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Smallnuclear RNAs (snRNAs) combine with specific proteins to generate
smallnuclear ribonucleoproteins (snRNPs), the building blocks of the
spliceosome. U4 snRNA forms a duplex with U6 and, together with U5,
contributes to the tri-snRNP spliceosomal complex. Variants in RNU4-2,

which encodes U4, have recently been implicated in neurodevelopmental
disorders. Here we show that heterozygous inherited and de novo variantsin
RNU4-2and in four RNU6 paralogs (RNU6-1, RNU6-2, RNU6-8 and RNU6-9),
whichencode U6, recur inindividuals with nonsyndromic retinitis
pigmentosa (RP), a genetic disorder causing progressive blindness.

These variants cluster within the three-way junction of the U4/U6 duplex,
asite thatinteracts with tri-snRNP splicing factors also known to cause RP
(PRPF3, PRPF8, PRPF31),and seem to affect snRNP biogenesis. Based on

our cohort, deleterious variants in RNU4-2 and RNU6 paralogs may explain
up to ~1.4% of otherwise undiagnosed RP cases. This study highlights the
contribution of noncoding RNA genes to Mendelian disease and reveals
pleiotropy in RNU4-2, where distinct variants underlie neurodevelopmental
disorder and retinal degeneration.

While approximately2 million individuals worldwide are affected
by retinitis pigmentosa (RP), it is estimated that 30% to 50% remain
without a conclusive genetic diagnosis, even after exome or genome
sequencing is performed' ™. This reflects high genetic heterogeneity,
limited testing access and as-yet-unidentified disease genes, which
in general carry pathogenic variants that are exceedingly rare in the
control population®”.

Noncoding RNAs are essential to many cellular processes, includ-
ing pre-messenger RNA (pre-mRNA) splicing, which is ensured by the
spliceosome, amacromolecular complex thatin its major formis com-
posed of five small nuclear RNAs (snRNAs), U1, U2, U4, U5 and U6, and
~300 proteins®. Each snRNA associates with a specific set of proteins to
formasmallnuclear ribonucleoprotein (snRNP), the functional unit of
the spliceosome. Variantsin RNU4-2, one of the two paralogs encoding
U4, have beenlinked toacommon neurodevelopmental disorder (NDD)
known as ReNU syndrome (OMIM: 620851). These variants account for
up to 0.4% of all NDD cases and lead to systematic misrecognition of

donorsplicesites by the spliceosome’ ™, Likewise, RNU2-2and RNUSB-1
have been recently associated with NDDs" %,

Several spliceosomal proteins are also known to be involved in
awide range of hereditary diseases, including RP, as first noted by
McKie and colleagues™. Specifically, of the ~100 genes that are cur-
rently associated with nonsyndromic RP°, the tri-snRNP splicing fac-
tor genes PRPF3, PRPF4, PRPFS8, PRPF31 and SNRNP200 underlie the
autosomal dominant form of the condition (adRP), with variants in
PRPF31 accounting for 10-20% of all adRP cases™".

Here, we identify both inherited and de novo variants in RNU4-2
and four paralogs of RNU6, encoding the U6 snRNA, as the molecular
cause of adRP in 153 individuals across 67 families. We demonstrate
thatallidentified variants cluster within the U4/U6 duplex, inaregion
that binds directly to PRPF31and PRPF3 and indirectly to PRPF6 and
PRPF8'*", Furthermore, we show that such variantsincrease the associ-
ation of U4 and U6 snRNAs withthe splicing factors SART3 and PRPF31,
suggesting impaired snRNP biogenesis.
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Results

RNU4-2variants underlie adRP

We initially examined a nonconsanguineous family with adRP
(Family M1-A; Supplementary Fig. 1), in which seven of eight sib-
lings (11:1-11:7) and their father (I:1) displayed classical RP features
(Supplementary Fig. 2 and Supplementary Data1). Genome sequencing
wasnegative for pathogenicvariantsinknownretinal disease-associated
genes, but selective DNA variant filtering and shared haplotype analysis
revealed a total of 55 variants that were absent from gnomAD v.4.1'¢
and co-segregated with RP. Of these, none was predicted to impact
splicing (SpliceAl > 0.2)"” and only one was evolutionarily conserved
(GERP =4.03 and phyloP-vertebrate = 3.18)*°?, a single-nucleotide
insertion in the gene RNU4-2 (NR_003137.2:n.18_19insA; Fig. 1a,
Supplementary Fig.1and Supplementary Tables 1and 2). This DNA
change was present in one individual from the All of Us database™.

To find additional families, we first screened by Sanger sequenc-
ing a cohort of 1,891 individuals from the European Retinal Disease
Consortium (www.erdc.info) with RP or Leber congenital amau-
rosis who remained undiagnosed after a large high-throughput
screening using single molecule Molecular Inversion Probes®. This
analysis led to the identification of three additional families com-
prising 15 affected individuals segregating the same pathogenic vari-
ant (Supplementary Fig. 1 and Supplementary Tables 1 and 2). The
n.18_19insA allele was significantly enriched in the RP cohort compared
with both the gnomAD and the All of Us databases (analyzed control
genomes: 76,215 and 414,000, respectively; Bonferroni-corrected P
values =2.6 x10and 6.9 x 1075, respectively, by two-sided Fisher’s test;
Supplementary Table 3). Additional screening of the RNU4-2sequence
inthesame cohortled to the identification of 28 other variants, one of
which (n.56T>C) recurred in eight individuals from four families (Fig. 1a,
Supplementary Fig.1and Supplementary Tables 1and 2), was absent
in controls and was significantly enriched in patients versus controls
(Bonferroni-corrected Pvalues = 6.4 x 10~ (gnomAD) and 7.9 x 108 (All
of Us); Supplementary Table 3).

Additional screening of 2,830 RP cases without previous
genetic diagnosis from our respective institutions’ cohorts, the
UK National Genomic Research Library (hosting data from the
Genomics England 100,000 Genomes Project® and from the
NHS Genomic Medicine Service) uncovered an additional patient
harboring n.18_19insA (for whom the variant was de novo) and six
families (nine affected individuals) carrying the n.56T>C variant
(Supplementary Fig.1and Supplementary Tables1and 2). Altogether,
recurrent variants in RNU4-2wereidentified in 41 affected individuals
from 15 families (Supplementary Fig. 3 and Supplementary Tables 1
and 2). Of note, incomplete penetrance was observed for nine obli-
gate carriers, without visual symptoms (Supplementary Fig. 1). One
carrier of n.56T>C was asymptomatic, with subnormal electroreti-
nogram, diffuse atrophic changes in the periphery and attenuated
vessels. Another individual with the same variant showed no clinical
signs of disease upon examination, and seven (among whom four
were deceased) were not clinically evaluated to determine their dis-
ease status. Our combined screening of RNU4-2 also revealed 24 other
unique rare DNA changes in 27 families, which were classified as vari-
ants of uncertain significance (VUS), as well as three benign changes
(Supplementary Table 3).

Because U4 snRNA canalso betranscribed fromits paralog RNU4-
1, which differs from RNU4-2 at only four positions (n.37, n.88, n.99
and n.113; Supplementary Table 4), we next examined its sequence
in our initial cohort and identified 63 variants, none of which were
significantly enriched in cases compared with controls; also, these
changes did notinclude variants at sites corresponding ton.18_19 and
n.56 of RNU4-2 (Fig. 1b and Supplementary Table 3). Notably, RNU4-1
appears to be more tolerant to variation compared with RNU4-2, as
evidenced by the numerous and frequent variants that are present in
genomes from the general population (cumulative allele frequency

0f20.4%in RNU4-1versus 1.2% in RNU4-2; gnomAD v.4.1) (Fig. 1b,cand
Supplementary Fig. 4), as already noted previously’.

Variants in U6 paralogues also cause RP

In the di-snRNP and the tri-snRNP complexes of the major spliceo-
some, U4 binds to U6 to form the U4/U6 RNA duplex. We therefore
hypothesized that variants in U6 could also underlie adRP and
extended our analysis to all five identical paralogous genes produc-
ing the U6 snRNA, scattered across the genome (RNU6-1, RNU6-2,
RNU6-7, RNU6-8 and RNU6-9; Supplementary Table 4). A screening
ofthese genes by Sanger sequencingin ourinitial cohort of 1,891 RP
families revealed 94 DNA changes in total. The n.55_56insG inser-
tion recurred at the exact relative position in RNU6-2, RNU6-8 and
RNU6-9 (four families per gene, 34 casesin total; Supplementary Fig.1
and Supplementary Tables 1 and 2) and was significantly enriched
in cases versus controls, who were all negative for this change
(Bonferroni-corrected Pvalue = 2.6 x 10™® (gnomAD) and 5.1 x 107
(All of Us); Supplementary Table 3). Since this variant was identi-
calin three U6 genes, we reasoned that the specific DNA change,
rather than any particular paralog, was relevant to the etiology of
the disease. We therefore repeated our analysis by collapsing the
five RNU6 genes and detected 66 unique variants. Another inser-
tion, n.56_57insG, was identified in two unrelated families (once in
RNU6-2and once in RNU6-9, four cases in total; Supplementary Fig. 1
and Supplementary Table 2) and found to be significantly enriched
in cases versus controls (Bonferroni-corrected Pvalue=1.8 x 107
(gnomAD, assingle RNU6-2 positive individual of unknown status) and
2.1x107(All of Us, no positive individuals); Supplementary Table 3).
We then extended our analysis to the same international cohorts of
patients that were previously analyzed (n =2,830) and identified
74 additional cases from 38 families who were positive for either
n.55_56insG or n.56_57insG (Supplementary Table 2).

In total, these two variants were detected in 112 affected indi-
viduals from 52 families, involving all RNU6 paralogs except RNU6-7.
The n.55_56insG insertion was present in most cases (102 individuals
from 47 families), occurring in four of the five RNU6 paralogs: RNU6-
1, RNU6-2, RNU6-8 and RNU6-9, while n.56_57insG was present in
ten individuals from five families, in RNU6-1, RNU6-2 and RNU6-9
(Supplementary Tables 1 and 2 and Supplementary Figs. 1and 3).
Notably, n.55_56insG was confirmed to be a de novo event in eight
individuals, clinically identified as sporadic cases. In 14 additional
pedigrees, it was also observed in individuals born to unaffected
parents, for which de novo inheritance was suspected but could
not be confirmed, due to the lack of parental DNA. In contrast, no
de novo events could be detected for n.56_57insG, which was identi-
fied exclusively in families with adRP (Supplementary Fig. 1). Similar
to the screening of the RNU4 paralogs, our analysis of RNU6 paralogs
revealed 66 VUSs and 23 benign variants, validated by Sanger sequenc-
ing (Supplementary Table 3).

In summary, we identified variants in RNU4-2 or RNU6 para-
logs that underlie de novo or inherited dominant RP in 67 fami-
lies. The overall phenotype across all cases was consistent with
classical RP, based on clinical examination and electrophysiologi-
cal testing, with symptomatic onset predominantly in adolescence
(Supplementary Table 5).In addition, other concurrent ocular disease
features were noted across individuals in the cohort: cystoid macular
edema (55.9%), non-age-related lens opacities (23.6%) and various vitre-
omacular complications (30.6%) (Supplementary Table 5). Based on our
datafromthese 4,722 RP cases, mostly of European descent and lacking
agenetic diagnosis, we estimate that RNU4- and RNU6-associated RP
couldberesponsible for ~1.4% of all molecularly undiagnosed individu-
alswith this disease. Furthermore, considering that approximately 30%
of RP diagnoses correspond to adRP*?® and that our positive families
include 24 isolated individuals, we can further infer that these variants
may account for approximately 3.0% of undiagnosed adRP families.
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Fig.1|Structure of the U4/U6 duplex and rare variants found in RP cases
and controls (gnomAD). a, Two-dimensional structure of the U4/U6 duplex,
withrecurrent variantsidentified in RP cases (in red for U4 and in green for U6),
all clustering within the three-way junction. Nucleotides affected by variants
previously observed in NDD cases are underlined. b, Rare variants affecting
RNU4-1,defined as AF < 0.1% in gnomAD v.4.1, identified in RP cases and in
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Fig. 2| Three-dimensional structure, from cryo-electron microscopy (PDB
6QW6), of the U4/U6 duplex and its interactions with neighboring splicing
factors. a, Naked U4/U6 pairing, showing the proximity of the causative variants

identified (red and green). b, Same as in a with interacting PRPF proteins.
¢, Directinteractions of nucleotides of the U4/U6 duplex with PRPF31, via
hydrogenbonds. d, Same as ¢ but for PRPF3.

Predicted effects of variants on the U4/U6 duplex

All RP variants are predicted to map in spatial proximity with each
other, within the three-way junction delimited by stem-1 and stem-II
of the U4/U6 duplex and the 5’ stem-loop of U4 (Figs. 1a and 2a). In
particular, they are located in a different region compared with those
underlying NDD (Fig. 1a). In silico two-dimensional modeling of
RNA secondary structure predicted as well that the RNU4-2 variant
n.18_19insAinserts anucleotide between stem-lland the U4 5’ stem-loop
(Supplementary Fig. 5a,b), while n.56 T>C disrupts the first base-pairing
of the U4/U6 duplex within stem-I (Supplementary Fig. 5a,c). Both
changes lead to the extension of the internal loop, an event that is
predicted to impact the overall stability of the duplex. In addition,
n.18 19insA slightly modifies the orientation of the 5’ stem-loop rela-
tive to stem-land stem-II (Supplementary Fig. 5a,b).

In contrast, bothn.55_56insG andn.56_57insGin RNU6 paralogs are
predicted to extend the length of stem-I1 by three additional base pairs,
reduce thesize of the internalloop and drastically change the orienta-
tion of the 5’ stem-loop (Supplementary Fig. 5a,d,e). Interestingly, we
observedthatabenigninsertionatthe same position, n.55_56insT, was
presentingnomAD v.4.1inall five RVU6 paralogs with a cumulative fre-
quency of 0.12% (n = 181) (Supplementary Fig. 5f). While these models
provide a coherent structural rationale for the observed clustering,
the precise effects of the variants on U4/U6 architecture remain to be
experimentally verified.

Analysis of cryo-electron microscopy data (PDB 6QW6)*’ con-
firmed that all RP variantsidentified reside inaregion critical for bind-
ing of the U4/U6 duplex to the splicing factors PRPF31, PRPF3 and
PRPFS, all previously associated with adRP'*" (Fig. 2b). Specifically,

)27

thisregion first engages PRPF31or the PRPF3/PRPF4 complex, initiat-
ing the assembly interface, and is subsequently stabilized inits native
orientation upon the coordinated binding of additional tri-snRNP com-
ponents, including PRPF6 and PRPF8?, The mutated and neighboring
U4 and U6 nucleotides detected in RP cases directly participate inthe
binding of PRPF31and PRPF3 (Fig. 2c,d), viahydrogen bonds with eight
and threeresidues of these proteins, respectively. Notably, by querying
the ClinVar database”, we detected a missense variant affecting one of
theseresidues, p.(Arg449Gly) of PRPF3, identified ina three-generation
family with seven affected individuals having clinical features similar
to those observed in most cases from our study™.

Expression of RNU4 and RNU6 genes

Since the human genome contains several RNU4 and RNU6
pseudogenes®, we investigated whether any of these might be incor-
rectly annotated and couldinstead produce functional RNA, potentially
contributing to the disease. Inaddition, we sought to understand why
the various U4 and U6 paralogs appear to be differentially mutated,
with RNU4-1and RNU6-7 displaying none of the recurrent pathogenic
variants. We used RNA sequencing (RNA-seq) data from human neuro-
sensory retina (NSR), retinal pigment epithelium (RPE) and choroid that
were enriched for small RNAs, applying stringent and paralog-aware
bioinformatics analyses designed to mitigate the complexities associ-
ated withreads aligning against multiple paralogs and/or pseudogenes
(Methods). RNU4-2was more highly expressed than RNU4-Iin all tissues
(averageratio: 1.63; Fig. 3a). Conversely, individual expression of RNU6
genes and pseudogenes in the retina could not be reliably quantified
by RNA-seq, since their sequences are identical, except for the last
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nucleotide. Therefore, we compared the total expression of RNU4 and
RNU6, regardless of their respective paralogs and pseudogenes. RNU6
expression was onaverage 3.39x higher across the three tissues, com-
pared with RNU4 (Fig. 3b). Of note, NSR and RPE had higher expression
of RNU4(2.51x) and RNU6 (6.09x) with respect to the choroid, anocular
tissue not directly involved in vision, used as a control (Fig. 3b). This
observation is in agreement with previous data showing that snRNA
expressionintheretinais approximately sixfold higher compared with
muscle, testis, heart and brain*, indicating a high demand for snRNAs
inthese two retinal layers.

In addition, we analyzed the Assay for Transposase-Accessible
Chromatin using sequencing (ATAC-seq) and H3K27ac chromatin
immunoprecipitation followed by sequencing (ChIP-seq) data from
retinal tissues® in genomic regions spanning all RNU4 and RNU6
sequences. ATAC-seq assesses chromatin accessibility across the
genome, while H3K27ac ChIP-seq reveals the presence of active
enhancers. These data, combined, indicate potential active transcrip-
tion at promoter regions. Our analysis showed clear transcription
marks in all paralogous RNU4 and RNU6 genes in the retina (Fig. 3¢,d).

Conversely, these signatures were absent from the 105 U4 pseudo-
genes and the 1,312 U6 pseudogenes, except for RNU4-8P, which dis-
played strong signals, but probably by virtue of its close proximity to
the ACTRIB promoter. Of note, RNU6-92P and RNU6-656P had high
ATAC-seq signals but very low H3K27ac signals at their respective
promoters (Fig. 3d).

We performed the same analysis for other snRNA genes present
in the human genome, which revealed a similar trend: all RNU genes,
with the exception of RVUSF-1, had marks of active transcription and
only afewamong the thousands of RNU pseudogenes displayed signals
compatible with potential expression, therefore representing plausible
candidate genes for retinal disease (Supplementary Fig. 6). In addi-
tion, RNU2-2 was recently implicated in NDD, yet without evidence of
ocularinvolvement®. Interestingly, the same type of analysis, based on
conservation and expression datafrom GTEx, was recently performed
by others, showing similar results.

For RNU6-7, both ATAC-seq and H3K27ac signals were within the
same range as those observed for other RNU6 genes (Fig. 3d), and,
therefore, the absence of pathogenic variants could not be explained
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by a potential differential expression. We thus analyzed the genetic
landscape of variations in healthy individuals in all five U6 paralogs
and observed that RNU6-7 displayed alower number of variants, com-
pared with the others (Supplementary Fig. 7). We also identified the
recurrent variant n.55_56insG in RNU6-7 in six control individuals of
African or African American ancestryingnomAD v.4.1(allele frequency
(AF) =0.014%) and in 14 individuals of African origin in the All of Us
database (AF = 0.013%). These seemingly contradictory observations
merit further investigations in future studies.

Transcriptome analysis in patients

We performed transcriptome analysis following the collection of RNA
fromcirculating leukocytes in nine affected individuals carrying vari-
antsin RNU4-2, RNU6-1and RNU6-9 (three individuals per gene), as well
asfrom 14 healthy controls (Supplementary Table 6). To avoid system-
atic errors linked to the use of different collection kits* across our
cohort (Methods), we performed independent case-control tests for
samples collected with PAXgenekits (three RNU4-2 cases, six controls)
or Tempus kits (six RNU6 cases, eight controls). We identified 27 and
eight differentially expressed genes in the two datasets, respectively,
withno gene overlap (fold-change > 2 and false discoveryrate (FDR) P
value < 0.05; Supplementary Table 7), indicating no major differencesin
global gene expressioninleukocytes in cases versus controls. We then
further explored the databy investigating potential bias in pre-mRNA
splicing, as performed in ref. 11. This analysis led to the identification
of 107 upregulated and 67 downregulated 5 splice sites in the PAX-
gene set, and 37 upregulated and 13 downregulated 5" splice sites in
the Tempus set, with only two sites in common between the datasets
(in the genes CLEC2D and SNHG29; Supplementary Table 8). At these
twossites the expression differences, although statistically significant,
were below 10%.

We then examined the DNA sequences of the 224 differentially
expressed splicesites, focusing on the occurrence of the ‘AG’ dinucleo-
tide at positions —2/-1, which was previously reported to be enriched
insiteswith increased splicing in RNU4-2in patients with NDD". No dif-
ferencesin‘AG’ frequency were observed between sites with increased
versus decreased usage in either the PAXgene or Tempus samples
(two-tailed Fisher’s test, P= 0.63 and P=0.52, respectively). We also
compared nucleotide frequencies at each position between upregu-
lated and downregulated splice sites, separately for the two groups,
and found no significant differences (two-tailed Fisher’s test with FDR
correction, P< 0.05). A similar analysis of overlapping dinucleotides
across the region flanking the 5’ splice site (for example, positions
-4/-3,-3/-2,up to +7/+8) revealed no significant differences.

Functional effects of RP variants

Since PRPF variants associated with RP affect primarily spliceosomal
assembly®?, we investigated whether the same phenomenon could be
driven by the variants detected in this work. Specifically, we immu-
nopurified ectopically expressed U4 and U6 snRNAs containing the RP
variants and analyzed their association with specific markers for the U6
snRNP (SART3), the U4/U6 di-snRNP (SART3 and PRPF31), the U4/U6.U5
tri-snRNP (PRPF31and SNRNP200) and the U5 snRNP (SNRNP200). The
combined results showed anincreased association of snRNA constructs
with RP variants with SART3 and partially with PRPF31, while theinterac-
tion with SNRNP200 was unchanged or reduced (Fig. 4). For compari-
son, weincludedinourassays the U4 n.64_65insT variant, which causes
NDD, and observed no significantalterationin the association with any
ofthe proteins tested, compared with wild type (Fig. 4a). Additionally,
no significant differences were detected between NDD and RP vari-
ants, pointing to the need for targeted functional studies to delineate
their respectiveimpacts on spliceosome dynamics. Similarly, U6 RNA
bearing the n.55_56insT and n.57T>G variants, observed in healthy
controlindividuals, presumably did not affect spliceosome formation,
since the low amount of protein associated with them implies that they

entered the spliceosome assembly process only minimally (Fig. 4b).
Taken together, the results indicate that RP pathogenic variants have
potentially a specific dominant effect on snRNP biogenesis and delay
the assembly process at the di-snRNP stage.

Discussion

The numerous genes associated with RP and allied diseases belong to
awide range of functional classes, from retina-specific biochemical
pathways to ubiquitous cellular processes®. Yet, how these defects
ultimately lead to retinal degeneration often remains unclear. The
link between pathogenic variants in splicing factors of the tri-snRNP
complex (RP-PRPFs), essential for survival in all eukaryotes, and RP, a
phenotype limited to the eye, represents perhaps the mostintriguing
of these biological enigmas.

In this study, we identified recurrent heterozygous variants in
RNU4-2,encoding U4 RNA, and in multiple paralogs of the U6 RNA as
a cause of RP. Interestingly, these snRNAs are also an integral part of
the di-and tri-snRNP and directly interact with some RP-PRPF proteins.
In addition, similar to RP-PRPFs, they are also associated with the
same specific phenotype: de novo or inherited adRP, with reduced
penetrance for RNU4-2variants. Importantly, the clinical presentation
of patients with RNU4-2and RNU6 variants overlaps with that of other
spliceosome-related forms of adRP, particularly showing an earlier
onset—contrasting with the generally milder prognosis observed
in most other adRP types***—and a relatively high co-occurrence of
featuressuch as cataracts and cystoid macular edema, foundin cases
with PRPF31°**, PRPF&*° and SNRNP200* variants. Prevalence estima-
tionsindicate that these snRNA pathogenic changes may account for
anelevated number of undiagnosed cases, and it is therefore surpris-
ing that the RNU4 and RNU6 genes have escaped disease association
until now. A partial explanation for this phenomenon is that main-
stream sequencing approaches are biased towards DNA-capturing
procedures that do notinclude snRNA genes. Furthermore, although
genome sequencing is increasingly being adopted in routine diag-
nostics, variants in snRNA genes may have remained undetected
because they affect noncoding transcripts, which are more challeng-
ingtointerpretand are often overlooked or deprioritized by standard
analytical pipelines.

An intriguing feature of pathogenic changes in RNU4-2 is their
pleiotropy with respect to NDD (ReNU syndrome) and RP. Chenetal.’
described that more than half of the patients with ReNU also display
some visual abnormalities, although only three were documented as
having retinal phenotypes (one had an abnormal electroretinogram
response, one had Leber congenital amaurosis and one presented with
macular dysfunction). However, most cases were too young to display
the typical symptoms of RP, which usually manifest during adolescence
or early adulthood*. Although the exact mechanism for this pheno-
typic selectivity is unknown, RNU4-2 variants represent a clear and
new allelic series involving noncoding RNA genes. A recent preprint
highlighted a strong effect of ReNU variants in an RNU4-2 saturation
genome editing experiment, while the RP variantn.56T>Cinthesame
gene did not show any statistically significant effect®. Inaddition, the
region of RNU4-2 containing RP variants showed function scores within
the neutral range of the saturation genome editing assay*, suggesting
apotentially milder pathogenic effect compared with ReNU changes.
Itis therefore plausible that the RP variants identified in RNU4-2 and
RNUG6 paralogs could lead to photoreceptor death and subsequent
visual loss, while having no influence on the development of the brain.
Additionally, ReNU variants arelocated in the stem-Illand the T-loop of
the U4/U6 duplex and interfere with the proper recognition of intronic
5’ splice signals, likely because these regions are involved in pairing
pre-mRNA with U6 (ref. 9). In contrast, RP variants cluster in spatial
proximity to the three-way junction, in regions not directly engaged
ininteractions with pre-mRNA but that are involved in the binding of
various proteins, including RP-associated splicing factors.
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Fig. 4 | Effects of RP variants in RNU4-2 and RNU6 on snRNP maturation.

a,b, Immunoprecipitation of U4-MS2 (WT and variants) (a) and U6-MS2

(WT and variants) (b). snRNPs were immunoprecipitated viaMS2-YFP by anti-GFP
antibodies and co-precipitated proteins were detected by western blotting.

The position of the MS2loop (green) in snRNAs isindicated. Four independent
experiments were quantified. Inmunoprecipitated proteins are normalized to

inputand U4 or U6 WT controls. Middle bars indicate average values and error
bars the s.e.m. Statistical significance was analyzed by the two-tailed unpaired
t-testand the Pvalues were adjusted using the Benjamini-Hochberg FDR
method to control for false discoveries. Pvalues < 0.05 are indicated. Full-length
blots and antibody validation are provided as Source Data. Ctrl, control; IP,
immunoprecipitation; WT, wild type.

Consistent with this evidence, we did not observe any major
splicing anomalies in transcripts from patients with RP, with the only
two significant events showing differences below 10% in expression.
Conversely, our biochemical assays support a role for RP-associated
variants in altering spliceosomal assembly. As the magnitude of the
observed changes was in all instances rather moderate (less than
1.5-fold with respect to controls), we interpret these data as indicat-
ing that snRNA variants associated with RP are unlikely to prevent
the assembly of spliceosomal complexes. Rather, they may cause a
subtle alterationin snRNP dynamics, possibly affecting the efficiency
of their biogenesis or recycling steps. In particular, the increased
association with SART3 and, to a lesser extent, with PRPF31, together
with unchanged or slightly reduced interaction with SNRNP200, may

indicate a modest delay in the transition from the di-snRNP to the
tri-snRNP form. Moreover, the pathogenic variants identified in this
study lie within regions of the U4/U6 duplex that directly contact the
PRPF3 and PRPF31 proteins, two splicing factors linked toadRP whose
mutations also delay spliceosomal complex assembly?,

Interms of specific molecular effect, our functional data show that
snRNAsbearing RP variants display enhanced interaction with di-snRNP
protein markers, suggesting that pathogenesis could result from a
gain-of-function or dominant-negative mechanism, rather than from
haploinsufficiency. This hypothesis is strengthened by the evidence
that molecularly similar but benign variants, commonly observed
in the general population, seem not to bind efficiently to di-snRNP
markers and potentially not tobe incorporated into the spliceosome,
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supporting the idea that spliceosomal functions could be haplosuf-
ficient with respect to heterozygous and snRNA-depleting variants.

Although DNA changes associating RNU4-2 to ReNU syndrome
have been primarily reported as de novo events®?, in our study most
families with RP (61%) bore RNU4-2 and RNU6 changes as inherited
variants. In part, this difference can be explained by the reduced repro-
ductive fitness associated with NDD versus RP. Unlike ReNU syndrome,
symptomatic onset (night-blindness and peripheral vision loss) in
nonsyndromic adRP begins later in life, with severe central vision loss
usually occurring after the onset of reproductive age. Another differ-
ence involves the inheritance of dominant variants, which in ReNU
seems to be almost exclusively of maternal origin’. We did not observe
thesametrend for RP, with variants being inherited from either of the
parents, possibly indicating the absence of any sex-specific negative
selection during gametogenesis or at the embryonic stage.

The human genome contains two RNU4 paralogs and five RNU6
paralogs. This indicates that, assuming equal expression within para-
logs, the presence of only ~25% of mutant U4 (heterozygous genotype,
over two copies) or ~10% of mutant U6 (heterozygous genotype, over
five copies) is sufficient tolead to a disease phenotype, againin support
of a gain-of-function or dominant-negative molecular mechanism.
This could be a crucial consideration for the development of potential
gene-based therapies, as gene-augmentation strategies may be sub-
optimal compared with gene correction or antisense oligonucleotide
approaches. Our data also highlight the existence of mutational hot-
spots outside the coding regions of the human genome, emphasizing
the need for further research into these parts of our genetic material,
and show that the clustering of de novo pathogenic variants is not
restricted to severe diseases with childhood onset**, but may extend
to milder pathologies, such asRP.

In conclusion, we identified four recurrent pathogenic variantsin
RNU4-2 and in four of the five paralogs of the U6 snRNA as a frequent
cause of denovoorinherited adRP. Theimmediate impact of these find-
ingsinvolvesimproved diagnosis and genetic counseling for patients
with hereditary visual loss, especially for isolated cases who could
potentially bear heterozygous de novo events. More fundamentally,
this work substantially broadens our understanding of the genetic
landscape of human disease, paving the way for the development of
new molecular therapeutic approaches.
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Methods

Patients and DNA samples

This study adhered to the tenets of the Declaration of Helsinki, and
signed, informed consent was obtained from all participants. All
procedures were conducted in accordance with Institutional Review
Board-approved human research protocols and were approved by
the ethics committees of the Radboud University Medical Center
(Nijmegen, the Netherlands) and the Rotterdam Eye Hospital (Rot-
terdam, the Netherlands) (MEC-2010-359; OZR protocol no.2009-32),
and thelocal ethics committees of all other participatinginstitutions.

Clinical characterization and analysis

Complete ophthalmic examinations were performed by aretinal spe-
cialist, whichincluded measurement of best-corrected visual acuity and
intraocular pressures, and examination of anterior segmentand fundus
(dilated). Color fundus photographs and montages were captured
using the FF450plus Fundus Camera (Carl Zeiss Meditec) and Optos
200 Tx (Optos). Fundus autofluorescence images (488-nmexcitation)
and high-resolution spectral-domain optical coherence tomography
(SD-OCT) scans were acquired using the Spectralis HRA+OCT module
(Heidelberg Engineering). Hyper-autofluorescent ring contours were
analyzed using a custom program in FlJI software (National Institute
of Mental Health)*. Progression rates were calculated using linear
mixed-effects regressioninR (v.4.0.4) withtime (years) since baseline as
the primaryindependentvariable, baselinering size as a covariate and
inter-ocular differences as arandom effect. Photoreceptor+thickness
was assessed on horizontal SD-OCT scans through the fovea using a
semi-automated procedure*®. Photoreceptor+was defined as the dis-
tance between the Bruch’s membrane/choroid interface and the inner
nuclear layer/outer plexiform layer boundary. Layer segmentation was
performed in a semi-automated manner using a custom software in
MatLab (MathWorks). Full-field electroretinogram recordings were
conducted using the Espion Visual Electrophysiology System (Diagno-
sys) according to International Society for Clinical Electrophysiology
of Vision (ISCEV) standards"’.

Genome sequencing and annotation

Genomic DNA from probands was isolated from peripheral blood
lymphocytes according to standard procedures. Sequencing was
performed by BGI Tech Solutions using the DNBseq Sequencing
Technology, with aminimal median coverage per genome of 30x. The
processing of the sequencing datawas performed by using BWA mem
(v.0.7.17)*%, Picard (v.2.14.0-SNAPSHOT) (http://broadinstitute.github.
io/picard) and GATK (v.4.1.4.1)*° for mapping to the human genome
reference sequence (build hgl9/GRCh37) and variant calling®. For
variant annotation, we used ANNOVAR®® with the addition of splicing
predictions by MaxEntScan® and SpliceAl"”.

Assessment of variants

Human Genome Variation Society (HGVS) notations of the variants
wereretrieved using VariantValidator’? and American College of Medi-
cal Genetics and Genomics (ACMG) classification® was applied accord-
ing to the ACGS Best Practice Guidelines for Variant Classification in
Rare Disease 2023, In particular, we used the PS4_strong criterion for
variants significantly enriched in cases versus controls (gnomAD v.4.1
and All of Us), as assessed for each variant by two-tailed Fisher’s exact
testinR (fisher.test function), inagreement with the ACMG recommen-
dations> (odds ratio > 5.0, lower bound of the confidence interval > 1.0,
corrected Pvalue < 0.05), but only for variants presentinat least three
probands to avoid any bias from imbalanced case-control sets. This
assessment was made using probands only (n=1,891) for all variants,
except forthosein Supplementary Table 1, which were assessed in 4,722
individuals. PM6 and PP1were applied according to ClinGen Sequence
Variant Interpretation (SVI) recommendations. Specifically, PM6_sup
was applied whentwo unrelated families had de novo variants without

parental confirmation, given that RP is a ‘phenotype consistent with
gene butnot highly specific and high genetic heterogeneity’. PP1_sup,
PP1_mod and PP1_strong were assigned when the variant segregated
with disease in 21, >2 and >5 informative meioses, respectively®. We
defined thresholds for PM2_sup and BS2 based on the frequency of
RHO p.(Pro23His), the most prevalent variant causing adRP, which was
detected once in gnomAD v.4.1and 13 times in All of Us. Specifically,
PM2_sup was assigned to variants that were present fewer than two
times in gnomAD v.4.1 and fewer than 14 times in All of Us. BS2 was
applied to variants that were observed more than four times in gno-
mAD v.4.1or more than28 timesin All of Us, that s, twice the values of
p.(Pro23His). PM2_sup was not applied to variants for which the PS4
criterion had already been used, to avoid double-counting evidence
related to their low frequency in gnomAD. BA1 was considered for
variants with allele frequency >5% in gnomAD v.4.1 or the All of Us
databases, whereas BS1was assigned to variants with allele frequencies
greater than expected for disease (1/2,000 = 0.05%).

Screening by Sanger sequencing

Genomic DNA was collected, and RNU4-1, RNU4-2, RNU6-1, RNU6-2,
RNU6-7, RNU6-8 and RNU6-9 genes were amplified using standard PCR
procedures. RNU4-1, RNU4-2, RNU6-1, RNU6-2, RNU6-7, RNU6-8 and
RNU6-9PCR fragments were sequenced using Sanger sequencing and
screened for novel variants in these genes.

Two-dimensional modeling of the effect of variants and
three-dimensional representation

We utilized RNAfold WebServer to model the effect of variants with
default parameters®® and RNAcanvas was used for drawing the struc-
ture”. We used ChimeraX with PDB file, using PDB file 6QW6 to draw
three-dimensional representation of the U4/U6 duplex with and with-
out surrounding PRPF proteins.

RNA-seq experiments and analysis
RNA was isolated from human donor eye tissue, which was collected
and dissected according a reported procedure’ from an ethically
approved Research Tissue Bank (UK NHS Health Research Authority
reference no. 15/NW/0932). Total RNA was isolated from four NSR
samples, 16 pelleted RPE samples and 13 choroid samples thathad been
stored in RNAlater (Thermo Fisher Scientific), using an Animal Tissue
RNA Purification kit (Norgen Biotek), as per manufacturer’s instruc-
tions. Sequencing libraries were prepared using the NEBnext multiplex
smallRNAlibrary preparationkit, as per manufacturer’s protocols, with
size selection performed using Ampure beads. Paired-end sequencing
(2 x 75 base pairs (bp)) was performed on an Illumina HiSeq 4000.
NEBnext adapters were removed from sequencing reads using
trimmomatic (v.0.39) before alignment against the GRCh38 reference
genome with bowtie* (v.1.3). No mismatches between sequencing
reads and the reference genome were allowed, and no restriction was
set on multi-mapping reads. Sequence read counts were restricted
to primary alignments using samtools (v.1.21)°°, and therefore only
counted once if they aligned to multiple RNU4 (n=90) or RNU6
(n=1,277) genes or pseudogenes. Calculations were drawn from read
1datasets and normalized for the total read count achieved for the
sample. Total RNU4 and RNU6 expression was based on all annotated
genes and pseudogenesin GENCODE v.38.

ATAC-seqand H3K27ac ChIP-seq data

ATAC-seq datafromref. 61 (eight different experiments) and H3K27ac
ChIP-seq data from ref. 62 (five different experiments) were down-
loaded as bigwig files from the RegRet database (http://genome.ucsc.
edu/s/stvdsomp/RegRet)®*. For both data types, the signal (the genes
and 500 bp on each side) was extracted using bedtools (v.2.27.1) after
conversion using bigWigToWig (v.469). We quantified the signal for
all RNU genes and pseudogenes first by normalizing the signal of each
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experiment to the maximum and then summing them. For RNU4,
we quantified two genes and 105 pseudogenes, while for RNU6 we
assessed five genes and 1,312 pseudogenes, in addition to RNU4ATAC
and RNUGATAC.

RNA-seq fromblood RNA
Peripheral blood samples were collected from affected individuals and
controls using either Tempus Blood RNA tubes (Applied Biosystems) or
PAXgene Blood RNA tubes (Qiagen). Total leukocyte RNA was extracted
with the Tempus Spin RNA Isolation Kit (Applied Biosystems) or the
Preserved Blood RNA Purification Kit Il (Norgen Biotek), respectively,
following the manufacturers’ protocols. Following the quality assess-
ment of RNA integrity and concentration, 100 ng of input RNA per sam-
ple was subsequently processed for library preparation using the KAPA
RNA HyperPrep Kit with RiboErase (HMR) and KAPA Globin Depletion
Hybridization Oligos (Roche). Sequencing was performed onanlllumina
NovaSeq 6000 platform with 2 x 101-bp paired-end reads. Toimprove
quality score calculations for the final base, one additional base was
sequencedinbothreadlandread2.The Q30 value forallRNA-seq data
was >91.1%. Adapters were trimmed with Skewer (v.0.2.2)%*.
Readswere aligned to reference transcripts from Ensembl (v.110,
GRCh38) using STAR (v.2.7.11a) with the option --twopassMode Basic.
DESeq2 (v.1.46.0) with default options was used for differential expres-
sion analysis between different groups according to sample origin
(Tempus or PAXgene tubes) and presence/absence of the pathogenic
RNUgenotypes, with fold-change >2 and FDR Pvalue < 0.05. We used
rMATS® to assess differential alternative splicing, separately for the
Tempus and PAXgene sets and with specific options (--allow-clipping
--variable-read-length --anchorLength 1--novelSS --task both --libType
fr-unstranded -t paired --readLength101). We further used the Python
scripts from ref. 11 to process the rMATS output and filter the data
according to a mean coverage > 7, an FDR P value < 0.1 and a deltaPSI
value > 0.05. The R function fisher.test with default parameters was
used to assess differences in base compositions at splicing sites, at
eachposition, as well as differences for 2-mers (for example, positions
-4/-3to+7/+8).

U4 and U6 snRNP analysis

U4 n.18_19insA, n.56T>C and n.64_65insT variants were introduced
by site-directed mutagenesis into the plasmid expressing U4-MS2°°.
The full-length U6 sequence, including 256 bp upstream and 93 bp
downstream of the RNU6-1 gene, was inserted into the pcDNA3 plas-
mid lacking the CMV promoter. The MS2 loop was inserted between
nucleotides 10 and 11. U6 n.55_56insG, n.55_56insT, n.56_57insG and
n.57G>T variants were introduced by site-directed mutagenesis. U4-
and U6-expressing plasmids were transfected into HeLa cells stably
expressing MS2-YFP protein. At 24 h after transfection, snRNAs were
immunoprecipitated using anti-GFP antibodies and co-precipitated
proteins were analyzed by western blotting®®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Research on the de-identified patient data used in this publication
from the Genomics England 100,000 Genomes Project and the NHS
GMS dataset can be carried out in the Genomics England Research
Environment subject to a collaborative agreement that adheres to
patient-led governance. All interested readers will be able to access
the data in the same manner that the authors accessed the data. For
more information about accessing the data, interested readers may
contact research-network@genomicsengland.co.uk or access the
relevantinformation on the Genomics England website: https://www.
genomicsengland.co.uk/research. Sharing of additional sequencing or

blood RNA-seq datais subject to the European General Data Protection
Regulation (GDPR) applicablein the countries of residence of the tested
individuals and may become available upon a data transfer agreement
approved by local ethical committees. Patient sample identifiers from
this study canbe released upon reasonable request from ‘M1-A to M9-B’
tothe corresponding local ‘DNA-number’. Specific variant requests or
other data are available from the corresponding author (S.R.) upon
reasonable request. The data generated during this study (causative
variants from Supplementary Table 1) are submitted to the Leiden Open
(source) Variation Database (LOVD) (http://www.lovd.nl) and ClinVar
(accession codes SCV006562526 to SCV006562534). Sequences of
primers used in this study are listed in Supplementary Table 9. Addi-
tional details regarding PCR conditions or primer design are available
uponrequest. Detailed information onantibodies used are provided in
Supplementary Table 10. Small RNA-seq datasets analyzed in this study
are available at the NCBI Sequence Read Archive through accession
PRJNA1256119 (https://www.ncbi.nlm.nih.gov/sra/PRJNA1256119). The
genes and pseudogenes analyzed are present in Supplementary Table 11
and the read counts are available in Supplementary Table 12. Source
data are provided with this paper.
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