathers (Supplementary Note 2.3.3), as inrecently admixed samples.

We therefore developed the ‘robust estimator’ that uses only the
random variation in offspring genotype given parental genotype,
whichis the principle underlying the properties of FGWAS with fully
observed parental genotypes. This estimator, like the NT estimator,
partitions the sample based on which NT alleles have been observed
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Fig.1|Illustration of different standard and FGWAS estimators and
theoretical gainin effective sample size for DGEs. a, We illustrate the different
sample subsets used by different FGWAS and standard GWAS methods. We give
the numbers for each subset for the UKB ‘White British’ sample for illustration.
Thesibling difference estimator uses samples with one or more siblings’
genotypes observed (35,259 individuals), whereas the Young et al. estimator uses
all related samples, which also include individuals with both parents’ genotypes
observed (894) and those with one parent’s genotype observed (5,316); in
addition to therelated samples, the standard GWAS and unified estimators also
use singletons (368,629). b, lllustration of regressions performed by standard
GWAS and the unified estimator. Through linear imputation of parental
genotypes, the unified estimator incorporates singletons into the FGWAS
regression, enabling use of the same sample as standard GWAS to estimate the

T T
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parameter vector [6, a]”. Although the design matrix for the singleton subset
(inblue) in FGWAS is collinear, the design matrix for the related sample subset
(inred) is not, so the stacked design matrix is not collinear. c,d, We show the
effective sample size for the unified estimator applied to n,=20,000 sibling
pairs and n; singletons, relative to the effective sample size of using the sibling
pairs alone withimputation. The parental genotypes in the sibling sample are
imputed® using phased data (c) and unphased data (d). The parental genotypes
for the singletons are imputed linearly. The theoretical gain depends upon the
correlation between the siblings’ residuals, which we show in c. When imputing
using unphased data, the gain depends upon the minor allele frequency?,
whichwe show ind for a fixed correlation between siblings’ residuals of 0.3.

We confirmed the theoretical results using simulations (Supplementary Note 2.1).

(Table1). However, it differsin the regressionsit performs. The robust
estimator performs uniparental regressions for samples with one NT
allele of known parent-of-origin observed; for example, for a sample
with a mother genotyped, the regression is performed on the mater-
nally transmitted allele and the mother’s genotype, thereby only using
the random variation in maternally inherited allele given maternal
genotype to estimate the DGE.

The advantage of the robust estimator over using only sib-
differences and/or samples with both parents genotyped is that it
enables optimal use of samples with a single parent genotyped while
not using any allele frequency information that can introduce bias in
structured populations. When only siblings are genotyped with no
parents, it becomes equivalent to sib-differences (Supplementary
Note 2.5.1); and when all samples have both parents genotyped, it
becomes FGWAS with fully observed parental genotypes.

Comparison of estimators in simulated populations

We examined the power (measured by effective sample size) and bias of
the different estimators (Table 2) in simulations with different levels of
populationstructure, as measured by Wright’s F,,. We simulated popu-
lations of 2,000 independent sibling pairs and 18,000 independent

singletons, mimicking UKB data proportions. We considered two simu-
lation setups: (1) two equally sized subpopulations with ancestral allele
frequencies equal to 0.5; and (2) 100 subpopulations with ancestral
minor allele frequencies, f, drawn from a distribution with density
proportional to 1/ffor 0.05 <f<0.5. In both scenarios, the allele fre-
quenciesinthe subpopulations were drawn from the Balding-Nichols
distribution for F,setat 0,0.001,0.01, or 0.1: F,,= 0.001is roughly the
level of differentiation between neighboring European populations?,
and F,, = 0.1lis roughly the level of differentiation between European
and East Asian ancestry populations®. The phenotypes were simulated
without any causal genetic effects but with subpopulation membership
explaining 50% of the variance (Methods).

The bias from population stratification confounding is due to
the correlationbetween the subpopulation allele frequencies and the
subpopulation phenotype means (Methods). Because allele frequen-
cies and phenotype means were sampled independently, the bias for
anindividual single-nucleotide polymorphism (SNP) has expectation
zero (across repeated simulations) but has non-zero variance across
SNPs (and repeated simulations). The magnitude of population strati-
fication confounding can therefore be evaluated by the nonsampling
variance—the variance in the estimates not explained by sampling
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Table 1| Groups and regressions for the NT and robust estimators

Group Example genotype data types NT alleles observed NT estimator regression Robust estimator
regression

Maternal NT Mother-child pairs Maternal Yii ~ 9ij + Gpgiy + Ima) Yij ~ g,f)?“ + Im()
Mother and sibling pair in IBD2

Paternal NT Father—child}pa_irs . Paternal Yii ~ 93 + Ity + Imiy Yij ~ g;’ + 9o(i)
Father and sibling pair in IBD2

Both NT Sibling pairs in IBDO Paternal and maternal Yii ~ 9ij + Ipar() Yii ~ Gij + Gpar(i)
Parent-offspring trios

One NT Sibling pairs in IBD1 without genotyped parents Paternal or maternal Yij ~ gij + gpar(,) Yii ~ 9ij + sib(i)

We partition the sample with at least one NT parental allele observed into four groups (Extended Data Fig. 2), perform separate regressions in each group and meta-analyze the resulting DGE
estimates (Methods). We show that the NT estimator is robust to an island model of population structure, but not to admixture, whereas the robust estimator is robust to both (Supplementary
Notes 2.3 and 2.4). For the regression column, y; is the phenotype of sibling j in family i; g; the corresponding genotype; g,'/” and gfl’ are the maternally and paternally transmitted alleles; g,,; and
g are the paternal and maternal genotypes; Gpary = 9o(y + Im(); @ caret indicates a genotype that has been imputed from phased data as in Young et al.’; for example, Grar(iy refers to the
imputed sum of parental genotypes. g, is the mean genotype among all siblings in family i. (IBDO is when siblings share no alleles by descent from their parents, IBD1is when siblings share
one allele by descent from their parents and IBD2 is when siblings share both alleles by descent from their parents.)

Table 2 | Summary of estimators

Estimator Data types used Procedure Sample size in UKB
Sibling difference  Genotyped and phenotyped samples with at least one Regression of sibling phenotype differences onto 35,259 (White British)
genotyped sibling sibling genotype differences, or regression onto 46,698 (all ancestry)
deviation of sibling genotype from sibship mean'®
Robust Genotyped and phenotyped samples with at least one Perform separate regressions (Table 1) in each 44,570 (White British)
observed NT parental allele (Extended Data Fig. 2) group and perform an inverse-variance-weighted, 51,875 (all ancestry)
fixed-effects meta-analysis of DGE estimates
NT Genotyped and phenotyped samples with at least one Perform separate regressions (Table 1) in each 44,570 (White British)
observed NT parental allele (Extended Data Fig. 2) group and perform an inverse-variance-weighted, 51,875 (all ancestry)
fixed-effects meta-analysis of DGE estimates
Young et al. Genotyped and phenotyped samples, with genotyped Fit FGWAS Model 1 or 2 (Methods) using imputed and/or 44,570 (White British)
first-degree relatives, in a homogeneous ancestry group  observed parental genotypes
Unified Genotyped and phenotyped samples, with or without Fit FGWAS Model 1 or 2 (Methods) using imputed and/or 408,254 (White British)
relatives, in a homogeneous ancestry group observed parental genotypes
Standard GWAS Genotyped and phenotyped samples, with or without Regress proband genotypes on proband phenotypes 408,254 (White British)

relatives, in a homogeneous ancestry group

The robust and NT estimators differ in the regressions they perform in each group (Table 1). See also Fig. 1 and Extended Data Fig. 2.

error, which must be due to population stratification bias, as there
are no causal effects (Methods). We measure this relative to the non-
sampling variance for standard GWAS and F,,= 0.001, comparable to
the level of stratification bias in a standard GWAS in a homogeneous
ancestry sample. (We also give the mean Z2statistic—which should be 1
under the null-acommon measure of test-statistic inflation in GWAS.
However, the nonsampling variance provides a fairer comparison of
levels of bias, as mean Z2 is also affected by sampling variance, which
varies across estimators.)

For the two-subpopulation setup (Fig. 2), the sibling difference/
robust—here the robust estimator reduces to the sib-difference esti-
mator, as no parental genotypes are observed (Supplementary Note
2.5.1)—and the NT estimators have no detectable bias from population
stratification for any level of F,, (Fig. 2a-d), and the standard GWAS
estimator has the most bias (Fig. 2a,c), with statistically significant bias
for F,>107%. The unified and Young et al. estimators do not have detect-
able bias except for F,,= 0.1, with the unified estimator having greater
biasthanthe Young et al. estimator (Fig. 2a-d). Thisresultis expected
because the unified estimator includes a large sample of singletons,
for which the two unobserved parental alleles are imputed using the
overall allele frequency, leading to bias in a structured population.

In the 100 subpopulation setup (Fig. 3), we also included stand-
ard GWAS with adjustment for 20, 50 and 99 inferred genetic PCs
(Methods). (Because there are 100 subpopulations, 99 PCs should be
sufficient to separate all subpopulationsifinferred correctly’?.) Unlike
inthe two subpopulation setup, we did not find statistically significant
evidence (P < 0.05) of bias for any of the family-based estimators.

This is likely to be because the magnitude of population stratifica-
tion confounding goes down with the number of subpopulations
(Methods).

However, we found statistically significant evidence of bias for
standard GWAS when F, > 0 regardless of how many PCs we con-
trolled for, with one exception: when F,= 0.1 and we controlled for
99 PCs. Thelikely reasonis thatitis difficult to infer 99 PCs correctly
without very large sample sizes when population structure is subtle
(F,,<0.01) butbecomes easier when population structure is stronger
(asinthe F, = 0.1scenario). Thisis related to the known phase transi-
tion whereby it becomes possible to accurately infer latent factors
(for example, subpopulation membership) that structure random
matrices (for example, SNP genotype matrices) once the sample size
passes acertain threshold, depending on the strength of those latent
factors’. In real-world genetic data, population structure exists on
multiple scales, reflecting both recent and ancient structure, with
genetic PCs only partly capturing subtle and recent structure>'.

Bias-variance tradeofffor different estimators

We compare the estimators in a bias-variance framework (Fig. 4 and
Extended Data Figs. 3 and 4) based on the two subpopulation simu-
lations. The Young et al. estimator boosts power compared to the
sib-difference, robust and NT estimators but introduces aslight bias due
to populationstructure thatbecomes detectable for F,, = 0.1. The uni-
fied estimator adds singletons, gaining power at the cost of increased
bias dueto population structure, but this only becomes apparent when
F,,=0.1. Thestandard GWAS estimator has greater effective sample size
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Fig. 2| Bias and nonsampling variance of GWAS estimators for different levels
of population structure. We simulated four different populations with different
levels of structure, as measured by Wright’s F,,. Each population consisted of

two equally sized subpopulations with 2,000 independent sibling pairs and
18,000 singletons. Allele frequencies for the two subpopulations were simulated
from the Balding-Nichols® model with ancestral allele frequency set to 0.5
(Methods). We simulated phenotypes with no causal genetic effects but where
subpopulation membership explained 50% of the phenotypic variance, so that
any deviation from the null distribution indicates population stratification

confounding. a, Mean of squared Z-statistics across 20,000 SNPs for the four
estimators, which are expected to be above 1 (dashed line) when there is bias

due to population stratification. b, Same as a but with the standard GWAS
removed. ¢, Mean of nonsampling variances (Methods) of the estimators relative
to that observed for standard GWAS with F,= 0.001, which gives a measure

of the magnitude of bias due to population stratification, with values above O
indicating bias. d, Same as c but with the standard GWAS removed. Error bars
display 95% jackknife confidence intervals over 20,000 SNPs.

than the other methods but at the cost of much greater bias in struc-
tured populations (Extended Data Fig. 3), in addition to other biases
(such as from IGEs and AM?) that were not simulated here.

The simulation results show that the unified estimator has the
greatest power out of the family-based estimators but shows bias
when there is strong structure (F,, > 0.01). The NT estimator is the
most powerful estimator that is robust to structure but is vulnerable to
confounding when there has been recent admixture (Supplementary
Note 2.3.3). Given the small difference in power between the robust and
NT estimators, werecommend the robust estimator for strongly struc-
tured samples unless recent admixture can be conclusively ruled out.

LMM accounting for sample relatedness

We developed an LMM thatincludes random-effects specified by both
sibship and a sparse genetic relatedness matrix (GRM), which is fast
enough to perform genome-wide analyses in biobank-scale datasets
while accounting for genetic relatedness and sibling shared environ-
ment (Methods). We give example runtimes in Supplementary Table 2.

Application of estimators to UKB
We applied the estimators to 19 phenotypes using UKB data (Methods
and Table 2). We applied the Young et al. and unified estimators to

the White British subsample (Fig. 1). We applied the sib-difference
estimator to the sample with at least one genotyped sibling, and
the robust estimator to the sample with at least one genotyped
first-degree relative. No ancestry restrictions were applied for the
robust and sib-difference estimators (Table 2)—although the result-
ing sample was 85.9% White British, it covered most of the genetic
diversity captured by the first two PCs 0of 1000 Genomes* genotype
data (Extended Data Fig. 6).

We compared the estimators’ effective sample sizes (Fig. 5). The
gain in effective sample size over sib-differences declined with the
phenotypic correlation between siblings, as expected from theory?
(Fig. 1c,d). Across the 19 phenotypes, the unified estimator had an
effective sample size between 24.5% (height) and 42.6% (number of
children in males) higher than the Young et al. estimator (Supple-
mentary Table1). Asthe Young et al. estimator already gains between
18.0% (height) and 45.3% (subjective well-being), this implies the
unified estimator gains between 46.9% (height) and 106.5% (sub-
jective well-being) over sib-differences. By not imposing ancestry
restrictions, the robust estimator uses a larger sample (51,875) than
the Young et al. estimator (44,570). The robust estimator also uses a
larger sample than the sib-difference estimator (46,698) due toinclu-
sion of samples without genotyped siblings, gaining between 10.3%
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ofthe phenotypic variance, so that any deviation from the null distribution
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indicates population stratification confounding. For standard GWAS estimators,
we inferred PCs and performed standard GWAS adjusting for different numbers
of PCs (Methods): 0,20, 50 and 99. a, Mean of squared Z-statistics across 4,000
SNPs for the four estimators, which is expected to be above 1 (dashed line) when
there is bias due to population stratification. b, Mean of nonsampling variances
(Methods) of the estimators relative to the that observed for standard GWAS with
F,.=0.001, which gives a measure of the magnitude of bias due to population
stratification, with values above O indicating bias. Error bars display 95%
jackknife confidence intervals over 4,000 SNPs.
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Fig. 4 | Bias-variance tradeoff for family-based estimators. a-d, The simulated
datasets used in Fig. 2 are used for this demonstration: 2,000 independent
sibling pairs and 18,000 singletons in each of two subpopulations with different
levels of F, (Methods): F,,= 0 (a), F,,= 0.001(b), F,,= 0.01(c) and F,, = 0.1(d).

The effective sample size (x-axis) is defined relative to that of the sib-difference
estimator (Table 2) and should be equal to 1 (vertical dashed line) for the robust/
sib-difference estimators—which are equivalent here—and higher than 1for

104 F,=0001
[%2]
.o
@ 05

04 ———a— —a—
T T T T 1
1.0 11 1.2 13 14
Relative effective sample size

10 4 Fy=01
[22]
.o
2 05 4

T T
1.0 11 12 13 1.4
Relative effective sample size

the other estimators. Bias (y-axis) is measured as the nonsampling variance
(Methods) relative to that for standard GWAS with F;, = 0.001, and is expected

to be above 0 (horizontal dashed line) when there is bias due to population
stratification. Error bars display a 95% jackknife confidence interval over 20,000
SNPs. See Extended Data Figs. 3 and 4 for plots including the standard GWAS
estimator and a sibling-only scenario (that is, no singletons).
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Fig. 5| Empirical gain in effective sample for DGEs. We compute the effective
sample size of the different estimators in UKB data (Table 2 and Supplementary
Table1) relative to that of the sib-difference estimator (y-axis), so that a value
of (1+y) means again of 100y% in effective sample size over the sib-difference
estimator (Methods). We give the phenotypic correlation between siblings on
the x-axis, as theory indicates the gain in effective sample size should

decline with this correlation (Fig. 1c). a, Effective sample size for the unified
(actual n=408,254) and Young et al. (actual n = 44,570) estimators relative

to the sib-difference estimator (actual n = 35,259) within the White British
ancestry subsample. b, Effective sample size for the robust estimator

(actual n = 51,875) relative to sib-difference estimator (actual n = 46,698), applied
to therelevant samples without ancestry restrictions. The Young et al. estimator
is more powerful than the sib-difference estimator because it uses information
on NT parental alleles inferred by Mendelian imputation®, and because it can
incorporate individuals with one or both parents genotyped but without any
siblings genotyped. The unified estimator gains over the Young et al. estimator
by further including individuals without any genotyped first-degree relatives
(singletons) through linear imputation (Fig. 1a,b). The robust estimator gains
power over the sib-difference estimator by using parental genotypes for samples
withone or both parents genotyped (Methods). HDL, high-density lipoprotein.

(height) and 21.0% (number of children, female) in effective sample
size (Supplementary Table 1).

Polygenic predictioninthe MCS

We evaluated the performance of the different estimators for
out-of-sample prediction of height, body mass index (BMI) and gen-
eral certificate of secondary education (GCSE) grades (a measure of
educational achievement) using PGls derived from DGE estimates
(DGEPGIs) and population effect estimates (Methods). We found that
all estimators yielded PGls statistically significantly correlated with
their respective phenotypesin the European ancestry (hereafter ‘EUR’)
sample (Fig. 6a and Supplementary Table 4). Population-effect PGls
were substantially more predictive than DGE PGls, as expected fromthe
larger effective sample size of population effect estimates (Extended
Data Fig. 3). Out of the DGE PGls, the unified estimator gave the best
predictions for BMI and GCSE grades and tied with the Young et al.
estimator for height.

By adding parental PGls, we estimated the ‘direct effects’ of PGls
in the EUR sample (Methods and Fig. 6b). The direct effect on GCSE
grades of the population-effect educational attainment (EA) PGl was
much smaller than the PGI's population effect (Fig. 6a), consistent with
previous studies®* %, In contrast, we did not observe smaller direct

effects than population effects for the DGE PGls, suggesting that factors
not highly correlated with DGEs contribute to the prediction ability of
population effect EA PGls.

PGIs constructed from summary statistics derived in one genetic
ancestry tend to predict phenotypes less well in other genetic
ancestries'®**?°, Although differences in LD patterns and allele fre-
quencies have been argued to be the primary explanation, confound-
ing factors not shared across ancestries could contribute. Therefore,
DGE PGIs may predict better across ancestries due to the removal of
confounding factors.

We examined cross-ancestry prediction inasample of 2,214 indi-
viduals of predominantly South Asian genetic ancestry (hereafter
‘SAS sample’). The population-effect PGIs gave the most accurate
predictionsinthe SAS sample for all phenotypes. However, for height,
the best-performing DGE PGI (from the unified estimator) performed
nearly aswell as the population-effect PGI. As expected'®*, the predic-
tionaccuracy of the population-effect PGls was lower in the SAS sample
thaninthe EUR sample.In contrast, for height and BMI, the prediction
accuracy for the DGE PGIs was higher inthe SAS sample thaninthe EUR
sample (Fig. 6¢). This difference was statistically significant for the uni-
fied estimator prediction on height (Bsss — Brur = 0.085; standard error
(s.e.)=0.0392; P=0.0305, two-sided Z-test) (Supplementary Table 4).
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Fig. 6 | Prediction of phenotypes in the MCS. We computed PGlIs for BMI,

height and educational attainment (EA) using summary statistics produced by
different estimators applied to UKB data (Methods and Table 2). We use GCSE
grades as the outcome for the EA PGl because MCS samples are too young to have
completed their education. A GCSE (general certificate of secondary education)
isan academic qualification based on exams taken at age 16 by nearly all students
inEngland. The outcome here is the average of a transformation of English and
Mathematics GCSE grades to normally distributed Z-scores (Methods). Both

the sib-differences and robust estimators were applied to UKB data without
ancestry restrictions, whereas the other estimators were applied to the white
British ancestry subsample of the UKB. Phenotypes and PGIs were normalized

Height

T T T
Average GCSE BMI
grade (EA PGls)

T
Average GCSE
grade (EA PGls)
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to have variancel, so that the ‘population effect’ of the PGl corresponds to its
partial correlation with the phenotype, and the ‘direct effect’ of the PGI, which
isthe regression coefficient controlling for parental PGls (Methods), also
corresponds to a partial correlation coefficient. a, ‘Population effect’ of PGls in
European ancestry (EUR) subsample. b, ‘Direct effect’ of PGls in EUR subsample.
¢, ‘Population effect’ of PGls in South Asian (SAS) ancestry subsample. Error bars
give 95% confidence intervals. EUR and South Asian ancestry (SAS) subsamples
were defined in reference to 1000 Genomes? superpopulations (Methods). EUR
sample sizes: 5,285 for BMI, 5,285 for height and 4,145 for EA. SAS sample sizes:
685 for BMI and height and 615 for EA. We did not estimate direct effects of the
PGlsin the SAS sample due to its small size.

Discussion

We introduced three family-based estimators of DGEs (Tables 1
and 2): the ‘unified estimator’ (Fig. 1), which increases the effective
sample size for DGEs by inclusion of singletons while producing esti-
mates of population effects equivalent to what would be obtained from
standard GWAS in a homogeneous ancestry sample (Extended Data
Fig.1),and two estimators that are robust to population structure and
are more powerful thansib-differences, the NT and robust estimators,
with the robust estimator also being robust to admixture.

We compared the estimators in a bias-variance framework for
simulated populations with different levels of population structure
(Fig.4).Fromthis, we can order the different estimators (Table 2) based
onincreasing effective sample size (statistical power): sib-difference,
robust, NT, Young et al., unified and standard GWAS. This reflects the
ordering in terms of bias due to population structure/admixture,
except for the sib-difference and robust estimators, which are both
robust to population structure and admixture. We recommend the
unified estimator for the homogeneous samples (F,, < 0.01) typically
used in standard GWAS and the robust estimator for samples with
stronger structure (F,, > 0.01) and/or recent admixture.

We found that standard GWAS with PC adjustment generally did
not fully control for stratification when structure was complex (100
subpopulations). A related question is the degree to which stratifica-
tion confounding affects GWAS of rare variants, which track recent
structure in the population that PCs derived from common variants
do not capture well'>*°, Although the estimators studied here could
be applied to remove confounding from rare variant analyses, power
will be limited at current sample sizes.

Weinvestigated imputing missing parental genotypes using more
distant relatives, such as cousins (Methods and Supplementary Note
3). However, we found that imputation from more distant relatives
introduces anunacceptable degree of confoundinginto DGE estimates.
We therefore do not recommend imputation from more distant rela-
tives for DGE estimation.

We applied the estimators to 19 phenotypes in the UKB, dem-
onstrating that the unified estimator can give a substantial gain in

effective sample size for DGEs over both the Young et al. estimator
(upto42.6%) andsib-differences (up t0106.5%). We applied the robust
estimator to UKB samples without ancestry restrictions, giving effec-
tive sample sizesbetween10.3% and 21.0% greater than sib-differences.
Although not true for the UKB, the robust estimator could be more
powerful than the unified estimator for samples that cannot be parti-
tioned into homogeneous ancestry subsamples.

We investigated the performance of polygenic predictors (PGls)
derived from the different estimators in EUR and SAS genetic ances-
try samples from the MCS (Fig. 6). The unified estimator generally
performed the best out of the PGIs constructed from DGE estimates
(DGE PGls), reflecting its larger effective sample size. We found sug-
gestive evidence that DGE PGls predict better across ancestries than
population-effect PGls. However, analysis of DGE PGlsinmore non-EUR
samples is needed before firm conclusions can be drawn.

We have presented a set of estimators that maximize power for
estimating DGEs in different scenarios while having no or negligible
confounding due to population stratification. We have implemented
the estimators in a computationally efficient LMM that accounts for
sample relatedness and shared sibling environment, available in the
software package snipar (‘Code availability’). This will facilitate pro-
duction of powerful DGE estimates from diverse ancestries that canbe
used in downstream applications including estimation of heritability
and genetic correlations™ ™", inference of natural selection®®" and
Mendelian randomization”.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-025-02118-0.
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Methods

Our research conforms with all relevant ethical regulations. UKB has
approval fromthe North West Multi-centre Research Ethics Committee
asaResearch Tissue Bank approval. This approval means that research-
ersdonotrequire separate ethical clearance and can operate under the
Research Tissue Bank approval (there are certain exceptions to this
which are set outin the Access Procedures, such as recontact applica-
tions). The MCS has obtained ethical approval from NHS Research
Ethics Committees.

FGWAS designs
FGWAS is defined by regression of phenotype onto genotype and
parental genotype(s)*:

Yij = 08y + 08par(iy + € (Model1)

where y; is the phenotype of the sibling j in family i; g is the corre-
sponding genotype; p.ri) = 8oy + Sme iS the sum of paternal and mater-
nalgenotypes; 6isthe DGE; ais the average NTC; and ¢;is the residual.
Because E[g;lgy) 8m)] = 8par(y/2, and variation in offspring genotype
around this expectation is due to random Mendelian segregations
(where chromosomes segregate independently of each other and
environment), estimates of DGEs from fitting Model 1 are free from
confounding due to gene-environment correlation (including popula-
tion stratification) and correlations with genetic variants on other
chromosomes due to nonrandom mating (including AM)*>?*2. The
average NTC—so named because it equals the average of the coeffi-
cients on parental alleles not transmitted to the offspringin aregres-
sion of offspring phenotype onto transmitted and NT alleles—captures
IGEs from relatives and confounding due to gene-environment cor-
relation and nonrandom mating®>?. (The FGWAS regression
equation here only applies to the autosome. Although it would be
possible to apply a similar approach to maternally inherited X chro-
mosomes, FGWAS analyses of other sex chromosomes or mitochon-
driaare not possible.)

Alternatively, one can fit a model that allows for different coef-
ficients on the paternal and maternal genotypes:

Vi = 08 + Apgp(i) + Amm(i) + € (Model 2)

where a, and a,, are, respectively, the paternal and maternal NTCs.
Model 1 can be derived from Model 2 (with a change of residuals?),
implyingthat a = (a, + a,,) /2. Although Model 1is sufficient to remove
confounding from estimates of DGEs, irrespective of whether a, = a,,,,
Model 2 may be preferred or required in certain contexts (Supplemen-
tary Note 2.2).

Standard GWAS performs a regression of phenotype onto geno-
type, giving an estimate of the population effect, 8. Assuming random
mating, it can be shown that®: = § + a. This provides a useful connec-
tion between the parameters of FGWAS and standard GWAS.

Fitting Models 1 and 2 entails restricting one’s sample to those
with both parents genotyped, which is often only a small fraction (or
none) of the sample. Genetic differences between siblings, which are
randomly assigned, can be used instead'>"°. For example, one can
perform the following regression:

Y=Y =681 —8n) +€n—€pn. (Model 3)

Estimates of 6 from this model, which we call ‘sib-differences’,
are free from confounding due to nonrandom mating and most
gene-environment correlation, the exception being (unlike esti-
mates from Models 1 and 2) confounding due to IGEs from siblings>.
Inaddition, estimates of DGEs from Model 3 are less precise than those
from Model 1 or 2when applied to sibling data provided that the cor-
relation between siblings’ residuals is modeled, as in a generalized

least-squares estimator’. Furthermore, estimation of Model 3 ignores
samples with genotyped parent(s) but without genotyped siblings™®.

Imputing missing parental genotypes for singletons

An alternative approach to estimating DGEs using sibling data was
proposed by Young et al.’: treat parental genotypes as missing data
and impute them according to Mendelian laws. For a sibling pair,
the missing parental genotype, g,.., is imputed conditional on the
identity-by-descent (IBD) state of the siblings; that is, whether the
siblings have inherited the same or different alleles from each parent.
Youngetal. developed this approach, termed ‘Mendelian imputation’,
forall samples withat least one genotyped first-degree relative, not just
sibling pairs. Theresulting imputed parental genotypes are then used
in place of the observed onesin Model1or 2.

Here, we extend the Mendelian imputation approach to single-
tons, samples without a genotyped first-degree relative. We observe
two out of four parental alleles in a singleton—the same as for asibling
pair in IBD2, meaning they have inherited the same alleles from both
the mother and father®. Under random mating, the imputed parental
genotypesare:

Bpary = El8par|8i] = 8i + 2f:8,) = Elgp|8i] = 8i/12+f =8y D

where the two unobserved alleles are imputed using the allele fre-
quency, f. If the imputed parental genotypes are unbiased, then the
DGE estimates obtained when including singletons in Models 1and 2
will be unbiased and consistent, provided that the resulting regression
design matrix is not collinear’. As the imputation from a singleton is
linear, singleton data alone cannot be used to identify DGEs, because
the design matrix would be collinear. Genotype-phenotype data from
individuals with genotyped first-degree relatives, where a non-linear
imputation of parental genotype(s) is possible®, is needed in addition
tosingletons.

Imputing parental genotypes using higher-degree relatives
The linear imputation (equation (1)) used for singletons in the uni-
fied estimatorignoresinformation on parental genotypes frommore
distant relatives than siblings and parents, such as aunts/uncles and
cousins. Weinvestigated whether imputing missing parental genotypes
using higher-degree relatives could improve estimation of DGEs.

We simulated cousin pairs and performed imputation of missing
parental genotypes using the cousin pair’s genotypes (Supplementary
Note 3). Theimputed parental genotypes were approximately unbiased
and more accurate than when imputing from a single offspring (as in
the unified estimator). However, DGE estimates when using paren-
tal genotypes imputed from cousins showed substantial population
stratification confounding even for relatively homogeneous ancestry
samples (F,, > 0.001) (Extended Data Fig. 5).

The reason that higher-degree relatives introduce bias is that
they are separated by more than one meiosis. This implies that the
genotype of the relative is not randomly assigned—and therefore
not independent of confounds—conditional on the missing paren-
tal genotype. For example, your cousin’s genotype is not randomly
assigned conditional on your parent’s genotype. Thisimplies that the
genotype of a cousin contains information not only on your parent’s
genotype but also information that can reflect confounds such as
population structure.

Population structure robust estimators

Youngetal.’ proposed an alternative, imputation-based estimator for
sibling-pair data that they argued should not be biased by population
structure. This estimator partitioned the sibling pairs based on their
IBD state and performed separate regressions for sibling pairsin IBDO
(noalleles shared by descent from parents) and IBD1 (one allele shared
by descent from parents) followed by an inverse-variance-weighted
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meta-analysis of the DGE estimates. Young et al.” showed this is more
powerful than sib-differences, giving an effective sample size1 + 611'0
times greater, where ris the correlation of siblings’ residuals. However,
this estimator has a smaller effective sample size than the primary
estimator considered in Young et al.?, which includes sibling pairs in
IBD2, at the cost of potential bias due to population structure.

The NT estimator we develop is a generalization of this estima-
tor that partitions the sample based upon which NT parental alleles
have been observed (Table 1). Although the NT estimator is robust
to an island model of population structure and more powerful than
sib-differences even for sibling pair data (Supplementary Note 2.3.2),
we found thatitis biased when paternal and maternal allele frequencies
differ, asinrecently admixed samples (Supplementary Note 2.3.3).

The robust estimator is similar to the NT estimator, except
that it performs different regressions in three of the four groups
(Table 1). It performs uniparental regressions for the samples with
one parental NT allele observed when the parent-of-origin is known.
Fora parent-offspring pair that are both heterozygous, phased dataare
required to determine the parent-of-origin®. For sibling pairs in IBD1
without genotyped parents, the parent-of-origin of alleles is unknown,
and we perform a regression controlling for the mean genotype in
the sibship, equivalent to sib-differences (Supplementary Note 2.5).
However, for sibling pairs in IBD1 with a genotyped parent, we parti-
tion the sample based on whether the allele shared by the siblings
is from the observed parent or the missing parent: when the shared
allele is from the missing parent, we perform uniparental regressions
using the observed parental genotype and the allelesinherited by the
siblings from that parent (for example, a sibling pair in IBD1 with a
genotyped mother would be placed in the maternal NT group when
the shared alleleis from the father); but when the shared allele is from
the observed parent, we are able to fully recover the missing parent’s
alleles and place the siblingsinthe both NT group. (See Supplementary
Note 5.2 from Young et al.? for further details on determining shared
alleles for cases with one parent and multiple full-sibling offspring with
observed genotypes.)

Thus, toimplement the robust estimator when some samples have
one but not both parents’ genotypes observed, the imputation pro-
cedureinsnipar with phased data should be performed first. This will
determine how many NT parental alleles have been observed for each
samplewith agenotyped first-degree relative and the parent-of-origin
of alleles for the samples with one parent genotyped.

Linear mixed model inference
Here, we develop an LMM that generalizes the LMM used in Young
etal.’and the LMM implemented in fastGWA?**, which is specified by a
sparse GRM. This approach ensures that residual correlations between
siblings are modeled properly, ensuring statistically efficient estimates
of DGEs are obtained while also modeling residual correlations between
all pairs related above some threshold, thereby ensuring statistically
efficient estimates with accurate standard errors are obtained when
more complex relatednessis present in the sample®.

Stackingall observation vertically, for adataset with Nindividuals
inn families, the modelis

y=X0+e

wherey is the N x 1 phenotype vector; Xis the N x ¢ matrix specifying
the fixed effects, where the columns of X depend upon the covariates
and estimator being used (Supplementary Note 2); @is the correspond-
ing vector of fixed effects; and e’ is arandom vector, which we specify
below. For example, if fitting Model 2 without additional covariates,
0= [6,ap,am]T, and X has columns giving proband, (imputed or
observed) paternal, and (imputed or observed) maternal genotypes.
Therandom vector €’ is specified as

e=g+Zu+e

where

g~ (0,0217);

IMisthe (sparse) GRM; oz is the corresponding variance parameter;
Zisan N x nsibship indicator matrix, withentry k, [equal to1if the kth
individual is in sibship / and O otherwise; and u is an n x 1 normally
distributed sibship-specific mean vector

u~ N (0,02,),

where a2 is the sibship covariance parameter. The sibship covariance
component Zuis thus also normally distributed:

Zu ~ N (0,02277).

Theresidual variance vector has distribution:

e~ (0,02y).

Therefore, the variance-covariance matrix of y|X is V= o;17
+02Z7" + d21,.

The relatedness matrix, /7, can be either an SNP-based GRM or a
GRM computed from IBD segments, such as output by KING**. By set-
ting elements of [Tbelow a certain threshold, usually 0.05, to zero, the
sparsity of the IV matrix can be exploited so that restricted maximum
likelihood (REML) inference of variance components and the general-
ized least-squares estimate of 6 given the variance components are
computationally feasible even for large-scale biobanks® (Supplemen-
tary Table 2). For analyses in this paper, we used a relatedness matrix
constructed from KING IBD segments with a 0.05 threshold. We chose
thisthreshold asit enables accurate modeling of residual correlations
between close relatives®> without requiring prohibitive memory
usage and computation time. However, users can specify a different
threshold to the software.

Variance component estimation
The variance component parameters o2, 02, 02 are estimated by maxi-
mizing the REML log likelihood function:

L = —(log|V] + log|CTV-1C| +yTPy)/2,

where Cis the design matrix of fixed covariates, and
P= V-l yIg(CTVIC) T CTYL

Ifno fixed covariates are included, Cis acolumn vector of all 1s.

If the relatedness matrix /7is dense, then Vis dense, leading to
resource-demanding computation. To reduce the computational
burden, we follow Jiang et al.” and zero out entries in /7with related-
ness below a default threshold of 0.05. This results in a highly sparse
matrix, enabling the use of efficient sparse matrix algorithms for like-
lihood evaluation. By using a gradient-free optimizer, REML variance
componentestimation canbe doneinjust afew minutes for datasets as
large as the UKB. Another possible benefit is that, by considering only
close relatives, the correlations between close relatives are modeled
moreaccurately than when using aSNP-based relatedness matrix that
includes relatedness measures between all pairs™*.

With asparse V, we compute V'yand V' Cusing asparse LU solver
in SciPy (v1.7.2)*¢, without explicitly computing V*. Then variance
component parameters are optimized using the gradient-free L-BFGS
algorithm®®. One can choose to model only the sibship variance com-
ponentand the residual variance component asin Youngetal.?, which
alsoresultsinasparse Vmatrix, so the same computational procedure
canbe used in this case.
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Estimating SNP effects

Toinclude covariatesinthe genome-wide estimation of SNP effects, we
projectboth genotypes and phenotypes onto the space orthogonal to
the space spanned by the covariates, asin BOLT-LMM?*":

X =MXandy = M.y

where M. = I — C(CTC)_ICT is the projection matrix. Then the effect
estimates are given by

o= (5" v—lx)_le vy,
where
Var(®) = ()‘(T V‘I)?)A

isthe sampling variance-covariance. By the Frisch-Waugh-Lovell Theo-
rem, this gives estimates of the SNP effects that are equivalent to per-
forming the joint-regression on the covariates and the proband and
relative genotype(s).

The procedure for the NT and robust estimators is more com-
plicated, as we need to account for covariance across the estimates
of DGEs from the different groups (Table 1) due to relatedness across
the groups. We describe the procedure in Supplementary Note 2.4.1.

Simulations of structured populations

For different levels of F,, we generated K subpopulations. We
simulated SNPs from binomial distributions, where subpopulation
allele frequencies were drawn from the Balding-Nichols model*:

fo~ Beta(%f, 1;—?‘(1 — ), where f, is the allele frequency in sub-

population kand f= E[f;]is the overall allele frequency.

Weinvestigated two different scenarios: a simple scenario with two
subpopulations (K = 2), where each subpopulation has 20,000 families
eachwith twosiblings, and all overall allele frequencies are 0.5 (f= 0.5);
and amore complex scenariowith100 subpopulations (K =100), each
with 1,000 families, and overall allele frequencies drawn froma distri-
bution proportionalto1/ffor 0.5 > f>0.05. We chose this distribution as
itreflects the distribution of allele frequencies for arandomly mating
population with constant effective size®®. We simulated 20,000 SNPs
for the first scenario and 4,000 SNPs for the second scenario.

We generated phenotypes with 50% of the phenotypic variance
attributed to subpopulation phenotype means y, that we sampled
independently from a mean-zero normal distribution: p, ~ N(0,07).
The remaining 50% of the phenotypic variance was attributed to ran-
dom Gaussian noise, implying a correlation between siblings’ pheno-
types of 0.5. There are no causal effects (including DGEs) of the
genotypesin thissimulation, so any deviation from the null distribution
isevidence of bias due to population stratification.

The average confounding bias due to population stratificationin
this model is zero, but the average magnitude of the confounding is
non-zero for afinite number of subpopulations K. To see this, consider
the overall covariance between the genotype gat an SNP /and pheno-
type Y, whichis the covariance between the subpopulation genotype
means (2f,) and subpopulation phenotype means (z,):

Cov(g. V)~ Y, p2(fu —f) e
3

where f, is the allele frequency in subpopulation &, f = 3, p fi is the
overallallele frequency, and p,is the fraction of families in subpopula-
tion k. The regression coefficient of genotype onto phenotype is
therefore

. Cov(g V)  ZupPi2(fi—f)ix
I~ Varg Var (g) :

Because the allele frequencies and subpopulation phenotype
means are sampled independently, the regression of phenotype onto
genotype has expectation zero across the SNPs but varies around zero
duetothefinite number of subpopulations. We quantify this through
the expected squared regression coefficient across SNPs with overall
allele frequency f:

X 4piFef(1-f) o,

F[B?] ~
) Var(g)®

where we have used the variance of the allele frequencies from the
Balding-Nichols model (F, f(1 - f)) to obtain this. If we assume equal
subpopulationsizes, then p; = 1/K and

E[ 2] . 4F,f(1 —f)aﬁ
f KVar(g)2

2
Fs0,

K- +F

where we have used the fact® that Var(g) = 2f(1-f)[L+ F] . The
expected magnitude of the bias therefore decreases (towards zero)
with the number of subpopulations, holding £, F,, and o? constant. If
we consider the expected phenotypic variance explained (in aregres-
sion sense, that is the R?) by each variant, it does not depend upon
overall allele frequency:

Var () E[B2] 2F 02
Varv) KA+ FVar(t)’

For the simulations involving the unified estimator, we sought
to mimic the fact that large biobanks such as the UKB consist mostly
of singletons. For 90% of families, we randomly removed one sibling
to obtain singletons, leaving 10% of families with two siblings. The
sibling-difference/robust, NT, and Young et al. estimators were applied
to the 10% of families with intact sibling pairs, whereas the unified
estimator and standard univariate GWAS were applied to the combined
sample of singletons and sibling pairs.

We also examine the performance of the estimators in a
sibling-pair-only scenario: thatis, 20,000 genotyped and phenotyped
sibling pairsin each subpopulation (Extended DataFig.4). We applied
the estimators to the resulting 40,000 sibling pairs. Note that in this
scenario, there are no singletons, and the unified estimator is equiva-
lent to the Young et al. estimator.

To assess evidence for bias due to population stratification,
we computed the mean of the squared Z-scores, that is, 62/Var(§)
(or B2/var(B) for standard GWAS estimates of ‘population effects’), of
the estimated SNP effects produced by different estimators, which
shouldbelinexpectationunder the nulland willbe abovelinexpecta-
tion if there is bias due to population stratification. (See above for a
derivation of the expected squared bias for standard GWAS.) Although
amean Z” statistic greater than 1is a common measure of inflation in
GWAS***_this statistic is not a completely fair way to compare the
biases due to stratification across estimators that have different sam-
pling variances: for example, for estimators with the same bias but
different sampling variances, the estimator with the smaller sampling
variance would be expected to produce larger Z2 statistics on average.
For this reason, we also examine the nonsampling variance of an esti-
mator ¢, B2, across all L SNPs (L =20,000 for first scenarioand L =4,000
for the second scenario), which we estimate as

~

L
B?- = G- % > Var((;)({ = 6, or Bfor standard GWAS).  (2)
pct

L

B~ =

l

I
-

Denoting by bf,i the expected squared bias of an estimator {at an
SNP i, the expectation of the estimator’s nonsampling variance is

2 1¢
> i 2
€18 = 1 0%
P
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Thus, B”'? is an estimate of the magnitude of bias due to population
stratification that can be fairly compared across estimators.

Analysis of UKB data

We selected 19 UKB phenotypes related to education, cognition,
income and health. Phenotypes were derived from baseline meas-
urements. Note that ‘cognitive ability’ is derived from Field 20016
(‘Fluid intelligence score’)*. Each phenotype was normalized to have
mean O and variance 1 within each sex. More details can be found in
Okbay et al.”.

We filtered out samples that had been flagged as having the fol-
lowing QC issues: excess relatives, sex chromosome aneuploidy, and/
or identified as outliers in heterozygosity or genotype missingness.
We used the phased haplotypes for the UKB genotyping array SNPs
provided as part of the UKB datarelease. We filtered out variants with
minor allele frequencies less than 0.01and with Hardy-Weinberg equi-
librium exact test Pvalue less than1x 1076, resulting in 658,720 SNPs.
We inferred IBD segments shared between siblings and performed
imputation using snipar*.

Weimplemented the estimators in the LMM described above*. We
inferred sibling relationships using the KING (v2.2.5) software®* with
the‘-related -degreel argument. The sparse GRMis derived fromIBD
segments inferred by KING with the argument ‘~-ibdseg -degree 3’, with
the relatedness threshold set at 0.05. For the Young et al. and unified
estimators, we fit Model 2 for each SNP, substituting imputed parental
genotypes for observed parental genotypes when not available. Details
oftheimplementation of the sib-difference and robust estimatorsarein
Supplementary Notes 2.4 and 2.5. We derived standard GWAS ‘popula-
tion effect’ estimates as the sumof the DGE and average NTC estimates
from the unified estimator. We adjusted for age and 40 genetic PCs,
and, for phenotypes not specific to one sex, we also adjusted for sex,
theinteraction between sex and age, and the interaction between sex
and age up to the third order.

Tocompute therelative effective sample sizes of the different esti-
mators, we analyzed 10,911 SNPs on chromosome 22 (Fig. 5 and Supple-
mentary Table1). For the Youngetal., unified, robust, and sib-difference
estimators, we computed genome-wide summary statistics for height,
EA, and BMI, and summary statistics for SNPs on chromosome 22 for
all other phenotypes (‘Data availability’).

We computed genetic correlations between DGE estimates
from the four methods for height and EA, respectively, using LDSC
(v1.0.1)***2, Allgenetic correlation estimates are close to 1 (Supplemen-
tary Table 3): for example, r, between DGE estimates from the Young
etal. and the robust estimator is 1.0034 (s.e. = 0.0053) for height and
0.9925 (s.e. = 0.0265) for EA.

Polygenic predictioninthe MCS

We chose the MCS* as our validation sample because it is a nationally
representative sample (of 8,202 individuals born around the year
2000 in the United Kingdom) and the cohort members are too young
to have participated in the UKB, ruling out sample overlap (although
some older relatives of MCS cohort members could be present in the
UKB). Furthermore, both parents’ genotypes are available for 3,421
cohort members, and one parent’s genotype is available for 3,989
cohort members.

We projected MCS samples onto the top 20 PCs derived from1000
Genomes data® using the OADP algorithm** implemented in bigsnpr
(v1.12.2)*, and we determined the European and South Asian ancestry
subsamples as those with 20 nearest neighbors all in 1000 Genomes
EUR and SAS superpopulations, respectively (Extended Data Fig. 6
shows a visualization of the sample PC distribution). We used PRS-CS
(4 June 2021)*¢ and the provided UKB European LD panel to obtain
posterior SNP weights for PGls for BMI, height and EA.

We evaluated the performance on three widely studied quan-
titative phenotypes: BMI, height and educational achievement.

Educational achievement is measured by mathematics and English
GCSE grades, which are exams taken at age 16 by nearly all studentsin
England (Methods and Supplementary Note 4). The MCS phenotypes
were derived from sweep 7, which was performed when cohort mem-
berswereaged17 years. The validation phenotypes were standardized
to have mean zero and variance one within each sex. We used height
and BMI measured at age 17. The educational achievement outcome
was derived from the average of Englishand Mathematics GCSE grades
transformed into Z-scores (Supplementary Note 4).

To estimate the ‘population effect’ of the PGI, we performed the
following regression separately in EUR and SAS samples:

Yi=ap +ﬁpG|PGli +Xb + €;

where Y, is the phenotype observation for genotyped individual i; PGl;is
the PGlvalue; a, is the intercept; Sy, is the population effect of the PGls;
Xis the design matrix of the first 20 PCs; b is the vector of regression
coefficients for the PCs; and ;s the residual. The population effect
here is equivalent to a partial correlation coefficient because both
phenotype and PGl have been scaled to have variance 1.

To estimate the ‘direct effect’ of the PGI*, we performed the fol-
lowing regressioninthe EUR sample:

Y; = ag + 6pIPGl; + apg1:pPGly(iy + Apgr:m PGl + Xb + €,

where PG, and PGl,,;, are, respectively, the paternal and maternal
PGls (constructed using the same weights as the proband PGI); and
apg1:p and apg ., are, respectively, the paternal and maternal NT coef-
ficients of the PGI’. When a parent’s genotype was missing, the parent’s
PGlwas computed fromimputed parental genotypes, asin Youngetal.’.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics from the different estimators applied to UKB
data are available for download from the SSGAC data portal: https://
thessgac.com/. Applications for access to the UKB data can be made
on the UKB website (http://www.ukbiobank.ac.uk/register-apply/).
Applications for MCS data can be made by following the instruc-
tions here: https://cls.ucl.ac.uk/data-access-training/data-access/
accessing-data-directly-from-cls/. 1000 Genomes phase 3 data can
be downloaded using the download_1000G function provided by the
bigsnpr* R package.

Code availability

The sibling and family-based GWAS estimators investigated here are
implemented in the software package snipar: github.com/AlexTISY-
oung/snipar/. The specific code used for the results reported in this
paper is available here*: https://github.com/AlexTISYoung/snipar/
releases/tag/v0.0.19.
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Extended Data Fig. 1| Population effect estimates from standard GWAS and calculated as the sum of the direct effect and average parental NTC estimates.
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Extended Data Fig. 2| Disjoint groups analyzed by the non-transmitted
estimator and the robust estimator. The non-transmitted estimator and the
robust estimator partition individuals with at least one non-transmitted (NT)
parental allele observed into four disjoint groups (Table 1). The ‘Both NT’ group is
forindividuals with both NT parental alleles observed, such as for sibling pairs in
IBDO and parent-offspring trios. The ‘One NT’ group is for siblings in IBD1 without
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Extended Data Fig. 3 | Bias-variance tradeoff on simulated sibling pairs and
singletons. See Figs. 2 and 4 in the main text for details on simulation setup.
The effective sample size (x-axis) is defined relative to that of the sib-difference
or robust estimator (Table 2 in the main text) and should be equal to 1 (vertical
dashed line) for the sib-difference or robust estimator and higher than 1 for

the other estimators. Bias (y-axis) is measured as the nonsampling variance
(Methods section in the main text) relative to that for standard GWAS with

relative effective sample size

F,,=0.001, and is expected to be above O (horizontal dashed line) when there is
bias due to population stratification. Bias is presented as the mean with a 95%
jackknife confidence interval over 20,000 SNPs. (a)-(d) bias-variance tradeoff
comparison for the sibling difference method, robust estimator, Young et

al., unified estimator, and standard GWAS with different levels of population
structure, as measured by F,.
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Extended Data Fig. 4 | Bias-variance tradeoff on simulated sibling pairs. We
simulated populations and phenotypes asin Figs. 2 and 4 in the main text and
Supplementary Fig. 3, except that we simulated 40,000 sibling pairs (20,000
ineach subpopulation). In this case, the unified estimator and the Young et al.
estimator are equivalent, because there are no singletons. The effective sample
size (x-axis) is defined relative to that of the sib-difference or robust estimator
(Table 2 in the main text) and should be equal to1 (vertical dashed line) for the
sib-difference or robust estimator and higher than1for the other estimators.
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Bias (y-axis) is measured as the nonsampling variance (Methods section in the
main text) relative to that for standard GWAS with F,= 0.001, and is expected

to be above O (horizontal dashed line) when there is bias due to population
stratification. Bias is presented as the mean with a 95% jackknife confidence
interval over 20,000 SNPs. (a)-(d) bias-variance tradeoff comparison for the
sibling difference method, robust estimator, Young et al. estimator, and standard
GWAS with different levels of population structure, as measured by F,; (e)-(h) the
same as (a)-(d) but with the standard GWAS removed for scale.
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Extended Data Fig. 5| Mean Z2 statistic for direct genetic effects when
imputing parental genotypes from cousins using the conditional Gaussian
formula (Supplementary Note 3). Mean Z* statistics, which are expected to be
abovel(dashed line) when there is bias due to population stratification, and the
corresponding 95% jackknife confidence intervals over 3,000 SNPs are
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presented. For each F,, we simulated 2 subpopulations, each with 2,500
unrelated cousin pairs and 3,000 SNPs, where the subpopulation allele
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frequencies were drawn from the Balding-Nichols model: Beta( 2F:f , ZFSS[[ );
imputation of parental genotypes was carried out using the conditional

Gaussian method.
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Extended DataFig. 6 | The first and second principal components (PCland
PC2) of UKB samples with at least one genotyped first-degree relative. There
are 51,875 individuals with at least one genotyped relative in UKB, which can be
analyzed using the robust estimator; 11.83% (6,135) are non-‘White British’ and

88.17% (45,740) are ‘White British’. 46,698 individuals have at least one genotyped
sibling and can be analyzed using the sib-difference estimator; 11.84% (5,528) are
non-‘White British’ and 88.16% (41,170) are ‘White British’.
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KING[v2.2.5] to perform IBD segment and relationship inference; we computed genetic correlations between direct genetic effect estimates
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For polygenic prediction in the Millennium Cohort Study: we used the OADP algorithm implemented in the R package bigsnpr[v1.12.2]
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Summary statistics from the different estimators applied to UK Biobank data are available for download from the SSGAC data portal: https://thessgac.com/.
Applications for access to the UKB data can be made on the UKB website (http://www.ukbiobank.ac.uk/register-apply/). Applications for Millennium Cohort Study
data can be made by following the instructions here: https://cls.ucl.ac.uk/data-access-training/data-access/accessing-data-directly-from-cls/. 1000 Genomes phase
3 data can be downloaded using the download_1000G function provided by the bigsnpr R package.
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For the the Millennium Cohort Study, we classified individuals into European (EUR) and South Asian (SAS) using the OADP and
KNN algorithms. We projected individuals onto genetic principal components derived from 1000 Genomes data and classified
individuals as belonging to the EUR or SAS superpopulations if all 20 of their nearest neighbors in the 1000 Genomes data
were from the EUR or SAS samples. We referred to these samples as 'EUR" and 'SAS' samples.

Population characteristics The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately
500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The Millennium Cohort Study
is a representative sample of individuals born in the UK in the year 2000 and their parents.

Recruitment Recruitment is not applicable since we used existing datasets.

Ethics oversight UK Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC) as a Research Tissue Bank
(RTB) approval. This approval means that researchers do not require separate ethical clearance and can operate under the
RTB approval (there are certain exceptions to this which are set out in the Access Procedures, such as re-contact
applications). The Millennium Cohort Study has obtained ethical approval from NHS Research Ethics Committees (RECs).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size We used genotyped individuals in the UK Biobank passing filters corresponding to specific methods:
For the sib-difference method, we used all genotyped individuals passing quality control filters with at least one genotyped sibling: 46,698;
For the robust estimator, we used all genotyped individuals passing quality control filters with at least one non-transmitted parental allele
observed: 51,875;
For the Young et al. estimator, we used all genotyped individuals of '"White British' ancestry (identified by the UK Biobank), passing quality
control filters, and with at least one genotyped first-degree relative: 44,570;
For the unified estimator, we used all genotyped individuals of "White British' ancestry (identified by the UK Biobank) and passing quality
control filters: 408,254.
For the Millennium Cohort Study, we used all genotyped individuals of either European or South Asian ancestry identified by the OADP and
KNN algorithms: 10416.

Data exclusions  For analyses on UK Biobank, we filtered out individuals identified by UK Biobank as having excess relatives, excess heterozygosity, sex
chromosome aneuploidy, and excess genotype missingness.
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For the Millennium Cohort Study, we restricted our sample to individuals of European or South Asian ancestry identified by the OADP and
KNN algorithms, to make our analyses comparable to existing studies on cross-ancestry polygenic prediction.

Replication Our UK Biobank analysis was performed to show the relative power of the different estimators in a large-scale biobank. Direct replication of
these results is not relevant to the conclusions of our study. However, our Millennium Cohort Study analysis demonstrates that our UK
Biobank analysis produced results with external validity by demonstrated statistically significant out-of-sample prediction ability for genetic
predictors derived from our UK Biobank analysis.

Randomization  Genetic materials are randomized during meioses; this randomization is used in family-based GWAS designs to remove confounding.

Blinding Blinding is not applicable since we did not compare experimental groups.
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