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Spatially resolved multi-omics of human 
metabolic dysfunction-associated steatotic 
liver disease
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Metabolic dysfunction-associated steatotic liver disease (MASLD) is a 
leading cause of chronic liver disease worldwide. We generated single-cell 
and spatial transcriptomic and metabolomic maps from 61 human 
livers, including controls (n = 10), metabolic dysfunction-associated 
steatotic liver (MASL) (n = 17) and metabolic dysfunction-associated 
steatohepatitis (MASH) (n = 34). We identified microphthalmia-associated 
transcription factor (MITF) as a key regulator of the lipid-handling 
capacity of lipid-associated macrophages (LAMs), and further revealed a 
hepato-protective role of LAMs mediated through hepatocyte growth factor 
secretion. Unbiased deconvolution of spatial transcriptomics delineated a 
fibrosis-associated gene program enriched in advanced MASH, suggesting 
profibrotic crosstalk between central vein endothelial and hepatic 
stellate cells within fibrotic regions. Mass spectrometry imaging-based 
spatial metabolomics demonstrated MASLD-specific accumulation of 
phospholipids, potentially linked to lipoprotein-associated phospholipase 
A2-mediated phospholipid metabolism in LAMs. This spatially resolved 
multi-omics atlas of human MASLD, which can be queried at the Human 
Masld Spatial Multiomics Atlas, provides a valuable resource for mechanistic 
and therapeutic studies.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is 
a progressive disease that starts with isolated steatosis (metabolic 
dysfunction-associated steatotic liver (MASL)) and can evolve to a 
more severe stage known as metabolic dysfunction-associated stea-
tohepatitis (MASH), during which chronic liver injury, inflammation 
and varying degrees of fibrosis are superimposed on the initial stea-
tosis. MASH has the potential to advance further toward cirrhosis and 
hepatocellular carcinoma1,2.

High-resolution approaches, such as single-cell RNA sequenc-
ing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) 
have provided paradigm shifts in our understanding of the cellular 
and molecular mechanisms underlying MASLD pathogenesis3–6, 
complementing fundamental elements for the canonical conceptual 
framework known as the substrate overload liver injury model7, where 
hepatocyte lipotoxicity is regarded as the initiating factor, triggering 
a cascade of events mediated by diverse non-parenchymal cell (NPC) 
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Results
Single-cell and spatial transcriptional profiling of MASLD 
human livers
We applied scRNA-seq, scVDJ-seq, ST (10x Visium) and SM (matrix- 
assisted laser desorption ionization (MALDI)–MSI) to resected or biopsy 
liver samples collected from 61 individuals across the different stages 
of MASLD progression defined by histology as control (CTRL, n = 10), 
MASL (n = 17) and MASH (n = 34) (Fig. 1a,b and Supplementary Table 1). 
MSI-based SM was performed on a subset of tissue sections (n = 27) 
adjacent to those used for Visium ST (n = 35) (Supplementary Notes), 
enabling integrative SMA.

After meticulous quality control and computational doublet 
calling (Extended Data Fig. 1a and Supplementary Table 2), we 
obtained single-cell transcriptomes for 540,216 cells across 58 librar-
ies generated from 29 samples (n = 6 CTRL, n = 7 MASL, and n = 16 
MASH) for downstream analysis (Fig. 1b,c). Each sample was pro-
filed using two libraries, one for parenchymal cells and another for 
NPCs (Supplementary Notes). We identified 17 cell types that were 
manually annotated based on the RNA expression of known mark-
ers (Extended Data Fig. 1b), categorized into four broad cell-type 
groups as follows: hepatic CD45− cells, T lymphoid (T) and natural 
killer (NK) cells, B lymphocytes and myeloid cells. Neutrophils and 
mast cells were excluded from the myeloid compartment for subs
equent cellular abundance analysis because of their low cell capture 
efficiency during tissue dissociation and high susceptibility to RNA 
degradation caused by elevated RNase activity, which collectively 
introduces higher technical noise and limits their accurate measure-
ment. Within the hepatic CD45− cell compartment (82,011 cells), LECs 
exhibited marked zonation-related transcriptomic heterogeneity 
and were subclustered into three subsets based on the expression of 
canonical gene markers as follows: liver sinusoidal endothelial cells 
(LSECs), marked by STAB2 and CLEC1B, central vein ECs (marked by 
RSPO3 and WNT2) and portal vein ECs (marked by SLCO2A1, MECOM, 
PODXL and JAG1)16.

To contextualize the cell types and states identified using scRNA- 
seq within tissue micro-environments, we performed ST analysis 
using 10x Visium (n = 7 CTRL, n = 10 MASL and n = 18 MASH), adding 
a key dimension to the field of MASLD. A total of 47,864 spots were 
ordered along a spatial trajectory annotated as portal, periportal, mid 
and central based on known lobule zonation markers20 (Fig. 1d–f and 
Extended Data Fig. 1c).

MASLD remodels immune cell composition and repertoires 
within the liver microenvironment
Within the T and NK compartment (258,618 cells), we used canonical 
lineage markers to identify seven major cell types: mucosal-associated 
invariant T (MAIT) cells, regulatory T (Treg) cells, CD8+ effector T (Teff) 
cells, CD4/CD8 naive T cells, circulating natural killer T (NKT) cells, resi-
dent NK cells and circulating NK cells (Fig. 2a and Extended Data Fig. 2a). 
To reveal the compositional changes between MASLD and CTRLs in 
this compartment, we performed Milo differential abundance testing21 
(Fig. 2b). We found a prominent increase in all five T cell clusters and 
a decrease in resident NK cells in patients with MASLD compared to 
CTRLs, yet no cluster exhibited a significant difference in abundance 
between MASH and MASL (Fig. 2c–e). To investigate the clonal rela-
tionship among individual T cells across three disease conditions22, we 
performed T cell receptor (TCR) analysis for five T and NK cell subsets 
except for resident and circulating NK cells. We examined whether 
expanded clonotypes were shared among each sample, across dis-
ease conditions and among cell types. Large clonal expansions were 
observed particularly in CD8 Teff cells and MAITs from patients with 
MASLD (Fig. 2f). While most expanded clonotypes in CD8 Teff cells 
were unique to individual patients, the large expanded clonotypes in 
MAITs were shared among individuals. Notably, circulating NKT cells 
exhibited clonal expansion predominantly under diseased conditions 

subpopulations, such as liver endothelial cells (LECs), tissue-resident 
Kupffer cells (KCs), hepatic stellate cells (HSCs), cholangiocytes and 
several immune cell types that synergistically escalate hepatic stea-
tosis, inflammation and fibrosis. For example, HSCs are activated by 
osteopontin (OPN), encoded by SPP1, and Hedgehog ligands secreted 
by reprogrammed hepatocytes8. Activated HSCs function as a cen-
tral hub of intrahepatic signaling, releasing stellakines, which have a 
profibrotic role during MASLD progression and may ultimately result 
in end-stage liver disease3.

Accumulating evidence highlights the pivotal role of lipid- 
associated macrophages (LAMs), which are marked by increased expres-
sion of triggering receptor on myeloid cells 2 (TREM2), in maintaining 
the immune and metabolic homeostasis within the fatty liver3,9–11.  
Despite the importance of LAMs in human MASLD pathogenesis, 
the mechanisms through which LAMs develop a lipid-handling and 
immune-suppressive phenotype remain poorly understood. A deeper 
understanding of how blood-derived monocytes differentiate into 
LAMs could provide therapeutic insights, particularly in modulat-
ing their involvement in the onset and resolution phases of chronic 
liver diseases.

Although single-cell analysis has provided valuable insights 
into the heterogeneity of liver NPCs and their dynamic changes 
throughout MASLD progression, it is limited by the lack of spatial 
organization information. Hepatocytes operate in well-organized 
repeating anatomical units known as liver lobules. Key liver func-
tions are expressed nonuniformly across the lobule axis because of 
gradients of oxygen, nutrients and hormones, a phenomenon known 
as zonation12,13. The division of metabolic tasks and the spatially 
polarized immune system reinforces the necessity to interrogate 
the pathogenesis of MASLD in a spatially resolved context, an area 
that is relatively underexplored.

Spatial transcriptomics (ST) enables the profiling of the spa-
tial distribution of RNA and cell–cell interactions (CCIs) within 
individual tissue sections14. The introduction of ST into liver tissue 
transcriptome-wide profiling has substantially advanced the under-
standing of the mechanisms regulating liver regeneration15 and the 
niche signals involved in region-specific cholangiopathies16, while its 
application to human MASLD remains unexplored. A comprehensive 
MASLD atlas would also require metabolomic profiling to better elu-
cidate the region-specific metabolic alterations and cell-type-specific 
metabolic functions. Mass spectrometry imaging (MSI)-based spatial 
metabolomics (SM) provides a label-free, spatially resolved meas-
urement of metabolite abundance directly from fresh-frozen tissue 
sections17,18. Because of experimental constraints, it is currently applied 
as separate methodologies alongside ST19. The lack of an in silico spatial 
multimodal analysis (SMA) pipeline integrating SM and ST data limits 
our ability to interpret the complex interplay between metabolic dys-
function and hepatic inflammation.

In this study, we used a combination of single-cell gene expression, 
unbiased ST, SM and spatial proteomics (SP) approaches to decode 
MASLD-relevant gene and metabolite expression programs within their 
spatial contexts. Adjacent frozen liver biopsy sections from patients 
with MASL and MASH, and resection samples from controls, were 
prepared to perform ST and SM, providing a spatially resolved atlas 
of metabolite and gene expression patterns throughout disease pro-
gression. SMA of ST and SM modalities was achieved by aligning the 
MSI data points directly to the hematoxylin and eosin (H&E)-stained 
image used for ST, enabling the simultaneous measurements of mRNA 
transcripts and metabolites within the same tissue microregions. In 
total, we obtained high-quality transcriptomes of 540,216 single cells 
and 47,864 Visium ST spots and metabolomes from 841,534 MSI data 
points. The processed spatially resolved multi-omics datasets are fully 
accessible on the browsable web portal of the Human Masld Spatial 
Multiomics Atlas, providing a resource for data download and spatial 
visualization of gene and metabolite expression.
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Fig. 1 | Spatial and single-cell transcriptomic atlas of human MASLD. a, Scheme 
of the multi-omics spatial human MASLD atlas experimental and analysis 
workflow. b, Summary of the samples in this study, with each row representing 
an individual and the columns indicating the modalities assayed. c, Uniform 
manifold approximation and projection (UMAP) plot of 540,216 cells profiled 
using scRNA-seq and colored according to cell type in CTRL (n = 6), MASL 
(n = 7) and MASH (n = 16). d, UMAP visualizations where the dots correspond to 

individual spots for 48,154 spots profiled with 10x Visium, colored according 
to liver lobular zones. e, Spatial distribution of four liver lobular zones (portal, 
periportal, mid and central) in three tissue sections taken from the CTRL, MASL 
and MASH groups, respectively. f, Dot plot showing the expression of lobule zone 
marker genes across four liver lobular zones. a, The illustration was created with 
BioRender.com.

http://www.nature.com/naturegenetics
http://www.biorender.com/


Nature Genetics | Volume 57 | December 2025 | 3112–3125 3115

Article https://doi.org/10.1038/s41588-025-02407-8

(Fig. 2f), suggesting that the clonal expansion of circulating NKT cells 
may contribute to the progression of MASLD.

We subclustered 17,576 cells, manually annotated as B and plasma 
cells, obtaining four subsets based on their expression of canonical 
markers: naive B cells, memory B cells, IgG plasma (plasma_IgG) cells 
and IgA plasma (plasma_IgA) cells (Fig. 2a and Extended Data Fig. 2b). 
The proportions of naive B and memory B cells increased in patients 
with MASLD compared to CTRLs. Like the T and NK compartment 
results, no cluster of B cells showed a significant difference in abun-
dance between MASH and MASL (Fig. 2b–e). However, B cell receptor 

(BCR) analysis revealed a trend toward a larger clonal expansion of 
plasma_IgA and plasma_IgG cells in MASH compared to the MASL group, 
with minimal clonotypes sharing between patients with MASLD and 
CTRLs or among individual patients (Extended Data Fig. 2d,e).

To characterize the transcriptome dynamics in 130,671 cells of 
the myeloid compartment across disease conditions, we further sub-
clustered monocytes into two subsets and dendritic cells (DCs) into 
three subsets based on the expression of canonical gene markers as fol-
lows: CD14+ monocytes, CD16+ monocytes, plasmacytoid DCs (pDCs), 
conventional type 1 DCs (cDC1s), conventional type 2 DCs (cDC2s) 
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Fig. 2 | MASLD progression affects the homeostatic cellular state of the 
liver microenvironment. a, UMAP plots of T and NK cells, B lymphocytes and 
myeloid cells, colored according to cell type. b, Graphical representation of the 
Nhoods identified using Milo. Nodes are Nhoods, colored according to their 
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plot of the log2(fold change) in the Milo neighborhoods between MASL/MASH 
and CTRL, grouped into each cell type. Nhoods with significant change in cellular 

abundance are colored as in b. d, Graph representation of Nhoods identified 
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(Fig. 2a and Extended Data Fig. 2c). The proportions of pDCs and LAMs 
increased, whereas the proportion of cDC2s declined predominantly 
in patients with MASLD compared to CTRLs (Fig. 2b,c). Differential 
abundance analysis based on disease severity revealed a decrease in 
KCs and an increase in CD14+ and CD16+ monocytes, alongside a marked 
expansion of LAMs in MASH compared to MASL (Fig. 2d,e).

Together, these findings delineated how MASLD progression 
reshapes the immune cell composition and repertoires within the 
liver microenvironment. The clonal expansion of circulating NKT cells 
emerged as a distinct feature among patients with MASLD. While 
most immune cell types showed no significant differences in abun-
dance between MASH and MASL, LAMs exhibited a pronounced 
increase with disease severity, particularly within the pericentral 
area (Extended Data Fig. 2f), underscoring their potential role in 
MASLD progression.

Microphthalmia-associated transcription factor shapes the 
lipid-handling phenotype of LAMs
LAMs can be distinguished from tissue-resident KCs by their distinct 
lipid-handling features, which emerge largely from monocyte-derived 
precursors23,24. However, the mechanisms governing the differentiation 
of recruited monocytes into LAMs rather than adopting a KC-like pheno-
type remain poorly explored. To identify potential transcription factors 
(TFs) regulating the expression of lipid metabolism-associated genes 
in LAMs, we used pySCENIC25 to reconstruct cell-type-specific gene 
regulatory networks (GRNs) from our single-cell transcriptome data.

The specificity of the regulons (that is, TFs and their target genes) 
was quantified and ranked from high to low across different cell types 
separately26. Validating this approach, several well-established mac-
rophage lineage TFs such as NR1H3 (ref. 27) and MAFB28 were simul-
taneously identified as the most specific TFs for both LAM and KC 
(Fig. 3a and Extended Data Fig. 3a). Of note, a regulon regulated by 
the melanocyte lineage TF microphthalmia-associated transcrip-
tion factor (MITF)29 was exclusively activated in LAMs (Fig. 3b,c and 
Extended Data Fig. 3b), which is consistent with the LAM-specific MITF 
gene expression (Extended Data Fig. 3c), suggesting a pivotal role for 
MITF in the regulation of LAM differentiation. Furthermore, elevated 

activity of the MITF regulon was observed, particularly in LAMs from 
patients with MASH (Fig. 3d), correlating with their increased severity 
of steatosis within the hepatic microenvironment.

Gene ontology (GO) enrichment analysis of the top 100 pre-
dicted MITF target genes revealed significant enrichment for 
lipid-metabolism-associated processes, including low-density lipopro-
tein particle clearance and triglyceride (TG)-rich lipoprotein particle 
clearance (Fig. 3e). Among these, canonical LAM markers, including 
TREM2, CD9 and GPNMB, along with genes involved in lipid transport 
and metabolism (for example, FABP4, LPL, FABP5, DHRS9, MGLL and 
PLA2G7), were identified as MITF-regulated targets and exhibited a 
LAM-specific expression pattern (Fig. 3f and Extended Data Fig. 3d). For 
instance, lipoprotein lipase (LPL), encoded by LPL, serves as a pivotal 
enzyme in TG metabolism, catalyzing the hydrolysis of TGs carried by 
plasma very-low-density lipoprotein and circulating chylomicrons30.

We further confirmed the LAM-specific expression of MITF at 
the protein level through immunofluorescence (IF) across three dis-
ease conditions (Fig. 3g). To examine the effects of the MITF on LAM 
phenotype transformation, we induced MITF-OE in the THP-1 cell line 
using lentivirus transduction (Methods). As expected, MITF-OE in 
THP-1 cells led to a significant upregulation of several LAM signa-
ture genes10, including GPNMB, LPL, DHRS9, LGALS3, CTSD, PLD3 and 
PLA2G7 (Fig. 3h). Conversely, MITF knockdown via small interfer-
ing RNA (siRNA) for 24 h resulted in downregulation of these genes 
(Extended Data Fig. 3e). All together, these results indicate that the 
MITF-regulated GRN has a critical role in determining the lipid-handling 
phenotype of LAMs.

MITF enhances fatty acid oxidation in LAMs via the PGC1α–
PPARγ signaling axis
To deepen the understanding of how LAMs diverge from tissue-resident 
KCs in their roles in coordinating local lipid metabolism, differential 
gene expression and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were conducted between these two mac-
rophage subtypes (Fig. 4a,b). We found enrichment for the peroxisome 
proliferator-activated receptor (PPAR) signaling pathway in LAMs, 
which is consistent with the LAM-specific activation of the PPARγ 

Fig. 3 | Identification of MITF as a LAM-specific TF. a, Regulon specificity score 
(RSS) for LAMs; the top five regulons are highlighted in red and labeled on the 
plot, while the specificity score is shown on the y axis. b, Binarized activity of 
the MITF regulon for each cell generated from the SCENIC area under the curve 
(AUC) distribution, displayed in the UMAP space with green spots representing 
cells that are activated. c, Binarized activity of selected regulons, representing 
the union of the top five regulons most specific to each cell type, plotted as 
a heatmap with the black blocks indicating cells that are ‘on’. The peach and 
russet arrows indicate LAM-specific and KC-specific TFs, respectively. d, Violin 
plot showing the MITF regulon activity score in LAMs from the CTRL, MASL 
and MASH groups. e, Top GO terms enriched by overrepresentation analysis 

(ORA) for the top 100 target genes of the MITF regulon. P values were computed 
using a two-sided Fisher’s exact test and adjusted for multiple testing using 
the Benjamini–Hochberg procedure. f, Expression of six MITF-targeted lipid-
metabolism-related genes in the scRNA-seq dataset displayed in the UMAP space. 
g, Representative IF protein staining of MITF and TREM2 for tissue specimens 
from the CTRL, MASL and MASH groups (n = 3 independent experiments). 
h, Expression of GPNMB, LPL, DHRS9, LGALS3, CTSD, PLD3 and PLA2G7 using 
quantitative PCR with reverse transcription (RT–qPCR) in THP-1 cells after 
MITF-OE compared to empty vector (EV) (n = 6 biological replicates). Data are 
presented as mean values ± s.d.; statistical significance was determined using an 
unpaired, two-sided Student’s t-test. DAPI, 4′,6-diamidino-2-phenylindole.

Fig. 4 | MITF–PGC1α–PPARγ–FAO signaling axis in LAMs. a, Volcano plot 
displaying differently expressed genes (absolute log2(fold change) > 2.0, P < 0.01) 
between LAMs and KCs. The red and blue spots indicate genes overexpressed 
in LAMs and KCs, respectively. The top 30 significantly upregulated or 
downregulated gene names are marked. P values were calculated using a two-
sided Wilcoxon rank-sum test and adjusted using the Benjamini–Hochberg 
procedure. −log10(FDR) was capped using computational precision limits. 
b, Top KEGG terms enriched by ORA for upregulated DEGs of LAMs, compared 
with KCs. P values were computed with a two-sided Fisher’s exact test and 
adjusted for multiple testing using the Benjamini–Hochberg procedure. 
c, Binarized activity of the PPARγ regulon for each cell generated from the 
SCENIC AUC distribution displayed in the UMAP space, with the red spots 
representing cells that are activated. d, GRNs showing the predicted candidate 
target genes for the following TFs: MITF, PPARγ, NR1H3, MAFB, MEF2A, SPIC, 
RXRA, ETV5 and MAF. The line width of the edges indicates the predicted weight 

between the corresponding TF and its target gene. e, Spatial distribution of 
the scores of MITF regulon and PPAR signaling activity in eight randomly 
selected MASH biopsy sections. f, Expression of PGC1A, PPARG, CPT1A, 
CPT1B, ACADVL and HADHA using RT–qPCR in THP-1 cells after MITF-OE 
compared to EV (n = 6 biological replicates). g, The mitochondrial OCR of 
THP-1-EV and THP-1 MITF-OE cells was measured using an extracellular flux 
analyzer (n = 3 biological replicates). Oligomycin, carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) and rotenone + antimycin A were 
injected at the indicated time points. h, Representative confocal micrographs 
of MitoTracker Red CMXRos-stained THP-1 cells after transfection with either 
EV or MITF-OE (left). Quantification of mitochondrial fluorescence intensity is 
shown (n = 3 biological replicates, multiple regions per sample). i, Schematic 
representation of the MITF-PGC1α–PPARγ–FAO signaling axis in LAMs. Data 
are presented as mean values ± s.d.; statistical significance was determined 
using an unpaired, two-sided Student’s t-test.
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regulon (Fig. 4c and Extended Data Fig. 3f). By constructing a GRN 
consisting of the top five cell-type-specific regulons for both LAMs and 
KCs, alongside common TFs such as NR1H3, MAF, MAFB and MEF2A, 
we observed that differentially expressed genes (DEGs) upregulated 
in each cell subset were predominantly regulated by their respective 
key TFs: ETV5, RXRA and SPIC for KCs, and MITF and PPARγ for LAMs 
(Figs. 3c and 4d and Extended Data Fig. 3a). Based on these findings, 
it is tempting to speculate that MITF could drive the activation of the 
PPAR signaling pathway in LAMs.

Therefore, we scored the activity of both the MITF regulon and the 
PPAR signaling pathway and found a strong correlation between their 
spatial distribution observed in each Visium ST section from our cohort 
with MASLD (Fig. 4e). Consistent with this, a previous study showed 
that MITF directly regulates the expression of PPARγ co-activator 1α 
(PGC1α), which acts as a master regulator of mitochondrial biogenesis 
and oxidative phosphorylation31. Additionally, the PGC1α–PPARγ axis 
transactivates several genes to control lipid metabolism and induce a 
spike in fatty acid oxidation (FAO) to control myogenesis32. Support-
ing this, our results showed that MITF-OE in THP-1 cells significantly 
upregulated PGC1A, PPARG and several key PGC1α–PPARγ target genes 
involved in FAO, including CPT1A, CPT1B, ACADVL and HADHA (Fig. 4f). 
On the other hand, MITF knockdown using siRNA for 24 h resulted in 
significant downregulation of these genes (Extended Data Fig. 3g). 
Furthermore, the oxygen consumption rate (OCR), an indicator of 
oxidative phosphorylation, was significantly higher in MITF-OE THP-1 
cells (Fig. 4g), probably because of increased mitochondrial mass upon 
MITF-OE (Fig. 4h). Collectively, these results underscore the central 
role of MITF in modulating mitochondrial function and lipid-handling 
capacity in LAMs, mediated by the PGC1α–PPARγ–FAO axis (Fig. 4i).

Differential intercellular flow analysis indicates a 
hepatoprotective role for LAMs
To capture the intercellular signaling dynamics associated with MASLD 
progression, we applied FlowSig33 to the scRNA-seq data, revealing 
differentially inflowing and outflowing signals across the MASLD 
spectrum (Fig. 5a,b and Extended Data Fig. 4a,b). We constructed 30 
gene expression modules (GEMs) using PyLIGER34, which captured 
differences across cell types (Extended Data Fig. 4c,d). Compared 
to CTRLs, MASL exhibited increased inflow of interleukin-6 through 
leukemia inhibitory factor receptor and interleukin-6 cytokine fam-
ily signal transducer, vascular endothelial growth through kinase 
insert domain receptor, interleukin-13 through interleukin-13 recep-
tor subunit alpha-2, calcitonin gene-related peptide type 1 receptor 
and the chemokine receptor CXCR3 (Extended Data Fig. 4a), along 
with elevated outflow of migration inhibitory factor (originating from 
cholangiocytes and cDC1s), interleukin-33 (LSECs, central vein ECs and 
portal vein ECs) and angiopoietin-related protein 1 (cholangiocytes 
and HSCs) (Fig. 5c). Progression to MASH involved minimal additional 
inflow alterations (Extended Data Fig. 4b), but a marked amplification 
of outflowing mediators, notably hepatocyte growth factor (HGF) 
from LAMs, CXCL3 (LAMs, KCs, cholangiocytes and CD14+/CD16+ 
monocytes), protein Wnt-10a (plasma_IgA, plasma_IgG and pDCs) 

and interleukin-1A from the broader myeloid compartment (Fig. 5b–d). 
To reveal the regulatory architecture underlying augmented outflow 
signaling, we constructed global intercellular flow networks by map-
ping significantly upregulated inflowing signals that form directed 
paths toward one or more elevated outflows, along with their associ-
ated GEMs (Extended Data Fig. 4e,f).

The pronounced elevation of HGF outflow from LAMs in patients 
with MASH is of particular interest, as a previous study by Kroy et al.35 
demonstrated that hepatocyte-specific deletion of c-Met, the recep-
tor for HGF, in a mouse model of MASH, resulted in an exacerbated 
phenotype marked by higher fatty acid accumulation and increased 
apoptosis35, suggesting that LAMs have a hepatoprotective role dur-
ing MASLD progression via the HGF–MET axis, most probably within 
hepatic crown-like structures11,24. To corroborate that LAMs serve as 
an additional critical source of HGF, alongside the well-established 
role of HSCs, we examined the localization of HGF mRNA in LAMs 
using RNAscope (Fig. 5e). To explore the potential impact of LAMs on 
hepatocyte functions, we observed that hepatocytes in proximity to 
LAMs exhibited a proliferative phenotype (Extended Data Fig. 4g). To 
investigate this further, we cultured human hepatocytes (HepG2 cells) 
with conditioned medium from THP-1 cells with or without MITF-OE. 
Notably, MITF-OE in THP-1 cells significantly increased ex vivo produc-
tion of HGF (Fig. 5f) and enhanced the ability of THP-1 conditioned 
medium to stimulate HepG2 cell proliferation (Fig. 5g) and reduce 
apoptosis (Fig. 5h). Collectively, our intercellular flow analysis suggests 
a hepatoprotective role of LAMs via the HGF–MET axis during MASLD 
progression (Fig. 5i).

ST analysis with topic modeling uncovers a spatial gene topic 
of MASLD-associated fibrosis
To uncover MASLD-related gene signatures within a spatial context, 
our human MASH datasets including 16,000 Visium spots were decon-
voluted into 20 ‘spatial topics’ using ST analysis with topic modeling 
(STAMP)36 (Methods and Extended Data Fig. 5a). Further examina-
tion of the distribution of spots with the highest topic activity (99th 
percentile) across all ST sections revealed six non-parenchymal spa-
tial topics that were more prevalent in MASLD than in CTRLs (Fig. 6a 
and Extended Data Fig. 5a–c). These spatial topics corresponded to 
MASLD-relevant cell populations and signaling pathways. For exam-
ple, Topic3 featured markers of KCs (CD5L, VSIG4 and TIMD4), while 
Topic4 presented a LAM-specific gene expression module (FABP4, 
SPP1, TREM2 and LPL).

The Topic5 profile reflects a pathological extracellular matrix/
fibrogenesis pathway marked by collagen-related (COL1A1, COL1A2 
and COL14A1) and fibrosis-related (THY1, LTBP2, LOXL1, MFAP4, ITGBL1 
and LUM) genes37 (Fig. 6b), which was particularly enriched in patients 
with MASH with fibrosis stages 3–4 (Fig. 6c). Zoom-in visual inspection 
confirmed that spots with high Topic5-activity spatially aligned with the 
histology of fibrotic foci and its activity correlated with the abundance 
of HSCs and central vein ECs, as inferred by cell2location38 (Fig. 6d and 
Extended Data Fig. 5d), suggesting the involvement of their potential 
crosstalk in MASLD-related fibrogenesis.

Fig. 5 | LAMs exert hepatoprotective function via the HGF–MET axis. 
a, Differentially outflowing signals between MASL and CTRL groups. The yellow 
dots indicate statistically significant differential outflow (absolute log2(fold 
change) > 1.0, Padj < 0.01). b, Differentially outflowing signals between MASH 
and MASL groups. The yellow dots indicate statistically significant differential 
outflow (absolute log2(fold change) > 1.0, Padj < 0.01). c, Dot plot showing the 
expression patterns of differentially outflowing signals identified in both MASL 
versus CTRLs and MASH versus MASL. d, Expression of HGF in the myeloid 
compartment of the scRNA-seq dataset displayed in the UMAP space. e, Confocal 
microscopy representative images of RNAscope showing TREM2 and HGF for 
the tissue section from the MASH group (n = 3 independent experiments). The 
white arrows denote cells double-positive for TREM2 and HGF. f, Enzyme-linked 

immunosorbent assays of HGF in the conditioned medium of THP-1 EV and 
MITF-OE cells (n = 8 biological replicates). g, IF staining of Ki-67 (overlap with 
DAPI staining) and percentage of Ki-67+ cells in HepG2 cells cultured with the 
conditioned medium described in f and palmitic acid for 24 h (n = 3 biological 
replicates, multiple regions per sample). h, Terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) staining (green) and percentage of 
TUNEL+ cells in HepG2 cells cultured with the conditioned medium described 
in f and palmitic acid for 24 h (n = 3 biological replicates, multiple regions per 
sample). i, Schematic representation of the hepatoprotective function of LAMs 
via the HGF–MET axis. Data are presented as mean values ± s.d.; statistical 
significance was determined using an unpaired, two-sided Student’s t-test. 
i, The illustration was created with BioRender.com.
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n = 4 MASH F1–2 and n = 4 MASH F3–4). d, Spatial distribution of the MASLD-
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To determine whether elevated RNA levels resulted in concordant 
increases in protein, we applied high-sensitivity mass spectrometry 
on pathologist-defined regions of interests (ROIs) across three dis-
ease conditions (n = 4 CTRL, n = 3 MASL and n = 7 MASH). Two ROIs 

(~100 × 200 µm2) from the pericentral and periportal areas were 
isolated using laser-capture microdissection from each tissue sec-
tion for proteomics profiling (Supplementary Notes). Genes specific 
to Topic4 (including FABP4, GPNMB, LSP1 and LGALS3) and Topic5 
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(including TAGLN, LUM, COL1A1 and COL1A2) were elevated in MASH 
pericentral ROIs, aligning with the transcriptomic data (Fig. 6e). In 
contrast, few Topic4 and Topic5 genes showed appreciable upregula-
tion in the periportal ROIs from patients with MASL and MASH with 
mild fibrosis (F1–2). However, in patients with MASH with advanced 
fibrosis (F3–4), the periportal regions displayed marked upregula-
tion of these genes, suggesting a more extensive dysregulation as 
the disease progressed.

To explore the cell–cell interactions within the Topic5-active area, 
we implemented CellPhoneDB39 on our scRNA-seq dataset. Notably, 
RSPO3 (R-spondin 3)16, a pro-proliferating factor from central vein 
ECs, was predicted to interact with LGR6 on HSCs (Fig. 6f), poten-
tially driving HSC proliferation and liver fibrogenesis40. Consistently, 
we observed an enrichment of the RSPO3–LGR6 interaction signal in 
fibrotic regions of liver biopsies, particularly from patients with MASH 
F3–4, using communication analysis by optimal transport41 (Fig. 6g 
and Extended Data Fig. 5e). Moreover, RSPO3 was highly elevated 
in active fibrotic lesions from patients with idiopathic pulmonary 
fibrosis and MASLD42, specifically expressed in central vein ECs43. 
These data indicate the RSPO3–LGR6 interaction as a candidate sign-
aling axis potentially involved in fibrogenesis, warranting further 
experimental validation.

Identifying MASLD-associated metabolic programs in situ 
using MALDI-MSI
To elucidate the metabolic landscape of MASLD, we applied Hotspot44  
to our MALDI-MSI datasets (n = 6 CTRL, n = 9 MASL and n = 12 MASH), 
including 841,534 high-quality spatially indexed metabolomes. 
The original spatial coordinates of each MALDI-MSI SM dataset 
were transformed and aligned into a unified two-dimensional coor-
dinate system, enabling integrative analysis across all SM samples 
(Extended Data Fig. 6a and Methods). The transformed spatial distances 
served as the basis for feature selection and similarity quantification. A 
total of 1,528 metabolites and lipids with significant spatial autocorrela-
tion (false discovery rate (FDR) < 0.01) were identified and decomposed 
into 20 spatially dependent metabolic modules based on their spatial 
distributions (Fig. 7a). Among these, three modules (modules 3, 5 and 
13) were identified as MASLD-specific, with module 5 exhibiting the 
strongest correlation with disease severity (Fig. 7b), suggesting its 
role in disease progression from healthy to MASL and from MASL to 
MASH. Spatial analysis revealed that module 5 metabolites are pre-
dominantly minimally produced in the pericentral region under healthy 
conditions but are markedly upregulated in MASLD (Figs. 1e and 7c). 
Validating our approach, TG species such as TG(16:1(9Z)/18:0/18:1) 
and TG(16:1/18:0/18:1(9Z)), previously reported as key lipid species 
associated with fat accumulation in MASH45, were found in modules 5 
and 13, respectively (Fig. 7d and Extended Data Fig. 6b,c).

Beyond TGs, module 5 was primarily enriched in phosphatidyle-
thanolamine (PE), phosphatidylcholine (PC) and phosphatidic acid 
(PA) species containing very-long-chain fatty acids (C ≥ 22), such as 
PA(24:0/24:1(15Z)), PC(22:4(7Z,10Z,13Z,16Z)/24:0), PA(24:0/24:0), 
phosphor-(N-methyl)-ethanolamine (PE-NMe)(20:1(11Z)/24:1(15Z)) 
and PE-NMe(22:2(13Z,16Z)/24:1(15Z)) (Fig. 7d). These findings implicate 
phospholipid (PL) metabolism in MASLD pathogenesis. To integrate 
the MSI-based SM data with the ST data, we aligned the MSI data points 
directly to the corresponding H&E images of Visium ST using STalign46 
(Fig. 7e and Extended Data Fig. 6d,e). We found that MASLD-specific 
metabolic modules spatially aligned with the spatial gene topics of the 
LAM feature (Topic4) and HSC-driven fibrogenesis (Topic5) (Fig. 7f).

To deepen the link between LAM-driven lipid metabolism and  
MASLD-specific metabolic alterations, we extracted metabolism- 
associated genes from Topic4 (Fig. 7g) using STAMP analysis. Among 
these, we focused on PLA2G7, which encodes lipoprotein-associated 
phospholipase A2 (lp-PLA2), a regulator of PL metabolism that was 
exclusively expressed in LAMs (Fig. 7h). Lp-PLA2 is upregulated in 

macrophages in response to oxidized PL stimulation, promoting lipo-
protein uptake47. Interestingly, elevated oxidized PL levels in KCs could 
lead to iron deposition and subsequent KC ferroptosis, correlating 
with more severe histological features of fibrosis and steatohepatitis48. 
Conversely, lp-PLA2 OE reduces lipid peroxidation levels and strongly 
suppress ferroptosis49. Therefore, the MITF-regulated expression 
of PLA2G7 in LAMs (Figs. 3f,h and 4d), may confer ferroptosis resist-
ance, thereby sustaining robust consistent lipid metabolism capacity 
in LAMs.

Discussion
In this study, we used single-cell RNA expression analysis of liver paren-
chymal and NPC types alongside ST, metabolomics and proteomics 
on adjacent tissue sections to generate comprehensive molecular 
and cellular profiles across the spectrum of MASLD. These data can 
be interactively explored using the Human Masld Spatial Multiomics 
Atlas portal.

We focused on LAMs because of their pivotal role as major cellular 
responders to inflammation and metabolic dysfunction during MASLD 
progression, as evidenced by their increased populations and enhanced 
presence within steatotic lesions10,20. We compared TFs operating in 
LAMs and KCs to elucidate the mechanisms driving LAM development, 
revealing distinct regulatory networks. Specifically, pySCENIC analysis 
of scRNA-seq data highlighted a skin pigmentation gene, MITF, as a 
master regulator of LAM differentiation, endowing them with enhanced 
lipid-handling capacity. MITF orchestrates the metabolic reprogram-
ming of LAMs through the PGC1α–PPARγ–FAO axis. The clinical rele-
vance of the MITF regulon is supported by prior evidence that imatinib, 
a PI3K/Akt inhibitor that activates MITF in monocyte-derived DCs50, 
significantly ameliorates MASLD in obese mice51. Notably, 3 months 
of imatinib treatment reduced hepatic steatosis, systemic and adipose 
tissue inflammation, and improved insulin sensitivity. These findings 
highlight the therapeutic potential of manipulating LAM phenotypes 
and abundance either through molecular drug interventions or direct 
injections of bone marrow-derived macrophages52.

The spatial gene topic of MASLD-related fibrosis spatially deline-
ated fibrotic regions in each Visium ST section, thereby facilitating the 
identification of a candidate profibrotic cell–cell interaction between 
central vein ECs and HSCs via the RSPO3–LGR6 ligand–receptor pair, 
which serves as a potentially druggable target. However, HSCs may not 
be the sole responders to RSPO3 secreted by central vein ECs as NK-like 
cells have also been implicated in mediating antitumor immunity via 
the RSPO3–LGR6 axis, which involves NK cell biology through MYC 
upregulation and ribosomal biogenesis53. Accordingly, the clonal 
expansion of circulating NKT cells observed in patients with MASL 
and MASH in our cohort could, at least in part, be attributed to their 
response to RSPO3 secreted by central vein ECs. Thus, the RSPO3–LGR6 
axis appears to have roles in both inflammation and fibrogenesis, pre-
senting a promising therapeutic target.

Our SMA pipeline provided a framework to integrate the MSI- 
based SM and ST data profiled on adjacent tissue sections. However,  
it has not been applied across the entire spatially resolved multi-omics 
MASLD datasets because precise alignment requires a high histo-
logical similarity between tissue sections from these two spatial 
modalities and a time-intensive landmark selection process. Appli-
cation of MASLD-associated metabolites could inform molecular 
pathology-based patient stratification54, particularly for noninva-
sive diagnosis of MASH in patients with MASLD, where liver biopsies 
are necessary. Notably, the relationship between very-long-chain 
fatty-acid-containing PL species and lp-PLA2-mediated LAM-driven 
PL metabolism remains to be elucidated.

A limitation of this study is the sex imbalance in the scRNA-seq 
cohort, with all control samples derived from female donors and the 
MASLD group consisting predominantly of male patients. Thus, we can-
not fully exclude the potential influence of sex on the observed cellular 
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changes during disease progression. Future studies incorporating 
sex-balanced cohorts will be essential to delineate any sex-associated 
contributions to MASLD-relevant cellular programs more precisely.

In summary, these dense single-cell and spatial reference maps 
of the human MASLD, in conjunction with the recently developed 
spatiotemporal atlas of liver homeostasis and regeneration15, and 
cholestatic injury and repair16 in mouse liver, constitute a large-scale 
resource for generating hypotheses on chronic liver disease pathology 
and for further functional validation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-025-02407-8.

References
1.	 Huby, T. & Gautier, E. L. Immune cell-mediated features of non- 

alcoholic steatohepatitis. Nat. Rev. Immunol. 22, 429–443 (2022).
2.	 Feng, G. et al. Recompensation in cirrhosis: unravelling the 

evolving natural history of nonalcoholic fatty liver disease. Nat. 
Rev. Gastroenterol. Hepatol. 21, 46–56 (2024).

3.	 Xiong, X. et al. Landscape of intercellular crosstalk in healthy and 
NASH liver revealed by single-cell secretome gene analysis. Mol. 
Cell 75, 644–660 (2019).

4.	 Daemen, S. et al. Dynamic shifts in the composition of resident 
and recruited macrophages influence tissue remodeling in NASH. 
Cell Rep. 34, 108626 (2021).

5.	 Xiao, Y. et al. Hepatocytes demarcated by EphB2 contribute to the 
progression of nonalcoholic steatohepatitis. Sci. Transl. Med. 15, 
eadc9653 (2023).

6.	 Blériot, C. et al. A subset of Kupffer cells regulates metabolism 
through the expression of CD36. Immunity 54, 2101–2116 (2021).

7.	 Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. 
J. Mechanisms of NAFLD development and therapeutic strategies. 
Nat. Med. 24, 908–922 (2018).

8.	 Zhu, C., Tabas, I., Schwabe, R. F. & Pajvani, U. B. Maladaptive 
regeneration—the reawakening of developmental pathways in 
NASH and fibrosis. Nat. Rev. Gastroenterol. Hepatol. 18, 131–142 
(2021).

9.	 Guilliams, M. & Scott, C. L. Liver macrophages in health and 
disease. Immunity 55, 1515–1529 (2022).

10.	 Jaitin, D. A. et al. Lipid-associated macrophages control metabolic 
homeostasis in a Trem2-dependent manner. Cell 178, 686–698 
(2019).

11.	 Wang, X. et al. Prolonged hypernutrition impairs 
TREM2-dependent efferocytosis to license chronic liver 
inflammation and NASH development. Immunity 56, 58–77 
(2023).

12.	 Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the 
mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 
(2019).

13.	 Cunningham, R. P. & Porat-Shliom, N. Liver zonation—revisiting 
old questions with new technologies. Front. Physiol. 12, 732929 
(2021).

14.	 Liu, Y. et al. High-spatial-resolution multi-omics sequencing via 
deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

15.	 Xu, J. et al. A spatiotemporal atlas of mouse liver homeostasis and 
regeneration. Nat. Genet. 56, 953–969 (2024).

16.	 Wu, B. et al. A spatiotemporal atlas of cholestatic injury and repair 
in mice. Nat. Genet. 56, 938–952 (2024).

17.	 Sun, C. et al. Spatially resolved multi-omics highlights cell-specific 
metabolic remodeling and interactions in gastric cancer. Nat. 
Commun. 14, 2692 (2023).

18.	 Conroy, L. R. et al. Spatial metabolomics reveals glycogen as an 
actionable target for pulmonary fibrosis. Nat. Commun. 14, 2759 
(2023).

19.	 Vicari, M. et al. Spatial multimodal analysis of transcriptomes and 
metabolomes in tissues. Nat. Biotechnol. 42, 1046–1050 (2024).

20.	 Guilliams, M. et al. Spatial proteogenomics reveals distinct and 
evolutionarily conserved hepatic macrophage niches. Cell 185, 
379–396 (2022).

21.	 Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & 
Marioni, J. C. Differential abundance testing on single-cell data 
using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 
(2022).

22.	 Edahiro, R. et al. Single-cell analyses and host genetics highlight 
the role of innate immune cells in COVID-19 severity. Nat. Genet. 
55, 753–767 (2023).

23.	 Xu, R. et al. Lipid-associated macrophages between aggravation 
and alleviation of metabolic diseases. Trends Endocrinol. Metab. 
35, 981–995 (2024).

24.	 Remmerie, A. et al. Osteopontin expression identifies a subset 
of recruited macrophages distinct from Kupffer cells in the fatty 
liver. Immunity 53, 641–657 (2020).

25.	 Kumar, N., Mishra, B., Athar, M. & Mukhtar, S. Inference of gene 
regulatory network from single-cell transcriptomic data using 
pySCENIC. Methods Mol. Biol. 2328, 171–182 (2021).

26.	 Suo, S. et al. Revealing the critical regulators of cell identity in the 
mouse cell atlas. Cell Rep. 25, 1436–1445 (2018).

27.	 Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial 
cells imprint the Kupffer cell identity on monocytes colonizing the 
liver macrophage niche. Immunity 51, 638–654 (2019).

28.	 Kim, H. The transcription factor MafB promotes anti-inflammatory 
M2 polarization and cholesterol efflux in macrophages. Sci. Rep. 
7, 7591 (2017).

29.	 Garraway, L. A. et al. Integrative genomic analyses identify MITF 
as a lineage survival oncogene amplified in malignant melanoma. 
Nature 436, 117–122 (2005).

30.	 Yuan, C. et al. AAV-mediated hepatic LPL expression ameliorates 
severe hypertriglyceridemia and acute pancreatitis in Gpihbp1 
deficient mice and rats. Mol. Ther. 32, 59–73 (2024).

31.	 Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via 
PGC1α and MITF. Cancer Cell 23, 302–315 (2013).

32.	 Luo, L. et al. Muscle injuries induce a prostacyclin-PPARγ/PGC1a- 
FAO spike that boosts regeneration. Adv. Sci. 10, e2301519  
(2023).

33.	 Almet, A. A., Tsai, Y. C., Watanabe, M. & Nie, Q. Inferring 
pattern-driving intercellular flows from single-cell and spatial 
transcriptomics. Nat. Methods 21, 1806–1817 (2024).

34.	 Lu, L. & Welch, J. D. PyLiger: scalable single-cell multi-omic data 
integration in Python. Bioinformatics 38, 2946–2948 (2022).

35.	 Kroy, D. C. et al. Hepatocyte specific deletion of c-Met leads to the 
development of severe non-alcoholic steatohepatitis in mice.  
J. Hepatol. 61, 883–890 (2014).

36.	 Zhong, C., Ang, K. S. & Chen, J. Interpretable spatially aware 
dimension reduction of spatial transcriptomics with STAMP.  
Nat. Methods 21, 2072–2083 (2024).

37.	 Franzén, L. et al. Mapping spatially resolved transcriptomes in 
human and mouse pulmonary fibrosis. Nat. Genet. 56, 1725–1736 
(2024).

38.	 Kleshchevnikov, V. et al. Cell2location maps fine-grained cell 
types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 
(2022).

39.	 Troulé, K., et al. CellPhoneDB v5: inferring cell–cell 
communication from single-cell multiomics data. Nat. Protoc. 
https://doi.org/10.1038/s41596-024-01137-1 (2025).

40.	 Yin, X. et al. RSPOs facilitated HSC activation and promoted 
hepatic fibrogenesis. Oncotarget 7, 63767–63778 (2016).

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02407-8
https://doi.org/10.1038/s41596-024-01137-1


Nature Genetics | Volume 57 | December 2025 | 3112–3125 3125

Article https://doi.org/10.1038/s41588-025-02407-8

41.	 Cang, Z. et al. Screening cell–cell communication in spatial 
transcriptomics via collective optimal transport. Nat. Methods 20, 
218–228 (2023).

42.	 Zhang, M. et al. Targeting the Wnt signaling pathway through 
R-spondin 3 identifies an anti-fibrosis treatment strategy for 
multiple organs. PLoS ONE 15, e0229445 (2020).

43.	 Rocha, A. S. et al. The angiocrine factor rspondin3 is a key 
determinant of liver zonation. Cell Rep. 13, 1757–1764 (2015).

44.	 DeTomaso, D. & Yosef, N. Hotspot identifies informative gene 
modules across modalities of single-cell genomics. Cell Syst. 12, 
446–456 (2021).

45.	 Rappez, L. et al. SpaceM reveals metabolic states of single cells. 
Nat. Methods 18, 799–805 (2021).

46.	 Clifton, K. et al. STalign: alignment of spatial transcriptomics data 
using diffeomorphic metric mapping. Nat. Commun. 14, 8123 
(2023).

47.	 Wang, W.-Y. et al. OxLDL stimulates lipoprotein-associated 
phospholipase A2 expression in THP-1 monocytes via PI3K and 
p38 MAPK pathways. Cardiovasc. Res. 85, 845–852 (2010).

48.	 Zhang, J. et al. Reactive oxygen species regulation by NCF1 
governs ferroptosis susceptibility of Kupffer cells to MASH.  
Cell Metab. 36, 1745–1763 (2024).

49.	 Oh, M. et al. The lipoprotein-associated phospholipase A2 
inhibitor Darapladib sensitises cancer cells to ferroptosis by 
remodelling lipid metabolism. Nat. Commun. 14, 5728 (2023).

50.	 Gutknecht, M. et al. The transcription factor MITF is a critical 
regulator of GPNMB expression in dendritic cells. Cell Commun. 
Signal. 13, 19 (2015).

51.	 AlAsfoor, S. et al. Imatinib reduces non-alcoholic fatty liver 
disease in obese mice by targeting inflammatory and lipogenic 
pathways in macrophages and liver. Sci. Rep. 8, 15331 (2018).

52.	 Brennan, P. N. et al. Autologous macrophage therapy for liver 
cirrhosis: a phase 2 open-label randomized controlled trial.  
Nat. Med. 31, 979–987 (2025).

53.	 Tang, Y. et al. Tumor microenvironment-derived R-spondins 
enhance antitumor immunity to suppress tumor growth and 
sensitize for immune checkpoint blockade therapy. Cancer 
Discov. 11, 3142–3157 (2021).

54.	 Zhang, X. et al. A blood-based biomarker panel for non-invasive 
diagnosis of metabolic dysfunction-associated steatohepatitis. 
Cell Metab. 37, 59–68 (2025).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License, 
which permits any non-commercial use, sharing, distribution and 
reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if you modified the licensed 
material. You do not have permission under this licence to share 
adapted material derived from this article or parts of it. The images 
or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative 
Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

1Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, China. 2Department of Gastroenterology, 
The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China. 3Institute of Digestive 
Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, China. 4Cholestatic Liver Diseases Center, The First Affiliated 
Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China. 5Metabolic Dysfunction-Associated 
Steatotic Liver Disease (MASLD) Medical Research Center, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army 
Medical University), Chongqing, China. 6Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China. 7Beijing 
Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China. 8Department of Hepatobiliary Surgery, 
The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China. 9Biomedical Pioneering Innovation Center 
(BIOPIC) and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China. 10Southampton National Institute for Health and Care 
Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, 
UK. 11Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy. 12MAFLD Research Center, Department 
of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. 13Department of Internal Medicine, Section of Digestive 
Diseases, Yale University School of Medicine, New Haven, CT, USA. 14Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver 
Disease in Zhejiang Province, Wenzhou, China. 15State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, 
Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China. 16Peking University 
Beijing-Tianjin-Hebei Biomedical Pioneering Innovation Center, Tianjin, China. 17These authors contributed equally: Ziyu Li, Gang Luo, Changpei Gan, 
Huayu Zhang, Ling Li.  e-mail: xinshou.ouyang@yale.edu; zhengmh@wmu.edu.cn; fbai@pku.edu.cn; jin.chai@cldcsw.org

http://www.nature.com/naturegenetics
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xinshou.ouyang@yale.edu
mailto:zhengmh@wmu.edu.cn
mailto:fbai@pku.edu.cn
mailto:jin.chai@cldcsw.org


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02407-8

Methods
Access to human tissue and ethics oversight
This study involving human participants adhered to the ethical stand-
ards outlined in the Declaration of Helsinki (2013) and the Declaration 
of Istanbul (2018). The study protocol was reviewed and approved by 
the Ethics Committees of the First Affiliated Hospital (Southwest Hos-
pital) of the Army Medical University (approval nos. (A)KY2021061 and 
(B)KY2023050)) and the First Affiliated Hospital of Wenzhou Medical 
University (approval no. 2016-246). Additionally, the export of human 
genetic information and materials received authorization from China’s 
Ministry of Science and Technology. Before study commencement, writ-
ten informed consent was obtained from all participants. Control liver 
samples were procured from ten patients at the Institute of Hepatobil-
iary Surgery of Southwest Hospital, who had no evidence of fatty liver 
disease, primary biliary cholangitis, autoimmune hepatitis, liver cancer, 
viral hepatitis or other liver diseases. Samples from patients with MASLD 
were obtained through biopsy procedures. The diagnosis of MASLD was 
based on an integration of clinical features, laboratory tests and patho-
logical diagnosis, while excluding other known hepatic conditions. The 
histological characteristics of the liver samples were evaluated using the 
NAFLD Activity Score, which assesses steatosis, lobular inflammation 
and hepatocyte ballooning, along with fibrosis assessment to evalu-
ate the severity of liver disease. The diagnosis of MASH is based on the 
presence of hepatocyte ballooning and lobular inflammation, along 
with steatosis and varying degrees of fibrosis. All histological sections 
were examined in blinded fashion by an experienced hepatopathologist.

Multiplex IF staining
Cellular colocalization and expression of proteins were validated using 
a multiplex immunohistochemistry/IF staining kit (cat. no. abs50012, 
Absin) according to the manufacturer’s instructions. Briefly, 4-µm-thick 
liver paraffin sections were initially deparaffinized, followed by anti-
gen retrieval. Subsequently, sections underwent multiple rounds of 
blocking, primary antibody incubation at 4 °C for 12 h, secondary 
antibody incubation at 37 °C for 10 min and fluorescent dye (TSA 520, 
570, 620 or 650) incubation at 37 °C for 10 min. Each antibody and dye 
incubation step was followed by washing with Tris-EDTA buffer. Finally, 
nuclei were stained with DAPI for 10 min at room temperature. Fluo-
rescence was visualized using a laser scanning confocal microscope 
(LSM 880, ZEISS). The antibody application details are provided in 
Supplementary Table 3.

Generation of stable THP-1 cell lines and RT–qPCR
To construct the lentivirus needed to infect THP-1 cells, first human MITF 
complementary DNA (NM-198159) was cloned into pLV-CMV-MCS-E
F1-ZsGreen1-T2A-Puro. Together with PSPAX2 and PCMV-VSV-G, 
these three plasmids were transfected into the 293T cell line. THP-1 
cells were grown in Roswell Park Memorial Institute (RPMI) 1640 
basic medium with 10% FCS, 1% penicillin-streptomycin and 0.05 mM 
2-mercaptoethanol at 37 °C in 5% CO2. THP-1 cells were infected with 
either human MITF or EV lentivirus; stable cells were then selected 
for their ability to grow in the presence of puromycin (Hunan Fenghui 
Biotechnology Co., Ltd). Total RNA was extracted from THP-1 cells using 
RNAiso Plus (Takara Bio) according to the manufacturer’s instructions. 
Complementary DNA was synthesized using the PrimeScript FAST RT 
Reagent Kit with gDNA Eraser (Takara Bio). RT–qPCR was performed 
using the TB Green Premix Ex Taq II FAST qPCR kit (Takara Bio). The 
primers used in this study were selected from the Harvard PrimerBank; 
we used GPADH as the reference gene for normalizing gene expression 
(primer sequences are described in Supplementary Table 4a).

siRNA transfection
MITF siRNAs were purchased from Sangon Biotech. Nontargeting oli-
gonucleotides were used as the negative control. siRNAs were delivered 
to the THP-1 cell lines according to the manufacturer’s instructions 

(ProteanFect Max, Nanoportal Biotech). The knockdown efficiency 
of target genes was evaluated using RT–qPCR 24 h after transfec-
tion (primer sequences and siRNA oligonucleotides are described in 
Supplementary Table 4b).

OCR assay and mitochondrial staining
THP-1 cells infected with either an EV or MITF-OE lentivirus were used 
to assess cellular OCR with the Seahorse XFp Cell Mito Stress Test Kit 
(cat. no. 103010-100, Agilent Technologies) according to the manufac-
turer’s protocol. Briefly, cells were resuspended in prewarmed Seahorse 
assay medium and seeded at a density of 60,000 cells per 50 μl per well 
into Cell-Tak-coated Seahorse XFp Cell Culture Microplates. After cell 
attachment, 130 μl of Seahorse assay medium was added to each well 
and plates were incubated for 40 min in a 37 °C, non-CO2 incubator 
before the assay. Basal OCR was then measured, followed by injection 
of oligomycin (3.5 μM), FCCP (2 μM) and rotenone/antimycin A (2.5 μM) 
through the hydrated probe plate. Real-time OCR (pmol O2 min−1) was 
measured using the Agilent Seahorse XFp Analyzer. Data were analyzed 
using the WAVE software. To assess the total mitochondrial mass, cells 
were stained with MitoTracker Red (cat. no. MB6046-1, Meilunbio) for 
20 min, followed by fluorescence detection using a ZEISS LSM 880 
laser scanning confocal microscope. Ten randomly selected fields per 
sample were captured; mean fluorescence intensity quantification was 
performed using ImageJ (v.1.8.0) (National Institutes of Health) with 
background subtraction.

RNAscope in situ hybridization
To colocalize HGF and TREM2, an RNAscope assay was performed 
using an RNAscope Multiplex Fluorescent Reagent Kit v2 (cat. no. 
323100, Advanced Cell Diagnostics) according to the manufacturer’s 
instructions. Briefly, 4-µm-thick liver paraffin sections were prepared 
and processed through deparaffinization, hydrogen peroxide treat-
ment, target retrieval and RNAscope Protease IV treatment. Sections 
were then hybridized with the target probes HGF (cat. no. 310761-C2) 
and TREM2 (cat. no. 420491-C3) for 2 h. This was followed by sequential 
signal amplification using AMP1, AMP2 and AMP3 for 30 min, 30 mins 
and 15 min, respectively. For signal labeling in the C2 channel, sections 
were incubated with HRP-C2 for 15 min, followed by Opal 570 dyes for 
30 min and HRP blocker for 15 min. This signal labeling procedure 
was then replicated for the C3 channels using Opal 520 dyes. Finally, 
sections were counterstained with DAPI at room temperature. After 
each step, sections were washed with RNAscope 1× Wash Buffer. Fluo-
rescence was visualized using a laser scanning confocal microscope 
(LSM 880). The colocalization signals were analyzed using the ZEN 
software (v.2.3).

Conditioned medium experiment
Conditioned media were collected from the THP-1 EV or MITF-OE cell 
lines after 48 h of culture. Cells were seeded at a density of 1 × 106 cells 
per T75 flask containing 15 ml of RPMI 1640 basic medium (cat. no. 
C11875500, Thermo Fisher Scientific) supplemented with 10% FCS (cat. 
no. S711-001S, Lonsera). After incubation, cellular debris was removed 
by centrifugation at 4,000g for 10 min at room temperature. Human 
HGF concentrations in the conditioned media were quantified using 
a Quantikine ELISA Kit (cat. no. DHG00B, R&D Systems), according to 
the manufacturer’s instructions.

Computational analysis
Mapping of the gene expression libraries. For the scRNA-seq data, 
raw reads were processed to generate gene expression profiles using 
Celescope (v.1.15.0) (Singleron Biotechnologies) with default param-
eters. Space Ranger (v.3.1.1) (https://support.10xgenomics.com) 
was used to preprocess the sequencing data, with the default set-
tings for the ST data. Both types of libraries were mapped to the 10x 
GRCh38 reference.
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scRNA-seq data processing. The scRNA-seq libraries were analyzed 
using the standard SCANPY (v.1.10.3)55 workflow. We discarded (1) 
cells with fewer than 200 genes and fewer than 400 unique molecular 
identifiers (UMIs), (2) cells with more than 30% of counts mapped 
to ribosomal or mitochondrial genes, (3) cells with more than 1% 
of counts mapped to hemoglobin genes, (4) cells with more than 
40,000 UMIs, (5) cells with more than 6,000 genes and (6) doublets 
as estimated using Scrublet56 with default parameters. Additionally, 
doublet clusters, identified by observing the expression of markers 
from multiple cell types in scRNA-seq, were removed. Gene expression 
values were normalized for library size and log-transformed. Princi-
pal component analysis was carried out using the top 6,000 highly 
variable genes. Neighbors were identified using the first 30 principal 
components corrected using Harmony57; clustering was done using 
the Leiden algorithm with the ten nearest neighbors per cell. UMAP 
projections were calculated using default parameters.

Zonation annotation of Visium ST data. To identify groups of spots 
in different ST samples that shared similar gene expression patterns, 
we integrated and clustered the 10x Visium spots of all sections using 
the intersection of 14,000 spatially variable genes identified from each 
section after batch correction using a deep learning-based STAligner 
(v.1.0.0) method58. These groups of spots were manually annotated 
into four liver lobular zones (portal, periportal, mid and central) using 
marker genes and location information from the literature. Spot clus-
tering was performed by first creating a spatial network using the 
Cal_Spatial_Net function with the following parameters: model = kNN 
and k_cutoff = 6. The number of clusters was constrained to four by 
specifying the num_cluster parameter during the execution of the 
mclust_R function of the STAligner package.

Spatial mapping of cell types in Visium ST using cell2location. 
Deconvolution of the abundance information of each cell type in 
each 10x Visium spot was performed with cell2location (v.0.1.3)38. 
Cell2location estimates the gene expression signatures of the cell 
types identified from reference scRNA-seq datasets using negative 
binomial regression, which accounts for batch effects. The inferred 
signatures are used to estimate the absolute spatial abundance of 
corresponding cell types across each Visium ST section separately. 
ST data were processed to untransformed and unnormalized mRNA 
counts filtered to genes shared with scRNA-seq data, while exclud-
ing mitochondrial and ribosomal genes. Hyperparameters in the 
cell mapping step based on tissue feature and experiment quality 
are as follows: (1) expected cell abundance per location = 8 and (2) 
regularization of within-experiment variation in RNA detection 
sensitivity = 20. The model achieved convergence after 30,000 
iterations. Evidence lower bound loss function scaling according 
to locations × genes was used. Results were visualized according to 
the cell2location tutorial.

Differential abundance analysis. We used miloR21 (v.2.0.0) to test 
for the differential abundance of cells within defined neighborhoods 
between two conditions (that is, MASL/MASH versus CTRLs or MASH 
versus MASL). We first used the buildGraph function to construct a 
kNN graph with the following parameters: k = 30, d = 30 and reduced.
dim = X_pca_harmony. Next, we used the makeneighborhoods func-
tion to assign cells to neighborhoods based on their connectivity 
over the kNN graph. For computational efficiency, we subsampled 
10% of T and NK cells and monocytes and DCs and 30% of B lineage 
cells, respectively. The testNhoods function was used to conduct the 
differential neighborhood abundance testing over samples with the 
scRNA-seq library (that is, collected after the first or second centrifuga-
tion step) as the covariate. To control for multiple testing, we adapted 
the spatial FDR implemented in Milo and used a 0.05 spatial FDR as 
the threshold for significance. The spatial FDR and log2(fold change) 

of the number of cells between two conditions in each neighborhood 
were used for visualization.

TCR and BCR analysis from scVDJ-seq. Droplet-based sequence 
data for the scTCR and scBCR sequences were aligned and quantified 
using Celescope multi_flv_CR against the GRCh38 human VDJ refer-
ence genome. Filtered annotated contigs were analyzed using Scirpy59 
(v.0.19.1). For the scTCR analysis, we selected T cells that were annotated 
as the following five cell types via the scRNA-seq analysis: MAIT cells, 
Treg, circulating NKT cells, CD4/CD8 naive T cells and CD8 Teff cells. Only 
T cells with both TCR-α (TRA) and TCR-β (TRB) chains were kept for 
further analysis. Each unique TRA–TRB pair was defined as a clonotype. 
The scBCR analysis was conducted on cells that were annotated as the 
following four cell types using the scRNA-seq analysis: naive B, memory 
B, Plasma_IgG and Plasma_IgA. Only B cells with both heavy (IGH) and 
light (IGL or IGK) chains remained for the downstream analysis. Each 
unique IGH–IGL/IGK pair was defined as a clonotype. For the TCR data, 
clonotype clusters were defined based on CDR3 amino acid sequences 
with receptor_arms = ‘all’, dual_ir = ‘any’ and a default cutoff of ten. For 
the BCR data, the cutoff parameter of the clonotype_network function 
used for calling clonotype clusters was set to five, with other param-
eters remaining the same as in the TCR analysis.

Analysis of GRNs. The SCENIC workflow60,61 (pySCENIC v.0.12.1) 
was used to predict TFs and their target genes regulated from our 
scRNA-seq dataset. We set the broad cell type as the group identity and 
downsampled 5% of cells from each identity because of the limitation 
of the computing resources. Gene regulatory interactions for 30,499 
genes were calculated based on coexpression across the scRNA-seq 
datasets with GRNBoost2 (ref. 62) (arboreto_with_multiprocessing–
method grnboost2). This was followed by pruning interactions, which 
involved incorporating established TF binding motifs and constructing 
dataset-specific regulatory regulons63 (pyscenic ctx–mask_dropouts). 
With the dropout masking set to True, the correlation between a TF and 
its target genes was calculated using only cells with nonzero expres-
sion values during regulon creation. Additionally, as input, we used the 
curated list of 1,390 human-specific TFs (https://raw.githubusercon-
tent.com/aertslab/pySCENIC/master/resources/hs_hgnc_curated_tfs.
txt), an annotation file for motif to TF mapping (https://resources.
aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl) 
(human, v9, mc9nr) and the ranking database of regulatory features 
(https://resources.aertslab.org/cistarget/databases/homo_sapiens/
hg38/refseq_r80/mc9nr/gene_based/hg38__refseq-r80__500bp_up_
and_100bp_down_tss.mc9nr.genes_vs_motifs.rankings.feather) (hg38, 
mc9nr, +500 bp and −100 bp transcription start site). Then, the activity 
of regulons was inferred for each cell using AUCell (pyscenic aucell with 
default parameters). The RSS was calculated for each cell type sepa-
rately. The differentially activated TF regulon analysis was conducted 
using a Wilcoxon rank-sum test. The final network was constructed 
with igraph (v.2.0.3) (https://CRAN.R-project.org/package=igraph), 
integrating node and edge attributions according to the scRNA-seq 
data and visualized using ggraph (v.2.1.0).

Identifying differentially flowing signal variables. When inferring 
intercellular flows from unique ligand–receptor interactions identi-
fied using the CellChat (v.2.1.2)64 analysis, we used FlowSig33 (v.0.1.2) 
to prioritize the informative outflowing and inflowing signal variables. 
Differentially inflowing and outflowing variables were identified using 
two separate Mann–Whitney U and Wilcoxon rank-sum tests. Variables 
were considered significant if they met the criteria of Padj < 0.01 and an 
absolute log(fold change) > 1.0.

Differential expression and gene set enrichment analysis. Differ-
ential gene expression was performed using the rank_genes_groups 
function of Scanpy with the following parameters: tie_correct = ‘TRUE’ 
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and method = ‘wilcoxon’. To reveal the function of upregulated DEGs 
or to assign them to biological terms, we used the get_ora_df function 
with the default parameters of decoupler (v.1.6.0)65.

Cell–cell interaction analysis. The interactions between cell popula-
tions identified in our scRNA-seq dataset were identified using Cell-
PhoneDB (v.5.0.0)39. First, we retrieved the interacting pairs of ligands 
and receptors, which met the criteria that all members were expressed 
in at least 10% of cells within relevant clusters. Then, to identify the most 
relevant interactions between cell types, we randomly permuted the 
cluster labels of all cells 1,000 times and determined the mean of the 
average receptor expression level in a cluster and the average ligand 
expression level in the interacting cluster, generating a null distribution 
for each ligand–receptor pair in each pairwise comparison between 
two cell types. By calculating the proportion of the means, which are 
equal to or higher than the actual mean, we obtained a P value for the 
likelihood of cell-type specificity of a given receptor–ligand complex. 
Only ligand–receptor pairs with P ≤ 0.01 were visualized using CCplotR 
(v.0.99.3)66. Communication analysis of ST datasets was performed 
using COMMOT (v.0.0.3)41 with default parameters.

Disease-associated spatial gene module analysis. Deconvolution 
through topic modeling was applied to the 10x Visium gene expression 
using sctm (v.0.1.3)36. The human MASH dataset was deconvolved into 
20 spatial topics using the STAMP function with the following param-
eters: mode = ‘sign’, dropout = 0.1, n_layers = 1, gene_likelihood = ‘nb’ 
using the 4,000 most variable genes. To quantify the activity of each 
spatial topic, the top 100 contributing genes for each topic were used 
to evaluate topic-specific scores. The distribution of each topic in the 
human samples (CTRL, MASL and MASH) was assessed by calculating 
the frequency of spots in the 99th percentile of topic activity versus 
the total number of spots across all tissue sections.

MALDI-MSI data analysis. Raw MALDI-MSI data files were processed 
into a tabular format as .CSV using the pyimzML tool (https://github.
com/alexandrovteam/pyimzML); files were further transformed into 
individual anndata objects compatible with the ST analysis pipeline 
based on SCANPY55. Pixels with fewer than 700 metabolites or fewer 
than 40,000 counts were excluded from the downstream analysis, as 
well as metabolites expressed in more than 95% of pixels. Each metabo-
lite feature was normalized on the total ion count within individual 
MSI data points. All 27 individual MSI-based anndata objects were 
integrated into a combined anndata containing 841,534 pixels, with the 
original spatial coordinates of each dataset staggered to differentiate 
the samples. To reveal disease-associated spatial metabolite expres-
sion patterns, we applied the Hotspot (v.1.1.1)44 analysis framework 
to the merged anndata object. First, an unweighted kNN graph was 
constructed with the six nearest neighbors (a hyperparameter) of each 
MSI data point in the two-dimensional space using the create_knn_
graph function. Next, pairwise evaluation was performed between the 
post-filtered 1,528 metabolites detected using MALDI-MSI to construct 
a scoring matrix based on coexpression between nearby spots using 
the compute_local_correlations function. Finally, an agglomerative 
clustering procedure was applied to group metabolites with similar 
spatial expression patterns into modules. This began with every mod-
ule represented by a single metabolite and proceeded by merging 
individual modules with the highest pairwise z-scores. Merging was 
restricted if the FDR-adjusted P between two branches exceeded 0.01 
or if either branch contained fewer than 20 metabolites.

Spatial alignment of MALDI-MSI to the Visium ST data. To spatially 
align MALDI-MSI to the Visium data, we used STalign (v.1.0)46. A raster-
ized density image was created from the positions of the MALDI-MSI 
data points and served as the source image. Before alignment, MSI data 
points located outside the tissue sections were identified based on the 

marked expression of Hotspot-identified module 11 and subsequently 
removed. The source image was first aligned to the corresponding 
target H&E image of Visium ST based on four manually assigned land-
mark points through affine transformation. The alignment was further 
optimized using a large deformation diffeomorphic metric mapping 
framework67. Once the MSI data were aligned with the RNA data, we 
selected the nearest Visium spot for the MSI data.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. All in vitro experiments were repeated 
independently at least three times. The investigators were not blinded 
to allocation during the experiments and outcome assessment. Experi-
mental data were analyzed and visualized using Prism (v.10.4.2) (Graph-
Pad Software). All quantitative data are presented as mean values ± s.d.; 
statistical significance was determined using an unpaired two-sided 
Student’s t-test.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw data for scRNA-seq and 10x Visium generated in this study are 
deposited in the Genome Sequence Archive68 at the National Genom-
ics Data Center69, the National Center for Bioinformation/Beijing 
Institute of Genomics and the Chinese Academy of Sciences (GSA for 
Human: HRA007511), which are available at https://ngdc.cncb.ac.cn/
gsa-human. The spatial metabolomic data have been deposited in the 
OMIX, the China National Center for Bioinformation/Beijing Institute 
of Genomics and the Chinese Academy of Sciences under accession 
no. OMIX009098 (https://ngdc.cncb.ac.cn/omix). The processed 
scRNA-seq and Visium ST data are available from OMIX under acces-
sion no. OMIX010136. The spatial proteomic data is also available from 
OMIX under accession no. OMIX009117. All processed data can be visu-
alized and downloaded at the HMSMA website (https://db.genomics.
cn/stomics/hmsma). Source data are provided with this paper.

Code availability
The code required to reproduce the analyses in this paper is available 
through GitHub at https://github.com/OMIC-coding/Spatial_multiomics_
analysis_MASLD and Zenodo (https://doi.org/10.5281/zenodo.17192831)70.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | scRNA-seq data quality control and zonation annotation 
for Visium ST data. a, Violin plots summarizing the number of UMIs detected 
per cell (total_counts), detected genes per cell (n_genes_by_counts) and the 
proportion of reads incident to mitochondrial genes (pct_counts_mt) per 
sample before (top) and after (bottom) filtering low-quality cells. b, Dot plots 
summarizing the known markers used to identify cell types. Each column 

corresponds to a specific cell subcluster and rows correspond to a list of key 
marker genes (expression normalized per gene), brackets on the right side 
of each plot detail the cell type or subcluster that these genes mark. c, Spatial 
distribution of four lobule zones (portal, peri-portal, mid and central) across all 
35 Visium sections.
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Extended Data Fig. 2 | Major cellular groups identified in the scRNA-seq 
datasets. a, UMAP representations colored by the expression of the known 
markers used to distinguish each subcluster for the T/NK compartment. 
b, UMAP representations colored by the expression of the known markers used 
to distinguish each subcluster for the B lymphocyte compartment. c, Dot plots 
summarizing the known markers used to distinguish each subcluster for the 
myeloid compartment. Each row corresponds to a specific cell subcluster and 
columns correspond to a list of key marker genes (expression normalized per 
gene), brackets on the top detail the cell type or subcluster that these genes 

mark. d, Number of B lineage cells with different clonal expansion types from 
the analysis of VDJ amplified libraries. e, Network plots showing similarity 
of CDR3 amino acid sequence in BCR heavy and light chain for each sample, 
disease status and cell type. Clonotype clusters with clonal size ≥5 are selected. 
f, Representative immunofluorescence protein staining of TREM2, EPCAM, and 
CYP3A4 for tissue specimens from CTRL, MASL, and MASH groups, showing the 
enrichment of LAMs in the pericentral area (n = 3, independent experiments). 
Scale bars, 100 μm and 20 μm (zoom-in).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell-type-specific regulons in the scRNA-seq datasets. 
a, Regulon specificity score for each annotated cell population. The top five 
regulons in each cell type are highlighted in red and labeled on the plot. The 
specificity score is shown on the Y axis. b, AUC distribution across cells for the 
MITF regulon. The calculated binary threshold is shown as a red dotted line. 
c, Expression of MITF gene in scRNA-seq dataset displayed in UMAP space. 
d, Stacked violin plot displaying the top 50 putative MITF-targeted gene 
expression levels in each cell subset, ordered by descending regulation weight. 

Red arrows indicate LAM-specific genes. e, Quantification of marker genes 
of LAMs by RT-qPCR in THP-1 cells after MITF knockdown (si-MITF) by small 
interfering RNA for 24 h (n = 6, biological replicates). f, AUC distribution across 
cells for PPARG regulon. The calculated binary threshold is shown as a red 
dotted line. g, Quantification of PGC1α, PPARγ, CPT1A, ACADVL and CYP21A1 by 
RT-qPCR in THP-1 cells after si-MITF for 24 h (n = 6, biological replicates). Data 
are presented as mean values ± s.d., statistical significance was determined by 
unpaired two-sided Student’s t-test.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Differential intercellular flow analysis by Flowsig. 
a, Differentially inflowing signals between MASL and CTRL groups. Yellow 
dots indicate statistically significant differential inflow (absolute log2FC > 1.0, 
adjusted P value < 0.01). b, Differentially inflowing signals between MASH and 
MASL groups. Yellow dots indicate statistically significant differential inflow 
(absolute log2FC > 1.0, adjusted P value < 0.01). c, pyLIGER-identified 30 GEMs 
from CTRL and MASL datasets align with cell types. d, pyLIGER-identified 

30 GEMs from MASL and MASH datasets align with cell types. e, Intercellular 
flows regulating outflowing signals upregulated in MASL compared to CTRL. 
f, Intercellular flows regulating outflowing signals upregulated in MASH 
compared to MASL. g, Representative immunofluorescence protein staining 
of MET, Ki67, TREM2 and HNF4A for tissue sections from the MASH group 
(n = 3, independent experiments). Arrows indicate proliferating hepatocytes in 
proximity to LAMs. Scale bar, 20 μm.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02407-8

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Deconvolution of spatial gene topics in healthy and 
MASLD human liver. a, STAMP-identified spatial topics align with three disease 
conditions. b, Spots with the highest activity (99th percentile, Thi) for each 
spatial topic were identified and used to calculate the proportion of Thi spots 
among all spots, grouped by samples, colored by disease status and displayed 
as a stacked bar chart. c, Correlation (Pearson) heatmap between activities 
of STAMP-identified spatial topics and densities of cell2location-inferred cell 

types within spatial spots (strong correlation indicates spatial co-occurrence). 
d, Estimated cell abundance (color intensity) of HSCs and Central Vein ECs 
overlaid on H&E images for two MASH F3 stage biopsies (MASH-9136 and  
MASH-3096). e, The spatial location of the ligand-receptor pair, RSPO3-LGR6  
at the grid level for two representative MASH F3 stage biopsies (MASH-9136 and 
MASH-3096). The arrows indicate the receiver signal of the RSPO3-LGR6 pair.
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Extended Data Fig. 6 | Identification of spatial metabolic modules by 
Hotspot and alignment with ST via STalign. a, Rearrangement of the spatial 
coordinates n = 27 MALDI-MSI SM samples in the two-dimensional coordinate 
system. b, Spatial distribution of Hotspot-identified Module 13 across twelve 
representative tissue sections. c, 47 metabolites from Module 13 are presented as 

heatmap, with columns representing pixels within each disease status and rows 
displaying metabolite annotations. d, Overview of the alignment steps between 
MSI data points and H&E image of Visium ST by STalign. e, Key parameters that 
indicate the effects of spatial multimodal alignment.
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