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Global multi-ancestry genome-wide analyses 
identify genes and biological pathways 
associated with thyroid cancer and benign 
thyroid diseases
 

Thyroid diseases are common and highly heritable. We performed a 
meta-analysis of genome-wide association studies from 19 biobanks for 
five thyroid diseases: thyroid cancer (ThC), benign nodular goiter, Graves’ 
disease, lymphocytic thyroiditis and primary hypothyroidism. We analyzed 
genetic association data from ~2.9 million genomes and identified 313 known 
and 570 new independent loci linked to thyroid diseases. We discovered 
genetic correlations between ThC, benign nodular goiter and autoimmune 
thyroid diseases (rg = 0.16–0.97). Telomere maintenance genes contributed 
to benign and malignant thyroid nodular disease risk, whereas cell cycle, 
DNA repair and damage response genes were associated with ThC. We 
propose a paradigm that explains genetic predisposition to benign and 
malignant thyroid nodules. We found polygenic risk score associations with 
ThC risk of structural disease recurrence, tumor size, multifocality, lymph 
node metastases and extranodal extension. Polygenic risk scores identified 
individuals with aggressive ThC in a biobank, creating an opportunity for 
genetically informed population screening.

Thyroid diseases are highly prevalent. According to the American 
Thyroid Association (ATA), over 12% of the US population develops a 
thyroid condition during their lifetime (www.thyroid.org/media-main/
press-room/). Thyroid cancer (ThC)is the most common endocrine 
malignancy, with 44,020 new cases and 2,170 deaths in the United States 
in 2024 (ref. 1). Thyroid function diseases, hypothyroidism and hyper-
thyroidism, negatively affect most organ systems and are associated 
with disproportionate cardiovascular mortality2. It is not well under-
stood why some individuals develop thyroid disease, although genetic3,4 
and environmental factors, such as radiation exposure5, have a role.

Genetic effects are estimated to contribute up to 53% to ThC sus-
ceptibility in family studies3,4, making ThC one of the most heritable 
common cancers3,6. For autoimmune thyroid diseases, genetic factors 
account for approximately 75% of the total phenotypic variance7.

Ruling out thyroid malignancy is a common clinical task because 
of the high prevalence of thyroid nodules. Thyroid ultrasound reveals 
nodules in up to 65% of the general population8,9. Clinical providers 

assess thyroid nodule sonographic characteristics10 to decide if a 
fine-needle aspiration (FNA) biopsy is necessary. Over 600,000 FNAs 
are performed annually in the United States to rule out cancer11, and 
most (~92%) produce benign, inadequate or indeterminate results12,13. 
Genetic ThC risk assessment with polygenic risk score (PRS) provides 
an opportunity to improve the diagnostic yield of FNA and reduce 
unnecessary procedures, molecular tests and diagnostic surgeries14.

Some ThCs are aggressive, with extensive local invasive growth 
and distant metastases, leading to ~45,600 deaths annually world-
wide15. Diagnosing aggressive ThC early, when it can be cured with neck 
surgery and radioactive iodine16, can dramatically decrease mortality 
from the disease. A test to identify individuals at risk of aggressive ThC 
has not yet been developed. This motivated us to study PRS associa-
tions with the high-risk features of ThC.

Discovering genetic variants predisposing to ThC and benign 
thyroid conditions helps in understanding the biological processes 
leading to disease. Several genome-wide association studies (GWAS) 
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Results
The study had three phases (Fig. 1): (1) variant discovery: GWAS,  
quality control procedures and meta-analysis; (2) functional infer-
ence: genetic correlations, transcriptome-wide association studies 
(TWAS), pathway and gene expression analyses; and (3) clinical studies:  
PRS development, testing on the clinical use case of distinguishing 
benign from malignant thyroid nodules, testing for associations with 
cancer aggressiveness and testing the utility of PRS for aggressive 
ThC screening.

Virtual Thyroid Biopsy Consortium
We founded the Virtual Thyroid Biopsy (VTB) Consortium (Extended  
Data Fig. 1) under the GBMI (www.globalbiobankmeta.org/)23 to study  
the genetic architecture of thyroid diseases at a global multi-ancestry 

have been conducted on ThC17–22. Most recently, the Global Biobank 
Meta-analysis (GBMI) Consortium combined data from 6,699  
individuals with ThC and ~2.2 million controls23. GWAS for benign  
thyroid diseases and related traits, such as thyroid-stimulating hormone  
(TSH) levels, have been performed in large biobanks, including the  
UK Biobank (UKB)24, FinnGen25, Million Veteran Program26 and  
others27. However, a systematic analysis of underlying genes, pathways 
and clinical relevance is missing.

Platforms such as the GBMI (www.globalbiobankmeta.org/ 
(ref. 23)) enable global collaborations among dozens of participat-
ing biobanks, resulting in unmatched GWAS discovery power and 
data diversity, particularly relevant to cross-phenotype investiga-
tions. In this study, we report results from a GBMI project dedicated 
to thyroid diseases.
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Fig. 1 | Study design. I. The VTB Consortium was established within the 
framework of the GBMI. The participating biobanks performed GWAS for five 
thyroid diseases. II. An inverse-variance-weighted meta-analysis was conducted 
after quality control procedures. Previously known and new independent genetic 
associations were identified. III. Functional inference studies included genetic 
correlation analysis with cov-LDSC. Asterisks denote Benjamini–Hochberg false 

discovery rate (FDR) < 0.05. IV. TWAS (FUSION and S-PrediXcan). V. Pathway 
(KEGG and Reactome) and gene expression analyses (TCGA and ORIEN AVATAR). 
VI. PRS were developed for ThC, benign thyroid diseases and to distinguish 
malignant and benign thyroid nodules. VII. PRS were tested for association with 
thyroid diseases and aggressive ThC features extracted from clinical charts and 
surgical histopathology reports.
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scale. The Consortium aggregates data from 19 biobanks in ten  
countries and four continents (Supplementary Table 1). Biobanks 
performed multi-ancestry or ancestry-stratified GWAS for five  
thyroid diseases: ThC, benign nodular goiter (BNG), Graves’ disease 
(GD), lymphocytic thyroiditis (LT) and primary hypothyroidism.  
In addition, a GWAS of ThC versus BNG was performed, focusing on  
the common clinical task of determining malignancy in thyroid  
nodules. Phenotype and GWAS definitions are listed in Supplementary  
Tables 2 and 3.

Meta-analysis of GWAS
The meta-analysis aggregated data from 198 GWAS summary data files 
(Supplementary Table 4). Individual GWAS runs were well controlled 
for confounding (covariate-adjusted linkage disequilibrium score 
regression (cov-LDSC)28 y axis intercept 1.00 ± 0.05 (mean ± s.d.)). 
Healthcare system-based biobanks had a higher disease prevalence 
than population-based biobanks (Extended Data Fig. 2), as reported 
previously23. BioMe, the All of Us Research Program (AoU) and the  
Million Veteran Program biobanks had the most diverse participant 
pools measured using Summix2 (ref. 29).

The meta-analysis included 21,816 cases of ThC, 68,987 cases of 
BNG, 18,719 cases of GD, 18,331 cases of LT, 257,365 cases of primary 
hypothyroidism and ~2.9 million controls (Supplementary Table 3). 
Population structure was determined with Summix2 (ref. 29) via mix-
ture modeling of study-based allele frequencies compared to the 
gnomAD reference panel30. Seventeen percent of genotypes were 
from individuals of African (AFR-like), 4.4% from Admixed American 
(AMR-like), 8.1% from East Asian (EAS-like) and 70.5% from European 
(EUR-like) ancestries.

We found 883 independent loci significantly (P ≤ 5 × 10−8) 
associated with thyroid diseases, including mixed-ancestry and 
ancestry-stratified genetic associations (Supplementary Tables 5,  
and 6.1–6.6 and Supplementary Fig. 1). Of these, 313 variants were 
reported to the NHGRI-EBI Catalog31 for thyroid traits (as of April  
2024); 570 loci were new. Most lead variants were intronic (n = 407),  
followed by intergenic variants (n = 302). Among 46 significant 
exonic variants, 43 were nonsynonymous, potentially altering 
protein function.

The ancestry-stratified GWAS replicated many associations  
from the mixed-ancestry meta-analysis and discovered many  
additional associations (Supplementary Tables 6.1–6.6; variant 
IDs are indicated by asterisks, n = 148). For example, a rare (minor 
allele frequency (MAF) = 0.0007) nonsynonymous exonic variant  
in the shelterin complex gene TERF1 (8:73046129:G:A, β = 1.32, 
P = 1.08 × 10−9) was significantly associated with ThC only in the  
EUR-like meta-analysis (mixed-ancestry GWAS β = 1.16, P = 5.5 × 10−4). 
Another plausible EUR-like meta-analysis association is DIO1 in  
hypothyroidism (1:53909897:C:A, β = −0.024, P = 5.06 × 10−11). DIO1 
encodes an enzyme that converts pro-hormone thyroxine to the active 
thyroid hormone tri-iodothyronine32.

Single-nucleotide polymorphism heritability and genetic 
correlation
The cov-LDSC-estimated h2

SNP  ranged from 0.07 (s.e. = 0.01) for  
BNG in the mixed-ancestry meta-analysis to 0.11 (0.01) for the mixed- 
ancestry hypothyroidism meta-analysis (Supplementary Table 7).

There was a strong genetic correlation between LT and hypo
thyroidism (mixed-ancestry, rg = 0.97 (0.04), P = 2.05 × 10−106, Fig. 2 and 
Supplementary Table 8). We found significant (Benjamini–Hochberg 
false discovery rate (FDR) < 0.05) genetic correlations between LT 
and GD (rg = 0.62 (0.09)), LT and BNG (rg = 0.16 (0.07)), ThC and BNG 
(rg = 0.41 (0.16)), GD and hypothyroidism (rg = 0.37 (0.07)), GD and 
BNG (rg = 0.31 (0.07)), and GD and ThC (rg = 0.20 (0.05)). Genetic cor-
relation analysis in the EUR-like meta-analysis yielded similar results 
(Extended Data Fig. 3 and Supplementary Table 8).

TWAS
We performed a cis-acting expression quantitative trait locus  
(cis-eQTL) TWAS using two methods, FUSION33 and Summary-based 
PrediXcan (S-PrediXcan)34,35, and GTEx v.8 thyroid tissue expression  
models36, to identify potential causal variants affecting gene expres-
sion and assign intergenic and noncoding RNA variants to protein- 
coding genes.

The FUSION TWAS, as applied to the mixed-ancestry and EUR-like 
ThC GWAS meta-analysis, identified the expression of 55 unique 
protein-coding genes (Supplementary Tables 9.1 and 9.2). FUSION 
also identified 47 and 45 significant (after Bonferroni adjustment) 
lead cis-eQTL variants from the mixed-ancestry and EUR-like GWAS, 
respectively. The TWAS attributed many significant intergenic and 
noncoding variants to protein-coding genes based on reported eQTL 
status. For example, noncoding RNA intronic variant 1:218515813:T:C 
(mixed-ancestry ThC GWAS meta-analysis P = 4.07 × 10−39) was 
attributed to the expression of TGFB2 in the TWAS (P = 3.59 × 10−61). 
Most significant genes found by the FUSION TWAS were also repli-
cated by S-PrediXcan, indicating the analytical rigor of our analyses 
(Supplementary Tables 6.1–6.6).

Consistent with a genetic overlap between thyroid diseases 
(Fig. 2, Extended Data Fig. 3 and Supplementary Table 8), we found 
that many genes were discovered in more than one thyroid pheno-
type TWAS (Supplementary Table 9.3). For example, cis-eQTLs and 
expression of TGFB2 were associated with all thyroid diseases in 
our analysis and the TSH trait37. Plausibly, most overlap in the TWAS 
analyses was between autoimmune thyroid diseases and TSH37, a  
hormone that is clinically measured to diagnose hypothyroidism and 
GD (Supplementary Table 9.4).

The TWAS found additional significant genes where the GWAS 
meta-analysis failed to identify genome-wide significant associations, 
for example, VEGFC (P = 1.30 × 10−6) and NBR1 (P = 1.02 × 10−6), further 
expanding our knowledge of genes associated with ThC risk.

Gene expression analysis
We evaluated the mRNA expression of genes discovered in the ThC 
GWAS meta-analysis and the TWAS in normal and malignant thyroid 
tissues (Extended Data Fig. 4 and Supplementary Table 10). Of the 20 
evaluated tissues38, normal thyroid tissue was among the top three 
highest-expressing tissues for 20 genes. Two genes, TG and NKX2-1, 
are expressed only in the thyroid.

The expression of six genes (ETS1, HMGA2, NFIA, PCNX2, PIBF1 and 
VAV3) significantly correlated with younger age at ThC diagnosis in The 
Cancer Genome Atlas (TCGA) study for papillary ThC (THCA-TCGA)39 
or the Oncology Research Information Exchange Network (ORIEN) 
AVATAR study (www.oriencancer.org/) (Bonferroni-corrected 
P ≤ 1.08 × 10−4). TERT expression correlated with older age at diagno-
sis (P = 1.6 × 10−8), matching a similar association with somatic TERT 
promoter mutations40. The expression of 23 genes was positively cor-
related with at least one clinical or molecular ThC risk feature: younger 
age at diagnosis, higher stage, presence of extrathyroidal extension, 
lower BRAF/RAS score (indicating a BRAF-like expression profile39), 
higher ERK score (measuring RAS/MAPK pathway activity) and lower 
ThC differentiation (estimated with thyroid differentiation score39; 
Extended Data Fig. 4 and Supplementary Table 10).

Pleiotropic and disease-specific associations
ThC and BNG. We do not know why some patients develop BNGs  
while others get ThC. To understand the cellular functions and  
pathways leading to benign or malignant thyroid nodular disease, we 
explored pleiotropic, and ThC-specific and BNG-specific, loci (Fig. 2).

We generated locus plots for independent lead variants from  
the GWAS meta-analysis (Supplementary Fig. 2.1–2.3). We catego-
rized loci and genes as those significantly associated with: (1) ThC  
but not BNG (may contribute to malignant transformation of  
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follicular cells; Supplementary Table 11 and Supplementary  
Fig. 2.1); (2) BNG but not ThC (may lead to nonneoplastic thyroid nodules  
and thyroid neoplasms with low malignant potential; Supplemen-
tary Fig. 2.2); and (3) both benign and malignant thyroid nodules 
(Supplementary Fig. 2.3).

Among 36 loci associated with ThC but not BNG, seven are in genes 
that encode components of cell cycle checkpoints, proteins regulat-
ing centrosome and kinetochore function, microtubule attachment  
and chromosome segregation (CDCA7L, CENPE, CEP120, CHEK2, 
NUF2, PMF1, TP53). The ThC-specific locus C11orf65 overlaps with the 
cell cycle checkpoint kinase gene ATM (for example, 11:108267276,  
ATM p.Phe858Leu, P = 4.8 × 10−9), which is frequently mutated in 
advanced ThC41,42. Locus LINC01730 contains variants in the cell cycle 
regulator gene CDC25B (20:3805337:C:T, CDC25B 3′UTR, P = 3.1 × 10−10). 
Loci HAUS6 (microtubule attachment to the kinetochore and central 
spindle formation43) and SDCCAG8 (centrosome-associated protein44) 
demonstrate a stronger association with ThC despite the greater  
statistical power of the BNG GWAS meta-analysis.

Five genes with ThC-specific associations have a role in DNA 
repair and cellular response to DNA damage (ATM, DCLRE1B, PCNX2, 
EXO1, TP53).

BNG-specific loci (n = 56) are located in genes participating  
in insulin-like growth factor 1 (IGF1 and IGF2BP2) and fibroblast  
growth factor (FGF7 (FAM227B locus) and FRS2) signaling pathways. 
Genes having a role in thyroid gland development and thyroid hormone 
synthesis were linked to benign nodules (GLIS3, TPO) but some are also 
associated with ThC (NKX2-1 (LINC00609 locus), TG).

Notably, telomere maintenance genes (ACTRT3, LRRC6, STN1, 
TERT) were associated with both ThC and BNG. Genes participat-
ing in apoptosis and transforming growth factor-beta signaling 
are present in all three gene categories (Supplementary Table 11)  
and contribute to the development of both benign and malignant 
thyroid nodules. Variants in some of these overlapping genes (for 
example, TERT, 5:1282299:G:A, β = 0.15 [0.01], P value = 3.3 × 10−44; 
NRG1, 8:32572853:A:G, β = −0.24 [0.01], P value = 1.2 × 10−112) were 
also significant in our meta-analysis of thyroid cancer vs. benign 
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Fig. 2 | Pleiotropic and phenotype-specific loci associated with thyroid diseases 
in the meta-analysis of GWAS. The heatmap illustrates the genetic correlation 
(rg) between thyroid phenotypes, which was estimated using cov-LDSC. The 
asterisks denote significance at a Benjamini–Hochberg FDR < 0.05. Circular plots 
highlight loci significantly associated with ThC and BNG (right) and autoimmune 

thyroid diseases (left). Right, The red and blue dots, along with the gene labels, 
indicate loci predominantly associated with ThC and BNG, respectively. Left, The 
red dots indicate loci significantly associated with GD but not with LT or primary 
hypothyroidism. PTCSC2 (right, yellow) is the only locus inversely associated with 
ThC and BNG (Supplementary Tables 6.1–6.6 list all loci).
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nodular goiter GWAS (Supplementary Table 6.6), indicating differential  
contribution to these diseases. Of particular interest is the PTCSC2 
locus because its significant variants have the opposite direction of 
effect with ThC and BNG (Extended Data Fig. 5, ρ = −0.77, P = 1.2 × 10−24).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)45 and 
Reactome46,47 pathway analysis identified cell cycle, senescence 
and apoptosis as key biological processes contributing to ThC risk 
(Supplementary Tables 12 and 13). The IGF1 and PI3K/Akt signaling 
pathways were significantly associated with BNG.

Autoimmune thyroid diseases. GD and LT/primary hypothyroidism 
are related autoimmune endocrine diseases with opposite clinical  
manifestations, causing hyperthyroidism and hypothyroidism, 
respectively48.

Plausibly, for most genes and the KEGG and Reactome pathways 
associated with GD, LT and hypothyroidism (Supplementary Tables 12 
and 13) are related to the immune system. Nine loci, including CD40, 
LINGO2, TNRC18 and TERT, were discovered in GD (P < 5 × 10−8) but not 
the hypothyroidism GWAS meta-analysis (Supplementary Fig. 3.1). 

Almost all loci significantly associated with GD are also linked to  
primary hypothyroidism (Supplementary Fig. 3.2). Genetic associa-
tions with LT (Supplementary Table 6.4) replicated those with primary 
hypothyroidism (Fig. 2).

PRS for ThC diagnosis
PRS quantifies an individual’s risk for developing a specific trait or 
disease based on genetics. We explored the ability of PRS to identify 
people at risk for ThC (PRSThC versus All) in the Colorado Center for Person-
alized Medicine (CCPM) Biobank population (n = 94,651). PRSThC versus All 
was calculated from the independent, significant variants identified in 
the multi-ancestry ThC meta-analysis, excluding CCPM from training 
to avoid overfitting.

Papillary ThC was the most common thyroid malignancy in the 
CCPM cohort (n = 1,024), followed by follicular thyroid carcinoma 
(n = 41), oncocytic thyroid carcinoma (n = 11), anaplastic thyroid car-
cinoma (n = 7) and poorly differentiated thyroid carcinoma (n = 4). For 
253 patients with ThC, the histological subtype was not documented 
in the clinical records.
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We assessed the utility of PRS for the clinically relevant task of 
distinguishing benign from malignant thyroid nodules (PRSThC versus BNG).  
PRSThC versus BNG was defined as the difference between PRSThC versus All  
and the PRS for BNG (PRSBNG versus All): PRSThC versus BNG = PRS ThC versus All -  
PRSBNG versus All. We explored the ability of PRSThC versus All to identify indi-
viduals susceptible to high-risk ThC in a biobank population.

PRSThC versus All achieved an area under the curve (AUC) of 
0.692 (95% confidence interval (CI) = 0.673 to 0.711; Fig. 3a and 
Supplementary Table 14). Individuals with PRSThC versus All in the top 
decile had 10.7 times the odds of developing ThC than those in the 
first decile (Fig. 3b).

Our PRSThC versus All significantly outperformed the ThC PRS derived 
from the previous GWAS meta-analysis from the GBMI phase I project23 
(AUC 0.651 (0.632–0.671), DeLong test P = 1.01 × 10−10) because of the 
greater discovery power of a large meta-analysis.

To test PRS performance on a clinically relevant use case of  
discriminating between benign and malignant thyroid nodules  
(ThC versus BNG), three clinicians (C.C.B., T.L.J. and N.P.) performed 
clinical chart reviews. We confirmed the diagnosis of non-medullary 
ThC in 1,343 patients and the diagnosis of BNG in 281. All benign cases 
were supported by surgical histopathology to avoid contamination 
because of small ThCs not eligible for biopsy.

PRSThC versus All performed worse for the clinical ThC versus BNG 
task (AUC 0.622 (0.576–0.668)), which was expected because of the 
genetic associations shared between ThC and BNG. PRSThC versus BNG, 
leveraging genetic associations with both ThC and BNG, demonstrated 
an improved AUC for the ThC versus BNG clinical task (0.670 (0.612–
0.728), DeLong test P = 3.4 × 10−4). Thyroid nodules in individuals with 
PRSThC versus BNG in the top decile had 7.8 times the odds of being malignant 
than in individuals with PRSThC versus BNG in the first decile (Fig. 3b).

Benign thyroid disease PRS AUCs ranged from 0.591 (0.580–0.603) 
for BNG to 0.659 (0.625–0.693) for GD. PRS analyses in the European 
population showed results similar to those from the mixed-ancestry 
GWAS meta-analysis (Supplementary Table 14).

Incorporating demographic and genetic ancestry covariates 
improved predictions for ThC (PRSThC versus All AUC 0.725 (0.708–0.742)) 
and other thyroid diseases (AUC ranging from 0.690 (0.662–0.718) 
for BNG to 0.729 (0.714,0.745) for hypothyroidism). We expected 
this improvement because of the higher incidence of thyroid dis-
ease in women49 and the increased risk of developing thyroid 
nodules and hypothyroidism with age8,50. However, no significant 
improvement in clinical PRSThC versus BNG performance was observed 
(Supplementary Table 14).

We did not find a significant drop in PRS performance meas-
ured with AUC in the EAS-like, AMR-like and AFR-like strata (DeLong 
test, P > 0.05) except for hypothyroidism PRS in AFR-like individuals 
(Supplementary Table 15).

PRS and ThC aggressiveness
We evaluated associations between ThC PRS and aggressive fea-
tures of ThC in three domains (patient, tumor and metastatic  
disease), abstracted from surgical histopathology reports and  
clinical notes (Fig. 3c and Supplementary Table 16). PRSThC versus All  
was significantly associated with tumor focality and extranodal  
extension. PRSThC versus BNG was significantly associated with the risk  
of structural disease recurrence (defined according to the ATA guide
lines16), tumor size (T stage), tumor focality, extranodal extension  
and the number of neck lymph node metastases (Bonferroni- 
adjusted P ≤ 1.7 × 10−3). At a nominal P ≤ 0.05 both PRSThC versus All and  
PRSThC versus BNG were also associated with death from ThC and loco
regional metastases.

To simulate screening for aggressive ThC (high-risk of structural 
disease recurrence as per ATA16), we tested PRS performance when all 
individuals not diagnosed with high-risk ThC, including those diag-
nosed with low-risk and intermediate-risk ThC, were considered as 
controls. PRSThC versus All demonstrated a superior AUC of 0.741 (0.682–
0.801), sensitivity of 0.803 (0.803–0.803) and specificity of 0.569 
(0.565–0.572).

Discussion
We completed a GWAS meta-analysis for five thyroid diseases, leverag-
ing a global collaboration involving 19 biobanks from ten countries. 
The Consortium replicated 313 genetic associations deposited in the 
NHGRI-EBI GWAS Catalog as of April 2024 (v.1.0.2) and discovered  
570 new associations (Supplementary Table 5).

Genetic correlation analysis (Fig. 2) identified physiologically  
plausible and clinically meaningful associations between thyroid 
diseases. Chronic LT is a leading cause of primary hypothyroidism51, 
explaining the near-perfect genetic correlation between these  
two diseases. The shared genetic basis for LT and GD is expected 
because both conditions are autoimmune diseases with highly con-
cordant familial risk52. The genetic correlation between GD and thyroid 
nodular disease (both benign nodules and ThC) is mechanistically 
explained by enhanced TSH receptor signaling, which promotes thy-
roid epithelial growth and protects thyroid cells from apoptosis53. A 
previous population-based study found an increased risk of thyroid 

Thyroid nodule

Hyperplasia
(not clonal)

Neoplasia
(clonal)

Adenoma

Biological
process 

Hyperplastic
nodule

Carcinoma

Histological
diagnosis

G
W

AS
ph

en
ot

yp
e

BN
G

Th
C

Predisposing pathways and genes
Clinical

outcome

Benign disease

Adenomas and
low-risk ThC

Intermediate-risk and
high-risk 

ThC

Cell cycle (ATM, CDCA7L, CDC25B, CENPE, CEP120,
CHEK2, NUF2, PMF1, TP53)

DNA damage response (ATM, DCLRE1B, PCNX2, EXO1, TP53)

IGF1 signaling (IGF1, IGF2BP2)
FGF signaling (FGF7, FRS2) 

Pathways and genes associated with BNG only

Telomere maintenance
ACTRT3, STN1, LRRC6, TERT,

TERC 

Pathways and genes associated
with ThC and BNG

Pathways and genes associated with ThC only

No additional genetic risk factors

Fig. 4 | Germline genetic susceptibility to ThC and BNG. We hypothesize 
that two biological processes with distinct genetic architecture cause thyroid 
nodules: (1) hyperplasia, a polyclonal follicular cell proliferation with no 
malignant potential; and (2) neoplasia, a clonal growth driven by somatic 
genetic alterations. Neoplastic nodules can be benign or malignant, and the 
mismatch between biological mechanisms (hyperplasia and neoplasia) and 
GWAS phenotype definitions (benign and malignant thyroid nodules) has led to 
apparent genetic pleiotropy. The pathway and genes associated with BNG but 

not ThC in the GWAS meta-analysis (for example, the insulin-like growth factor 
1 (IGF1) and fibroblast growth factor (FGF) signaling pathways) predispose to 
benign nodules. Pathways and genes associated with both BNG and ThC (for 
example, telomere maintenance) predispose to neoplastic thyroid nodules, 
either benign or malignant. In the absence of other genetic risk factors, patients 
develop benign adenomas or low-risk ThCs. Alternatively, genetic alterations in 
cell cycle and DNA damage response genes (associated predominantly with ThC 
but not BNG in the GWAS meta-analysis) predispose to high-risk ThC.
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(hazard ratio = 10–15) and other cancers in patients with GD54, which 
is consistent with our findings.

Shared (rg = 0.4–0.5) and unique genetic associations with ThC 
and BNG allowed insights into genes and pathways that lead to malig-
nant and benign thyroid nodules. Our hypothesis explaining why some 
individuals are susceptible to thyroid nodules while others develop 
ThC is shown in Fig. 4. We propose that two biological processes with 
distinct genetic architecture cause thyroid nodules: (1) hyperplasia, a 
polyclonal follicular cell proliferation with no malignant potential; and 
(2) neoplasia, a clonal growth driven by somatic genetic alterations. 
Neoplastic nodules can be benign or malignant, causing the mismatch 
between biological mechanisms (hyperplasia versus neoplasia) and 
GWAS phenotype definitions (benign and malignant thyroid nodules), 
resulting in partial overlap in genetic associations and genetic correla-
tion between ThC and BNG.

We found that genes participating in the cell cycle, DNA repair and 
cellular response to DNA damage are predominantly associated with 
ThC but not benign nodules, highlighting the importance of these 
biological processes for malignant transformation of thyroid follicular 
cells. These variants and genes can lead to more aggressive multifocal 
and metastatic ThC. On the other hand, genes in the fibroblast growth 
factor and insulin-like growth factor 1 signaling pathways were uniquely 
associated with BNG and may lead to hyperplastic benign thyroid 
nodules without malignant potential. Variants in genes participating in 
telomere maintenance increase the risk of ThC and benign neoplastic 
thyroid nodules (adenomas). Telomere maintenance genes are also 
associated with syndromic papillary ThC55,56.

Our finding that autoimmune thyroid disorders share most 
genetic associations (Fig. 2) indicates that similar fundamental mecha-
nisms lead to GD and LT/primary hypothyroidism despite opposite 
clinical manifestations.

Of special interest are genes that were only found in the GD 
meta-analysis despite the greater discovery power of the hypothy-
roidism GWAS. These genes (CD40, LINGO2, TNRC18, TERT) may be 
involved in immune system processes that define the type of autoanti-
bodies produced: TSH receptor antibodies in GD or thyroid peroxidase/
thyroglobulin antibodies in LT and primary hypothyroidism. Consist-
ently, variants in TSHR were strongly associated with GD (for exam-
ple, 14:80990913:A:C, β = 0.27 (0.01), P = 2.52 × 10−137), while TPO and  
TG associations were only seen in the hypothyroidism meta-analysis.

ThC caused 2,170 deaths in the United States in 2024 (ref. 1). PRS 
derived from the ThC GWAS can identify individuals at ThC risk in 
the population (Fig. 3a,b and ref. 57). ThC screening is not currently 
recommended by the US Preventive Services Task Force58 because 
of concerns about overtreatment and lack of mortality benefit. How-
ever, we found that this PRS is associated with high-risk ThC features 
(Fig. 3c) and helps discover individuals susceptible to high-risk ThC in a 
biobank population. The number needed to screen to identify one indi-
vidual with high-risk ThC in the CCPM cohort was 268. For comparison, 
the US Preventive Services Task Force-recommended screening for 
colon cancer with colonoscopy59 has a number needed to screen of 263  
(ref. 60). Thus, genetically informed screening for high-risk ThC is a 
conceptually viable strategy to identify aggressive ThCs at an early 
curable stage to reduce morbidity and mortality.

Another clinically meaningful application for the ThC PRS is to aid 
in the diagnosis of ThC in patients with thyroid nodules14. Despite the 
widespread use of clinical ultrasound-based algorithms8,9, 72% of FNAs 
produce benign results and 20% are inadequate or indeterminate12,13,61,62. 
The PRS provides a cancer risk assessment that is complementary  
and synergistic to ultrasound-based nodule evaluation when  
combined with computer-vision-based analysis of thyroid ultrasound 
images14. Additional studies of the PRS in combination with clinical 
thyroid nodule risk stratification algorithms, such as the American 
College of Radiology Thyroid Imaging, Reporting and Data System10, 
are needed.

We found that incorporating variants from both ThC and BNG 
meta-analysis (PRSThC versus BNG) improved PRS performance for distin-
guishing benign and malignant thyroid nodules. Active surveillance 
of thyroid nodules with low-risk sonographic appearance in patients 
with reassuring PRS could reduce the need for invasive procedures.

PRS provides a noninvasive risk assessment that is independent of 
somatic changes used in molecular tests for the management of thyroid 
nodules with indeterminate cytology63,64. Therefore, incorporating 
PRS is likely to improve the performance of these tests. PRS may guide 
which biopsy-proven ThCs are likely to be indolent and therefore suit-
able for active surveillance. It is unknown whether the PRS can improve 
the assessment of the postoperative risk of recurrence and inform 
postoperative management.

We recognize that, because of the demographics of participants 
in the VTB Consortium, we are underpowered in our ability to study 
individuals of non-EUR-like ancestry. As our Consortium grows, we look 
forward to conducting more ancestry-specific analyses to ensure that 
we find the results relevant to all individuals65 and improve our under-
standing of rare variation across groups. Fine-mapping analysis will 
be necessary to discover putative causal variants. The PRS will require 
calibration and prospective testing in clinical trials before introduction 
into routine clinical practice.

In summary, we conducted the meta-analysis of the GWAS for five 
thyroid diseases. We found many previously known and new mecha-
nistically plausible variants, genes and pathways contributing to the 
risk of ThC, BNG and autoimmune thyroid diseases. We explained why 
some individuals are prone to developing benign thyroid nodules while 
others are at risk of multifocal metastatic ThC. We derived and tested 
PRS for aggressive ThC population screening and for a clinical task of 
distinguishing benign and malignant thyroid nodules. This study will 
serve as a foundation for future clinical applications leveraging the 
germline genetics of thyroid diseases.
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Methods
Ethical approval
The Colorado Multiple Institutional Review Board of the Univer-
sity of Colorado Denver Anschutz Medical Campus waived ethical 
approval for this work (COMIRB no. 20-2315). This study is the result 
of a large collaborative effort among multiple biobanks and programs. 
Cohort-specific GWAS analyses were performed by local researchers. 
Data collections for the cohorts were approved by local ethics com-
mittees. All biobank participants provided written informed consent. 
Participants in the biobanks were not compensated for their involve-
ment in this study.

VTB Consortium
We founded the VTB Consortium under the umbrella of the GBMI23. 
Nineteen biobanks from ten countries and four continents con-
tributed GWAS results to the meta-analysis (Extended Data Fig. 1). 
Supplementary Table 1 lists the sizes of the biobank, ancestry strata, 
phenotyping, genotyping and imputation methods, and the software 
used for the GWAS.

Phenotype definitions
We defined thyroid phenotypes using the International Classification 
of Diseases and Related Health Problems (ICD), Ninth (ICD-9-CM) and 
Tenth (ICD-10-CM) Revisions, Clinical Modifications billing codes 
for the United States biobanks, the ICD-9 and ICD-10 billing codes 
for international biobanks, and SNOMED codes and survey codes for 
the AoU (Supplementary Table 2). These phenotype definitions were 
shared with teams participating in the VTB Consortium.

To evaluate the performance of PRS and study their association 
with ThC risk phenotypes, we conducted clinical chart reviews for 
participants in the CCPM biobank. Histopathological and cytological 
diagnosis, patient characteristics (age at ThC diagnosis, death from 
ThC and risk of structural disease recurrence), tumor characteristics 
(tumor size, tumor focality, presence of extrathyroidal extension, lym-
phatic and angioinvasion, surgical margins positivity) and metastatic 
disease characteristics (presence of locoregional and distant metasta-
ses, extranodal extension, size and number of lymph node metastases) 
were extracted from surgical histopathology reports, thyroid nodule 
fine-needle aspiration reports and endocrinology notes.

The risk of structural disease recurrence was estimated on con-
tinuous (1–55% risk) and categorical scales as described in the ATA ThC 
guidelines16. For patients with multiple surgeries, the highest stage 
or risk was used (for example, if the first surgery’s histopathology  
evaluation reported an Nx stage but lateral neck metastases were 
found later, the N1b stage was used for the association analysis). ThC 
annotations are listed in Supplementary Table 16. Benign cases for 
PRS evaluation in the CCPM cohort were defined based on surgical 
histopathology reports.

GWAS
Case and control definitions for the GWAS are listed in Supplementary  
Table 3. Phenotype exclusions were used only if clinically or biologically  
justified. We excluded (1) patients diagnosed with medullary ThC from  
the ThC GWAS (if medullary ThC data were available because rare  
medullary ThCs are genetically distinct from common follicular cell- 
derived ThCs); (2) ThC cases from the BNG GWAS (because all ThCs 
are initially diagnosed as thyroid nodules to avoid contamination of 
BNG cases with malignant tumors), and (3) patients diagnosed with 
hypothyroidism other than primary (iatrogenic, congenital, central) 
from the hypothyroidism GWAS.

Each biobank conducted genotyping, imputation, quality control 
and genetic ancestry analysis independently (Supplementary Table 1) 
except for the AoU, which used a custom pipeline designed to leverage 
whole-genome sequencing data and maximize variant overlap with 
other biobanks.

GWAS analyses were run using either linear mixed models 
(SAIGE)66 or whole-genome regression (REGENIE)67, adjusted for 
case-control imbalances using saddlepoint approximation or Firth’s 
logistic regression. The biobanks were instructed to use age, sex, up to 
20 first principal components and biobank-specific variables, such as 
genotyping batches and recruiting centers, as covariates.

In addition to multi-ancestry analyses, GWAS stratified according 
to genetic ancestry were performed when the case counts permitted. 
Supplementary Table 4 lists case and control counts, Summix2 (ref. 29) 
population structure estimates and quality control metrics calculated 
with the cov-LDSC28 for 198 GWAS.

GWAS in the All of Us research program
We used All of Us whole-genome sequencing (WGS) v.7 data (245,388 
WGS) to produce a genetic dataset that maximizes variant overlap  
with the analyses performed in the other biobanks (Extended Data Fig. 6 
and 7). An inclusive list of single-nucleotide polymorphisms (SNPs)  
and indels from the GWAS analyses was compiled and supplemented 
with variants from the Polygenic Score Catalog (reported as of  
February 2024). This list contained ~147 million SNPs and indels.

WGS variant-level quality control was performed by All of Us, as 
outlined in the Research Program Genomic Research Data Quality  
Report68. In addition, we filtered the dataset to a maximal set of unre-
lated samples estimated from kinship scores and only included indi-
viduals with electronic health records or survey data for phenotype 
definitions (193,429 WGS).

We developed a Hail Python pipeline that extracts variants of 
interest from the All of Us variant dataset (https://hail.is/docs/0.2/vds/
index.html). The code is publicly available in the GitHub repository 
(https://github.com/pozdeyevlab/vds-filter/tree/main). The result-
ing BGEN dataset contained ~118 million directly genotyped variants  
(a significant decrease from 972 million variants in the variant dataset), 
permitting GWAS.

Post-GWAS quality control
The post-GWAS quality control workflow diagram is shown in 
Extended Data Fig. 8. All GWAS summary data were harmonized to 
gnomAD (v.4.1.0) (GRCh38 human genome reference)30.

Each GWAS summary dataset (Supplementary Table 4) was pro-
cessed using the following steps.

Variant-level quality control. The following variants were removed 
from the GWAS summary data: variants containing alleles with char-
acters other than A, T, C or G; variants where a P value could not be 
calculated (NA), effect size (β) or s.e. ≥ 1 × 10−6 or ≤−1×10−6, and vari-
ants with an imputation score less than 0.3; variants with allele fre-
quency less than 0.0005 or greater than 0.9995; and variants with allele 
count of less than 20. Variants were aligned to the gnomAD (v.4.1.0)  
reference 30. Ancestry-specific gnomAD allele frequencies were used 
for the single-ancestry GWAS. Both palindromic and non-palindromic 
variants were tested for exact and inverse alignments. Palindromic 
variants were removed because of potential strand flip if they met 
any of the following criteria: the fold difference between the gnomAD 
allele frequency and GWAS was greater than 2; or the GWAS allele 
frequency was greater than 0.4 and less than 0.6; or the GWAS allele 
frequency was less than less than 0.4 and the gnomAD allele frequency 
was greater than 0.6; or the GWAS allele frequency was greater than 0.4 
and the gnomAD allele frequency was less than 0.6; variants flagged 
as low-quality by gnomAD; and variants with a Mahalanobis distance 
between the gnomAD allele frequency and a harmonized GWAS allele 
frequency of more than three s.d. from the mean.

GWAS summary level data quality control. Summix2 (ref. 29) was 
used to estimate the population structure from the GWAS summary 
data. We used a random set of 10,000 variants from chromosome 

http://www.nature.com/naturegenetics
https://hail.is/docs/0.2/vds/index.html
https://hail.is/docs/0.2/vds/index.html
https://github.com/pozdeyevlab/vds-filter/tree/main


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02483-w

21 and reference allele frequencies for the AFR, AMR, EAS, NFE, MID 
and SAS genetic ancestry groups from gnomAD (v.4.1.0). The results  
from five Summix2 runs, each using a different random set of refer-
ence variants, were averaged. We compared GWAS-derived Summix2  
population proportion estimates to those published by the Million 
Veteran Program26, CCPM69 and All of Us68 and found near-perfect 
agreement (Extended Data Fig. 9, r2 = 0.999, P = 1.96 × 10−22).

Single-ancestry GWAS summary data analysis showed good agree-
ment between the ancestry reported by the biobank and the Summix2 
estimate (fraction of target ancestry was 0.88–0.97).

Cov-LDSC28 was used to evaluate confounding in the GWAS sum-
mary data, calculate the heritability of phenotypes and estimate the 
genetic correlation between thyroid diseases. For each major con-
tinental ancestry, we generated a custom reference panel of 5,000 
WGS from All of Us. For the multi-ancestry GWAS, we used ancestry 
proportions calculated with Summix2 (Supplementary Table 4). Sam-
ples, regions and variants that met at least one of the following criteria 
were removed: (1) missingness of more than 0.1; (2) closely related indi-
viduals (plink king cutoff of 0.0884); (3) Hardy–Weinberg equilibrium 
exact test P < 1 × 10−6; (4) minor allele frequency of less than 0.01; and 
(4) genomic regions with high linkage disequilibrium (LD). Genetic 
principal components were calculated using plink2 (ref. 70). Ten 
principal components and a window of 20 cM were used to calculate 
covariate-adjusted LD scores and estimate the LD score regression inter-
cept (Supplementary Table 4), heritability (Supplementary Table 7) and 
genetic correlations (Supplementary Table 8)28.

GWAS meta-analysis
A fixed inverse-variance-weighted meta-analysis was run using  
METAL71. Individual GWAS summary data with cov-LDSC y axis inter-
cepts significantly deviating from one were adjusted before the  
meta-analysis.

Post-meta-analysis quality control, variant annotation and 
classification
To minimize the false positive hits introduced by confounding within a 
single large biobank, only variants present in at least four input GWAS 
datasets were considered in the downstream analysis. If three or fewer 
datasets were available for the ancestry-stratified meta-analysis, then 
the threshold was set to two. Cochran’s Q P values were calculated to 
assess heterogeneity across datasets.

We used the hg38 human genome reference throughout the 
study. Phased r2 values were computed using custom reference 
cohorts with matching population structure generated from the All 
of Us v.7 genomes (n = 50,000 for the mixed-ancestry, EUR-like and 
AFR-like meta-analyses; 40,000 and 5,500 for the AMR-like and EAS-like 
meta-analyses, respectively).

Genomic loci were defined using the LD clumping procedure 
implemented in PLINK 2.0 (ref. 70) with an index variant P ≤ 5 × 10−8, 
5-Mb search window and r2 threshold of 0.01. Independent clumps 
were defined as those that did not share variants associated with the 
phenotype at P ≤ 1 × 10−5. One variant with the lowest P value from 
each independent clump was selected as a lead variant and reported 
in Supplementary Tables 6.1–6.6.

Lead variants were mapped to the nearest gene and annotated 
using ANNOVAR (version date 7 June 2020)72. A locus was considered 
new if no variants for the corresponding phenotype were reported 
within ±500 kb in the GWAS Catalog (as of April 2024; v.1.0.2)31.  
Otherwise, the variant was labeled as previously discovered.

Heritability estimation and genetic correlation analysis
We used cov-LDSC (v.1.0.0)28 with a custom-population-structure- 
matched LD reference panel to calculate SNP-based heritability (h2

SNP). 
Observed-scale heritability estimates and the corresponding s.e. were 
converted to the liability scale using phenotype population prevalence 

calculated in the All of Us v.7 dataset (Supplementary Table 7). Similarly, 
pairwise genetic correlations between the five thyroid phenotypes 
(Supplementary Table 8) were calculated using cov-LDSC with a custom 
LD score reference panel.

PRS calculation and evaluation
To calculate and evaluate PRS, we performed a leave-CCPM-biobank-out 
GWAS meta-analysis. We also used a leave-CCPM-biobank-out GWAS 
meta-analysis from the GBMI phase I project23 for comparison. All PRS in 
this study were tested on the out-of-sample CCPM dataset (n = 94,651). 
This approach minimizes inflation of PRS performance due to overfit-
ting. Adjusted PRS (covariates of age, sex and ten genetic principal 
components) were cross-validated (fivefold).

The PRS was calculated as a weighted sum of independent 
genome-wide significant risk alleles. For the clinically relevant  
use case of distinguishing ThC from BNG, we defined PRSThC versus BNG 
as the difference between the PRS for ThC (PRSThC versus All) and the PRS 
for BNG (PRSBNG versus All): PRSThC versus BNG = PRSThC versus All − PRSBNG versus All.

PRS performance predicting binary phenotypes was assessed 
using the AUC. AUCs were compared using the DeLong’s test for 
significant differences.

TWAS
We performed the cis-eQTL TWAS using FUSION33. FUSION was run 
on multi-ancestry and European meta-analysis summary data, 1,000 
genomes LD reference data and all sample thyroid expression refer-
ence weights precomputed from GTEx v.8 (ref. 36) (http://gusevlab.
org/projects/fusion/).

To replicate our findings in FUSION, we also used Summary-based 
PrediXcan (S-PrediXcan)35 to derive gene-level association results from 
the GWAS summary statistics and GTEx v.8 (ref. 36) as the reference set. 
The GWAS meta-analysis summary data were harmonized and imputed 
as described previously (https://github.com/hakyimlab/summary-
gwas-imputation). An imputed GWAS was used to generate gene-trait 
associations in thyroid gland tissue.

Candidate gene expression and pathway analysis
We studied the gene expression of candidate genes linked to signifi-
cant genetic associations using ANNOVAR annotation or the cis-eQTL 
TWAS (using a Bonferroni-corrected significance threshold). Inter-
genic variants that could not be attributed to the expressed gene were 
not included.

We compared mRNA expression of ThC-associated genes in 20 
human tissues using the National Center for Biotechnology Information 
Gene database (www.ncbi.nlm.nih.gov/gene (ref. 38)). We investigated 
mRNA expression according to age at diagnosis, cancer stage, thyroid 
differentiation and other tumor features (Supplementary Table 10) in 
ThCs from the TCGA study39 and the ORIEN AVATAR Program (www.
oriencancer.org/research-programs). We accounted for common 
somatic oncogenic drivers using logistic (binary outcome; for example, 
presence of extrathyroidal extension), ordinal (for ordered categorical 
data; for example, disease stage) or linear (for continuous outcomes; 
for example, age at diagnosis) regression with index covariates for the 
presence of BRAF V600E or H/N/KRAS mutations.

The Reactome and KEGG pathway analyses were performed on 
all significant genes combined from FUSION and ANNOVAR using 
the ReactomePA (v.1.16.2)46,47 and clusterProfiler73 packages in R 
v.4.4 with default Benjamini–Hochberg adjustment for multiple 
hypothesis testing.

Statistics and reproducibility
For each significant locus, the number of biobanks with a significant 
association (P < 5 × 10−8) is listed in the Supplementary Tables 6.1–6.6.  
No statistical method was used to predetermine sample size. No 
data were excluded from the analysis. The experiments were not 
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randomized. The investigators were not blinded to allocation during 
the experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS meta-analysis summary data are available for down-
load from the GWAS Catalog (www.ebi.ac.uk/gwas/; accession 
nos. GCST90627737–GCST90627776). The PRS weights have been 
deposited in the PGS Catalog (www.pgscatalog.org/; accession no. 
PGP000748; score IDs PGS005258-PGS005274). The proprietary, 
privately funded AVATAR data used in this study were generated by 
Aster Insights (www.asterinsights.com) and provided to support this 
project in collaboration with ORIEN. AVATAR data are not open source 
in public repositories; all inquiries regarding opportunities for data 
licensing (industry researchers) or collaboration with ORIEN (academic 
researchers) should be submitted to https://researchdatarequest.
orienavatar.com. A follow-up with more information relevant to each 
specific inquiry is expected within five business days of submission.

Code availability
Original code is publicly available from GitHub at https://github.com/
pozdeyevlab/gwas-analysis and Zenodo https://doi.org/10.5281/
zenodo.17468664 (ref. 74).
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Extended Data Fig. 1 | Virtual Thyroid Biopsy Consortium. The Consortium aggregated data from 19 biobanks, 10 countries, four continents, and ~2.9 million 
participants.
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Extended Data Fig. 2 | Prevalence of thyroid diseases across biobanks. Genetic ancestry was estimated from GWAS summary data using Summix2.
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Extended Data Fig. 3 | Genetic correlation analysis for thyroid diseases in EUR-like GWAS meta-analysis. Genetic correlations were estimated using covariate-adjusted 
linkage disequilibrium score regression. The asterisks denote Benjamini-Hochberg false discovery rate (FDR) < 0.05; p-values were generated using a two-sided Wald test.
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Extended Data Fig. 4 | mRNA expression of thyroid cancer-associated genes 
in normal thyroid tissue and thyroid cancer. Genes were identified from 
ANNOVAR annotations of genome-wide significant variants in thyroid cancer 
GWAS meta-analysis and FUSION TWAS cis-eQTL analysis. The dark blue color 
indicates genes with high expression in normal thyroid tissue, where the 
thyroid is among the top three tissues with the highest expression in pan-tissue 
transcriptome analysis from the NCBI Gene database (https://www.ncbi.nlm.
nih.gov/gene). Positive (red) and negative (light blue) significant associations 
of mRNA expression with high-risk thyroid cancer features, such as earlier age 

at diagnosis, higher ERK score and lower thyroid differentiation score, etc., 
are shown. P-values were derived from a two-tailed t-test for linear regression 
(continuous variables) and a two-sided Wald test for logistic/ordinal regression 
(binary/ordinal variables). All regression analyses were adjusted for the major 
somatic oncogenic drivers, including BRAF V600E and N/H/KRAS. Significance 
threshold was adjusted using Bonferroni correction (p-value ≤ 1e-04). ORIEN - 
Oncology Research Information Exchange Network; TCGA – The Cancer Genome 
Atlas; AJCC - American Joint Committee on Cancer.
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Extended Data Fig. 5 | Scatterplot of effect sizes of the variants in PTCSC2 locus significantly (p-value < 5e-8) associated with thyroid cancer and benign nodular 
goiter. ThC – thyroid cancer. BNG – benign nodular goiter. ρ- Spearman correlation. Shading highlights the regression line’s 95% confidence interval. P-value was 
calculated with a two-tailed t-test.
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Extended Data Fig. 6 | All of Us Research Program whole genome sequencing data analysis pipeline. Variants (SNPs and indels) from participating biobanks GWAS 
summary data and the Polygenic Score Catalog (https://www.pgscatalog.org) were extracted from the All of Us Research Program Hail variant dataset v7 object.
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Extended Data Fig. 7 | Variant overlap in GWAS from participating Biobanks. A fraction of variants that are identical by chromosome, position, reference and 
alternate allele in the harmonized GWAS summary are shown. The All of Us Research Program GWAS (top row) was performed on whole-genome sequencing data and 
was designed to maximize variant overlap with other biobanks.
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Extended Data Fig. 8 | Post-GWAS quality control pipeline. AF – allele frequency. AC – allele count, cov-LDSC – covariate-adjusted linkage disequilibrium score 
regression. QQ plot – quantile-quantile plot.
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Extended Data Fig. 9 | Correlation of major continental ancestry fractions 
estimated by Summix2 (y-axis) and published by the Million Veteran 
Program, Colorado Center for Personalized Medicine and All of Us Research 
Program Biobanks (x-axis). Multi-ancestry GWAS summary data were used for 

this analysis. Shading highlights the regression line’s 95% confidence interval. 
Pearson correlation coefficient p-value was calculated with a two-tailed t-test. 
MVP – Million Veteran Program. CCPM – Colorado Center for Personalized 
Medicine. AoU – All of Us Research Program.
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Flow cytometry
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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