nature genetics

Article

https://doi.org/10.1038/s41588-026-02512-2

Genome-wide association analyses
highlight therole of the intestinal
molecular environmentin humangut

microbiota variation

Received: 28 August 2024

Accepted: 14 January 2026

A list of authors and their affiliations appears at the end of the paper

Published online: 13 February 2026

% Check for updates

Despite the importance of the gut microbiome to health, the role of
human genetic variation in shaping its composition remains poorly
understood. Here we report genome-wide association analyses of
harmonized metagenomic data from 16,017 adults in four Swedish

population-based studies, with replicationin 12,652 people from the
Norwegian HUNT study. We identified variants in the ORS1E1-ORS51E2
locus, encoding sensors for microbiome-derived fatty acids, associated
with microbial richness. We further identified 15 study-wide significant
genetic associations (P < 5.4 x 10™") involving eight loci and 14 common
bacterial species, of which 11 associations at six loci were replicated. The
results confirm previously reported associations at LCT, ABO and FUT2,
and provide evidence for new loci MUC12, CORO7-HMOX2, SLC5A11, FOXP1
and FUT3-FUT6, with supporting data from metabolomics and gene
expression analyses. Our findings link gut microbial variation genetically to
gastrointestinal functions, including enteroendocrine fatty acid sensing,
bile composition and mucosal layer composition.

The human gut microbiome—a complex community of microorganisms
residing in the gastrointestinal tract—influences many physiological
processes. Recentadvancesin sequencing technologies have enabled
detailed characterization of this microbial community, uncovering its
variability and associations with several health conditions'* Although
human twin and primate multigenerational studies have demon-
strated evidence for host genetic contributions to the microbiome
composition®*, only a limited number of genome-wide association
studies (GWAS) have been conducted. These include ameta-analysis of
24 studies including 18,240 participants that used 16S rRNA sequenc-
ing—a method offering limited species-level discrimination’. The
study was further hampered by the fact that few shared bacterial taxa
were detected across included studies, due partly to high variability in
sample processing methods’—a common challenge in the field®. The
largest high-resolution metagenomic study to date comprised 7,738
participants from the Netherlands’. So far, only variants in two loci,

harboring the lactase (LCT) and the histo-blood group ABO system
transferase (ABO) genes, have been linked robustly and repeatedly to
specific microbiome species at study-wide significance (P<5x 1078
corrected for the number of species tested)**’'°. A Finnish cohort of
5,959 peopleidentified an additional study-wide significant signal near
MEDI3L°,but this signal has not beenreplicated in other studies. Other
variants have been implicated at genome-wide significance (P<5x 1078,
no correction for the number of taxa tested), such as in the secretor
status locus fucosyltransferase 2 (FUT2)".

Here we leveraged high-resolution metagenomic datafrom16,017
participants across four Swedish studies, with replication in 12,652
participants from the Norwegian Trgndelag Health Study (HUNT).
We identified and replicated a genetic association with microbiome
alpha diversity mapping to the OR51EI-ORS51E2 locus that encodes
microbial fatty acid chemosensors expressed by enteroendocrine
cells (EECs). We further identified 15 single nucleotide polymorphism

e-mail: tove.fall@medsci.uu.se

Nature Genetics


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-026-02512-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-026-02512-2&domain=pdf
mailto:tove.fall@medsci.uu.se

Article

https://doi.org/10.1038/s41588-026-02512-2

(SNP)-species associations at study-wide significance representing
eight genetic loci, of which five are new. Our findings highlight the
contribution of gut physiological functions, including enteroendo-
crine chemosensing, bile acid metabolism and mucosal layer make-up
in microbiome composition, paving the way for future studies and
potential therapeutic interventions that consider both host genetics
and microbiome profiles.

Results

GWAS of deep shotgun metagenomic data from four Swedish
studies profiled with a standardized pipeline

We performed and meta-analyzed GWAS of gut microbiome composi-
tionin16,017 participants of Europeanancestry from four Swedish stud-
iessampled between 2011and 2021 (Fig.1and Supplementary Table1).
Participants were aged 18 to 96 years and 51% were female. The mean
study sequencing depth ranged from 25.3 to 56.1 million read pairs.
To ensure comparability, stool metagenomic reads were processed
using a standardized pipeline. Analyses included alpha diversity
(richness, Shannon, inverse Simpson), 921 species present in >5% of
participants in all four cohorts (excluding 3,214 rarer species), 652
higher taxaand 117 functional modules. Based on simulations maximiz-
ing power and minimizing false positive findings, we applied logistic
regression for 679 species present in <50% of participants in all four
cohorts (testing 5,368,906 variants, minor allele frequency (MAF) > 5%)
and linear regression for 242 species with >50% prevalence (7,454,886
variants, MAF >1%). GWAS was run separately by cohort and pheno-
type using REGENIE v.3.3 with sex, age, age?, plate and genetic prin-
cipal components 1-10 as covariates; results were meta-analyzed by
inverse-variance weighted fixed effects. Study-wide associations with
species and diversity were replicated in HUNT (n =12,652).

Alocusincluding genes encoding EEC receptors is implicated
ingut microbial richness

Low gut microbial alpha diversity has been associated with higher risk
of metabolic disorders, although causality remains uncertain''". We
estimated heritability at 9% for Shannon index and 20% for richness
(Supplementary Table 2), lower than the 30-37% reported in twin stud-
ies*. We found associations (lead variant rs10836441-T) in the locus
covering ORSIEI (mouse ortholog Olfr558) and ORS1E2 (Olfr78) genes on
chromosome (Chr.) 11 (Extended Data Fig. 1a) with microbiome richness
(-5.7 species per T allele, P=1.9 x 10™; Supplementary Table 3), which
wasreplicated inthe HUNT study (-2.8 species per T allele, P=2.1x1073).
The imputation of genotypes for rs10836441 was confirmed in a sub-
set of 148 people using Sanger sequencing with a concordance of
100% (Extended Data Fig. 2a). rs10836441 is an expression quantita-
tive trait locus (eQTL) for OR51E2 and OR51E1 expression in several
tissues (GTEx v.8)". At the species level, rs10836441 was associated at
the genome-wide level with the uncharacterized species HGM14224
sp900761905 (Bacillota phylum) and with SFELO1 sp004557245.
The latter is reported as a predictor of response to short-chain fatty
acids (SCFA) supplementation in Parkinson’s disease'. ORS1E1 and
ORS51E2belong to the large olfactory receptor gene family encoding
G protein-coupled receptors expressed primarily in the olfactory epi-
theliumbut also more broadly across the body". Recently, the proteins
encoded by the mouse orthologs of OR51E1 and OR51E2 have been
identified as sensors for gut microbiome-derived short-, medium-and
branched-chain fatty acids in EECs'®. EECs are hormone-producing
cells in the gastrointestinal epithelium, withimportant roles in the
physiological response to feeding, such as gut motility and satiety.
A role of EECs in microbiome composition is supported by a recent
study where mice deficient in colonic EECs were shown to have lower
alpha diversity compared to controls”. Further, knockout of the
ORS51E2receptor ortholog in amouse model of colitis caused higher
levels of intestinal inflammation®. EECs express several fatty acid
chemosensors, such as FFARI-FFAR4, of which FFAR2 and FFAR3 are

relevant for sensing microbiome-derived SCFA*. Further corrobo-
rating our findings of a potential role of fatty acid chemosensing of
EECs in microbiome composition, we observed that genetic variants
inthe FFARI-FFAR2-FFAR3 locus at Chr. 19 were associated at near
study-wide significance with Pullichristensenella excrementipullorum
(P=5.7x10", Supplementary Table4; replicated in HUNT, P=1.5 x107%).
The lead variant rs75481361 at the FFARI-FFAR2-FFAR3 locus was
also associated with the same uncharacterized species as rs10836441
(HGM14224 sp900761905, P=2.3 x107%; Supplementary Table 4)
and associated nominally with richness (P=5x107%). rs75481361 is
reported asaneQTL for FFAR3in colon tissue (GTEx v.8)". We assessed
the expression of OR51E1 and ORS1E2 in single-cell RNA sequencing
(scRNA-seq) from three sources: human intestinal cells*, EECs puri-
fied from human duodenal and ileal organoids® and in EECs of trans-
genic mice’*. The scRNA-seq data from humanintestinal cells showed
expression of ORSIEIin EECs along the intestinal tract, whereas ORS1E2
was expressed mainly in EECs in the colon (Extended Data Fig. 3a).
ORS1F2was expressed across most colonicimmune cell types, highest
inT cellsand monocytes/macrophages (Extended Data Fig.3b). FFAR1
was restricted mainly to duodenal and ileal EECs, FFAR2to several cell
types including EECs, whereas FFAR3 showed overall low expression.
To evaluate the expression of these olfactory and fatty acid receptor
genesindifferent EEC types, we analyzed scRNA-seq from EECs purified
from human duodenal and ileal organoids® (Extended Data Fig.4) and
from EECs of transgenic mice** (Extended Data Fig. 3c). In the human
organoid-derived EECs, we observed overlap of OR51E1 expression
with tryptophan hydroxylase 1 (TPH1)—a marker of enterochromaf-
fin cells. Enterochromaffin cells constitute less than 1% of the total
intestinal epithelium cells but have important effects on modulating
motility by release of serotonin. However, the lead variant rs10836441
was not associated (P = 0.62) with self-reported stool frequency—a
proxy measurement of gastrointestinal motility—ina published GWAS?.
The expression of OR51E2 was considerably lower in the human duo-
denal and ileal organoids (Extended Data Fig. 4), consistent with the
humanintestinal results (Extended DataFig. 3a). The mouse ortholog
of OR51E2 (Olfr78) was expressed in L-cells in the mouse lower intestinal
tract, which are responsible for secretion of glucagon-like peptide 1
(GLP-1), peptide YY (PYY) and insulin-like peptide 5 (INSL5). To test
whether the OR51E1-ORS51E21ocus was linked to GLP-1or SCFA, we
examined rs10836441 in relation to fasting and 2-h post-oral glucose
load GLP-1in up to 3,514 participants from the Malmo Diet and Cancer
Study (MDC) and the Prevalence, Prediction and Prevention of Type
2 Diabetes—Botnia Study (PPP-Botnia) and to SCFAin 1,800 people
from the Malmo Offspring Study (Supplementary Tables 5 and 6). No
association could be detected in this somewhat limited sample when
correcting for multiple testing. In summary, our results suggest that
genetic variation affecting SCFA chemosensors that are expressed in
EECsisrelevant to the human gut microbiome composition; however,
more researchis needed to determine the causal genes and mechanism
of action.

Meta-analysis identified eight genetic loci associated with 14
microbial species at study-wide significance

After clumping of meta-analysis results, we found 149 SNP-spe-
cies associations at the genome-wide significance level (P<5x1075;
Supplementary Table 4) comprising 113 loci separated by at least 100 kb
and 132 species. We used FUMA?* to identify functional or phenotypic
genesets and found 38 enrichments, including genesets previously
linked to diet (n =10), cancer biomarkers (n =3), blood group (n=3),
gallstone disease (n =1) and waist-to-hip ratio (WHR) adjusted for
body massindex (BMI) (WHRadjBMI) (n=1) (Supplementary Table 7).
At the stricter study-wide threshold (P < 5.4 x10™), we identified 15
SNP-species associations across eight loci and 14 species (Figs. 2 and
3 and Table 1), and 12 SNP-higher taxa associations at five loci (LCT,
PLEKHGI1, MUCI12, ABO and SLC5A11) (Supplementary Table 8).
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Fig. 1| Characteristics of participants and microbiome composition across
studies. a, Density plots of age of participants in the discovery studies (SCAPIS,
n=8,733; SIMPLER-V, n = 4,515; SIMPLER-U, n = 981; MOS, n =1,788; total
n=16,017 individuals) and in HUNT. Dashed line: combined discovery studies.
b, Violin and boxplots of BMI of participants in the discovery studies (SCAPIS,
n=8,733; SIMPLER-V, n = 4,512; SIMPLER-U, n = 978; MOS, n =1,788; total
n=16,011) and in HUNT (n = 12,652). Violin plots show the density distribution.
The boxplots within the violin plots show the medians and the IQR, and whiskers
extend to the values no larger than 1.5 times the IQR (upper whisker) or smaller

242 species with prevalence >50%

than 1.5 times the IQR (lower whisker). Outliers are depicted as individual
points. ¢, Map with the study sites for the discovery studies in Sweden (SCAPIS,
SIMPLER-V, SIMPLER-U and MOS) and the replication cohort in Norway (HUNT),
including the sample size and proportion of female participantsin each

study. d, Prevalence for the species analyzed with the logistic model. e, The
log-transformed median abundance for the species analyzed with the linear
modelinthe discovery studies. Ind and e, each dot represents one species.
Species are ranked by their prevalence and median abundance in SCAPIS.

The 14 species had a median heritability of 13% (interquartile range
(IQR) 5-16%; Supplementary Table 2), highest for Clostridium saudiense
(33%). Corresponding estimates were 11% (IQR 5-19%) for species with
genome-wide associations and 8% (IQR 3-16%) for those without. All
14 species were at least moderately prevalent; the least prevalent spe-
cies was detected in 27% of the participants. Candidate genes based
on genetic distance, eQTL data, gene expression in human intestinal

cells (Extended Data Fig. 3) and biological function were LCT, ABO,
FOXP1, MUCI12, CORO7-HMOX2, SLC5A11, FUT2 and FUT3-FUT6-all
expressed in the human intestine (Extended Data Fig. 3). We did not
observe evidence of genomicinflation (meanA =1.03;s.d. = 0.02),and
findings were consistent across studies (Supplementary Table 4 and
Extended Data Fig. 5). No differences between estimates were found
in the sex-stratified analysis at the 5% false discovery rate (FDR) level
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Fig. 2| Manhattan plot for associations between genetic variants and 921
speciesinthe discovery studies (n = 16,017). The dashed black line represents
the study-wide (P< 5.4 x10™, after Bonferroni correction of the genome-wide
threshold), and the solid gray line genome-wide (P < 5.0 x 10"®) significant
thresholds. Filled triangles represent binary outcomes (absence/presence),

which were tested using logistic regression models; circles represent continuous
outcomes (relative abundance), which were tested using linear regression
models. All tests were two-sided. Loci not found previously in other GWAS at
study-wide significance are indicated in purple.

(Supplementary Table 9). The genome-wide significant associations
were consistent in sensitivity analyses using models with centered
log-ratio transformation (linear regression models), with Firth correc-
tion (logistic regression models), without age? as a covariate, with study
sites analyzed separately, excluding all but one person per household,
excluding one from each related pair, excluding recent antibiotic users,
excluding self-reported inflammatory bowel disease (IBD) cases and
including BMI, smoking, alcohol or fiber intake as covariates, respec-
tively (Extended DataFig. 6).

Of the 15 SNP-species associations, we replicated 11 at six loci in
HUNT at the Bonferroni-corrected threshold (P < 3x1073) and all 15 at
P <0.05with consistent effect direction. Of these 15 SNP-species asso-
ciations, seven were present in FINRISK® and four in the Dutch Micro-
biome Project’, of which seven and two were replicated, respectively
(Supplementary Table10). Allele frequencies were comparable across
studies, except for the LCTSNPs in FINRISK (Supplementary Table 11),
whichareknowntovaryacross populations”. Lactase persistence alleles
atLCTwereassociated with decreased levels of Bifidobacterium adoles-
centis and with increased levels of Phocea massiliensis, Negativibacilus
sp000435195 and Copromonas sp000435795, and at genome-wide
level with five additional species, including three Bifidobacterium spe-
cies (Extended Data Fig. 1b-e and Supplementary Table 4). Variantsin
LCT were also associated at study-wide significance with the genera
Phocea and Bifidobacterium, and the family, order and class (Bifido-
bacteriaceae, Actinomycetales and Actinomycetia, respectively) of the
Bifidobacterium spp.In anontargeted plasma metabolomics analysis
in the Swedish CArdioPulmonary biolmage Study (SCAPIS), we con-
firmed previously reported associations of the LCT lead variants with
the glycemic marker 1,5-anhydroglucitol® and found associations
with vitamin B6 levels (Supplementary Table 12; FDR g < 0.05). Our
colocalization analysis revealed ashared genetic signalinthe LCTlocus
for B. adolescentis, P. massiliensis, Negativibacilus sp000435195 and
Copromonas sp000435795 with plasmalevels of the secondary bile acid

isoursodeoxycholate and low-density lipoprotein (LDL) cholesterol
(Supplementary Table 13). Our findings thus expand the number of
robustly replicated microbiome-associated loci from two (ABO and
LCT)tosix (ABO, LCT, FUT2,MUC12, CORO7-HMOX2 and SLC5A11) and
provide strong supportive evidence for two additional (FUT3-FUT6
and FOXPI1) loci.

Several associations support an important role of fucosylated
glycans in microbiome regulation

In this study, we found study-wide species associations with three
loci linked to the phenotypical variation and secretion of histo-blood
group antigens: ABO, FUT2 and FUT3-FUT6 (Extended Data Figs. 1f-h
and 7a-c). Histo-blood group antigens are fucosylated glycans present
oncellsurfacesandinsecretions, including the gastrointestinal mucus
layer. These antigens constitute a carbon source and binding site for
many gut bacteria”. We confirmed previous associations of ABO vari-
ants with Faecalibacterium longum and reported new associations with
Mediterraneibacter torques and the genus UMGS1623. The association
of ABOvariants with specific species and strainsis reported to depend
on the secretor status of histo-blood group antigens determined by
variationsin FUT2—agene encoding a fucosyltransferase'. Nonsecre-
tors, who comprise about20% of people of European ancestry, do not
secrete histo-blood group antigens in bodily secretions such as saliva
and mucus.

Given the association with ABO, an association between FUT2 vari-
antsand the gut microbiome is expected” but has so far been observed
only at the genome-wide significance level’*°. Here we identified three
species associated with FUT2 variants at a study-wide significance
level: Blautia A obeum, Clostridium sp900540255 and Clostridium
sp001916075, and on a genome-wide significance level with Mediter-
raneibacter torques, Mediterraneibacter faecis and Ruminococcus Bgna-
vus. Blautia Aobeumis ahighly prevalent species that hasbeenshownto
harbor glycosyl hydrolase genes that can remove fucose from glycans®.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-026-02512-2

a Q
%
B
2
>, o
) =z
%, S 2
. o, Z <
% %z 3
% % T >
% L 7
(o) g %
9. Q % o
%, O ®
%, o
%, %
7 Q,
%, s
%
Urkp
Olderig ea
Acti
A f'”omycetaceae
Bifidobacteriacegs
L]
e
e\\acea
Eggert\’\ A
A2
UMe®
(/]
&
\’bo Qe
N
& Sl 30
Q FOLITE 2%
FFTI8eY g 2
$ S o =
v 55 g e
5 §23 $ %
< S20 3 2
5 S35 g 8
q 2 3 s
o .Q 3 °
O g %
L;J ]
b
®
[ ]
(1
LCT ABO
L]
L]
(]
FOXP1 CORO7-HMOX2
W
(]
L]
MUC12 SLC5A11

Fig. 3| Cladogram of genetic associations with gut bacterial species.
a, The phylogenetic tree layers from center to periphery are kingdom-phyla-
class-order-family, and all families captured by the 921 species are plotted. Phyla

Nature Genetics

— o Study-wide significant

Genome-wide significant

8
J
[%)
<
0;\“‘
X ,'\’5‘2>
 °
D ce?
\)%P‘GA o oo
i
U
oo® i
Oso\\\osp
CAG-382
.Butyricicoccaceae
A .
Laccfal’bacter aceae
*ee. . 105Diracese
A,
3
A,
4'79@, o&%
oy, Pz,
0, Og
%o Oo
Q . o
A e 8
\,
S
%
L]
FUT3-FUT6
Ll
L]
L]
FUT2
Bacillota A
Bacillota
Bacteroidota
Actinomycetota
Pseudomonadota
Bacillota C
Cyanobacteriota
Bacillota G

with atleast one genetic association are colored. Species are placed at their
family. b, Per-locus associations with microbiome species for loci with at least one
study-wide significant association. Each dot corresponds to one species.



http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-026-02512-2

Table 1] Loci associated with gut microbiome composition at study-wide significance

Variant Microbiome feature Model Swedish studies HUNT
Locus Lead variant Chr: Pos37 EA/OA Effect EAF Trait Prev Beta s.e. P Beta s.e. P
prediction
OR51ET-  rs10836441 11:4689742 T/C Intergenic 0.52 Richness NA Linear -0.06 001 1.9x107° -0.04 0.01 21x107°
OR51E2
rs4988235 2:136608646 A/G Intron (MCM®6) 0.72 Negativibacillus 281 Logistic  0.23 003 29x10™  0.09 004 0.04
sp000435195
(NCBI®: Clostridium sp.
CAG:169)
LCT rs4988235 2:136608646 A/G intron (MCM6) 072 Phocea massiliensis 75.7 Linear 0.08 001 14x10" 0.08 0.02 51x10°°
rs182549 2:136616754  T/C Intron (MCM6) 072  Bifidobacterium 90.0  Linear -010 001 17x10™ -014 0.02 14x10™
adolescentis
rs6754311 2:136707982  T/C Intron (DARS) 0.72 Copromonas sp000435795  67.7 Linear 0.08 001 3.2x10" o010 0.02 2.4x10°®
(NCBFP: Alitiscatomonas acetii)
FOXP1 rs17007949 3:70920041 C/G Intergenic 0.32 Intestinibacter 559 Linear 0.07 0.01 51x10™ 0.03 0.01 7.3x107°
sp900540355
(NCBI®: Clostridium sp.
1001270J_160509_D11)
MUC12 rs4556017 7100632790 T/C Intron (MUC12)  0.83 Coprobacillus cateniformis 26.9 Logistic  0.34 004 3.3x10"7 0.38 0.06 17x10™
rs9411378 9:136145425  A/C Intron (ABO) 0.28 Mediterraneibacter torques 86.9 Linear on 0.01 14x10™ 012 0.01 1.0x107"
(NCBI*: [Ruminococcus]
ABO torques)
rs550057 9:136146597  T/C Intron (ABO) 0.31 Faecalibacterium longum 96.6  Linear 008 001 3.8x10" 0.08 002 16x10°
CORO7- 8182173 16:4420787 T/C Intron (CORO7) 0.23  Clostridium saudiense 402 Logistic -0.22 0.03 7.8x10™  -0M 005 0.02
HMOXZ (54785060  16:4453319  C/G  Intron(CORO7) 026  Turicibacter sanguinis 539 Linear -0.08 001 20x10™ -004 001 17x10°
SLC5A11  rs55808472  16:24931691 A/G Noncoding 0.06 Agathobaculum 98.3 Linear 015 002 24x10" 016 0.03 4.3x10°
transcript exon butyriciproducens
(AC008731.1)
FUT3- rs708686 19:5840619 T/C Upstreamgene  0.30  Clostridium sp900540255 363 Logistic -0.20 003 45x10™ -0M 005 002
FUT6 (FUT6) (NCBI?: uncultured
Clostridium sp.)
rs679574 19:49206108 C/G Intron (FUT2) 0.56 Clostridium sp001916075 31.2 Logistic 017 0.03 25x10" 015 005 1.6x107°
(NCBI*: C. lentum)
rs492602 19:49206417  A/G Synonymous 0.56  Blautia Aobeum 96.4  Linear 007 001 16x10" 0.08 0.01 76x10™"
FUT2 (FUT2) (NCBI: B. obeum)
rs681343 19:49206462 T/C Stop gained 0.44  Clostridium sp900540255 363 Logistic -0.22 0.03 22x10™ -019 004 11
(FUT2) (NCBI°: uncultured
Clostridium sp.)

Associations shown here were those at study-wide significance after Bonferroni correction of the genome-wide threshold, that is, P<1.7x107® for richness and P<5.4x10™ for species. Bold
type indicates those robustly replicated in HUNT at a Bonferroni-corrected P=3.3x10°°, Betas are regression coefficients in standard deviation richness or species abundance per effect allele
(calculated using a linear regression model) or log odds of species presence per effect allele (calculated using a logistic regression model). Tests were two-sided. Locus, manually assigned
locus name based on previous GWAS assignment or function of nearby genes if new; Lead variant, reference SNP identifier of the locus lead variant (that is, the variant with the lowest Pvalue);
Pos37, human genome GRCh37 position on the chromosome; EA, effect allele; OA, other allele; EAF, mean effect allele frequency across studies; Trait, microbial species richness or species
name; Model, GWAS regression model; Prev, mean species prevalence across studies (based on rarefied relative abundances for logistic models and nonrarefied relative abundances for
linear models); Swedish studies P, Pvalue in Swedish studies SCAPIS, SIMPLER-V, SIMPLER-U and MOS (discovery); HUNT P, Pvalue in HUNT (replication). °National Center for Biotechnology
Information (NCBI) equivalents refer to the unfiltered NCBI taxonomy of GTDB species representative as of 2024-04-24. This was only added for species for which the name of the NCBI

equivalent was different than GTDB.

Thelead variantinthe currentstudy isin close linkage disequilibrium
(LD) with rs601338, which introduces a stop codon resulting in the
nonsecretor status. Variants in FUT2 have been linked previously to
IBD, and our colocalization results show evidence of shared causal
variants of IBD with Blautia A obeum, Clostridium sp900540255 and
Clostridium sp001916075 (Supplementary Table 13). To ascertain that
our FUT2-associations were not due to secondary effects of IBD, we
reanalyzedtheresults excluding IBD cases, which yielded similar results
(all P< 3.7 x107'; Extended Data Fig. 6). We identified associations of
ABO and FUT2 lead variants with plasma secondary bile acid levels—
probably an effect of altered gut microbiome composition as bacteria
are responsible for the conversion of primary to secondary bile acids
(Supplementary Table12; FDR g < 0.05). We found strong evidence fora
secretor-status-dependent effect of genetically predicted expression of
the ABO A antigen (blood groups A or AB) on M. torques abundance but
not for the Bantigen (blood group B) (Supplementary Table 14; interac-
tionP=5.7 x107). The abundance of M. torques was higher in secretors

(median abundance 0.06 (Q1, Q3 0.004, 0.26)) than in nonsecretors
(0.03(0.0008,0.17)) inthose presumed to express antigen A, and low
(median 0.03) inthose predicted to express the antigen B, irrespective
of secretor status. These findings might be explained by the potential
of M. torques, also known as Ruminococcus torques, to produce an
a-N-acetylgalactosaminidase that removes N-acetylgalactosamine
(GalNac) from the antigen A*.

FUT2 also determines the phenotype of the Lewis blood group
antigen; those who are secretors express Le(b) instead of Le(a), pro-
vided that the person carriesafunctional FUT3gene. The Le(b) antigen
is proposed to act as a binding site for bacteria such as Helicobacter
pylori*. Here we found associations of the FUT3-FUT6 locus with the
species Clostridium sp900540255. The FUT3locus has not been asso-
ciated previously with gut microbiome traits but has been linked to
several other traits, such as gallstone disease®* and LDL cholesterol™.
Our colocalization analysis provided strong evidence for a shared
genetic signal for Clostridium sp900540255 with LDL cholesterol, at
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both the FUT2 and the FUT3-FUT6 loci (Supplementary Table 13). We
also tested for the interaction of secretor status and the Lewis blood
group (Le*versus Le") for relevant species. However, in contrast to the
ABO findings, we did not find robust evidence that the effect of Lewis
antigenis dependent onsecretor status. Taken together, our observed
associations of the ABO, FUT2 and FUT3-FUT6 loci with specific bacte-
rial species underline theimportance of fucosylated glycans in shaping
the gut microbial landscape.

Genes involved in the mucosal layer implicated in gut
microbiome composition

We discovered and replicated an association between a variant in an
intron of MUCI2 and Coprobacillus cateniformis, flanked by two other
mucin genes, MUC3A and MUC17 (Extended Data Fig. 7d). The same
variant was also associated at study-wide significance with the genus
Coprobacillus. Our genotyping array did not cover the MUC3A gene
regionwell dueto gapsinthe human genome assemblies for the human
MUC3cluster®®. Imputed genotypes for the lead variant rs4556017 were
confirmed in a subset of 148 people using Sanger sequencing with
a concordance of 96.6% (Extended Data Fig. 2b). Mucins, including
MUC3A, MUCI12 and MUC17, are main components of the enterocyte
glycocalyx and are heavily O-glycosylated glycoproteins. MUCI2 is
expressed most strongly by enterocytesand goblet cellsin the human
colon, whereas MUC3A and MUC17 are expressed most strongly in the
duodenum and ileum (Extended Data Fig. 3). Host glycans play an
important role in determining which bacteria can colonize the host,
and serve asanimportant nutrient source for gut microbes”. Variants
in this locus have been associated previously with stool frequency?,
and we showed through colocalization analysis evidence supporting
ashared genetic signal between C. cateniformis and stool frequency
(P(H4) > 0.99; Supplementary Table 13). C. cateniformis is a recently
described Gram-positive, nonsporulating, anaerobic, rod-shaped bac-
terium’®. The stool levels of C. cateniformis were reported to decrease
in patients withirritable bowel syndrome after fecal microbiota trans-
plantation and were correlated positively with both symptoms and
fatigue®. Variants near mucin genes (MUCS, MUCI2, MUC13, MUC22)
have been suggested previously at genome-wide or near genome-wide
significance with metagenomic features®*®*, Our findings corroborate
previous findings that genetic variations in mucin genes can shape the
gut microbiome composition.

Shared genetic background of Turicibacter sp., Clostridium
saudiense, Intestinibacter sp900540355, adiposity traits

and bile acids

We discovered new associations of variants in the CORO7-HMOX2locus
on Chr. 16 with the strictly anaerobic, Gram-positive Turicibacter san-
guinis (rs4785960, P=2.0 x107; replication P=1.7 x107), with the
spore-forming, anaerobic, Gram-positive Clostridium saudiense, previ-
ously known as Clostridium saudii (P=7.8 x 107; replication P= 0.02),
and at a genome-wide threshold with Intestinibacter sp900540355.
Genes located in this locus include CORO7, VASN, PAM16 and HMOX2
(Extended DataFig. 7e,f).eQTL analysis showed that the lead variants
are associated with the expression of several of these genes in several
tissues. We found another locus with asimilar pattern of species associa-
tions near FOXPI on Chr. 3, which was associated with Intestinibacter
sp900540355 (rs17007949; P=5.1x10™") at study-wide significance
level (Extended DataFig. 7g), and with C. saudiense, Faecalibacterium
prausnitzii Fand Turicibacter bilis at the genome-wide significance level.
Variants near FOXP1, which has a key role in the immune system****,
have been associated previously with traits such as neutrophil count,
hemorrhoidal disease, Crohn’s disease, dietary intake and Barrett’s
esophagus, and at genome-wide significance with Leptospirales’. A
variantinathird locus near PLEKHG1 was also associated at study-wide
significance with the Turicibacter genus, family (Turicibacteraceae) and
order (Haloplasmatales) of Turicibacter spp. (Supplementary Table 8).

A recent study has shown that some Turicibacter strains encode and
produce bile salt hydrolases—enzymesinvolved in producing second-
arybileacids**. Furthermore, mice gavaged with Turicibacter presented
withalterationsin fat mass and circulating bile acids and lipids**. In our
metabolomics analysis, the Turicibacter-lowering C allele of rs4785960
in the CORO7-HMOX21ocus was associated with higher plasma levels
of several secondary bile acids (Supplementary Table 12). Consistent
findings were observed when examining the associations of T. sanguinis
and C. saudiense abundances withthese secondary bile acid metabolites
inplasma (Supplementary Table 15). The lead variantin the FOXPIlocus
was associated with stool levels of the secondary bile acid glycourso-
deoxycholate (P=9.8 x107; Supplementary Table 16). We observed
ashared genetic signal between Intestinibacter sp9005540355 and
LDL cholesterol in the FOXPI locus, but not between T. sanguinis,
C.saudiense and LDL cholesterol in the CORO7-HMOX2 locus. We
performed a Mendelian randomization (MR) analysis to investigate
potential bidirectional effects between LDL cholesterol and /ntes-
tinibacter sp9005540355. The analysis suggested a positive effect
of Intestinibacter sp9005540355 abundance on LDL cholesterol
(P=4.4x10™; g-value = 0.001) but not in the opposite direction
(Supplementary Table17 and Extended DataFig. 8). Creating the genetic
instruments using a more liberal P value threshold of 5 x 10~ yielded
concordantresults (P=0.006; g-value = 0.02); however, the MR-Egger
interceptindicates the presence of horizontal pleiotropy in this liberal
analysis (P=0.012). The CORO7-HMOX2locus was reported previously
tobe associated with WHRadjBMI*. We found that WHRadjBMI shares
agenetic signal with 7. sanguinis and C. saudiense in colocalization
analyses (P(H4) > 0.94) (Supplementary Table 13). The MR analysis
showed evidence of an effect of T. sanguinis on WHRadjBMI, but not
inthe opposite direction. Analyses using the liberal P value threshold
of 5x107° to create genetic instruments did not support the effect of
T. sanguinis on WHRadjBMI (P = 0.23). Although the mechanismiis still
unclear, it seems plausible that these two loci might affect similar or
the same pathways. Our findings suggest that genetic variations at
two different loci, CORO7-HMOX2 and FOXP]I, affect a shared set of
bacteria, including Turicibacter sp., C. saudiense and an Intestinibacter
species, as well as LDL cholesterol, bile acids and body composition.

Variants in the SLC5A11 locus associated with a
butyrate-producing bacterium

We identified variantsin the SLC5A11locus on Chr. 16 associated with
the abundance of Agathobaculum butyriciproducens and its family
Butyricicoccaceae (Extended Data Fig. 7h and Supplementary Table 8).
Thislocus hasbeenlinked previously to the related genus Butyricicoc-
cus atgenome-wide significance*®. The lead variant rs55808472isan
eQTL for SLC5A11. The species-increasing A allele reduces SLC5A11
expression (also known as SMIT2 or SGLT6) in the ileum®. This gene
encodes sodium/myo-inositol cotransporter 2, which mediates api-
calmyo-inositol absorptioninthe intestine. Myo-inositol plays roles
in various physiological processes, including cellular signaling as
a precursor for phosphatidylinositol and inositol phosphates. In
SCAPIS, our metabolomics analysis confirmed previous findings*®
of anassociation betweenthe A allele and lower plasma myo-inositol
(P=1.2x107% Supplementary Table 12). A. butyriciproducens is a
strictly anaerobic, butyric acid-producing bacterium and has been
implicated in mouse models as a potentially beneficial agent for
cognitive function, Alzheimer’s disease pathology and Parkinson’s
disease*. Another gene in the locus is ARHGAPI7 encoding the
RhoGTPase-activating protein 17, known to be involved in the main-
tenance of tight junctions and vesicle trafficking. Arhgap17-deficient
mice have increased intestinal permeability and impairment of the
mucosal layer compared to wild-type mice in a colitis model*°. Our
findings provide evidence for a genetic variantin the SLC5A11 locus
affecting the abundance of A. butyriciproducens—a bacterium with
potential health-beneficial effects.
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Loci associated with microbial functions suggest genetic links
to microbial carbohydrate and amino acid catabolism

We investigated associations between host genetic variation and 117
previously curated functional modules representing different aspects
of microbial metabolism® and microbial functions implicated in the
gut-brain axis®’. No study-wide significant findings were identified.
Using the genome-wide significance threshold, we found that 11 can-
didate genetic loci, including CYP7A1 and EGFR, associated with 11
microbial functions, most related to carbohydrate and amino acid
catabolism (Supplementary Table 18).

Discussion

We haveidentified and replicated a human genetic variant associated
withgut microbiomerichness at genome-wide significance:the ORS1E1-
ORS51E21ocus. We further report 15 study-wide and 149 genome-wide
significant associations of genetic variants with individual microbial
species, where the 15 study-wide associations represent eight lociand
14 species. Of these 15, 11 were replicated in an external sample using
strict criteria and the remaining four were nominally significant. The
eight lociincluded the well-known ABO and LCT loci, the previously
suggested FUT2 and five new loci (MUC12, CORO7-HMOX2, SLC5A11,
FOXPI and FUT3-FUT6). Our findings expand considerably our under-
standing of the host genetic regulation of the microbiome composition
and point toward the importance of key gastrointestinal physiologi-
cal mechanisms in microbiome regulation. Identified variants were
located near or in genes linked to gastrointestinal physiology, such as
enteroendocrine fatty acid chemosensing, bile composition, mucosal
composition and presentation and secretion of cell surface glycans.

The strengths of this study include harmonized bioinformatic
processing across cohorts, strict Bonferroni adjustment of the
genome-wide threshold to limit false positives and consistent repli-
cation in the Norwegian HUNT study. Limitations include the focus
on participants of European ancestry, mainly from Nordic countries,
restricting generalizability and limited power to detect associations
with rare variants or less prevalent microbial species. All study-wide
associations were for species present in at least 27% of participants,
whereas most gut species are less common. Another limitation was
incomplete genomic coverage downstream of MUCI2 on Chr. 7 in
the reference genome used for genotyping, which hindered explo-
ration of that locus. As in most GWAS, identifying causal genes
remains challenging.

Future work should address these limitations and clarify causal
pathways linking host genetics and the microbiome. We expect larger
GWAS to continue highlighting genes related to gastrointestinal physi-
ology andto factorsknown to shape the microbiome, such as antibiot-
ics, cardiometabolic medication and diet**~°. They may also uncover
more species-locus associations, as suggested by our 149 genome-wide
findings, where several loci were linked to several species. In conclu-
sion, our study advances understanding of the host genetic determi-
nants of gut microbiome composition and highlights gastrointestinal
physiology as akey driver.
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Methods

Ethical considerations

The current study has been approved by the Swedish Ethical Review
Authority (DNR2022-06137-01, DNR 2024-01992-02). All participants
in the respective studies below provided written informed consent.
The Swedish Ethical Review Board approval numbers are: SCAPIS (DNR
2010-228-31M), SIMPLER (DNR 2009/2066-32, DNR 2009/1935-32, DNR
2010/0148-32, DNR 2014/892-31/3), MDC (DNR 532/2006, DNR 51-90)
and MOS (DNR 2012-594). The PPP-Botnia study received approval
from the Ethics Committee of Helsinki University (approval number
608/2003). The HUNT study was approved by the local ethical review
board (Regional committee for medical and health research ethics,
Central Norway; REK-656785).

Discovery studies

SCAPIS. SCAPIS* is amulticenter cohort comprising 30,154 people
aged 50-65 years. For this analysis, 8,733 participants of European
ancestry from the Malmé and Uppsala sites with both gut microbiome
and genotype datawereincluded. At baseline, participants provided
blood samples during the first visit and were asked to collect stool
samples athome, storing them at —20 °C until samples were brought
to the study center at the second visit for storage at —80 °C. DNA
extracted from whole blood was used for genotyping. Birth year and
sex were obtained from the Swedish population register. Information
on dispensed antibiotics (Anatomical Therapeutic Chemical code
JO1) in the past 6 months was obtained from the Swedish Prescribed
Drug Register. BMI was defined as weight divided by height squared
(kg m™). Habitual alcohol and fiber intakes were estimated from
afood frequency questionnaire (g day™)*. Smoking behavior was
assessed using a questionnaire and defined as current, former and
never smoker.

SIMPLER-Vastmanland and SIMPLER-Uppsala. The Swedish Infra-
structure for Medical Population-Based Life-Course and Environmental
Research (SIMPLER; https://www.simpler4health.se/w/sh/en)includes
datafromtwo large, ongoing population-based studies: the Cohort of
Swedish Men (COSM) and the Swedish Mammography Cohort (SMC)*®.
The COSM initially enrolled 48,850 men born between 1918 and 1952
living in Vastmanland and Orebro counties in 1997. The SMC enrolled
66,651 women by sending invitations to allwomen bornbetween 1914
and1948livingin Uppsalaand Vistmanland counties between 1987 and
1990. The current analysis isbased on asubsample selected randomly
fromthese studies who wereinvited for clinical examination with geno-
type and gut microbiome data: SIMPLER-Vastmanland (SIMPLER-V) and
SIMPLER-Uppsala (SIMPLER-U). SIMPLER-V includes 4,515 COSM and
SMC participants from Vistmanland examined between 2010 and 2019.
SIMPLER-U includes 981 women from the county of Uppsala, exam-
ined between 2003 and 2009 (no stool collected) and re-examined
between 2015 and 2019 (stool collected). Participants were asked to
collect stool samples athome and store them at -20 °C until they were
broughttothetest center, where samples were stored at -80 °C. For 115
SIMPLER-V participants, the examination was conducted at home. DNA
for genotyping was extracted from whole-blood samples. Information
on dispensed antibiotics in the past 6 months was obtained from the
Swedish Prescribed Drug Register.

Malmé offspring study. The Malmo offspring study (MOS) includes
participants aged >18 years who are children or grandchildren of par-
ticipants from the Malmo Diet and Cancer Study (MDC)—cardiovascu-
lar cohort, a subset of the larger MDC*. Data collectionin MOS began
in 2013 and included 4,721 participants by 2020. The current study
included 1,788 participants with genotype and gut microbiome data
who attended baseline measurements between 2013 and 2017. Stool
samples were collected and stored in home freezers (=20 °C) until
they were broughtto the study sites, where they were stored at—80 °C

in the biobank. DNA for genotyping was extracted from whole-blood
samples. Demographic information was collected using a question-
naire. Antibiotic use was self-reported and was also derived from the
Swedish Prescribed Drug Register. Participants who were also part of
SCAPIS were excluded from the MOS data.

Replication cohort

Norwegian Trendelag Health Study. The Trgndelag Health (HUNT)
studyis along-term population-based health investigation conducted
in the Trgndelag county, Norway®>, Four surveys have been used to
collectdataand biological samples from participants between 1984 and
2019. Approximately 230,000 people have participatedin atleast one
survey. Of these, around 88,000 participants have undergone geno-
typing®’. Among the 56,042 participants in the HUNT4 survey, 13,268
submitted stool samples for gut microbiome analysis on afilter paper.
Weincluded datafrom12,652 HUNT4 participants of European descent
having both genetic and gut microbiome data available. Sequencing
and bioinformatic processing were performed analogously to SCAPIS
and MOS at Cmbio (Copenhagen, Denmark).

BMI and age distribution were compared between studies with
density plots. A map depicting the study sites was generated with
the maps v.3.4.2.1R package. Other studies (MDC, PPP-Botnia) are
described in the Supplementary Note.

Genetic analysis

Genotyping and imputation. DNA extraction, genotyping, pre-
imputation quality control and imputation were performed separately
ineach cohort (SCAPIS, SIMPLER, MOS and HUNT) using high-density
lllumina genotyping arrays and standard pipelines for variant calling
and quality filtering. Quality control steps removed samples with
poor genotyping quality, sex discrepancies, non-European ancestry
and markers with high missingness or implausible allele frequencies.
Imputation was performed using standard algorithms (EAGLE, mini-
mac, PBWT) at established imputation servers against the Haplotype
Reference Consortium (HRC) rl.1 panel. Detailed protocols for each
cohortare providedin the Supplementary Note.

Validation of genotypes using Sanger sequencing. Direct genotyp-
ing using Sanger sequencing was performed to confirm the variants
in rs10836441 (ORS1E1I-OR51E2 locus) and rs4556017 (MUCI2 locus).
Details are given in the Supplementary Note.

Stool DNA extraction and metagenomic sequencing

SCAPIS, MOS and HUNT. Stool DNA extraction and quality control
for SCAPIS and MOS were performed by Cmbio and described in
Sayols-Baixeras et al.. In brief, samples were randomized on the box
level, and DNA was extracted using the NucleoSpin 96 Soil extraction
kit (Macherey-Nagel). DNA extraction quality was evaluated using
agarose gel electrophoresis. One negative and one positive (mock)
control were added to each batch. DNA was quantified with fluoromet-
rictechniques both after DNA extraction and after library preparation.
DNA extraction and quality controlin samples from HUNT have been
describedin detailin Grahnemo et al.**. Inbrief, three 6-mm disks were
punched out from each filter card into awell. DNA was isolated using
the Microbiome MagMAX Ultra kit (Thermo Fisher Scientific) after
bead-beating. For all three studies, genomic DNA was fragmented
and used for library construction using the NEBNext Ultra Library
PrepKit from Illumina. The prepared DNA libraries were purified and
evaluated for fragment size distribution. Libraries from stool DNA
were sequenced using the Illumina Novaseq 6000 instrument using
2 x150-base-pair paired-end reads, generating on average 26.0, 25.3
and 22.9 million read pairs, respectively, in SCAPIS, MOS and HUNT,
with 97.8% of the sequenced bases having Phred quality score >20 in
SCAPIS and MOS, and more than 85% had a Phred quality score =30
in HUNT.
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SIMPLER study. SIMPLER stool samples were thawed, a pea-size
amount was aliquoted, and 800 pl of DNA/RNA Shield (Zymo
Research) was added. These aliquots were refrozen and sent to the
Centre for Translational Microbiome Research at the Karolinska Insti-
tute in Stockholm, Sweden for DNA extraction and metagenomic
sequencing. DNA was extracted with the MagPure Stool kit (Magen
Biotechnology). Each batch had one negative (DNA/RNA Shield) and
one positive control (Zymo mock). Stool DNA was fragmented and
used for library construction using the MGl Easy FS DNA Library Prep
Setkit. The prepared DNA libraries were evaluated with a TapeStation
D1000 kit (Agilent), and the quantity was determined by QuantIT
HighSensitivity dsDNA Assay on a Tecan Spark (Tecan). Equimolarly
pooled libraries were circularized using the MGl Easy Circularization
kit (MGI Tech) and sequenced using 2 x 150 bp paired-end reads on the
DNBSEQ G400 or T7 sequencing instrument (MGI) with an average
yield of 51 million reads/sample.

Microbial taxonomic profiling

Read pairs mapped to the human reference genome GRCh38.p14 were
removed using Bowtie2 (v.2.4.2)* in SCAPIS, MOS and HUNT, and
against GRCh38 using Kraken 2 (ref. 66) in SIMPLER. Remaining bioin-
formatic processing, calculation of relative abundances and microbial
taxonomic annotation were performed for all studies, including HUNT,
at Cmbio using the CHAMP profiler based on the Human Microbiome
Reference HMROS5 catalog' (Supplementary Note). The taxonomic
annotation was based on the Genome Taxonomy Database (GTDB)
release 214 (release date: 28 April 2023). A rarefied species abundance
table was produced by random sampling, without replacement, of
190,977 gene counts per sample in SCAPIS and MOS, and 641,964 gene
counts persamplein SIMPLER. Intotal, 4,248 species were detected in
therarefied datain SCAPIS, 3,430 in MOS and 4,192 in SIMPLER-V, and
3,523 in SIMPLER-U. The alpha diversity measures—Shannon index,
inverse Simpson index and richness—were calculated using rarefied
datawiththediversity function of the vegan R package (Rv.4.3.1). Only
the 921species with prevalence >5%in all four studies were kept for the
species-level analyses. Those detected in fewer than 50% of samples
in at least one cohort based on nonrarefied data were converted into
abinary present/absent variable. Those detected in more than 50% of
samplesinall four studies were rank-based inverse normal (RIN) trans-
formed. Alphadiversity measures were also RIN-transformed, and, for
significant findings, were also analyzed on anontransformed scale for
increased interpretability. The RIN transformation was performed
separately for each cohort.

Analysis of scRNA-seq data

Gene expression data in cells derived from human duodenum, ileum
and colon were obtained from Hickey et al.”2, and mean gene expression
was generated per their annotated clusters. The expression in EECs
from human duodenal andileal organoids was assessed as described™.
Briefly, a yellow fluorescent protein was inserted downstream of the
Chromogranin A promoter by CRISPR-Cas9 to label EECs. Fluorescent
EECs were then isolated using flow cytometry and analyzed by 10x
scRNA-seq. Gene expressionin EECs from the murine gastrointestinal
tract was analyzed with scRNA-seq, as described in Smith et al.>.

Statistical analysis

GWAS of microbiome composition. GWAS was performed separately
for microbial alpha diversity and 921 species using REGENIE® v.3.3
for each cohort (SCAPIS, SIMPLER-V, SIMPLER-U, MOS). A subset of
the genotype datasets was created for the first REGENIE step to fit
whole-genome regression models including only quality-controlled
directly genotyped SNPs with MAF > 1% and Hardy-Weinberg equilib-
rium P<1x107". For the second step, all variants with an information
score>0.7 wereincluded in association analyses performed using logis-
ticregression for binary variables and genetic variants with MAF > 5%

inallfour cohorts, and linear regression for RIN-transformed variables
and genetic variants with MAF > 1% in all four cohorts. Covariates were
sex, age, age2, plate and genetic principal components (PC) 1-10. The
PCswere calculatedin unrelated samples, separately for each cohort,
with PLINK®® using an LD-pruned dataset, and all samples were then
projected onto these components. In SCAPISand MOS, plate represents
metagenomics DNA extraction plate, whereasin SIMPLER it means the
metagenomic aliquoting plate. Plate, age and sex were included to
increase precision and power. For SCAPIS, the site was accounted for
by the plate variable because plates were nested into the site variable.
Based on previous nonlinear associations between age and microbi-
ome®’ and our results from a naive linear model for the association
between age and microbial species, we opted to include age also as
age’. REGENIE accounts for population stratification, but to account
forany residual bias, we also included genetic PCs 1-10 in the model”.
Cohort-specificresults were meta-analyzed using theinverse-variance
weighted fixed-effects method in METAL" v.2011-03-25. Independent
loci were determined using LD clumping (> 0.001, window 10 Mb) in
PLINK®®v.2.00-alpha-5-20230923 with SCAPIS dosages used to deter-
mine the correlation structure. Variant-alpha diversity associations
with P<1.7 x10"® and variant-species associations with P< 5.4 x 107!
were considered study-wide-significant. This threshold was based on
a Bonferroni correction of the conventional genome-wide threshold
of 5 x10"#for three alpha diversity metrics and 921 species tested. Con-
fidence intervals for the /*statistic were calculated using the metagen
function of the metav.6.5-0 R package. The loci were annotated using
the Open Targets Genetics’? v.22.10 database (variant index, variant
togene and variant to traitannotations). Heritability was determined
using SumHer” v.6 according to the GCTA heritability model, with
SCAPIS dosages used to determine the correlation structure.

Sensitivity analyses. Sensitivity analyses were performed for the 149
genome-wide locus-species associations by (1) excluding participants
with antibiotic use in the 6 months before sampling, (2) excluding
participants with self-reported IBD, (3) retaining an unrelated subset
where no participant had third degree relatedness or closer with any
other participant using a KING-robust kinship estimator threshold of
0.0442, (4) retaining onerandom spouse in SIMPLER and one random
participant living at the same address in MOS to assess cohabitation
(SCAPIS was removed for this analysis), (5) using centered log ratio plus
RIN transformation for species analyzed using linear regression, (6)
using Firth correction for species analyzed using logistic regression,
(7) removing age? from the covariates, (8) analyzing SCAPIS-Uppsala
and SCAPIS-Malmo as two separate cohorts in the meta-analysis and
(9-12) adding BMI, alcohol intake, smoking or fiber intake, respec-
tively, as covariates. The analyses adding alcohol, smoking and fiber
were performed in SCAPIS only, where data on these variables were
nearly complete.

External replication. Associations passing the study-wide threshold
were assessed in HUNT by applying the same models asin the Swedish
cohorts and using REGENIE with the same model specifications. We
further assessed the validity of our findings using summary statistics
from the published FINRISK’ and Dutch Microbiome Project’ studies.
Details are given in the Supplementary Note.

GWAS of higher taxa. We also performed GWAS of 455 genera, 106
families, 50 orders, 21 classes, 17 phylaand 3 superkingdoms. Relative
abundances were created for these higher-level taxa by summation
of their respective species-level relative abundances. The 364 taxa
detectedin 5-50% of samplesineach cohort were analyzed using logis-
ticregression (absence/presence), and 288 taxa with prevalence >50%
were analyzed using RIN-transformed relative abundances and linear
regression. Study-wide significance was considered at P< 5.4 x 107",
the same level as for species.
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GWAS of functional modules. Functional gut metabolic and gut-brain
modules were attributed to species that contained at least two-thirds of
the genes needed for the functionality of that module. If an alternative
reaction pathway within a module existed, only one such pathway was
required. Allreaction pathways were required for modules with fewer
than four steps. Module abundances were defined as the sum of the
relative abundances of all species in amodule. Similar to the GWAS of
the species, two modules detected in 5-50% of samplesin each cohort
were analyzed using logistic regression (absence/presence) and 115
modules with prevalence >50% were analyzed using RIN-transformed
relative abundances and linear regression. Study-wide significance
was consideredatP< 4.3 x107%,

Interaction analysis for ABO, secretor status and Lewis blood groups.
Blood groups A, B, ABand O were determined based on allele combina-
tions of ABO genetic variants rs505922 and rs8176746 (ref. 74), secretor
status based on FUT2 genetic variant rs601338 (ref. 75) and Lewis sta-
tus (positive, negative) based on allele combinations of FUT3 variants
1s812936, rs28362459 and rs3894326 (ref. 75). Blood groups A and AB
were combined into antigen A, and blood groups B and AB into anti-
gen B. Mixed models were run for each cohort with species associated
with ABO, FUT2 or FUT3-FUT6 at the study-wide significance level as
outcome using the Imer (for species assessed with linear regression in
the GWAS) and glmer (for species assessed with logistic regression in
the GWAS) functions of the ImerTest v.3.1-3 R package. The interaction
between antigen (ABO A, B or Lewis) and secretor status was estimated
with covariates sex, age, age?, plate and genetic PCs 1-10. First-degree
relatedness, determined by KING” kinship coefficient >0.177, was used as
arandom effect. For thelogistic mixed models, random and fixed effects
coefficients were optimized in the penalized iteratively reweighted
least squares step (setting nAGQ = 0). Cohort-specific results were
meta-analyzed with the rma function of the metafor v.4.4-0 R package
using the fixed-effect inverse-variance weighted method. Study-wide
significance was considered at Bonferroni-corrected P< 3.3 x1072,

GWAS of GLP-1. After overnight fasting, GLP-1levels were measuredin
MDC and PPP-Botnia study participants (Supplementary Note) before
and2 haftera75-goralglucose load. GWAS of GLP-1was performedin
2,588 people with fasting and 2,613 with 2-h GLP-1in MDC, and in 926
people with fasting and 898 with 2-h GLP-1in PPP-Botnia. GLP-1levels
were log-transformed before analysis. SNPTEST”” v.2.5.6 was used for
genome-wide association analyses, using the frequentist score method
adjusted for age, sex and the genetic PC1-4. Results were filtered based
on MAF > 0.01, Hardy-Weinberg equilibrium P>5x 107, and impu-
tation info scores >0.4. A fixed-effect meta-analysis was performed
using GWAMA’S,

Functional mapping. Genetic variants associated with microbial alpha
diversity or species at the genome-wide significant level were mapped
to functional pathways using FUMA?*v.1.5.2. One (out 0f 2,353) variant
without an rsID was removed. If a genetic variant was associated with
several traits or was multiallelic, the trait or allele pair with the lowest
Pwasused asinput.

Colocalization. Pairwise colocalization analyses were performed
to investigate whether microbial richness and the eight study-wide
significant species colocalized in the identified study-wide signifi-
cant loci and with sex hormone binding globulin, WHRadjBMI, LDL
cholesterol, IBD, glucose and stool frequency. Details are provided in
the Supplementary Note.

Mendelian randomization. We performed two-sample MR analyses to
investigate bidirectional effects between specific species (C. saudiense,
T. sanguinis, Intestinibacter sp9005540355) and BMI, WHR and LDL
cholesterol. Details are provided in the Supplementary Note.

Plasma metabolomics

The plasmametabolomics analysisin SCAPIS hasbeen described else-
where” and in the Supplementary Note. Associations of genetic vari-
ants with plasma metabolites were analyzed using the same REGENIE
pipeline as for the microbiome, adjusting for age, age?, sex, delivery
batch and genetic PCs 1-10. Metabolites detected in fewer than 100
samples were excluded. Those detected in 5-50% of samples were
analyzed by logistic regression, and those in 250% of samples were
RIN-transformed and analyzed by linear regression. We report one
lead SNP per study-wide locus; when several species were associated,
we selected the lead SNP among those replicated in HUNT, prioritizing
the lowest P value in Swedish cohorts. FDR correction (Benjamini-
Hochberg) of 5% was applied.

Stool metabolomics

To find stool metabolites associated with the study-wide significant
loci, we downloaded GWAS of stool metabolites summary statistics
(only P<107 available) from Zierer et al.*° (Supplementary Table 16)
and lifted the genomic coordinates over to GRCh37 using Ensembl
Variation 112 for variants with an rsID and https://genome.ucsc.edu/
cgi-bin/hgLiftOver for variants without an rsID. Genetic variants that
could notbelifted over were removed (247 out of 46,765). We assessed
the samelead variants per study-wide locus as described for the genetic
association with plasma metabolites. A lookup was performed for
genetic variants within 100 kb of the locus region corresponding to
the study-wide significant lead variant.

Short-chain fatty acids

In MOS, a panel of nine plasma SCFAs was measured®. Laboratory
method for SCFA measurement is described in the Supplementary
Note. The association of genetic variants with SCFAs was assessed with
the same REGENIE pipeline as described above for the microbiome,
with age, age?, sex, SCFA measurement batch and genetic PCs 1-10
as covariates. SCFAs were RIN-transformed and assessed using linear
regression. We assessed the same lead SNPs per study-wide locus as
described for the genetic association with plasma metabolites. FDR
correction (Benjamini-Hochberg) of 5% was applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Complete GWAS summary statistics are available in the GWAS catalog
withaccessionnumbers GCST90670368to GCST90671939. De-hosted
anonymized metagenomic sequencing data from SCAPIS used in
this study can be found at the European Nucleotide Archive under
accession number PRJEB51353. scRNA-seq data are available in the
GEOrepository with accession numbers GSE284419 and GSE269778,
and on Dryad (https://doi.org/10.5061/dryad.8pkOp2ns8). The
metagenomics, metabolomics and genetic data supporting the
conclusions of this article were provided by the SCAPIS, SIMPLER
and MOS central data offices, and are not shared publicly due to
confidentiality and ethical restrictions. Data will be shared by the
respective data offices only after permission from the Swedish Ethical
Review Authority (https://etikprovningsmyndigheten.se) and from
therespective boards (https://www.scapis.org/data-access, https://
www.simpler4health.se and https://www.malmo-kohorter.lu.se/
malmo-offspring-study-mos).

Code availability

We used publicly available software for the analysis, as described in
Methods. The code for the analyses presented in this paper is available
via GitHub at https://github.com/MolEpicUU/GWAS _scripts for the
GWAS pipeline viaZenodo at https://doi.org/10.5281/zenod0.16947117
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(ref. 82), and https://github.com/MolEpicUU/GWAS_microbiome for
the meta-analysis and post-GWAS analyses scripts available viaZenodo
at https://doi.org/10.5281/zen0do0.16925644 (ref. 83).
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Extended Data Fig. 1| Regional association plots of variants in the
ORSIEI-ORS1E2,LCT,ABO, and FUT3-FUT6 geneloci. a-h, Regional association
plots of (a) richness with variants in the ORS1EI-OR51E2 gene locus (within a
100-kb window); (b) Negativibacillus sp000435195, (c) Phocea massiliensis,

(d) Bifidobacterium adolescentis, and (e) Copromonas sp000435795 with variants
inthe LCT gene locus (withina1-Mb window); (f) Mediterraneibacter torques,

and (g) Faecalibacterium longum with variants in the ABO gene locus (withina
100-kb window); (h) Clostridium sp900540255 with variantsin the FUT3-FUT6

gene locus (withina100-kb window). The lead variant is indicated as the purple
diamond. Other variants are indicated by dots colored according to the linkage
disequilibrium (r*) values with the lead variant calculated using SCAPIS dosages.
Pvaluesina,c,d, e, and fwere calculated using linear, and inb and h using
logistic regression (two-sided tests). The horizontal dashed gray line indicates
the genome-wide significance threshold (-log,,(5 x 107®)). For the ABO locus, the
non-coding genes are also plotted (in gray).
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Extended Data Fig. 2 | Validation ofimputed genotypes by Sanger sequencing. dosages for rs10836441. b, Results from Sanger sequencing of 73 samples from
a, Results from Sanger sequencing of 73 samples from the SCAPIS cohort and the SCAPIS cohort and 75 samples from the SIMPLER-V cohort compared to the
75 samples from the SIMPLER-V cohort compared to the imputed genotype imputed genotype dosages for rs4556017.
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Extended Data Fig. 3 | Single-cell expression analysis of candidate genes
inhuman and mouse cells in intestinal tissues. a,b, Single-cell expression
analysis of candidate genes in human duodenal, ileal, and colonic epithelial (a)
and immune (b) cells from donors. Heatmaps of mean gene expression were
generated from the different intestinal epithelial and immune cell clusters in the
dataset from Hickey et al.”>. T-cells data were absent for duodenum. ¢, Single-cell
expression in mouse enteroendocrine cells (EECs) from different regions of the
gut®. Mean gene expression in different EEC clusters per gastrointestinal (GI)
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analyzed by 10x single-cell RNA sequencing. Cells were clustered by k-means and
annotated accordingto their expression of gut hormone genes: D (somatostatin),
G (gastrin), I (cholecystokinin), K (glucose-dependent insulinotropic
polypeptide), L (glucagon-like peptide 1 and peptide YY), Insl5 (insulin-like
peptide5), N (neurotensin), X (ghrelin), EC (enterochromaffin cells expressing
Tphlas a marker for serotonin biosynthesis), ECL (enterochromaffin-like cells
expressing histidine decarboxylase as a marker for histamine biosynthesis). USI,
upper smallintestine; LSI, lower smallintestine; LI, large intestine.
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Extended Data Fig. 4 | Single-cell expression in enteroendocrine cells from
duodenal and ileal human-derived organoids. a,b, Feature maps represent gene
expressionin human enteroendocrine cells (EEC) clusters from the duodenum
(a) and ileum (b)*’. EECs were labeled by inserting a yellow fluorescent protein
downstream of the Chromogranin A promoter in organoids, by CRISPR-Cas9.
Fluorescent cells were purified by flow cytometry and analyzed by 10x single-cell
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RNA sequencing. Cells were clustered by k-means and annotated according to
their expression of gut hormone genes: D (somatostatin), I (cholecystokinin), K
(glucose-dependentinsulinotropic polypeptide), L (glucagon-like peptide 1and
peptide YY), M/X (motilinand ghrelin), EC (enterochromaffin cells expressing
TPH1as amarker for serotonin biosynthesis).
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Extended Data Fig. 5| Quantile-quantile plots. Quantile-quantile plots and genomic inflation factors for the GWAS of microbiome features (richness and species)

with study-wide significant findings. Observed P values were from linear or logistic models (two-sided tests).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Robustness of genetic microbiome associations across
subgroups and model specifications. a-c, Sensitivity analysis of 149 genome-
wide associations restricted to (a) individuals without antibiotic use in the

past 6 months (n =14,171), (b) individuals without inflammatory bowel disease
(n=15,260), or (c) unrelated participants (n = 14,229) compared to using data
from all participants (n =16,017). Related participants were identified based on
kinship coefficients, and individuals were excluded until there were no pairs
remaining with 3rd degree relatedness or closer. d, Sensitivity analysis of 149
genome-wide associations restricted to one participant from each household

in SIMPLER and MOS (n = 6,983) compared to using data from all participants in
those cohorts (n =7,284). e-i, In the full dataset (n =16,017), sensitivity analyses
were also performed for (e) the 56 genome-wide linear regression associations
with centered log-ratio (CLR) transformation before the rank-based inverse
normal transformation compared to rank-based inverse normal transformation
only, (f) the 93 genome-wide logistic regression associations using Firth
correction compared to not using Firth correction, and (g) the 149 genome-

wide associations without age? as a covariate compared to including it, (h)
analyzing SCAPIS-Malmo and SCAPIS-Uppsala separately compared to models
pooling them with site adjustment (original analysis), and (i) including vs. not
including body mass index (BMI) as an additional covariate. j-1, Finally, sensitivity
analyses were performed for the 149 genome-wide associations comparing the
original modelin SCAPIS (n = 8,733) with models including (j) alcohol intake
(n=8,707), (k) smoking behavior (n = 8,452), or (I) fiber consumption (n = 8,624)
as anadditional covariate. Smoking behavior (3% missing) was categorized

into current smokers (12%), former smokers (35%), and never smokers (49%).
Mean = s.d. for fiber consumption and median (25-75" percentile) for

alcohol consumptionin SCAPIS were 12.0 + 4.2 g/day and 5.9 (2.0-10.6) g/day,
respectively. The diagonal black line indicates where values of y = x, the red line
aslope from linear regressions of beta coefficients from the sensitivity analysis
and the original analysis, and in the upper left corner the Pearson correlation
coefficient ris shown.
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.
Data analysis All statistical analyses used R version 4.3.1, unless stated otherwise.

1. Bioinformatic processing, calculation of relative abundances, and microbial taxonomic annotation were conducted at Cmbio using the
CHAMP profiler based on the Human Microbiome Reference HMROS catalog.

2. Calculation of alpha diversity measures using vegan package v2.5-7

3. For simulations to assess the type | error of logistic and linear models, identifying the species prevalence cut-off where a linear model
becomes unreliable (R v.4.1.1).

4. Principal components were calculated in the unrelated samples set with PLINK 1.9.

5. For imputation of the SCAPIS and MOS genotype data to the HRC r1.1, we used the Sanger Imputation Service with the pipeline “Pre-
phasing and imputation with EAGLE2+PBWT”. For the imputation of the SIMPLER -V and SIMPLER-U genotype data to the HRC r1.1 panel, the
Michigan Imputation Server was used (EAGLE v.2.4 + minimac v4).

6. For genome-wide association analyses GWAS of microbiome composition (species and higher taxonomic levels) and function, metabolites,
short-chain fatty acids, we used the software REGENIE v3.3, METAL v2011-03-25, PLINK v2.00-alpha-5-20230923, SumHer v6 and the meta
v6.5-0 R package. SNPTEST v.2.5.6 was used for genome-wide association analyses of GLP-1.

7. For functional pathways mapping, we used FUMA v1.5.2.

8. For causal inferences analyses (Mendelian randomization), we used MendelianRandomization v0.9.0 R package (R v4.2.2).

9. For the stool metabolomics analyses coordinates were lifted over using Ensembl Variation 112 and https://genome.ucsc.edu/cgi-bin/
hgLiftOver.

10. Colocalization was performed using TwoSampleMR v0.5.7 and coloc v5.2.2 R packages.
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11. Antigen - secretor status interactions were performed using the ImerTest v3.1-3 and metafor v4.4-0 R packages.
12. For the species - metabolite Spearman correlations we used the ppcor v1.1 R package.

13. For calculation of kinship estimator, we used KING as implemented in PLINK v.2.0.

14. For analyzing data from Sanger sequencing we used Sequencher v5.4.6

15. For functional annotation, EggNOG-mapper v.2.0.1 was used

Code related to the analyses in this study are available at https://github.com/MolEpicUU/GWAS_scripts and https://github.com/MolEpicUU/
GWAS_microbiome and in Zenodo: https://doi.org/10.5281/zenodo.16947117 and https://doi.org/10.5281/zenodo0.16925644

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Complete GWAS summary statistics are available in the GWAS catalog with accession numbers GCST90670368 to GCST90671939. De-hosted anonymized
metagenomic sequencing data from SCAPIS used in this study can be found at the European Nucleotide Archive under accession number PRIEB51353. Single-cell
RNA-seq data is available in the GEO repository with accession number GSE284419 and GSE269778, and on Dryad (https://doi.org/10.5061/dryad.8pk0p2ns8). The
metagenomics, metabolomics and genetic data supporting the conclusions of this article were provided by the SCAPIS, SIMPLER, and MOS central data offices, and
are not shared publicly due to confidentiality and ethical restrictions. Data will be shared by the respective data offices only after permission from the Swedish
Ethical Review Authority (https://etikprovningsmyndigheten.se) and from the respective boards (https://www.scapis.org/data-access, https://
www.simpler4health.se, and https://www.malmo-kohorter.lu.se/malmo-offspring-study-mos).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The genome-wide association study performed here utilized genetic information and fecal metagenomic data from both
sexes from 16,017 adults of European ancestry from four Swedish cohorts. The sex balance in the dataset is SCAPIS (52.5%
female), SIMPLER-Vastmanland (37.7% female) and SIMPLER-Uppsala (100% female), MOS (47.1% female).

SCAPIS and MOS: sex was obtained from the Swedish population register.
SIMPLER-Vadstmanland and SIMPLER-Uppsala: Invitation sent to all women for mammography screening (identified from the
Swedish population register); men were identified from the Swedish population register.

Sex-stratified analyses were conducted for associations of study-wide significant loci-species combinations, and Mendelian
randomization analyses of specific gut microbial species with several adiposity traits and LDL cholesterol.

Population characteristics SCAPIS
The Swedish CArdioPulmonary Biolmage Study (SCAPIS) is a multi-center cohort comprising 30,154 individuals aged 50-65.
For this analysis, 8,733 participants of European ancestry from the Malmé and Uppsala sites with both gut microbiome and
genotype data were included. At baseline, participants provided blood samples during the first visit and were asked to collect
fecal samples at home, storing them at -20°C until samples were brought to the study center for the second visit. DNA

extracted from whole blood was used for genotyping. Birth year and sex were obtained from the Swedish population register.

SIMPLER-Vastmanland and SIMPLER-Uppsala

The Swedish Infrastructure for Medical Population-Based Life-Course and Environmental Research (SIMPLER; https://
www.simplerdhealth.se/w/sh/en) includes data from two large, ongoing population-based studies: the Cohort of Swedish
Men (COSM) and the Swedish Mammography Cohort (SMC).58 The COSM initially enrolled 48,850 men born between 1918
and 1952 living in Vastmanland and Orebro counties in 1997. The SMC enrolled 66,651 women by sending invitations to all
women born between 1914 and 1948 living in Uppsala and Vastmanland counties between 1987 and 1990. The current
analysis is based on a randomly selected subsample from these studies who were invited for clinical examination with
genotype and gut microbiome data: SIMPLER-Vastmanland (SIMPLER-V) and SIMPLER-Uppsala (SIMPLER-U). SIMPLER-V
includes 4,515 COSM and SMC participants from Vastmanland examined between 2010 and 2019. SIMPLER-U includes 981
women from the county of Uppsala, examined between 2003 and 2009 (no stool collected) and re-examined between 2015
and 2019 (stool collected).

MOS

The Malmé Offspring Study (MOS) includes participants aged =18 who are children or grandchildren of participants from the
Malmé Diet and Cancer Study (MDC)-Cardiovascular Cohort, a subset of the larger MDC.59 Data collection in MOS began in
2013 and included 4,721 participants by 2020. The current study included 1,788 participants with genotype and gut
microbiome data who attended baseline measurements between 2013 and 2017.

Recruitment SCAPIS: 30,154 participants aged 50-64 years invited from a random selection from the Swedish population register in areas
adjacent to study sites.
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Ethics oversight

SIMPLER-Véstmanland and SIMPLER-Uppsala: (SMC) From March 1987 to December 1990, all women living in Uppsala
County of central Sweden and who were born in 1914 through 1948 (n = 48,517) and all women living in the adjacent
Véastmanland County (n = 41,786) who were born in 1917 through 1948 received an invitation by mail to participate in a
population-based mammography screening program, along with a questionnaire. Returning of the questionnaire was their
informed consent. The SMC population is comparable to the general Swedish population with regards to age distribution,
education level and body mass index (BMI). (COSM) In the fall of 1997, all men born in 1918 through 1952 living in
Vastmanland and Orebro counties in central Sweden (n = 100,303) received an invitation to participate in the study, along
with a self-administered questionnaire. The COSM population is comparable to the general Swedish population with regards
to age distribution, education level and BMI.

MOS: Participants were children and grandchildren of index individuals in Malmo Diet and Cancer Study—Cardiovascular
Cohort, which was a random, subpopulation of the Malmé Diet and Cancer Study. The participants were 18 years or older
and living in Malmo or the nearby catchment area.

The current association study has been approved by the Swedish Ethical Review Authority (DNR 2022-06137-01 and DNR
2024-01992-02). All participants in the respective cohorts below have provided written informed consent to participate in
the studies and have their samples and data collected, stored, and processed. The Swedish Ethical Review Board has
approved the data collection, and the approval numbers are provided: SCAPIS (DNR 2010-228-31M), SIMPLER (DNR
2009/2066-32, DNR 2009/1935-32, DNR 2010/0148-32, DNR 2014/892-31/3), MDC (DNR 532/2006, DNR 51-90), and MOS
(DNR 2012-594). The PPP-Botnia study received approval from the Ethics Committee of Helsinki University (approval number
608/2003). The HUNT study was approved by the local ethical review board (Regionale kommitter for medicinsk og
helsefaglig forskningsetik Midt-Norge; REK-656785).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

The sample size was based on the number of participants in the respective cohorts who have both high-quality data of gut microbiome and
genotype data, resulting in 16,017 participants across 4 Swedish cohorts. The need for larger size for a microbiome GWAS is a recognized
issue in the field (Sanna et al, Nat Genet 2022, 54:100-106). However it is challenging to combine data from multiple cohorts to increase
power due to biological and technical variation, including in metagenomic data processing, among cohorts. This study is the largest multi-
cohort analysis with microbiome data processed with a harmonized bioinformatics pipeline in each of the cohorts. The sample size of each
cohort included is outlined below.

SCAPIS: For this analysis, 8,733 participants of European ancestry from the Malmé and Uppsala sites data were included.
SIMPLER-Vastmanland and SIMPLER-Uppsala: SIMPLER-V includes 4,515 COSM and SMC participants from Vastmanland examined between
2010 and 2019. SIMPLER-U includes 981 women from the county of Uppsala, examined between 2003 and 2009 (no stool collected) and re-
examined between 2015 and 2019 (stool collected).

MOS: The current analysis included 1,788 participants.

For genotyping data, samples from individuals of non-European ancestry, failure in sex check, excess heterozygosity, and other quality control
criteria including Hardy-Weinberg equilibrium, and minor allele frequency or count, were excluded. For gut microbiome data, only data that
passed quality control was included.

Sensitivity analysis excluding individuals with antibiotic use in the past 6 months or self-reported inflammatory bowel disease;

exclusion of individuals who used antibiotics in the last six months or self-reported inflammatory bowel disease did not impact the genome-
wide significant associations;

exclusion of persons in the same household resulting in only one person per household from SIMPLER and MOS did not impact results from
SIMPLER and MOS cohorts;

excluding related participants resulting in only one participant from each related pair (meaning, no more related participant up to 3rd degree)
did not affect the genome-wide findings;

MOS: Participants who were also part of the SCAPIS cohort were excluded from the MOS data.

Replication was conducted in the large Norwegian HUNT cohort of 12,652 individuals. We also used published summary statistics from two
previous studies in FINRISK (n=5,959) and Dutch Microbiome Project (n=7,738) to validate the present findings. Best matching species were
identified and our results were consistent with all 7 available associations in FINRISK, and 2 out of 4 in the Dutch cohort. The study in FINRISK
used an earlier GTDB version (R89) for taxonomic annotations compared to our study (R214) while the Dutch study annotated their taxa by
using MetaPhlAn2, which uses NCBI nomenclature.

This is a population-cohort study and not an intervention study. Thus randomization is not applicable.

This is a population-cohort study and not an intervention study. Thus blinding is not applicable.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
XI|[] Antibodies XI|[] chip-seq

XI|[] Eukaryotic cell lines XI|[] Flow cytometry

|Z| D Palaeontology and archaeology IX D MRI-based neuroimaging
|Z| D Animals and other organisms

X|[] clinical data

XI|[] Dual use research of concern
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