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The human genome contains many structurally variable polymorphicloci,
including several hundred disease-associated genes, almost inaccessible

for accurate variant calling. Here we present Locityper, atool capable

of genotyping such challenging genes using short-read and long-read
whole-genome sequencing. For each target, Locityper recruits and aligns
reads to locus haplotypes, for instance, extracted from a pangenome,
and finds the likeliest haplotype pair by optimizing read alignment, insert
size andread depth profiles. Across 256 challenging medically relevant
loci, Locityper achieves a median quality value (QV) above 35 from both
long-read and short-read data, outperforming state-of-the-art Illumina and
PacBio HiFi variant calling pipelines by 10.9 and 1.7 points, respectively.
Furthermore, Locityper provides access to hyperpolymorphic HLA

genes and other gene families, including KIR, MUC and FCGR. With its low
running time of 1 h 35 m per sample at eight threads, Locityper is scalable
to biobank-sized cohorts, enabling association studies for previously
intractable disease-relevant genes.

Single-nucleotide variants (SNVs) are the most abundant class of
genetic variants segregating in the human population and are at the
same time easy to access using microarray or short-read sequenc-
ing platforms. Unsurprisingly, virtually all genome-wide association
studies (GWAS) seeking to map genotypes to phenotypes have been
focusing on SNVs. In contrast, structural variants (SVs), which are 50 bp
in size or longer, are much more challenging to characterize; more
than half of all SVs per sample are missed by short-read-based variant
discovery', despite their biomedical relevance*’. Almost 750 genes
contain‘dark’ protein-coding exons, where read mapping and variant
calling cannot be adequately performed®; around 400 medically rel-
evantgenesare almostinaccessible because of their repetitive nature
and high polymorphic complexity’. Of them, 273 genes are widely used
forvariant calling and assembly benchmarking®’. Long-read technolo-
giesare needed to address this problem'**and recent long-read-based

genome assembly strategiesindeed led to haplotype-resolved genome
assemblies of diploid samples that routinely resolve many previously
intractable complex genetic loci"*. Nevertheless, long-read sequenc-
ing of large cohorts remains prohibitively expensive, signifying the
need for accurate short-read-based genotyping.

In the meantime, high-quality assemblies are available for
hundreds of human haplotypes and give rise to a pangenome
reference2,8,15. The genetic variation encoded therein can serve as
a basis for genotyping workflows by mapping reads to a pangenome
graph'®" or through k-mer-based genome inference'®. While genome
inference with Pangenie'® has expanded the set of accessible SVs
considerably?, it exhibits limitations at complex loci with few unique
k-mers. As an alternative strategy, methods for targeted genotyping of
genes of specialinterest, such asthe HLA, KIR and CYP2 gene families,
have been developed” 2.
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Inthis study, we propose anew tool, called Locityper, to leverage
genome assemblies ina pangenome reference or custom collection of
locus alleles for fast targeted genotyping of complex loci. Locityperisa
general-purpose genotyper that canefficiently process both short-read
and long-read data; it integrates a range of different signals based on
read depth, alignment identity and paired-end distance ina statistical
model to infer genotype likelihoods. This provides an opportunity
to genotype and analyze a diverse set of previously understudied
genes for already available large sequencing datasets, such as the
1000 Genomes Project cohort and large biobanks like the All-of-Us*
program and the UK Biobank (UKB)*, where disease association stud-
ies canbe performed.

Results

Overview of the method

Locityperisatargeted genotyping tool designed for structurally vari-
able polymorphic loci. For every target region, Locityper finds a pair
of haplotypes (locus genotype) that explain the input whole-genome
sequencing (WGS) dataset ina most probable way. Locus genotyping
depends solely on the reference panel of haplotypes, which can be
automatically extracted from a variant call set representing a pange-
nome, or provided as an input set of sequences. Before genotyping,
Locityper efficiently preprocesses the WGS dataset and probabilisti-
cally describes read depth, insert size and sequencing error profiles.
Next, Locityper uses minimizers to recruit reads to all target loci
simultaneously.

Ateachlocus, Locityper estimates a likelihood for every possible
locus genotype by distributing recruited reads across possible align-
mentlocationsat the corresponding haplotypes (Fig. 1). The likelihood
function is defined in such a way to prioritize read assignments with
a smaller number of sequencing errors; plausible insert sizes across
the read pairs; and stable read depth without excessive dips or rises.
We show that finding a maximum likelihood read assignment can be
formulated as aninteger linear programming (ILP) problem or identi-
fied through stochastic optimization (Methods). Finally, Locityper
identifies agenotype withthe highestjoint likelihood and outputs the
most probable read alignments to the two corresponding haplotypes.

Locityper accurately genotypes challenging loci

Toevaluate Locityper’stargeted genotyping accuracy, we used arefer-
ence panel of 90 haplotypes from phased whole-genome assemblies®
across 256 target loci (Methods) covering 13.9 Mb and fully encom-
passing 265 challenging medically relevant (CMR) genes’ and 23 other
protein-coding genes (Supplementary Table1).

Tomeasure the haplotypingerror, we calculated sequence diver-
gence between actual and predicted haplotypes (Fig. 2a) and cor-
responding Phred-like” quality values (QVs), which are widely used
for genome assembly evaluation®. Then, we distributed haplotype
predictions into five bins based on their QV (<17, 17-23, 23-33, 33-43
and >43), where a haplotype from the last two bins (QV = 33) differs
from an actual haplotype by no more than 5 bp per 10 kb (Fig. 2b),
whichis competitive with long-read genome assemblies from Oxford
Nanopore Technologies (ONT) data®. Note that the haplotypes were
compared across the wholelocus, including both coding and noncod-
ing regions, which avoids the need for gene annotations on highly
variable haplotypes.

First, we genotyped 40 Illumina WGS datasets from the Human
Pangenome Reference Consortium (HPRC) cohort. Each dataset was
processed using the leave-one-out (LOO) approach, where the two
relevant sample haplotypes were excluded from the reference panel.
Across 20,350 cases where locus haplotypes were fully assembled,
Locityperachieved amedian QV = 35.27, with 58.8% haplotypes having
QV =33 (15.2% for QV = 43). On the other hand, 9.1% haplotypes had
QV =17-23 and 5.1% haplotypes had QV <17 (Figs. 2c and 3). Instead
of unmapped reads, Locityper can process existing alignments,
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Fig.1|Illustration of the locus genotyping approach. a, Reference panel of
fourlocus haplotypes (A-D). b, WGS reads, recruited to any of the haplotypes.
For illustrative purposes, haplotypes and reads are colored using homologous
blocks (information, unavailable to Locityper). ¢, Optimal assignments of

reads to various genotypes, where the small red squares show read alignment
mismatches or indels. Genotype A,B has the highest joint likelihood because of a
small number of alignment errors and no lack or excess of read depth.

substantially accelerating the read recruitment stage. This does
not lead to lower accuracy; Locityper predictions for ten mapped
WGS datasets showed virtually identical results (median QV = 35.25;
Supplementary Table 2).

Eventhough HPRC assemblies are very accurate, they may include
assembly or phasing errors, especially at challenging loci. To remove
this factor from the performance analysis, we used ART Illumina® to
simulate 44 short-read datasets and processed them with Locityper.
As expected, the tool showed higher accuracy on simulated datasets,
producingamedian QV = 35.65, with 60.7% and 4.0% haplotypes receiv-
ing QV >33 and <17, respectively (Supplementary Fig. 1a).

Locityper is not limited to short reads and can process various
long-read WGS datasets, including PacBio HiFiand ONT data. For these
technologies, Locityper achieved higher median QVs 0f 36.90 and 35.95,
respectively, and produced 66.6% and 64.5% haplotypes with QV >33
(18.7% and 14.4% with QV > 43), while only 2.9% and 2.0% haplotypes had
QV <17 (Extended Data Fig.1and Supplementary Fig. 1b).

Locityper achieves near-optimal LOO accuracy. By design, Locityper
always associates aninput WGS sample with two existing locus haplo-
types. Therefore, Locityper LOO accuracy is limited to haplotype avail-
ability, thatis, similarity between the actual haplotypes and the closest
haplotype remaining in the LOO panel. Overall, 66.8% haplotypes had
close counterpartsinthe LOO panel (QV > 33;20.0% for QV > 43) (Fig. 2d
and Extended DataFig.2).Inversely,1.2% and an additional 6.5% haplo-
types were dissimilar fromany unrelated haplotype (QV <17 and 17-23).

An optimal solver, which always finds the closest genotype from
the LOO panel, would achieve a median QV = 36.93, just 1.66 points
higher thanIllumina-based Locityper and 0.03 higher than HiFi-based.
For lllumina datasets, Locityper underperforms on average by just
2.03 QV points compared to the theoretical best, with 95.1% (86.8%)
haplotypes trailing by under ten (five) QV points (Fig. 2h). Even fur-
ther, across PacBio HiFi datasets, Locityper predictions differ from
optimal by 0.72 QV points on average; this number drops down to
0.54 when considering well-represented haplotypes (availability >33).
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Fig.2|Haplotype accuracy definition and analysis at 256 CMR loci. a, The
haplotyping error was calculated as the sequence divergence between actual and
predicted haplotypes. The QVis a Phred-like transformation of the haplotyping
error. b, Approximate correspondence between haplotyping error and QV bins.
c-g, Fraction of haplotypes across 256 loci and multiple samples, distributed into
five QV bins (Supplementary Table 2). The median QV is shown above each bar.

¢, Locityper accuracy in the LOO configuration. d, Haplotype availability

(QVbetween actual and closest available LOO haplotypes). e, Haplotyping
accuracy of the IKGP call set, as well as Sniffles and Sniffles + DeepVariant variant
calling. f, Concordance of Locityper predictions across 563 unrelated trios.

g, Locityper accuracy using the full reference panel. h,i, Correspondence
between haplotype availability and haplotyping accuracy based on Illumina (h)
and PacBio HiFi (i) WGS datasets. The red lines mark a 0, 5-point and 10-point
QVloss.

Overall, 98.7% (96.0%) HiFi-based haplotypes were within the ten (five)
point margin (Fig. 2i).

This analysis shows that Locityper performs extremely well when
required haplotypes are present in the reference panel, and achieves
near-optimal accuracy with only limited haplotype sets. Growing num-
bers of haplotypes in pangenomes” are likely to increase Locityper
accuracy even further.

Locityper outperforms variant calling pipelines. By identifying the
two most similar locus haplotypes to a given WGS dataset, Locityper
effectively infers the two haplotype sequences atalocus. This provides
anopportunity to benchmark Locityper against any phased variant call
set, whichlikewise can be interpreted as a prediction of both haplotype
sequences. Consequently, we evaluated the New York Genome Center
(NYGC) call set for the expanded 1IKGP (1000 Genomes Project) cohort
of 3,202 samples?, of which 39 have HPRC assemblies. Even though the
NYGC pipeline uses state-of-the-art variant callers, 1IKGP haplotypes
had significant divergence from the actual sample haplotypes: only
27.4%haplotypes achieved QV >33 and another 22.3% haplotypes had
QV <17, while the median QV was 24.41, almost 11 points smaller than
Locityper on llluminareads (Fig. 2e and Extended Data Fig. 3).

While short-read datasets are difficult to genotype at complex loci,
PacBio HiFi dataare arguably the easiest. To put Locityper performance
in perspective we examined phased SV calls, generated by Sniffles* for

20 HiFi datasets. As Extended Data Fig. 4a shows, Sniffles alone did not
achieve highlevels of accuracy, producing amedian QV = 25.09. Com-
bining SVs with short variant calls, produced by DeepVariant™, raised
the median QV to 35.19, which is 1.71 points behind Locityper on the
same dataand 0.08 points behind Illumina-based Locityper. While Snif-
fles + DeepVariant (Extended Data Fig. 4b) produced a larger fraction
of poor haplotypes (4.7% and 7.9% with QV < 17 and 17-23 against 2.9%
and 6.7% for Locityper), this pipeline also produced a bigger share of
extremely accurate haplotypes (21.7% against 18.7%), probably because
of Locityper’sinability to call new variants.

Locityper produces concordant trio predictions. Additionally, we
genotyped the full IKGP cohort of 3,202 lllumina WGS samples, includ-
ing 563 triosindependent from the HPRC cohort. At each of the target
lociand foreachtriowe calculated concordance, that s, the similarity
between child and parent haplotypes (Methods). As Fig. 2f shows, the
vast majority of trio haplotypes were concordant: 64.8% and 81.7% with
QV =43 and >33, respectively. Moreover, the median concordance QV
surpassed 44.4 and was over 43 at 90% of the loci (Extended DataFig. 5).

Almost perfect accuracy with a full reference panel. Finally, we
examined Locityper’s ability to accurately identify true sample haplo-
types usingafull reference panel. This experiment should mimic future
pangenomes, where almost all haplotypes present in the population
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Fig. 3 | Locityper haplotyping accuracy using an LOO reference panel for 40 Illumina WGS datasets. Predicted haplotypes across 256 CMR loci were binned into five

groups according to their haplotyping QV.

would also existin the reference panel. At each of the sequencing tech-
nologies, Locityper achieved an extremely high median QV (>47) and
produced more than 93% haplotypes with QV > 33. lllumina-based and
ONT-based haplotypes showed slightly lower accuracy: 83.1% and 81.6%
had QV =43, respectively, while only 1.0% and 0.4% had QV <17.On the
other hand, simulated short reads and PacBio HiFi datasets produced
almost perfect haplotypes: 96.6% and 95.1% with QV > 43 and =0.1%
with QV <17 (Fig. 2g, Extended Data Fig. 6 and Supplementary Fig. 2).
Avariantcall set obtained from the Locityper haplotypes using the full
reference panel and Illumina data showed a significantly higher F; score
than the 1IKGP call set, as well as higher precision and recall compared
to the pangenome-based variant caller Pangenie'® (Supplementary
Fig.3 and Supplementary Information).

Locityper accurately genotypes HLA and KIR genes

To evaluate Locityper’s ability to genotype hyperpolymorphic genes,
we examined genes from two medically relevant genomic regions:
the major histocompatibility complex (MHC), covering over 4 Mb
and over 200 genes®, and the KIR gene cluster spanning 150 kb and
17 genes**. The two regions contain extremely polymorphic HLA and
KIR genes, which have an essential rolein adaptive and innate immune
systems®*°, As Locityper genotypes target loci based solely on the
sequences of available haplotypes, itis not limited to gene bodies and
canusetheintergenic sequence, gene order and presence and absence
of copy-number-variable genes. As such, Locityper can predict missing
genes by selecting padded haplotypes that lack the gene of interest.

Multiple specialized tools have been developed for genotyping the
MHClocus**¥, the newest being TIK*, a state-of-the-art® genotyper
for HLA and KIR genes that is capable of processing whole-genome
and whole-exome short-read sequencing data. To compare T1K and
Locityper accuracy, we genotyped 40 Illumina HPRC WGS datasets at
26 genes and 14 pseudogenes from the MHC locus and 14 genes and
three pseudogenes fromthe KIR locus, all combined into 33 target loci
withasumlength of 1.15 Mb.

Inthe LOO configuration, at the MHClocus, Locityper achieved a
full match with assembly-based allele annotation (correctly predicted
allfieldsin the HLA nomenclature®*°) in 88.8% cases, compared to TIK’s
64.1% (Fig. 4a). Atthe same time, the two methods correctly predicted
the protein product (second nomenclature field) in 95.1% and 78.2% of
cases, respectively. Meanwhile, at the KIR gene cluster, Locityper and
T1K correctly predicted protein products in 84.9% and 67.1% cases and
achieved full match in 80.8% and 57.9% cases, respectively (Fig. 4b).
When using the full reference panel, which also containing the input
samples, Locityper achieved almost perfect accuracy: full match in
99.4% and 99.9% of cases at the MHC and KIR loci, respectively.

Unlike TIK, Locityper does not distinguish between exons, introns
and intergenic space. This may resultin lower accuracy when a haplo-
type carrying a false gene allele better explains input reads within a
noncoding sequence. To handle such cases, users may use a weighted
Locityper mode, giving lower weight to read depth and read align-
ments occurring outside exons. Using a weight of 0.1 for introns and
0.005 for intergenic regions, Locityper’s accuracy rose to 96.5%
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isshown for Locityper with the full reference panel (F), Locityper in the LOO
setting with and without weights (denoted L and W, respectively) and T1K. The
lastentry in each panel shows the average accuracy across all corresponding
genes and pseudogenes.

(protein product) and 90.8% (full match) at the MHC locus, and to
89.9% and 86.2% at the KIR cluster (Fig. 4).

Some protein products were present in only one HPRC sample;
consequently, such samples cannot be correctly annotated by Loci-
typer in the LOO setting. Such cases explained 64.6% and 36.2% of all
errors made by Locityper in the weighted mode at the MHC and KIR
loci, respectively (Extended Data Fig. 7). This is especially noticeable
at the hyperpolymorphic HLA-A, HLA-B and HLA-DRBI genes, where
protein groups were missing from the LOO panel in 10-22% of cases,
which explains the vast majority of Locityper errors. At the same time,
T1K often predicted asmaller copy number than required, explaining
79.1% and 24.6% of all errors at the MHC and KIR clusters, respectively.
When ignoring these two error types (missing copy and unavailable
protein groups), Locityper notably outperformed T1K in predicting
protein products: 99.0% against 94.5% at the MHC locus, and 94.6%
against 73.0% at the KIR gene cluster. Overall, the general-purpose tool
Locityper performed inacompetitive manner even when compared to
TIK, which was specifically designed for HLA and KIR genes. However,
accurate genotyping of the most diverse genes would still probably
benefit from larger pangenome sizes.

Accurate genotyping of disease-relevant gene families

Although the set of CMR genes included a wide variety of genetically
diverse genes, several important polymorphic gene families were
underrepresented in it. The mucin genes are a highly heterogeneous
gene family (MUCI-MUC24)*"'. Mucin genes encode large glycoproteins
that are essential to barrier maintenance and the defense of epithelial

tissues. All canonical mucins harbor alarge exon that contains variable
number tandem repeats (VNTRs), whose sequences vary per mucin, yet
each extensively encode serine and threonine residues for glycosyla-
tion*’. The gene family can be broken up into two subgroups: tethered
and secreted mucins. In tethered mucins, single VNTR domains con-
tain variation in total motif copy number and motif usage (Fig. 5a).
Secreted mucins harbor potential variation in VNTR domain copy
number, VNTR motif copy number, VNTR motif usage and cysteine
domain copy number**** (Fig. 5b). The presence of these repetitive
sequences makes mucins both highly polymorphic and difficult to
accurately sequence and genotype using short reads.

Locityper leverages information about both read depth and read
alignment for genotyping; therefore, the tool is well suited to char-
acterizing mucin genetic variation. Based on 39 HPRC lllumina WGS
datasets, Locityper (LOO) haplotypes achieved onaverage a10.5 higher
QV compared to the 1KGP call set across 15 examined MUC loci, with
the largest improvement observed at MUC6 and MUC16 with 29.7 and
18.5 higher QV, respectively (Fig. 5¢). The only negative QV difference
between Locityper and 1KGP was observed at the non-gel-forming
MUC7 gene, where the two haplotype sets showed very high QV values
(43.5and 44.2, respectively).

Further examples of genes that are challenging to address with
standard callingtechniques are FCGR2B and FCGR3A, encoding recep-
tors for the Fc region of the IgG complexes**¢. IgG binding to FCGR2B
induces theimmune complexes of phagocytosis and endocytosis and
thus establishes the basis of antibody production by B cells. The second
receptor, FCGR3A, is expressed on natural killer cells as an integral
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a, Gene model of MUCI, a mucin tethered to the surface of epithelial cells. MUCI
harbors a20-amino-acid VNTR repeat sequence and is highly polymorphicin
VNTR length*, as represented by the example haplotypes 1-3. b, Gene model of
MUCSB, asecreted, gel-forming mucin that isimportant for homeostasis in the
lungs. MUCS5B encodes anirregular 29-amino-acid VNTR motif that is broken up
into separate VNTR domains by cysteine domains. The number of VNTR domains,
cysteine domains and VNTR motifs could each contribute to polymorphism
among haplotypes at this locus®. ¢, Difference in average haplotyping accuracy

T T T T
20 30 40

1KGP accuracy (QV)

(QV) between Locityper and the IKGP call set at 15 mucin genes based on

39 lllumina WGS datasets. Improvement for the LOO setting and the full
Locityper database are shown using dark and light shades, respectively. Tethered
and secreted mucins are shown in purple and green; the only non-gel-forming
secreted mucin MUC7 is marked with an asterisk. d, Locityper (LOO) and 1KGP call
set average genotyping accuracy (QV) across four gene families: CFH (orange);
CYP2 (light green); FCGR (red); and MUC (blue). The diagonal black line shows the
zero improvement boundary and the diagonal gray lines show a Qv improvement
of10,20 and 30. PTS, proline (P), threonine (T), serine (S).

membrane glycoprotein*® and has a central role in limiting viral load
and viral propagationinamemory-like manner”. Genetic variations in
both genes have been associated with systemic lupus erythematosus*®
and otherimmune disorders*’. However, genetic analyses of the FCGR
genes using high-resolution short reads have been notoriously difficult
because of recent gene duplication and diversification processes®.
Nevertheless, at the FCGR2B and FCGR3A receptor genes, Locityper
(LOO) improves the average QV by 4.95 and 9.3 points, respectively,
compared to the 1KGP call set (23.0 to 27.9 and 20.3 t0 29.6) (Fig. 5d).
A larger reference panel would probably improve Locityper’s ability
togenotype FCGR genes even further because the tool achieves much
higher accuracy (35.6 and 54.0) when using its full reference panel.

Moreover, Locityper (LOO) achieves significant QVimprovement
(12.3) at the CFH gene, whichis associated with age-related vision loss
and kidney disorders’"*. Finally, Locityper showed on average a 4.6
higher QV across 16 protein-coding CYP2 genes that have a major role
indrug metabolism®**, Out of the CYP2genes, Locityper achieved the
highest improvement at CYP2UI (10.2), CYP2A13 (10.8) and CYP2W1
(11.6) (Fig. 5d).

Runtime and memory usage

Locityper WGS preprocessing (executed once per dataset) took on
average 16 min using eight threads and consumed 15 Gb of RAM for
30xIllumina WGS datasets. If a dataset with a similar library preparation
was previously processed, read mapping can be skipped, which speeds
up WGS preprocessing to under 3 min. The next step, read recruitment,
can simultaneously identify reads for multiple target loci. Because
reading and decompressing input data was the most time-consuming
operation, recruitment speed did not depend on the number of loci
(1-256 tested) and lasted under 15 min on average.

Next, mappingreads to thereference panels across 256 target loci
took under 19 min using eight threads; locus genotyping consumed
another 45 min. Together, these two steps required approximately
15 s per target locus and 7 Gb of RAM. Locityper uses stringent haplo-
typefiltering as the first genotyping step, allowing it to avoid quadratic

runtime. Thus, full analysis based on five-times-larger reference panels
(obtained by artificially mutating existing haplotypes) required only
three times as much time (Extended DataFig. 8).

Altogether, Locityper analysis of the MHC and KIR loci, including
preprocessing, required 35 min using eight threads. However, genotyp-
inginthe weighted mode was more computationally intensive, raising
the total runtime to 1 h and 5 min. At the same time, T1K with eight
threads required on average 2 hand 30 min and 48 min to process the
MHC and KIR loci, respectively, and required 2.5 Gb of RAM. Pangenie
calls variants across the whole genome; consequently, it had a heavier
runtime and memory footprint: at 24 threads, its pangenome indexing
(executed once) and genotyping stepstook 34 minand1hand 40 min,
respectively, and consumed 60 and 37 Gb of RAM.

In addition to unmapped data, Locityper and T1K can efficiently
use mapped reads (in BAM/CRAM format for Locityper and BAM for-
mat for T1K) by only recruiting reads aligned to the regions of interest
or to alternative contigs, as well as unmapped reads. Additionally, by
examining existing alignments, Locityper can preprocess WGS datasets
almostimmediately. Overall, this decreases T1K runtime to 45 min and
23 min for the HLA and KIR loci, respectively, and speeds up the full
Locityper pipeline for these genes to 10 min.

Discussion

Inthis study, we present Locityper, atargeted method for genotyping
complex polymorphicgenes using bothshort-read and long-read WGS.
Locityper implements fast read recruitment to a collection of target
loci, and uses a carefully balanced probabilistic model to calculate
genotype likelihoods based on read alignment, insert size and read
depth profiles. Locityper uses ILP or stochastic optimization to find
the most likely genotype for each target locus. Locityper departs from
the prevalent variant-centric approach, which we argue constitutes
a particular limitation for highly polymorphic loci. In contrast, our
approachleverages collections of known haplotype sequences, which
can be extracted from a pangenome reference or directly provided
by the user. By examining larger regions around genes of interest,
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Locityper inherently makes use of any available information, includ-
ing the intergenic sequence, gene order, SVs and copy number of short
tandem repeats. Locityper is easy to install via Docker, Singularity or
Conda, only requires easy-to-obtaininput files,and has asmall memory
footprintand significantly shorter runtime thanboth T1IK and Pangenie.

We demonstrated Locityper’s accuracy through excellent agree-
ment to both phased genome assemblies and Mendelian consistency
acrossthe 563 family triosincluded inthe 1IKGP cohort. When evaluated
acrossawiderange of challenging disease-associated genes, Locityper
produces significantly more accurate haplotype predictions compared
to state-of-the-art phased variant calling pipelines on Illumina and
PacBio HiFidata. Locityper’saccuracy remains consistently high across
several input sequencing technologies, performing well for lllumina,
simulated shortreads, PacBio HiFiand ONT datasets.

At present, the size of the available collections of reference hap-
lotypes still poses a limitation: overall, 33% haplotypes did not have a
good representative (QV < 33) in the LOO reference panels (Fig. 2d).
Therefore, despite Locityper’s ability to predict haplotypes close to
the best available, the resulting accuracy is not yet ideal for all genes
of interest. Significantly larger pangenomes are presently being
constructed by the HPRC" and we are confident that these future
pangenomes will lead to a significant increase in performance on
out-of-sampleindividuals for more complex polymorphic genes. Even
now, Locityper outperforms the specialized genotyper T1K across HLA
and KIR genesin aLOO setting and showsimproved ability to genotype
other medically relevant gene families (for example, MUC and FCGR)
using short-read WGS.

As part of this study, we used Locityper to process 3,202 lllumina
WGS datasets from the 1IKGP and make the obtained genotypes avail-
able, which provides aresource for deeper analyses of 256 challenging
target loci. Additionally, publicly available Locityper-preprocessed
WGS summaries will allow for faster genotyping of genes that were not
afocus of this study across the IKGP cohort. We envision that Locityper
will enable the inclusion of complex lociin GWAS* and PheWAS>® analy-
ses, especially inalarger cohort, such as the All-of-Us program* and the
UKB?®, which promises to discover many new associations and explain
missing heritability. Of note, Locityper’s ability to process both short
and long reads might prove especially useful for the increasing produc-
tion of long reads in the context of biobank-scale sequencing efforts.

For agivenlocus, Locityper aims to find two existing haplotypes
that would explainaninput WGS dataset in the best way. Consequently,
itisnot designed toreconstruct anew haplotype, evenifit constitutes
a mixture of already known haplotypes. To address this, Locityper
outputsread alignments to the top predicted genotypes, which canbe
used later for visual analysis or variant calling. Combined with assembly
polishing®, this could improve genotyping accuracy and allow for the
reconstruction of previously unobserved alleles, a strategy that we
planto explorein future research.

Currently, two loci with significant homology, for example, part of
anon-tandem segmental duplication, can only be processed indepen-
dently, with potentially overlapping sets of recruited reads. Locityper
mitigates this problem by tracking the number of off-target k-mers per
read and haplotype window. Nevertheless, furtherimprovements are
conceivable, such as using a shared pool of reads for related loci, like
the strategy implemented by TIK*.

In conclusion, Locityper allows for fast and accurate targeted
genotyping of challenging polymorphicloci using several sequencing
technologies. With the current draft pangenome containing highly
accurate phased genome assemblies, Locityper routinely achieves
sequenceaccuracies above a QV of 33, whichis comparable to genome
assemblies from Oxford Nanopore data?. Asmore human haplotypes
are represented in pangenomes, we expect the accuracy to improve
further, which will facilitate detailed analysis of previously intrac-
table genes, leading to improved diagnostic power and new disease
associations.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-025-02362-4.
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Methods

Inthisarticle, we present a targeted tool, Locityper, designed for geno-
typing complex multiallelic loci. Locityper processes WGS data pro-
duced by several different sequencing technologies, including highly
accurate short and long reads (such as lllumina and PacBio HiFi data,
respectively), as well as error-prone long reads, suchas PacBio CLR and
Oxford Nanopore data. Locityper can efficiently analyze unmapped
reads stored in various formats, as well as mapped reads from sorted
andindexed BAM and CRAMfiles.

Broadly, the method canbe splitinto several steps: (1) preprocess-
ing of target loci; (2) sample preprocessing, performed once for each
WGS dataset; (3) read recruitment, carried out simultaneously for
multiple loci; and (4) locus genotyping and generation of BAM files
with alignment to the best genotypes.These steps are described in
more detail in the following sections.

Preprocessing of target loci

Locityper uses solely locus haplotype sequences and does not require
any kind of additional graph structure. Locus haplotypes can be pro-
vided directlyin aFASTAfile. Alternatively, Locityper can automatically
extractlocus haplotypes from a pangenome, providedin variant calling
format (VCF) (constructed, for example, using Minigraph-Cactus®).

When locus haplotypes are extracted from a VCF file, Locityper
tries to extend the locus in such a way that both locus ends do not
overlap any pangenomic variation. Additionally, the tool tries to
select a position that would produce the largest number of unique
canonical k-mers at the edges of the locus (default edge size = 500 bp).
In the default configuration, locus extension is limited to 50 kb at
each side, but can fail if there is a longer SV at the locus boundary. In
such cases, the user can either increase the allowed extension size or
set the boundaries manually.

Finally, Locityper finds off-target k-mer multiplicities, calculated
asthe difference between canonical k-mer counts across the full refer-
ence genome (calculated using Jellyfish®* with recommended k = 25)
and the corresponding k-mer counts at the reference locus sequence.

WGS dataset preprocessing

Locityper aims to probabilistically describe three features of agiven
WGS dataset, that is, insert size, error profile and read depth, by
examining read alignments to a predefined background region. For
human WGS data, we used a4.5 Mb interval on chromosome 17q25.1
asthe default background region because it contains almost no seg-
mental duplications or other types of structural variations. Loci-
typer first recruits input reads to the background region (see ‘Read
recruitment’), optionally subsamples them and then maps them to
thereference genome using Strobealign® (short reads) or Minimap2
(ref. 64) (long reads).

Insert size. Manual examination of several paired-end WGS datasets
from the HPRC project” indicated that the negative binomial (NB)
distribution fits insert size distribution the best (Extended Data
Fig.9).For agiven WGS dataset, we used all fully mapped read pairs
(clipping less than 2% of the read length, by default) with high map-
ping quality (>20). We removed outliers by defining the maximum
allowed insert size as three times the 99th percentile of the observed
insertsizes, and discarded violating read pairs. Finally, we obtained
the NB distribution parameters using the method of moments. Dur-
ing the next two preprocessing steps, we only used read pairs with
insertsizes within the 99.9% confidence interval of the correspond-
ing NB distribution.

Error profile. We used two distributions to describe the WGS error
profiles. First, we used the beta binomial (BB) distribution to evaluate
theeditdistance based onread length. The distribution was fitted using
the maximum likelihood estimation based on the remaining read pairs.

The obtained BB distribution was used to distinguish between true and
off-target alignments at the genotyping stage.

Second, we calculated match, mismatch, insertion and deletion
rates (P, Py, P, Pp, respectively) and defined the alignment likelihood
asthe product of the corresponding rates to the power of the number
of operations. For example, alignment with 100 matches, one mismatch
and two insertions would have alikelihood of P,°° x P. x P? x P2.Note
that the probabilities do not sum up to one and are incomparable
between reads of different lengths. Nevertheless, this formulation
produces fast-to-calculate probabilities and provides a way to numeri-
cally compare different alignments of the same read.

Read depth. We split the background regioninto windows of fixed size
based on the mean read length and assigned reads to windows based
onthe middle of the corresponding read alignments. Next, we counted
the number of primary read alignments assigned to each window.
(Only first mates were counted to preserve window independence.)®

For each window, we calculated the guanine-cytosine (GC) con-
tent and the fraction of unique k-mers in an area centered around the
window. Next, we selected windows with many unique k-mers (=90%)
and estimated the mean read depth and variance across various GC
content values using local polynomial regression®. NB parameters were
then estimated separately for each GC content based on the smoothed
mean, variance and subsampling rate (Supplementary Information).

Read recruitment

After dataset preprocessing, Locityper recruits readsto all target loci.
For that, we collected minimizers® from eachlocus and each haplotype
(default: (10,15)-minimizers). Uninformative minimizers, which appear
five or more times off-target, were ignored. Locityper compares read
and target minimizers in parallel and recruits reads to one or several
loci according to one of the following rules: short reads are recruited
if a sufficient fraction of minimizers matches the target for all read
ends (default: 0.7 and 0.5 for single-end and paired-end reads). Lower
match fraction values lead to an increased number of unnecessarily
recruited reads, which increases read mapping runtime but does not
significantly affect genotyping accuracy because false positive reads
arediscarded at alater stage.

Only asmall part of along read may overlap a given target locus.
Consequently, werecruited alongreadifit contained a subregion with
sufficiently many minimizer matches. For that, we used the following
heuristic: matching and mismatching informative minimizers are
assigned s./s_scores (default: +3/-1); a read was recruited if it had a
continuous subsequence, with a sum score greater or equal to

M(s, —s_)+s_

2L
my +1

@

where L is the subregion length (default: 2,000 bp), M is the match
fraction (default: 0.5) and 2L/(m,, +1) is the expected number of
(m,, m,) minimizers per L base-pair sequence®. This heuristic is
useful because it can be quickly evaluated using Kadane’s algorithm®
andis nottoorestrictive: shorter read subregions with ahigher match
rate may produce a hit, and vice versa.

Genotype likelihood

Read location probabilities. After read recruitment, every target
locus was genotyped independently from other loci. Reads, recruited
tothelocus, were aligned to all haplotypes H using either Strobealign®
or Minimap2 (ref. 64), depending on the read type. The obtained read
alignments were assigned BB Pvalues accordingto their edit distances
and read lengths. A read pair was retained if both read ends had at
least one good alignment (P = 0.01) to at least one of the haplotypes
(approximately 3% read pairs discarded per locus). All alignments with
BB P<0.001were discarded.
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Without loss of generality, we describe the following steps for
paired-end reads and use notation r = (r,, r,) to describe a read pair.
Eachlocus haplotype h € Hwas splitinto nonoverlapping windows W®
of fixed size (same size asinread depth preprocessing); furthermore,
we expanded W by adding a null window w.. Each alignment is con-
nectedtoasingle window wbased on the middle point of the alignment,
withalignment probability P(5;, w) calculated according to the precom-
puted error profile. Reads without proper alignment to ~are connected
to the null window w.; we defined P(r;, w.) as A - max P(r;, h), that is, the
probability of the best r; alignment to any haplotype, multiplied by a
penalty A (107 by default).

The paired-end alignment probability of the read pairr=(r,, r,)
to windows w = (w;, w,) can be written as P(r,w) = P(r;, w;)x
P(ry, W5) X Pinsert (t, W), Where the last termis calculated according to the
precomputed insertsize distribution. For the null windows, we defined
insert size probability as the highest probability achievable under the
precomputed insert size distribution. Thus, the insert size between a
read end and its unmapped counterpart is assumed to be optimal to
only penalize unpaired locations once. Finally, we denoted the full set
of possible read pair locations on haplotype h as L ¢ W% x W and
defined the probability of the read pair rlocation to be w as the normal-
ized alignment probability:

P(r,w)

po=— W
" Zh’eHZueL(h’)?(r’ w
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Some parts of the target loci can have high homology to other
genomic regions. Consequently, we downgraded the effect of poten-
tially misrecruited reads by setting equal probabilities to all locations
for read pairs with fewer than five target-specific k-mers.

Read assignment. Without loss of generality, let us consider adiploid
genotypeg= (h,, h,). We combined windows across the two haplotypes
w® = W) y W) If h, = h,, we used two copies of each window, such
that |W®|is always |W)| + |Wth)|. Similarly, we concatenated possible
locations L™ and L®2) to achieve a combined list of locations L®.

We described read assignment to the genotype g usingaBoolean
matrix 7, where T,,, = 1encodes the statement ‘true location of the read
pairrisw’and every row contains exactly one true element. Probability
of theread assignment T given read pairs R canbe described as the total
probability of all selected locations:

P(T‘R)=H Z Tew * Prw (3)

reRwel(®

Read depth likelihood. In addition to good alignment probabilities,
optimal haplotypes should have stable haploid read depth. The cor-
responding conditional probability can be written as:

PCN@®=1|T) = J] P(CNw)=1]d,(T)) @)

weW ®

In this equation, d,(T) denotes the window w depth according to the
read assignment 7, definedas }; Y [Truwu + Truw]- AtCN=1,read depth
follows the NB distribution with the precomputed parameters n and
. Bayes’ theorem with equal priors produces the following result:

NB (d: n, )
@u(T) = P(CNW) =1]d,(T) =d) = 5 NB(d; cn, ) ©
celluu T

where alternative hypotheses are represented by aset C,.. We found it
beneficial to use C,, = {0.5,1.5}; in other words, a half divergence from
the expected read depth was considered significant. As unmapped
reads are already penalized by low alignment probabilities P(r, w.), we
defined P(CN(w.) =1|d) for any read depth d.

Window and read weights. Low-complexity regions, and short and
long repeats, evoke difficulties in read sequencing, recruitment and
alignment. To assign window weights in a continuous fashion, we
defined the following two parametric function 9: [0,1] ~ [0, 1] as:

0 ifx=0,

dxn.q) = (6)

1 .
— 7 Otherwise

9 exhibits several useful properties: it is a strictly increasing smooth
function such that 9(0) =0 and 9(1) =1. The location parameter
n € (0, 1) defines the break point 9(n; n, q) = 1/2 Vg, while the power
parameter g controls the slope of the function, with larger g produc-
ing larger derivative §'(1;1,q) (Extended Data Fig. 10). Finally, we
defined window w weight {,,= 9(x;; ,, q,) X 9(x5; n», q,) based on the
fraction of the locus-specific k-mers x; and linguistic sequence com-
plexity x, = U,U,U,, where U;is the fraction of unique i-mers in window
w of the maximal possible number of distinct i-mers”, with the default
parametersn;=0.2,n,=0.5and g, = q,=4.

Locityper accepts explicit user-defined weights for each base
pair of the input haplotypes, useful, for example, for downweight-
ing noncoding sequence. In such cases, {, is multiplied by the aver-
age weight across window w, while each read receives its own weight
based on the maximum explicit weight under the primary alignments
of both read ends. After that, read weights are used as multipliers to
log-location-probabilities.

Combined likelihood and likelihood update. Not accounting for
window weights, combined likelihood for agenotype gand read assign-
ment 7 can be calculated as:

P(CN(g)=L1,T|R) = P(T|R) x P(CN(g)=1|T)
= H Z Try - Pry X H ®u(T) @

reRvel® weW®

Next, we moved the calculations to log-space, added window weight
{,andintroduced the contribution factors Q, Q, > 0, which represent
therelativeimportance of read alignment and read depth likelihoods,
respectively. Then, thelog-likelihood £ can be written as:

L8 =0 Y S TwlogPr + Q Y Gulogeu(T) (8

reRwel® wew®

The contribution factors Q, and Q, are necessary because read align-
ments can overshadow read depth due to thelarge number of read pairs
and large differences between several read alignments. The factors
should sum up to two to generate the same range of likelihoods as in
the unweighted case (Q; = Q, =1). We used the default values Q, = 0.15
and Q,=1.85because they produced good results across a selection of
target loci and sequencing datasets. When needed, users can provide
customQvaluestoadjust read alignment and depth balance for specific
loci of interest to achieve optimal accuracy.

Likelihood update. Given the £® log-likelihood for genotype g and
some read assignment T, we can efficiently calculate the £% log-
likelihood for a new read assignment 7 if the read assignment has
changed for only one read pair. Suppose that the read assignment
changed for read pair r from location uv (in 7) to «’'v' (in T). Then, the
read depth likelihood values ¢, (T") will be identical to ¢, (T) for all win-
dowsexceptforu,v,u’,v’,where read depth canbe recomputed quickly.
This way, the log-likelihood can be recalculated in constant time:

£® = £+ g (108 Py — 108 Peu)
+Qp Y (- (loge,(T)—loge,(T))

wel{up,u' v'}

)
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Finding the best read assignment
For each genotype g, we aimed to find such read assignment T that
would maximize the joint £® log-likelihood. Locityper implements
three approaches for finding such read assignment: stochastic greedy
approach”; simulated annealing’*; and ILP”>. The first two algorithms
startfromanarbitrarily generated read assignment T, theniteratively
select arandom read pair r and switch its location if it increases the
genotypelikelihood. In addition to good location switches, simulated
annealing permits bad switches (decreasing the overall likelihood),
gradually restricting the frequency of such events.

In an ILP formulation, we introduced two sets of unknowns: x,,,
€ {0, 1} for each read pair r and each locationw € L®; and y,, € {0, 1}
for each window w € W® and each possible window depth d between
zero and the maximal possible read depth (D,,,,). The problem can be
written as follows:

Dinax
Maximize E Z Xrw QR IOg :Prw + Z Z Ywd QDZw(ow(d)
reR wel® wew® d=0

Subject to > Xw =1 VreR,
weL®
Dimax (10)
Y Yoa =1 Ywe W®,
d=0

Dmax
Z (xr,wu +xr,uw) - Z d'ywd =0 Vwe M/(g)
reR ueWe) d=0

Note that we can remove variables x, for trivial read pairs, which
map to only one possible location; at the same time, the number of
possible read depth variables y, is exactly one more than the number
of nontrivial read pairs mapping to w. Finally, the sum 3, > e in
the third constraint can be limited to windows and read pairs relevant
towindow w. Locityper uses two commercial ILP solvers, both available
under academiclicenses: HIGHS™ and Gurobi (www.gurobi.com). Note
thatitis possible to state a bigger ILP problem by removing the need
to iterate over all possible genotypes (Supplementary Information).
However, we observed that existing ILP solvers are unable to quickly
and accurately find a solution to such a problem.

Locus genotyping

Tofind the bestlocus genotype for the input WGS data, Locityper finds
thebestread assignment and the corresponding genotype likelihood
for each possible locus genotype (Fig.1). To speed up the process, we
started by calculating the log-likelihood in the absence of read depth
(Q,=0),which canbe efficiently computed by assigning every read to
itsmost probable location. Then, we used heuristic filtering by remov-
ing all genotypes whose likelihood is 10'°° smaller than the best likeli-
hood (thefirst 500 genotypes are kept regardless of the likelihood). For
allremaining genotypes, the best read assignment is found using one
ofthethree approaches described above. Even though the ILP solvers
typically find better read assignments, we used simulated annealing
as the default solver because it produces decent read assignments in
afraction of the ILP solving time.

Splitting locus haplotypes into nonoverlapping windows is an
intrinsically discrete process. Furthermore, windows can be shifted
across different haplotypes because of the presence of indels. Con-
sequently, identical read depth profiles may produce varying read
depth likelihoods depending on the window boundaries. To reduce
this effect, we performed a procedure similar to noise injection
regularization”, where we randomly moved read alignment centers
to either direction and reassigned reads to windows. In addition,
we redefined the window GC content values and {, weights as if the
window was randomly moved (the actual window boundaries stay
fixed). In a default configuration, read and window movement is
limited to half-window size or 200 bp, whichever is smaller. Repeat-
ing noise injection several times (20 by default), together with the

stochastic nature of likelihood maximization, produces a distribution
oflog-likelihoods for each genotype.

Finally, Locityper selects a primary genotype with the highest
average log-likelihood and calculates its Phred quality” based on the
probability of error: the probability that the true log-likelihood of any
other genotype is higher than the true log-likelihood of the primary
genotype, calculated using a one-sided Welch’s t-test’. Additionally,
we redefined genotype probabilities as the probability of having the
highest true likelihood, calculated as the product of inverse ¢-test
Pvalues for all pairwise genotype comparisons.

Moreover, Locityper outputs the number of unexplained reads,
which map to some but not to the two predicted haplotypes. Finally,
Locityper outputs aweightedJaccard distance between the minimizers
of the primary genotype and other probable genotypes. In an unam-
biguous prediction, this value should be low because all likely geno-
types should be similar to each other. Users can use these values for
conservative post-genotyping filtering, for example, inthe HiFi-based
LOO evaluation; discarding 20.2% genotypes with over 50 unexplained
reads raises the median QV from 36.9 t0 38.2.

Locus selection

To create a set of target loci, we started with 273 CMR genes’. We
expanded gene coordinates toaminimum of 10 kb, when needed, and
supplied positionsasinput to Locityper locus preprocessing, allowing
an additional coordinate expansion by at most 300 kb to each of the
sides (add —e 300k). At this stage, eight genes (ATPAF2, CLIP2, GTF2I,
GTF2IRD2,IGHV3-21, MRC1, NCF1 and SMNI) were discarded because at
least one the gene ends was contained in a 300-kb-long pangenomic
bubble. Afterwards, we removed redundantloci (completely contained
inanother locus), which produced a final set of 256 loci, containing 265
CMR genes. In similar fashion, we added 33 loci covering genes from
the MHC and KIR gene clusters, and 31loci covering the MUC, CFH and
CYP2genes. Eventhough the reference panels were constructed based
on 90 haplotypes from whole-genome-phased assemblies®, on average
around 80 unique haplotypes were reconstructed per locus, as some
haplotypes are not unique while others are only partially assembled
(Supplementary Table 1). The number of discarded haplotypes signifi-
cantly correlated with genotyping accuracy: the median Locityper QV
for the PacBio HiFi datasets had Spearman’s p = 0.67 with the number
of duplicate haplotypes (P < 2.2 x107¢) and p = —0.24 with the number
of unassembled haplotypes (P=7.5x107).

Dataused in the study

Pangenomereferencein VCF wasdownloaded from https://s3-us-west-2.
amazonaws.com/human-pangenomics/pangenomes/freeze/freezel/
minigraph-cactus/hprc-vl.1-mc-grch38/hprc-vl.l-mc-grch38.raw.
vcf.gz. lllumina, PacBio HiFi and Oxford Nanopore data for the HPRC
samples can be found at https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.html?prefix=working. NYGC variant calls
for the IKGP samples were downloaded from http://ftp.1000genomes.
ebi.ac.uk/voll/ftp/data_collections/1000G_2504_high_coverage/work-
ing/20220422 3202_phased_SNV_INDEL_SV. The 3,202 1KGP Illumina
datasets are available onthe European Nucleotide Archive under acces-
sionnos. PRJEB31736 and PRJEB36890.

Simulated Illumina data were constructed using ART Illumina®
v.2.5.8 withthe parameters-ss HS25-m 500 -s 20 -1150 -f15 for all phased
haplotype assemblies from the HPRC project, which can be found on
Zenodo https://doi.org/10.5281/zenodo.5826274.”

Benchmarking Locityper

To evaluate haplotyping accuracy, we computed full-length align-
ments between actual and predicted haplotypes using the Locityper
align module. Internally, it finds the longest common subsequence of
k-mers using LCSk++"® and completes the alignment between k-mer
matches using the wavefront alignment algorithm’*%, Three k-mer
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sizesaretried (25,51and 101); an alignment with the highest alignment
scoreisreturned.

Afterwards, we calculated the haplotyping error, that is, the
sequence divergence between two haplotypes, calculated as the ratio
between edit distance 4 and alignment size S (edit distance plus the
number of matches). As actualand predicted genotypes consist of two
haplotypes, there are two possible actual-predicted haplotype pair-
ings. Of the two options, we selected a pairing that produces asmaller
ratio between sum edit distance and sum alignment size.

Then, we used Phred-like transformation of haplotyping error
QV = -10 x log,,(A/S) to obtain the haplotyping QVs**®'. However,
when two haplotypes are completely identical (4 = 0), QV becomes
infinite, which poses problems for average QV calculation. For that
reason, we corrected the QV definition:

(11)

QV=-10x lOgIO (M)

N

This way, the QV difference between edit distances O and 1is the
sameasbetweenland2,andequalsto10 x log,,2 ~ 3. Constants smaller
than 1/2 were generally even more beneficial for Locityper
benchmarking.

We considered a trio of locus genotypes concordant if one of
the child haplotypes closely matches one of the maternal haplotypes
and another closely matches one of the paternal haplotypes. Like the
haplotyping error calculation, we iterated over eight possible combi-
nations; selected one with the smallest sum edit distance divided by
the sum alignment size; and calculated the QV score for each of the
child haplotypes.

To compare Locityper with state-of-the-art PacBio HiFi pipelines,
we obtained existing® unphased DeepVariant®*v.1.1.0 single-nucleotide
polymorphism andindel calls for the PacBio HiFi HPRC datasets, which
we phased using WhatsHap® phase v.2.3. Next, we used the WhatsHap
haplotag to assign reads to haplotypes and used Sniffles® v.2.4 to gen-
erate phased SVs. Finally, we used RTG®*’ vcfmerge v.3.12.1to generate
the merged Sniffles + DeepVariant call set.

We used the Beftools®* v.1.21 consensus to reconstruct haplotypes
fromeach of the three phased variant call sets (Sniffles, Sniffles + Deep-
Variant and 1KGP?). In the process, we removed contradicting over-
lapping variant calls, and variants with symbolic alternative alleles
(with exception of <DEL>) because they cannot be used for haplotype
reconstruction.

Finally, we used T1K?* v.1.0.5 with the presets hla-wgs
--alleleDigitUnits 15 --alleleDelimiter : and kir-wgs with all other param-
eters set to default. Ground-truth HLA and KIR annotation for the
HPRC assemblies were obtained with Immuannot® using the allele
databases®*° IPD-IMGT/HLA v.3.55 and IPD-KIR v.2.13. If a haplotype
contains a new gene allele, Immuannot may associate it with several
existing alleles. In such cases, we evaluated the predicted allele accord-
ing to the best-matching existing allele.

Inallevaluations, we used Locityper v.0.18.0 along withits depend-
encies SAMtools®*v.1.21, Jellyfish®*v.2.2.10, Strobealign®v.0.13.0 and
Minimap2 (ref. 64) v.2.26-r1175.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Locityper-predicted genotypes for 3,202 Illumina 1IKGP samples,
corresponding preprocessed WGS parameters, target locus data-
base, simulation seeds and benchmarking results can be found on
Zenodo® (https://doi.org/10.5281/zenodo.10977559). The pange-
nome reference in VCF was downloaded from https://github.com/
human-pangenomics/hpp_pangenome_resources (GRCh38 Graph,

raw VCF). lllumina, PacBio HiFi and Oxford Nanopore data for the
HPRC samples canbe found at https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.html?prefix=working. NYGC variant calls
for the 1IKGP samples were downloaded from http://ftp.1000genomes.
ebi.ac.uk/voll/ftp/data_collections/1000G_2504_high_coverage/work-
ing/20220422 3202_phased SNV_INDEL_SV. The 3,202 1KGP lllumina
datasets are available onthe European Nucleotide Archive under acces-
sionnos. PRJEB31736 and PRJEB36890.

Code availability

Locityperisimplemented in the Rust programming language, and can
beinstalled viaconda, singularity and docker. The source code s freely
available under the terms of the MIT license at https://github.com/
tprodanov/locityper along with installation and usage instructions.
The Locityper v.0.18.0 source code and additional benchmarking
scripts can be downloaded from Zenodo®® (https://doi.org/10.5281/
zenodo.10979046).
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Extended Data Fig. 1| Locityper haplotyping accuracy across 20 PacBio HiFi datasets. Evaluation was performed across 256 challenging medically relevant lociin

leave-one-out configuration.
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Extended Data Fig. 3| Accuracy of haplotypes, reconstructed from the phased 1KGP call set for 39 HPRC samples. Accuracy is measured in QV and measured across
256 challenging medically relevant loci.
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Extended DataFig. 4 | Sniffles haplotyping accuracy for 20 PacBio HiFi datasets. Accuracy is calculated only for phased Sniffles calls (a) as well as for the merged
callset of Sniffles and DeepVariant calls (b).
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Extended Data Fig. 6 | Locityper haplotyping accuracy using full reference panel. Locityper haplotyping accuracy using full reference panel evaluated on
40 Illumina datasets (a) and 20 PacBio HiF datasets (b).
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Data collection  ART lllumina v2.5.8

Data analysis Locityper v0.18.0 (https://github.com/tprodanov/locityper, https://zenodo.org/records/14861388), Pangenie v3.02, T1K v1.0.5, Jellyfish
v2.2.10, Minimap2 v2.26-r1175, Strobealign v0.13.0, Samtools v1.21, Bcftools v1.21, Tabix v1.21, Vt v0.57721, RTG-tools v3.12.1, Immuannot
e8dal9c

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Locityper-predicted genotypes for 3202 Illumina 1KGP samples, corresponding preprocessed WGS parameters, target loci database, simulation seeds and
benchmarking results can be found on Zenodo (zenodo.org/records/14861498). Pangenome reference in a variant calling format (VCF) was downloaded from
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https://github.com/human-pangenomics/hpp_pangenome_resources (GRCh38 Graph, Raw VCF). lllumina, PacBio HiFi and Oxford Nanopore data for the HPRC
samples can be found at https:

//s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=working. NYGC variant calls for the 1KGP samples were downloaded from http://
ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/1000G_2504_high_coverage/working/20220422_3202_phased_SNV_INDEL_SV. 3202 1KGP Illumina datasets
are available on the European Nucleotide Archive under accession codes PRIEB31736 and PRJEB36890.
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Sample size Reference panel of 90 haplotypes were used. The size equals the size of the latest (at the moment of submission) HPRC pangenome with 90
phased diploid whole genome assemblies, from where local haplotypes were taken (44 diploid samples + 2 reference assemblies). Direct
evaluation was performed for all 40 HPRC samples (80 haplotypes) with available lllumina data; same 40 samples were used for simulated
lllumina data. For data storage reasons, long read analysis (PacBio HiFi and ONT) was performed on 20 samples (40 haplotypes). 1KGP call set
comparison was performed on all 39 samples with both HPRC assemblies and NYGC diploid calls. Trio concordance was calculated on all 563
trios (1676 samples) from the 1KGP cohort, independent from the HPRC cohort. All available samples were used, except for long read analysis.
Sample size of 40 is generally considered sufficient for basic statistical analysis; additionally, any random effects should be almost fully offset
by leave-one-out analysis and by large sample-size trio analysis.

Data exclusions  No data exclusion.

Replication Every samples was analysed twice, with full reference panel and with limited leave-one-out panel to model real life independence between
reference panels and analyzed samples. No replications within each analysis was needed since all tools are either deterministic (same analysis
produces the same results), or have random elements but produce virtually the same results evrey time. All performed analyses and
replications were included in the manuscript or in supplementary information.

Randomization  Forlong read data, 20 samples were selected randomly. Elsewhere: all available data was used, no allocation needed.

Blinding Samples were not groupped into case-control, instead the only relevant information could be the similarity between analyzed sample

haplotypes and other haplotypes. This information was not used by researchers until the evaluation stage. Furthermore, the analysis was
performed automatically using Locityper, which does not support input similarity matrix, and therefore could not be influenced by it.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
g
[
=
D
©
(@]
=
S
S
=
(D
o
O
=)
>
«Q
wv
(e
3
3
QU
S




Materials & experimental systems Methods
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication Z)Vgsbcﬁl%ﬁé”gﬁj/ authentication-procedures for-each-seed-stock-used-or-novel-genotype-generated--Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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