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We performed a genome-wide meta-analysis of hypothyroidism (113,393
casesand 1,065,268 controls), free thyroxine (191,449 individuals) and
thyroid-stimulating hormone (482,873 individuals). We identified 350 loci
associated with hypothyroidism, including 179 not previously reported,

29 of which were linked through thyroid-stimulating hormone. We found
that many hypothyroidism risk loci regulate blood cell counts and the
circulating inflammasome, and through multiple gene-mapping strategies,
we prioritized 259 putative causal genes enriched inimmune-related
functions. We developed a polygenic risk score (PRS) based on more

than 115,000 hypothyroidism cases to address diagnostic challenges
inindividuals with or at risk of thyroid hormone deficiency. We show

that the highest predictive accuracy for hypothyroidism was achieved
when combining the PRS with thyroid hormones and thyroid-peroxidase
autoantibodies, and that the PRS was able to stratify risk of progression
among individuals with subclinical hypothyroidism. These findings
demonstrate the potential for a hypothyroidism PRS to support the
prediction of disease progression and onset in thyroid hormone deficiency.

Primary hypothyroidism is acommon and insidious metabolic dis-
ease. It is characterized by subtle and nonspecific symptoms, which
can lead to delayed diagnosis, resulting in an underdiagnosed case
burden estimated at up to 0.5%'2. Thyroid hormone deficiency is
associated with increased risk of cardiometabolic outcomes, includ-
ing coronary artery disease (CAD), heart failure (HF) and metabolic
syndrome’**. The risk of hypothyroidism is influenced by various
factors, such as subclinical hypothyroidism (SCH), autoimmunity,

iodine supplementation, sex, age, ancestry and goiter"**. Genetics
play animportant role, with twin studies estimating that 55% of the
disease risk may be attributed to genetic factors’, and genome-wide
association studies (GWAS) have linked hundreds of genetic loci to
thyroid disease and related biomarkers® ™.

Screening for thyroid dysfunction is standard in clinical prac-
tice, with up to 25% of some populations undergoing annual thy-
roid function tests®. The diagnosis of overt hypothyroidism is
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Fig.1|Hypothyroidism lead variants and their associations with thyroid
hormones. a, Relationships between minor allele frequencies and ORs for the
350 lead variants that were identified in the hypothyroidism genome-wide meta-
analysis (113,393 cases and 1,065,268 controls) or through an endophenotype-
driven analysis using thyroid-stimulating hormone genome-wide associations as
priors. Coding variants are squared, new associations are turquoise, and known
associations are gray. b, Relationships between hypothyroidism risk and changes

B for free thyroxine

inthyroid-stimulating hormone for 349 of 350 lead variants. ¢, Relation between
hypothyroidismrisk and change in free thyroxine for 348 of 350 lead variants.
Inband c, the centerline represents the linear regression, and the shaded error
band shows the 95% Cl around the regression line. Statistical associations

were assessed using two-sided Pearson correlation tests. No multiple testing
correction was applied for these correlation analyses.

straightforward. However, individuals with SCH characterized by ele-
vated thyroid-stimulating hormone (TSH, >4 mU ") and free thyroxine
(fT4) within the reference range pose a diagnostic challenge. Current
guidelines recommend treating SCH with thyroid hormone replace-
mentwhen TSH exceeds 10 mU |7, if the patientis young, have a positive
screen for thyroid-peroxidase antibodies (anti-TPO), have cardiovascu-
lar disease or exhibit symptoms of hypothyroidism*. Notably, relying
solely on symptoms for treatment decisions may lead to overdiagno-
sis and overtreatment since classic hypothyroidism manifestations
(for example, lethargy, dry skin or impaired memory) are commonly
observed in euthyroid individuals®. Similarly, basing treatment deci-
sionssolely onbiochemical findings may resultin overtreatment since
more than one-third of patients with abnormal thyroid function tests
experience spontaneous remission without intervention®. Inaddition
tobiochemicaltesting, no risk assessment tool candistinguish between
patients with high and low risk of disease progression. Given the high
heritability and polygenic nature of hypothyroidism, we hypothesized
thatawell-powered polygenicrisk score (PRS), incorporating millions
of sequence variants, could aid inidentifying high-risk individuals.
This GWAS meta-analysis, which included 113,393 hypothyroidism
cases, 1,065,268 controls and over 190,000 individuals with measured
thyroid hormonelevels, offers insightsinto the genetic underpinnings
ofthyroid hormone deficiency. We characterized the hypothyroidism
immunophenotype by investigating genetic associations with periph-
eralblood cell counts and circulating levels of inflammatory markers.

We developed a PRS to improve the prediction of hypothyroidism
and compared the predictive ability in incident disease relative to
traditional risk factors. We then evaluated the ability of the PRS to
predict progression from subclinical to overt hypothyroidism. Finally,
we explored the association between the hypothyroidism PRS and
common malignancies, cardiometabolic and neuropsychiatric traits.

Results

Genome-wide association results

We included 113,393 hypothyroidism cases and 1,065,268 controls
from European cohorts in the GWAS meta-analysis of hypothyroid-
ism (Copenhagen Hospital Biobank-Chronic Inflammatory Diseases/
Danish Blood Donor Study (CHB-CID/DBDS), UK Biobank (UKB),
FinnGen and 23andMe). The genomic inflation factor (A;c) was 1.46,
andthelinkage-disequilibrium score regression (LDSC)-intercept was
1.09 (s.e.=0.03; Supplementary Table 1), indicating that most of the
observed inflation was due to polygenicity. At genome-wide signifi-
cance (P<5x1078), weidentified 319 loci, of which 150 were previously
unreported (Fig.1aand Supplementary Tables 2 and 3) and 84 were not
previously associated with other thyroid traits (Supplementary Table 4).
Using a more stringent threshold of P<1x107°, we found 247 loci, of
which 86 were unreported. The heritability was 14.5% (95% confidence
interval (CI) = 14.0-15.0). Most lead single-nucleotide polymorphisms
(SNPs) had modest effect sizes (median odds ratio (OR) =1.03, inter-
quartile range = 0.96-1.05). We discovered several low-frequency
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Fig. 2| PRS association with and prediction of hypothyroidism.

a, Associations between 10 deciles of the PRS and risk of hypothyroidism are
presented as OR point estimates + 95% Cl error bars, estimated using logistic
regression models adjusted for age, sex and PCs. No adjustments were made
for multiple comparisons. b, Prediction of incident hypothyroidism cases.
The benchmark model consisted of age, sex and four PCs. Prevalent risk
factors for hypothyroidism were added iteratively to the benchmark model.

T T
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AUC for different risk factors

The center of each error bar represents the AUC, and error bars indicate the 95%
Cls, displayed in absolute terms on the right. No adjustments were made for
multiple comparisons. MS, multiple sclerosis; PMR, polymyalgia rheumatica;
PsA, psoriatic arthritis; RA, rheumatoid arthritis; DS, Down syndrome; SSc,
systemic sclerosis; SLE, systemic lupus erythematosus; Celiac, celiac disease;
Sjogren, Sjogren’s disease; T1D, type 1 diabetes.

(minor allele frequency (MAF) < 5%) coding variants, which included
a known stop-gain in TSHR (p.Trp546Ter; OR =7.67, rs121908866)
and two new and protective missense variants—rs149007883 in NFK-
BIZ (p.Gly102Ala; OR = 0.83, P=4.94 x 1075) and rs61731111in SIPR4
(p.Arg243Cys; OR=0.91,P=8.66 x107°).

Endophenotype-driven analysis

We meta-analyzed GWASs of thyroid hormones from CHB-CID/DBDS,
UKB and previously published summary data'®’. In a meta-analysis
of up to 191,449 individuals with fT4 measurements, we identified 61
fT4 genome-wide significant loci, of which 15 were previously unre-
ported (Supplementary Table 5). In a meta-analysis of up to 482,873
individuals with TSH measurements, 297 TSH genome-wide significant
loci were identified, 126 of which have not been previously reported
(Supplementary Table 6). Using LD score regression, we found that the
genetic correlations with hypothyroidism were 55% (P = 3.55 x 10™%) for
TSHand-23% (P=3.95 x107%) for fT4.Based on the strong link between
TSH and hypothyroidism, we used TSH GWAS associations as priors
to enhance genomic discovery for hypothyroidism. Of the 297 TSH
variants, 186 were associated with hypothyroidism at afalse discovery
rate (FDR) < 0.01. Of these, 96 were previously associated with hypo-
thyroidism at genome-wide significance, 61 overlapped in positions
with genome-wide hypothyroidism locireportedinthis study and the
remaining 29 represent new associations for hypothyroidism. Intotal,
weidentified 350 nonoverlappinglociviahypothyroidism meta-analysis
or through the TSH-driven approach (Supplementary Table 7),179 of
which have not been reported previously.

Replication

Wereplicated unreported variantsin the Estonian Biobank (EstBB) and
deCODE genetics, which included 34,835 cases and 492,149 controls.
Ofthe179 new locireported here, 176 (98%) were available for replica-
tion. In total, 35 of 176 (19%) variants replicated beyond the thresh-
old for multiple testing (P <2.79 x 107 (0.05/179)). A total of 110 of
176 (63%) were nominally significant (P < 0.05), and all but one had
concordant direction of effect. Finally, 54/176 (31%) had P> 0.05 but
showed concordant direction of effect. There was a high concordance
between effect estimates in the discovery and replication cohorts for
the 179 risk variants (r* = 0.85, P= 6.54 x 10*). Given the large sample
size differences between discovery and replication, we did not expect
tobeabletoreplicateallnewlociat the threshold for multiple testing.
Power calculations indicated that our replication analysis had lim-
ited power to detect variants with an OR of 1.03, which corresponds
to the effect range of replication variants (Supplementary Fig.1and
Supplementary Table 8). We also cross-referenced variants that repli-
cated at nominal significance (P < 0.05) with genome-wide associations
to TSHand fT4. Ofthe 75 variants that replicated at nominal significance
(P<0.05),32 were previously genome-wide significant in either TSH
or fT4 studies. Of the 54 variants that did not replicate (P> 0.05) but
had concordant direction of effect, 23 were genome-wide associated
with either TSH or fT4 (Supplementary Table 9).

Correlation between hypothyroidism and thyroid hormones
Since the diagnosis of hypothyroidismis biochemical, we investigated
the influence of hypothyroidism variants on thyroid hormone levels.
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We observed a modest correlation between the effect of hypo-
thyroidism variants and TSH effect estimates (Pearson’s r= 0.58,
P=3.65x1073), where 91% (315/348) of variants had concordant direc-
tion of effect. However, some notable differences existed. For exam-
ple, the missense variant rs78534766 in ADCY7 and the FLT3 variant
rs76428106 associated with large effects on hypothyroidism (OR = 1.4
and1.37, respectively) but had acomparably small effect on TSH levels
(s.d.=0.04 and 0.08, respectively). Similarly, the variants rs2016105
in ELK3 (f=0.17 s.d.) and rs6885099 in PDESB ($=0.16 s.d.) had large
effects on TSH but associated with amodest increase in disease risk
(OR _1.1;Fig.1b and Supplementary Table 10). For fT4 levels, we found
a weak correlation between disease risk and fT4 levels (Pearson’s
r=-0.16, P=0.004; Fig.1c).

Inflammatory traits associated with hypothyroidism variants
To investigate the role of hypothyroidism variants in autoimmun-
ity, we tested associations between lead variants, peripheral blood
cell counts (for example, red blood cells, platelets, lymphocytes,
eosinophils and neutrophils) and 90 inflammatory proteins”. We
found that 153 of the 350 (44%) lead variants were associated with
blood cell traits, and 55 of the 343 lead variants that were available in
protein quantitative trait locus (pQTL) data were associated with at
least oneinflammatory marker at P <1.41 x 107 (0.05/350 x 101 traits;
Supplementary Tables11and 12). The inflammatory markers with the
highest number of associations with hypothyroidism lead variants
wereIL12B (14/55), and FLT3LG (9/55), in line with previous findings®.
We found 40 variants associated with both blood cell traits and inflam-
matory proteins, with evidence of trans-pQTL hotspots at several
loci. The lead variants with the highest number of associations were
the known missense variant rs3184504 (OR =1.18, p.Trp262Arg) in
SH2B3and theintronvariant rs11066320 (OR =1.14) in PTPN11, which
both associated with higher blood cell counts, and at least 30 differ-
ent markers of inflammation (including several chemokines, inter-
leukins and cytokines)”. Next, we interrogated variants associated
with lower hypothyroidismrisk in genes with known rolesinimmune
system function. We highlight two missense variants, rs149007883
in NFKBIZ (p.Gly102Ala; OR = 0.83) and rs34536443 (p.Prol104Ala;
OR=0.87)in TYK2,and two intron variants rs13181561 (OR = 0.96) in
STINGI and rs113473633 (OR = 0.90) in NKFBI. These variants were
associated with lower levels of a panel of inflammatory mediators
(Supplementary Fig. 2), including IFN-y, CXCL10 and CXCL9, which
make up key pathogenic pathwaysinvolved in autoimmune diseases
related to hypothyroidism'®".

Gene mapping

We used five methods (polygenic priority score (PoPS), variant-to-gene
(V2G), coding variants, transcriptome-wide association study (TWAS)
with colocalization and Mendelian disease enrichment) using dif-
ferent strategies (coding impact, regulatory potential and gene—
trait linkage) to prioritize genes. We found 88 coding variants in 59
genes that were either lead variants (11/88) or in high LD (r*> 0.8)
with one (Supplementary Table 13). Using PoPS, we mapped 209 of
350 (60%) hypothyroidism loci to 418 genes with a PoPS score in the
>90th distribution, while V2G mapped 344 of 350 (98%) lead vari-
ants to a single gene (Supplementary Tables 14 and 15). Using TWAS
with colocalization, we identified 272 genes within 135 of 350 (39%)
hypothyroidism risk loci that showed evidence of colocalization
between gene expression and disease risk (Supplementary Table 16).
We found that 168 of 350 (48%) hypothyroidism loci overlapped in
positions with 278 Mendelian disease genes implicated in autoim-
munity or thyroid disease. Finally, 205 hypothyroidism loci had at
least two lines of gene-mapping evidence prioritizing 259 genes
(Supplementary Table 17). Gene enrichment analysis highlighted
several genes involved in pathways related to a broad range of func-
tionsinthe immune system (for example, differentiation, activation
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Fig.3 | Progression from SCH to overt disease. Ten-year cumulative incidence

of disease progression from SCH to overt hypothyroidismin 8,114 primary

care patients from the UKB. Lines represent the cumulative incidence, and
shaded bandsindicate the 95% CI. The green line represents individuals with

low polygenic risk (<10th percentile), yellow represents intermediate polygenic
risk (10th-90th percentile), and red represents high polygenic risk (>90th
percentile). Cumulative incidence was estimated using the Aalen-Johansen
estimator, which accounts for the competing risk of death. HRs with 95% Cls were
estimated using two-sided Cox proportional hazards models, adjusted for age,
sex and four PCs. No adjustments were made for multiple comparisons.

and regulation of myeloid and lymphoid blood cells, regulation of
cell-celladhesion, regulation of inflammatory responses and cytokine
signaling; Supplementary Table 18), but only a handful genes were
enrichedinthyroid hormone metabolism (for example, GATA3, TPO,
DIO1and TG) or thyroid gland development (for example, FGF10, TG,
NKX2-1and THRA).

Converging effects of common and rare variants

Identifying rare coding variants in genes linked to hypothyroidism
can confirm putative causal genes and increase the understanding of
disease mechanisms. Using a published rare variant burden analysis
including 18,362 cases and 310,690 controls®®, we investigated the
associations of genes with atleast two lines of mapping evidence (259
genes) and hypothyroidism, using both predicted loss-of-function
variants (pLoF) and protein-altering variants (PAVs; that is, del-
eterious missense variants and pLoF) at an FDR-adjusted P < 0.05
(Supplementary Table 19). pLoF variants in TSHR, an established
monogenic cause of hypothyroidism, were associated with increased
disease risk (MAF <1%—OR =3.02, 95% Cl =2.25-4.06, P=2.5x1075).
In comparison, pLoF variants in NFATCI (MAF < 0.001%—OR =4.36,
95% C1=2.11-8.99, P= 6.7 x 107°) were associated with higher effect
compared to TSHR pLoF variants, suggesting a potential monogenic
roleinhypothyroidism. Protective rare coding variants are particularly
interesting, as they proxy effects of life-long therapeuticinhibition and
may guide therapeutic developments?. Coding variantsin four genes
prioritized from our gene-mapping strategy associated with reduced
risk of hypothyroidism—ZAP70 (PAVs, MAF < 0.001%—OR = 0.33, 95%
CI=0.19-0.57, P= 6.4 x107%), ARHGAP9 (PAVs, MAF <1%—OR = 0.76,
95% Cl=0.66-0.87, P=1.3 x10™), TYK2 (PAVs, MAF <1%—OR =0.78,
95% Cl=0.69-0.88, P=6.9 x107) and IFIHI (pLoF, MAF <1%—OR = 0.81,
95% Cl=0.75-0.86,P=2.2x10°°).

PRS and hypothyroidism prediction

We derived a PRS of 1,107,248 variants from a meta-analysis of
CHB-CID/DBDS, deCODE genetics, EstBB, FinnGen and 23andMe,
including more than 116,000 hypothyroidism cases. The PRS was
evaluated in the UKB and the Danish General Suburban Population
Study (GESUS; Methods). Inthe UKB, whichincludes 32,304 cases and
399,000 controls, we found a strong association between the PRS and
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Lifestyle characteristic ntotal Cases Controls
Healthy diet 365,889 3626 119,989
Regular exercise 374114 6388 247,689
Not smoking 407,479 9882 355,090
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Fig. 4| Stratifying hypothyroidism risk using lifestyle characteristics and
polygenicriskin the UKB. a, Risk for incident hypothyroidism according to
different lifestyle characteristics and categories. Data are presented as HR point
estimates +95% Cls, derived from two-sided Cox proportional hazards models,

HR (95%Cl)
- 0.95 (0.91-0.99)
- 0.86 (0.83-0.90)
- | 0.79 (0.75-0.84)
- | 0.71(0.68-0.74)
]
I
- | 0.83 (0.79-0.87)
] 1.00 (Ref)
| —8— 1.26 (1.17-1.35)
0T 1 T° 1
0.7 0.9 11 1.3

Reduces risk Increases risk

(]
Males
Smoker Nonsmoker
>60 ) 8 14 24 47 K o
50-60 4 |7 KE El G 0 13 R
<50 0 17 A s 2 EE
>60 ' 8 13 23 4.7 A
38 9
50-60 3 | 6 RUNI] 3 8 a3 2
<50 N o 5 47 8% °

w ~ O
asioloxe
ON
9S9qOuUOoN

>60 3 6 3
50-60 3|56 7
<50 4 7 6

>60 3 | 6 KNV 3 s ° F
8 S
50-60 N8 14 47 58 g
oo B
<50 4 |6 3 8 oS 3
| | | |
FIPTEPPIPOL P PFP L PP
Decile of PRS

adjusted for age, sex and PCs. The center of each error bar represents the mean
HR estimate. b,c, Ten-year risk of hypothyroidism, stratified by sex (b, females;
¢, males), age group, obesity status (BMI > 30), exercise regularity (yes/no),
smoking status (yes/no) and divisions within the PRS across ten deciles (Q1-10).

hypothyroidism (OR =2.01pers.d.increasein PRS, 95% CI=1.99-2.03,
P=2.3x1077%°), Risk increased markedly at the extremes of the PRS
distribution (Fig. 2a), with ORs of 4.14 (95% Cl = 3.94-4.34), 7.49 (95%
Cl=6.89-8.15) and 14.10 (95% CI = 11.44-17.38) for individuals at the
upper 10th, 1st and 0.1th percentiles, respectively, compared to the
5th decile. We found a similar effect estimate in the GESUS cohort
(OR=2.0 pers.d.increase in PRS 95% Cl =1.85-2.17, P=1.61 x 107°°).
We next evaluated the predictive ability of the PRS relative to estab-
lished risk factors®. Relative to a model with age, sex and principal
components (PCs), the PRS yielded the largest change in area under
the curve (AAUC) of 7.2% (95% Cl = 6.7-7.6), which exceeded the impact
of all other risk factors (Fig. 2b). Integrating all non-genetic risk fac-
torsinto amodel resulted ina AAUC of 0.5% (95% Cl=0.4-0.7),and a
modelincludingall risk factors (including the PRS) resultedina AAUC
of 7.8% (95% Cl =7.3-8.2; AUC = 0.70). Anti-TPO is a strong predictor
of autoimmune hypothyroidism®. In the GESUS cohort, we identified
5,452 individuals with TSH, fT4 and anti-TPO measurements that were
free of hypothyroidism at baseline. Of these, 431 were anti-TPO positive
(>100 U mI™). Amodelincluding age, sex and PCs yielded an AUC of
0.634 (95% Cl=0.589-0.679). Amodel including thyroid hormones
and anti-TPO increased AUC further to 0.849 (95% Cl = 0.810-0.889).
By adding the PRS to the latter model, risk prediction improved sig-
nificantly, increasing the AUC to 0.859 (95% Cl = 0.821-0.897, P for
difference = 0.03; Supplementary Table 20). For individuals who
were anti-TPO negative, the PRS was able to capture residual disease
risk. Anti-TPO-negative individualsin the top 10% of the PRS distribu-
tion had a nearly twofold increased risk (hazard ratio (HR) =1.97,95%
CI=1.06-3.68, P=0.033) of developing hypothyroidism compared
to those in the bottom 90% of the distribution.

Disease progressionin SCH

The clinical course of individuals with SCH is difficult to predict’. We
identified 8,114 individuals from UKB primary care data with biochemi-
cally defined SCH and investigated whether the PRS could identify
individuals who are more or less likely to progress to overt disease.
Compared to individuals with intermediate polygenic risk (>10th to
90th percentiles), individuals with high polygenic risk (>90th per-
centile) had an HR of 1.43 (95% CI = 1.37-1.61) for progressing to overt
hypothyroidism, while low risk individuals (>10th percentile) had an HR
0f 0.76 (95% Cl = 0.65-0.88). On the absolute scale, thisrisk translated to
a10.2% higher 10-year conversionrate for high-risk individuals (39.3%,
95% Cl=35.9-42.7%) and a 6.6% lower 10-year conversion rate for low
riskindividuals (22.5%, 95% Cl =19.6-25.4%) compared to those in the
intermediate risk group (29.1%, 95% Cl = 28.0-30.3%; Fig. 3).

Disease risk stratified by lifestyle factors and genetic risk

We investigated the relationship between hypothyroidism risk and
lifestyle categories using a four-point scoring system based on body
massindex (BMI), exercise, smoking and dietary habits. We found that
healthy lifestyle characteristics were associated with areduced risk of
hypothyroidism. As expected, individuals without obesity had lower
risk (HR =0.71,95% Cl = 0.68-0.74) compared to obese individuals®.
Contrary to previous findings, we found that nonsmokers had alower
risk (HR = 0.79,95% Cl = 0.75-0.84) than did current smokers*. Overall,
adherence to a healthy lifestyle corresponded to an HR of 0.83 (95%
Cl=0.79-0.87), while anunhealthy lifestyle corresponded to an HR of
1.26 (95% C1 =1.16-1.35; Fig. 4a and Supplementary Table 21). Finally, we
exploredtheinterplay between the PRS and lifestyle factors to identify
individuals at extreme disease risk (Fig. 4b,c). The 10-year risk was
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Fig. 5| Phenome-wide associations between the hypothyroidism PRS and
cancer and cardiometabolic phenotypes in the UKB. The figure shows
associations between the hypothyroidism PRS and 50 binary disease outcomes.
ORreflect the change in disease risk per1s.d. increase in the PRS, estimated
using logistic regression models adjusted for age, sex and four PCs. P-values

were calculated using two-sided Wald tests. Each colored triangle indicates a
significant association after Bonferroni correction (P < 0.001, that is, 0.05/50).
Upward-pointing triangles indicate increased risk and downward-pointing
triangles indicate decreased risk.

greater for women, with the highest risk observed along the PRS axis.
Risk increased with accumulating risk factors and higher polygenic
risk, where the highest 10-year risk (50%) was observed for women
above the age of 60 years, with a PRS in the >90th percentile of the
distribution, who were obese, smokers and did not exercise regularly.

Associations with cancer and cardiometabolic phenotypes
Weinvestigated the relationship between the hypothyroidism PRS and
50 phenotypes, including common malignancies and cardiometabolic
traits in UKB. We found that a higher PRS was associated with a lower
risk of skin (OR=0.92 per s.d. increasein PRS, P=7.7 x107¥), prostate
(OR=0.94 pers.d.increase in PRS, P=2.2 x107°) and breast cancer
(OR=0.95 pers.d. increase in PRS, P= 6.0 x 107°). We also found that
a higher PRS was associated with an increased risk of several cardio-
metabolic diseases, including CAD (OR =1.06 pers.d.increasein PRS,
P=1.1x10"**), chronic kidney disease (OR =1.06 per s.d. increase in
PRS, P=7.7 x107) and type 2 diabetes (OR =1.05 per s.d. increase in
PRS, P=1.5x107"; Fig. 5 and Supplementary Table 22).

Discussion

In this study, we present a comprehensive genetic evaluation of thy-
roid hormone deficiency through GWAS meta-analyses of hypothy-
roidism and thyroid hormones. Our findings confirm and extend the
understanding of the polygenic and complex nature of hypothyroid-
ism, linking 350 genetic loci to this disease. By linking genetic loci to
immune-related cells and circulating inflammation markers, we char-
acterized potential mediators of disease. Using gene-prioritization
methods, weidentified putative genes with known roles in autoimmun-
ity, whichaligns with the main etiology iniodine-sufficient areas of the
world®. We showed that using a hypothyroidism PRS could potentially
improve the diagnostic accuracy in thyroid hormone deficiency, a
condition fraught with diagnostic challenges.

We highlight associations with inflammatory markers, which
may provide insight into inflammatory pathogenic mechanisms?.
We emphasize four risk-mitigating variants (missense—rs149007883
in NFKBIZ, rs34536443 in TYK2; intronic—rs13181561 in STINGI,
rs113473633 in NKFBI) in genes encoding critical regulators of immune
system function?”>°. These variants were associated with lower levels

of inflammatory mediators, including IFN-y, CXCL10 and CXCL9, that
make up a crucial pathway inthe activation and recruitment ofimmune
cells'". This is proposed to be a central pathogenic pathway in many
autoimmune diseases, including vitiligo, psoriasis and psoriatic
arthritis, which are closely linked to hypothyroidism. This aligns with
the increased expression of IFN-y in the serum and thyroid tissue of
patients with autoimmune hypothyroidism, which is proposed to
mediate thyroid hormone deficiency through lymphocyte infiltration
and the exposure of thyrocytes to proinflammatory cytokines**'~,
Furtherinvestigationinto key signaling pathways, such as those high-
lighted, may be critical for understanding the mechanisms underlying
disease pathogenesis™.

Human genetic evidence has been acknowledged as animportant
predictor of success in drug development programs*. We observed
converging evidence linking both common and rare PAVsin TYK2 and
ZAP70withreducedrisk of hypothyroidism. Although the therapeutic
potential of inhibiting TYK2 has been used in multiple autoimmune
diseases, its potential in mitigating hypothyroidism risk remains largely
unexplored®?¢, This could suggest astrategic direction for drug repur-
posing. Similarly, inhibiting the protein product of ZAP70, whichis also
essential for T-cell signaling, has been shown to have anti-inflammatory
properties in vitro and to be effective in treating psoriasis in mice”.
Given its similar pathway and risk reduction profile, ZAP70 has also
emerged as a candidate for further researchinthe context of managing
autoimmune diseases.

Due to the highly polygenic nature of hypothyroidism, we devel-
oped aPRS from more than 116,000 hypothyroidism cases to address
diagnostic challenges in thyroid hormone deficiency. An estimated
0.5% of individuals with undiagnosed hypothyroidism may reflect
individuals who do not seek medical attention for gradually develop-
ing nonspecific symptoms. The use of a PRS to identify individuals at
greater risk could reduce the burden of undiagnosed thyroid failure.
Specifically, inthe top1% and 0.1% of the PRS distribution, individuals
exhibited amore than 7-fold and 14-fold risk, respectively, when com-
pared to the middle decile. These risks are substantially greater than
those observed for other complex traits*® and for known monogenic
causes of hypothyroidism. Using two different validation cohorts,
we were able to show that the PRS outperformed an array of clinical
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hypothyroidism risk factors but alsoimproved risk prediction beyond
that of thyroid hormones and anti-TPO.

The prevalence of thyroid hormone testing in clinical practice
inevitably leads to a substantial number of patients being diagnosed
and treated for SCH®. Early treatment is beneficial for preventing the
progressionto overt hypothyroidism and mitigating the risk of associ-
ated cardiovascular morbidity*. However, the clinical course of SCH
to overt disease is unpredictable and relies on vague and nonspecific
symptoms. We demonstrated that the PRS could identify individuals
athigh and low risk of progression from SCH to overt disease. If geno-
typingbecomes astandard of care, PRS may guide cliniciansin select-
ing patients who are more or less likely to progress from one disease
state to another. Consequently, the clinical approach could shift to a
genotype-guided biochemical assessment, rather than relying solely
on nonspecific symptoms to guide testing. Also, we were able to show
that by combining the PRS with easily accessible lifestyle factors, we
couldidentify individuals with a10-year risk of 50%. These accumulated
risk factors are comparable to conventional risk factors investigated
in The Wickham Study, where women with elevated TSH (>6 mU |™)
and positive anti-TPO had an annual progression rate of 4.3%"°. Col-
lectively, our findings underscore the potential of using genetic risk
stratification to guide personalized risk assessment and prevention
strategies for hypothyroidism.

Numerous observational studies have linked hypothyroidism
to increased cardiovascular morbidity**. Using a phenome-wide
association study approach, we found that the hypothyroidism PRS
associated with arange of cardiometabolic diseases, atherosclerotic
disease, chronickidney disease and type 2 diabetes. Thisimplies the
need for amore focused approach to monitoring cardiovascular risk
factors and diseases in individuals with hypothyroidism. Further-
more, we found significant associations between genetically pre-
dicted higher hypothyroidismrisk and lower risk of breast, prostate
and skin cancer, supporting the findings reported by several observa-
tional studies***. The association between the PRS and breast cancer
aligns with that of arecent GWAS of thyroid function™. Interestingly,
we found no association between hypothyroidism risk and thyroid
cancer, despite previous GWASs showing an association between
higher TSH levels and lower risk of thyroid cancer'®. Whether the
observed associations with specific cancers reflect shared path-
ways, where augmented immunosurveillance leads to both disease
and, conversely, mitigates the risk of specific cancers, will require
additional investigation.

Thisstudy has several limitations. First, the analysis was limited to
individuals of European ancestry, which restricts the generalizability
of our findings to other ancestries. Second, we relied on data from
cohorts, where the phenotype definition was based on self-reported
diagnoses, such asthose from23andMe, or on summary statistics with
predefined phenotypes, which limited our ability to further refine
the phenotype definitions. This may have introduced some degree
of heterogeneity.

In conclusion, we found 350 genomic risk locifor hypothyroidism,
underscoring the highly polygenic nature of this disease. Leveraging
this insight, we developed a PRS that could identify individuals at
high risk of developing disease in the general population and also
predict the clinical course of subclinical disease. Our findings rep-
resent a step forward in the genetic understanding and clinical man-
agement of hypothyroidism, broadening the perspective for use in
personalized medicine.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Ethics statement

Thisresearch complied with all ethical regulations and was conducted
in accordance with the principles of the Declaration of Helsinki. All
contributing studies received approval from the appropriate regional
or institutional research ethics committees. For most cohorts, par-
ticipants provided written informed consent before inclusion. For
CHB participants, written informed consent was not obtained, but
in accordance with Danish legislation, participants were informed
about the use of residual biological material for research purposes
and provided with the option to opt out. Details of ethics approvals
and consent procedures for individual cohorts are provided in the
Supplementary Note.

Cohorts, association testing and meta-analysis

We used four cohorts for discovery (CHB-CID/DBDS, UKB, FinnGen
Freeze 10 and 23andMe). EstBB and deCODE genetics were used for
validation. Cases were defined using International Classification of
Diseases (ICD)-10 codes E03.8/E03.9/E06.3, ICD-9 codes 244.8/244.9
or claimed prescription of thyroid hormone substitution therapy
using Anatomical Therapeutic Chemical Classification code HO3A.
In UKB, in addition to electronic health registries, we included indi-
viduals self-reporting hypothyroidism or use of thyroid hormone
substitution as cases. Individuals with hyperthyroidism (E05(0-9))
were excluded and we otherwise used thyroid disease-free controls,
excludingindividuals with the following ICD-10 codes: EO(1-2), EO3(0-
5)and E0(4-7).In23andMe, cases were defined based on self-reported
diagnoses of hypothyroidism, elevated thyroid-stimulating hormone
or taking levothyroxine. Controls were individuals who reported no
other thyroid-related disorders*. Details on genotyping, imputa-
tion and quality control are provided in the Supplementary Note and
Supplementary Table 23. Using CHB-CID/DBDS, UKB primary care data
(the subset allowed for non-COVID research) and previously published
data, we meta-analyzed GWASs for TSH and fT4. We used the first non-
missing sample value that was within the reference range. The results of
individual thyroid function tests were inverse normalized. Individuals
who were either on thyroid drugs or had undergone thyroid surgery
before the thyroid function tests were excluded. In the UKB primary
care data, thyroid hormone measurements were captured using Read2
and Read3 codes, while drug and operation codes were recorded using
dm+d and OPCS-4 codes, respectively. Inthe CHB-DBDS, thyroid hor-
mones were captured using NPU codes, drugs using ATC codes and
surgical procedures using procedure codes (Supplementary Table 24).
Each dataset underwent initial quality control (QC), imputation,
post-imputation QC and logistic regression models were used for the
hypothyroidism GWAS and linear regression for the thyroid hormones.
All models were adjusted for age, sex and PCs. In postregression QC,
we removed variants with an imputation quality score <0.6, minor
allele count (MAC) < 6 or absolute S or s.e.>10. We meta-analyzed data-
sets using METAL*, using the fixed-effect inverse variance weighted
method. To evaluate genomic inflation, we calculated the genomic
inflation factor (Ac) and the LDSC-intercept using LD scores calculated
inthe HapMap3 CEU population (Supplementary Table 1). We observed
signs of inflation in FinnGenyo.cwas (A =1.40, LDSC-intercept =1.21),
CHB-CID/DBDS g1y cwas (Aoc = 1.35, LDSC-intercept = 1.19) and UKBrgy.cyas
(Agc=1.24, LDSC-intercept =1.1) and accounted for potential bias by
correcting the GWAS s.e. by the square root of the LDSC-intercept®.
No additional genomic control was applied. Liftover between genetic
builds was conducted using the R package MungeSumstats*®

Risk locus definition

Toidentifyindependent SNPs withineachrisk locus, we used LD clump-
ing from PLINK (v1.9)*. We applied a 1-Mb window (--clump kb 1000)
and low LD threshold (--* 0.1) to identify independently significant
SNPs. Lead SNPs were independent SNPs with the lowest Pvalue,and a

locus was defined asa +1-Mb region around each lead SNP. We queried
the GWAS-catalog*® (on19 April 2024) for known phenotypic associa-
tionswith either thelead SNP or variants located +1 Mb of the lead SNP.
We considered arisk locus new if no genome-wide significant associa-
tion (P <5 x107®) with hypothyroidism or the use of thyroid hormone
replacement therapy had been reported previously.

Heritability

Variance in hypothyroidism risk and levels of fT4 and TSH explained
by common SNPs were estimated using LD-adjusted kinships (LDAK)
SumHer BLD-LDAK model*. We used the precomputed tagging files
internal to SumHer, and for hypothyroidism, assessed the heritability
onaliability scale (correcting for sample and population prevalence).

Association with blood cell traits and inflammatory proteins in
the UKB

Investigating the genetic imprint on the immunophenotype of hypo-
thyroidism may help identify key functions and interactions involvedin
hypothyroidismrisk. First, we assessed 10 blood cell counts, including
basophil, eosinophil, neutrophil, monocyte, platelet, reticulocyte,
highlight-scattered reticulocyte, lymphocyte, red and white blood cell
counts, along with C-reactive protein levels. We obtained these meas-
urements from Europeansin the UKB and subsequently rank-inversely
normalized each trait. Next, we tested the association between lead
variants and blood cell traits using linear regression adjusted for age,
sex and four PCs. Additionally, we used proteomics data from the UKB
PharmaProteomics Project™. We assessed the effect of lead variants on
90 inflammatory proteins, which were identified asimmune-mediated
drivers”. We set the threshold for multiple testing at P=1.41x107°
(0.05/101 traits x 350 variants).

Gene mapping
To identify and prioritize candidate genes at each locus (+1 Mb of the
lead variant), we used the following five methods:

1. Codingvariants—we investigated whether lead variants or
proxy variants (> > 0.8) were annotated as coding variants
using the variant effect predictor®".

2. V2G-we used the V2G algorithm provided by Open Targets
Genetics (https://genetics.opentargets.org/), which scores and
assigns each variant to a gene based on aggregated evidence
from splice, expression, and protein quantitative trait loci
(sQTL, eQTL and pQTL, respectively), chromatin interactions,
insilico prediction and distance to transcript sites.

3. PoPS—we used a similarity-based gene-prioritization tool inte-
grating GWAS summary data, gene expression data, biological
pathways data and protein-protein interaction data from over
50,000 features™. The analysis involved the following three
steps: (1) computing gene-level association data and gene-gene
correlations using MAGMA® with LD estimated from 1000
Genomes European data, (2) running enrichment analysis for
gene features listed at https://github.com/FinucaneLab/
gene_features using MAGMA and (3) calculating PoPS score for
each gene by fitting a joint model for enrichment of all result-
ing features. Genes with a PoPS score in the top 10% of the
distribution were prioritized as putative causal genes.

4. Mendelian disease enrichment—we used MendelVar (https://
mendelvar.mrcieu.ac.uk/) to detect intersections between
hypothyroidism loci and Mendelian disease genes, providing
valuable clues for gene prioritization. We selected variants
located within 1 Mb of each lead variant and used the 1000
Genomes Europeans as a reference panel. Genes were anno-
tated if they were identified with the following keywords:
‘thyroid’, ‘immune’ or immuno’ in OMIM disease descriptions, or
Human Phenotype Ontology/Disease Ontology descriptions.
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5. TWAS with colocalization—using FUSION**, we performed
TWASs using hypothyroidism summary data to investigate
the relationship between the risk loci and effects on gene
expression in GTEx v8 datasets on hypothalamus, pituitary
gland, thyroid, spleen, whole blood and pancreas. We used the
internal colocalization function, which uses COLOC, to detect
shared causal variants between hypothyroidism risk and gene
expression®, We only considered eQTLs associated with hypo-
thyroidism at P <2.97 x 107 (0.05/16,841 genes tested). Finally,
we report the posterior probability of colocalized associations
(PP4), which show evidence of a shared causal variant found
in both GWAS and functional associations. If a hypothyroid-
ism risk locus (sentinel variant £1 Mb) harbored a gene with
PP4 > 0.75, we considered this a mediator of hypothyroidism
and evidence of gene mapping.

Genes with two or more lines of evidence for gene mapping were
investigated in a Gene Ontology enrichment analysis using the R
package clusterProfiler*.

Rare protein-truncating variants in prioritized
hypothyroidism genes

The convergenceindisease risk between common and rare truncating
variants can pinpoint causal genes. This can offer insight into disease
pathophysiology and potentially guide drug discovery or repurposing.
Using published summary statistics froma whole-exome sequencing
burden analysis of hypothyroidism?’, we compared the convergence
between common andrare variant effects ingenes that had at least two
lines of mapping evidence at FDR < 0.05.

PRS derivation and validation

We generated the hypothyroidism PRS from a meta-analysis of
CHB-CID/DBDS, FinnGen, EstBB, deCODE genetics and 23andMe,
comprising 116,470 cases and 1,164,733 controls. PRS weights were
calculated using PRS-CS” with an LD reference panel from the UKB. We
validated the PRS in UKB, where individuals with ICD-10 EO5(0-9) were
removed to mitigate enrichment for participants with hyperthyroid-
ism amongst hypothyroidism cases. In UKB, associations with hypo-
thyroidism were first reported on a continuous scale. Next, we tested
the association by deciles, and at the extremes of the PRS (99th and
99.9th percentiles) using logistic regression models adjusted for age,
sex and four PCs. We assessed the predictive performance of the PRS
relative to known clinical risk factors (for example, BMI and selected
autoimmune diseases; Supplementary Table 25) by calculating the
AUC using the R package pROC*®. For each risk factor, the change in
the AUC (AAUC) was compared to that of a model consisting of age,
sex and four PCs. We evaluated prevalent risk factors (that is, events
before the baseline date) and tested the predictive performance for
incident hypothyroidism cases (events after the baseline date). Sig-
nificant differences between the prediction models were tested using
DeLong’s test for correlated ROC curves. The PRS was also evaluated
inthe Danish General Suburban Population Study (GESUS). Thiswas a
population-based cohort study in which 21,205 adults were recruited
between 2010 and 2013. At baseline, participants underwent physical
examination, completed a questionnaire and had blood samples drawn.
Individuals with ICD-10 EO5(0-9) were excluded from the analysis. First,
we evaluated the PRS association with hypothyroidism on alinear basis
and then evaluated the predictive performance of the PRS relative to
thyroid hormones and anti-TPO positivity. Anti-TPO was measured on
Kryptor assays. Values greater than 60 U ml™ are considered positive
in Denmark®, and we chose a more conservative cutoff of 100 U ml™*
for anti-TPO positivity to avoid misclassification of individuals with
autoimmunity®’. We compared the AUCs of models including sex, age
and four PCs with stepwise addition of thyroid hormones, anti-TPO
positivity and the PRS for hypothyroidism.

Disease progression in SCH patients

In UKB primary care data (n -~ 245,000), we defined individuals with
SCHas having TSH levels greater than4 mU ™ and fT4 levels between
8and14.5 pmol I using Read2 and Read3 codes. We only considered
biochemical measurements available after the date of enrollment
in the UKB to avoid immortal time bias. Before the date for SCH, we
excluded individuals with a history of thyroid cancer, hyperthyroid-
ism and hypothyroidism using ICD-10, Read2 and Read3 codes and
individuals taking thyroid hormone substitution asindicated by dm+d
codes (Supplementary Table 26). The PRS was categorized into the
following three groups: (1) <10th percentile, representing low-risk
individuals; (2) >10th and <90th percentiles, representing the general
population and (3) >90th percentile, representing high-risk individu-
als. We used Cox regression models to compute HRs for risk of progres-
sionto overt hypothyroidism. Individual follow-up ended in the case
ofaneventsampled following the date of SCH from electronic health
records (defined by ICD-10 E03.8/E03.9/E06.3 or Read2/Read3 codes
indicative of autoimmune myxedema/Hashimoto’s thyroiditis), death
or end of follow-up, whichever occurred first. Models were adjusted
for age, sex and four PCs. Absolute risks were calculated using the
Aalen-Johansen estimator, which takes the competing risk of death
intoaccount.

Relationship between polygenic risk and lifestyle

Lifestyle factors such as obesity are part of the phenotypic spectrum of
hypothyroidism but can also increase the risk of hypothyroidism***.
Sinceinherited risk canbe perceived as deterministic, we investigated
whether adherenceto ahealthylifestyle could offset genetic risk. Using
UKB questionnaire data, we created a lifestyle scoring system with
points awarded for healthy characteristics®:

1. Noobesity (BMI<30kgm™)

2. Regular exercise (=15 metabolic equivalent task hours per week)
3. Nonsmokers

4. Healthy diet, meeting at least three criteria:

>3 fruit servings per day.

. =12 teaspoons of vegetables per day.
>2 weekly servings of oily fish.

. <1weekly serving of processed meat.
<2 weekly servings of red meat.

caocgow

Ahealthy lifestyle ranged from 3-4 points, intermediate 2 points
and unhealthy 0-1points. We analyzed the associations between life-
style factors and hypothyroidism using Cox regression, adjusting
for age at inclusion, sex and four PCs using the R package survival®.
We also constructed arisk chart, displaying 10-year absolute risk of
hypothyroidism for different combinations of age, sex, lifestyle char-
acteristics and PRS deciles.

PRS correlation with selected malignancies, cardiometabolic
and neuropsychiatric traits

We conducted a phenome-wide association study between the hypo-
thyroidism PRS and 50 common diseases (including 12 malignant, 20
cardiovascular, 13 metabolic and 4 neuropsychiatric traits). We defined
phenotypesinthe UKB using a combination of ICD-9 and ICD-10 codes,
cause of death registry and Office of Population Censuses and Surveys
(OPCS-4; Supplementary Table 27). We tested the association between
the PRS and individual phenotypes using logistic regression adjusted
forage, sexand four PCs. We restricted analyses of cervical and breast
cancer to females and prostate cancer to males. We set the threshold
for multiple testing at P < 0.001 (0.05/50 traits).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

GWAS summary statistics from the meta-analysis of hypothyroidism
(excluding 23andMe), TSH and T4 are publicly available at the GWAS
Catalog under accession IDs GCST90572791 (https://ftp.ebi.ac.uk/pub/
databases/gwas/summary_statistics/GCST90572001-GCST90573000/
GCST90572791/), GCST90572789 (https://ftp.ebi.ac.uk/pub/data-
bases/gwas/summary_statistics/GCST90572001-GCST90573000/
GCST90572789/) and GCST90572790 (https://ftp.ebi.ac.uk/pub/data-
bases/gwas/summary_statistics/GCST90572001-GCST90573000/
GCST90572790/). The corresponding hypothyroidism PRS (exclud-
ing 23andMe) is available at the PGS Catalog under accession ID
PGS005218 (https://www.pgscatalog.org/publication/PGP000733/).
The full GWAS summary statistics for the 23andMe discovery data-
set will be made available through 23andMe to qualified researchers
under an agreement with 23andMe that protects the privacy of the
23andMe participants. Please visit https://research.23andme.com/
collaborate/#dataset-access/. UKBindividual-level dataare accessible
uponapplication viathe UKB (https://www.ukbiobank.ac.uk/). FinnGen
summary statistics are publicly available following registration at:
https://www.finngen.fi/en/access_results. Data from the UKB Pharma
Proteomics Project (UKB-PPP) are available through Synapse (https://
www.synapse.org/#!Synapse:syn51365301). GTEx v8 eQTL datacanbe
accessed at: https://gtexportal.org/home/datasets. Individual-level
data are not publicly available due to restrictions imposed by partici-
pant consent and local ethics review boards.

Code availability
The following software and packages were used for data analyses:

PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/)

PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/)

METAL v.2011-03-25 (https://genome.sph.umich.edu/wiki/
METAL Documentation)

LDAK v.2023-07-01 (https://dougspeed.com/)

PoPS v.0.2 (https://github.com/Finucanelab/pops)

FUSIONv.2022/02/01 (http://gusevlab.org/projects/fusion/)

COLOC v.5.2.3 (https://cran.r-project.org/web/packages/coloc/
index.html)

LD Score Regression v.1.0.1 (https://github.com/bulik/ldsc)

PRS-CSv.2021-06-04 (https://github.com/getian107/PRScs)

REGENIE v.2.0.1 (https://rgcgithub.github.io/regenie/)

Rv.4.2.2 (https://www.r-project.org/)

MungeSumstats v.1.8.0 (https://www.bioconductor.org/packages/
release/bioc/html/MungeSumstats.html)

pROCV.1.18.5 (https://www.rdocumentation.org/packages/pROC/
versions/1.18.5)

clusterProfilerv.4.8.2 (https://bioconductor.org/packages/release/
bioc/html/clusterProfiler.html)

survivalv.3.6.4 (https://cran.r-project.org/web/packages/survival/
index.html)

ggplot2v.3.5.2 (https://cran.r-project.org/web/packages/ggplot2/
index.html)

OpenTargets Variant2Gene v.1.1 (https://genetics-docs.opentargets.
org/our-approach/data-pipeline)

Variant Effect Predictor v.111 (https://useast.ensembl.org/Tools/VEP).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
D A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
' Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

% A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

g For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

D For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

D For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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& Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used to collect this data.

Data analysis The following softwares and packages were used for data analyses:
PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/)
PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/)
METAL v2011-03-25 (https://genome.sph.umich.edu/wiki/METAL_Documentation)
LDAK v2023-07-01 (https://dougspeed.com/)
PoPS v0.2 (https:/github.com/Finucanelab/pops)
FUSION v2022/02/01 (http://gusevlab.org/projects/fusion/)
COLOC v5.2.3 (https://cran.r-project.org/web/packages/coloc/index.html)
LD Score Regression vl .0.1 (https://github.com/bulik/Idsc)
PRS-CS v2021-06-04 (https://github.com/getian107 /PRScs)
REGENIE v2.0.l (https://rgcgithub.github.io/regenie/)
R v4.2.2 (https://www.r-project.org/)
MungeSumstats v1.8.0 (https://www.bioconductor.org/packages/release/bioc/html/MungeSumstats.html)
pROC (https://www.rdocumentation.org/packages/pROC/versions/1.18.5)
clusterProfiler v3.21 (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html)
survival v3.6.4 (https://cran.r-project.org/web/packages/survival/index.html)
ggplot2 (https://cran.r-project.org/web/packages/ggplot2/index.html)
OpenTargets Variant2Gene v1.1 (https://genetics-docs.opentargets.org/our-approach/data-pipeline)
MendelVar v05/Dec/2023 (https://mendelvar.mrcieu.ac.uk/)
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Variant Effect Predictor v111 (https://useast.ensembl.org/Tools/VEP)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

GWAS summary statistics from the meta-analysis of hypothyroidism (excluding 23andMe), TSH and T4 are publicly available at the GWAS Catalog under accession
IDs: GCST90572791, GCST90572789 and GCST90572790 (https://www.ebi.ac.uk/gwas/). The corresponding hypothyroidism polygenic risk score (excluding
23andMe) is available at the PGS Catalog under accession ID: PGS005218 (https://www.pgscatalog.org/).The full GWAS summary statistics for the 23andMe
discovery data set will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe
participants. Please visit https://research.23andme.com/collaborate/#dataset-access/. UK Biobank individual-level data are accessible upon application via the UK
Biobank (https://www.ukbiobank.ac.uk/). FinnGen summary statistics are publicly available following registration at: https://www.finngen.fi/en/access_results. Data
from the UK Biobank Pharma Proteomics Project (UKB-PPP) are available through Synapse (https://www.synapse.org/#!Synapse:syn51365301). GTEx v8 eQTL data
can be accessed at: https://gtexportal.org/home/datasets. Individual-level data are not publicly available due to restrictions imposed by participant consent and
local ethics review boards.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The manuscript uses the term sex when referring to biological attribute, and was determined using genetic sex where
available. Sex was included as a covariate in all multivariate analyses.

Reporting on race, ethnicity, or ' The included studies were exclusively individuals of European ancestry. By reducing genetic variability and confounding

other socially relevant factors that could arise from population stratification, we aimed to enhance our ability to detect true genetic associations

groupings with the phenotypes of interest. Our study's focus on Europeans is not meant to diminish the genetic diversity and
significance of other populations but was a methodological decision based on the specific aims and context of our research.

Population characteristics Population characteristics include age, sex, ancestry, and genetic principal components for all individuals. Details on
population characteristics are provided in Supplementary Tables 1 and 23, in the Online Methods section, and in the
Supplementary Note.

Recruitment Recruitment information is provided in Supplementary Note.

Ethics oversight All human research was approved within each contributing study by the relevant institutional review board (CHB-CID/DBDS:
National Committee on Health Research Ethics; deCODE: National Bioethics Committee; UKB: Northwest Multicenter
Research Ethics Committee; FinnGen: The Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa;
Estonian Biobank: Estonian Committee on Bioethics and Human Research; 23andMe, Inc: Salus IRB (formerly Ethical and
Independent Review Services) and the independent and external AAHRPP-accredited Institutional Review Board (IRB); GESUS:
Ethics Committee for Health Research for Region Zealand) and conducted according to the Declaration of Helsinki. All
participants provided written informed consent, except for CHB-CID, where patients were informed about the opt-out
possibility of having their biological specimens excluded from use in research. Since 2004, a national Register on Tissue
Application (Vaevsanvendelsesregistret) lists all individuals who have chosen to opt out and whose samples cannot be used
for research purposes. Before initiating this study, individuals listed in the Register on Tissue Application were excluded.
Additional information is provided in Supplementary Note.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No formal statistical sample size calculations were performed prior to the study. Instead, we included all available individuals from each
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Sample size contributing cohort who met the inclusion criteria and passed quality control procedures. This approach maximizes statistical power for
genetic discovery. The final sample sizes are comparable to or larger than those used in previous well-powered genome-wide association
studies (GWAS) for related traits. Detailed information on sample inclusion and exclusion is provided in the Supplementary Note.

Data exclusions  Within each study, samples were excluded on the basis of sample level quality control and variant level quality control. These procedures
ensure the removal of poor quality genotypes, SNPs and samples. The quality filtering steps are provided in Supplementary Table 23 and in
Supplementary Note.

Replication All GWAS analyses were conducted independently within each cohort and subsequently meta-analyzed. The primary findings were replicated
in an independent meta-analysis including non-overlapping cohorts. Prior to replication, we performed power calculations to determine our
ability to detect novel hypothyroidism-associated variants at various minor allele frequencies (MAFs) and odds ratios (ORs), using a
Bonferroni-corrected significance threshold of a = 0.00028 (0.05/179 replication attempts). As shown in Supplementary Fig. 1, we had >80%
power to detect variants with OR >1.08 and MAF >0.02. Details of replication are documented in the manuscript and Supplementary Fig. 1
and Supplementary Table 8, 9, and 10.

Randomization  Randomization was not applicable to this study because it is an observational genetic association study based on pre-existing biobank data.
Participants were not assigned to groups or interventions; instead, genetic and phenotypic data were analyzed as collected. The goal was to
identify naturally occurring genetic variants associated with hypothyroidism and related traits, which does not require or permit random
allocation.

Blinding Blinding was not relevant to this study because it was an observational analysis of existing genotype and phenotype data from biobanks. No
interventions were administered, and no subjective assessments were performed by investigators. Genotyping, quality control, and
association analyses were conducted using automated pipelines without investigator influence on group assignment or outcome assessment.
Therefore, the risk of bias typically mitigated by blinding was not present in this study design.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines IX D Flow cytometry
Palaeontology and archaeology IX D MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-authentication-procedures for-each-seed-stock-used-or-novel-genotype-generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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