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Genome-wide association study and 
polygenic risk prediction of hypothyroidism
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Henrik E. Poulsen    5,8,9, Christina Ellervik    5,10,11, Birte Nygaard    5,12, 
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Søren Brunak18,19, DBDS Genomic Consortium*, Estonian Biobank Research 
Team*, 23andMe Research Team*, Michael Schwinn    20, Sisse R. Ostrowski    5,20, 
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We performed a genome-wide meta-analysis of hypothyroidism (113,393 
cases and 1,065,268 controls), free thyroxine (191,449 individuals) and 
thyroid-stimulating hormone (482,873 individuals). We identified 350 loci 
associated with hypothyroidism, including 179 not previously reported,  
29 of which were linked through thyroid-stimulating hormone. We found 
that many hypothyroidism risk loci regulate blood cell counts and the 
circulating inflammasome, and through multiple gene-mapping strategies, 
we prioritized 259 putative causal genes enriched in immune-related 
functions. We developed a polygenic risk score (PRS) based on more 
than 115,000 hypothyroidism cases to address diagnostic challenges 
in individuals with or at risk of thyroid hormone deficiency. We show 
that the highest predictive accuracy for hypothyroidism was achieved 
when combining the PRS with thyroid hormones and thyroid-peroxidase 
autoantibodies, and that the PRS was able to stratify risk of progression 
among individuals with subclinical hypothyroidism. These findings 
demonstrate the potential for a hypothyroidism PRS to support the 
prediction of disease progression and onset in thyroid hormone deficiency.

Primary hypothyroidism is a common and insidious metabolic dis-
ease. It is characterized by subtle and nonspecific symptoms, which 
can lead to delayed diagnosis, resulting in an underdiagnosed case 
burden estimated at up to 0.5%1,2. Thyroid hormone deficiency is 
associated with increased risk of cardiometabolic outcomes, includ-
ing coronary artery disease (CAD), heart failure (HF) and metabolic 
syndrome1,3,4. The risk of hypothyroidism is influenced by various 
factors, such as subclinical hypothyroidism (SCH), autoimmunity, 

iodine supplementation, sex, age, ancestry and goiter1,5,6. Genetics 
play an important role, with twin studies estimating that 55% of the 
disease risk may be attributed to genetic factors7, and genome-wide 
association studies (GWAS) have linked hundreds of genetic loci to 
thyroid disease and related biomarkers8–14.

Screening for thyroid dysfunction is standard in clinical prac-
tice, with up to 25% of some populations undergoing annual thy-
roid function tests5. The diagnosis of overt hypothyroidism is 
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We developed a PRS to improve the prediction of hypothyroidism 
and compared the predictive ability in incident disease relative to 
traditional risk factors. We then evaluated the ability of the PRS to 
predict progression from subclinical to overt hypothyroidism. Finally, 
we explored the association between the hypothyroidism PRS and 
common malignancies, cardiometabolic and neuropsychiatric traits.

Results
Genome-wide association results
We included 113,393 hypothyroidism cases and 1,065,268 controls 
from European cohorts in the GWAS meta-analysis of hypothyroid-
ism (Copenhagen Hospital Biobank-Chronic Inflammatory Diseases/
Danish Blood Donor Study (CHB-CID/DBDS), UK Biobank (UKB), 
FinnGen and 23andMe). The genomic inflation factor (λGC) was 1.46, 
and the linkage-disequilibrium score regression (LDSC)-intercept was 
1.09 (s.e. = 0.03; Supplementary Table 1), indicating that most of the 
observed inflation was due to polygenicity. At genome-wide signifi-
cance (P < 5 × 10−8), we identified 319 loci, of which 150 were previously 
unreported (Fig. 1a and Supplementary Tables 2 and 3) and 84 were not 
previously associated with other thyroid traits (Supplementary Table 4). 
Using a more stringent threshold of P < 1 × 10−9, we found 247 loci, of 
which 86 were unreported. The heritability was 14.5% (95% confidence 
interval (CI) = 14.0–15.0). Most lead single-nucleotide polymorphisms 
(SNPs) had modest effect sizes (median odds ratio (OR) = 1.03, inter-
quartile range = 0.96–1.05). We discovered several low-frequency 

straightforward. However, individuals with SCH characterized by ele-
vated thyroid-stimulating hormone (TSH, >4 mU l−1) and free thyroxine 
(fT4) within the reference range pose a diagnostic challenge. Current 
guidelines recommend treating SCH with thyroid hormone replace-
ment when TSH exceeds 10 mU l−1, if the patient is young, have a positive 
screen for thyroid-peroxidase antibodies (anti-TPO), have cardiovascu-
lar disease or exhibit symptoms of hypothyroidism4. Notably, relying 
solely on symptoms for treatment decisions may lead to overdiagno-
sis and overtreatment since classic hypothyroidism manifestations 
(for example, lethargy, dry skin or impaired memory) are commonly 
observed in euthyroid individuals4. Similarly, basing treatment deci-
sions solely on biochemical findings may result in overtreatment since 
more than one-third of patients with abnormal thyroid function tests 
experience spontaneous remission without intervention15. In addition 
to biochemical testing, no risk assessment tool can distinguish between 
patients with high and low risk of disease progression. Given the high 
heritability and polygenic nature of hypothyroidism, we hypothesized 
that a well-powered polygenic risk score (PRS), incorporating millions 
of sequence variants, could aid in identifying high-risk individuals.

This GWAS meta-analysis, which included 113,393 hypothyroidism 
cases, 1,065,268 controls and over 190,000 individuals with measured 
thyroid hormone levels, offers insights into the genetic underpinnings 
of thyroid hormone deficiency. We characterized the hypothyroidism 
immunophenotype by investigating genetic associations with periph-
eral blood cell counts and circulating levels of inflammatory markers. 
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Fig. 1 | Hypothyroidism lead variants and their associations with thyroid 
hormones. a, Relationships between minor allele frequencies and ORs for the 
350 lead variants that were identified in the hypothyroidism genome-wide meta-
analysis (113,393 cases and 1,065,268 controls) or through an endophenotype-
driven analysis using thyroid-stimulating hormone genome-wide associations as 
priors. Coding variants are squared, new associations are turquoise, and known 
associations are gray. b, Relationships between hypothyroidism risk and changes 

in thyroid-stimulating hormone for 349 of 350 lead variants. c, Relation between 
hypothyroidism risk and change in free thyroxine for 348 of 350 lead variants. 
In b and c, the centerline represents the linear regression, and the shaded error 
band shows the 95% CI around the regression line. Statistical associations 
were assessed using two-sided Pearson correlation tests. No multiple testing 
correction was applied for these correlation analyses.
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(minor allele frequency (MAF) < 5%) coding variants, which included 
a known stop-gain in TSHR (p.Trp546Ter; OR = 7.67, rs121908866) 
and two new and protective missense variants—rs149007883 in NFK-
BIZ (p.Gly102Ala; OR = 0.83, P = 4.94 × 10−8) and rs61731111 in S1PR4 
(p.Arg243Cys; OR = 0.91, P = 8.66 × 10−9).

Endophenotype-driven analysis
We meta-analyzed GWASs of thyroid hormones from CHB-CID/DBDS, 
UKB and previously published summary data10,16. In a meta-analysis 
of up to 191,449 individuals with fT4 measurements, we identified 61 
fT4 genome-wide significant loci, of which 15 were previously unre-
ported (Supplementary Table 5). In a meta-analysis of up to 482,873 
individuals with TSH measurements, 297 TSH genome-wide significant 
loci were identified, 126 of which have not been previously reported 
(Supplementary Table 6). Using LD score regression, we found that the 
genetic correlations with hypothyroidism were 55% (P = 3.55 × 10−122) for 
TSH and −23% (P = 3.95 × 10−3) for fT4. Based on the strong link between 
TSH and hypothyroidism, we used TSH GWAS associations as priors 
to enhance genomic discovery for hypothyroidism. Of the 297 TSH 
variants, 186 were associated with hypothyroidism at a false discovery 
rate (FDR) < 0.01. Of these, 96 were previously associated with hypo-
thyroidism at genome-wide significance, 61 overlapped in positions 
with genome-wide hypothyroidism loci reported in this study and the 
remaining 29 represent new associations for hypothyroidism. In total, 
we identified 350 nonoverlapping loci via hypothyroidism meta-analysis 
or through the TSH-driven approach (Supplementary Table 7), 179 of 
which have not been reported previously.

Replication
We replicated unreported variants in the Estonian Biobank (EstBB) and 
deCODE genetics, which included 34,835 cases and 492,149 controls. 
Of the 179 new loci reported here, 176 (98%) were available for replica-
tion. In total, 35 of 176 (19%) variants replicated beyond the thresh-
old for multiple testing (P < 2.79 × 10−4 (0.05/179)). A total of 110 of 
176 (63%) were nominally significant (P < 0.05), and all but one had 
concordant direction of effect. Finally, 54/176 (31%) had P ≥ 0.05 but 
showed concordant direction of effect. There was a high concordance 
between effect estimates in the discovery and replication cohorts for 
the 179 risk variants (r2 = 0.85, P = 6.54 × 10−51). Given the large sample 
size differences between discovery and replication, we did not expect 
to be able to replicate all new loci at the threshold for multiple testing. 
Power calculations indicated that our replication analysis had lim-
ited power to detect variants with an OR of 1.03, which corresponds 
to the effect range of replication variants (Supplementary Fig. 1 and 
Supplementary Table 8). We also cross-referenced variants that repli-
cated at nominal significance (P < 0.05) with genome-wide associations 
to TSH and fT4. Of the 75 variants that replicated at nominal significance 
(P < 0.05), 32 were previously genome-wide significant in either TSH 
or fT4 studies. Of the 54 variants that did not replicate (P ≥ 0.05) but 
had concordant direction of effect, 23 were genome-wide associated 
with either TSH or fT4 (Supplementary Table 9).

Correlation between hypothyroidism and thyroid hormones
Since the diagnosis of hypothyroidism is biochemical, we investigated 
the influence of hypothyroidism variants on thyroid hormone levels.  
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Fig. 2 | PRS association with and prediction of hypothyroidism.  
a, Associations between 10 deciles of the PRS and risk of hypothyroidism are 
presented as OR point estimates ± 95% CI error bars, estimated using logistic 
regression models adjusted for age, sex and PCs. No adjustments were made  
for multiple comparisons. b, Prediction of incident hypothyroidism cases.  
The benchmark model consisted of age, sex and four PCs. Prevalent risk  
factors for hypothyroidism were added iteratively to the benchmark model.  

The center of each error bar represents the AUC, and error bars indicate the 95% 
CIs, displayed in absolute terms on the right. No adjustments were made for 
multiple comparisons. MS, multiple sclerosis; PMR, polymyalgia rheumatica; 
PsA, psoriatic arthritis; RA, rheumatoid arthritis; DS, Down syndrome; SSc, 
systemic sclerosis; SLE, systemic lupus erythematosus; Celiac, celiac disease; 
Sjögren, Sjögren’s disease; T1D, type 1 diabetes.
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We observed a modest correlation between the effect of hypo-
thyroidism variants and TSH effect estimates (Pearson’s r = 0.58, 
P = 3.65 × 10−33), where 91% (315/348) of variants had concordant direc-
tion of effect. However, some notable differences existed. For exam-
ple, the missense variant rs78534766 in ADCY7 and the FLT3 variant 
rs76428106 associated with large effects on hypothyroidism (OR = 1.4 
and 1.37, respectively) but had a comparably small effect on TSH levels 
(s.d. = 0.04 and 0.08, respectively). Similarly, the variants rs2016105 
in ELK3 (β = 0.17 s.d.) and rs6885099 in PDE8B (β =0.16 s.d.) had large 
effects on TSH but associated with a modest increase in disease risk 
(OR ~ 1.1; Fig. 1b and Supplementary Table 10). For fT4 levels, we found 
a weak correlation between disease risk and fT4 levels (Pearson’s 
r = −0.16, P = 0.004; Fig. 1c).

Inflammatory traits associated with hypothyroidism variants
To investigate the role of hypothyroidism variants in autoimmun-
ity, we tested associations between lead variants, peripheral blood 
cell counts (for example, red blood cells, platelets, lymphocytes, 
eosinophils and neutrophils) and 90 inflammatory proteins17. We 
found that 153 of the 350 (44%) lead variants were associated with 
blood cell traits, and 55 of the 343 lead variants that were available in 
protein quantitative trait locus (pQTL) data were associated with at 
least one inflammatory marker at P < 1.41 × 10−6 (0.05/350 x 101 traits; 
Supplementary Tables 11 and 12). The inflammatory markers with the 
highest number of associations with hypothyroidism lead variants 
were IL12B (14/55), and FLT3LG (9/55), in line with previous findings8. 
We found 40 variants associated with both blood cell traits and inflam-
matory proteins, with evidence of trans-pQTL hotspots at several 
loci. The lead variants with the highest number of associations were 
the known missense variant rs3184504 (OR = 1.18, p.Trp262Arg) in 
SH2B3 and the intron variant rs11066320 (OR = 1.14) in PTPN11, which 
both associated with higher blood cell counts, and at least 30 differ-
ent markers of inflammation (including several chemokines, inter-
leukins and cytokines)17. Next, we interrogated variants associated 
with lower hypothyroidism risk in genes with known roles in immune 
system function. We highlight two missense variants, rs149007883 
in NFKBIZ (p.Gly102Ala; OR = 0.83) and rs34536443 (p.Pro1104Ala; 
OR = 0.87) in TYK2, and two intron variants rs13181561 (OR = 0.96) in 
STING1 and rs113473633 (OR = 0.90) in NKFB1. These variants were 
associated with lower levels of a panel of inflammatory mediators 
(Supplementary Fig. 2), including IFN-γ, CXCL10 and CXCL9, which 
make up key pathogenic pathways involved in autoimmune diseases 
related to hypothyroidism18,19.

Gene mapping
We used five methods (polygenic priority score (PoPS), variant-to-gene 
(V2G), coding variants, transcriptome-wide association study (TWAS) 
with colocalization and Mendelian disease enrichment) using dif-
ferent strategies (coding impact, regulatory potential and gene–
trait linkage) to prioritize genes. We found 88 coding variants in 59 
genes that were either lead variants (11/88) or in high LD (r2 > 0.8) 
with one (Supplementary Table 13). Using PoPS, we mapped 209 of 
350 (60%) hypothyroidism loci to 418 genes with a PoPS score in the 
>90th distribution, while V2G mapped 344 of 350 (98%) lead vari-
ants to a single gene (Supplementary Tables 14 and 15). Using TWAS 
with colocalization, we identified 272 genes within 135 of 350 (39%) 
hypothyroidism risk loci that showed evidence of colocalization 
between gene expression and disease risk (Supplementary Table 16). 
We found that 168 of 350 (48%) hypothyroidism loci overlapped in 
positions with 278 Mendelian disease genes implicated in autoim-
munity or thyroid disease. Finally, 205 hypothyroidism loci had at 
least two lines of gene-mapping evidence prioritizing 259 genes 
(Supplementary Table 17). Gene enrichment analysis highlighted 
several genes involved in pathways related to a broad range of func-
tions in the immune system (for example, differentiation, activation 

and regulation of myeloid and lymphoid blood cells, regulation of 
cell-cell adhesion, regulation of inflammatory responses and cytokine 
signaling; Supplementary Table 18), but only a handful genes were 
enriched in thyroid hormone metabolism (for example, GATA3, TPO, 
DIO1 and TG) or thyroid gland development (for example, FGF10, TG, 
NKX2-1 and THRA).

Converging effects of common and rare variants
Identifying rare coding variants in genes linked to hypothyroidism 
can confirm putative causal genes and increase the understanding of 
disease mechanisms. Using a published rare variant burden analysis 
including 18,362 cases and 310,690 controls20, we investigated the 
associations of genes with at least two lines of mapping evidence (259 
genes) and hypothyroidism, using both predicted loss-of-function 
variants (pLoF) and protein-altering variants (PAVs; that is, del-
eterious missense variants and pLoF) at an FDR-adjusted P < 0.05 
(Supplementary Table 19). pLoF variants in TSHR, an established 
monogenic cause of hypothyroidism, were associated with increased 
disease risk (MAF < 1%—OR = 3.02, 95% CI = 2.25–4.06, P = 2.5 × 10−13). 
In comparison, pLoF variants in NFATC1 (MAF < 0.001%—OR = 4.36, 
95% CI = 2.11–8.99, P = 6.7 × 10−5) were associated with higher effect 
compared to TSHR pLoF variants, suggesting a potential monogenic 
role in hypothyroidism. Protective rare coding variants are particularly 
interesting, as they proxy effects of life-long therapeutic inhibition and 
may guide therapeutic developments21. Coding variants in four genes 
prioritized from our gene-mapping strategy associated with reduced 
risk of hypothyroidism—ZAP70 (PAVs, MAF < 0.001%—OR = 0.33, 95% 
CI = 0.19–0.57, P = 6.4 × 10−5), ARHGAP9 (PAVs, MAF < 1%—OR = 0.76, 
95% CI = 0.66–0.87, P = 1.3 × 10−4), TYK2 (PAVs, MAF < 1%—OR = 0.78, 
95% CI = 0.69–0.88, P = 6.9 × 10−5) and IFIH1 (pLoF, MAF < 1%—OR = 0.81, 
95% CI = 0.75–0.86, P = 2.2 × 10−6).

PRS and hypothyroidism prediction
We derived a PRS of 1,107,248 variants from a meta-analysis of 
CHB-CID/DBDS, deCODE genetics, EstBB, FinnGen and 23andMe, 
including more than 116,000 hypothyroidism cases. The PRS was 
evaluated in the UKB and the Danish General Suburban Population 
Study (GESUS; Methods). In the UKB, which includes 32,304 cases and 
399,000 controls, we found a strong association between the PRS and 
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hypothyroidism (OR = 2.01 per s.d. increase in PRS, 95% CI = 1.99–2.03, 
P = 2.3 × 10−2790). Risk increased markedly at the extremes of the PRS 
distribution (Fig. 2a), with ORs of 4.14 (95% CI = 3.94–4.34), 7.49 (95% 
CI = 6.89–8.15) and 14.10 (95% CI = 11.44–17.38) for individuals at the 
upper 10th, 1st and 0.1th percentiles, respectively, compared to the 
5th decile. We found a similar effect estimate in the GESUS cohort 
(OR = 2.0 per s.d. increase in PRS 95% CI = 1.85–2.17, P = 1.61 × 10−66). 
We next evaluated the predictive ability of the PRS relative to estab-
lished risk factors6. Relative to a model with age, sex and principal 
components (PCs), the PRS yielded the largest change in area under 
the curve (ΔAUC) of 7.2% (95% CI = 6.7–7.6), which exceeded the impact 
of all other risk factors (Fig. 2b). Integrating all non-genetic risk fac-
tors into a model resulted in a ΔAUC of 0.5% (95% CI = 0.4–0.7), and a 
model including all risk factors (including the PRS) resulted in a ΔAUC 
of 7.8% (95% CI = 7.3–8.2; AUC = 0.70). Anti-TPO is a strong predictor 
of autoimmune hypothyroidism22. In the GESUS cohort, we identified 
5,452 individuals with TSH, fT4 and anti-TPO measurements that were 
free of hypothyroidism at baseline. Of these, 431 were anti-TPO positive 
( > 100 U ml−1). A model including age, sex and PCs yielded an AUC of 
0.634 (95% CI = 0.589–0.679). A model including thyroid hormones 
and anti-TPO increased AUC further to 0.849 (95% CI = 0.810–0.889). 
By adding the PRS to the latter model, risk prediction improved sig-
nificantly, increasing the AUC to 0.859 (95% CI = 0.821–0.897, P for 
difference = 0.03; Supplementary Table 20). For individuals who 
were anti-TPO negative, the PRS was able to capture residual disease 
risk. Anti-TPO-negative individuals in the top 10% of the PRS distribu-
tion had a nearly twofold increased risk (hazard ratio (HR) = 1.97, 95% 
CI = 1.06–3.68, P = 0.033) of developing hypothyroidism compared 
to those in the bottom 90% of the distribution.

Disease progression in SCH
The clinical course of individuals with SCH is difficult to predict5. We 
identified 8,114 individuals from UKB primary care data with biochemi-
cally defined SCH and investigated whether the PRS could identify 
individuals who are more or less likely to progress to overt disease. 
Compared to individuals with intermediate polygenic risk (>10th to 
90th percentiles), individuals with high polygenic risk (>90th per-
centile) had an HR of 1.43 (95% CI = 1.37–1.61) for progressing to overt 
hypothyroidism, while low risk individuals (>10th percentile) had an HR 
of 0.76 (95% CI = 0.65–0.88). On the absolute scale, this risk translated to 
a 10.2% higher 10-year conversion rate for high-risk individuals (39.3%, 
95% CI = 35.9–42.7%) and a 6.6% lower 10-year conversion rate for low 
risk individuals (22.5%, 95% CI = 19.6–25.4%) compared to those in the 
intermediate risk group (29.1%, 95% CI = 28.0–30.3%; Fig. 3).

Disease risk stratified by lifestyle factors and genetic risk
We investigated the relationship between hypothyroidism risk and 
lifestyle categories using a four-point scoring system based on body 
mass index (BMI), exercise, smoking and dietary habits. We found that 
healthy lifestyle characteristics were associated with a reduced risk of 
hypothyroidism. As expected, individuals without obesity had lower 
risk (HR = 0.71, 95% CI = 0.68–0.74) compared to obese individuals23. 
Contrary to previous findings, we found that nonsmokers had a lower 
risk (HR = 0.79, 95% CI = 0.75–0.84) than did current smokers24. Overall, 
adherence to a healthy lifestyle corresponded to an HR of 0.83 (95% 
CI = 0.79–0.87), while an unhealthy lifestyle corresponded to an HR of 
1.26 (95% CI = 1.16–1.35; Fig. 4a and Supplementary Table 21). Finally, we 
explored the interplay between the PRS and lifestyle factors to identify 
individuals at extreme disease risk (Fig. 4b,c). The 10-year risk was 
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greater for women, with the highest risk observed along the PRS axis. 
Risk increased with accumulating risk factors and higher polygenic 
risk, where the highest 10-year risk (50%) was observed for women 
above the age of 60 years, with a PRS in the >90th percentile of the 
distribution, who were obese, smokers and did not exercise regularly.

Associations with cancer and cardiometabolic phenotypes
We investigated the relationship between the hypothyroidism PRS and 
50 phenotypes, including common malignancies and cardiometabolic 
traits in UKB. We found that a higher PRS was associated with a lower 
risk of skin (OR = 0.92 per s.d. increase in PRS, P = 7.7 × 10−37), prostate 
(OR = 0.94 per s.d. increase in PRS, P = 2.2 × 10−6) and breast cancer 
(OR = 0.95 per s.d. increase in PRS, P = 6.0 × 10−5). We also found that 
a higher PRS was associated with an increased risk of several cardio-
metabolic diseases, including CAD (OR = 1.06 per s.d. increase in PRS, 
P = 1.1 × 10−24), chronic kidney disease (OR = 1.06 per s.d. increase in 
PRS, P = 7.7 × 10−16) and type 2 diabetes (OR = 1.05 per s.d. increase in 
PRS, P = 1.5 × 10−19; Fig. 5 and Supplementary Table 22).

Discussion
In this study, we present a comprehensive genetic evaluation of thy-
roid hormone deficiency through GWAS meta-analyses of hypothy-
roidism and thyroid hormones. Our findings confirm and extend the 
understanding of the polygenic and complex nature of hypothyroid-
ism, linking 350 genetic loci to this disease. By linking genetic loci to 
immune-related cells and circulating inflammation markers, we char-
acterized potential mediators of disease. Using gene-prioritization 
methods, we identified putative genes with known roles in autoimmun-
ity, which aligns with the main etiology in iodine-sufficient areas of the 
world25. We showed that using a hypothyroidism PRS could potentially 
improve the diagnostic accuracy in thyroid hormone deficiency, a 
condition fraught with diagnostic challenges.

We highlight associations with inflammatory markers, which 
may provide insight into inflammatory pathogenic mechanisms26. 
We emphasize four risk-mitigating variants (missense—rs149007883 
in NFKBIZ, rs34536443 in TYK2; intronic—rs13181561 in STING1, 
rs113473633 in NKFB1) in genes encoding critical regulators of immune 
system function27–30. These variants were associated with lower levels 

of inflammatory mediators, including IFN-γ, CXCL10 and CXCL9, that 
make up a crucial pathway in the activation and recruitment of immune 
cells18,19. This is proposed to be a central pathogenic pathway in many 
autoimmune diseases, including vitiligo, psoriasis and psoriatic 
arthritis, which are closely linked to hypothyroidism. This aligns with 
the increased expression of IFN-γ in the serum and thyroid tissue of 
patients with autoimmune hypothyroidism, which is proposed to 
mediate thyroid hormone deficiency through lymphocyte infiltration 
and the exposure of thyrocytes to proinflammatory cytokines4,31–33. 
Further investigation into key signaling pathways, such as those high-
lighted, may be critical for understanding the mechanisms underlying 
disease pathogenesis34.

Human genetic evidence has been acknowledged as an important 
predictor of success in drug development programs34. We observed 
converging evidence linking both common and rare PAVs in TYK2 and 
ZAP70 with reduced risk of hypothyroidism. Although the therapeutic 
potential of inhibiting TYK2 has been used in multiple autoimmune 
diseases, its potential in mitigating hypothyroidism risk remains largely 
unexplored35,36. This could suggest a strategic direction for drug repur-
posing. Similarly, inhibiting the protein product of ZAP70, which is also 
essential for T-cell signaling, has been shown to have anti-inflammatory 
properties in vitro and to be effective in treating psoriasis in mice37. 
Given its similar pathway and risk reduction profile, ZAP70 has also 
emerged as a candidate for further research in the context of managing 
autoimmune diseases.

Due to the highly polygenic nature of hypothyroidism, we devel-
oped a PRS from more than 116,000 hypothyroidism cases to address 
diagnostic challenges in thyroid hormone deficiency. An estimated 
0.5% of individuals with undiagnosed hypothyroidism may reflect 
individuals who do not seek medical attention for gradually develop-
ing nonspecific symptoms. The use of a PRS to identify individuals at 
greater risk could reduce the burden of undiagnosed thyroid failure. 
Specifically, in the top 1% and 0.1% of the PRS distribution, individuals 
exhibited a more than 7-fold and 14-fold risk, respectively, when com-
pared to the middle decile. These risks are substantially greater than 
those observed for other complex traits38 and for known monogenic 
causes of hypothyroidism. Using two different validation cohorts, 
we were able to show that the PRS outperformed an array of clinical 
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hypothyroidism risk factors but also improved risk prediction beyond 
that of thyroid hormones and anti-TPO.

The prevalence of thyroid hormone testing in clinical practice 
inevitably leads to a substantial number of patients being diagnosed 
and treated for SCH5. Early treatment is beneficial for preventing the 
progression to overt hypothyroidism and mitigating the risk of associ-
ated cardiovascular morbidity39. However, the clinical course of SCH 
to overt disease is unpredictable and relies on vague and nonspecific 
symptoms. We demonstrated that the PRS could identify individuals 
at high and low risk of progression from SCH to overt disease. If geno-
typing becomes a standard of care, PRS may guide clinicians in select-
ing patients who are more or less likely to progress from one disease 
state to another. Consequently, the clinical approach could shift to a 
genotype-guided biochemical assessment, rather than relying solely 
on nonspecific symptoms to guide testing. Also, we were able to show 
that by combining the PRS with easily accessible lifestyle factors, we 
could identify individuals with a 10-year risk of 50%. These accumulated 
risk factors are comparable to conventional risk factors investigated 
in The Wickham Study, where women with elevated TSH (>6 mU l−1) 
and positive anti-TPO had an annual progression rate of 4.3%40. Col-
lectively, our findings underscore the potential of using genetic risk 
stratification to guide personalized risk assessment and prevention 
strategies for hypothyroidism.

Numerous observational studies have linked hypothyroidism 
to increased cardiovascular morbidity1,3,4. Using a phenome-wide 
association study approach, we found that the hypothyroidism PRS 
associated with a range of cardiometabolic diseases, atherosclerotic 
disease, chronic kidney disease and type 2 diabetes. This implies the 
need for a more focused approach to monitoring cardiovascular risk 
factors and diseases in individuals with hypothyroidism. Further-
more, we found significant associations between genetically pre-
dicted higher hypothyroidism risk and lower risk of breast, prostate 
and skin cancer, supporting the findings reported by several observa-
tional studies41,42. The association between the PRS and breast cancer 
aligns with that of a recent GWAS of thyroid function11. Interestingly, 
we found no association between hypothyroidism risk and thyroid 
cancer, despite previous GWASs showing an association between 
higher TSH levels and lower risk of thyroid cancer11,16. Whether the 
observed associations with specific cancers reflect shared path-
ways, where augmented immunosurveillance leads to both disease 
and, conversely, mitigates the risk of specific cancers, will require 
additional investigation.

This study has several limitations. First, the analysis was limited to 
individuals of European ancestry, which restricts the generalizability 
of our findings to other ancestries. Second, we relied on data from 
cohorts, where the phenotype definition was based on self-reported 
diagnoses, such as those from 23andMe, or on summary statistics with 
predefined phenotypes, which limited our ability to further refine 
the phenotype definitions. This may have introduced some degree 
of heterogeneity.

In conclusion, we found 350 genomic risk loci for hypothyroidism, 
underscoring the highly polygenic nature of this disease. Leveraging 
this insight, we developed a PRS that could identify individuals at 
high risk of developing disease in the general population and also 
predict the clinical course of subclinical disease. Our findings rep-
resent a step forward in the genetic understanding and clinical man-
agement of hypothyroidism, broadening the perspective for use in 
personalized medicine.
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Methods
Ethics statement
This research complied with all ethical regulations and was conducted 
in accordance with the principles of the Declaration of Helsinki. All 
contributing studies received approval from the appropriate regional 
or institutional research ethics committees. For most cohorts, par-
ticipants provided written informed consent before inclusion. For 
CHB participants, written informed consent was not obtained, but 
in accordance with Danish legislation, participants were informed 
about the use of residual biological material for research purposes 
and provided with the option to opt out. Details of ethics approvals 
and consent procedures for individual cohorts are provided in the 
Supplementary Note.

Cohorts, association testing and meta-analysis
We used four cohorts for discovery (CHB-CID/DBDS, UKB, FinnGen 
Freeze 10 and 23andMe). EstBB and deCODE genetics were used for 
validation. Cases were defined using International Classification of 
Diseases (ICD)-10 codes E03.8/E03.9/E06.3, ICD-9 codes 244.8/244.9 
or claimed prescription of thyroid hormone substitution therapy 
using Anatomical Therapeutic Chemical Classification code H03A. 
In UKB, in addition to electronic health registries, we included indi-
viduals self-reporting hypothyroidism or use of thyroid hormone 
substitution as cases. Individuals with hyperthyroidism (E05(0-9)) 
were excluded and we otherwise used thyroid disease-free controls, 
excluding individuals with the following ICD-10 codes: E0(1-2), E03(0-
5) and E0(4-7). In 23andMe, cases were defined based on self-reported 
diagnoses of hypothyroidism, elevated thyroid-stimulating hormone 
or taking levothyroxine. Controls were individuals who reported no 
other thyroid-related disorders43. Details on genotyping, imputa-
tion and quality control are provided in the Supplementary Note and 
Supplementary Table 23. Using CHB-CID/DBDS, UKB primary care data 
(the subset allowed for non-COVID research) and previously published 
data, we meta-analyzed GWASs for TSH and fT4. We used the first non-
missing sample value that was within the reference range. The results of 
individual thyroid function tests were inverse normalized. Individuals 
who were either on thyroid drugs or had undergone thyroid surgery 
before the thyroid function tests were excluded. In the UKB primary 
care data, thyroid hormone measurements were captured using Read2 
and Read3 codes, while drug and operation codes were recorded using 
dm+d and OPCS-4 codes, respectively. In the CHB-DBDS, thyroid hor-
mones were captured using NPU codes, drugs using ATC codes and 
surgical procedures using procedure codes (Supplementary Table 24). 
Each dataset underwent initial quality control (QC), imputation, 
post-imputation QC and logistic regression models were used for the 
hypothyroidism GWAS and linear regression for the thyroid hormones. 
All models were adjusted for age, sex and PCs. In postregression QC, 
we removed variants with an imputation quality score <0.6, minor 
allele count (MAC) < 6 or absolute β or s.e. >10. We meta-analyzed data-
sets using METAL44, using the fixed-effect inverse variance weighted 
method. To evaluate genomic inflation, we calculated the genomic 
inflation factor (λGC) and the LDSC-intercept using LD scores calculated 
in the HapMap3 CEU population (Supplementary Table 1). We observed 
signs of inflation in FinnGenHypo-GWAS (λGC = 1.40, LDSC-intercept = 1.21), 
CHB-CID/DBDSTSH-GWAS (λGC = 1.35, LDSC-intercept = 1.19) and UKBTSH-GWAS 
(λGC = 1.24, LDSC-intercept = 1.1) and accounted for potential bias by 
correcting the GWAS s.e. by the square root of the LDSC-intercept45. 
No additional genomic control was applied. Liftover between genetic 
builds was conducted using the R package MungeSumstats46

Risk locus definition
To identify independent SNPs within each risk locus, we used LD clump-
ing from PLINK (v1.9)47. We applied a 1-Mb window (--clump kb 1000) 
and low LD threshold (--r2 0.1) to identify independently significant 
SNPs. Lead SNPs were independent SNPs with the lowest P value, and a 

locus was defined as a ±1-Mb region around each lead SNP. We queried 
the GWAS-catalog48 (on 19 April 2024) for known phenotypic associa-
tions with either the lead SNP or variants located ±1 Mb of the lead SNP. 
We considered a risk locus new if no genome-wide significant associa-
tion (P < 5 × 10−8) with hypothyroidism or the use of thyroid hormone 
replacement therapy had been reported previously.

Heritability
Variance in hypothyroidism risk and levels of fT4 and TSH explained 
by common SNPs were estimated using LD-adjusted kinships (LDAK) 
SumHer BLD-LDAK model49. We used the precomputed tagging files 
internal to SumHer, and for hypothyroidism, assessed the heritability 
on a liability scale (correcting for sample and population prevalence).

Association with blood cell traits and inflammatory proteins in 
the UKB
Investigating the genetic imprint on the immunophenotype of hypo-
thyroidism may help identify key functions and interactions involved in 
hypothyroidism risk. First, we assessed 10 blood cell counts, including 
basophil, eosinophil, neutrophil, monocyte, platelet, reticulocyte, 
high light-scattered reticulocyte, lymphocyte, red and white blood cell 
counts, along with C-reactive protein levels. We obtained these meas-
urements from Europeans in the UKB and subsequently rank-inversely 
normalized each trait. Next, we tested the association between lead 
variants and blood cell traits using linear regression adjusted for age, 
sex and four PCs. Additionally, we used proteomics data from the UKB 
Pharma Proteomics Project50. We assessed the effect of lead variants on 
90 inflammatory proteins, which were identified as immune-mediated 
drivers17. We set the threshold for multiple testing at P = 1.41 × 10−6 
(0.05/101 traits x 350 variants).

Gene mapping
To identify and prioritize candidate genes at each locus (±1 Mb of the 
lead variant), we used the following five methods:

1.	 Coding variants—we investigated whether lead variants or 
proxy variants (r2 > 0.8) were annotated as coding variants  
using the variant effect predictor51.

2.	 V2G—we used the V2G algorithm provided by Open Targets 
Genetics (https://genetics.opentargets.org/), which scores and 
assigns each variant to a gene based on aggregated evidence 
from splice, expression, and protein quantitative trait loci 
(sQTL, eQTL and pQTL, respectively), chromatin interactions, 
in silico prediction and distance to transcript sites.

3.	 PoPS—we used a similarity-based gene-prioritization tool inte-
grating GWAS summary data, gene expression data, biological 
pathways data and protein-protein interaction data from over 
50,000 features52. The analysis involved the following three 
steps: (1) computing gene-level association data and gene-gene 
correlations using MAGMA53 with LD estimated from 1000 
Genomes European data, (2) running enrichment analysis for  
gene features listed at https://github.com/FinucaneLab/ 
gene_features using MAGMA and (3) calculating PoPS score for 
each gene by fitting a joint model for enrichment of all result-
ing features. Genes with a PoPS score in the top 10% of the 
distribution were prioritized as putative causal genes.

4.	 Mendelian disease enrichment—we used MendelVar (https:// 
mendelvar.mrcieu.ac.uk/) to detect intersections between 
hypothyroidism loci and Mendelian disease genes, providing 
valuable clues for gene prioritization. We selected variants 
located within ±1 Mb of each lead variant and used the 1000 
Genomes Europeans as a reference panel. Genes were anno-
tated if they were identified with the following keywords:  
‘thyroid’, ‘immune’ or ‘immuno’ in OMIM disease descriptions, or 
Human Phenotype Ontology/Disease Ontology descriptions.
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5.	 TWAS with colocalization—using FUSION54, we performed 
TWASs using hypothyroidism summary data to investigate 
the relationship between the risk loci and effects on gene 
expression in GTEx v8 datasets on hypothalamus, pituitary 
gland, thyroid, spleen, whole blood and pancreas. We used the 
internal colocalization function, which uses COLOC, to detect 
shared causal variants between hypothyroidism risk and gene 
expression55. We only considered eQTLs associated with hypo-
thyroidism at P < 2.97 × 10−6 (0.05/16,841 genes tested). Finally, 
we report the posterior probability of colocalized associations 
(PP4), which show evidence of a shared causal variant found 
in both GWAS and functional associations. If a hypothyroid-
ism risk locus (sentinel variant ±1 Mb) harbored a gene with 
PP4 > 0.75, we considered this a mediator of hypothyroidism 
and evidence of gene mapping.

Genes with two or more lines of evidence for gene mapping were 
investigated in a Gene Ontology enrichment analysis using the R 
package clusterProfiler56.

Rare protein-truncating variants in prioritized 
hypothyroidism genes
The convergence in disease risk between common and rare truncating 
variants can pinpoint causal genes. This can offer insight into disease 
pathophysiology and potentially guide drug discovery or repurposing. 
Using published summary statistics from a whole-exome sequencing 
burden analysis of hypothyroidism20, we compared the convergence 
between common and rare variant effects in genes that had at least two 
lines of mapping evidence at FDR < 0.05.

PRS derivation and validation
We generated the hypothyroidism PRS from a meta-analysis of 
CHB-CID/DBDS, FinnGen, EstBB, deCODE genetics and 23andMe, 
comprising 116,470 cases and 1,164,733 controls. PRS weights were 
calculated using PRS-CS57 with an LD reference panel from the UKB. We 
validated the PRS in UKB, where individuals with ICD-10 E05(0-9) were 
removed to mitigate enrichment for participants with hyperthyroid-
ism amongst hypothyroidism cases. In UKB, associations with hypo-
thyroidism were first reported on a continuous scale. Next, we tested 
the association by deciles, and at the extremes of the PRS (99th and 
99.9th percentiles) using logistic regression models adjusted for age, 
sex and four PCs. We assessed the predictive performance of the PRS 
relative to known clinical risk factors (for example, BMI and selected 
autoimmune diseases; Supplementary Table 25) by calculating the 
AUC using the R package pROC58. For each risk factor, the change in 
the AUC (ΔAUC) was compared to that of a model consisting of age, 
sex and four PCs. We evaluated prevalent risk factors (that is, events 
before the baseline date) and tested the predictive performance for 
incident hypothyroidism cases (events after the baseline date). Sig-
nificant differences between the prediction models were tested using 
DeLong’s test for correlated ROC curves. The PRS was also evaluated 
in the Danish General Suburban Population Study (GESUS). This was a 
population-based cohort study in which 21,205 adults were recruited 
between 2010 and 2013. At baseline, participants underwent physical 
examination, completed a questionnaire and had blood samples drawn. 
Individuals with ICD-10 E05(0-9) were excluded from the analysis. First, 
we evaluated the PRS association with hypothyroidism on a linear basis 
and then evaluated the predictive performance of the PRS relative to 
thyroid hormones and anti-TPO positivity. Anti-TPO was measured on 
Kryptor assays. Values greater than 60 U ml−1 are considered positive 
in Denmark59, and we chose a more conservative cutoff of 100 U ml−1 
for anti-TPO positivity to avoid misclassification of individuals with 
autoimmunity60. We compared the AUCs of models including sex, age 
and four PCs with stepwise addition of thyroid hormones, anti-TPO 
positivity and the PRS for hypothyroidism.

Disease progression in SCH patients
In UKB primary care data (n ~ 245,000), we defined individuals with 
SCH as having TSH levels greater than 4 mU l−1 and fT4 levels between 
8 and 14.5 pmol l−1 using Read2 and Read3 codes. We only considered 
biochemical measurements available after the date of enrollment 
in the UKB to avoid immortal time bias. Before the date for SCH, we 
excluded individuals with a history of thyroid cancer, hyperthyroid-
ism and hypothyroidism using ICD-10, Read2 and Read3 codes and 
individuals taking thyroid hormone substitution as indicated by dm+d 
codes (Supplementary Table 26). The PRS was categorized into the 
following three groups: (1) ≤10th percentile, representing low-risk 
individuals; (2) >10th and <90th percentiles, representing the general 
population and (3) ≥90th percentile, representing high-risk individu-
als. We used Cox regression models to compute HRs for risk of progres-
sion to overt hypothyroidism. Individual follow-up ended in the case 
of an event sampled following the date of SCH from electronic health 
records (defined by ICD-10 E03.8/E03.9/E06.3 or Read2/Read3 codes 
indicative of autoimmune myxedema/Hashimoto’s thyroiditis), death 
or end of follow-up, whichever occurred first. Models were adjusted 
for age, sex and four PCs. Absolute risks were calculated using the 
Aalen-Johansen estimator, which takes the competing risk of death 
into account.

Relationship between polygenic risk and lifestyle
Lifestyle factors such as obesity are part of the phenotypic spectrum of 
hypothyroidism but can also increase the risk of hypothyroidism23,24. 
Since inherited risk can be perceived as deterministic, we investigated 
whether adherence to a healthy lifestyle could offset genetic risk. Using 
UKB questionnaire data, we created a lifestyle scoring system with 
points awarded for healthy characteristics61:

1.	 No obesity (BMI < 30 kg m−2)
2.	 Regular exercise (≥15 metabolic equivalent task hours per week)
3.	 Nonsmokers
4.	 Healthy diet, meeting at least three criteria:

	a.	 ≥3 fruit servings per day.
	b.	 ≥12 teaspoons of vegetables per day.
	c.	 ≥2 weekly servings of oily fish.
	d.	 ≤1 weekly serving of processed meat.
	e.	 ≤2 weekly servings of red meat.

A healthy lifestyle ranged from 3–4 points, intermediate 2 points 
and unhealthy 0–1 points. We analyzed the associations between life-
style factors and hypothyroidism using Cox regression, adjusting 
for age at inclusion, sex and four PCs using the R package survival62. 
We also constructed a risk chart, displaying 10-year absolute risk of 
hypothyroidism for different combinations of age, sex, lifestyle char-
acteristics and PRS deciles.

PRS correlation with selected malignancies, cardiometabolic 
and neuropsychiatric traits
We conducted a phenome-wide association study between the hypo-
thyroidism PRS and 50 common diseases (including 12 malignant, 20 
cardiovascular, 13 metabolic and 4 neuropsychiatric traits). We defined 
phenotypes in the UKB using a combination of ICD-9 and ICD-10 codes, 
cause of death registry and Office of Population Censuses and Surveys 
(OPCS-4; Supplementary Table 27). We tested the association between 
the PRS and individual phenotypes using logistic regression adjusted 
for age, sex and four PCs. We restricted analyses of cervical and breast 
cancer to females and prostate cancer to males. We set the threshold 
for multiple testing at P < 0.001 (0.05/50 traits).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
GWAS summary statistics from the meta-analysis of hypothyroidism 
(excluding 23andMe), TSH and T4 are publicly available at the GWAS 
Catalog under accession IDs GCST90572791 (https://ftp.ebi.ac.uk/pub/
databases/gwas/summary_statistics/GCST90572001-GCST90573000/
GCST90572791/), GCST90572789 (https://ftp.ebi.ac.uk/pub/data-
bases/gwas/summary_statistics/GCST90572001-GCST90573000/
GCST90572789/) and GCST90572790 (https://ftp.ebi.ac.uk/pub/data-
bases/gwas/summary_statistics/GCST90572001-GCST90573000/
GCST90572790/). The corresponding hypothyroidism PRS (exclud-
ing 23andMe) is available at the PGS Catalog under accession ID 
PGS005218 (https://www.pgscatalog.org/publication/PGP000733/).
The full GWAS summary statistics for the 23andMe discovery data-
set will be made available through 23andMe to qualified researchers 
under an agreement with 23andMe that protects the privacy of the 
23andMe participants. Please visit https://research.23andme.com/
collaborate/#dataset-access/. UKB individual-level data are accessible 
upon application via the UKB (https://www.ukbiobank.ac.uk/). FinnGen 
summary statistics are publicly available following registration at: 
https://www.finngen.fi/en/access_results. Data from the UKB Pharma 
Proteomics Project (UKB-PPP) are available through Synapse (https://
www.synapse.org/#!Synapse:syn51365301). GTEx v8 eQTL data can be 
accessed at: https://gtexportal.org/home/datasets. Individual-level 
data are not publicly available due to restrictions imposed by partici-
pant consent and local ethics review boards.

Code availability
The following software and packages were used for data analyses:

PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/)
PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/)
METAL v.2011-03-25 (https://genome.sph.umich.edu/wiki/ 

METAL_Documentation)
LDAK v.2023-07-01 (https://dougspeed.com/)
PoPS v.0.2 (https://github.com/Finucanelab/pops)
FUSION v.2022/02/01 (http://gusevlab.org/projects/fusion/)
COLOC v.5.2.3 (https://cran.r-project.org/web/packages/coloc/ 

index.html)
LD Score Regression v.l .0.1 (https://github.com/bulik/ldsc)
PRS-CS v.2021-06-04 (https://github.com/getian107/PRScs)
REGENIE v.2.0.l (https://rgcgithub.github.io/regenie/)
R v.4.2.2 (https://www.r-project.org/)
MungeSumstats v.1.8.0 (https://www.bioconductor.org/packages/ 

release/bioc/html/MungeSumstats.html)
pROC v.1.18.5 (https://www.rdocumentation.org/packages/pROC/ 

versions/1.18.5)
clusterProfiler v.4.8.2 (https://bioconductor.org/packages/release/ 

bioc/html/clusterProfiler.html)
survival v.3.6.4 (https://cran.r-project.org/web/packages/survival/ 

index.html)
ggplot2 v.3.5.2 (https://cran.r-project.org/web/packages/ggplot2/ 

index.htmI)
OpenTargets Variant2Gene v.1.1 (https://genetics-docs.opentargets. 

org/our-approach/data-pipeline)
Variant Effect Predictor v.111 (https://useast.ensembl.org/Tools/VEP).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect this data.

Data analysis The following softwares and packages were used for data analyses: 
PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/) 
PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/) 
METAL v2011-03-25 (https://genome.sph.umich.edu/wiki/METAL_Documentation) 
LDAK v2023-07-01 (https://dougspeed.com/) 
PoPS v0.2 (https:/github.com/Finucanelab/pops) 
FUSION v2022/02/01 (http://gusevlab.org/projects/fusion/) 
COLOC v5.2.3 (https://cran.r-project.org/web/packages/coloc/index.html) 
LD Score Regression vl .0.1 (https://github.com/bulik/ldsc) 
PRS-CS v2021-06-04 (https://github.com/getian107 /PRScs) 
REGENIE v2.0.l (https://rgcgithub.github.io/regenie/) 
R v4.2.2 (https://www.r-project.org/) 
MungeSumstats v1.8.0 (https://www.bioconductor.org/packages/release/bioc/html/MungeSumstats.html) 
pROC (https://www.rdocumentation.org/packages/pROC/versions/1.18.5) 
clusterProfiler v3.21 (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) 
survival v3.6.4 (https://cran.r-project.org/web/packages/survival/index.html) 
ggplot2 (https://cran.r-project.org/web/packages/ggplot2/index.htmI) 
OpenTargets Variant2Gene v1.1 (https://genetics-docs.opentargets.org/our-approach/data-pipeline) 
MendelVar v05/Dec/2023 (https://mendelvar.mrcieu.ac.uk/) 
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

GWAS summary statistics from the meta-analysis of hypothyroidism (excluding 23andMe), TSH and T4 are publicly available at the GWAS Catalog under accession 
IDs: GCST90572791, GCST90572789 and GCST90572790 (https://www.ebi.ac.uk/gwas/). The corresponding hypothyroidism polygenic risk score (excluding 
23andMe) is available at the PGS Catalog under accession ID: PGS005218 (https://www.pgscatalog.org/).The full GWAS summary statistics for the 23andMe 
discovery data set will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe 
participants. Please visit https://research.23andme.com/collaborate/#dataset-access/. UK Biobank individual-level data are accessible upon application via the UK 
Biobank (https://www.ukbiobank.ac.uk/). FinnGen summary statistics are publicly available following registration at: https://www.finngen.fi/en/access_results. Data 
from the UK Biobank Pharma Proteomics Project (UKB-PPP) are available through Synapse (https://www.synapse.org/#!Synapse:syn51365301). GTEx v8 eQTL data 
can be accessed at: https://gtexportal.org/home/datasets. Individual-level data are not publicly available due to restrictions imposed by participant consent and 
local ethics review boards.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The manuscript uses the term sex when referring to biological attribute, and was determined using genetic sex where 
available. Sex was included as a covariate in all multivariate analyses. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The included studies were exclusively individuals of European ancestry. By reducing genetic variability and confounding 
factors that could arise from population stratification, we aimed to enhance our ability to detect true genetic associations 
with the phenotypes of interest. Our study's focus on Europeans is not meant to diminish the genetic diversity and 
significance of other populations but was a methodological decision based on the specific aims and context of our research.

Population characteristics Population characteristics include age, sex, ancestry, and genetic principal components for all individuals. Details on 
population characteristics are provided in Supplementary Tables 1 and 23, in the Online Methods section, and in the 
Supplementary Note. 

Recruitment Recruitment information is provided in Supplementary Note. 

Ethics oversight All human research was approved within each contributing study by the relevant institutional review board (CHB-CID/DBDS: 
National Committee on Health Research Ethics; deCODE: National Bioethics Committee; UKB: Northwest Multicenter 
Research Ethics Committee; FinnGen: The Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa; 
Estonian Biobank: Estonian Committee on Bioethics and Human Research; 23andMe, Inc: Salus IRB (formerly Ethical and 
Independent Review Services) and the independent and external AAHRPP-accredited Institutional Review Board (IRB); GESUS: 
Ethics Committee for Health Research for Region Zealand) and conducted according to the Declaration of Helsinki. All 
participants provided written informed consent, except for CHB-CID, where patients were informed about the opt-out 
possibility of having their biological specimens excluded from use in research. Since 2004, a national Register on Tissue 
Application (Vævsanvendelsesregistret) lists all individuals who have chosen to opt out and whose samples cannot be used 
for research purposes. Before initiating this study, individuals listed in the Register on Tissue Application were excluded. 
Additional information is provided in Supplementary Note. 
 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No formal statistical sample size calculations were performed prior to the study. Instead, we included all available individuals from each 
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Sample size contributing cohort who met the inclusion criteria and passed quality control procedures. This approach maximizes statistical power for 
genetic discovery. The final sample sizes are comparable to or larger than those used in previous well-powered genome-wide association 
studies (GWAS) for related traits. Detailed information on sample inclusion and exclusion is provided in the Supplementary Note.

Data exclusions Within each study, samples were excluded on the basis of sample level quality control and variant level quality control. These procedures 
ensure the removal of poor quality genotypes, SNPs and samples. The quality filtering steps are provided in Supplementary Table 23 and in 
Supplementary Note. 

Replication All GWAS analyses were conducted independently within each cohort and subsequently meta-analyzed. The primary findings were replicated 
in an independent meta-analysis including non-overlapping cohorts. Prior to replication, we performed power calculations to determine our 
ability to detect novel hypothyroidism-associated variants at various minor allele frequencies (MAFs) and odds ratios (ORs), using a 
Bonferroni-corrected significance threshold of α = 0.00028 (0.05/179 replication attempts). As shown in Supplementary Fig. 1, we had >80% 
power to detect variants with OR ≥1.08 and MAF >0.02. Details of replication are documented in the manuscript and Supplementary Fig. 1 
and Supplementary Table 8, 9, and 10. 

Randomization Randomization was not applicable to this study because it is an observational genetic association study based on pre-existing biobank data. 
Participants were not assigned to groups or interventions; instead, genetic and phenotypic data were analyzed as collected. The goal was to 
identify naturally occurring genetic variants associated with hypothyroidism and related traits, which does not require or permit random 
allocation.

Blinding Blinding was not relevant to this study because it was an observational analysis of existing genotype and phenotype data from biobanks. No 
interventions were administered, and no subjective assessments were performed by investigators. Genotyping, quality control, and 
association analyses were conducted using automated pipelines without investigator influence on group assignment or outcome assessment. 
Therefore, the risk of bias typically mitigated by blinding was not present in this study design.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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Sample size contributing cohort who met the inclusion criteria and passed quality control procedures. This approach maximizes statistical power for 
genetic discovery. The final sample sizes are comparable to or larger than those used in previous well-powered genome-wide association 
studies (GWAS) for related traits. Detailed information on sample inclusion and exclusion is provided in the Supplementary Note.

Data exclusions Within each study, samples were excluded on the basis of sample level quality control and variant level quality control. These procedures 
ensure the removal of poor quality genotypes, SNPs and samples. The quality filtering steps are provided in Supplementary Table 23 and in 
Supplementary Note. 

Replication All GWAS analyses were conducted independently within each cohort and subsequently meta-analyzed. The primary findings were replicated 
in an independent meta-analysis including non-overlapping cohorts. Prior to replication, we performed power calculations to determine our 
ability to detect novel hypothyroidism-associated variants at various minor allele frequencies (MAFs) and odds ratios (ORs), using a 
Bonferroni-corrected significance threshold of α = 0.00028 (0.05/179 replication attempts). As shown in Supplementary Fig. 1, we had >80% 
power to detect variants with OR ≥1.08 and MAF >0.02. Details of replication are documented in the manuscript and Supplementary Fig. 1 
and Supplementary Table 8, 9, and 10. 

Randomization Randomization was not applicable to this study because it is an observational genetic association study based on pre-existing biobank data. 
Participants were not assigned to groups or interventions; instead, genetic and phenotypic data were analyzed as collected. The goal was to 
identify naturally occurring genetic variants associated with hypothyroidism and related traits, which does not require or permit random 
allocation.

Blinding Blinding was not relevant to this study because it was an observational analysis of existing genotype and phenotype data from biobanks. No 
interventions were administered, and no subjective assessments were performed by investigators. Genotyping, quality control, and 
association analyses were conducted using automated pipelines without investigator influence on group assignment or outcome assessment. 
Therefore, the risk of bias typically mitigated by blinding was not present in this study design.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern
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n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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