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Locityper enables targeted genotyping of 
complex polymorphic genes
 

Timofey Prodanov    1,2  , Elizabeth G. Plender3,4, Guiscard Seebohm    5, 
Sven G. Meuth6, Evan E. Eichler    3,7 & Tobias Marschall    1,2 

The human genome contains many structurally variable polymorphic loci, 
including several hundred disease-associated genes, almost inaccessible 
for accurate variant calling. Here we present Locityper, a tool capable 
of genotyping such challenging genes using short-read and long-read 
whole-genome sequencing. For each target, Locityper recruits and aligns 
reads to locus haplotypes, for instance, extracted from a pangenome, 
and finds the likeliest haplotype pair by optimizing read alignment, insert 
size and read depth profiles. Across 256 challenging medically relevant 
loci, Locityper achieves a median quality value (QV) above 35 from both 
long-read and short-read data, outperforming state-of-the-art Illumina and 
PacBio HiFi variant calling pipelines by 10.9 and 1.7 points, respectively. 
Furthermore, Locityper provides access to hyperpolymorphic HLA 
genes and other gene families, including KIR, MUC and FCGR. With its low 
running time of 1 h 35 m per sample at eight threads, Locityper is scalable 
to biobank-sized cohorts, enabling association studies for previously 
intractable disease-relevant genes.

Single-nucleotide variants (SNVs) are the most abundant class of 
genetic variants segregating in the human population and are at the 
same time easy to access using microarray or short-read sequenc-
ing platforms. Unsurprisingly, virtually all genome-wide association 
studies (GWAS) seeking to map genotypes to phenotypes have been 
focusing on SNVs. In contrast, structural variants (SVs), which are 50 bp 
in size or longer, are much more challenging to characterize; more 
than half of all SVs per sample are missed by short-read-based variant 
discovery1–3, despite their biomedical relevance4,5. Almost 750 genes 
contain ‘dark’ protein-coding exons, where read mapping and variant 
calling cannot be adequately performed6; around 400 medically rel-
evant genes are almost inaccessible because of their repetitive nature 
and high polymorphic complexity7. Of them, 273 genes are widely used 
for variant calling and assembly benchmarking8,9. Long-read technolo-
gies are needed to address this problem10–12 and recent long-read-based 

genome assembly strategies indeed led to haplotype-resolved genome 
assemblies of diploid samples that routinely resolve many previously 
intractable complex genetic loci13,14. Nevertheless, long-read sequenc-
ing of large cohorts remains prohibitively expensive, signifying the 
need for accurate short-read-based genotyping.

In the meantime, high-quality assemblies are available for 
hundreds of human haplotypes and give rise to a pangenome 
reference2,8,15. The genetic variation encoded therein can serve as 
a basis for genotyping workflows by mapping reads to a pangenome 
graph16,17 or through k-mer-based genome inference18. While genome 
inference with Pangenie18 has expanded the set of accessible SVs 
considerably8, it exhibits limitations at complex loci with few unique 
k-mers. As an alternative strategy, methods for targeted genotyping of 
genes of special interest, such as the HLA, KIR and CYP2 gene families, 
have been developed19–24.
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substantially accelerating the read recruitment stage. This does 
not lead to lower accuracy; Locityper predictions for ten mapped 
WGS datasets showed virtually identical results (median QV = 35.25;  
Supplementary Table 2).

Even though HPRC assemblies are very accurate, they may include 
assembly or phasing errors, especially at challenging loci. To remove 
this factor from the performance analysis, we used ART Illumina30 to 
simulate 44 short-read datasets and processed them with Locityper. 
As expected, the tool showed higher accuracy on simulated datasets, 
producing a median QV = 35.65, with 60.7% and 4.0% haplotypes receiv-
ing QV ≥ 33 and <17, respectively (Supplementary Fig. 1a).

Locityper is not limited to short reads and can process various 
long-read WGS datasets, including PacBio HiFi and ONT data. For these 
technologies, Locityper achieved higher median QVs of 36.90 and 35.95, 
respectively, and produced 66.6% and 64.5% haplotypes with QV ≥ 33 
(18.7% and 14.4% with QV ≥ 43), while only 2.9% and 2.0% haplotypes had 
QV < 17 (Extended Data Fig. 1 and Supplementary Fig. 1b).

Locityper achieves near-optimal LOO accuracy. By design, Locityper 
always associates an input WGS sample with two existing locus haplo-
types. Therefore, Locityper LOO accuracy is limited to haplotype avail-
ability, that is, similarity between the actual haplotypes and the closest 
haplotype remaining in the LOO panel. Overall, 66.8% haplotypes had 
close counterparts in the LOO panel (QV ≥ 33; 20.0% for QV ≥ 43) (Fig. 2d 
and Extended Data Fig. 2). Inversely, 1.2% and an additional 6.5% haplo-
types were dissimilar from any unrelated haplotype (QV < 17 and 17–23).

An optimal solver, which always finds the closest genotype from 
the LOO panel, would achieve a median QV = 36.93, just 1.66 points 
higher than Illumina-based Locityper and 0.03 higher than HiFi-based. 
For Illumina datasets, Locityper underperforms on average by just 
2.03 QV points compared to the theoretical best, with 95.1% (86.8%) 
haplotypes trailing by under ten (five) QV points (Fig. 2h). Even fur-
ther, across PacBio HiFi datasets, Locityper predictions differ from 
optimal by 0.72 QV points on average; this number drops down to 
0.54 when considering well-represented haplotypes (availability ≥33).  

In this study, we propose a new tool, called Locityper, to leverage 
genome assemblies in a pangenome reference or custom collection of 
locus alleles for fast targeted genotyping of complex loci. Locityper is a 
general-purpose genotyper that can efficiently process both short-read 
and long-read data; it integrates a range of different signals based on 
read depth, alignment identity and paired-end distance in a statistical 
model to infer genotype likelihoods. This provides an opportunity 
to genotype and analyze a diverse set of previously understudied 
genes for already available large sequencing datasets, such as the 
1000 Genomes Project cohort and large biobanks like the All-of-Us25 
program and the UK Biobank (UKB)26, where disease association stud-
ies can be performed.

Results
Overview of the method
Locityper is a targeted genotyping tool designed for structurally vari-
able polymorphic loci. For every target region, Locityper finds a pair 
of haplotypes (locus genotype) that explain the input whole-genome 
sequencing (WGS) dataset in a most probable way. Locus genotyping 
depends solely on the reference panel of haplotypes, which can be 
automatically extracted from a variant call set representing a pange-
nome, or provided as an input set of sequences. Before genotyping, 
Locityper efficiently preprocesses the WGS dataset and probabilisti-
cally describes read depth, insert size and sequencing error profiles. 
Next, Locityper uses minimizers to recruit reads to all target loci 
simultaneously.

At each locus, Locityper estimates a likelihood for every possible 
locus genotype by distributing recruited reads across possible align-
ment locations at the corresponding haplotypes (Fig. 1). The likelihood 
function is defined in such a way to prioritize read assignments with 
a smaller number of sequencing errors; plausible insert sizes across 
the read pairs; and stable read depth without excessive dips or rises. 
We show that finding a maximum likelihood read assignment can be 
formulated as an integer linear programming (ILP) problem or identi-
fied through stochastic optimization (Methods). Finally, Locityper 
identifies a genotype with the highest joint likelihood and outputs the 
most probable read alignments to the two corresponding haplotypes.

Locityper accurately genotypes challenging loci
To evaluate Locityper’s targeted genotyping accuracy, we used a refer-
ence panel of 90 haplotypes from phased whole-genome assemblies8 
across 256 target loci (Methods) covering 13.9 Mb and fully encom-
passing 265 challenging medically relevant (CMR) genes7 and 23 other 
protein-coding genes (Supplementary Table 1).

To measure the haplotyping error, we calculated sequence diver-
gence between actual and predicted haplotypes (Fig. 2a) and cor-
responding Phred-like27 quality values (QVs), which are widely used 
for genome assembly evaluation28. Then, we distributed haplotype 
predictions into five bins based on their QV (<17, 17–23, 23–33, 33-43 
and ≥43), where a haplotype from the last two bins (QV ≥ 33) differs 
from an actual haplotype by no more than 5 bp per 10 kb (Fig. 2b), 
which is competitive with long-read genome assemblies from Oxford 
Nanopore Technologies (ONT) data29. Note that the haplotypes were 
compared across the whole locus, including both coding and noncod-
ing regions, which avoids the need for gene annotations on highly 
variable haplotypes.

First, we genotyped 40 Illumina WGS datasets from the Human 
Pangenome Reference Consortium (HPRC) cohort. Each dataset was 
processed using the leave-one-out (LOO) approach, where the two 
relevant sample haplotypes were excluded from the reference panel. 
Across 20,350 cases where locus haplotypes were fully assembled, 
Locityper achieved a median QV = 35.27, with 58.8% haplotypes having 
QV ≥ 33 (15.2% for QV ≥ 43). On the other hand, 9.1% haplotypes had 
QV = 17–23 and 5.1% haplotypes had QV ≤ 17 (Figs. 2c and 3). Instead 
of unmapped reads, Locityper can process existing alignments, 
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Haplotype B 

Haplotype C 

Genotype A,B

Genotype A,A

Haplotype D 

Locus haplotypes

Each genotype:
distribute recruited 

reads across haplotypes 
to maximize likelihood

Predicted genotype: A,B

Recruited WGS reads

Genotype A,D

Genotype A,C

a

c

b

(Six more genotypes not shown)

Fig. 1 | Illustration of the locus genotyping approach. a, Reference panel of  
four locus haplotypes (A–D). b, WGS reads, recruited to any of the haplotypes.  
For illustrative purposes, haplotypes and reads are colored using homologous 
blocks (information, unavailable to Locityper). c, Optimal assignments of 
reads to various genotypes, where the small red squares show read alignment 
mismatches or indels. Genotype A,B has the highest joint likelihood because of a 
small number of alignment errors and no lack or excess of read depth.
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Overall, 98.7% (96.0%) HiFi-based haplotypes were within the ten (five) 
point margin (Fig. 2i).

This analysis shows that Locityper performs extremely well when 
required haplotypes are present in the reference panel, and achieves 
near-optimal accuracy with only limited haplotype sets. Growing num-
bers of haplotypes in pangenomes15 are likely to increase Locityper 
accuracy even further.

Locityper outperforms variant calling pipelines. By identifying the 
two most similar locus haplotypes to a given WGS dataset, Locityper 
effectively infers the two haplotype sequences at a locus. This provides 
an opportunity to benchmark Locityper against any phased variant call 
set, which likewise can be interpreted as a prediction of both haplotype 
sequences. Consequently, we evaluated the New York Genome Center 
(NYGC) call set for the expanded 1KGP (1000 Genomes Project) cohort 
of 3,202 samples3, of which 39 have HPRC assemblies. Even though the 
NYGC pipeline uses state-of-the-art variant callers, 1KGP haplotypes 
had significant divergence from the actual sample haplotypes: only 
27.4% haplotypes achieved QV ≥ 33 and another 22.3% haplotypes had 
QV < 17, while the median QV was 24.41, almost 11 points smaller than 
Locityper on Illumina reads (Fig. 2e and Extended Data Fig. 3).

While short-read datasets are difficult to genotype at complex loci, 
PacBio HiFi data are arguably the easiest. To put Locityper performance 
in perspective we examined phased SV calls, generated by Sniffles31 for 

20 HiFi datasets. As Extended Data Fig. 4a shows, Sniffles alone did not 
achieve high levels of accuracy, producing a median QV = 25.09. Com-
bining SVs with short variant calls, produced by DeepVariant32, raised 
the median QV to 35.19, which is 1.71 points behind Locityper on the 
same data and 0.08 points behind Illumina-based Locityper. While Snif-
fles + DeepVariant (Extended Data Fig. 4b) produced a larger fraction 
of poor haplotypes (4.7% and 7.9% with QV < 17 and 17–23 against 2.9% 
and 6.7% for Locityper), this pipeline also produced a bigger share of 
extremely accurate haplotypes (21.7% against 18.7%), probably because 
of Locityper’s inability to call new variants.

Locityper produces concordant trio predictions. Additionally, we 
genotyped the full 1KGP cohort of 3,202 Illumina WGS samples, includ-
ing 563 trios independent from the HPRC cohort. At each of the target 
loci and for each trio we calculated concordance, that is, the similarity 
between child and parent haplotypes (Methods). As Fig. 2f shows, the 
vast majority of trio haplotypes were concordant: 64.8% and 81.7% with 
QV ≥ 43 and ≥33, respectively. Moreover, the median concordance QV 
surpassed 44.4 and was over 43 at 90% of the loci (Extended Data Fig. 5).

Almost perfect accuracy with a full reference panel. Finally, we 
examined Locityper’s ability to accurately identify true sample haplo-
types using a full reference panel. This experiment should mimic future 
pangenomes, where almost all haplotypes present in the population 
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would also exist in the reference panel. At each of the sequencing tech-
nologies, Locityper achieved an extremely high median QV (>47) and 
produced more than 93% haplotypes with QV ≥ 33. Illumina-based and 
ONT-based haplotypes showed slightly lower accuracy: 83.1% and 81.6% 
had QV ≥ 43, respectively, while only 1.0% and 0.4% had QV < 17. On the 
other hand, simulated short reads and PacBio HiFi datasets produced 
almost perfect haplotypes: 96.6% and 95.1% with QV ≥ 43 and ≈0.1% 
with QV < 17 (Fig. 2g, Extended Data Fig. 6 and Supplementary Fig. 2). 
A variant call set obtained from the Locityper haplotypes using the full 
reference panel and Illumina data showed a significantly higher F1 score 
than the 1KGP call set, as well as higher precision and recall compared 
to the pangenome-based variant caller Pangenie18 (Supplementary 
Fig. 3 and Supplementary Information).

Locityper accurately genotypes HLA and KIR genes
To evaluate Locityper’s ability to genotype hyperpolymorphic genes, 
we examined genes from two medically relevant genomic regions: 
the major histocompatibility complex (MHC), covering over 4 Mb 
and over 200 genes33, and the KIR gene cluster spanning 150 kb and 
17 genes34. The two regions contain extremely polymorphic HLA and 
KIR genes, which have an essential role in adaptive and innate immune 
systems35,36. As Locityper genotypes target loci based solely on the 
sequences of available haplotypes, it is not limited to gene bodies and 
can use the intergenic sequence, gene order and presence and absence 
of copy-number-variable genes. As such, Locityper can predict missing 
genes by selecting padded haplotypes that lack the gene of interest.

Multiple specialized tools have been developed for genotyping the 
MHC locus19,22,37, the newest being T1K23, a state-of-the-art38 genotyper 
for HLA and KIR genes that is capable of processing whole-genome 
and whole-exome short-read sequencing data. To compare T1K and 
Locityper accuracy, we genotyped 40 Illumina HPRC WGS datasets at 
26 genes and 14 pseudogenes from the MHC locus and 14 genes and 
three pseudogenes from the KIR locus, all combined into 33 target loci 
with a sum length of 1.15 Mb.

In the LOO configuration, at the MHC locus, Locityper achieved a 
full match with assembly-based allele annotation (correctly predicted 
all fields in the HLA nomenclature39,40) in 88.8% cases, compared to T1K’s 
64.1% (Fig. 4a). At the same time, the two methods correctly predicted 
the protein product (second nomenclature field) in 95.1% and 78.2% of 
cases, respectively. Meanwhile, at the KIR gene cluster, Locityper and 
T1K correctly predicted protein products in 84.9% and 67.1% cases and 
achieved full match in 80.8% and 57.9% cases, respectively (Fig. 4b). 
When using the full reference panel, which also containing the input 
samples, Locityper achieved almost perfect accuracy: full match in 
99.4% and 99.9% of cases at the MHC and KIR loci, respectively.

Unlike T1K, Locityper does not distinguish between exons, introns 
and intergenic space. This may result in lower accuracy when a haplo-
type carrying a false gene allele better explains input reads within a 
noncoding sequence. To handle such cases, users may use a weighted 
Locityper mode, giving lower weight to read depth and read align-
ments occurring outside exons. Using a weight of 0.1 for introns and  
0.005 for intergenic regions, Locityper’s accuracy rose to 96.5% 
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(protein product) and 90.8% (full match) at the MHC locus, and to 
89.9% and 86.2% at the KIR cluster (Fig. 4).

Some protein products were present in only one HPRC sample; 
consequently, such samples cannot be correctly annotated by Loci-
typer in the LOO setting. Such cases explained 64.6% and 36.2% of all 
errors made by Locityper in the weighted mode at the MHC and KIR 
loci, respectively (Extended Data Fig. 7). This is especially noticeable 
at the hyperpolymorphic HLA-A, HLA-B and HLA-DRB1 genes, where 
protein groups were missing from the LOO panel in 10–22% of cases, 
which explains the vast majority of Locityper errors. At the same time, 
T1K often predicted a smaller copy number than required, explaining 
79.1% and 24.6% of all errors at the MHC and KIR clusters, respectively. 
When ignoring these two error types (missing copy and unavailable 
protein groups), Locityper notably outperformed T1K in predicting 
protein products: 99.0% against 94.5% at the MHC locus, and 94.6% 
against 73.0% at the KIR gene cluster. Overall, the general-purpose tool 
Locityper performed in a competitive manner even when compared to 
T1K, which was specifically designed for HLA and KIR genes. However, 
accurate genotyping of the most diverse genes would still probably 
benefit from larger pangenome sizes.

Accurate genotyping of disease-relevant gene families
Although the set of CMR genes included a wide variety of genetically 
diverse genes, several important polymorphic gene families were 
underrepresented in it. The mucin genes are a highly heterogeneous 
gene family (MUC1–MUC24)41. Mucin genes encode large glycoproteins 
that are essential to barrier maintenance and the defense of epithelial 

tissues. All canonical mucins harbor a large exon that contains variable 
number tandem repeats (VNTRs), whose sequences vary per mucin, yet 
each extensively encode serine and threonine residues for glycosyla-
tion42. The gene family can be broken up into two subgroups: tethered 
and secreted mucins. In tethered mucins, single VNTR domains con-
tain variation in total motif copy number and motif usage (Fig. 5a). 
Secreted mucins harbor potential variation in VNTR domain copy 
number, VNTR motif copy number, VNTR motif usage and cysteine 
domain copy number43,44 (Fig. 5b). The presence of these repetitive 
sequences makes mucins both highly polymorphic and difficult to 
accurately sequence and genotype using short reads.

Locityper leverages information about both read depth and read 
alignment for genotyping; therefore, the tool is well suited to char-
acterizing mucin genetic variation. Based on 39 HPRC Illumina WGS 
datasets, Locityper (LOO) haplotypes achieved on average a 10.5 higher 
QV compared to the 1KGP call set across 15 examined MUC loci, with 
the largest improvement observed at MUC6 and MUC16 with 29.7 and 
18.5 higher QV, respectively (Fig. 5c). The only negative QV difference 
between Locityper and 1KGP was observed at the non-gel-forming 
MUC7 gene, where the two haplotype sets showed very high QV values 
(43.5 and 44.2, respectively).

Further examples of genes that are challenging to address with 
standard calling techniques are FCGR2B and FCGR3A, encoding recep-
tors for the Fc region of the IgG complexes45,46. IgG binding to FCGR2B 
induces the immune complexes of phagocytosis and endocytosis and 
thus establishes the basis of antibody production by B cells. The second 
receptor, FCGR3A, is expressed on natural killer cells as an integral 
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Fig. 4 | Haplotyping accuracy for 40 HPRC samples at the MHC and KIR loci. 
a,b, Subpanels showing the fraction of haplotypes, predicted with varying 
accuracy at 40 pseudogenes from the MHC locus (a) and 17 pseudogenes from 
the KIR gene cluster (b). Fully predicted alleles and correctly identified missing 
copies, are colored dark blue (full match) because of the different number 
of allele fields in the HLA/KIR gene nomenclature39,58. Otherwise, haplotypes 

are colored according to the number of correctly predicted fields. Accuracy 
is shown for Locityper with the full reference panel (F), Locityper in the LOO 
setting with and without weights (denoted L and W, respectively) and T1K. The 
last entry in each panel shows the average accuracy across all corresponding 
genes and pseudogenes.
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membrane glycoprotein46 and has a central role in limiting viral load 
and viral propagation in a memory-like manner47. Genetic variations in 
both genes have been associated with systemic lupus erythematosus48 
and other immune disorders49. However, genetic analyses of the FCGR 
genes using high-resolution short reads have been notoriously difficult 
because of recent gene duplication and diversification processes50. 
Nevertheless, at the FCGR2B and FCGR3A receptor genes, Locityper 
(LOO) improves the average QV by 4.95 and 9.3 points, respectively, 
compared to the 1KGP call set (23.0 to 27.9 and 20.3 to 29.6) (Fig. 5d). 
A larger reference panel would probably improve Locityper’s ability 
to genotype FCGR genes even further because the tool achieves much 
higher accuracy (35.6 and 54.0) when using its full reference panel.

Moreover, Locityper (LOO) achieves significant QV improvement 
(12.3) at the CFH gene, which is associated with age-related vision loss 
and kidney disorders51,52. Finally, Locityper showed on average a 4.6 
higher QV across 16 protein-coding CYP2 genes that have a major role 
in drug metabolism53,54. Out of the CYP2 genes, Locityper achieved the 
highest improvement at CYP2U1 (10.2), CYP2A13 (10.8) and CYP2W1 
(11.6) (Fig. 5d).

Runtime and memory usage
Locityper WGS preprocessing (executed once per dataset) took on 
average 16 min using eight threads and consumed 15 Gb of RAM for  
30× Illumina WGS datasets. If a dataset with a similar library preparation 
was previously processed, read mapping can be skipped, which speeds 
up WGS preprocessing to under 3 min. The next step, read recruitment, 
can simultaneously identify reads for multiple target loci. Because 
reading and decompressing input data was the most time-consuming 
operation, recruitment speed did not depend on the number of loci 
(1–256 tested) and lasted under 15 min on average.

Next, mapping reads to the reference panels across 256 target loci 
took under 19 min using eight threads; locus genotyping consumed 
another 45 min. Together, these two steps required approximately  
15 s per target locus and 7 Gb of RAM. Locityper uses stringent haplo-
type filtering as the first genotyping step, allowing it to avoid quadratic 

runtime. Thus, full analysis based on five-times-larger reference panels 
(obtained by artificially mutating existing haplotypes) required only 
three times as much time (Extended Data Fig. 8).

Altogether, Locityper analysis of the MHC and KIR loci, including 
preprocessing, required 35 min using eight threads. However, genotyp-
ing in the weighted mode was more computationally intensive, raising 
the total runtime to 1 h and 5 min. At the same time, T1K with eight 
threads required on average 2 h and 30 min and 48 min to process the 
MHC and KIR loci, respectively, and required 2.5 Gb of RAM. Pangenie 
calls variants across the whole genome; consequently, it had a heavier 
runtime and memory footprint: at 24 threads, its pangenome indexing 
(executed once) and genotyping steps took 34 min and 1 h and 40 min, 
respectively, and consumed 60 and 37 Gb of RAM.

In addition to unmapped data, Locityper and T1K can efficiently 
use mapped reads (in BAM/CRAM format for Locityper and BAM for-
mat for T1K) by only recruiting reads aligned to the regions of interest 
or to alternative contigs, as well as unmapped reads. Additionally, by 
examining existing alignments, Locityper can preprocess WGS datasets 
almost immediately. Overall, this decreases T1K runtime to 45 min and 
23 min for the HLA and KIR loci, respectively, and speeds up the full 
Locityper pipeline for these genes to 10 min.

Discussion
In this study, we present Locityper, a targeted method for genotyping 
complex polymorphic genes using both short-read and long-read WGS. 
Locityper implements fast read recruitment to a collection of target 
loci, and uses a carefully balanced probabilistic model to calculate 
genotype likelihoods based on read alignment, insert size and read 
depth profiles. Locityper uses ILP or stochastic optimization to find 
the most likely genotype for each target locus. Locityper departs from 
the prevalent variant-centric approach, which we argue constitutes 
a particular limitation for highly polymorphic loci. In contrast, our 
approach leverages collections of known haplotype sequences, which 
can be extracted from a pangenome reference or directly provided 
by the user. By examining larger regions around genes of interest, 
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among haplotypes at this locus60. c, Difference in average haplotyping accuracy 
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39 Illumina WGS datasets. Improvement for the LOO setting and the full 
Locityper database are shown using dark and light shades, respectively. Tethered 
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Locityper inherently makes use of any available information, includ-
ing the intergenic sequence, gene order, SVs and copy number of short 
tandem repeats. Locityper is easy to install via Docker, Singularity or 
Conda, only requires easy-to-obtain input files, and has a small memory 
footprint and significantly shorter runtime than both T1K and Pangenie.

We demonstrated Locityper’s accuracy through excellent agree-
ment to both phased genome assemblies and Mendelian consistency 
across the 563 family trios included in the 1KGP cohort. When evaluated 
across a wide range of challenging disease-associated genes, Locityper 
produces significantly more accurate haplotype predictions compared 
to state-of-the-art phased variant calling pipelines on Illumina and 
PacBio HiFi data. Locityper’s accuracy remains consistently high across 
several input sequencing technologies, performing well for Illumina, 
simulated short reads, PacBio HiFi and ONT datasets.

At present, the size of the available collections of reference hap-
lotypes still poses a limitation: overall, 33% haplotypes did not have a 
good representative (QV < 33) in the LOO reference panels (Fig. 2d). 
Therefore, despite Locityper’s ability to predict haplotypes close to 
the best available, the resulting accuracy is not yet ideal for all genes 
of interest. Significantly larger pangenomes are presently being 
constructed by the HPRC15 and we are confident that these future 
pangenomes will lead to a significant increase in performance on 
out-of-sample individuals for more complex polymorphic genes. Even 
now, Locityper outperforms the specialized genotyper T1K across HLA 
and KIR genes in a LOO setting and shows improved ability to genotype 
other medically relevant gene families (for example, MUC and FCGR) 
using short-read WGS.

As part of this study, we used Locityper to process 3,202 Illumina 
WGS datasets from the 1KGP and make the obtained genotypes avail-
able, which provides a resource for deeper analyses of 256 challenging 
target loci. Additionally, publicly available Locityper-preprocessed 
WGS summaries will allow for faster genotyping of genes that were not 
a focus of this study across the 1KGP cohort. We envision that Locityper 
will enable the inclusion of complex loci in GWAS55 and PheWAS56 analy-
ses, especially in a larger cohort, such as the All-of-Us program25 and the 
UKB26, which promises to discover many new associations and explain 
missing heritability. Of note, Locityper’s ability to process both short 
and long reads might prove especially useful for the increasing produc-
tion of long reads in the context of biobank-scale sequencing efforts.

For a given locus, Locityper aims to find two existing haplotypes 
that would explain an input WGS dataset in the best way. Consequently, 
it is not designed to reconstruct a new haplotype, even if it constitutes 
a mixture of already known haplotypes. To address this, Locityper 
outputs read alignments to the top predicted genotypes, which can be 
used later for visual analysis or variant calling. Combined with assembly 
polishing57, this could improve genotyping accuracy and allow for the 
reconstruction of previously unobserved alleles, a strategy that we 
plan to explore in future research.

Currently, two loci with significant homology, for example, part of 
a non-tandem segmental duplication, can only be processed indepen-
dently, with potentially overlapping sets of recruited reads. Locityper 
mitigates this problem by tracking the number of off-target k-mers per 
read and haplotype window. Nevertheless, further improvements are 
conceivable, such as using a shared pool of reads for related loci, like 
the strategy implemented by T1K23.

In conclusion, Locityper allows for fast and accurate targeted 
genotyping of challenging polymorphic loci using several sequencing 
technologies. With the current draft pangenome containing highly 
accurate phased genome assemblies, Locityper routinely achieves 
sequence accuracies above a QV of 33, which is comparable to genome 
assemblies from Oxford Nanopore data29. As more human haplotypes 
are represented in pangenomes, we expect the accuracy to improve 
further, which will facilitate detailed analysis of previously intrac-
table genes, leading to improved diagnostic power and new disease 
associations.
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Methods
In this article, we present a targeted tool, Locityper, designed for geno-
typing complex multiallelic loci. Locityper processes WGS data pro-
duced by several different sequencing technologies, including highly 
accurate short and long reads (such as Illumina and PacBio HiFi data, 
respectively), as well as error-prone long reads, such as PacBio CLR and 
Oxford Nanopore data. Locityper can efficiently analyze unmapped 
reads stored in various formats, as well as mapped reads from sorted 
and indexed BAM and CRAM files.

Broadly, the method can be split into several steps: (1) preprocess-
ing of target loci; (2) sample preprocessing, performed once for each 
WGS dataset; (3) read recruitment, carried out simultaneously for 
multiple loci; and (4) locus genotyping and generation of BAM files 
with alignment to the best genotypes.These steps are described in 
more detail in the following sections.

Preprocessing of target loci
Locityper uses solely locus haplotype sequences and does not require 
any kind of additional graph structure. Locus haplotypes can be pro-
vided directly in a FASTA file. Alternatively, Locityper can automatically 
extract locus haplotypes from a pangenome, provided in variant calling 
format (VCF) (constructed, for example, using Minigraph-Cactus61).

When locus haplotypes are extracted from a VCF file, Locityper 
tries to extend the locus in such a way that both locus ends do not 
overlap any pangenomic variation. Additionally, the tool tries to 
select a position that would produce the largest number of unique 
canonical k-mers at the edges of the locus (default edge size = 500 bp).  
In the default configuration, locus extension is limited to 50 kb at  
each side, but can fail if there is a longer SV at the locus boundary. In 
such cases, the user can either increase the allowed extension size or 
set the boundaries manually.

Finally, Locityper finds off-target k-mer multiplicities, calculated 
as the difference between canonical k-mer counts across the full refer-
ence genome (calculated using Jellyfish62 with recommended k = 25) 
and the corresponding k-mer counts at the reference locus sequence.

WGS dataset preprocessing
Locityper aims to probabilistically describe three features of a given 
WGS dataset, that is, insert size, error profile and read depth, by 
examining read alignments to a predefined background region. For 
human WGS data, we used a 4.5 Mb interval on chromosome 17q25.1 
as the default background region because it contains almost no seg-
mental duplications or other types of structural variations. Loci-
typer first recruits input reads to the background region (see ‘Read 
recruitment’), optionally subsamples them and then maps them to 
the reference genome using Strobealign63 (short reads) or Minimap2 
(ref. 64) (long reads).

Insert size. Manual examination of several paired-end WGS datasets 
from the HPRC project15 indicated that the negative binomial (NB) 
distribution fits insert size distribution the best (Extended Data 
Fig. 9). For a given WGS dataset, we used all fully mapped read pairs 
(clipping less than 2% of the read length, by default) with high map-
ping quality (≥20). We removed outliers by defining the maximum 
allowed insert size as three times the 99th percentile of the observed 
insert sizes, and discarded violating read pairs. Finally, we obtained 
the NB distribution parameters using the method of moments. Dur-
ing the next two preprocessing steps, we only used read pairs with 
insert sizes within the 99.9% confidence interval of the correspond-
ing NB distribution.

Error profile. We used two distributions to describe the WGS error 
profiles. First, we used the beta binomial (BB) distribution to evaluate 
the edit distance based on read length. The distribution was fitted using 
the maximum likelihood estimation based on the remaining read pairs. 

The obtained BB distribution was used to distinguish between true and 
off-target alignments at the genotyping stage.

Second, we calculated match, mismatch, insertion and deletion 
rates (PM, PX, PI, PD, respectively) and defined the alignment likelihood 
as the product of the corresponding rates to the power of the number 
of operations. For example, alignment with 100 matches, one mismatch 
and two insertions would have a likelihood of P 100

M × P 1
X × P

2
I × P

0
D . Note 

that the probabilities do not sum up to one and are incomparable 
between reads of different lengths. Nevertheless, this formulation 
produces fast-to-calculate probabilities and provides a way to numeri-
cally compare different alignments of the same read.

Read depth. We split the background region into windows of fixed size 
based on the mean read length and assigned reads to windows based 
on the middle of the corresponding read alignments. Next, we counted 
the number of primary read alignments assigned to each window. 
(Only first mates were counted to preserve window independence.)65

For each window, we calculated the guanine-cytosine (GC) con-
tent and the fraction of unique k-mers in an area centered around the 
window. Next, we selected windows with many unique k-mers (≥90%) 
and estimated the mean read depth and variance across various GC 
content values using local polynomial regression66. NB parameters were 
then estimated separately for each GC content based on the smoothed 
mean, variance and subsampling rate (Supplementary Information).

Read recruitment
After dataset preprocessing, Locityper recruits reads to all target loci. 
For that, we collected minimizers67 from each locus and each haplotype 
(default: (10,15)-minimizers). Uninformative minimizers, which appear 
five or more times off-target, were ignored. Locityper compares read 
and target minimizers in parallel and recruits reads to one or several 
loci according to one of the following rules: short reads are recruited 
if a sufficient fraction of minimizers matches the target for all read 
ends (default: 0.7 and 0.5 for single-end and paired-end reads). Lower 
match fraction values lead to an increased number of unnecessarily 
recruited reads, which increases read mapping runtime but does not 
significantly affect genotyping accuracy because false positive reads 
are discarded at a later stage.

Only a small part of a long read may overlap a given target locus. 
Consequently, we recruited a long read if it contained a subregion with 
sufficiently many minimizer matches. For that, we used the following 
heuristic: matching and mismatching informative minimizers are 
assigned s+/s− scores (default: +3/−1); a read was recruited if it had a 
continuous subsequence, with a sum score greater or equal to

⌈ 2L
M(s+ − s−) + s−

mw + 1 ⌉ (1)

where L is the subregion length (default: 2,000 bp), M is the match 
fraction (default: 0.5) and 2L/(mw + 1) is the expected number of  
(mw, mk) minimizers per L base-pair sequence68. This heuristic is  
useful because it can be quickly evaluated using Kadane’s algorithm69 
and is not too restrictive: shorter read subregions with a higher match 
rate may produce a hit, and vice versa.

Genotype likelihood
Read location probabilities. After read recruitment, every target 
locus was genotyped independently from other loci. Reads, recruited 
to the locus, were aligned to all haplotypes H using either Strobealign63 
or Minimap2 (ref. 64), depending on the read type. The obtained read 
alignments were assigned BB P values according to their edit distances 
and read lengths. A read pair was retained if both read ends had at 
least one good alignment (P ≥ 0.01) to at least one of the haplotypes 
(approximately 3% read pairs discarded per locus). All alignments with 
BB P < 0.001 were discarded.
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Without loss of generality, we describe the following steps for 
paired-end reads and use notation r = (r1, r2) to describe a read pair. 
Each locus haplotype h ∈ H was split into nonoverlapping windows W(h) 
of fixed size (same size as in read depth preprocessing); furthermore, 
we expanded W(h) by adding a null window w∘. Each alignment is con-
nected to a single window w based on the middle point of the alignment, 
with alignment probability P(rj,w) calculated according to the precom-
puted error profile. Reads without proper alignment to h are connected 
to the null window w∘; we defined P(rj, w∘) as Λ ⋅max

h
P(rj,h), that is, the 

probability of the best rj alignment to any haplotype, multiplied by a 
penalty Λ (10−5 by default).

The paired-end alignment probability of the read pair r = (r1, r2)  
to windows w = (w1, w2) can be written as P(r,w) = P(r1,w1)×
P(r2,w2) × Pinsert(r,w), where the last term is calculated according to the 
precomputed insert size distribution. For the null windows, we defined 
insert size probability as the highest probability achievable under the 
precomputed insert size distribution. Thus, the insert size between a 
read end and its unmapped counterpart is assumed to be optimal to 
only penalize unpaired locations once. Finally, we denoted the full set 
of possible read pair locations on haplotype h as L(h) ⊂ W(h) × W(h) and 
defined the probability of the read pair r location to be w as the normal-
ized alignment probability:

𝒫𝒫rw = 𝒫𝒫(r,w)
∑h′∈H∑u∈L(h′)𝒫𝒫(r,u)

(2)

Some parts of the target loci can have high homology to other 
genomic regions. Consequently, we downgraded the effect of poten-
tially misrecruited reads by setting equal probabilities to all locations 
for read pairs with fewer than five target-specific k-mers.

Read assignment. Without loss of generality, let us consider a diploid 
genotype g = (h1, h2). We combined windows across the two haplotypes 
W(g) = W(h1) ∪W(h2). If h1 = h2, we used two copies of each window, such 
that ∣W(g)∣ is always |W(h1)| + |W(h2)|. Similarly, we concatenated possible 
locations L(h1) and L(h2) to achieve a combined list of locations L(g).

We described read assignment to the genotype g using a Boolean 
matrix T, where Trw = 1 encodes the statement ‘true location of the read 
pair r is w’ and every row contains exactly one true element. Probability 
of the read assignment T given read pairs R can be described as the total 
probability of all selected locations:

P(T |R) = ∏
r∈R

∑
w∈L(g)

Trw ⋅ 𝒫𝒫rw (3)

Read depth likelihood. In addition to good alignment probabilities, 
optimal haplotypes should have stable haploid read depth. The cor-
responding conditional probability can be written as:

P (CN(g) = 1 |T ) = ∏
w∈W (g)

P (CN(w) = 1 |dw(T )) (4)

In this equation, dw(T) denotes the window w depth according to the 
read assignment T, defined as ∑r∑u [Tr,wu + Tr,uw]. At CN = 1, read depth 
follows the NB distribution with the precomputed parameters n and 
ψ. Bayes’ theorem with equal priors produces the following result:

φw(T ) = P (CN(w) = 1 |dw(T ) = d) =
NB (d; n,ψ)

∑c∈{1}∪Calt
NB (d; cn,ψ)

(5)

where alternative hypotheses are represented by a set Calt. We found it 
beneficial to use Calt = {0.5, 1.5}; in other words, a half divergence from 
the expected read depth was considered significant. As unmapped 
reads are already penalized by low alignment probabilities P(r, w∘), we 
defined P(CN(w∘) = 1 | d) for any read depth d.

Window and read weights. Low-complexity regions, and short and 
long repeats, evoke difficulties in read sequencing, recruitment and 
alignment. To assign window weights in a continuous fashion, we 
defined the following two parametric function ϑ: [0, 1] ↦ [0, 1] as:

𝜗𝜗(x;η,q) =
⎧
⎨
⎩

0 if x = 0,
1

( η
x
× 1−x

1−η
)
q
+1

otherwise (6)

ϑ exhibits several useful properties: it is a strictly increasing smooth 
function such that ϑ(0) = 0 and ϑ(1) = 1. The location parameter  
η ∈ (0, 1) defines the break point ϑ(η; η, q) = 1/2 ∀q, while the power 
parameter q controls the slope of the function, with larger q produc-
ing larger derivative 𝜗𝜗′(η;η,q)  (Extended Data Fig. 10). Finally, we 
defined window w weight ζw = ϑ(x1; η1, q1) × ϑ(x2; η2, q2) based on the 
fraction of the locus-specific k-mers x1 and linguistic sequence com-
plexity x2 = U1U2U3, where Ui is the fraction of unique i-mers in window 
w of the maximal possible number of distinct i-mers70, with the default 
parameters η1 = 0.2, η2 = 0.5 and q1 = q2 = 4.

Locityper accepts explicit user-defined weights for each base 
pair of the input haplotypes, useful, for example, for downweight-
ing noncoding sequence. In such cases, ζw is multiplied by the aver-
age weight across window w, while each read receives its own weight 
based on the maximum explicit weight under the primary alignments 
of both read ends. After that, read weights are used as multipliers to 
log-location-probabilities.

Combined likelihood and likelihood update. Not accounting for 
window weights, combined likelihood for a genotype g and read assign-
ment T can be calculated as:

P (CN(g) = 1,T |R) = P (T |R) × P (CN(g) = 1 |T )

= ∏
r∈R

∑
v∈L(g)

Trv ⋅ 𝒫𝒫rv × ∏
w∈W(g)

φw(T )
(7)

Next, we moved the calculations to log-space, added window weight 
ζw and introduced the contribution factors ΩR, ΩD ≥ 0, which represent 
the relative importance of read alignment and read depth likelihoods, 
respectively. Then, the log-likelihood ℒ can be written as:

ℒ(g)
T = ΩR ∑

r∈R
∑

w∈L(g)
Trw log𝒫𝒫rw + ΩD ∑

w∈W(g)

ζw logφw(T ) (8)

The contribution factors ΩR and ΩD are necessary because read align-
ments can overshadow read depth due to the large number of read pairs 
and large differences between several read alignments. The factors 
should sum up to two to generate the same range of likelihoods as in 
the unweighted case (ΩR = ΩD = 1). We used the default values ΩR = 0.15 
and ΩD = 1.85 because they produced good results across a selection of 
target loci and sequencing datasets. When needed, users can provide 
custom Ω values to adjust read alignment and depth balance for specific 
loci of interest to achieve optimal accuracy.

Likelihood update. Given the ℒ(g)
T  log-likelihood for genotype g and 

some read assignment T, we can efficiently calculate the ℒ(g)
T′  log- 

likelihood for a new read assignment T′ if the read assignment has 
changed for only one read pair. Suppose that the read assignment 
changed for read pair r from location uv (in T) to u′v′ (in T′). Then, the 
read depth likelihood values φw(T′) will be identical to φw(T) for all win-
dows except for u, v,u′, v′, where read depth can be recomputed quickly. 
This way, the log-likelihood can be recalculated in constant time:

ℒ(g)
T′ = ℒ(g)

T + ΩR ⋅ (log𝒫𝒫r,u′v′ − log𝒫𝒫r,uv)

+ ΩD ∑
w∈{u,v,u′ ,v′}

ζw ⋅ (logφw(T′) − logφw(T ))
(9)
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Finding the best read assignment
For each genotype g, we aimed to find such read assignment T that 
would maximize the joint ℒ(g)

T  log-likelihood. Locityper implements 
three approaches for finding such read assignment: stochastic greedy 
approach71; simulated annealing72; and ILP73. The first two algorithms 
start from an arbitrarily generated read assignment T, then iteratively 
select a random read pair r and switch its location if it increases the 
genotype likelihood. In addition to good location switches, simulated 
annealing permits bad switches (decreasing the overall likelihood), 
gradually restricting the frequency of such events.

In an ILP formulation, we introduced two sets of unknowns: xrw 
∈ {0, 1} for each read pair r and each location w ∈ L(g); and ywd ∈ {0, 1} 
for each window w ∈ W(g) and each possible window depth d between 
zero and the maximal possible read depth (Dmax). The problem can be 
written as follows:

Maximize ∑
r∈R

∑
w∈L(g)

xrw ⋅ΩR log𝒫𝒫rw + ∑
w∈W(g)

Dmax

∑
d=0

ywd ⋅ΩDζwφw(d )

Subject to ∑
w∈L(g)

xrw = 1 ∀r ∈ R,

Dmax

∑
d=0

ywd = 1 ∀w ∈ W(g),

∑
r∈R

∑
u∈W(g)

(xr,wu + xr,uw) −
Dmax

∑
d=0

d ⋅ ywd = 0 ∀w ∈ W(g)

(10)

Note that we can remove variables xr for trivial read pairs, which 
map to only one possible location; at the same time, the number of 
possible read depth variables yw is exactly one more than the number 
of nontrivial read pairs mapping to w. Finally, the sum ∑r∈R∑u∈W(g) in 
the third constraint can be limited to windows and read pairs relevant 
to window w. Locityper uses two commercial ILP solvers, both available 
under academic licenses: HiGHS74 and Gurobi (www.gurobi.com). Note 
that it is possible to state a bigger ILP problem by removing the need 
to iterate over all possible genotypes (Supplementary Information). 
However, we observed that existing ILP solvers are unable to quickly 
and accurately find a solution to such a problem.

Locus genotyping
To find the best locus genotype for the input WGS data, Locityper finds 
the best read assignment and the corresponding genotype likelihood 
for each possible locus genotype (Fig. 1). To speed up the process, we 
started by calculating the log-likelihood in the absence of read depth 
(ΩD = 0), which can be efficiently computed by assigning every read to 
its most probable location. Then, we used heuristic filtering by remov-
ing all genotypes whose likelihood is 10100 smaller than the best likeli-
hood (the first 500 genotypes are kept regardless of the likelihood). For 
all remaining genotypes, the best read assignment is found using one 
of the three approaches described above. Even though the ILP solvers 
typically find better read assignments, we used simulated annealing 
as the default solver because it produces decent read assignments in 
a fraction of the ILP solving time.

Splitting locus haplotypes into nonoverlapping windows is an 
intrinsically discrete process. Furthermore, windows can be shifted 
across different haplotypes because of the presence of indels. Con-
sequently, identical read depth profiles may produce varying read 
depth likelihoods depending on the window boundaries. To reduce 
this effect, we performed a procedure similar to noise injection 
regularization75, where we randomly moved read alignment centers 
to either direction and reassigned reads to windows. In addition, 
we redefined the window GC content values and ζw weights as if the 
window was randomly moved (the actual window boundaries stay 
fixed). In a default configuration, read and window movement is 
limited to half-window size or 200 bp, whichever is smaller. Repeat-
ing noise injection several times (20 by default), together with the 

stochastic nature of likelihood maximization, produces a distribution 
of log-likelihoods for each genotype.

Finally, Locityper selects a primary genotype with the highest 
average log-likelihood and calculates its Phred quality27 based on the 
probability of error: the probability that the true log-likelihood of any 
other genotype is higher than the true log-likelihood of the primary 
genotype, calculated using a one-sided Welch’s t-test76. Additionally, 
we redefined genotype probabilities as the probability of having the 
highest true likelihood, calculated as the product of inverse t-test  
P values for all pairwise genotype comparisons.

Moreover, Locityper outputs the number of unexplained reads, 
which map to some but not to the two predicted haplotypes. Finally, 
Locityper outputs a weighted Jaccard distance between the minimizers 
of the primary genotype and other probable genotypes. In an unam-
biguous prediction, this value should be low because all likely geno-
types should be similar to each other. Users can use these values for 
conservative post-genotyping filtering, for example, in the HiFi-based 
LOO evaluation; discarding 20.2% genotypes with over 50 unexplained 
reads raises the median QV from 36.9 to 38.2.

Locus selection
To create a set of target loci, we started with 273 CMR genes7. We 
expanded gene coordinates to a minimum of 10 kb, when needed, and 
supplied positions as input to Locityper locus preprocessing, allowing 
an additional coordinate expansion by at most 300 kb to each of the 
sides (add −e 300k). At this stage, eight genes (ATPAF2, CLIP2, GTF2I, 
GTF2IRD2, IGHV3-21, MRC1, NCF1 and SMN1) were discarded because at 
least one the gene ends was contained in a 300-kb-long pangenomic 
bubble. Afterwards, we removed redundant loci (completely contained 
in another locus), which produced a final set of 256 loci, containing 265 
CMR genes. In similar fashion, we added 33 loci covering genes from 
the MHC and KIR gene clusters, and 31 loci covering the MUC, CFH and 
CYP2 genes. Even though the reference panels were constructed based 
on 90 haplotypes from whole-genome-phased assemblies8, on average 
around 80 unique haplotypes were reconstructed per locus, as some 
haplotypes are not unique while others are only partially assembled 
(Supplementary Table 1). The number of discarded haplotypes signifi-
cantly correlated with genotyping accuracy: the median Locityper QV 
for the PacBio HiFi datasets had Spearman’s ρ = 0.67 with the number 
of duplicate haplotypes (P < 2.2 × 10−16) and ρ = −0.24 with the number 
of unassembled haplotypes (P = 7.5 × 10−5).

Data used in the study
Pangenome reference in VCF was downloaded from https://s3-us-west-2.
amazonaws.com/human-pangenomics/pangenomes/freeze/freeze1/
minigraph-cactus/hprc-v1.1-mc-grch38/hprc-v1.1-mc-grch38.raw.
vcf.gz. Illumina, PacBio HiFi and Oxford Nanopore data for the HPRC 
samples can be found at https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.html?prefix=working. NYGC variant calls 
for the 1KGP samples were downloaded from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/work-
ing/20220422_3202_phased_SNV_INDEL_SV. The 3,202 1KGP Illumina 
datasets are available on the European Nucleotide Archive under acces-
sion nos. PRJEB31736 and PRJEB36890.

Simulated Illumina data were constructed using ART Illumina30 
v.2.5.8 with the parameters -ss HS25 -m 500 -s 20 -l 150 -f 15 for all phased 
haplotype assemblies from the HPRC project, which can be found on 
Zenodo https://doi.org/10.5281/zenodo.5826274.77

Benchmarking Locityper
To evaluate haplotyping accuracy, we computed full-length align-
ments between actual and predicted haplotypes using the Locityper 
align module. Internally, it finds the longest common subsequence of 
k-mers using LCSk++78 and completes the alignment between k-mer 
matches using the wavefront alignment algorithm79,80. Three k-mer 
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raw VCF). Illumina, PacBio HiFi and Oxford Nanopore data for the 
HPRC samples can be found at https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.html?prefix=working. NYGC variant calls 
for the 1KGP samples were downloaded from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/work-
ing/20220422_3202_phased_SNV_INDEL_SV. The 3,202 1KGP Illumina 
datasets are available on the European Nucleotide Archive under acces-
sion nos. PRJEB31736 and PRJEB36890.

Code availability
Locityper is implemented in the Rust programming language, and can 
be installed via conda, singularity and docker. The source code is freely 
available under the terms of the MIT license at https://github.com/
tprodanov/locityper along with installation and usage instructions. 
The Locityper v.0.18.0 source code and additional benchmarking 
scripts can be downloaded from Zenodo88 (https://doi.org/10.5281/
zenodo.10979046).
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Extended Data Fig. 1 | Locityper haplotyping accuracy across 20 PacBio HiFi datasets. Evaluation was performed across 256 challenging medically relevant loci in 
leave-one-out configuration.
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Extended Data Fig. 2 | Haplotype availability in the leave-one-out setting. In the leave-one-out setting, two actual sample haplotypes are removed from the 
database. This figure shows Phred-scaled divergence (QV) between the actual haplotypes and the closest remaining haplotypes.

http://www.nature.com/naturegenetics


Nature Genetics

Technical Report https://doi.org/10.1038/s41588-025-02362-4

Extended Data Fig. 3 | Accuracy of haplotypes, reconstructed from the phased 1KGP call set for 39 HPRC samples. Accuracy is measured in QV and measured across 
256 challenging medically relevant loci.
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Extended Data Fig. 4 | Sniffles haplotyping accuracy for 20 PacBio HiFi datasets. Accuracy is calculated only for phased Sniffles calls (a) as well as for the merged 
callset of Sniffles and DeepVariant calls (b).
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Extended Data Fig. 5 | Locityper trio concordance. Locityper trio concordance evaluated on Illumina WGS data for 563 trios from the 1KGP project; trios with HPRC 
samples were excluded.
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Extended Data Fig. 6 | Locityper haplotyping accuracy using full reference panel. Locityper haplotyping accuracy using full reference panel evaluated on  
40 Illumina datasets (a) and 20 PacBio HiF datasets (b).
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Extended Data Fig. 7 | Stratifying predicted MHC/KIR alleles. On each  
subplot, four bars represent Locityper with the full reference panel (F); Locityper 
in the leave-one-out setting without and with weights (denoted L and W, 
respectively); and T1K. Genotyping is performed for 40 HPRC samples across  
40 (pseudo)genes from the MHC locus (a) and 17 (pseudo)genes from the KIR  
locus (b). T1K/Locityper allele predictions are placed into six categories: extra 
copy for cases when a genotyper called more gene copies than actually present 

in the locus; missing copy when a genotyper failed to call a present gene copy; 
(in)correct protein for predictions where a protein product (second field in the 
HLA/KIR nomenclature) was called (in)correctly; unavailable protein for such 
Locityper LOO predictions, where true protein product is unavailable in the LOO 
database and therefore cannot be correctly identified; and deletion found for 
cases when a genotyper correctly identified a missing gene copy. Last entry in 
each panel shows average fraction across all MHC/KIR genes/pseudogenes.
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Extended Data Fig. 8 | Locityper runtime and memory usage. Locityper 
runtime and memory usage at 10 randomly selected Illumina WGS datasets 
and 256 target loci, with bold lines showing average values. Standard reference 
panel (up to 90 haplotypes) was extended with randomly mutated haplotypes 
to measure the effect of growing pangenomes on Locityper runtime. 
Correspondingly, x-axis shows reference panel size, relative to the non-extended 

panel. Right y-axis shows runtime/peak memory, normalized by the average 
(total) value at the non-extended reference panel. a, Runtime was measured 
across three non-overlapping steps: read recruitment (green); read mapping to 
haplotypes (red); locus genotyping (blue). Total runtime is shown in yellow.  
b, Peak memory usage (Gb).
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Extended Data Fig. 9 | Insert size distribution. Black dots show observed insert sizes for 55 thousands read pairs from the HG00621 Illumina WGS dataset. Colored 
lines show three fitted distributions: Negative Binomial (red), Gaussian (blue) and Poisson (green). Fit log10 likelihoods for all distributions are shown on the right of 
the figure.

http://www.nature.com/naturegenetics


Nature Genetics

Technical Report https://doi.org/10.1038/s41588-025-02362-4

Extended Data Fig. 10 | Two-parametric weight function ϑ. ϑ(x; η, q) with variable q and fixed η = 0.2 (a); and with variable η and fixed q = 2 (b).
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Blinding Samples were not groupped into case-control, instead the only relevant information could be the similarity between analyzed sample 
haplotypes and other haplotypes. This information was not used by researchers until the evaluation stage. Furthermore, the analysis was 
performed automatically using Locityper, which does not support input similarity matrix, and therefore could not be influenced by it.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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