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Metabolic dysfunction-associated steatotic liver disease (MASLD) is a
leading cause of chronic liver disease worldwide. We generated single-cell
and spatial transcriptomic and metabolomic maps from 61 human

livers, including controls (n = 10), metabolic dysfunction-associated
steatotic liver (MASL) (n =17) and metabolic dysfunction-associated
steatohepatitis (MASH) (n =34). We identified microphthalmia-associated
transcription factor (MITF) as a key regulator of the lipid-handling

capacity of lipid-associated macrophages (LAMs), and further revealed a
hepato-protective role of LAMs mediated through hepatocyte growth factor
secretion. Unbiased deconvolution of spatial transcriptomics delineated a
fibrosis-associated gene program enriched in advanced MASH, suggesting
profibrotic crosstalk between central vein endothelial and hepatic

stellate cells within fibrotic regions. Mass spectrometry imaging-based
spatial metabolomics demonstrated MASLD-specificaccumulation of
phospholipids, potentially linked to lipoprotein-associated phospholipase
A,-mediated phospholipid metabolismin LAMs. This spatially resolved
multi-omics atlas of human MASLD, which can be queried at the Human
Masld Spatial Multiomics Atlas, provides a valuable resource for mechanistic
and therapeutic studies.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is
a progressive disease that starts with isolated steatosis (metabolic
dysfunction-associated steatotic liver (MASL)) and can evolve to a
more severe stage known as metabolic dysfunction-associated stea-
tohepatitis (MASH), during which chronic liver injury, inflammation
and varying degrees of fibrosis are superimposed on the initial stea-
tosis. MASH has the potential to advance further toward cirrhosis and
hepatocellular carcinoma'’.

High-resolution approaches, such as single-cell RNA sequenc-
ing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq)
have provided paradigm shifts in our understanding of the cellular
and molecular mechanisms underlying MASLD pathogenesis®™,
complementing fundamental elements for the canonical conceptual
framework known as the substrate overload liver injury model’, where
hepatocytelipotoxicity is regarded as the initiating factor, triggering
a cascade of events mediated by diverse non-parenchymal cell (NPC)
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subpopulations, such asliver endothelial cells (LECs), tissue-resident
Kupffer cells (KCs), hepatic stellate cells (HSCs), cholangiocytes and
several immune cell types that synergistically escalate hepatic stea-
tosis, inflammation and fibrosis. For example, HSCs are activated by
osteopontin (OPN), encoded by SPP1,and Hedgehogligands secreted
by reprogrammed hepatocytes®. Activated HSCs function as a cen-
tral hub of intrahepatic signaling, releasing stellakines, which have a
profibrotic role during MASLD progression and may ultimately result
inend-stage liver disease’.

Accumulating evidence highlights the pivotal role of lipid-
associated macrophages (LAMs), which are marked by increased expres-
sion of triggering receptor on myeloid cells 2 (TREM2), in maintaining
the immune and metabolic homeostasis within the fatty liver**™.,
Despite the importance of LAMs in human MASLD pathogenesis,
the mechanisms through which LAMs develop a lipid-handling and
immune-suppressive phenotype remain poorly understood. A deeper
understanding of how blood-derived monocytes differentiate into
LAMs could provide therapeutic insights, particularly in modulat-
ing their involvement in the onset and resolution phases of chronic
liver diseases.

Although single-cell analysis has provided valuable insights
into the heterogeneity of liver NPCs and their dynamic changes
throughout MASLD progression, it is limited by the lack of spatial
organization information. Hepatocytes operate in well-organized
repeating anatomical units known as liver lobules. Key liver func-
tions are expressed nonuniformly across the lobule axis because of
gradients of oxygen, nutrients and hormones, aphenomenon known
as zonation'>", The division of metabolic tasks and the spatially
polarized immune system reinforces the necessity to interrogate
the pathogenesis of MASLD in a spatially resolved context, an area
thatisrelatively underexplored.

Spatial transcriptomics (ST) enables the profiling of the spa-
tial distribution of RNA and cell-cell interactions (CCls) within
individual tissue sections™. The introduction of ST into liver tissue
transcriptome-wide profiling has substantially advanced the under-
standing of the mechanisms regulating liver regeneration” and the
niche signals involved in region-specific cholangiopathies'®, while its
application to human MASLD remains unexplored. A comprehensive
MASLD atlas would also require metabolomic profiling to better elu-
cidate the region-specific metabolic alterations and cell-type-specific
metabolic functions. Mass spectrometry imaging (MSI)-based spatial
metabolomics (SM) provides a label-free, spatially resolved meas-
urement of metabolite abundance directly from fresh-frozen tissue
sections'®. Because of experimental constraints, it is currently applied
as separate methodologies alongside ST”. The lack of aninsilico spatial
multimodal analysis (SMA) pipelineintegrating SM and ST data limits
our ability tointerpret the complexinterplay between metabolic dys-
function and hepaticinflammation.

In this study, we used acombination of single-cell gene expression,
unbiased ST, SM and spatial proteomics (SP) approaches to decode
MASLD-relevant gene and metabolite expression programs withintheir
spatial contexts. Adjacent frozen liver biopsy sections from patients
with MASL and MASH, and resection samples from controls, were
prepared to perform ST and SM, providing a spatially resolved atlas
of metabolite and gene expression patterns throughout disease pro-
gression. SMA of ST and SM modalities was achieved by aligning the
MSI data points directly to the hematoxylin and eosin (H&E)-stained
image used for ST, enabling the simultaneous measurements of mMRNA
transcripts and metabolites within the same tissue microregions. In
total, we obtained high-quality transcriptomes of 540,216 single cells
and 47,864 Visium ST spots and metabolomes from 841,534 MSI data
points. The processed spatially resolved multi-omics datasets are fully
accessible on the browsable web portal of the Human Masld Spatial
Multiomics Atlas, providing a resource for data download and spatial
visualization of gene and metabolite expression.

Results

Single-cell and spatial transcriptional profiling of MASLD
human livers

We applied scRNA-seq, scVDJ-seq, ST (10x Visium) and SM (matrix-
assisted laser desorptionionization (MALDI)-MSI) toresected or biopsy
liver samples collected from 61 individuals across the different stages
of MASLD progression defined by histology as control (CTRL, n=10),
MASL (n=17) and MASH (n = 34) (Fig.1a,b and Supplementary Table 1).
MSI-based SM was performed on a subset of tissue sections (n=27)
adjacent to those used for Visium ST (n = 35) (Supplementary Notes),
enabling integrative SMA.

After meticulous quality control and computational doublet
calling (Extended Data Fig. 1a and Supplementary Table 2), we
obtained single-cell transcriptomes for 540,216 cells across 58 librar-
ies generated from 29 samples (n=6 CTRL, n=7 MASL, and n=16
MASH) for downstream analysis (Fig. 1b,c). Each sample was pro-
filed using two libraries, one for parenchymal cells and another for
NPCs (Supplementary Notes). We identified 17 cell types that were
manually annotated based on the RNA expression of known mark-
ers (Extended Data Fig. 1b), categorized into four broad cell-type
groups as follows: hepatic CD45™ cells, T lymphoid (T) and natural
killer (NK) cells, B lymphocytes and myeloid cells. Neutrophils and
mast cells were excluded from the myeloid compartment for subs-
equent cellularabundance analysis because of their low cell capture
efficiency during tissue dissociation and high susceptibility to RNA
degradation caused by elevated RNase activity, which collectively
introduces higher technical noise and limits their accurate measure-
ment. Within the hepatic CD45™ cell compartment (82,011 cells), LECs
exhibited marked zonation-related transcriptomic heterogeneity
and were subclustered into three subsets based on the expression of
canonical gene markers as follows: liver sinusoidal endothelial cells
(LSECs), marked by STAB2 and CLECIB, central vein ECs (marked by
RSPO3and WNT2) and portal vein ECs (marked by SLCO2A1, MECOM,
PODXL and JAGI)'.

To contextualize the cell types and states identified using sCRNA-
seq within tissue micro-environments, we performed ST analysis
using 10x Visium (n=7 CTRL, n=10 MASL and n=18 MASH), adding
a key dimension to the field of MASLD. A total of 47,864 spots were
ordered along a spatial trajectory annotated as portal, periportal, mid
and central based on known lobule zonation markers® (Fig. 1d-fand
Extended Data Fig. 1c).

MASLD remodels immune cell composition and repertoires
within the liver microenvironment

Within the T and NK compartment (258,618 cells), we used canonical
lineage markerstoidentify seven major cell types: mucosal-associated
invariant T (MAIT) cells, regulatory T (T,.,) cells, CD8" effector T (T.)
cells, CD4/CD8naive T cells, circulating natural killer T (NKT) cells, resi-
dentNK cells and circulating NK cells (Fig. 2aand Extended Data Fig. 2a).
To reveal the compositional changes between MASLD and CTRLs in
this compartment, we performed Milo differential abundance testing”
(Fig. 2b). We found a prominent increase in all five T cell clusters and
adecrease inresident NK cells in patients with MASLD compared to
CTRLs, yet no cluster exhibited a significant differencein abundance
between MASH and MASL (Fig. 2c-e). To investigate the clonal rela-
tionship amongindividual T cells across three disease conditions?, we
performed T cell receptor (TCR) analysis for five Tand NK cell subsets
except for resident and circulating NK cells. We examined whether
expanded clonotypes were shared among each sample, across dis-
ease conditions and among cell types. Large clonal expansions were
observed particularly in CD8 T, cells and MAITs from patients with
MASLD (Fig. 2f). While most expanded clonotypes in CD8 T, cells
were unique toindividual patients, the large expanded clonotypesin
MAITs were shared amongindividuals. Notably, circulating NKT cells
exhibited clonal expansion predominantly under diseased conditions
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Fig.1|Spatial and single-cell transcriptomic atlas of human MASLD. a, Scheme
of the multi-omics spatial human MASLD atlas experimental and analysis
workflow. b, Summary of the samplesin this study, with each row representing
anindividual and the columns indicating the modalities assayed. ¢, Uniform
manifold approximation and projection (UMAP) plot of 540,216 cells profiled
using scRNA-seq and colored according to cell type in CTRL (n = 6), MASL
(n=7)and MASH (n=16).d, UMAP visualizations where the dots correspond to

individual spots for 48,154 spots profiled with 10x Visium, colored according
toliver lobular zones. e, Spatial distribution of four liver lobular zones (portal,
periportal, mid and central) in three tissue sections taken from the CTRL, MASL
and MASH groups, respectively. f, Dot plot showing the expression of lobule zone
marker genes across four liver lobular zones. a, The illustration was created with
BioRender.com.
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Fig.2 | MASLD progression affects the homeostatic cellular state of the

liver microenvironment. a, UMAP plots of T and NK cells, Blymphocytes and
myeloid cells, colored according to cell type. b, Graphical representation of the
Nhoodsidentified using Milo. Nodes are Nhoods, colored according to their
log,(fold change) between MASL/MASH (n =23) and CTRL (n = 6), blocking

for the effects of the scRNA-seq library (parenchymal or non-parenchymal).
Nondifferential abundance Nhoods (FDR > 0.05) are colored white. ¢, Beeswarm
plot of the log,(fold change) in the Milo neighborhoods between MASL/MASH
and CTRL, grouped into each cell type. Nhoods with significant change in cellular

log(fold change)

abundanceare colored asinb.d, Graph representation of Nhoods identified
using Milo. Nodes are Nhoods, colored according to their log,(fold change)
between MASH (n =16) and MASL (n = 7), blocking for the effects of the scCRNA-seq
library. Nondifferential abundance Nhoods (FDR > 0.05) are colored white.

e, Beeswarm plot of the log,(fold change) in the Milo neighborhoods between
MASH and MASL, grouped into each cell type. Nhoods with significant change in
cellular abundance are colored as ind. f, Network plots showing the similarity of
the TCRa and TCRB CDR3 amino acid sequences for each sample, disease status
and cell type. Clonotype clusters with clonal size > 20 are selected.

(Fig. 2f), suggesting that the clonal expansion of circulating NKT cells
may contribute to the progression of MASLD.

We subclustered 17,576 cells, manually annotated as Band plasma
cells, obtaining four subsets based on their expression of canonical
markers: naive B cells, memory B cells, IgG plasma (plasma_IgG) cells
and IgA plasma (plasma_IgA) cells (Fig. 2a and Extended Data Fig. 2b).
The proportions of naive Band memory B cells increased in patients
with MASLD compared to CTRLs. Like the T and NK compartment
results, no cluster of B cells showed a significant difference in abun-
dance between MASH and MASL (Fig. 2b—e). However, B cell receptor

(BCR) analysis revealed a trend toward a larger clonal expansion of
plasma_IgA and plasma_IgG cellsin MASH compared to the MASL group,
with minimal clonotypes sharing between patients with MASLD and
CTRLs or amongindividual patients (Extended Data Fig. 2d,e).

To characterize the transcriptome dynamics in 130,671 cells of
the myeloid compartment across disease conditions, we further sub-
clustered monocytes into two subsets and dendritic cells (DCs) into
three subsets based on the expression of canonical gene markers as fol-
lows: CD14" monocytes, CD16" monocytes, plasmacytoid DCs (pDCs),
conventional type 1 DCs (cDCls), conventional type 2 DCs (cDC2s)
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Fig. 3 | Identification of MITF as a LAM-specific TF. a, Regulon specificity score
(RSS) for LAMs; the top five regulons are highlighted in red and labeled on the
plot, while the specificity score is shown on the y axis. b, Binarized activity of
the MITF regulon for each cell generated from the SCENIC area under the curve
(AUC) distribution, displayed in the UMAP space with green spots representing
cellsthatare activated. ¢, Binarized activity of selected regulons, representing
the union of the top five regulons most specific to each cell type, plotted as
aheatmap with the black blocks indicating cells that are ‘on’. The peach and
russet arrows indicate LAM-specific and KC-specific TFs, respectively.d, Violin
plot showing the MITF regulon activity score in LAMs from the CTRL, MASL
and MASH groups. e, Top GO terms enriched by overrepresentation analysis

(ORA) for the top 100 target genes of the MITF regulon. Pvalues were computed
using a two-sided Fisher’s exact test and adjusted for multiple testing using

the Benjamini-Hochberg procedure. f, Expression of six MITF-targeted lipid-
metabolism-related genes in the scRNA-seq dataset displayed in the UMAP space.
g, Representative IF protein staining of MITF and TREM2 for tissue specimens
from the CTRL, MASL and MASH groups (n = 3 independent experiments).

h, Expression of GPNMB, LPL, DHRS9, LGALS3, CTSD, PLD3 and PLA2G7 using
quantitative PCR with reverse transcription (RT-qPCR) in THP-1cells after
MITF-OE compared to empty vector (EV) (n = 6 biological replicates). Data are
presented as mean values * s.d.; statistical significance was determined using an
unpaired, two-sided Student’s t-test. DAPI, 4’,6-diamidino-2-phenylindole.

(Fig.2aand Extended DataFig.2c). The proportions of pDCs and LAMs
increased, whereas the proportion of cDC2s declined predominantly
in patients with MASLD compared to CTRLs (Fig. 2b,c). Differential
abundance analysis based on disease severity revealed a decrease in
KCsandanincreasein CD14" and CD16* monocytes, alongside amarked
expansion of LAMs in MASH compared to MASL (Fig. 2d,e).

Together, these findings delineated how MASLD progression
reshapes the immune cell composition and repertoires within the
liver microenvironment. The clonal expansion of circulating NKT cells
emerged as a distinct feature among patients with MASLD. While
most immune cell types showed no significant differences in abun-
dance between MASH and MASL, LAMs exhibited a pronounced
increase with disease severity, particularly within the pericentral
area (Extended Data Fig. 2f), underscoring their potential role in
MASLD progression.

Microphthalmia-associated transcription factor shapes the
lipid-handling phenotype of LAMs
LAMs can be distinguished from tissue-resident KCs by their distinct
lipid-handling features, which emerge largely from monocyte-derived
precursors®**, However, the mechanisms governing the differentiation
ofrecruited monocytesinto LAMs rather thanadopting aKC-like pheno-
type remain poorly explored. To identify potential transcription factors
(TFs) regulating the expression of lipid metabolism-associated genes
in LAMs, we used pySCENIC? to reconstruct cell-type-specific gene
regulatory networks (GRNs) from our single-cell transcriptome data.
The specificity of the regulons (thatis, TFs and their target genes)
was quantified and ranked from high to low across different cell types
separately?®. Validating this approach, several well-established mac-
rophage lineage TFs such as NR1H3 (ref. 27) and MAFB?*® were simul-
taneously identified as the most specific TFs for both LAM and KC
(Fig. 3a and Extended Data Fig. 3a). Of note, a regulon regulated by
the melanocyte lineage TF microphthalmia-associated transcrip-
tion factor (MITF)?’ was exclusively activated in LAMs (Fig. 3b,c and
Extended DataFig.3b), whichis consistent with the LAM-specific MITF
gene expression (Extended Data Fig. 3¢), suggesting a pivotal role for
MITF in the regulation of LAM differentiation. Furthermore, elevated

activity of the MITF regulon was observed, particularly in LAMs from
patients with MASH (Fig.3d), correlating with their increased severity
of steatosis within the hepatic microenvironment.

Gene ontology (GO) enrichment analysis of the top 100 pre-
dicted MITF target genes revealed significant enrichment for
lipid-metabolism-associated processes, including low-density lipopro-
tein particle clearance and triglyceride (TG)-rich lipoprotein particle
clearance (Fig. 3e). Among these, canonical LAM markers, including
TREM2, CD9 and GPNMB, along with genes involved in lipid transport
and metabolism (for example, FABP4, LPL, FABPS, DHRS9, MGLL and
PLA2G7), were identified as MITF-regulated targets and exhibited a
LAM-specific expression pattern (Fig. 3fand Extended DataFig. 3d). For
instance, lipoprotein lipase (LPL), encoded by LPL, serves as a pivotal
enzyme in TG metabolism, catalyzing the hydrolysis of TGs carried by
plasma very-low-density lipoprotein and circulating chylomicrons®.

We further confirmed the LAM-specific expression of MITF at
the protein level through immunofluorescence (IF) across three dis-
ease conditions (Fig. 3g). To examine the effects of the MITF on LAM
phenotype transformation, we induced MITF-OE in the THP-1cell line
using lentivirus transduction (Methods). As expected, MITF-OE in
THP-1 cells led to a significant upregulation of several LAM signa-
ture genes', including GPNMB, LPL, DHRS9, LGALS3, CTSD, PLD3 and
PLA2G7 (Fig. 3h). Conversely, MITF knockdown via small interfer-
ing RNA (siRNA) for 24 h resulted in downregulation of these genes
(Extended Data Fig. 3e). All together, these results indicate that the
MITF-regulated GRN has acritical role in determining the lipid-handling
phenotype of LAMs.

MITF enhances fatty acid oxidation in LAMs via the PGCla-
PPARYy signaling axis

Todeepenthe understanding of how LAMs diverge fromtissue-resident
KCsin their roles in coordinating local lipid metabolism, differential
gene expression and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were conducted between these two mac-
rophage subtypes (Fig. 4a,b). We found enrichment for the peroxisome
proliferator-activated receptor (PPAR) signaling pathway in LAMs,
which is consistent with the LAM-specific activation of the PPARy

Fig. 4| MITF-PGCla-PPARY-FAO signaling axis in LAMs. a, Volcano plot
displaying differently expressed genes (absolute log,(fold change) > 2.0, P < 0.01)
between LAMs and KCs. The red and blue spots indicate genes overexpressed
inLAMs and KCs, respectively. The top 30 significantly upregulated or
downregulated gene names are marked. Pvalues were calculated using a two-
sided Wilcoxon rank-sum test and adjusted using the Benjamini-Hochberg
procedure. -log,,(FDR) was capped using computational precision limits.

b, Top KEGG terms enriched by ORA for upregulated DEGs of LAMs, compared
with KCs. Pvalues were computed with a two-sided Fisher’s exact test and
adjusted for multiple testing using the Benjamini-Hochberg procedure.

¢, Binarized activity of the PPARy regulon for each cell generated from the
SCENIC AUC distribution displayed in the UMAP space, with the red spots
representing cells that are activated. d, GRNs showing the predicted candidate
target genes for the following TFs: MITF, PPARY, NR1IH3, MAFB, MEF2A, SPIC,
RXRA, ETV5 and MAF. The line width of the edges indicates the predicted weight

between the corresponding TF and its target gene. e, Spatial distribution of

the scores of MITF regulon and PPAR signaling activity in eight randomly
selected MASH biopsy sections. f, Expression of PGCIA, PPARG, CPTIA,

CPTIB, ACADVL and HADHA using RT-qPCR in THP-1cells after MITF-OE
compared to EV (n = 6 biological replicates). g, The mitochondrial OCR of
THP-1-EV and THP-1 MITF-OE cells was measured using an extracellular flux
analyzer (n =3 biological replicates). Oligomycin, carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) and rotenone + antimycin A were
injected at the indicated time points. h, Representative confocal micrographs
of MitoTracker Red CMXRos-stained THP-1cells after transfection with either
EV or MITF-OE (left). Quantification of mitochondrial fluorescence intensity is
shown (n =3 biological replicates, multiple regions per sample). i, Schematic
representation of the MITF-PGCla-PPARY-FAO signaling axis in LAMs. Data
are presented as mean values + s.d.; statistical significance was determined
using an unpaired, two-sided Student’s ¢-test.
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regulon (Fig. 4c and Extended Data Fig. 3f). By constructing a GRN
consisting of the top five cell-type-specific regulons for both LAMs and
KCs, alongside common TFs such as NR1IH3, MAF, MAFB and MEF2A,
we observed that differentially expressed genes (DEGs) upregulated
ineach cell subset were predominantly regulated by their respective
key TFs: ETV5, RXRA and SPIC for KCs, and MITF and PPARy for LAMs
(Figs. 3c and 4d and Extended Data Fig. 3a). Based on these findings,
itistemptingto speculate that MITF could drive the activation of the
PPAR signaling pathway in LAMs.

Therefore, we scored the activity of both the MITF regulon and the
PPARsignaling pathway and found astrong correlation between their
spatial distribution observedineach Visium ST section from our cohort
with MASLD (Fig. 4e). Consistent with this, a previous study showed
that MITF directly regulates the expression of PPARy co-activator 1a
(PGCla), which acts asamaster regulator of mitochondrial biogenesis
and oxidative phosphorylation®. Additionally, the PGCla-PPARYy axis
transactivates several genes to control lipid metabolism and induce a
spike in fatty acid oxidation (FAO) to control myogenesis®’. Support-
ing this, our results showed that MITF-OE in THP-1 cells significantly
upregulated PGCIA, PPARG and several key PGCla-PPARy target genes
involvedin FAO, including CPT1A, CPTIB, ACADVL and HADHA (Fig. 4f).
On the other hand, MITF knockdown using siRNA for 24 h resulted in
significant downregulation of these genes (Extended Data Fig. 3g).
Furthermore, the oxygen consumption rate (OCR), an indicator of
oxidative phosphorylation, was significantly higher in MITF-OE THP-1
cells (Fig.4g), probably because of increased mitochondrial mass upon
MITF-OE (Fig. 4h). Collectively, these results underscore the central
role of MITF in modulating mitochondrial function and lipid-handling
capacity in LAMs, mediated by the PGCla-PPARy-FAO axis (Fig. 4i).

Differential intercellular flow analysis indicates a
hepatoprotective role for LAMs

To capture theintercellular signaling dynamics associated with MASLD
progression, we applied FlowSig® to the scRNA-seq data, revealing
differentially inflowing and outflowing signals across the MASLD
spectrum (Fig. 5a,b and Extended Data Fig. 4a,b). We constructed 30
gene expression modules (GEMs) using PyLIGER**, which captured
differences across cell types (Extended Data Fig. 4c,d). Compared
to CTRLs, MASL exhibited increased inflow of interleukin-6 through
leukemia inhibitory factor receptor and interleukin-6 cytokine fam-
ily signal transducer, vascular endothelial growth through kinase
insert domainreceptor, interleukin-13 throughinterleukin-13 recep-
tor subunit alpha-2, calcitonin gene-related peptide type 1 receptor
and the chemokine receptor CXCR3 (Extended Data Fig. 4a), along
with elevated outflow of migration inhibitory factor (originating from
cholangiocytes and cDCls), interleukin-33 (LSECs, central vein ECs and
portal vein ECs) and angiopoietin-related protein 1 (cholangiocytes
and HSCs) (Fig. 5¢). Progression to MASH involved minimal additional
inflow alterations (Extended Data Fig. 4b), but amarked amplification
of outflowing mediators, notably hepatocyte growth factor (HGF)
from LAMs, CXCL3 (LAMs, KCs, cholangiocytes and CD14*/CD16*
monocytes), protein Wnt-10a (plasma_IgA, plasma_lgG and pDCs)

andinterleukin-1A from the broader myeloid compartment (Fig. 5b-d).
Toreveal theregulatory architecture underlying augmented outflow
signaling, we constructed global intercellular flow networks by map-
ping significantly upregulated inflowing signals that form directed
paths toward one or more elevated outflows, along with their associ-
ated GEMs (Extended Data Fig. 4e,f).

The pronounced elevation of HGF outflow from LAMs in patients
with MASH is of particular interest, as a previous study by Kroy et al.*
demonstrated that hepatocyte-specific deletion of c-Met, the recep-
tor for HGF, in a mouse model of MASH, resulted in an exacerbated
phenotype marked by higher fatty acid accumulation and increased
apoptosis®, suggesting that LAMs have a hepatoprotective role dur-
ing MASLD progression via the HGF-MET axis, most probably within
hepatic crown-like structures*. To corroborate that LAMs serve as
an additional critical source of HGF, alongside the well-established
role of HSCs, we examined the localization of HGF mRNA in LAMs
using RNAscope (Fig. 5e). To explore the potentialimpact of LAMs on
hepatocyte functions, we observed that hepatocytes in proximity to
LAMs exhibited a proliferative phenotype (Extended Data Fig. 4g). To
investigate this further, we cultured human hepatocytes (HepG2 cells)
with conditioned medium from THP-1 cells with or without MITF-OE.
Notably, MITF-OE in THP-1cells significantly increased ex vivo produc-
tion of HGF (Fig. 5f) and enhanced the ability of THP-1 conditioned
medium to stimulate HepG2 cell proliferation (Fig. 5g) and reduce
apoptosis (Fig. 5h). Collectively, our intercellular flow analysis suggests
ahepatoprotectiverole of LAMs viathe HGF-MET axis during MASLD
progression (Fig. 5i).

ST analysis with topic modeling uncovers a spatial gene topic
of MASLD-associated fibrosis

To uncover MASLD-related gene signatures within a spatial context,
our human MASH datasets including 16,000 Visium spots were decon-
voluted into 20 ‘spatial topics’ using ST analysis with topic modeling
(STAMP)*® (Methods and Extended Data Fig. 5a). Further examina-
tion of the distribution of spots with the highest topic activity (99th
percentile) across all ST sections revealed six non-parenchymal spa-
tial topics that were more prevalent in MASLD than in CTRLs (Fig. 6a
and Extended Data Fig. 5a-c). These spatial topics corresponded to
MASLD-relevant cell populations and signaling pathways. For exam-
ple, Topic3 featured markers of KCs (CDSL, VSIG4 and TIMD4), while
Topic4 presented a LAM-specific gene expression module (FABP4,
SPP1, TREM2 and LPL).

The TopicS5 profile reflects a pathological extracellular matrix/
fibrogenesis pathway marked by collagen-related (COL1IAI, COLIA2
and COL14AI) and fibrosis-related (THY1,LTBP2,LOXL1, MFAP4,ITGBL1
and LUM) genes” (Fig. 6b), which was particularly enriched in patients
with MASH with fibrosis stages 3-4 (Fig. 6¢). Zoom-in visual inspection
confirmed that spots with high Topic5-activity spatially aligned with the
histology of fibrotic fociandits activity correlated with the abundance
of HSCs and central vein ECs, as inferred by cell2location®® (Fig. 6d and
Extended Data Fig. 5d), suggesting the involvement of their potential
crosstalkin MASLD-related fibrogenesis.

Fig. 5| LAMs exert hepatoprotective function via the HGF-MET axis.

a, Differentially outflowing signals between MASL and CTRL groups. The yellow
dots indicate statistically significant differential outflow (absolute log,(fold
change) > 1.0, P,4; < 0.01). b, Differentially outflowing signals between MASH
and MASL groups. The yellow dots indicate statistically significant differential
outflow (absolute log,(fold change) > 1.0, P,4; < 0.01). ¢, Dot plot showing the
expression patterns of differentially outflowing signals identified in both MASL
versus CTRLs and MASH versus MASL. d, Expression of HGF in the myeloid
compartment of the scRNA-seq dataset displayed in the UMAP space. e, Confocal
microscopy representative images of RNAscope showing TREM2 and HGF for
the tissue section from the MASH group (n = 3 independent experiments). The
white arrows denote cells double-positive for TREM2 and HGF.f, Enzyme-linked

immunosorbent assays of HGF in the conditioned medium of THP-1EV and
MITF-OE cells (n = 8 biological replicates). g, IF staining of Ki-67 (overlap with
DAPI staining) and percentage of Ki-67" cellsin HepG2 cells cultured with the
conditioned medium described in fand palmitic acid for 24 h (n = 3 biological
replicates, multiple regions per sample). h, Terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) staining (green) and percentage of
TUNEL" cells in HepG2 cells cultured with the conditioned medium described
infand palmitic acid for 24 h (n = 3 biological replicates, multiple regions per
sample). i, Schematic representation of the hepatoprotective function of LAMs
viathe HGF-MET axis. Data are presented as mean values + s.d.; statistical
significance was determined using an unpaired, two-sided Student’s ¢-test.

i, Theillustration was created with BioRender.com.
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Fig. 6| MASLD-associated fibrosis gene signatures revealed by STAMP.

a, STAMP-identified signatures overrepresented in MASLD tissue. Their relative
contribution to each spatial topic is displayed for the top five contributing

genes per topic and the proportion of spots with the highest activity (99th
percentile according to disease status and sample). Proportions were normalized
per sample to account for differences in tissue area and total spot number.

b, Ranking of the top 100 genes for Topic5 based on gene weight to the topic, with
fibrosis-related genes emphasized. ¢, Spatial distribution of the MASLD-related
liver fibrosis topicin 16 human liver tissue sections (n =4 CTRL, n = 4 MASL,
n=4MASHF1-2and n=4MASH F3-4).d, Spatial distribution of the MASLD-
related liver fibrosis topic in two MASH F3 tissue sections. The zoomed-in graphs

display H&E images and abundance of HSCs and central vein ECs for selected
fibrotic regions. e, Heatmap showing the expression of proteins from Topic4

and Topic5 across three disease conditions profiled using SP in ROIs from the
pericentral (top) and periportal (bottom) areas. f, Circos plot showing significant
interactions between HSCs and central vein ECs identified using CellPhoneDB.
The weight of the arrows depicts the score for the interaction; the color of the
barsrepresents the average expression of ligands and receptors for each cell
type. g, The spatial location of the ligand-receptor pair RSPO3-LGR6 at the

grid level for two representative MASH F3 biopsy samples (MASH-9136 and
MASH-3096). The arrows indicate the sender signal of the RSPO3-LGR6 pair.
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Fig. 7| MASLD-associated metabolic modules revealed by Hotspot.

a, Metabolites with significant spatial autocorrelation (1,528 metabolites,

FDR < 0.01) were grouped into 20 Hotspot modules based on pairwise spatial
correlation. b, Dot plot showing metabolic modules that align with disease
conditions. Module expression scores were calculated using the Hotspot
calculate_module_scores function, which centers metabolite expression based
on aspecified nullmodel (depth-adjusted normal), smooths the value across a
k-nearest neighbor (kNN) graph and then applies principal component analysis
modeling using asingle component. The resulting pixel loadings are reported
as the module scores. ¢, Spatial distribution of Hotspot-identified module 5in

12 representative tissue sections. d, Twenty-one metabolites from module 5

are presented as a heatmap, with columns representing the pixels within each
disease status and the rows displaying metabolite annotations. e, Overlay of

MSI data points and H&E image of Visium after alignment with STalign. f, Spatial
distribution of Metabolic modules 5and 13 (left) and gene topics 4 and 5 aligned
using STalign (right). The zoomed-in graphs display PLA2G7 expression for three
selected overlayed regions. g, Ranking of the top 100 genes for Topic4 based on
gene weight to the topic, with metabolism-related genes emphasized. h, Stacked
violin plot showing the expression of PLA2G7 across major cell types identified
using scRNA-seq.

Todetermine whether elevated RNA levels resulted in concordant
increasesin protein, we applied high-sensitivity mass spectrometry
on pathologist-defined regions of interests (ROIs) across three dis-
ease conditions (n=4 CTRL, n=3 MASL and n =7 MASH). Two ROIs

(-100 x 200 um?) from the pericentral and periportal areas were
isolated using laser-capture microdissection from each tissue sec-
tion for proteomics profiling (Supplementary Notes). Genes specific
to Topic4 (including FABP4, GPNMB, LSP1 and LGALS3) and Topic5
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(including TAGLN, LUM, COL1AI and COL1A2) were elevated in MASH
pericentral ROISs, aligning with the transcriptomic data (Fig. 6e). In
contrast, few Topic4 and Topic5 genes showed appreciable upregula-
tion in the periportal ROIs from patients with MASL and MASH with
mild fibrosis (F1-2). However, in patients with MASH with advanced
fibrosis (F3-4), the periportal regions displayed marked upregula-
tion of these genes, suggesting a more extensive dysregulation as
the disease progressed.

Toexplore the cell-cellinteractions within the Topic5-active area,
we implemented CellPhoneDB* on our scRNA-seq dataset. Notably,
RSPO3 (R-spondin 3)', a pro-proliferating factor from central vein
ECs, was predicted to interact with LGR6 on HSCs (Fig. 6f), poten-
tially driving HSC proliferation and liver fibrogenesis*’. Consistently,
we observed an enrichment of the RSPO3-LGR6 interaction signal in
fibroticregions of liver biopsies, particularly from patients with MASH
F3-4, using communication analysis by optimal transport* (Fig. 6g
and Extended Data Fig. 5e). Moreover, RSPO3 was highly elevated
in active fibrotic lesions from patients with idiopathic pulmonary
fibrosis and MASLD*, specifically expressed in central vein ECs*.
These data indicate the RSPO3-LGRé6 interaction as a candidate sign-
aling axis potentially involved in fibrogenesis, warranting further
experimental validation.

Identifying MASLD-associated metabolic programs in situ
using MALDI-MSI

To elucidate the metabolic landscape of MASLD, we applied Hotspot**
to our MALDI-MSI datasets (n =6 CTRL, n=9 MASL and n =12 MASH),
including 841,534 high-quality spatially indexed metabolomes.
The original spatial coordinates of each MALDI-MSI SM dataset
were transformed and aligned into a unified two-dimensional coor-
dinate system, enabling integrative analysis across all SM samples
(Extended Data Fig. 6aand Methods). The transformed spatial distances
served as the basis for feature selection and similarity quantification. A
total of 1,528 metabolites and lipids with significant spatial autocorrela-
tion (false discovery rate (FDR) < 0.01) were identified and decomposed
into 20 spatially dependent metabolic modules based on their spatial
distributions (Fig. 7a). Among these, three modules (modules 3, 5and
13) were identified as MASLD-specific, with module 5 exhibiting the
strongest correlation with disease severity (Fig. 7b), suggesting its
role in disease progression from healthy to MASL and from MASL to
MASH. Spatial analysis revealed that module 5 metabolites are pre-
dominantly minimally produced inthe pericentral region under healthy
conditions but are markedly upregulated in MASLD (Figs. 1e and 7c).
Validating our approach, TG species such as TG(16:1(97)/18:0/18:1)
and TG(16:1/18:0/18:1(97)), previously reported as key lipid species
associated with fataccumulationin MASH*, were found inmodules 5
and 13, respectively (Fig. 7d and Extended Data Fig. 6b,c).

Beyond TGs, module 5 was primarily enriched in phosphatidyle-
thanolamine (PE), phosphatidylcholine (PC) and phosphatidic acid
(PA) species containing very-long-chain fatty acids (C > 22), such as
PA(24:0/24:1(15Z)), PC(22:4(7Z,10Z,137,16Z)/24:0), PA(24:0/24:0),
phosphor-(N-methyl)-ethanolamine (PE-NMe)(20:1(11Z)/24:1(15Z))
and PE-NMe(22:2(13Z,16Z)/24:1(15Z)) (Fig. 7d). These findings implicate
phospholipid (PL) metabolism in MASLD pathogenesis. To integrate
the MSI-based SM datawith the ST data, we aligned the MSl data points
directly to the corresponding H&E images of Visium ST using STalign**
(Fig. 7e and Extended Data Fig. 6d,e). We found that MASLD-specific
metabolic modules spatially aligned with the spatial gene topics of the
LAM feature (Topic4) and HSC-driven fibrogenesis (Topic5) (Fig. 7f).

To deepen the link between LAM-driven lipid metabolism and
MASLD-specific metabolic alterations, we extracted metabolism-
associated genes from Topic4 (Fig. 7g) using STAMP analysis. Among
these, we focused on PLA2G7, which encodes lipoprotein-associated
phospholipase A, (Ip-PLA,), a regulator of PL metabolism that was
exclusively expressed in LAMs (Fig. 7h). Lp-PLA, is upregulated in

macrophages inresponse to oxidized PL stimulation, promotinglipo-
proteinuptake®. Interestingly, elevated oxidized PL levels in KCs could
lead to iron deposition and subsequent KC ferroptosis, correlating
withmore severe histological features of fibrosis and steatohepatitis*®,
Conversely, Ip-PLA, OE reduces lipid peroxidation levels and strongly
suppress ferroptosis®. Therefore, the MITF-regulated expression
of PLA2G7 in LAMs (Figs. 3f,h and 4d), may confer ferroptosis resist-
ance, thereby sustaining robust consistent lipid metabolism capacity
inLAMs.

Discussion

Inthis study, we used single-cell RNA expression analysis of liver paren-
chymal and NPC types alongside ST, metabolomics and proteomics
on adjacent tissue sections to generate comprehensive molecular
and cellular profiles across the spectrum of MASLD. These data can
be interactively explored using the Human Masld Spatial Multiomics
Atlas portal.

Wefocused on LAMs because of their pivotal role as major cellular
responders to inflammation and metabolic dysfunction during MASLD
progression, asevidenced by theirincreased populations and enhanced
presence within steatotic lesions'>*’. We compared TFs operating in
LAMs and KCs to elucidate the mechanisms driving LAM development,
revealing distinct regulatory networks. Specifically, pySCENIC analysis
of scRNA-seq data highlighted a skin pigmentation gene, MITF, as a
master regulator of LAM differentiation, endowing them with enhanced
lipid-handling capacity. MITF orchestrates the metabolic reprogram-
ming of LAMs through the PGCla-PPARy-FAO axis. The clinical rele-
vance of the MITF regulonis supported by prior evidence thatimatinib,
a PI3K/Akt inhibitor that activates MITF in monocyte-derived DCs™,
significantly ameliorates MASLD in obese mice®. Notably, 3 months
ofimatinib treatment reduced hepatic steatosis, systemic and adipose
tissue inflammation, and improved insulin sensitivity. These findings
highlight the therapeutic potential of manipulating LAM phenotypes
and abundance either through molecular druginterventions or direct
injections of bone marrow-derived macrophages™.

The spatial gene topic of MASLD-related fibrosis spatially deline-
atedfibroticregionsineach Visium ST section, thereby facilitating the
identification of a candidate profibrotic cell-cellinteraction between
central vein ECs and HSCs via the RSPO3-LGRé6 ligand-receptor pair,
whichserves asapotentially druggable target. However, HSCs may not
bethesolerespondersto RSPO3 secreted by central vein ECs as NK-like
cells have also been implicated in mediating antitumor immunity via
the RSPO3-LGR6 axis, which involves NK cell biology through MYC
upregulation and ribosomal biogenesis®. Accordingly, the clonal
expansion of circulating NKT cells observed in patients with MASL
and MASH in our cohort could, at least in part, be attributed to their
response to RSPO3 secreted by central vein ECs. Thus, the RSPO3-LGR6
axis appearsto haverolesinbothinflammation and fibrogenesis, pre-
senting a promising therapeutic target.

Our SMA pipeline provided a framework to integrate the MSI-
based SM and ST data profiled on adjacent tissue sections. However,
ithasnotbeenapplied across the entire spatially resolved multi-omics
MASLD datasets because precise alignment requires a high histo-
logical similarity between tissue sections from these two spatial
modalities and a time-intensive landmark selection process. Appli-
cation of MASLD-associated metabolites could inform molecular
pathology-based patient stratification®®, particularly for noninva-
sive diagnosis of MASH in patients with MASLD, where liver biopsies
are necessary. Notably, the relationship between very-long-chain
fatty-acid-containing PL species and Ip-PLA,-mediated LAM-driven
PL metabolism remains to be elucidated.

A limitation of this study is the sex imbalance in the scRNA-seq
cohort, with all control samples derived from female donors and the
MASLD group consisting predominantly of male patients. Thus, we can-
not fully exclude the potential influence of sex on the observed cellular
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changes during disease progression. Future studies incorporating
sex-balanced cohorts will be essential to delineate any sex-associated
contributions to MASLD-relevant cellular programs more precisely.

In summary, these dense single-cell and spatial reference maps
of the human MASLD, in conjunction with the recently developed
spatiotemporal atlas of liver homeostasis and regeneration®, and
cholestatic injury and repair'® in mouse liver, constitute a large-scale
resource for generating hypotheses on chronicliver disease pathology
and for further functional validation.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Access to human tissue and ethics oversight

This study involving human participants adhered to the ethical stand-
ards outlined in the Declaration of Helsinki (2013) and the Declaration
of Istanbul (2018). The study protocol was reviewed and approved by
the Ethics Committees of the First Affiliated Hospital (Southwest Hos-
pital) of the Army Medical University (approval nos. (A)KY2021061and
(B)KY2023050)) and the First Affiliated Hospital of Wenzhou Medical
University (approval no.2016-246). Additionally, the export of human
geneticinformation and materials received authorization from China’s
Ministry of Science and Technology. Before study commencement, writ-
teninformed consent was obtained from all participants. Control liver
samples were procured from ten patients at the Institute of Hepatobil-
iary Surgery of Southwest Hospital, who had no evidence of fatty liver
disease, primary biliary cholangitis, autoimmune hepatitis, liver cancer,
viral hepatitis or other liver diseases. Samples from patients with MASLD
were obtained throughbiopsy procedures. The diagnosis of MASLD was
based onanintegration of clinical features, laboratory tests and patho-
logical diagnosis, while excluding other known hepatic conditions. The
histological characteristics of the liver samples were evaluated using the
NAFLD Activity Score, which assesses steatosis, lobular inflammation
and hepatocyte ballooning, along with fibrosis assessment to evalu-
ate the severity of liver disease. The diagnosis of MASH is based on the
presence of hepatocyte ballooning and lobular inflammation, along
with steatosis and varying degrees of fibrosis. All histological sections
were examined in blinded fashion by an experienced hepatopathologist.

Multiplex IF staining

Cellular colocalization and expression of proteins were validated using
amultipleximmunohistochemistry/IF staining kit (cat. no.abs50012,
Absin) according to the manufacturer’s instructions. Briefly, 4-pm-thick
liver paraffin sections were initially deparaffinized, followed by anti-
gen retrieval. Subsequently, sections underwent multiple rounds of
blocking, primary antibody incubation at 4 °C for 12 h, secondary
antibody incubation at 37 °C for 10 min and fluorescent dye (TSA 520,
570,620 or 650) incubation at 37 °C for 10 min. Each antibody and dye
incubation step was followed by washing with Tris-EDTA buffer. Finally,
nuclei were stained with DAPI for 10 min at room temperature. Fluo-
rescence was visualized using a laser scanning confocal microscope
(LSM 880, ZEISS). The antibody application details are provided in
Supplementary Table 3.

Generation of stable THP-1 cell lines and RT-qPCR
Toconstructthelentivirus needed toinfect THP-1cells, firsthuman MITF
complementary DNA (NM-198159) was cloned into pLV-CMV-MCS-E
F1-ZsGreenl-T2A-Puro. Together with PSPAX2 and PCMV-VSV-G,
these three plasmids were transfected into the 293T cell line. THP-1
cells were grown in Roswell Park Memorial Institute (RPMI) 1640
basic medium with 10% FCS, 1% penicillin-streptomycin and 0.05 mM
2-mercaptoethanol at 37 °C in 5% CO,. THP-1 cells were infected with
either human MITF or EV lentivirus; stable cells were then selected
for their ability to grow in the presence of puromycin (Hunan Fenghui
Biotechnology Co., Ltd). Total RNA was extracted from THP-1 cells using
RNAiso Plus (Takara Bio) according to the manufacturer’sinstructions.
Complementary DNA was synthesized using the PrimeScript FAST RT
Reagent Kit with gDNA Eraser (Takara Bio). RT-qPCR was performed
using the TB Green Premix Ex Taq Il FAST qPCR kit (Takara Bio). The
primersusedinthis study were selected from the Harvard PrimerBank;
we used GPADH as the reference gene for normalizing gene expression
(primer sequences are described in Supplementary Table 4a).

siRNA transfection

MITF siRNAs were purchased from Sangon Biotech. Nontargeting oli-
gonucleotides were used as the negative control. siRNAs were delivered
to the THP-1 cell lines according to the manufacturer’s instructions

(ProteanFect Max, Nanoportal Biotech). The knockdown efficiency
of target genes was evaluated using RT-qPCR 24 h after transfec-
tion (primer sequences and siRNA oligonucleotides are described in
Supplementary Table 4b).

OCR assay and mitochondrial staining

THP-1cellsinfected with either an EV or MITF-OE lentivirus were used
to assess cellular OCR with the Seahorse XFp Cell Mito Stress Test Kit
(cat.no.103010-100, Agilent Technologies) according to the manufac-
turer’s protocol. Briefly, cells were resuspended in prewarmed Seahorse
assay mediumand seeded at a density of 60,000 cells per 50 pl per well
into Cell-Tak-coated Seahorse XFp Cell Culture Microplates. After cell
attachment, 130 pl of Seahorse assay medium was added to each well
and plates were incubated for 40 minin a 37 °C, non-CO, incubator
before the assay. Basal OCRwas then measured, followed by injection
of oligomycin (3.5 pM), FCCP (2 uM) and rotenone/antimycin A (2.5 pM)
through the hydrated probe plate. Real-time OCR (pmol O, min™) was
measured using the Agilent Seahorse XFp Analyzer. Datawere analyzed
using the WAVE software. To assess the total mitochondrial mass, cells
were stained with MitoTracker Red (cat.no. MB6046-1, Meilunbio) for
20 min, followed by fluorescence detection using a ZEISS LSM 880
laser scanning confocal microscope. Ten randomly selected fields per
sample were captured; mean fluorescence intensity quantification was
performed using ImageJ (v.1.8.0) (National Institutes of Health) with
background subtraction.

RNAscope insitu hybridization

To colocalize HGF and TREM2, an RNAscope assay was performed
using an RNAscope Multiplex Fluorescent Reagent Kit v2 (cat. no.
323100, Advanced Cell Diagnostics) according to the manufacturer’s
instructions. Briefly, 4-um-thick liver paraffin sections were prepared
and processed through deparaffinization, hydrogen peroxide treat-
ment, target retrieval and RNAscope Protease IV treatment. Sections
were then hybridized with the target probes HGF (cat. no.310761-C2)
and TREM2 (cat.no.420491-C3) for 2 h. This was followed by sequential
signal amplification using AMP1, AMP2 and AMP3 for 30 min, 30 mins
and 15 min, respectively. For signal labeling in the C2 channel, sections
were incubated with HRP-C2 for 15 min, followed by Opal 570 dyes for
30 min and HRP blocker for 15 min. This signal labeling procedure
was then replicated for the C3 channels using Opal 520 dyes. Finally,
sections were counterstained with DAPI at room temperature. After
each step, sections were washed with RNAscope 1x Wash Buffer. Fluo-
rescence was visualized using a laser scanning confocal microscope
(LSM 880). The colocalization signals were analyzed using the ZEN
software (v.2.3).

Conditioned medium experiment

Conditioned media were collected from the THP-1EV or MITF-OE cell
lines after 48 h of culture. Cells were seeded at a density of 1 x 10° cells
per T75 flask containing 15 ml of RPMI 1640 basic medium (cat. no.
C11875500, Thermo Fisher Scientific) supplemented with10% FCS (cat.
no.S711-001S, Lonsera). Afterincubation, cellular debris was removed
by centrifugation at 4,000g for 10 min at room temperature. Human
HGF concentrations in the conditioned media were quantified using
aQuantikine ELISA Kit (cat. no. DHGOOB, R&D Systems), according to
the manufacturer’sinstructions.

Computational analysis

Mapping of the gene expression libraries. For the scRNA-seq data,
raw reads were processed to generate gene expression profiles using
Celescope (v.1.15.0) (Singleron Biotechnologies) with default param-
eters. Space Ranger (v.3.1.1) (https://support.10xgenomics.com)
was used to preprocess the sequencing data, with the default set-
tings for the ST data. Both types of libraries were mapped to the 10x
GRCh38reference.
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scRNA-seq data processing. The scRNA-seq libraries were analyzed
using the standard SCANPY (v.1.10.3)* workflow. We discarded (1)
cellswithfewer than 200 genes and fewer than 400 unique molecular
identifiers (UMlIs), (2) cells with more than 30% of counts mapped
to ribosomal or mitochondrial genes, (3) cells with more than 1%
of counts mapped to hemoglobin genes, (4) cells with more than
40,000 UMIs, (5) cells with more than 6,000 genes and (6) doublets
as estimated using Scrublet® with default parameters. Additionally,
doublet clusters, identified by observing the expression of markers
from multiple cell typesin scRNA-seq, were removed. Gene expression
values were normalized for library size and log-transformed. Princi-
pal component analysis was carried out using the top 6,000 highly
variable genes. Neighbors were identified using the first 30 principal
components corrected using Harmony*’; clustering was done using
the Leiden algorithm with the ten nearest neighbors per cell. UMAP
projections were calculated using default parameters.

Zonation annotation of Visium ST data. To identify groups of spots
in different ST samples that shared similar gene expression patterns,
weintegrated and clustered the 10x Visium spots of all sections using
theintersection of14,000 spatially variable genesidentified fromeach
section after batch correction using a deep learning-based STAligner
(v.1.0.0) method®. These groups of spots were manually annotated
intofour liver lobular zones (portal, periportal, mid and central) using
marker genes and location information from the literature. Spot clus-
tering was performed by first creating a spatial network using the
Cal_Spatial_Net function with the following parameters: model = kNN
and k_cutoff = 6. The number of clusters was constrained to four by
specifying the num_cluster parameter during the execution of the
mclust_R function of the STAligner package.

Spatial mapping of cell types in Visium ST using cell2location.
Deconvolution of the abundance information of each cell type in
each 10x Visium spot was performed with cell2location (v.0.1.3).
Cell2location estimates the gene expression signatures of the cell
types identified from reference scRNA-seq datasets using negative
binomial regression, which accounts for batch effects. The inferred
signatures are used to estimate the absolute spatial abundance of
corresponding cell types across each Visium ST section separately.
ST datawere processed to untransformed and unnormalized mRNA
counts filtered to genes shared with scRNA-seq data, while exclud-
ing mitochondrial and ribosomal genes. Hyperparameters in the
cell mapping step based on tissue feature and experiment quality
are as follows: (1) expected cell abundance per location =8 and (2)
regularization of within-experiment variation in RNA detection
sensitivity =20. The model achieved convergence after 30,000
iterations. Evidence lower bound loss function scaling according
to locations x genes was used. Results were visualized according to
the cell2location tutorial.

Differential abundance analysis. We used miloR? (v.2.0.0) to test
for the differential abundance of cells within defined neighborhoods
between two conditions (thatis, MASL/MASH versus CTRLs or MASH
versus MASL). We first used the buildGraph function to construct a
kNN graph with the following parameters: k=30,d =30 and reduced.
dim = X_pca_harmony. Next, we used the makeneighborhoods func-
tion to assign cells to neighborhoods based on their connectivity
over the kNN graph. For computational efficiency, we subsampled
10% of T and NK cells and monocytes and DCs and 30% of B lineage
cells, respectively. The testNhoods function was used to conduct the
differential neighborhood abundance testing over samples with the
scRNA-seq library (thatis, collected after the first or second centrifuga-
tion step) as the covariate. To control for multiple testing, we adapted
the spatial FDR implemented in Milo and used a 0.05 spatial FDR as
the threshold for significance. The spatial FDR and log,(fold change)

of the number of cells between two conditions in each neighborhood
were used for visualization.

TCR and BCR analysis from scVDJ-seq. Droplet-based sequence
data for the scTCR and scBCR sequences were aligned and quantified
using Celescope multi_flv_CR against the GRCh38 human VD] refer-
ence genome. Filtered annotated contigs were analyzed using Scirpy”
(v.0.19.1). For the scTCR analysis, we selected T cells that were annotated
as the following five cell types via the scRNA-seq analysis: MAIT cells,
T,eg Circulating NKT cells, CD4/CD8 naive T cellsand CD8 Ti;cells. Only
T cells with both TCR-a (TRA) and TCR-3 (TRB) chains were kept for
further analysis. Each unique TRA-TRB pair was defined asaclonotype.
The scBCR analysis was conducted on cells that were annotated as the
following four cell types using the scRNA-seq analysis: naive B, memory
B, Plasma_IgG and Plasma_IgA. Only B cells with both heavy (IGH) and
light (IGL or IGK) chains remained for the downstream analysis. Each
unique IGH-IGL/IGK pair was defined as a clonotype. For the TCR data,
clonotype clusters were defined based on CDR3 amino acid sequences
withreceptor_arms = ‘all’, dual_ir = ‘any’ and a default cutoff of ten. For
the BCR data, the cutoff parameter of the clonotype_network function
used for calling clonotype clusters was set to five, with other param-
eters remaining the same asin the TCR analysis.

Analysis of GRNs. The SCENIC workflow®**' (pySCENIC v.0.12.1)
was used to predict TFs and their target genes regulated from our
scRNA-seq dataset. We set the broad cell type as the group identity and
downsampled 5% of cells from each identity because of the limitation
of the computing resources. Gene regulatory interactions for 30,499
genes were calculated based on coexpression across the scRNA-seq
datasets with GRNBoost2 (ref. 62) (arboreto_with_multiprocessing—
method grnboost2). This was followed by pruning interactions, which
involvedincorporating established TF binding motifs and constructing
dataset-specific regulatory regulons® (pyscenic ctx-mask_dropouts).
With the dropout masking set to True, the correlationbetweena TF and
its target genes was calculated using only cells with nonzero expres-
sionvalues during regulon creation. Additionally, asinput, we used the
curated list of 1,390 human-specific TFs (https://raw.githubusercon-
tent.com/aertslab/pySCENIC/master/resources/hs_hgnc_curated_tfs.
txt), an annotation file for motif to TF mapping (https://resources.
aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-00.0.tbl)
(human, v9, mc9nr) and the ranking database of regulatory features
(https://resources.aertslab.org/cistarget/databases/homo_sapiens/
hg38/refseq_r80/mc9nr/gene_based/hg38_refseq-r80_500bp_up_
and_100bp_down_tss.mc9nr.genes_vs_motifs.rankings.feather) (hg38,
mc9nr,+500 bp and -100 bp transcription start site). Then, the activity
ofregulons wasinferred for each cell using AUCell (pyscenic aucell with
default parameters). The RSS was calculated for each cell type sepa-
rately. The differentially activated TF regulon analysis was conducted
using a Wilcoxon rank-sum test. The final network was constructed
with igraph (v.2.0.3) (https://CRAN.R-project.org/package=igraph),
integrating node and edge attributions according to the scRNA-seq
data and visualized using ggraph (v.2.1.0).

Identifying differentially flowing signal variables. When inferring
intercellular flows from unique ligand-receptor interactions identi-
fied using the CellChat (v.2.1.2)** analysis, we used FlowSig* (v.0.1.2)
to prioritize the informative outflowing and inflowing signal variables.
Differentially inflowing and outflowing variables were identified using
two separate Mann-Whitney Uand Wilcoxon rank-sum tests. Variables
were considered significantif they met the criteriaof P,4;< 0.01and an
absolute log(fold change) > 1.0.

Differential expression and gene set enrichment analysis. Differ-
ential gene expression was performed using the rank_genes_groups
function of Scanpy with the following parameters: tie_correct = ‘“TRUE’
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and method = ‘wilcoxon’. To reveal the function of upregulated DEGs
ortoassignthem to biological terms, we used the get_ora_df function
with the default parameters of decoupler (v.1.6.0)%.

Cell-celliinteraction analysis. The interactions between cell popula-
tions identified in our scRNA-seq dataset were identified using Cell-
PhoneDB (v.5.0.0)*. First, we retrieved the interacting pairs of ligands
andreceptors, which met the criteria that allmembers were expressed
inatleast10% of cells within relevant clusters. Then, toidentify the most
relevant interactions between cell types, we randomly permuted the
cluster labels of all cells 1,000 times and determined the mean of the
average receptor expression level in a cluster and the average ligand
expression levelintheinteracting cluster, generating anull distribution
for each ligand-receptor pair in each pairwise comparison between
two cell types. By calculating the proportion of the means, which are
equal to or higher than the actual mean, we obtained a P value for the
likelihood of cell-type specificity of a given receptor-ligand complex.
Only ligand-receptor pairs with P < 0.01 were visualized using CCplotR
(v.0.99.3)°°. Communication analysis of ST datasets was performed
using COMMOT (v.0.0.3)* with default parameters.

Disease-associated spatial gene module analysis. Deconvolution
through topic modeling was applied to the 10x Visium gene expression
using sctm (v.0.1.3)*. The human MASH dataset was deconvolved into
20 spatial topics using the STAMP function with the following param-
eters: mode = ‘sign’, dropout = 0.1, n_layers = 1, gene_likelihood = ‘nb’
using the 4,000 most variable genes. To quantify the activity of each
spatial topic, the top 100 contributing genes for each topic were used
to evaluate topic-specific scores. The distribution of each topicin the
human samples (CTRL, MASL and MASH) was assessed by calculating
the frequency of spots in the 99th percentile of topic activity versus
the total number of spots across all tissue sections.

MALDI-MSI data analysis. Raw MALDI-MSI data files were processed
into a tabular format as .CSV using the pyimzML tool (https://github.
com/alexandrovteam/pyimzML); files were further transformed into
individual anndata objects compatible with the ST analysis pipeline
based on SCANPY*, Pixels with fewer than 700 metabolites or fewer
than 40,000 counts were excluded from the downstream analysis, as
well as metabolites expressed in more than 95% of pixels. Each metabo-
lite feature was normalized on the total ion count within individual
MSI data points. All 27 individual MSI-based anndata objects were
integrated into acombined anndata containing 841,534 pixels, with the
original spatial coordinates of each dataset staggered to differentiate
the samples. To reveal disease-associated spatial metabolite expres-
sion patterns, we applied the Hotspot (v.1.1.1)** analysis framework
to the merged anndata object. First, an unweighted kNN graph was
constructed with the six nearest neighbors (ahyperparameter) of each
MSI data point in the two-dimensional space using the create_knn_
graph function. Next, pairwise evaluation was performed between the
post-filtered 1,528 metabolites detected using MALDI-MSI to construct
a scoring matrix based on coexpression between nearby spots using
the compute_local_correlations function. Finally, an agglomerative
clustering procedure was applied to group metabolites with similar
spatial expression patterns into modules. This began with every mod-
ule represented by a single metabolite and proceeded by merging
individual modules with the highest pairwise z-scores. Merging was
restricted if the FDR-adjusted Pbetween two branches exceeded 0.01
orifeither branch contained fewer than 20 metabolites.

Spatial alignment of MALDI-MSI to the Visium ST data. To spatially
align MALDI-MSI to the Visium data, we used STalign (v.1.0)*°. Araster-
ized density image was created from the positions of the MALDI-MSI
datapoints and served as the sourceimage. Before alignment, MSl data
points located outside the tissue sections were identified based on the

marked expression of Hotspot-identified module 11and subsequently
removed. The source image was first aligned to the corresponding
target H&E image of Visium ST based on four manually assigned land-
mark points through affine transformation. The alignment was further
optimized using a large deformation diffeomorphic metric mapping
framework®. Once the MSI data were aligned with the RNA data, we
selected the nearest Visium spot for the MSI data.

Statistics and reproducibility

No statistical method was used to predetermine sample size. No data
were excluded fromthe analyses. Allinvitro experiments were repeated
independently at least three times. The investigators were not blinded
toallocation during the experiments and outcome assessment. Experi-
mental datawere analyzed and visualized using Prism (v.10.4.2) (Graph-
Pad Software). All quantitative data are presented asmeanvalues + s.d.;
statistical significance was determined using an unpaired two-sided
Student’s t-test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allraw data for scRNA-seq and 10x Visium generated in this study are
deposited in the Genome Sequence Archive®® at the National Genom-
ics Data Center®’, the National Center for Bioinformation/Beijing
Institute of Genomics and the Chinese Academy of Sciences (GSA for
Human: HRA007511), which are available at https://ngdc.cncb.ac.cn/
gsa-human. The spatial metabolomic datahave been depositedinthe
OMIX, the China National Center for Bioinformation/Beijing Institute
of Genomics and the Chinese Academy of Sciences under accession
no. OMIX009098 (https://ngdc.cncb.ac.cn/omix). The processed
scRNA-seq and Visium ST data are available from OMIX under acces-
sionno. OMIX010136. The spatial proteomic datais also available from
OMIX underaccessionno. OMIX009117. All processed data can be visu-
alized and downloaded at the HMSMA website (https://db.genomics.
cn/stomics/hmsma). Source data are provided with this paper.

Code availability

The code required to reproduce the analyses in this paper is available
through GitHub at https://github.com/OMIC-coding/Spatial_ multiomics_
analysis MASLDandZenodo (https://doi.org/10.5281/zenodo.17192831)™°.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| scRNA-seq data quality control and zonationannotation  corresponds to a specific cell subcluster and rows correspond to alist of key

for Visium ST data. a, Violin plots summarizing the number of UMIs detected marker genes (expression normalized per gene), brackets on the right side

per cell (total_counts), detected genes per cell (n_genes_by_counts) and the of each plot detail the cell type or subcluster that these genes mark. ¢, Spatial
proportion of reads incident to mitochondrial genes (pct_counts_mt) per distribution of four lobule zones (portal, peri-portal, mid and central) across all
sample before (top) and after (bottom) filtering low-quality cells. b, Dot plots 35 Visium sections.

summarizing the known markers used to identify cell types. Each column
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell-type-specific regulons in the scRNA-seq datasets.

a, Regulon specificity score for each annotated cell population. The top five
regulonsin each cell type are highlighted in red and labeled on the plot. The
specificity score isshown on the Y axis. b, AUC distribution across cells for the
MITF regulon. The calculated binary threshold is shown as ared dotted line.
¢, Expression of MITF gene in scRNA-seq dataset displayed in UMAP space.

d, Stacked violin plot displaying the top 50 putative MITF-targeted gene

expression levelsin each cell subset, ordered by descending regulation weight.

Red arrows indicate LAM-specific genes. e, Quantification of marker genes

of LAMs by RT-qPCR in THP-1 cells after MITF knockdown (si-MITF) by small
interfering RNA for 24 h (n = 6, biological replicates). f, AUC distribution across
cells for PPARG regulon. The calculated binary threshold is shown as ared
dotted line. g, Quantification of PGCla, PPARy, CPTIA,ACADVL and CYP21A1by
RT-qPCRin THP-1cells after si-MITF for 24 h (n = 6, biological replicates). Data
are presented as mean values = s.d., statistical significance was determined by
unpaired two-sided Student’s ¢-test.
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Extended Data Fig. 4 | Differential intercellular flow analysis by Flowsig.

a, Differentially inflowing signals between MASL and CTRL groups. Yellow
dots indicate statistically significant differential inflow (absolute log2FC > 1.0,
adjusted Pvalue < 0.01). b, Differentially inflowing signals between MASH and
MASL groups. Yellow dots indicate statistically significant differential inflow
(absolute log2FC > 1.0, adjusted Pvalue < 0.01). ¢, pyLIGER-identified 30 GEMs
from CTRL and MASL datasets align with cell types. d, pyLIGER-identified

30 GEMs from MASL and MASH datasets align with cell types. e, Intercellular
flows regulating outflowing signals upregulated in MASL compared to CTRL.

f, Intercellular flows regulating outflowing signals upregulated in MASH
compared to MASL. g, Representative immunofluorescence protein staining
of MET, Ki67, TREM2 and HNF4A for tissue sections from the MASH group
(n=3,independent experiments). Arrows indicate proliferating hepatocytesin
proximity to LAMs. Scale bar, 20 pm.
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Extended Data Fig. 5| Deconvolution of spatial gene topics in healthy and
MASLD human liver. a, STAMP-identified spatial topics align with three disease
conditions. b, Spots with the highest activity (99" percentile, T") for each
spatial topic were identified and used to calculate the proportion of T" spots
among all spots, grouped by samples, colored by disease status and displayed
asastacked bar chart. ¢, Correlation (Pearson) heatmap between activities

of STAMP-identified spatial topics and densities of cell2location-inferred cell

types within spatial spots (strong correlation indicates spatial co-occurrence).
d, Estimated cell abundance (color intensity) of HSCs and Central Vein ECs
overlaid on H&E images for two MASH F3 stage biopsies (MASH-9136 and
MASH-3096). e, The spatial location of the ligand-receptor pair, RSPO3-LGR6
atthe grid level for two representative MASH F3 stage biopsies (MASH-9136 and
MASH-3096). The arrows indicate the receiver signal of the RSPO3-LGR6 pair.
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Extended Data Fig. 6 | Identification of spatial metabolic modules by

Hotspot and alignment with ST via STalign. a, Rearrangement of the spatial
coordinates n = 27 MALDI-MSI SM samples in the two-dimensional coordinate
system. b, Spatial distribution of Hotspot-identified Module 13 across twelve
representative tissue sections. ¢, 47 metabolites from Module 13 are presented as

heatmap, with columns representing pixels within each disease status and rows
displaying metabolite annotations. d, Overview of the alignment steps between
MSI data points and H&E image of Visium ST by STalign. e, Key parameters that
indicate the effects of spatial multimodal alignment.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O O OX O OOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No specific software was used for data collection. The datasets were processed and analyzed using the open source software listed below.

Data analysis Celescope (v.1.15.0) was used to align and quantify scRNA-seq data to obtain a matrix for analysis.
Space Ranger (v.3.1.1) was used to process spatial transcriptomics data to obtain a matrix for analysis.
milo (v.2.0.0) was used to test for the differential abundance of cellls within defined neighborhoods.
Scirpy (v.0.19.1) was used for scVDJ data analysis.

Scanpy (v.1.10.3) was used for the downstream analysis after object creation and clustering the scRNA-seq datasets.
flowsig (v.0.1.2) was used to identify differentially flowing signal variables.

CellPhoneDB (v.5.0.0) and CellChat (v.2.1.2) was used to identify cell-cell interactions.

CCplotR (v.0.99.3) was used to visualize significant ligand-receptor pairs.

commot (v.0.0.3) was used to assess ligand-receptor interaction intensities within Visium sections.
STAligner (v.1.0.0) was used for batch effect correction in Visium ST datasets.

Cell2location (v.0.1.3) was used for the spots' deconvolution of Visium ST datasets.

pyscenic (v.0.12.1) was used to infer gene regulatory networks from scRNA-seq datsets.

igraph (v.2.0.3) and ggraph (v.2.1.0) were used for the visualization of gene regulatory networks.
decoupler (v.1.6.0) was used for the enrichment of GO and KEGG terms.

sctm (v.0.1.3) was used for the identification of spatial gene topics.

Hotspot (v.1.1.1) was used to identify and display metabolic programs.

STalign (v.1.0) was used to integrate spatial transcriptomics with spatial metabolomics.

GraphPad Prism software (v.10.4.2) was used for experimental data statistical analysis and visualization.




The code required to reproduce the analyses in this paper is available through GitHub (github.com/OMIC-coding/
Spatial_multiomics_analysis_ MASLD) and Zenodo (doi.org/10.5281/zenodo.17192831).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All raw data for scRNA-seq and 10x Visium generated in this study are deposited in the Genome Sequence Archive in National Genomics Data Center, China National
Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: HRAO07511) that are available under controlled access at
https://ngdc.cncb.ac.cn/gsa-human; The spatial metabolomic data have been deposited in the OMIX, China National Center for Bioinformation / Beijing Institute of
Genomics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/omix: accession no.OMIX009098). The processed data of scRNA-seq and Visium ST are available
from the OMIX with the accession number OMIX010136. The spatial proteomic data is also available from the OMIX under accession number OMIX009117. All
processed data can be visualized and downloaded on the HMSMA website (https://db.genomics.cn/stomics/hmsma). Source data are provided with this paper.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Information on sex is summarized in Supplementary Table 1. Sex and gender were not considered in the study design.

Reporting on race, ethnicity, or ' All 61 participants are Asian. Race, ethnicity, or other socially relevant groupings were not considered in study design.
other socially relevant
groupings

Population characteristics Control liver samples were procured from ten patients at the Institute of Hepatobiliary Surgery of Southwest Hospital, none
of whom showed evidence of fatty liver disease, primary biliary cholangitis (PBC), autoimmune hepatitis (AlH), liver cancer,
viral hepatitis, or other metabolic liver diseases. Samples from patients with MASLD were obtained through biopsy or surgical
procedures. The diagnosis of MASLD was based on integrating clinical features, laboratory tests, and pathological diagnosis
while excluding other known hepatic conditions.

Recruitment The participants were diagnosed at the First Affiliated Hospital of Third Military Medical University and the First Affiliated
Hospital of Wenzhou Medical University, fulfilling our pre-established inclusion criteria, voluntarily participating in the study.
Prior to the commencement of the study, written informed consent was obtained from all participants.

Ethics oversight The study protocol was reviewed and approved by the Ethics Committees of the First Affiliated Hospital (Southwest Hospital)
of Army Medical University [approval nos. (A)KY2021061 and (B)KY202350] and the First Affiliated Hospital of Wenzhou
Medical University [approval no. 2016-246].

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 29 liver samples were subjected to single-cell sequencing, including 6 controls, 7 MASL samples, 16 MASH samples.
Liver tissue samples for spatial transcriptomics were collected from 35 donors, including 7 controls, 10 MASL samples, 18 MASH samples.
Liver tissue samples for spatial metabolomics were collected from 27 donors, including 6 controls, 9 MASL samples, and 12 MASH samples.
A total of 14 liver samples were subjected to spatial proteomic profiling, including 4 controls, 3 MASL samples, 7 MASH samples.
No statistical method was used to predetermine sample size.

Data exclusions  No data were excluded from the analyses.

Replication All in vitro experiments were repeated independently at least three times.
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Randomization  No randomization was used in the study because the patient data is observational.

Blinding The investigators were not blinded to allocation during experiments and outcome assessment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
™ Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Plants

Antibodies

Antibodies used All antibodies used in the study are listed in the Supplementary Table 3.
TREM?2, Cell Signaling, Danvers, MA/91068
MITF, Abcam, Cambridge, MA/ab303530
CYP3A4, Santa Cruz, Santa Cruz, CA/sc-53850
EPCAM, Cell Signaling, Danvers, MA/14452
HNF4a, Cell signaling, Danvers, MA/3113
Ki67, Abcam, Cambridge, MA/ab16667
MET, Cell signaling, Danvers, MA/8198S
Mouse IgG, Absin, Shanghai, China/abs50012
Rabbit IgG, Absin, Shanghai, China/abs50012

Validation All antibodies used in the study are commercially available with validation procedures described on the sites of the manufacture.
TREM?2, https://www.cellsignal.cn/products/primary-antibodies/trem2-d8i4c-rabbit-mab/91068
MITF, https://www.abcam.cn/products/primary-antibodies/mitf-antibody-epr26363-10-ab303530.html
CYP3A4, http://www.scbt.com/p/cyp3ad-antibody-hl3
EPCAM, http://www.cellsignal.cn/products/primary-antibodies/epcam-d9s3p-rabbit-mab/14452
HNF4a, http://www.cellsignal.cn/products/primary-antibodies/hnf4a-c11f12-rabbit-mab/3113
MET, http://www.cellsignal.cn/products/primary-antibodies/met-d1c2-xp-rabbit-mab/8198
Ki67, http://www.abcam.cn/products/primary-antibodies/ki67-antibody-sp6-ab16667.html
Mouse IgG, https://www.absin.cn/four-color-multi-label-immunofluorescence-kit/abs50012.html
Rabbit IgG, https://www.absin.cn/four-color-multi-label-immunofluorescence-kit/abs50012.html

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) THP-1 and HepG2 cell lines were purchased from Hunan Fenghui Biotechnology Co., Ltd, China.

Authentication Cell line authentication was performed for THP-1 and HepG2 via Short Tandem Repeat (SRT) profiling prior to
experimentation. Each profile matched the known reference standard.

Mycoplasma contamination All cell lines were tested for Mycoplasma by PCR, and the results were negative for Mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified cell lines were used in this study.
(See ICLAC register)




Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe-any-atithentication-procedtres foreach seed stock- tised-ornovel genotype generated—Describe-any-experiments-tsed-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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