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De novo and inherited dominant  
variants in U4 and U6 snRNA genes cause 
retinitis pigmentosa

 

Small nuclear RNAs (snRNAs) combine with specific proteins to generate 
small nuclear ribonucleoproteins (snRNPs), the building blocks of the 
spliceosome. U4 snRNA forms a duplex with U6 and, together with U5, 
contributes to the tri-snRNP spliceosomal complex. Variants in RNU4-2, 
which encodes U4, have recently been implicated in neurodevelopmental 
disorders. Here we show that heterozygous inherited and de novo variants in 
RNU4-2 and in four RNU6 paralogs (RNU6-1, RNU6-2, RNU6-8 and RNU6-9),  
which encode U6, recur in individuals with nonsyndromic retinitis 
pigmentosa (RP), a genetic disorder causing progressive blindness.  
These variants cluster within the three-way junction of the U4/U6 duplex, 
a site that interacts with tri-snRNP splicing factors also known to cause RP 
(PRPF3, PRPF8, PRPF31), and seem to affect snRNP biogenesis. Based on 
our cohort, deleterious variants in RNU4-2 and RNU6 paralogs may explain 
up to ~1.4% of otherwise undiagnosed RP cases. This study highlights the 
contribution of noncoding RNA genes to Mendelian disease and reveals 
pleiotropy in RNU4-2, where distinct variants underlie neurodevelopmental 
disorder and retinal degeneration.

While approximately2 million individuals worldwide are affected 
by retinitis pigmentosa (RP), it is estimated that 30% to 50% remain 
without a conclusive genetic diagnosis, even after exome or genome 
sequencing is performed1–4. This reflects high genetic heterogeneity, 
limited testing access and as-yet-unidentified disease genes, which 
in general carry pathogenic variants that are exceedingly rare in the 
control population5–7.

Noncoding RNAs are essential to many cellular processes, includ-
ing pre-messenger RNA (pre-mRNA) splicing, which is ensured by the 
spliceosome, a macromolecular complex that in its major form is com-
posed of five small nuclear RNAs (snRNAs), U1, U2, U4, U5 and U6, and 
~300 proteins8. Each snRNA associates with a specific set of proteins to 
form a small nuclear ribonucleoprotein (snRNP), the functional unit of 
the spliceosome. Variants in RNU4-2, one of the two paralogs encoding 
U4, have been linked to a common neurodevelopmental disorder (NDD) 
known as ReNU syndrome (OMIM: 620851). These variants account for 
up to 0.4% of all NDD cases and lead to systematic misrecognition of 

donor splice sites by the spliceosome9–11. Likewise, RNU2-2 and RNU5B-1 
have been recently associated with NDDs11–13.

Several spliceosomal proteins are also known to be involved in 
a wide range of hereditary diseases, including RP, as first noted by 
McKie and colleagues14. Specifically, of the ~100 genes that are cur-
rently associated with nonsyndromic RP5, the tri-snRNP splicing fac-
tor genes PRPF3, PRPF4, PRPF8, PRPF31 and SNRNP200 underlie the 
autosomal dominant form of the condition (adRP), with variants in 
PRPF31 accounting for 10–20% of all adRP cases3,15.

Here, we identify both inherited and de novo variants in RNU4-2 
and four paralogs of RNU6, encoding the U6 snRNA, as the molecular 
cause of adRP in 153 individuals across 67 families. We demonstrate 
that all identified variants cluster within the U4/U6 duplex, in a region 
that binds directly to PRPF31 and PRPF3 and indirectly to PRPF6 and 
PRPF816,17. Furthermore, we show that such variants increase the associ-
ation of U4 and U6 snRNAs with the splicing factors SART3 and PRPF31, 
suggesting impaired snRNP biogenesis.
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of 20.4% in RNU4-1 versus 1.2% in RNU4-2; gnomAD v.4.1) (Fig. 1b,c and 
Supplementary Fig. 4), as already noted previously9.

Variants in U6 paralogues also cause RP
In the di-snRNP and the tri-snRNP complexes of the major spliceo-
some, U4 binds to U6 to form the U4/U6 RNA duplex. We therefore 
hypothesized that variants in U6 could also underlie adRP and 
extended our analysis to all five identical paralogous genes produc-
ing the U6 snRNA, scattered across the genome (RNU6-1, RNU6-2, 
RNU6-7, RNU6-8 and RNU6-9; Supplementary Table 4). A screening 
of these genes by Sanger sequencing in our initial cohort of 1,891 RP 
families revealed 94 DNA changes in total. The n.55_56insG inser-
tion recurred at the exact relative position in RNU6-2, RNU6-8 and 
RNU6-9 (four families per gene, 34 cases in total; Supplementary Fig. 1 
and Supplementary Tables 1 and 2) and was significantly enriched 
in cases versus controls, who were all negative for this change 
(Bonferroni-corrected P value = 2.6 × 10−18 (gnomAD) and 5.1 × 10−27 
(All of Us); Supplementary Table 3). Since this variant was identi-
cal in three U6 genes, we reasoned that the specific DNA change, 
rather than any particular paralog, was relevant to the etiology of 
the disease. We therefore repeated our analysis by collapsing the 
five RNU6 genes and detected 66 unique variants. Another inser-
tion, n.56_57insG, was identified in two unrelated families (once in 
RNU6-2 and once in RNU6-9, four cases in total; Supplementary Fig. 1 
and Supplementary Table 2) and found to be significantly enriched 
in cases versus controls (Bonferroni-corrected P value = 1.8 × 10−3 
(gnomAD, a single RNU6-2 positive individual of unknown status) and 
2.1 × 10−5 (All of Us, no positive individuals); Supplementary Table 3). 
We then extended our analysis to the same international cohorts of 
patients that were previously analyzed (n = 2,830) and identified 
74 additional cases from 38 families who were positive for either 
n.55_56insG or n.56_57insG (Supplementary Table 2).

In total, these two variants were detected in 112 affected indi-
viduals from 52 families, involving all RNU6 paralogs except RNU6-7. 
The n.55_56insG insertion was present in most cases (102 individuals 
from 47 families), occurring in four of the five RNU6 paralogs: RNU6-
1, RNU6-2, RNU6-8 and RNU6-9, while n.56_57insG was present in 
ten individuals from five families, in RNU6-1, RNU6-2 and RNU6-9 
(Supplementary Tables 1 and 2 and Supplementary Figs. 1 and 3). 
Notably, n.55_56insG was confirmed to be a de novo event in eight 
individuals, clinically identified as sporadic cases. In 14 additional 
pedigrees, it was also observed in individuals born to unaffected 
parents, for which de novo inheritance was suspected but could 
not be confirmed, due to the lack of parental DNA. In contrast, no 
de novo events could be detected for n.56_57insG, which was identi-
fied exclusively in families with adRP (Supplementary Fig. 1). Similar 
to the screening of the RNU4 paralogs, our analysis of RNU6 paralogs 
revealed 66 VUSs and 23 benign variants, validated by Sanger sequenc-
ing (Supplementary Table 3).

In summary, we identified variants in RNU4-2 or RNU6 para-
logs that underlie de novo or inherited dominant RP in 67 fami-
lies. The overall phenotype across all cases was consistent with 
classical RP, based on clinical examination and electrophysiologi-
cal testing, with symptomatic onset predominantly in adolescence 
(Supplementary Table 5). In addition, other concurrent ocular disease 
features were noted across individuals in the cohort: cystoid macular 
edema (55.9%), non-age-related lens opacities (23.6%) and various vitre-
omacular complications (30.6%) (Supplementary Table 5). Based on our 
data from these 4,722 RP cases, mostly of European descent and lacking 
a genetic diagnosis, we estimate that RNU4- and RNU6-associated RP 
could be responsible for ~1.4% of all molecularly undiagnosed individu-
als with this disease. Furthermore, considering that approximately 30% 
of RP diagnoses correspond to adRP25,26 and that our positive families 
include 24 isolated individuals, we can further infer that these variants 
may account for approximately 3.0% of undiagnosed adRP families.

Results
RNU4-2 variants underlie adRP
We initially examined a nonconsanguineous family with adRP 
(Family M1-A; Supplementary Fig. 1), in which seven of eight sib-
lings (II:1–II:7) and their father (I:1) displayed classical RP features 
(Supplementary Fig. 2 and Supplementary Data 1). Genome sequencing 
was negative for pathogenic variants in known retinal disease-associated 
genes, but selective DNA variant filtering and shared haplotype analysis 
revealed a total of 55 variants that were absent from gnomAD v.4.17,18 
and co-segregated with RP. Of these, none was predicted to impact 
splicing (SpliceAI > 0.2)19 and only one was evolutionarily conserved 
(GERP = 4.03 and phyloP-vertebrate = 3.18)20,21, a single-nucleotide 
insertion in the gene RNU4-2 (NR_003137.2:n.18_19insA; Fig. 1a, 
Supplementary Fig. 1 and Supplementary Tables 1 and 2). This DNA 
change was present in one individual from the All of Us database22.

To find additional families, we first screened by Sanger sequenc-
ing a cohort of 1,891 individuals from the European Retinal Disease 
Consortium (www.erdc.info) with RP or Leber congenital amau-
rosis who remained undiagnosed after a large high-throughput 
screening using single molecule Molecular Inversion Probes23. This 
analysis led to the identification of three additional families com-
prising 15 affected individuals segregating the same pathogenic vari-
ant (Supplementary Fig. 1 and Supplementary Tables 1 and 2). The 
n.18_19insA allele was significantly enriched in the RP cohort compared 
with both the gnomAD and the All of Us databases (analyzed control 
genomes: 76,215 and 414,000, respectively; Bonferroni-corrected P 
values = 2.6 × 10−3 and 6.9 × 10−5, respectively, by two-sided Fisher’s test; 
Supplementary Table 3). Additional screening of the RNU4-2 sequence 
in the same cohort led to the identification of 28 other variants, one of 
which (n.56T>C) recurred in eight individuals from four families (Fig. 1a, 
Supplementary Fig. 1 and Supplementary Tables 1 and 2), was absent 
in controls and was significantly enriched in patients versus controls 
(Bonferroni-corrected P values = 6.4 × 10−5 (gnomAD) and 7.9 × 10−8 (All 
of Us); Supplementary Table 3).

Additional screening of 2,830 RP cases without previous 
genetic diagnosis from our respective institutions’ cohorts, the 
UK National Genomic Research Library (hosting data from the 
Genomics England 100,000 Genomes Project24 and from the 
NHS Genomic Medicine Service) uncovered an additional patient 
harboring n.18_19insA (for whom the variant was de novo) and six 
families (nine affected individuals) carrying the n.56T>C variant 
(Supplementary Fig. 1 and Supplementary Tables 1 and 2). Altogether, 
recurrent variants in RNU4-2 were identified in 41 affected individuals 
from 15 families (Supplementary Fig. 3 and Supplementary Tables 1 
and 2). Of note, incomplete penetrance was observed for nine obli-
gate carriers, without visual symptoms (Supplementary Fig. 1). One 
carrier of n.56T>C was asymptomatic, with subnormal electroreti-
nogram, diffuse atrophic changes in the periphery and attenuated 
vessels. Another individual with the same variant showed no clinical 
signs of disease upon examination, and seven (among whom four 
were deceased) were not clinically evaluated to determine their dis-
ease status. Our combined screening of RNU4-2 also revealed 24 other 
unique rare DNA changes in 27 families, which were classified as vari-
ants of uncertain significance (VUS), as well as three benign changes 
(Supplementary Table 3).

Because U4 snRNA can also be transcribed from its paralog RNU4-
1, which differs from RNU4-2 at only four positions (n.37, n.88, n.99 
and n.113; Supplementary Table 4), we next examined its sequence 
in our initial cohort and identified 63 variants, none of which were 
significantly enriched in cases compared with controls; also, these 
changes did not include variants at sites corresponding to n.18_19 and 
n.56 of RNU4-2 (Fig. 1b and Supplementary Table 3). Notably, RNU4-1 
appears to be more tolerant to variation compared with RNU4-2, as 
evidenced by the numerous and frequent variants that are present in 
genomes from the general population (cumulative allele frequency 
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Fig. 1 | Structure of the U4/U6 duplex and rare variants found in RP cases 
and controls (gnomAD). a, Two-dimensional structure of the U4/U6 duplex, 
with recurrent variants identified in RP cases (in red for U4 and in green for U6), 
all clustering within the three-way junction. Nucleotides affected by variants 
previously observed in NDD cases are underlined. b, Rare variants affecting 
RNU4-1, defined as AF < 0.1% in gnomAD v.4.1, identified in RP cases and in 

controls. c, Same as in b for RNU4-2, with recurrent pathogenic variants displayed 
in red. d, Same as b for all five RNU6 paralogs combined, with recurrent causative 
variants displayed in green. Significant P values for variants enriched in RP 
cases versus controls from gnomAD are indicated (two-sided Fisher’s test with 
Bonferroni correction).
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Predicted effects of variants on the U4/U6 duplex
All RP variants are predicted to map in spatial proximity with each 
other, within the three-way junction delimited by stem-I and stem-II 
of the U4/U6 duplex and the 5′ stem-loop of U4 (Figs. 1a and 2a). In 
particular, they are located in a different region compared with those 
underlying NDD (Fig. 1a). In silico two-dimensional modeling of 
RNA secondary structure predicted as well that the RNU4-2 variant 
n.18_19insA inserts a nucleotide between stem-II and the U4 5′ stem-loop 
(Supplementary Fig. 5a,b), while n.56T>C disrupts the first base-pairing 
of the U4/U6 duplex within stem-I (Supplementary Fig. 5a,c). Both 
changes lead to the extension of the internal loop, an event that is 
predicted to impact the overall stability of the duplex. In addition, 
n.18_19insA slightly modifies the orientation of the 5′ stem-loop rela-
tive to stem-I and stem-II (Supplementary Fig. 5a,b).

In contrast, both n.55_56insG and n.56_57insG in RNU6 paralogs are 
predicted to extend the length of stem-I by three additional base pairs, 
reduce the size of the internal loop and drastically change the orienta-
tion of the 5′ stem-loop (Supplementary Fig. 5a,d,e). Interestingly, we 
observed that a benign insertion at the same position, n.55_56insT, was 
present in gnomAD v.4.1 in all five RNU6 paralogs with a cumulative fre-
quency of 0.12% (n = 181) (Supplementary Fig. 5f). While these models 
provide a coherent structural rationale for the observed clustering, 
the precise effects of the variants on U4/U6 architecture remain to be 
experimentally verified.

Analysis of cryo-electron microscopy data (PDB 6QW6)27 con-
firmed that all RP variants identified reside in a region critical for bind-
ing of the U4/U6 duplex to the splicing factors PRPF31, PRPF3 and 
PRPF8, all previously associated with adRP16,17 (Fig. 2b). Specifically, 

this region first engages PRPF31 or the PRPF3/PRPF4 complex, initiat-
ing the assembly interface, and is subsequently stabilized in its native 
orientation upon the coordinated binding of additional tri-snRNP com-
ponents, including PRPF6 and PRPF828. The mutated and neighboring 
U4 and U6 nucleotides detected in RP cases directly participate in the 
binding of PRPF31 and PRPF3 (Fig. 2c,d), via hydrogen bonds with eight 
and three residues of these proteins, respectively. Notably, by querying 
the ClinVar database29, we detected a missense variant affecting one of 
these residues, p.(Arg449Gly) of PRPF3, identified in a three-generation 
family with seven affected individuals having clinical features similar 
to those observed in most cases from our study30.

Expression of RNU4 and RNU6 genes
Since the human genome contains several RNU4 and RNU6 
pseudogenes31, we investigated whether any of these might be incor-
rectly annotated and could instead produce functional RNA, potentially 
contributing to the disease. In addition, we sought to understand why 
the various U4 and U6 paralogs appear to be differentially mutated, 
with RNU4-1 and RNU6-7 displaying none of the recurrent pathogenic 
variants. We used RNA sequencing (RNA-seq) data from human neuro-
sensory retina (NSR), retinal pigment epithelium (RPE) and choroid that 
were enriched for small RNAs, applying stringent and paralog-aware 
bioinformatics analyses designed to mitigate the complexities associ-
ated with reads aligning against multiple paralogs and/or pseudogenes 
(Methods). RNU4-2 was more highly expressed than RNU4-1 in all tissues 
(average ratio: 1.63; Fig. 3a). Conversely, individual expression of RNU6 
genes and pseudogenes in the retina could not be reliably quantified 
by RNA-seq, since their sequences are identical, except for the last 
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nucleotide. Therefore, we compared the total expression of RNU4 and 
RNU6, regardless of their respective paralogs and pseudogenes. RNU6 
expression was on average 3.39× higher across the three tissues, com-
pared with RNU4 (Fig. 3b). Of note, NSR and RPE had higher expression 
of RNU4 (2.51×) and RNU6 (6.09×) with respect to the choroid, an ocular 
tissue not directly involved in vision, used as a control (Fig. 3b). This 
observation is in agreement with previous data showing that snRNA 
expression in the retina is approximately sixfold higher compared with 
muscle, testis, heart and brain32, indicating a high demand for snRNAs 
in these two retinal layers.

In addition, we analyzed the Assay for Transposase-Accessible 
Chromatin using sequencing (ATAC-seq) and H3K27ac chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) data from 
retinal tissues33 in genomic regions spanning all RNU4 and RNU6 
sequences. ATAC-seq assesses chromatin accessibility across the 
genome, while H3K27ac ChIP–seq reveals the presence of active 
enhancers. These data, combined, indicate potential active transcrip-
tion at promoter regions. Our analysis showed clear transcription 
marks in all paralogous RNU4 and RNU6 genes in the retina (Fig. 3c,d). 

Conversely, these signatures were absent from the 105 U4 pseudo-
genes and the 1,312 U6 pseudogenes, except for RNU4-8P, which dis-
played strong signals, but probably by virtue of its close proximity to 
the ACTR1B promoter. Of note, RNU6-92P and RNU6-656P had high 
ATAC-seq signals but very low H3K27ac signals at their respective 
promoters (Fig. 3d).

We performed the same analysis for other snRNA genes present 
in the human genome, which revealed a similar trend: all RNU genes, 
with the exception of RNU5F-1, had marks of active transcription and 
only a few among the thousands of RNU pseudogenes displayed signals 
compatible with potential expression, therefore representing plausible 
candidate genes for retinal disease (Supplementary Fig. 6). In addi-
tion, RNU2-2 was recently implicated in NDD, yet without evidence of 
ocular involvement13. Interestingly, the same type of analysis, based on 
conservation and expression data from GTEx, was recently performed 
by others, showing similar results34.

For RNU6-7, both ATAC-seq and H3K27ac signals were within the 
same range as those observed for other RNU6 genes (Fig. 3d), and, 
therefore, the absence of pathogenic variants could not be explained 
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by a potential differential expression. We thus analyzed the genetic 
landscape of variations in healthy individuals in all five U6 paralogs 
and observed that RNU6-7 displayed a lower number of variants, com-
pared with the others (Supplementary Fig. 7). We also identified the 
recurrent variant n.55_56insG in RNU6-7 in six control individuals of 
African or African American ancestry in gnomAD v.4.1 (allele frequency 
(AF) = 0.014%) and in 14 individuals of African origin in the All of Us 
database (AF = 0.013%). These seemingly contradictory observations 
merit further investigations in future studies.

Transcriptome analysis in patients
We performed transcriptome analysis following the collection of RNA 
from circulating leukocytes in nine affected individuals carrying vari-
ants in RNU4-2, RNU6-1 and RNU6-9 (three individuals per gene), as well 
as from 14 healthy controls (Supplementary Table 6). To avoid system-
atic errors linked to the use of different collection kits35 across our 
cohort (Methods), we performed independent case–control tests for 
samples collected with PAXgene kits (three RNU4-2 cases, six controls) 
or Tempus kits (six RNU6 cases, eight controls). We identified 27 and 
eight differentially expressed genes in the two datasets, respectively, 
with no gene overlap (fold-change > 2 and false discovery rate (FDR) P 
value < 0.05; Supplementary Table 7), indicating no major differences in 
global gene expression in leukocytes in cases versus controls. We then 
further explored the data by investigating potential bias in pre-mRNA 
splicing, as performed in ref. 11. This analysis led to the identification 
of 107 upregulated and 67 downregulated 5′ splice sites in the PAX-
gene set, and 37 upregulated and 13 downregulated 5′ splice sites in 
the Tempus set, with only two sites in common between the datasets 
(in the genes CLEC2D and SNHG29; Supplementary Table 8). At these 
two sites the expression differences, although statistically significant, 
were below 10%.

We then examined the DNA sequences of the 224 differentially 
expressed splice sites, focusing on the occurrence of the ‘AG’ dinucleo-
tide at positions −2/−1, which was previously reported to be enriched 
in sites with increased splicing in RNU4-2 in patients with NDD11. No dif-
ferences in ‘AG’ frequency were observed between sites with increased 
versus decreased usage in either the PAXgene or Tempus samples 
(two-tailed Fisher’s test, P = 0.63 and P = 0.52, respectively). We also 
compared nucleotide frequencies at each position between upregu-
lated and downregulated splice sites, separately for the two groups, 
and found no significant differences (two-tailed Fisher’s test with FDR 
correction, P < 0.05). A similar analysis of overlapping dinucleotides 
across the region flanking the 5′ splice site (for example, positions 
−4/−3, −3/−2, up to +7/+8) revealed no significant differences.

Functional effects of RP variants
Since PRPF variants associated with RP affect primarily spliceosomal 
assembly32, we investigated whether the same phenomenon could be 
driven by the variants detected in this work. Specifically, we immu-
nopurified ectopically expressed U4 and U6 snRNAs containing the RP 
variants and analyzed their association with specific markers for the U6 
snRNP (SART3), the U4/U6 di-snRNP (SART3 and PRPF31), the U4/U6.U5 
tri-snRNP (PRPF31 and SNRNP200) and the U5 snRNP (SNRNP200). The 
combined results showed an increased association of snRNA constructs 
with RP variants with SART3 and partially with PRPF31, while the interac-
tion with SNRNP200 was unchanged or reduced (Fig. 4). For compari-
son, we included in our assays the U4 n.64_65insT variant, which causes 
NDD, and observed no significant alteration in the association with any 
of the proteins tested, compared with wild type (Fig. 4a). Additionally, 
no significant differences were detected between NDD and RP vari-
ants, pointing to the need for targeted functional studies to delineate 
their respective impacts on spliceosome dynamics. Similarly, U6 RNA 
bearing the n.55_56insT and n.57T>G variants, observed in healthy 
control individuals, presumably did not affect spliceosome formation, 
since the low amount of protein associated with them implies that they 

entered the spliceosome assembly process only minimally (Fig. 4b). 
Taken together, the results indicate that RP pathogenic variants have 
potentially a specific dominant effect on snRNP biogenesis and delay 
the assembly process at the di-snRNP stage.

Discussion
The numerous genes associated with RP and allied diseases belong to 
a wide range of functional classes, from retina-specific biochemical 
pathways to ubiquitous cellular processes5. Yet, how these defects 
ultimately lead to retinal degeneration often remains unclear. The 
link between pathogenic variants in splicing factors of the tri-snRNP 
complex (RP-PRPFs), essential for survival in all eukaryotes, and RP, a 
phenotype limited to the eye, represents perhaps the most intriguing 
of these biological enigmas.

In this study, we identified recurrent heterozygous variants in 
RNU4-2, encoding U4 RNA, and in multiple paralogs of the U6 RNA as 
a cause of RP. Interestingly, these snRNAs are also an integral part of 
the di- and tri-snRNP and directly interact with some RP-PRPF proteins. 
In addition, similar to RP-PRPFs, they are also associated with the 
same specific phenotype: de novo or inherited adRP, with reduced 
penetrance for RNU4-2 variants. Importantly, the clinical presentation 
of patients with RNU4-2 and RNU6 variants overlaps with that of other 
spliceosome-related forms of adRP, particularly showing an earlier 
onset—contrasting with the generally milder prognosis observed 
in most other adRP types36,37—and a relatively high co-occurrence of 
features such as cataracts and cystoid macular edema, found in cases 
with PRPF3138,39, PRPF840 and SNRNP20041 variants. Prevalence estima-
tions indicate that these snRNA pathogenic changes may account for 
an elevated number of undiagnosed cases, and it is therefore surpris-
ing that the RNU4 and RNU6 genes have escaped disease association 
until now. A partial explanation for this phenomenon is that main-
stream sequencing approaches are biased towards DNA-capturing 
procedures that do not include snRNA genes. Furthermore, although 
genome sequencing is increasingly being adopted in routine diag-
nostics, variants in snRNA genes may have remained undetected 
because they affect noncoding transcripts, which are more challeng-
ing to interpret and are often overlooked or deprioritized by standard 
analytical pipelines.

An intriguing feature of pathogenic changes in RNU4-2 is their 
pleiotropy with respect to NDD (ReNU syndrome) and RP. Chen et al.9 
described that more than half of the patients with ReNU also display 
some visual abnormalities, although only three were documented as 
having retinal phenotypes (one had an abnormal electroretinogram 
response, one had Leber congenital amaurosis and one presented with 
macular dysfunction). However, most cases were too young to display 
the typical symptoms of RP, which usually manifest during adolescence 
or early adulthood42. Although the exact mechanism for this pheno-
typic selectivity is unknown, RNU4-2 variants represent a clear and 
new allelic series involving noncoding RNA genes. A recent preprint 
highlighted a strong effect of ReNU variants in an RNU4-2 saturation 
genome editing experiment, while the RP variant n.56T>C in the same 
gene did not show any statistically significant effect43. In addition, the 
region of RNU4-2 containing RP variants showed function scores within 
the neutral range of the saturation genome editing assay43, suggesting 
a potentially milder pathogenic effect compared with ReNU changes. 
It is therefore plausible that the RP variants identified in RNU4-2 and 
RNU6 paralogs could lead to photoreceptor death and subsequent 
visual loss, while having no influence on the development of the brain. 
Additionally, ReNU variants are located in the stem-III and the T-loop of 
the U4/U6 duplex and interfere with the proper recognition of intronic 
5′ splice signals, likely because these regions are involved in pairing 
pre-mRNA with U6 (ref. 9). In contrast, RP variants cluster in spatial 
proximity to the three-way junction, in regions not directly engaged 
in interactions with pre-mRNA but that are involved in the binding of 
various proteins, including RP-associated splicing factors.
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Consistent with this evidence, we did not observe any major 
splicing anomalies in transcripts from patients with RP, with the only 
two significant events showing differences below 10% in expression. 
Conversely, our biochemical assays support a role for RP-associated 
variants in altering spliceosomal assembly. As the magnitude of the 
observed changes was in all instances rather moderate (less than 
1.5-fold with respect to controls), we interpret these data as indicat-
ing that snRNA variants associated with RP are unlikely to prevent 
the assembly of spliceosomal complexes. Rather, they may cause a 
subtle alteration in snRNP dynamics, possibly affecting the efficiency 
of their biogenesis or recycling steps. In particular, the increased 
association with SART3 and, to a lesser extent, with PRPF31, together 
with unchanged or slightly reduced interaction with SNRNP200, may 

indicate a modest delay in the transition from the di-snRNP to the 
tri-snRNP form. Moreover, the pathogenic variants identified in this 
study lie within regions of the U4/U6 duplex that directly contact the 
PRPF3 and PRPF31 proteins, two splicing factors linked to adRP whose 
mutations also delay spliceosomal complex assembly32.

In terms of specific molecular effect, our functional data show that 
snRNAs bearing RP variants display enhanced interaction with di-snRNP 
protein markers, suggesting that pathogenesis could result from a 
gain-of-function or dominant-negative mechanism, rather than from 
haploinsufficiency. This hypothesis is strengthened by the evidence 
that molecularly similar but benign variants, commonly observed 
in the general population, seem not to bind efficiently to di-snRNP 
markers and potentially not to be incorporated into the spliceosome, 
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Fig. 4 | Effects of RP variants in RNU4-2 and RNU6 on snRNP maturation.  
a,b, Immunoprecipitation of U4-MS2 (WT and variants) (a) and U6-MS2  
(WT and variants) (b). snRNPs were immunoprecipitated via MS2-YFP by anti-GFP 
antibodies and co-precipitated proteins were detected by western blotting. 
The position of the MS2 loop (green) in snRNAs is indicated. Four independent 
experiments were quantified. Immunoprecipitated proteins are normalized to 

input and U4 or U6 WT controls. Middle bars indicate average values and error 
bars the s.e.m. Statistical significance was analyzed by the two-tailed unpaired 
t-test and the P values were adjusted using the Benjamini–Hochberg FDR 
method to control for false discoveries. P values ≤ 0.05 are indicated. Full-length 
blots and antibody validation are provided as Source Data. Ctrl, control; IP, 
immunoprecipitation; WT, wild type.
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supporting the idea that spliceosomal functions could be haplosuf-
ficient with respect to heterozygous and snRNA-depleting variants.

Although DNA changes associating RNU4-2 to ReNU syndrome 
have been primarily reported as de novo events9,10, in our study most 
families with RP (61%) bore RNU4-2 and RNU6 changes as inherited 
variants. In part, this difference can be explained by the reduced repro-
ductive fitness associated with NDD versus RP. Unlike ReNU syndrome, 
symptomatic onset (night-blindness and peripheral vision loss) in 
nonsyndromic adRP begins later in life, with severe central vision loss 
usually occurring after the onset of reproductive age. Another differ-
ence involves the inheritance of dominant variants, which in ReNU 
seems to be almost exclusively of maternal origin9. We did not observe 
the same trend for RP, with variants being inherited from either of the 
parents, possibly indicating the absence of any sex-specific negative 
selection during gametogenesis or at the embryonic stage.

The human genome contains two RNU4 paralogs and five RNU6 
paralogs. This indicates that, assuming equal expression within para-
logs, the presence of only ~25% of mutant U4 (heterozygous genotype, 
over two copies) or ~10% of mutant U6 (heterozygous genotype, over 
five copies) is sufficient to lead to a disease phenotype, again in support 
of a gain-of-function or dominant-negative molecular mechanism. 
This could be a crucial consideration for the development of potential 
gene-based therapies, as gene-augmentation strategies may be sub-
optimal compared with gene correction or antisense oligonucleotide 
approaches. Our data also highlight the existence of mutational hot-
spots outside the coding regions of the human genome, emphasizing 
the need for further research into these parts of our genetic material, 
and show that the clustering of de novo pathogenic variants is not 
restricted to severe diseases with childhood onset44, but may extend 
to milder pathologies, such as RP.

In conclusion, we identified four recurrent pathogenic variants in 
RNU4-2 and in four of the five paralogs of the U6 snRNA as a frequent 
cause of de novo or inherited adRP. The immediate impact of these find-
ings involves improved diagnosis and genetic counseling for patients 
with hereditary visual loss, especially for isolated cases who could 
potentially bear heterozygous de novo events. More fundamentally, 
this work substantially broadens our understanding of the genetic 
landscape of human disease, paving the way for the development of 
new molecular therapeutic approaches.
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Methods
Patients and DNA samples
This study adhered to the tenets of the Declaration of Helsinki, and 
signed, informed consent was obtained from all participants. All 
procedures were conducted in accordance with Institutional Review 
Board-approved human research protocols and were approved by 
the ethics committees of the Radboud University Medical Center 
(Nijmegen, the Netherlands) and the Rotterdam Eye Hospital (Rot-
terdam, the Netherlands) (MEC-2010-359; OZR protocol no. 2009-32), 
and the local ethics committees of all other participating institutions.

Clinical characterization and analysis
Complete ophthalmic examinations were performed by a retinal spe-
cialist, which included measurement of best-corrected visual acuity and 
intraocular pressures, and examination of anterior segment and fundus 
(dilated). Color fundus photographs and montages were captured 
using the FF450plus Fundus Camera (Carl Zeiss Meditec) and Optos 
200 Tx (Optos). Fundus autofluorescence images (488-nm excitation) 
and high-resolution spectral-domain optical coherence tomography 
(SD-OCT) scans were acquired using the Spectralis HRA+OCT module 
(Heidelberg Engineering). Hyper-autofluorescent ring contours were 
analyzed using a custom program in FIJI software (National Institute 
of Mental Health)45. Progression rates were calculated using linear 
mixed-effects regression in R (v.4.0.4) with time (years) since baseline as 
the primary independent variable, baseline ring size as a covariate and 
inter-ocular differences as a random effect. Photoreceptor+ thickness 
was assessed on horizontal SD-OCT scans through the fovea using a 
semi-automated procedure46. Photoreceptor+ was defined as the dis-
tance between the Bruch’s membrane/choroid interface and the inner 
nuclear layer/outer plexiform layer boundary. Layer segmentation was 
performed in a semi-automated manner using a custom software in 
MatLab (MathWorks). Full-field electroretinogram recordings were 
conducted using the Espion Visual Electrophysiology System (Diagno-
sys) according to International Society for Clinical Electrophysiology 
of Vision (ISCEV) standards47.

Genome sequencing and annotation
Genomic DNA from probands was isolated from peripheral blood 
lymphocytes according to standard procedures. Sequencing was 
performed by BGI Tech Solutions using the DNBseq Sequencing 
Technology, with a minimal median coverage per genome of 30×. The 
processing of the sequencing data was performed by using BWA mem 
(v.0.7.17)48, Picard (v.2.14.0-SNAPSHOT) (http://broadinstitute.github.
io/picard) and GATK (v.4.1.4.1)49 for mapping to the human genome 
reference sequence (build hg19/GRCh37) and variant calling2. For 
variant annotation, we used ANNOVAR50 with the addition of splicing 
predictions by MaxEntScan51 and SpliceAI19.

Assessment of variants
Human Genome Variation Society (HGVS) notations of the variants 
were retrieved using VariantValidator52 and American College of Medi-
cal Genetics and Genomics (ACMG) classification53 was applied accord-
ing to the ACGS Best Practice Guidelines for Variant Classification in 
Rare Disease 202354. In particular, we used the PS4_strong criterion for 
variants significantly enriched in cases versus controls (gnomAD v.4.1 
and All of Us), as assessed for each variant by two-tailed Fisher’s exact 
test in R (fisher.test function), in agreement with the ACMG recommen-
dations53 (odds ratio > 5.0, lower bound of the confidence interval > 1.0, 
corrected P value < 0.05), but only for variants present in at least three 
probands to avoid any bias from imbalanced case–control sets. This 
assessment was made using probands only (n = 1,891) for all variants, 
except for those in Supplementary Table 1, which were assessed in 4,722 
individuals. PM6 and PP1 were applied according to ClinGen Sequence 
Variant Interpretation (SVI) recommendations. Specifically, PM6_sup 
was applied when two unrelated families had de novo variants without 

parental confirmation, given that RP is a ‘phenotype consistent with 
gene but not highly specific and high genetic heterogeneity’. PP1_sup, 
PP1_mod and PP1_strong were assigned when the variant segregated 
with disease in ≥1, ≥2 and ≥5 informative meioses, respectively55. We 
defined thresholds for PM2_sup and BS2 based on the frequency of 
RHO p.(Pro23His), the most prevalent variant causing adRP, which was 
detected once in gnomAD v.4.1 and 13 times in All of Us. Specifically, 
PM2_sup was assigned to variants that were present fewer than two 
times in gnomAD v.4.1 and fewer than 14 times in All of Us. BS2 was 
applied to variants that were observed more than four times in gno-
mAD v.4.1 or more than 28 times in All of Us, that is, twice the values of 
p.(Pro23His). PM2_sup was not applied to variants for which the PS4 
criterion had already been used, to avoid double-counting evidence 
related to their low frequency in gnomAD. BA1 was considered for 
variants with allele frequency >5% in gnomAD v.4.1 or the All of Us 
databases, whereas BS1 was assigned to variants with allele frequencies 
greater than expected for disease (1/2,000 = 0.05%).

Screening by Sanger sequencing
Genomic DNA was collected, and RNU4-1, RNU4-2, RNU6-1, RNU6-2, 
RNU6-7, RNU6-8 and RNU6-9 genes were amplified using standard PCR 
procedures. RNU4-1, RNU4-2, RNU6-1, RNU6-2, RNU6-7, RNU6-8 and 
RNU6-9 PCR fragments were sequenced using Sanger sequencing and 
screened for novel variants in these genes.

Two-dimensional modeling of the effect of variants and 
three-dimensional representation
We utilized RNAfold WebServer to model the effect of variants with 
default parameters56 and RNAcanvas was used for drawing the struc-
ture57. We used ChimeraX with PDB file, using PDB file 6QW6 to draw 
three-dimensional representation of the U4/U6 duplex with and with-
out surrounding PRPF proteins.

RNA-seq experiments and analysis
RNA was isolated from human donor eye tissue, which was collected 
and dissected according a reported procedure58 from an ethically 
approved Research Tissue Bank (UK NHS Health Research Authority 
reference no. 15/NW/0932). Total RNA was isolated from four NSR 
samples, 16 pelleted RPE samples and 13 choroid samples that had been 
stored in RNAlater (Thermo Fisher Scientific), using an Animal Tissue 
RNA Purification kit (Norgen Biotek), as per manufacturer’s instruc-
tions. Sequencing libraries were prepared using the NEBnext multiplex 
small RNA library preparation kit, as per manufacturer’s protocols, with 
size selection performed using Ampure beads. Paired-end sequencing 
(2 × 75 base pairs (bp)) was performed on an Illumina HiSeq 4000.

NEBnext adapters were removed from sequencing reads using 
trimmomatic (v.0.39) before alignment against the GRCh38 reference 
genome with bowtie59 (v.1.3). No mismatches between sequencing 
reads and the reference genome were allowed, and no restriction was 
set on multi-mapping reads. Sequence read counts were restricted 
to primary alignments using samtools (v.1.21)60, and therefore only 
counted once if they aligned to multiple RNU4 (n = 90) or RNU6 
(n = 1,277) genes or pseudogenes. Calculations were drawn from read 
1 datasets and normalized for the total read count achieved for the 
sample. Total RNU4 and RNU6 expression was based on all annotated 
genes and pseudogenes in GENCODE v.38.

ATAC-seq and H3K27ac ChIP–seq data
ATAC-seq data from ref. 61 (eight different experiments) and H3K27ac 
ChIP–seq data from ref. 62 (five different experiments) were down-
loaded as bigwig files from the RegRet database (http://genome.ucsc. 
edu/s/stvdsomp/RegRet)63. For both data types, the signal (the genes 
and 500 bp on each side) was extracted using bedtools (v.2.27.1) after 
conversion using bigWigToWig (v.469). We quantified the signal for 
all RNU genes and pseudogenes first by normalizing the signal of each 
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experiment to the maximum and then summing them. For RNU4, 
we quantified two genes and 105 pseudogenes, while for RNU6 we 
assessed five genes and 1,312 pseudogenes, in addition to RNU4ATAC 
and RNU6ATAC.

RNA-seq from blood RNA
Peripheral blood samples were collected from affected individuals and 
controls using either Tempus Blood RNA tubes (Applied Biosystems) or 
PAXgene Blood RNA tubes (Qiagen). Total leukocyte RNA was extracted 
with the Tempus Spin RNA Isolation Kit (Applied Biosystems) or the 
Preserved Blood RNA Purification Kit II (Norgen Biotek), respectively, 
following the manufacturers’ protocols. Following the quality assess-
ment of RNA integrity and concentration, 100 ng of input RNA per sam-
ple was subsequently processed for library preparation using the KAPA 
RNA HyperPrep Kit with RiboErase (HMR) and KAPA Globin Depletion 
Hybridization Oligos (Roche). Sequencing was performed on an Illumina 
NovaSeq 6000 platform with 2 × 101-bp paired-end reads. To improve 
quality score calculations for the final base, one additional base was 
sequenced in both read 1 and read 2. The Q30 value for all RNA-seq data 
was ≥91.1%. Adapters were trimmed with Skewer (v.0.2.2)64.

Reads were aligned to reference transcripts from Ensembl (v.110, 
GRCh38) using STAR (v.2.7.11a) with the option --twopassMode Basic. 
DESeq2 (v.1.46.0) with default options was used for differential expres-
sion analysis between different groups according to sample origin 
(Tempus or PAXgene tubes) and presence/absence of the pathogenic 
RNU genotypes, with fold-change > 2 and FDR P value < 0.05. We used 
rMATS65 to assess differential alternative splicing, separately for the 
Tempus and PAXgene sets and with specific options (--allow-clipping 
--variable-read-length --anchorLength 1 --novelSS --task both --libType 
fr-unstranded -t paired --readLength 101). We further used the Python 
scripts from ref. 11 to process the rMATS output and filter the data 
according to a mean coverage > 7, an FDR P value < 0.1 and a deltaPSI 
value > 0.05. The R function fisher.test with default parameters was 
used to assess differences in base compositions at splicing sites, at 
each position, as well as differences for 2-mers (for example, positions 
−4/−3 to +7/+8).

U4 and U6 snRNP analysis
U4 n.18_19insA, n.56T>C and n.64_65insT variants were introduced 
by site-directed mutagenesis into the plasmid expressing U4-MS266. 
The full-length U6 sequence, including 256 bp upstream and 93 bp 
downstream of the RNU6-1 gene, was inserted into the pcDNA3 plas-
mid lacking the CMV promoter. The MS2 loop was inserted between 
nucleotides 10 and 11. U6 n.55_56insG, n.55_56insT, n.56_57insG and 
n.57G>T variants were introduced by site-directed mutagenesis. U4- 
and U6-expressing plasmids were transfected into HeLa cells stably 
expressing MS2-YFP protein. At 24 h after transfection, snRNAs were 
immunoprecipitated using anti-GFP antibodies and co-precipitated 
proteins were analyzed by western blotting66.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Research on the de-identified patient data used in this publication 
from the Genomics England 100,000 Genomes Project and the NHS 
GMS dataset can be carried out in the Genomics England Research 
Environment subject to a collaborative agreement that adheres to 
patient-led governance. All interested readers will be able to access 
the data in the same manner that the authors accessed the data. For 
more information about accessing the data, interested readers may 
contact research-network@genomicsengland.co.uk or access the 
relevant information on the Genomics England website: https://www.
genomicsengland.co.uk/research. Sharing of additional sequencing or 

blood RNA-seq data is subject to the European General Data Protection 
Regulation (GDPR) applicable in the countries of residence of the tested 
individuals and may become available upon a data transfer agreement 
approved by local ethical committees. Patient sample identifiers from 
this study can be released upon reasonable request from ‘M1-A to M9-B’ 
to the corresponding local ‘DNA-number’. Specific variant requests or 
other data are available from the corresponding author (S.R.) upon 
reasonable request. The data generated during this study (causative 
variants from Supplementary Table 1) are submitted to the Leiden Open 
(source) Variation Database (LOVD) (http://www.lovd.nl) and ClinVar 
(accession codes SCV006562526 to SCV006562534). Sequences of 
primers used in this study are listed in Supplementary Table 9. Addi-
tional details regarding PCR conditions or primer design are available 
upon request. Detailed information on antibodies used are provided in 
Supplementary Table 10. Small RNA-seq datasets analyzed in this study 
are available at the NCBI Sequence Read Archive through accession 
PRJNA1256119 (https://www.ncbi.nlm.nih.gov/sra/PRJNA1256119). The 
genes and pseudogenes analyzed are present in Supplementary Table 11 
and the read counts are available in Supplementary Table 12. Source 
data are provided with this paper.
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