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Thyroid diseases are common and highly heritable. We performed a
meta-analysis of genome-wide association studies from 19 biobanks for
five thyroid diseases: thyroid cancer (ThC), benign nodular goiter, Graves’
disease, lymphocytic thyroiditis and primary hypothyroidism. We analyzed

genetic association data from -2.9 million genomes and identified 313 known
and 570 new independent locilinked to thyroid diseases. We discovered
genetic correlations between ThC, benign nodular goiter and autoimmune
thyroid diseases (rg = 0.16-0.97). Telomere maintenance genes contributed
to benign and malignant thyroid nodular disease risk, whereas cell cycle,
DNA repair and damage response genes were associated with ThC. We
propose a paradigm that explains genetic predisposition to benign and
malignant thyroid nodules. We found polygenic risk score associations with
ThCrisk of structural disease recurrence, tumor size, multifocality, lymph
node metastases and extranodal extension. Polygenic risk scores identified
individuals with aggressive ThC in a biobank, creating an opportunity for
genetically informed population screening.

Thyroid diseases are highly prevalent. According to the American
Thyroid Association (ATA), over 12% of the US population develops a
thyroid condition during their lifetime (www.thyroid.org/media-main/
press-room/). Thyroid cancer (ThC)is the most common endocrine
malignancy, with 44,020 new cases and 2,170 deathsin the United States
in2024 (ref.1). Thyroid function diseases, hypothyroidism and hyper-
thyroidism, negatively affect most organ systems and are associated
with disproportionate cardiovascular mortality. It is not well under-
stood why some individuals develop thyroid disease, although genetic**
and environmental factors, such as radiation exposure’, have arole.
Genetic effects are estimated to contribute up to 53% to ThC sus-
ceptibility in family studies®*, making ThC one of the most heritable
common cancers>®. For autoimmune thyroid diseases, genetic factors
account for approximately 75% of the total phenotypic variance’.
Ruling out thyroid malignancy isacommon clinical task because
ofthe high prevalence of thyroid nodules. Thyroid ultrasound reveals
nodules in up to 65% of the general population®’. Clinical providers

assess thyroid nodule sonographic characteristics' to decide if a
fine-needle aspiration (FNA) biopsy is necessary. Over 600,000 FNAs
are performed annually in the United States to rule out cancer”, and
most (-92%) produce benign, inadequate or indeterminate results'>".
Genetic ThCrisk assessment with polygenic risk score (PRS) provides
an opportunity to improve the diagnostic yield of FNA and reduce
unnecessary procedures, molecular tests and diagnostic surgeries'.

Some ThCs are aggressive, with extensive local invasive growth
and distant metastases, leading to ~45,600 deaths annually world-
wide”. Diagnosing aggressive ThC early, when it can be cured with neck
surgery and radioactive iodine'®, can dramatically decrease mortality
fromthedisease. Atest toidentify individuals at risk of aggressive ThC
has not yet been developed. This motivated us to study PRS associa-
tions with the high-risk features of ThC.

Discovering genetic variants predisposing to ThC and benign
thyroid conditions helps in understanding the biological processes
leading to disease. Several genome-wide association studies (GWAS)
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Fig.1|Study design. I. The VTB Consortium was established within the
framework of the GBMI. The participating biobanks performed GWAS for five
thyroid diseases. II. An inverse-variance-weighted meta-analysis was conducted
after quality control procedures. Previously known and new independent genetic
associations were identified. Ill. Functional inference studies included genetic
correlation analysis with cov-LDSC. Asterisks denote Benjamini-Hochberg false

discovery rate (FDR) < 0.05. IV. TWAS (FUSION and S-PrediXcan). V. Pathway
(KEGG and Reactome) and gene expression analyses (TCGA and ORIEN AVATAR).
VI.PRS were developed for ThC, benign thyroid diseases and to distinguish
malignant and benign thyroid nodules. VII. PRS were tested for association with
thyroid diseases and aggressive ThC features extracted from clinical charts and
surgical histopathology reports.

have been conducted on ThC"?%, Most recently, the Global Biobank
Meta-analysis (GBMI) Consortium combined data from 6,699
individuals with ThC and ~2.2 million controls*. GWAS for benign
thyroid diseases and related traits, suchas thyroid-stimulatinghormone
(TSH) levels, have been performed in large biobanks, including the
UK Biobank (UKB)*, FinnGen?, Million Veteran Program®® and
others”. However, a systematic analysis of underlying genes, pathways
and clinical relevance is missing.

Platforms such as the GBMI (www.globalbiobankmeta.org/
(ref. 23)) enable global collaborations among dozens of participat-
ing biobanks, resulting in unmatched GWAS discovery power and
data diversity, particularly relevant to cross-phenotype investiga-
tions. In this study, we report results from a GBMI project dedicated
to thyroid diseases.

Results

The study had three phases (Fig. 1): (1) variant discovery: GWAS,
quality control procedures and meta-analysis; (2) functional infer-
ence: genetic correlations, transcriptome-wide association studies
(TWAS), pathway and gene expression analyses; and (3) clinical studies:
PRS development, testing on the clinical use case of distinguishing
benign from malignant thyroid nodules, testing for associations with
cancer aggressiveness and testing the utility of PRS for aggressive
ThC screening.

Virtual Thyroid Biopsy Consortium

We founded the Virtual Thyroid Biopsy (VTB) Consortium (Extended
DataFig.1) under the GBMI (www.globalbiobankmeta.org/)* to study
thegenetic architecture of thyroid diseases at aglobal multi-ancestry
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scale. The Consortium aggregates data from 19 biobanks in ten
countries and four continents (Supplementary Table 1). Biobanks
performed multi-ancestry or ancestry-stratified GWAS for five
thyroid diseases: ThC, benign nodular goiter (BNG), Graves’ disease
(GD), lymphocytic thyroiditis (LT) and primary hypothyroidism.
In addition, a GWAS of ThC versus BNG was performed, focusing on
the common clinical task of determining malignancy in thyroid
nodules. Phenotype and GWAS definitions are listed in Supplementary
Tables2and 3.

Meta-analysis of GWAS

The meta-analysis aggregated datafrom 198 GWAS summary datafiles
(Supplementary Table 4). Individual GWAS runs were well controlled
for confounding (covariate-adjusted linkage disequilibrium score
regression (cov-LDSC)*® y axis intercept 1.00 + 0.05 (mean * s.d.)).
Healthcare system-based biobanks had a higher disease prevalence
than population-based biobanks (Extended Data Fig. 2), as reported
previously?. BioMe, the All of Us Research Program (AoU) and the
Million Veteran Program biobanks had the most diverse participant
pools measured using Summix2 (ref. 29).

The meta-analysis included 21,816 cases of ThC, 68,987 cases of
BNG, 18,719 cases of GD, 18,331 cases of LT, 257,365 cases of primary
hypothyroidism and ~2.9 million controls (Supplementary Table 3).
Population structure was determined with Summix2 (ref. 29) via mix-
ture modeling of study-based allele frequencies compared to the
gnomAD reference panel*°. Seventeen percent of genotypes were
from individuals of African (AFR-like), 4.4% from Admixed American
(AMR:-like), 8.1% from East Asian (EAS-like) and 70.5% from European
(EUR-like) ancestries.

We found 883 independent loci significantly (P<5x107%)
associated with thyroid diseases, including mixed-ancestry and
ancestry-stratified genetic associations (Supplementary Tables 5,
and 6.1-6.6 and Supplementary Fig. 1). Of these, 313 variants were
reported to the NHGRI-EBI Catalog™ for thyroid traits (as of April
2024); 570 loci were new. Most lead variants were intronic (n=407),
followed by intergenic variants (n=302). Among 46 significant
exonic variants, 43 were nonsynonymous, potentially altering
protein function.

The ancestry-stratified GWAS replicated many associations
from the mixed-ancestry meta-analysis and discovered many
additional associations (Supplementary Tables 6.1-6.6; variant
IDs are indicated by asterisks, n =148). For example, a rare (minor
allele frequency (MAF) = 0.0007) nonsynonymous exonic variant
in the shelterin complex gene TERFI (8:73046129:G:A, =132,
P=1.08 x107°) was significantly associated with ThC only in the
EUR-like meta-analysis (mixed-ancestry GWAS 8=1.16, P=5.5x107%).
Another plausible EUR-like meta-analysis association is DIOI in
hypothyroidism (1:53909897:C:A, 8=-0.024, P=5.06 x10™). DIO1
encodes an enzyme that converts pro-hormone thyroxine to the active
thyroid hormone tri-iodothyronine®.

Single-nucleotide polymorphism heritability and genetic
correlation
The cov-LDSC-estimated thP ranged from 0.07 (s.e. = 0.01) for
BNG in the mixed-ancestry meta-analysis to 0.11 (0.01) for the mixed-
ancestry hypothyroidism meta-analysis (Supplementary Table 7).
There was a strong genetic correlation between LT and hypo-
thyroidism (mixed-ancestry, rg=0.97 (0.04), P=2.05 x107%, Fig.2 and
Supplementary Table 8). We found significant (Benjamini-Hochberg
false discovery rate (FDR) < 0.05) genetic correlations between LT
and GD (rg=0.62(0.09)), LT and BNG (rg=0.16 (0.07)), ThC and BNG
(rg=0.41(0.16)), GD and hypothyroidism (rg = 0.37 (0.07)), GD and
BNG (rg=0.31(0.07)),and GD and ThC (rg = 0.20 (0.05)). Genetic cor-
relation analysis in the EUR-like meta-analysis yielded similar results
(Extended DataFig. 3 and Supplementary Table 8).

TWAS

We performed a cis-acting expression quantitative trait locus
(cis-eQTL) TWAS using two methods, FUSION* and Summary-based
PrediXcan (S-PrediXcan)***, and GTEx v.8 thyroid tissue expression
models®, to identify potential causal variants affecting gene expres-
sion and assign intergenic and noncoding RNA variants to protein-
coding genes.

The FUSION TWAS, as applied to the mixed-ancestry and EUR-like
ThC GWAS meta-analysis, identified the expression of 55 unique
protein-coding genes (Supplementary Tables 9.1 and 9.2). FUSION
also identified 47 and 45 significant (after Bonferroni adjustment)
lead cis-eQTL variants from the mixed-ancestry and EUR-like GWAS,
respectively. The TWAS attributed many significant intergenic and
noncoding variants to protein-coding genes based onreported eQTL
status. For example, noncoding RNA intronic variant 1:218515813:T:C
(mixed-ancestry ThC GWAS meta-analysis P=4.07 x 107>?) was
attributed to the expression of TGFB2in the TWAS (P =3.59 x107%).
Most significant genes found by the FUSION TWAS were also repli-
cated by S-PrediXcan, indicating the analytical rigor of our analyses
(Supplementary Tables 6.1-6.6).

Consistent with a genetic overlap between thyroid diseases
(Fig. 2, Extended Data Fig. 3 and Supplementary Table 8), we found
that many genes were discovered in more than one thyroid pheno-
type TWAS (Supplementary Table 9.3). For example, cis-eQTLs and
expression of TGFB2 were associated with all thyroid diseases in
our analysis and the TSH trait”. Plausibly, most overlap in the TWAS
analyses was between autoimmune thyroid diseases and TSH¥, a
hormone thatis clinically measured to diagnose hypothyroidismand
GD (Supplementary Table 9.4).

The TWAS found additional significant genes where the GWAS
meta-analysis failed to identify genome-wide significant associations,
forexample, VEGFC(P=1.30 x10"%) and NBR1 (P=1.02 x107°), further
expanding our knowledge of genes associated with ThC risk.

Gene expression analysis

We evaluated the mRNA expression of genes discovered in the ThC
GWAS meta-analysis and the TWAS in normal and malignant thyroid
tissues (Extended Data Fig. 4 and Supplementary Table 10). Of the 20
evaluated tissues®®, normal thyroid tissue was among the top three
highest-expressing tissues for 20 genes. Two genes, TG and NKX2-1,
are expressed only in the thyroid.

Theexpression of six genes (ETS1, HMGA2, NFIA, PCNX2, PIBF1 and
VAV3) significantly correlated with younger age at ThC diagnosisin The
Cancer Genome Atlas (TCGA) study for papillary ThC (THCA-TCGA)*
or the Oncology Research Information Exchange Network (ORIEN)
AVATAR study (www.oriencancer.org/) (Bonferroni-corrected
P<1.08 x107*). TERT expression correlated with older age at diagno-
sis (P=1.6 x107%), matching a similar association with somatic TERT
promoter mutations*’. The expression of 23 genes was positively cor-
related with atleast one clinical or molecular ThCrisk feature: younger
age at diagnosis, higher stage, presence of extrathyroidal extension,
lower BRAF/RAS score (indicating a BRAF-like expression profile®),
higher ERK score (measuring RAS/MAPK pathway activity) and lower
ThC differentiation (estimated with thyroid differentiation score™;
Extended Data Fig. 4 and Supplementary Table 10).

Pleiotropic and disease-specific associations
ThC and BNG. We do not know why some patients develop BNGs
while others get ThC. To understand the cellular functions and
pathways leading to benign or malignant thyroid nodular disease, we
explored pleiotropic, and ThC-specific and BNG-specific, loci (Fig. 2).
We generated locus plots for independent lead variants from
the GWAS meta-analysis (Supplementary Fig. 2.1-2.3). We catego-
rized loci and genes as those significantly associated with: (1) ThC
but not BNG (may contribute to malignant transformation of
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thyroid diseases (left). Right, The red and blue dots, along with the gene labels,
indicate loci predominantly associated with ThC and BNG, respectively. Left, The
red dots indicate loci significantly associated with GD but not with LT or primary
hypothyroidism. PTCSC2 (right, yellow) is the only locus inversely associated with
ThCand BNG (Supplementary Tables 6.1-6.6 list all loci).

follicular cells; Supplementary Table 11 and Supplementary
Fig.2.1); (2) BNGbutnot ThC (maylead tononneoplasticthyroid nodules
and thyroid neoplasms with low malignant potential; Supplemen-
tary Fig. 2.2); and (3) both benign and malignant thyroid nodules
(Supplementary Fig.2.3).

Among 36 lociassociated with ThCbut not BNG, seven arein genes
that encode components of cell cycle checkpoints, proteins regulat-
ing centrosome and kinetochore function, microtubule attachment
and chromosome segregation (CDCA7L, CENPE, CEP120, CHEK2,
NUF2, PMF1, TP53). The ThC-specific locus Cl1orf65 overlaps with the
cell cycle checkpoint kinase gene ATM (for example, 11:108267276,
ATM p.Phe858Leu, P=4.8 x10°°), which is frequently mutated in
advanced ThC**% Locus LINCO1730 contains variantsin the cell cycle
regulator gene CDC25B (20:3805337:C:T, CDC25B3’UTR, P=3.1x107°).
Loci HAUS6 (microtubule attachment to the kinetochore and central
spindle formation**) and SDCCAGS (centrosome-associated protein**)
demonstrate a stronger association with ThC despite the greater
statistical power of the BNG GWAS meta-analysis.

Five genes with ThC-specific associations have a role in DNA
repair and cellular response to DNA damage (ATM, DCLREIB, PCNX2,
EXO1,TP53).

BNG-specific loci (n=56) are located in genes participating
in insulin-like growth factor 1 (/GFI and /GF2BP2) and fibroblast
growth factor (FGF7 (FAM227B locus) and FRS2) signaling pathways.
Genes havingarolein thyroid gland development and thyroid hormone
synthesis were linked to benign nodules (GL/S3, TPO) but some are also
associated with ThC (NKX2-1 (LINCO0O609locus), TG).

Notably, telomere maintenance genes (ACTRT3, LRRC6, STN1,
TERT) were associated with both ThC and BNG. Genes participat-
ing in apoptosis and transforming growth factor-beta signaling
are present in all three gene categories (Supplementary Table 11)
and contribute to the development of both benign and malignant
thyroid nodules. Variants in some of these overlapping genes (for
example, TERT, 5:1282299:G:A, $=0.15[0.01], Pvalue =3.3 x 10™*;
NRG1, 8:32572853:A:G, f=-0.24 [0.01], P value =1.2 x 10™?) were
also significant in our meta-analysis of thyroid cancer vs. benign
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Fig.3| The ThCPRS. Two ThC PRS were developed: PRSqcyersus an t0 identify
individuals at riskin a population and PRSy,cersussng fOT the clinically relevant task
of discriminating malignant and benign thyroid nodules. PRS were tested in the
CCPM population, which was not used for PRS development. a, AUCs (n = 94,561;
1,343 ThCs).b, ThCrisk according to PRS decile. The error bars denote the 95% Cl

calculated as * s.e. x 1.96 surrounding the odds ratio (OR). ¢, PRS association with
features of aggressive ThC. Pvalues were calculated using a two-sided Wald test.
Asterisks indicate ThC risk features significantly associated with PRS at anominal
(black; *P < 0.05) or Bonferroni-corrected (blue; **P < 1.7 x 107%) significance
threshold. Raw PRS and ThC risk features are listed in Supplementary Table 16.

nodular goiter GWAS (Supplementary Table 6.6), indicating differential
contribution to these diseases. Of particular interest is the PTCSC2
locus because its significant variants have the opposite direction of
effect with ThCand BNG (Extended DataFig.5,p=-0.77,P=1.2x107%).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)* and
Reactome*®*’ pathway analysis identified cell cycle, senescence
and apoptosis as key biological processes contributing to ThC risk
(Supplementary Tables 12 and 13). The IGF1 and PI3K/Akt signaling
pathways were significantly associated with BNG.

Autoimmune thyroid diseases. GD and LT/primary hypothyroidism
are related autoimmune endocrine diseases with opposite clinical
manifestations, causing hyperthyroidism and hypothyroidism,
respectively*s.

Plausibly, for most genes and the KEGG and Reactome pathways
associated with GD, LT and hypothyroidism (Supplementary Tables 12
and 13) are related to the immune system. Nine loci, including CD40,
LINGO2, TNRCI8 and TERT, were discovered in GD (P < 5 x 1075) but not
the hypothyroidism GWAS meta-analysis (Supplementary Fig. 3.1).

Almost all loci significantly associated with GD are also linked to
primary hypothyroidism (Supplementary Fig. 3.2). Genetic associa-
tionswith LT (Supplementary Table 6.4) replicated those with primary
hypothyroidism (Fig. 2).

PRS for ThC diagnosis

PRS quantifies an individual’s risk for developing a specific trait or
disease based on genetics. We explored the ability of PRS to identify
peopleat risk for ThC (PRSyycyersus an) in the Colorado Center for Person-
alized Medicine (CCPM) Biobank population (n = 94,651). PRScversusan
was calculated fromtheindependent, significant variants identified in
the multi-ancestry ThC meta-analysis, excluding CCPM from training
to avoid overfitting.

Papillary ThC was the most common thyroid malignancy in the
CCPM cohort (n=1,024), followed by follicular thyroid carcinoma
(n=41), oncocytic thyroid carcinoma (n =11), anaplastic thyroid car-
cinoma (n=7)and poorly differentiated thyroid carcinoma (n=4). For
253 patients with ThC, the histological subtype was not documented
inthe clinical records.
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Fig. 4| Germline genetic susceptibility to ThC and BNG. We hypothesize

that two biological processes with distinct genetic architecture cause thyroid
nodules: (1) hyperplasia, a polyclonal follicular cell proliferation with no
malignant potential; and (2) neoplasia, a clonal growth driven by somatic
geneticalterations. Neoplastic nodules can be benign or malignant, and the
mismatch between biological mechanisms (hyperplasia and neoplasia) and
GWAS phenotype definitions (benign and malignant thyroid nodules) has led to
apparent genetic pleiotropy. The pathway and genes associated with BNG but

not ThCin the GWAS meta-analysis (for example, the insulin-like growth factor
1(/GF1) and fibroblast growth factor (FGF) signaling pathways) predispose to
benign nodules. Pathways and genes associated with both BNG and ThC (for
example, telomere maintenance) predispose to neoplastic thyroid nodules,
either benign or malignant. In the absence of other genetic risk factors, patients
develop benign adenomas or low-risk ThCs. Alternatively, genetic alterations in
cell cycleand DNA damage response genes (associated predominantly with ThC
butnot BNG in the GWAS meta-analysis) predispose to high-risk ThC.

We assessed the utility of PRS for the clinically relevant task of
distinguishing benign from malignant thyroid nodules (PRSyp.cversusen)-
PRS:hc versus sng Was defined as the difference between PRS ¢ versus ail
and the PRS for BNG (PRSgng versus ain): PRSthc versus v = PRS e versus il -
PRSgnG versus an- We explored the ability of PRSyy,c yersus ai t0 identify indi-
viduals susceptible to high-risk ThC in abiobank population.

PRSthc versus an @Chieved an area under the curve (AUC) of
0.692 (95% confidence interval (Cl) = 0.673 to 0.711; Fig. 3a and
Supplementary Table 14). Individuals with PRSy,c versus an in the top
decile had 10.7 times the odds of developing ThC than those in the
first decile (Fig. 3b).

Our PRStcversusan Significantly outperformed the ThC PRS derived
fromthe previous GWAS meta-analysis from the GBMI phase I project®
(AUC 0.651 (0.632-0.671), DeLong test P=1.01 x 107'°) because of the
greater discovery power of a large meta-analysis.

To test PRS performance on a clinically relevant use case of
discriminating between benign and malignant thyroid nodules
(ThC versus BNG), three clinicians (C.C.B., T.L.J. and N.P.) performed
clinical chart reviews. We confirmed the diagnosis of non-medullary
ThCin1,343 patients and the diagnosis of BNG in 281. All benign cases
were supported by surgical histopathology to avoid contamination
because of small ThCs not eligible for biopsy.

PRS ¢ versus an P€rformed worse for the clinical ThC versus BNG
task (AUC 0.622 (0.576-0.668)), which was expected because of the
genetic associations shared between ThC and BNG. PRS¢ versus snGs
leveraging genetic associations withboth ThC and BNG, demonstrated
animproved AUC for the ThC versus BNG clinical task (0.670 (0.612-
0.728), DeLongtest P=3.4 x 10~*). Thyroid nodulesinindividuals with
PRS;pcversusang inthe top decile had 7.8 times the odds of being malignant
thaninindividuals with PRSyp.cversusang in the first decile (Fig. 3b).

Benignthyroid disease PRS AUCs ranged from 0.591(0.580-0.603)
for BNG to 0.659 (0.625-0.693) for GD. PRS analyses in the European
population showed results similar to those from the mixed-ancestry
GWAS meta-analysis (Supplementary Table 14).

Incorporating demographic and genetic ancestry covariates
improved predictions for ThC (PRStcversusan AUC 0.725(0.708-0.742))
and other thyroid diseases (AUC ranging from 0.690 (0.662-0.718)
for BNG to 0.729 (0.714,0.745) for hypothyroidism). We expected
this improvement because of the higher incidence of thyroid dis-
ease in women® and the increased risk of developing thyroid
nodules and hypothyroidism with age®*°. However, no significant
improvement in clinical PRSyc versus sng PEFfOrmance was observed
(Supplementary Table 14).

We did not find a significant drop in PRS performance meas-
ured with AUC in the EAS-like, AMR-like and AFR-like strata (DeLong
test, P> 0.05) except for hypothyroidism PRS in AFR-like individuals
(Supplementary Table15).

PRS and ThC aggressiveness

We evaluated associations between ThC PRS and aggressive fea-
tures of ThC in three domains (patient, tumor and metastatic
disease), abstracted from surgical histopathology reports and
clinical notes (Fig. 3c and Supplementary Table 16). PRStc versus ail
was significantly associated with tumor focality and extranodal
extension. PRS ¢ versus sng Was significantly associated with the risk
of structural disease recurrence (defined according to the ATA guide-
lines'), tumor size (T stage), tumor focality, extranodal extension
and the number of neck lymph node metastases (Bonferroni-
adjusted P<1.7 x107%). At anominal P< 0.05 both PRS ¢ yersus as and
PRS1¢ versus sng WeTe also associated with death from ThC and loco-
regional metastases.

To simulate screening for aggressive ThC (high-risk of structural
disease recurrence as per ATA'®), we tested PRS performance whenall
individuals not diagnosed with high-risk ThC, including those diag-
nosed with low-risk and intermediate-risk ThC, were considered as
controls. PRSypc versus an demonstrated a superior AUC of 0.741 (0.682-
0.801), sensitivity of 0.803 (0.803-0.803) and specificity of 0.569
(0.565-0.572).

Discussion

We completed a GWAS meta-analysis for five thyroid diseases, leverag-
ing a global collaboration involving 19 biobanks from ten countries.
The Consortium replicated 313 genetic associations deposited in the
NHGRI-EBI GWAS Catalog as of April 2024 (v.1.0.2) and discovered
570 new associations (Supplementary Table 5).

Genetic correlation analysis (Fig. 2) identified physiologically
plausible and clinically meaningful associations between thyroid
diseases. Chronic LT is a leading cause of primary hypothyroidism®,
explaining the near-perfect genetic correlation between these
two diseases. The shared genetic basis for LT and GD is expected
because both conditions are autoimmune diseases with highly con-
cordant familial risk*2. The genetic correlation between GD and thyroid
nodular disease (both benign nodules and ThC) is mechanistically
explained by enhanced TSH receptor signaling, which promotes thy-
roid epithelial growth and protects thyroid cells from apoptosis®. A
previous population-based study found an increased risk of thyroid
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(hazard ratio =10-15) and other cancers in patients with GD**, which
is consistent with our findings.

Shared (rg = 0.4-0.5) and unique genetic associations with ThC
and BNG allowed insights into genes and pathways that lead to malig-
nantand benign thyroid nodules. Our hypothesis explaining why some
individuals are susceptible to thyroid nodules while others develop
ThCisshownin Fig. 4. We propose that two biological processes with
distinct genetic architecture cause thyroid nodules: (1) hyperplasia, a
polyclonalfollicular cell proliferation with no malignant potential; and
(2) neoplasia, a clonal growth driven by somatic genetic alterations.
Neoplastic nodules can be benign or malignant, causing the mismatch
between biological mechanisms (hyperplasia versus neoplasia) and
GWAS phenotype definitions (benign and malignant thyroid nodules),
resultingin partial overlap in genetic associations and genetic correla-
tion between ThC and BNG.

We found that genes participating in the cell cycle, DNA repair and
cellular response to DNA damage are predominantly associated with
ThC but not benign nodules, highlighting the importance of these
biological processes for malignant transformation of thyroid follicular
cells. These variants and genes canlead to more aggressive multifocal
and metastatic ThC.Onthe other hand, genesinthe fibroblast growth
factorandinsulin-like growth factor1signaling pathways were uniquely
associated with BNG and may lead to hyperplastic benign thyroid
nodules without malignant potential. Variants in genes participatingin
telomere maintenance increase therisk of ThC and benign neoplastic
thyroid nodules (adenomas). Telomere maintenance genes are also
associated with syndromic papillary ThC>>?°.

Our finding that autoimmune thyroid disorders share most
geneticassociations (Fig. 2) indicates that similar fundamental mecha-
nisms lead to GD and LT/primary hypothyroidism despite opposite
clinical manifestations.

Of special interest are genes that were only found in the GD
meta-analysis despite the greater discovery power of the hypothy-
roidism GWAS. These genes (CD40, LINGO2, TNRC18, TERT) may be
involved inimmune system processes that define the type of autoanti-
bodies produced: TSHreceptor antibodiesin GD or thyroid peroxidase/
thyroglobulinantibodiesin LT and primary hypothyroidism. Consist-
ently, variants in TSHR were strongly associated with GD (for exam-
ple, 14:80990913:A:C, 8=0.27 (0.01), P=2.52 x 10™¥), while TPO and
TG associations were only seen in the hypothyroidism meta-analysis.

ThC caused 2,170 deaths in the United States in 2024 (ref.1). PRS
derived from the ThC GWAS can identify individuals at ThC risk in
the population (Fig. 3a,b and ref. 57). ThC screening is not currently
recommended by the US Preventive Services Task Force®® because
of concerns about overtreatment and lack of mortality benefit. How-
ever, we found that this PRS is associated with high-risk ThC features
(Fig.3c) and helps discover individuals susceptible to high-risk ThCina
biobank population. The number needed to screentoidentify one indi-
vidual with high-risk ThCin the CCPM cohortwas 268. For comparison,
the US Preventive Services Task Force-recommended screening for
colon cancer with colonoscopy® has anumber needed to screen of 263
(ref. 60). Thus, genetically informed screening for high-risk ThC is a
conceptually viable strategy to identify aggressive ThCs at an early
curable stage to reduce morbidity and mortality.

Another clinically meaningful application for the ThCPRSis to aid
in the diagnosis of ThC in patients with thyroid nodules. Despite the
widespread use of clinical ultrasound-based algorithms®’, 72% of FNAs
producebenignresultsand 20% are inadequate or indeterminate''>*>2,
The PRS provides a cancer risk assessment that is complementary
and synergistic to ultrasound-based nodule evaluation when
combined with computer-vision-based analysis of thyroid ultrasound
images'. Additional studies of the PRS in combination with clinical
thyroid nodule risk stratification algorithms, such as the American
College of Radiology Thyroid Imaging, Reporting and Data System'?,
areneeded.

We found that incorporating variants from both ThC and BNG
meta-analysis (PRStc versus sng) improved PRS performance for distin-
guishing benign and malignant thyroid nodules. Active surveillance
of thyroid nodules with low-risk sonographic appearance in patients
with reassuring PRS could reduce the need for invasive procedures.

PRS provides a noninvasive risk assessment that isindependent of
somatic changes used in molecular tests for the management of thyroid
nodules with indeterminate cytology®***. Therefore, incorporating
PRSislikely toimprove the performance of these tests. PRS may guide
whichbiopsy-proven ThCs are likely to be indolent and therefore suit-
ableforactive surveillance. It isunknown whether the PRS canimprove
the assessment of the postoperative risk of recurrence and inform
postoperative management.

We recognize that, because of the demographics of participants
in the VTB Consortium, we are underpowered in our ability to study
individuals of non-EUR-like ancestry. As our Consortium grows, we look
forward to conducting more ancestry-specific analyses to ensure that
we find theresults relevant to allindividuals® and improve our under-
standing of rare variation across groups. Fine-mapping analysis will
benecessary to discover putative causal variants. The PRS will require
calibration and prospective testing in clinical trials before introduction
into routine clinical practice.

Insummary, we conducted the meta-analysis of the GWAS for five
thyroid diseases. We found many previously known and new mecha-
nistically plausible variants, genes and pathways contributing to the
risk of ThC, BNG and autoimmune thyroid diseases. We explained why
someindividuals are prone to developing benign thyroid nodules while
others are at risk of multifocal metastatic ThC. We derived and tested
PRS for aggressive ThC population screening and for a clinical task of
distinguishing benign and malignant thyroid nodules. This study will
serve as a foundation for future clinical applications leveraging the
germline genetics of thyroid diseases.
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Methods

Ethical approval

The Colorado Multiple Institutional Review Board of the Univer-
sity of Colorado Denver Anschutz Medical Campus waived ethical
approval for this work (COMIRB no. 20-2315). This study is the result
ofalarge collaborative effort among multiple biobanks and programs.
Cohort-specific GWAS analyses were performed by local researchers.
Data collections for the cohorts were approved by local ethics com-
mittees. All biobank participants provided writteninformed consent.
Participants in the biobanks were not compensated for their involve-
mentin this study.

VTB Consortium

We founded the VTB Consortium under the umbrella of the GBMI*.
Nineteen biobanks from ten countries and four continents con-
tributed GWAS results to the meta-analysis (Extended Data Fig. 1).
Supplementary Table 1lists the sizes of the biobank, ancestry strata,
phenotyping, genotyping and imputation methods, and the software
used for the GWAS.

Phenotype definitions

We defined thyroid phenotypes using the International Classification
of Diseases and Related Health Problems (ICD), Ninth (ICD-9-CM) and
Tenth (ICD-10-CM) Revisions, Clinical Modifications billing codes
for the United States biobanks, the ICD-9 and ICD-10 billing codes
for international biobanks, and SNOMED codes and survey codes for
the AoU (Supplementary Table 2). These phenotype definitions were
shared with teams participatingin the VTB Consortium.

To evaluate the performance of PRS and study their association
with ThC risk phenotypes, we conducted clinical chart reviews for
participants in the CCPM biobank. Histopathological and cytological
diagnosis, patient characteristics (age at ThC diagnosis, death from
ThC and risk of structural disease recurrence), tumor characteristics
(tumor size, tumor focality, presence of extrathyroidal extension, lym-
phatic and angioinvasion, surgical margins positivity) and metastatic
disease characteristics (presence of locoregional and distant metasta-
ses, extranodal extension, size and number of lymph node metastases)
were extracted from surgical histopathology reports, thyroid nodule
fine-needle aspiration reports and endocrinology notes.

The risk of structural disease recurrence was estimated on con-
tinuous (1-55% risk) and categorical scales as described inthe ATAThC
guidelines'. For patients with multiple surgeries, the highest stage
or risk was used (for example, if the first surgery’s histopathology
evaluation reported an Nx stage but lateral neck metastases were
found later, the N1b stage was used for the association analysis). ThC
annotations are listed in Supplementary Table 16. Benign cases for
PRS evaluation in the CCPM cohort were defined based on surgical
histopathology reports.

GWAS
Case and control definitions for the GWAS are listed in Supplementary
Table 3. Phenotype exclusions were used only if clinically or biologically
justified. We excluded (1) patients diagnosed with medullary ThC from
the ThC GWAS (if medullary ThC data were available because rare
medullary ThCs are genetically distinct from common follicular cell-
derived ThCs); (2) ThC cases from the BNG GWAS (because all ThCs
are initially diagnosed as thyroid nodules to avoid contamination of
BNG cases with malignant tumors), and (3) patients diagnosed with
hypothyroidism other than primary (iatrogenic, congenital, central)
from the hypothyroidism GWAS.

Eachbiobank conducted genotyping, imputation, quality control
and geneticancestry analysisindependently (Supplementary Table 1)
except for the AoU, which used a custom pipeline designed to leverage
whole-genome sequencing data and maximize variant overlap with
other biobanks.

GWAS analyses were run using either linear mixed models
(SAIGE)®® or whole-genome regression (REGENIE)®, adjusted for
case-control imbalances using saddlepoint approximation or Firth’s
logistic regression. The biobanks were instructed to use age, sex, up to
20 first principal components and biobank-specific variables, such as
genotyping batches and recruiting centers, as covariates.

Inaddition to multi-ancestry analyses, GWAS stratified according
to genetic ancestry were performed when the case counts permitted.
Supplementary Table 4 lists case and control counts, Summix2 (ref. 29)
population structure estimates and quality control metrics calculated
with the cov-LDSC* for 198 GWAS.

GWAS inthe All of Us research program

We used All of Us whole-genome sequencing (WGS) v.7 data (245,388
WGS) to produce a genetic dataset that maximizes variant overlap
withthe analyses performedinthe other biobanks (Extended DataFig. 6
and 7). Aninclusive list of single-nucleotide polymorphisms (SNPs)
and indels from the GWAS analyses was compiled and supplemented
with variants from the Polygenic Score Catalog (reported as of
February 2024). This list contained ~147 million SNPs and indels.

WGS variant-level quality control was performed by All of Us, as
outlined in the Research Program Genomic Research Data Quality
Report®, In addition, we filtered the dataset to a maximal set of unre-
lated samples estimated from kinship scores and only included indi-
viduals with electronic health records or survey data for phenotype
definitions (193,429 WGS).

We developed a Hail Python pipeline that extracts variants of
interest fromthe All of Us variant dataset (https://hail.is/docs/0.2/vds/
index.html). The code is publicly available in the GitHub repository
(https://github.com/pozdeyevlab/vds-filter/tree/main). The result-
ing BGEN dataset contained ~118 million directly genotyped variants
(asignificant decrease from 972 million variantsin the variant dataset),
permitting GWAS.

Post-GWAS quality control
The post-GWAS quality control workflow diagram is shown in
Extended Data Fig. 8. All GWAS summary data were harmonized to
gnomAD (v.4.1.0) (GRCh38 human genome reference)™.

Each GWAS summary dataset (Supplementary Table 4) was pro-
cessed using the following steps.

Variant-level quality control. The following variants were removed
from the GWAS summary data: variants containing alleles with char-
acters other than A, T, C or G; variants where a P value could not be
calculated (NA), effect size (8) or s.e. >1x107® or <-1x107%, and vari-
ants with an imputation score less than 0.3; variants with allele fre-
quency lessthan 0.0005 or greater than 0.9995; and variants with allele
count of less than 20. Variants were aligned to the gnomAD (v.4.1.0)
reference 30. Ancestry-specificgnomAD allele frequencies were used
for the single-ancestry GWAS. Both palindromic and non-palindromic
variants were tested for exact and inverse alignments. Palindromic
variants were removed because of potential strand flip if they met
any of the following criteria: the fold difference between the gnomAD
allele frequency and GWAS was greater than 2; or the GWAS allele
frequency was greater than 0.4 and less than 0.6; or the GWAS allele
frequency waslessthanless than 0.4 and the gnomAD allele frequency
was greater than 0.6; or the GWAS allele frequency was greater than 0.4
and the gnomAD allele frequency was less than 0.6; variants flagged
as low-quality by gnomAD; and variants with a Mahalanobis distance
between the gnomAD allele frequency and aharmonized GWAS allele
frequency of more than three s.d. from the mean.

GWAS summary level data quality control. Summix2 (ref. 29) was
used to estimate the population structure from the GWAS summary
data. We used a random set of 10,000 variants from chromosome
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21 and reference allele frequencies for the AFR, AMR, EAS, NFE, MID
and SAS genetic ancestry groups from gnomAD (v.4.1.0). The results
from five Summix2 runs, each using a different random set of refer-
ence variants, were averaged. We compared GWAS-derived Summix2
population proportion estimates to those published by the Million
Veteran Program®, CCPM® and All of Us®® and found near-perfect
agreement (Extended DataFig.9,r>=0.999, P=1.96 x 107%).

Single-ancestry GWAS summary data analysis showed good agree-
mentbetween the ancestry reported by the biobank and the Summix2
estimate (fraction of target ancestry was 0.88-0.97).

Cov-LDSC*was used to evaluate confounding in the GWAS sum-
mary data, calculate the heritability of phenotypes and estimate the
genetic correlation between thyroid diseases. For each major con-
tinental ancestry, we generated a custom reference panel of 5,000
WGS from All of Us. For the multi-ancestry GWAS, we used ancestry
proportions calculated with Summix2 (Supplementary Table 4). Sam-
ples, regions and variants that met at least one of the following criteria
were removed: (1) missingness of more than 0.1; (2) closely related indi-
viduals (plink king cutoff of 0.0884); (3) Hardy-Weinberg equilibrium
exact test P<1x107% (4) minor allele frequency of less than 0.01; and
(4) genomic regions with high linkage disequilibrium (LD). Genetic
principal components were calculated using plink2 (ref. 70). Ten
principal components and a window of 20 cM were used to calculate
covariate-adjusted LD scores and estimate the LD scoreregressioninter-
cept (Supplementary Table4), heritability (Supplementary Table 7) and
genetic correlations (Supplementary Table 8)*.

GWAS meta-analysis

A fixed inverse-variance-weighted meta-analysis was run using
METAL”. Individual GWAS summary data with cov-LDSC y axis inter-
cepts significantly deviating from one were adjusted before the
meta-analysis.

Post-meta-analysis quality control, variant annotation and
classification

To minimize the false positive hits introduced by confounding withina
single large biobank, only variants present in at least four input GWAS
datasets were considered in the downstream analysis. If three or fewer
datasets were available for the ancestry-stratified meta-analysis, then
the threshold was set to two. Cochran’s Q P values were calculated to
assess heterogeneity across datasets.

We used the hg38 human genome reference throughout the
study. Phased r? values were computed using custom reference
cohorts with matching population structure generated from the All
of Us v.7 genomes (n = 50,000 for the mixed-ancestry, EUR-like and
AFR-like meta-analyses; 40,000 and 5,500 for the AMR-like and EAS-like
meta-analyses, respectively).

Genomic loci were defined using the LD clumping procedure
implemented in PLINK 2.0 (ref. 70) with an index variant P<5x 1078,
5-Mb search window and 72 threshold of 0.01. Independent clumps
were defined as those that did not share variants associated with the
phenotype at P<1x107. One variant with the lowest P value from
each independent clump was selected as a lead variant and reported
inSupplementary Tables 6.1-6.6.

Lead variants were mapped to the nearest gene and annotated
using ANNOVAR (version date 7 June 2020)"%. A locus was considered
new if no variants for the corresponding phenotype were reported
within 500 kb in the GWAS Catalog (as of April 2024; v.1.0.2)™.
Otherwise, the variant was labeled as previously discovered.

Heritability estimation and genetic correlation analysis

We used cov-LDSC (v.1.0.0)*® with a custom-population-structure-
matched LD reference panel to calculate SNP-based heritability ().
Observed-scale heritability estimates and the corresponding s.e. were
converted to the liability scale using phenotype population prevalence

calculatedinthe Allof Us v.7 dataset (Supplementary Table 7). Similarly,
pairwise genetic correlations between the five thyroid phenotypes
(Supplementary Table 8) were calculated using cov-LDSC with a custom
LD score reference panel.

PRS calculation and evaluation

Tocalculate and evaluate PRS, we performed aleave-CCPM-biobank-out
GWAS meta-analysis. We also used a leave-CCPM-biobank-out GWAS
meta-analysis from the GBMI phase I project” for comparison. All PRS in
this study were tested on the out-of-sample CCPM dataset (n = 94,651).
This approach minimizes inflation of PRS performance due to overfit-
ting. Adjusted PRS (covariates of age, sex and ten genetic principal
components) were cross-validated (fivefold).

The PRS was calculated as a weighted sum of independent
genome-wide significant risk alleles. For the clinically relevant
use case of distinguishing ThC from BNG, we defined PRStc versus nG
as the difference between the PRS for ThC (PRS;cversus an) and the PRS
for BNG (PRSBNGversusAII): lDRSTthersusBNG = l:)RSThC versus All — PRSBNGversusAII'

PRS performance predicting binary phenotypes was assessed
using the AUC. AUCs were compared using the DeLong’s test for
significant differences.

TWAS

We performed the cis-eQTL TWAS using FUSION’, FUSION was run
on multi-ancestry and European meta-analysis summary data, 1,000
genomes LD reference data and all sample thyroid expression refer-
ence weights precomputed from GTEx v.8 (ref. 36) (http://gusevlab.
org/projects/fusion/).

Toreplicate our findings in FUSION, we also used Summary-based
PrediXcan (S-PrediXcan)® to derive gene-level association results from
the GWAS summary statistics and GTEx v.8 (ref.36) as the reference set.
The GWAS meta-analysis summary datawere harmonized andimputed
as described previously (https://github.com/hakyimlab/summary-
gwas-imputation). Animputed GWAS was used to generate gene-trait
associations in thyroid gland tissue.

Candidate gene expression and pathway analysis

We studied the gene expression of candidate genes linked to signifi-
cant genetic associations using ANNOVAR annotation or the cis-eQTL
TWAS (using a Bonferroni-corrected significance threshold). Inter-
genic variants that could not be attributed to the expressed gene were
notincluded.

We compared mRNA expression of ThC-associated genes in 20
human tissues using the National Center for Biotechnology Information
Gene database (www.ncbi.nlm.nih.gov/gene (ref.38)). We investigated
mRNA expression according to age at diagnosis, cancer stage, thyroid
differentiation and other tumor features (Supplementary Table 10) in
ThCs from the TCGA study® and the ORIEN AVATAR Program (www.
oriencancer.org/research-programs). We accounted for common
somatic oncogenic drivers using logistic (binary outcome; forexample,
presence of extrathyroidal extension), ordinal (for ordered categorical
data; for example, disease stage) or linear (for continuous outcomes;
forexample, age at diagnosis) regression with index covariates for the
presence of BRAFV60OE or H/N/KRAS mutations.

The Reactome and KEGG pathway analyses were performed on
all significant genes combined from FUSION and ANNOVAR using
the ReactomePA (v.1.16.2)***” and clusterProfiler’® packages in R
v.4.4 with default Benjamini-Hochberg adjustment for multiple
hypothesis testing.

Statistics and reproducibility

For each significant locus, the number of biobanks with a significant
association (P <5 x1078)is listed in the Supplementary Tables 6.1-6.6.
No statistical method was used to predetermine sample size. No
data were excluded from the analysis. The experiments were not
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randomized. The investigators were not blinded to allocation during
the experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The GWAS meta-analysis summary data are available for down-
load from the GWAS Catalog (www.ebi.ac.uk/gwas/; accession
nos. GCST90627737-GCST90627776). The PRS weights have been
deposited in the PGS Catalog (www.pgscatalog.org/; accession no.
PGP000748; score IDs PGS005258-PGS005274). The proprietary,
privately funded AVATAR data used in this study were generated by
Aster Insights (www.asterinsights.com) and provided to support this
projectincollaboration with ORIEN. AVATAR data are not open source
in public repositories; all inquiries regarding opportunities for data
licensing (industry researchers) or collaboration with ORIEN (academic
researchers) should be submitted to https://researchdatarequest.
orienavatar.com. A follow-up with more information relevant to each
specificinquiry is expected within five business days of submission.

Code availability

Original code is publicly available from GitHub at https://github.com/
pozdeyevlab/gwas-analysis and Zenodo https://doi.org/10.5281/
zenodo.17468664 (ref. 74).
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Extended Data Fig. 9 | Correlation of major continental ancestry fractions
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off-target gene editing) were examined.
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