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Genome-wide association analyses  
highlight the role of the intestinal  
molecular environment in human gut 
microbiota variation
 

Despite the importance of the gut microbiome to health, the role of 
human genetic variation in shaping its composition remains poorly 
understood. Here we report genome-wide association analyses of 
harmonized metagenomic data from 16,017 adults in four Swedish 
population-based studies, with replication in 12,652 people from the 
Norwegian HUNT study. We identified variants in the OR51E1–OR51E2 
locus, encoding sensors for microbiome-derived fatty acids, associated 
with microbial richness. We further identified 15 study-wide significant 
genetic associations (P < 5.4 × 10−11) involving eight loci and 14 common 
bacterial species, of which 11 associations at six loci were replicated. The 
results confirm previously reported associations at LCT, ABO and FUT2, 
and provide evidence for new loci MUC12, CORO7–HMOX2, SLC5A11, FOXP1 
and FUT3–FUT6, with supporting data from metabolomics and gene 
expression analyses. Our findings link gut microbial variation genetically to 
gastrointestinal functions, including enteroendocrine fatty acid sensing, 
bile composition and mucosal layer composition.

The human gut microbiome—a complex community of microorganisms 
residing in the gastrointestinal tract—influences many physiological 
processes. Recent advances in sequencing technologies have enabled 
detailed characterization of this microbial community, uncovering its 
variability and associations with several health conditions1,2. Although 
human twin and primate multigenerational studies have demon-
strated evidence for host genetic contributions to the microbiome 
composition3,4, only a limited number of genome-wide association 
studies (GWAS) have been conducted. These include a meta-analysis of 
24 studies including 18,240 participants that used 16S rRNA sequenc-
ing—a method offering limited species-level discrimination5. The 
study was further hampered by the fact that few shared bacterial taxa 
were detected across included studies, due partly to high variability in 
sample processing methods5—a common challenge in the field6. The 
largest high-resolution metagenomic study to date comprised 7,738 
participants from the Netherlands7. So far, only variants in two loci, 

harboring the lactase (LCT) and the histo-blood group ABO system 
transferase (ABO) genes, have been linked robustly and repeatedly to 
specific microbiome species at study-wide significance (P < 5 × 10−8 
corrected for the number of species tested)4,5,7–10. A Finnish cohort of 
5,959 people identified an additional study-wide significant signal near 
MED13L9, but this signal has not been replicated in other studies. Other 
variants have been implicated at genome-wide significance (P < 5 × 10−8, 
no correction for the number of taxa tested), such as in the secretor 
status locus fucosyltransferase 2 (FUT2)11.

Here we leveraged high-resolution metagenomic data from 16,017 
participants across four Swedish studies, with replication in 12,652 
participants from the Norwegian Trøndelag Health Study (HUNT). 
We identified and replicated a genetic association with microbiome 
alpha diversity mapping to the OR51E1–OR51E2 locus that encodes 
microbial fatty acid chemosensors expressed by enteroendocrine 
cells (EECs). We further identified 15 single nucleotide polymorphism 
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relevant for sensing microbiome-derived SCFA21. Further corrobo-
rating our findings of a potential role of fatty acid chemosensing of 
EECs in microbiome composition, we observed that genetic variants 
in the FFAR1–FFAR2–FFAR3 locus at Chr. 19 were associated at near 
study-wide significance with Pullichristensenella excrementipullorum 
(P = 5.7 × 10−11, Supplementary Table 4; replicated in HUNT, P = 1.5 × 10−3). 
The lead variant rs75481361 at the FFAR1–FFAR2–FFAR3 locus was 
also associated with the same uncharacterized species as rs10836441 
(HGM14224 sp900761905, P = 2.3 × 10−9; Supplementary Table 4) 
and associated nominally with richness (P = 5 × 10−3). rs75481361 is 
reported as an eQTL for FFAR3 in colon tissue (GTEx v.8)15. We assessed 
the expression of OR51E1 and OR51E2 in single-cell RNA sequencing 
(scRNA-seq) from three sources: human intestinal cells22, EECs puri-
fied from human duodenal and ileal organoids23 and in EECs of trans-
genic mice24. The scRNA-seq data from human intestinal cells showed 
expression of OR51E1 in EECs along the intestinal tract, whereas OR51E2 
was expressed mainly in EECs in the colon (Extended Data Fig. 3a). 
OR51E2 was expressed across most colonic immune cell types, highest 
in T cells and monocytes/macrophages (Extended Data Fig. 3b). FFAR1 
was restricted mainly to duodenal and ileal EECs, FFAR2 to several cell 
types including EECs, whereas FFAR3 showed overall low expression. 
To evaluate the expression of these olfactory and fatty acid receptor 
genes in different EEC types, we analyzed scRNA-seq from EECs purified 
from human duodenal and ileal organoids23 (Extended Data Fig. 4) and 
from EECs of transgenic mice24 (Extended Data Fig. 3c). In the human 
organoid-derived EECs, we observed overlap of OR51E1 expression 
with tryptophan hydroxylase 1 (TPH1)—a marker of enterochromaf-
fin cells. Enterochromaffin cells constitute less than 1% of the total 
intestinal epithelium cells but have important effects on modulating 
motility by release of serotonin. However, the lead variant rs10836441 
was not associated (P = 0.62) with self-reported stool frequency—a 
proxy measurement of gastrointestinal motility—in a published GWAS25. 
The expression of OR51E2 was considerably lower in the human duo-
denal and ileal organoids (Extended Data Fig. 4), consistent with the 
human intestinal results (Extended Data Fig. 3a). The mouse ortholog 
of OR51E2 (Olfr78) was expressed in L-cells in the mouse lower intestinal 
tract, which are responsible for secretion of glucagon-like peptide 1 
(GLP-1), peptide YY (PYY) and insulin-like peptide 5 (INSL5). To test 
whether the OR51E1–OR51E2 locus was linked to GLP-1 or SCFA, we 
examined rs10836441 in relation to fasting and 2-h post-oral glucose 
load GLP-1 in up to 3,514 participants from the Malmö Diet and Cancer 
Study (MDC) and the Prevalence, Prediction and Prevention of Type 
2 Diabetes–Botnia Study (PPP-Botnia) and to SCFA in 1,800 people 
from the Malmö Offspring Study (Supplementary Tables 5 and 6). No 
association could be detected in this somewhat limited sample when 
correcting for multiple testing. In summary, our results suggest that 
genetic variation affecting SCFA chemosensors that are expressed in 
EECs is relevant to the human gut microbiome composition; however, 
more research is needed to determine the causal genes and mechanism 
of action.

Meta-analysis identified eight genetic loci associated with 14 
microbial species at study-wide significance
After clumping of meta-analysis results, we found 149 SNP–spe-
cies associations at the genome-wide significance level (P < 5 × 10−8; 
Supplementary Table 4) comprising 113 loci separated by at least 100 kb 
and 132 species. We used FUMA26 to identify functional or phenotypic 
genesets and found 38 enrichments, including genesets previously 
linked to diet (n = 10), cancer biomarkers (n = 3), blood group (n = 3), 
gallstone disease (n = 1) and waist-to-hip ratio (WHR) adjusted for 
body mass index (BMI) (WHRadjBMI) (n = 1) (Supplementary Table 7). 
At the stricter study-wide threshold (P < 5.4 × 10−11), we identified 15 
SNP–species associations across eight loci and 14 species (Figs. 2 and 
3 and Table 1), and 12 SNP–higher taxa associations at five loci (LCT,  
PLEKHG1, MUC12, ABO and SLC5A11) (Supplementary Table 8).  

(SNP)–species associations at study-wide significance representing 
eight genetic loci, of which five are new. Our findings highlight the 
contribution of gut physiological functions, including enteroendo-
crine chemosensing, bile acid metabolism and mucosal layer make-up 
in microbiome composition, paving the way for future studies and 
potential therapeutic interventions that consider both host genetics 
and microbiome profiles.

Results
GWAS of deep shotgun metagenomic data from four Swedish 
studies profiled with a standardized pipeline
We performed and meta-analyzed GWAS of gut microbiome composi-
tion in 16,017 participants of European ancestry from four Swedish stud-
ies sampled between 2011 and 2021 (Fig. 1 and Supplementary Table 1). 
Participants were aged 18 to 96 years and 51% were female. The mean 
study sequencing depth ranged from 25.3 to 56.1 million read pairs. 
To ensure comparability, stool metagenomic reads were processed 
using a standardized pipeline12. Analyses included alpha diversity 
(richness, Shannon, inverse Simpson), 921 species present in ≥5% of 
participants in all four cohorts (excluding 3,214 rarer species), 652 
higher taxa and 117 functional modules. Based on simulations maximiz-
ing power and minimizing false positive findings, we applied logistic 
regression for 679 species present in ≤50% of participants in all four 
cohorts (testing 5,368,906 variants, minor allele frequency (MAF) ≥ 5%) 
and linear regression for 242 species with >50% prevalence (7,454,886 
variants, MAF ≥ 1%). GWAS was run separately by cohort and pheno-
type using REGENIE v.3.3 with sex, age, age2, plate and genetic prin-
cipal components 1–10 as covariates; results were meta-analyzed by 
inverse-variance weighted fixed effects. Study-wide associations with 
species and diversity were replicated in HUNT (n = 12,652).

A locus including genes encoding EEC receptors is implicated 
in gut microbial richness
Low gut microbial alpha diversity has been associated with higher risk 
of metabolic disorders, although causality remains uncertain13,14. We 
estimated heritability at 9% for Shannon index and 20% for richness 
(Supplementary Table 2), lower than the 30–37% reported in twin stud-
ies4. We found associations (lead variant rs10836441-T) in the locus 
covering OR51E1 (mouse ortholog Olfr558) and OR51E2 (Olfr78) genes on 
chromosome (Chr.) 11 (Extended Data Fig. 1a) with microbiome richness 
(−5.7 species per T allele, P = 1.9 × 10−9; Supplementary Table 3), which 
was replicated in the HUNT study (−2.8 species per T allele, P = 2.1 × 10−3). 
The imputation of genotypes for rs10836441 was confirmed in a sub-
set of 148 people using Sanger sequencing with a concordance of 
100% (Extended Data Fig. 2a). rs10836441 is an expression quantita-
tive trait locus (eQTL) for OR51E2 and OR51E1 expression in several 
tissues (GTEx v.8)15. At the species level, rs10836441 was associated at 
the genome-wide level with the uncharacterized species HGM14224 
sp900761905 (Bacillota phylum) and with SFEL01 sp004557245. 
The latter is reported as a predictor of response to short-chain fatty 
acids (SCFA) supplementation in Parkinson’s disease16. OR51E1 and 
OR51E2 belong to the large olfactory receptor gene family encoding 
G protein-coupled receptors expressed primarily in the olfactory epi-
thelium but also more broadly across the body17. Recently, the proteins 
encoded by the mouse orthologs of OR51E1 and OR51E2 have been 
identified as sensors for gut microbiome-derived short-, medium- and 
branched-chain fatty acids in EECs18. EECs are hormone-producing 
cells in the gastrointestinal epithelium, with important roles in the 
physiological response to feeding, such as gut motility and satiety. 
A role of EECs in microbiome composition is supported by a recent 
study where mice deficient in colonic EECs were shown to have lower 
alpha diversity compared to controls19. Further, knockout of the 
OR51E2 receptor ortholog in a mouse model of colitis caused higher 
levels of intestinal inflammation20. EECs express several fatty acid 
chemosensors, such as FFAR1-FFAR4, of which FFAR2 and FFAR3 are 
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The 14 species had a median heritability of 13% (interquartile range 
(IQR) 5–16%; Supplementary Table 2), highest for Clostridium saudiense 
(33%). Corresponding estimates were 11% (IQR 5–19%) for species with 
genome-wide associations and 8% (IQR 3–16%) for those without. All 
14 species were at least moderately prevalent; the least prevalent spe-
cies was detected in 27% of the participants. Candidate genes based 
on genetic distance, eQTL data, gene expression in human intestinal 

cells (Extended Data Fig. 3) and biological function were LCT, ABO, 
FOXP1, MUC12, CORO7–HMOX2, SLC5A11, FUT2 and FUT3–FUT6—all 
expressed in the human intestine (Extended Data Fig. 3). We did not 
observe evidence of genomic inflation (mean λ = 1.03; s.d. = 0.02), and 
findings were consistent across studies (Supplementary Table 4 and 
Extended Data Fig. 5). No differences between estimates were found 
in the sex-stratified analysis at the 5% false discovery rate (FDR) level 

e

SWEDEN

NORWAY

SIMPLER-V
n = 4,515

37.7% female

SIMPLER-U
n = 981

100% female

SCAPIS
n = 8,733

52.5% female

HUNT
n = 12,652

61% female

MOS
n = 1,788

47.1% female

0

200

400

600

25 50 75 100

Age (years)

C
ou

nt

20

30

40

50

60

SCAPIS SIMPLER
−V

SIMPLER
−U

MOS Discovery
cohorts

HUNT

BM
I (

kg
 m

–2
)

0.2

679 species with prevalence ≥5% and <50% 242 species with prevalence ≥50%

0.4

0.6

0.8

Sp
ec

ie
s 

pr
ev

al
en

ce

–2

–3

–4

–1

0

1

lo
g 10

(s
pe

ci
es

 m
ed

ia
n 

ab
un

da
nc

e)

d

b

a c

Fig. 1 | Characteristics of participants and microbiome composition across 
studies. a, Density plots of age of participants in the discovery studies (SCAPIS, 
n = 8,733; SIMPLER-V, n = 4,515; SIMPLER-U, n = 981; MOS, n = 1,788; total 
n = 16,017 individuals) and in HUNT. Dashed line: combined discovery studies. 
b, Violin and boxplots of BMI of participants in the discovery studies (SCAPIS, 
n = 8,733; SIMPLER-V, n = 4,512; SIMPLER-U, n = 978; MOS, n = 1,788; total 
n = 16,011) and in HUNT (n = 12,652). Violin plots show the density distribution. 
The boxplots within the violin plots show the medians and the IQR, and whiskers 
extend to the values no larger than 1.5 times the IQR (upper whisker) or smaller 

than 1.5 times the IQR (lower whisker). Outliers are depicted as individual 
points. c, Map with the study sites for the discovery studies in Sweden (SCAPIS, 
SIMPLER-V, SIMPLER-U and MOS) and the replication cohort in Norway (HUNT), 
including the sample size and proportion of female participants in each 
study. d, Prevalence for the species analyzed with the logistic model. e, The 
log-transformed median abundance for the species analyzed with the linear 
model in the discovery studies. In d and e, each dot represents one species. 
Species are ranked by their prevalence and median abundance in SCAPIS.
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(Supplementary Table 9). The genome-wide significant associations 
were consistent in sensitivity analyses using models with centered 
log-ratio transformation (linear regression models), with Firth correc-
tion (logistic regression models), without age2 as a covariate, with study 
sites analyzed separately, excluding all but one person per household, 
excluding one from each related pair, excluding recent antibiotic users, 
excluding self-reported inflammatory bowel disease (IBD) cases and 
including BMI, smoking, alcohol or fiber intake as covariates, respec-
tively (Extended Data Fig. 6).

Of the 15 SNP–species associations, we replicated 11 at six loci in 
HUNT at the Bonferroni-corrected threshold (P < 3× 10⁻3) and all 15 at 
P < 0.05 with consistent effect direction. Of these 15 SNP–species asso-
ciations, seven were present in FINRISK9 and four in the Dutch Micro-
biome Project7, of which seven and two were replicated, respectively 
(Supplementary Table 10). Allele frequencies were comparable across 
studies, except for the LCT SNPs in FINRISK (Supplementary Table 11), 
which are known to vary across populations27. Lactase persistence alleles 
at LCT were associated with decreased levels of Bifidobacterium adoles-
centis and with increased levels of Phocea massiliensis, Negativibacilus 
sp000435195 and Copromonas sp000435795, and at genome-wide 
level with five additional species, including three Bifidobacterium spe-
cies (Extended Data Fig. 1b–e and Supplementary Table 4). Variants in 
LCT were also associated at study-wide significance with the genera 
Phocea and Bifidobacterium, and the family, order and class (Bifido-
bacteriaceae, Actinomycetales and Actinomycetia, respectively) of the 
Bifidobacterium spp. In a nontargeted plasma metabolomics analysis 
in the Swedish CArdioPulmonary bioImage Study (SCAPIS), we con-
firmed previously reported associations of the LCT lead variants with 
the glycemic marker 1,5-anhydroglucitol28 and found associations 
with vitamin B6 levels (Supplementary Table 12; FDR q < 0.05). Our 
colocalization analysis revealed a shared genetic signal in the LCT locus 
for B. adolescentis, P. massiliensis, Negativibacilus sp000435195 and 
Copromonas sp000435795 with plasma levels of the secondary bile acid 

isoursodeoxycholate and low-density lipoprotein (LDL) cholesterol 
(Supplementary Table 13). Our findings thus expand the number of 
robustly replicated microbiome-associated loci from two (ABO and 
LCT) to six (ABO, LCT, FUT2, MUC12, CORO7–HMOX2 and SLC5A11) and 
provide strong supportive evidence for two additional (FUT3–FUT6 
and FOXP1) loci.

Several associations support an important role of fucosylated 
glycans in microbiome regulation
In this study, we found study-wide species associations with three 
loci linked to the phenotypical variation and secretion of histo-blood 
group antigens: ABO, FUT2 and FUT3–FUT6 (Extended Data Figs. 1f–h  
and 7a–c). Histo-blood group antigens are fucosylated glycans present 
on cell surfaces and in secretions, including the gastrointestinal mucus 
layer. These antigens constitute a carbon source and binding site for 
many gut bacteria29. We confirmed previous associations of ABO vari-
ants with Faecalibacterium longum and reported new associations with 
Mediterraneibacter torques and the genus UMGS1623. The association 
of ABO variants with specific species and strains is reported to depend 
on the secretor status of histo-blood group antigens determined by 
variations in FUT2—a gene encoding a fucosyltransferase11. Nonsecre-
tors, who comprise about 20% of people of European ancestry, do not 
secrete histo-blood group antigens in bodily secretions such as saliva 
and mucus.

Given the association with ABO, an association between FUT2 vari-
ants and the gut microbiome is expected11 but has so far been observed 
only at the genome-wide significance level5,30. Here we identified three 
species associated with FUT2 variants at a study-wide significance 
level: Blautia A obeum, Clostridium sp900540255 and Clostridium 
sp001916075, and on a genome-wide significance level with Mediter-
raneibacter torques, Mediterraneibacter faecis and Ruminococcus B gna-
vus. Blautia A obeum is a highly prevalent species that has been shown to 
harbor glycosyl hydrolase genes that can remove fucose from glycans31. 
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The lead variant in the current study is in close linkage disequilibrium 
(LD) with rs601338, which introduces a stop codon resulting in the 
nonsecretor status. Variants in FUT2 have been linked previously to 
IBD, and our colocalization results show evidence of shared causal 
variants of IBD with Blautia A obeum, Clostridium sp900540255 and 
Clostridium sp001916075 (Supplementary Table 13). To ascertain that 
our FUT2-associations were not due to secondary effects of IBD, we 
reanalyzed the results excluding IBD cases, which yielded similar results 
(all P < 3.7 × 10−10; Extended Data Fig. 6). We identified associations of 
ABO and FUT2 lead variants with plasma secondary bile acid levels—
probably an effect of altered gut microbiome composition as bacteria 
are responsible for the conversion of primary to secondary bile acids 
(Supplementary Table 12; FDR q < 0.05). We found strong evidence for a 
secretor-status-dependent effect of genetically predicted expression of 
the ABO A antigen (blood groups A or AB) on M. torques abundance but 
not for the B antigen (blood group B) (Supplementary Table 14; interac-
tion P = 5.7 × 10−7). The abundance of M. torques was higher in secretors 

(median abundance 0.06 (Q1, Q3 0.004, 0.26)) than in nonsecretors 
(0.03 (0.0008, 0.17)) in those presumed to express antigen A, and low 
(median 0.03) in those predicted to express the antigen B, irrespective 
of secretor status. These findings might be explained by the potential 
of M. torques, also known as Ruminococcus torques, to produce an 
α-N-acetylgalactosaminidase that removes N-acetylgalactosamine 
(GalNac) from the antigen A32.

FUT2 also determines the phenotype of the Lewis blood group 
antigen; those who are secretors express Le(b) instead of Le(a), pro-
vided that the person carries a functional FUT3 gene. The Le(b) antigen 
is proposed to act as a binding site for bacteria such as Helicobacter 
pylori33. Here we found associations of the FUT3–FUT6 locus with the 
species Clostridium sp900540255. The FUT3 locus has not been asso-
ciated previously with gut microbiome traits but has been linked to 
several other traits, such as gallstone disease34 and LDL cholesterol35. 
Our colocalization analysis provided strong evidence for a shared 
genetic signal for Clostridium sp900540255 with LDL cholesterol, at 

Table 1 | Loci associated with gut microbiome composition at study-wide significance

Variant Microbiome feature Model Swedish studies HUNT

Locus Lead variant Chr: Pos37 EA/OA Effect 
prediction

EAF Trait Prev Beta s.e. P Beta s.e. P

OR51E1–
OR51E2

rs10836441 11:4689742 T/C Intergenic 0.52 Richness NA Linear −0.06 0.01 1.9 × 10−9 −0.04 0.01 2.1 × 10−3

LCT

rs4988235 2:136608646 A/G Intron (MCM6) 0.72 Negativibacillus 
sp000435195
(NCBIa: Clostridium sp. 
CAG:169)

28.1 Logistic 0.23 0.03 2.9 × 10−13 0.09 0.04 0.04

rs4988235 2:136608646 A/G intron (MCM6) 0.72 Phocea massiliensis 75.7 Linear 0.08 0.01 1.4 × 10−11 0.08 0.02 5.1 × 10−6

rs182549 2:136616754 T/C Intron (MCM6) 0.72 Bifidobacterium 
adolescentis

90.0 Linear −0.10 0.01 1.7 × 10−16 −0.14 0.02 1.4 × 10−14

rs6754311 2:136707982 T/C Intron (DARS) 0.72 Copromonas sp000435795
(NCBIa: Alitiscatomonas acetii)

67.7 Linear 0.08 0.01 3.2 × 10−11 0.10 0.02 2.4 × 10−8

FOXP1 rs17007949 3:70920041 C/G Intergenic 0.32 Intestinibacter 
sp900540355
(NCBIa: Clostridium sp. 
1001270J_160509_D11)

55.9 Linear 0.07 0.01 5.1 × 10−11 0.03 0.01 7.3 × 10−3

MUC12 rs4556017 7:100632790 T/C Intron (MUC12) 0.83 Coprobacillus cateniformis 26.9 Logistic 0.34 0.04 3.3 × 10−17 0.38 0.06 1.7 × 10−11

ABO

rs9411378 9:136145425 A/C Intron (ABO) 0.28 Mediterraneibacter torques
(NCBI*: [Ruminococcus] 
torques)

86.9 Linear 0.11 0.01 1.4 × 10−18 0.12 0.01 1.0 × 10−16

rs550057 9:136146597 T/C Intron (ABO) 0.31 Faecalibacterium longum 96.6 Linear 0.08 0.01 3.8 × 10−11 0.08 0.02 1.6 × 10−9

CORO7–
HMOX2

rs8182173 16:4420787 T/C Intron (CORO7) 0.23 Clostridium saudiense 40.2 Logistic −0.22 0.03 7.8 × 10−13 −0.11 0.05 0.02

rs4785960 16:4453319 C/G Intron (CORO7) 0.26 Turicibacter sanguinis 53.9 Linear −0.08 0.01 2.0 × 10−12 −0.04 0.01 1.7 × 10−3

SLC5A11 rs55808472 16:24931691 A/G Noncoding 
transcript exon 
(AC008731.1)

0.06 Agathobaculum 
butyriciproducens

98.3 Linear 0.15 0.02 2.4 × 10−11 0.16 0.03 4.3 × 10−9

FUT3–
FUT6

rs708686 19:5840619 T/C Upstream gene 
(FUT6)

0.30 Clostridium sp900540255
(NCBIa: uncultured 
Clostridium sp.)

36.3 Logistic −0.20 0.03 4.5 × 10−13 −0.11 0.05 0.02

FUT2

rs679574 19:49206108 C/G Intron (FUT2) 0.56 Clostridium sp001916075
(NCBIa: C. lentum)

31.2 Logistic 0.17 0.03 2.5 × 10−11 0.15 0.05 1.6 × 10−3

rs492602 19:49206417 A/G Synonymous 
(FUT2)

0.56 Blautia A obeum
(NCBIa: B. obeum)

96.4 Linear 0.07 0.01 1.6 × 10−11 0.08 0.01 7.6 × 10−10

rs681343 19:49206462 T/C Stop gained 
(FUT2)

0.44 Clostridium sp900540255
(NCBIa: uncultured 
Clostridium sp.)

36.3 Logistic −0.22 0.03 2.2 × 10−18 −0.19 0.04 1.1

Associations shown here were those at study-wide significance after Bonferroni correction of the genome-wide threshold, that is, P < 1.7 × 10−8 for richness and P < 5.4 × 10−11 for species. Bold 
type indicates those robustly replicated in HUNT at a Bonferroni-corrected P = 3.3 × 10−3. Betas are regression coefficients in standard deviation richness or species abundance per effect allele 
(calculated using a linear regression model) or log odds of species presence per effect allele (calculated using a logistic regression model). Tests were two-sided. Locus, manually assigned 
locus name based on previous GWAS assignment or function of nearby genes if new; Lead variant, reference SNP identifier of the locus lead variant (that is, the variant with the lowest P value); 
Pos37, human genome GRCh37 position on the chromosome; EA, effect allele; OA, other allele; EAF, mean effect allele frequency across studies; Trait, microbial species richness or species 
name; Model, GWAS regression model; Prev, mean species prevalence across studies (based on rarefied relative abundances for logistic models and nonrarefied relative abundances for 
linear models); Swedish studies P, P value in Swedish studies SCAPIS, SIMPLER-V, SIMPLER-U and MOS (discovery); HUNT P, P value in HUNT (replication). aNational Center for Biotechnology 
Information (NCBI) equivalents refer to the unfiltered NCBI taxonomy of GTDB species representative as of 2024-04-24. This was only added for species for which the name of the NCBI 
equivalent was different than GTDB.
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both the FUT2 and the FUT3–FUT6 loci (Supplementary Table 13). We 
also tested for the interaction of secretor status and the Lewis blood 
group (Le+ versus Le−) for relevant species. However, in contrast to the 
ABO findings, we did not find robust evidence that the effect of Lewis 
antigen is dependent on secretor status. Taken together, our observed 
associations of the ABO, FUT2 and FUT3–FUT6 loci with specific bacte-
rial species underline the importance of fucosylated glycans in shaping 
the gut microbial landscape.

Genes involved in the mucosal layer implicated in gut 
microbiome composition
We discovered and replicated an association between a variant in an 
intron of MUC12 and Coprobacillus cateniformis, flanked by two other 
mucin genes, MUC3A and MUC17 (Extended Data Fig. 7d). The same 
variant was also associated at study-wide significance with the genus 
Coprobacillus. Our genotyping array did not cover the MUC3A gene 
region well due to gaps in the human genome assemblies for the human 
MUC3 cluster36. Imputed genotypes for the lead variant rs4556017 were 
confirmed in a subset of 148 people using Sanger sequencing with 
a concordance of 96.6% (Extended Data Fig. 2b). Mucins, including 
MUC3A, MUC12 and MUC17, are main components of the enterocyte 
glycocalyx and are heavily O-glycosylated glycoproteins. MUC12 is 
expressed most strongly by enterocytes and goblet cells in the human 
colon, whereas MUC3A and MUC17 are expressed most strongly in the 
duodenum and ileum (Extended Data Fig. 3). Host glycans play an 
important role in determining which bacteria can colonize the host, 
and serve as an important nutrient source for gut microbes37. Variants 
in this locus have been associated previously with stool frequency25, 
and we showed through colocalization analysis evidence supporting 
a shared genetic signal between C. cateniformis and stool frequency 
(P(H4) > 0.99; Supplementary Table 13). C. cateniformis is a recently 
described Gram-positive, nonsporulating, anaerobic, rod-shaped bac-
terium38. The stool levels of C. cateniformis were reported to decrease 
in patients with irritable bowel syndrome after fecal microbiota trans-
plantation and were correlated positively with both symptoms and 
fatigue39. Variants near mucin genes (MUC5, MUC12, MUC13, MUC22) 
have been suggested previously at genome-wide or near genome-wide 
significance with metagenomic features9,40,41. Our findings corroborate 
previous findings that genetic variations in mucin genes can shape the 
gut microbiome composition.

Shared genetic background of Turicibacter sp., Clostridium 
saudiense, Intestinibacter sp900540355, adiposity traits  
and bile acids
We discovered new associations of variants in the CORO7–HMOX2 locus 
on Chr. 16 with the strictly anaerobic, Gram-positive Turicibacter san-
guinis (rs4785960, P = 2.0 × 10−12; replication P = 1.7 × 10−3), with the 
spore-forming, anaerobic, Gram-positive Clostridium saudiense, previ-
ously known as Clostridium saudii (P = 7.8 × 10−13; replication P = 0.02), 
and at a genome-wide threshold with Intestinibacter sp900540355. 
Genes located in this locus include CORO7, VASN, PAM16 and HMOX2 
(Extended Data Fig. 7e,f). eQTL analysis showed that the lead variants 
are associated with the expression of several of these genes in several 
tissues. We found another locus with a similar pattern of species associa-
tions near FOXP1 on Chr. 3, which was associated with Intestinibacter 
sp900540355 (rs17007949; P = 5.1 × 10−11) at study-wide significance 
level (Extended Data Fig. 7g), and with C. saudiense, Faecalibacterium 
prausnitzii F and Turicibacter bilis at the genome-wide significance level. 
Variants near FOXP1, which has a key role in the immune system42,43, 
have been associated previously with traits such as neutrophil count, 
hemorrhoidal disease, Crohn’s disease, dietary intake and Barrett’s 
esophagus, and at genome-wide significance with Leptospirales9. A 
variant in a third locus near PLEKHG1 was also associated at study-wide 
significance with the Turicibacter genus, family (Turicibacteraceae) and 
order (Haloplasmatales) of Turicibacter spp. (Supplementary Table 8). 

A recent study has shown that some Turicibacter strains encode and 
produce bile salt hydrolases—enzymes involved in producing second-
ary bile acids44. Furthermore, mice gavaged with Turicibacter presented 
with alterations in fat mass and circulating bile acids and lipids44. In our 
metabolomics analysis, the Turicibacter-lowering C allele of rs4785960 
in the CORO7–HMOX2 locus was associated with higher plasma levels 
of several secondary bile acids (Supplementary Table 12). Consistent 
findings were observed when examining the associations of T. sanguinis 
and C. saudiense abundances with these secondary bile acid metabolites 
in plasma (Supplementary Table 15). The lead variant in the FOXP1 locus 
was associated with stool levels of the secondary bile acid glycourso-
deoxycholate (P = 9.8 × 10−7; Supplementary Table 16). We observed 
a shared genetic signal between Intestinibacter sp9005540355 and 
LDL cholesterol in the FOXP1 locus, but not between T. sanguinis, 
C. saudiense and LDL cholesterol in the CORO7–HMOX2 locus. We 
performed a Mendelian randomization (MR) analysis to investigate 
potential bidirectional effects between LDL cholesterol and Intes-
tinibacter sp9005540355. The analysis suggested a positive effect 
of Intestinibacter sp9005540355 abundance on LDL cholesterol 
(P = 4.4 × 10−4; q-value = 0.001) but not in the opposite direction 
(Supplementary Table 17 and Extended Data Fig. 8). Creating the genetic 
instruments using a more liberal P value threshold of 5 × 10−6 yielded 
concordant results (P = 0.006; q-value = 0.02); however, the MR–Egger 
intercept indicates the presence of horizontal pleiotropy in this liberal 
analysis (P = 0.012). The CORO7–HMOX2 locus was reported previously 
to be associated with WHRadjBMI45. We found that WHRadjBMI shares 
a genetic signal with T. sanguinis and C. saudiense in colocalization 
analyses (P(H4) > 0.94) (Supplementary Table 13). The MR analysis 
showed evidence of an effect of T. sanguinis on WHRadjBMI, but not 
in the opposite direction. Analyses using the liberal P value threshold 
of 5 × 10−6 to create genetic instruments did not support the effect of 
T. sanguinis on WHRadjBMI (P = 0.23). Although the mechanism is still 
unclear, it seems plausible that these two loci might affect similar or 
the same pathways. Our findings suggest that genetic variations at 
two different loci, CORO7–HMOX2 and FOXP1, affect a shared set of 
bacteria, including Turicibacter sp., C. saudiense and an Intestinibacter 
species, as well as LDL cholesterol, bile acids and body composition.

Variants in the SLC5A11 locus associated with a 
butyrate-producing bacterium
We identified variants in the SLC5A11 locus on Chr. 16 associated with 
the abundance of Agathobaculum butyriciproducens and its family 
Butyricicoccaceae (Extended Data Fig. 7h and Supplementary Table 8). 
This locus has been linked previously to the related genus Butyricicoc-
cus at genome-wide significance46. The lead variant rs55808472 is an 
eQTL for SLC5A11. The species-increasing A allele reduces SLC5A11 
expression (also known as SMIT2 or SGLT6) in the ileum47. This gene 
encodes sodium/myo-inositol cotransporter 2, which mediates api-
cal myo-inositol absorption in the intestine. Myo-inositol plays roles 
in various physiological processes, including cellular signaling as 
a precursor for phosphatidylinositol and inositol phosphates. In 
SCAPIS, our metabolomics analysis confirmed previous findings48 
of an association between the A allele and lower plasma myo-inositol 
(P = 1.2 × 10−6; Supplementary Table 12). A. butyriciproducens is a 
strictly anaerobic, butyric acid-producing bacterium and has been 
implicated in mouse models as a potentially beneficial agent for 
cognitive function, Alzheimer’s disease pathology and Parkinson’s 
disease49. Another gene in the locus is ARHGAP17 encoding the 
RhoGTPase-activating protein 17, known to be involved in the main-
tenance of tight junctions and vesicle trafficking. Arhgap17-deficient 
mice have increased intestinal permeability and impairment of the 
mucosal layer compared to wild-type mice in a colitis model50. Our 
findings provide evidence for a genetic variant in the SLC5A11 locus 
affecting the abundance of A. butyriciproducens—a bacterium with 
potential health-beneficial effects.
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Loci associated with microbial functions suggest genetic links 
to microbial carbohydrate and amino acid catabolism
We investigated associations between host genetic variation and 117 
previously curated functional modules representing different aspects 
of microbial metabolism51 and microbial functions implicated in the 
gut–brain axis52. No study-wide significant findings were identified. 
Using the genome-wide significance threshold, we found that 11 can-
didate genetic loci, including CYP7A1 and EGFR, associated with 11 
microbial functions, most related to carbohydrate and amino acid 
catabolism (Supplementary Table 18).

Discussion
We have identified and replicated a human genetic variant associated 
with gut microbiome richness at genome-wide significance: the OR51E1–
OR51E2 locus. We further report 15 study-wide and 149 genome-wide 
significant associations of genetic variants with individual microbial 
species, where the 15 study-wide associations represent eight loci and 
14 species. Of these 15, 11 were replicated in an external sample using 
strict criteria and the remaining four were nominally significant. The 
eight loci included the well-known ABO and LCT loci, the previously 
suggested FUT2 and five new loci (MUC12, CORO7–HMOX2, SLC5A11, 
FOXP1 and FUT3–FUT6). Our findings expand considerably our under-
standing of the host genetic regulation of the microbiome composition 
and point toward the importance of key gastrointestinal physiologi-
cal mechanisms in microbiome regulation. Identified variants were 
located near or in genes linked to gastrointestinal physiology, such as 
enteroendocrine fatty acid chemosensing, bile composition, mucosal 
composition and presentation and secretion of cell surface glycans.

The strengths of this study include harmonized bioinformatic 
processing across cohorts, strict Bonferroni adjustment of the 
genome-wide threshold to limit false positives and consistent repli-
cation in the Norwegian HUNT study. Limitations include the focus 
on participants of European ancestry, mainly from Nordic countries, 
restricting generalizability and limited power to detect associations 
with rare variants or less prevalent microbial species. All study-wide 
associations were for species present in at least 27% of participants, 
whereas most gut species are less common. Another limitation was 
incomplete genomic coverage downstream of MUC12 on Chr. 7 in 
the reference genome used for genotyping, which hindered explo-
ration of that locus. As in most GWAS, identifying causal genes 
remains challenging.

Future work should address these limitations and clarify causal 
pathways linking host genetics and the microbiome. We expect larger 
GWAS to continue highlighting genes related to gastrointestinal physi-
ology and to factors known to shape the microbiome, such as antibiot-
ics, cardiometabolic medication and diet53–55. They may also uncover 
more species–locus associations, as suggested by our 149 genome-wide 
findings, where several loci were linked to several species. In conclu-
sion, our study advances understanding of the host genetic determi-
nants of gut microbiome composition and highlights gastrointestinal 
physiology as a key driver.
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Methods
Ethical considerations
The current study has been approved by the Swedish Ethical Review 
Authority (DNR 2022-06137-01, DNR 2024-01992-02). All participants 
in the respective studies below provided written informed consent. 
The Swedish Ethical Review Board approval numbers are: SCAPIS (DNR 
2010-228-31M), SIMPLER (DNR 2009/2066-32, DNR 2009/1935-32, DNR 
2010/0148-32, DNR 2014/892-31/3), MDC (DNR 532/2006, DNR 51-90) 
and MOS (DNR 2012-594). The PPP-Botnia study received approval 
from the Ethics Committee of Helsinki University (approval number 
608/2003). The HUNT study was approved by the local ethical review 
board (Regional committee for medical and health research ethics, 
Central Norway; REK-656785).

Discovery studies
SCAPIS. SCAPIS56 is a multicenter cohort comprising 30,154 people 
aged 50–65 years. For this analysis, 8,733 participants of European 
ancestry from the Malmö and Uppsala sites with both gut microbiome 
and genotype data were included. At baseline, participants provided 
blood samples during the first visit and were asked to collect stool 
samples at home, storing them at −20 °C until samples were brought 
to the study center at the second visit for storage at −80 °C. DNA 
extracted from whole blood was used for genotyping. Birth year and 
sex were obtained from the Swedish population register. Information 
on dispensed antibiotics (Anatomical Therapeutic Chemical code 
J01) in the past 6 months was obtained from the Swedish Prescribed 
Drug Register. BMI was defined as weight divided by height squared 
(kg m−2). Habitual alcohol and fiber intakes were estimated from 
a food frequency questionnaire (g day−1)57. Smoking behavior was 
assessed using a questionnaire and defined as current, former and 
never smoker.

SIMPLER-Västmanland and SIMPLER-Uppsala. The Swedish Infra-
structure for Medical Population-Based Life-Course and Environmental 
Research (SIMPLER; https://www.simpler4health.se/w/sh/en) includes 
data from two large, ongoing population-based studies: the Cohort of 
Swedish Men (COSM) and the Swedish Mammography Cohort (SMC)58. 
The COSM initially enrolled 48,850 men born between 1918 and 1952 
living in Västmanland and Örebro counties in 1997. The SMC enrolled 
66,651 women by sending invitations to all women born between 1914 
and 1948 living in Uppsala and Västmanland counties between 1987 and 
1990. The current analysis is based on a subsample selected randomly 
from these studies who were invited for clinical examination with geno-
type and gut microbiome data: SIMPLER-Västmanland (SIMPLER-V) and 
SIMPLER-Uppsala (SIMPLER-U). SIMPLER-V includes 4,515 COSM and 
SMC participants from Västmanland examined between 2010 and 2019. 
SIMPLER-U includes 981 women from the county of Uppsala, exam-
ined between 2003 and 2009 (no stool collected) and re-examined 
between 2015 and 2019 (stool collected). Participants were asked to 
collect stool samples at home and store them at −20 °C until they were 
brought to the test center, where samples were stored at −80 °C. For 115 
SIMPLER-V participants, the examination was conducted at home. DNA 
for genotyping was extracted from whole-blood samples. Information 
on dispensed antibiotics in the past 6 months was obtained from the 
Swedish Prescribed Drug Register.

Malmö offspring study. The Malmö offspring study (MOS) includes 
participants aged ≥18 years who are children or grandchildren of par-
ticipants from the Malmö Diet and Cancer Study (MDC)—cardiovascu-
lar cohort, a subset of the larger MDC59. Data collection in MOS began 
in 2013 and included 4,721 participants by 2020. The current study 
included 1,788 participants with genotype and gut microbiome data 
who attended baseline measurements between 2013 and 2017. Stool 
samples were collected and stored in home freezers (−20 °C) until 
they were brought to the study sites, where they were stored at −80 °C 

in the biobank. DNA for genotyping was extracted from whole-blood 
samples. Demographic information was collected using a question-
naire. Antibiotic use was self-reported and was also derived from the 
Swedish Prescribed Drug Register. Participants who were also part of 
SCAPIS were excluded from the MOS data.

Replication cohort
Norwegian Trøndelag Health Study. The Trøndelag Health (HUNT) 
study is a long-term population-based health investigation conducted 
in the Trøndelag county, Norway60,61. Four surveys have been used to 
collect data and biological samples from participants between 1984 and 
2019. Approximately 230,000 people have participated in at least one 
survey. Of these, around 88,000 participants have undergone geno-
typing62. Among the 56,042 participants in the HUNT4 survey, 13,268 
submitted stool samples for gut microbiome analysis on a filter paper. 
We included data from 12,652 HUNT4 participants of European descent 
having both genetic and gut microbiome data available. Sequencing 
and bioinformatic processing were performed analogously to SCAPIS 
and MOS at Cmbio (Copenhagen, Denmark).

BMI and age distribution were compared between studies with 
density plots. A map depicting the study sites was generated with 
the maps v.3.4.2.1 R package. Other studies (MDC, PPP-Botnia) are 
described in the Supplementary Note.

Genetic analysis
Genotyping and imputation. DNA extraction, genotyping, pre- 
imputation quality control and imputation were performed separately 
in each cohort (SCAPIS, SIMPLER, MOS and HUNT) using high-density 
Illumina genotyping arrays and standard pipelines for variant calling 
and quality filtering. Quality control steps removed samples with 
poor genotyping quality, sex discrepancies, non-European ancestry 
and markers with high missingness or implausible allele frequencies. 
Imputation was performed using standard algorithms (EAGLE, mini-
mac, PBWT) at established imputation servers against the Haplotype 
Reference Consortium (HRC) r1.1 panel. Detailed protocols for each 
cohort are provided in the Supplementary Note.

Validation of genotypes using Sanger sequencing. Direct genotyp-
ing using Sanger sequencing was performed to confirm the variants 
in rs10836441 (OR51E1–OR51E2 locus) and rs4556017 (MUC12 locus). 
Details are given in the Supplementary Note.

Stool DNA extraction and metagenomic sequencing
SCAPIS, MOS and HUNT. Stool DNA extraction and quality control 
for SCAPIS and MOS were performed by Cmbio and described in 
Sayols-Baixeras et al.63. In brief, samples were randomized on the box 
level, and DNA was extracted using the NucleoSpin 96 Soil extraction 
kit (Macherey–Nagel). DNA extraction quality was evaluated using 
agarose gel electrophoresis. One negative and one positive (mock) 
control were added to each batch. DNA was quantified with fluoromet-
ric techniques both after DNA extraction and after library preparation. 
DNA extraction and quality control in samples from HUNT have been 
described in detail in Grahnemo et al.64. In brief, three 6-mm disks were 
punched out from each filter card into a well. DNA was isolated using 
the Microbiome MagMAX Ultra kit (Thermo Fisher Scientific) after 
bead-beating. For all three studies, genomic DNA was fragmented 
and used for library construction using the NEBNext Ultra Library 
Prep Kit from Illumina. The prepared DNA libraries were purified and 
evaluated for fragment size distribution. Libraries from stool DNA 
were sequenced using the Illumina Novaseq 6000 instrument using 
2 × 150-base-pair paired-end reads, generating on average 26.0, 25.3 
and 22.9 million read pairs, respectively, in SCAPIS, MOS and HUNT, 
with 97.8% of the sequenced bases having Phred quality score >20 in 
SCAPIS and MOS, and more than 85% had a Phred quality score ≥30 
in HUNT.
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SIMPLER study. SIMPLER stool samples were thawed, a pea-size 
amount was aliquoted, and 800 µl of DNA/RNA Shield (Zymo 
Research) was added. These aliquots were refrozen and sent to the 
Centre for Translational Microbiome Research at the Karolinska Insti-
tute in Stockholm, Sweden for DNA extraction and metagenomic 
sequencing. DNA was extracted with the MagPure Stool kit (Magen 
Biotechnology). Each batch had one negative (DNA/RNA Shield) and 
one positive control (Zymo mock). Stool DNA was fragmented and 
used for library construction using the MGI Easy FS DNA Library Prep 
Set kit. The prepared DNA libraries were evaluated with a TapeStation 
D1000 kit (Agilent), and the quantity was determined by QuantIT 
HighSensitivity dsDNA Assay on a Tecan Spark (Tecan). Equimolarly 
pooled libraries were circularized using the MGI Easy Circularization 
kit (MGI Tech) and sequenced using 2 × 150 bp paired-end reads on the 
DNBSEQ G400 or T7 sequencing instrument (MGI) with an average 
yield of 51 million reads/sample.

Microbial taxonomic profiling
Read pairs mapped to the human reference genome GRCh38.p14 were 
removed using Bowtie2 (v.2.4.2)65 in SCAPIS, MOS and HUNT, and 
against GRCh38 using Kraken 2 (ref. 66) in SIMPLER. Remaining bioin-
formatic processing, calculation of relative abundances and microbial 
taxonomic annotation were performed for all studies, including HUNT, 
at Cmbio using the CHAMP profiler based on the Human Microbiome 
Reference HMR05 catalog12 (Supplementary Note). The taxonomic 
annotation was based on the Genome Taxonomy Database (GTDB) 
release 214 (release date: 28 April 2023). A rarefied species abundance 
table was produced by random sampling, without replacement, of 
190,977 gene counts per sample in SCAPIS and MOS, and 641,964 gene 
counts per sample in SIMPLER. In total, 4,248 species were detected in 
the rarefied data in SCAPIS, 3,430 in MOS and 4,192 in SIMPLER-V, and 
3,523 in SIMPLER-U. The alpha diversity measures—Shannon index, 
inverse Simpson index and richness—were calculated using rarefied 
data with the diversity function of the vegan R package (R v.4.3.1). Only 
the 921 species with prevalence >5% in all four studies were kept for the 
species-level analyses. Those detected in fewer than 50% of samples 
in at least one cohort based on nonrarefied data were converted into 
a binary present/absent variable. Those detected in more than 50% of 
samples in all four studies were rank-based inverse normal (RIN) trans-
formed. Alpha diversity measures were also RIN-transformed, and, for 
significant findings, were also analyzed on a nontransformed scale for 
increased interpretability. The RIN transformation was performed 
separately for each cohort.

Analysis of scRNA-seq data
Gene expression data in cells derived from human duodenum, ileum 
and colon were obtained from Hickey et al.22, and mean gene expression 
was generated per their annotated clusters. The expression in EECs 
from human duodenal and ileal organoids was assessed as described23. 
Briefly, a yellow fluorescent protein was inserted downstream of the 
Chromogranin A promoter by CRISPR–Cas9 to label EECs. Fluorescent 
EECs were then isolated using flow cytometry and analyzed by 10× 
scRNA-seq. Gene expression in EECs from the murine gastrointestinal 
tract was analyzed with scRNA-seq, as described in Smith et al.24.

Statistical analysis
GWAS of microbiome composition. GWAS was performed separately 
for microbial alpha diversity and 921 species using REGENIE67 v.3.3 
for each cohort (SCAPIS, SIMPLER-V, SIMPLER-U, MOS). A subset of 
the genotype datasets was created for the first REGENIE step to fit 
whole-genome regression models including only quality-controlled 
directly genotyped SNPs with MAF > 1% and Hardy-Weinberg equilib-
rium P < 1 × 10−15. For the second step, all variants with an information 
score >0.7 were included in association analyses performed using logis-
tic regression for binary variables and genetic variants with MAF > 5% 

in all four cohorts, and linear regression for RIN-transformed variables 
and genetic variants with MAF > 1% in all four cohorts. Covariates were 
sex, age, age2, plate and genetic principal components (PC) 1–10. The 
PCs were calculated in unrelated samples, separately for each cohort, 
with PLINK68 using an LD-pruned dataset, and all samples were then 
projected onto these components. In SCAPIS and MOS, plate represents 
metagenomics DNA extraction plate, whereas in SIMPLER it means the 
metagenomic aliquoting plate. Plate, age and sex were included to 
increase precision and power. For SCAPIS, the site was accounted for 
by the plate variable because plates were nested into the site variable. 
Based on previous nonlinear associations between age and microbi-
ome69 and our results from a naive linear model for the association 
between age and microbial species, we opted to include age also as 
age2. REGENIE accounts for population stratification, but to account 
for any residual bias, we also included genetic PCs 1–10 in the model70. 
Cohort-specific results were meta-analyzed using the inverse-variance 
weighted fixed-effects method in METAL71 v.2011-03-25. Independent 
loci were determined using LD clumping (r2 0.001, window 10 Mb) in 
PLINK68 v.2.00-alpha-5-20230923 with SCAPIS dosages used to deter-
mine the correlation structure. Variant-alpha diversity associations 
with P < 1.7 × 10−8 and variant-species associations with P < 5.4 × 10−11 
were considered study-wide-significant. This threshold was based on 
a Bonferroni correction of the conventional genome-wide threshold 
of 5 × 10−8 for three alpha diversity metrics and 921 species tested. Con-
fidence intervals for the I2 statistic were calculated using the metagen 
function of the meta v.6.5-0 R package. The loci were annotated using 
the Open Targets Genetics72 v.22.10 database (variant index, variant 
to gene and variant to trait annotations). Heritability was determined 
using SumHer73 v.6 according to the GCTA heritability model, with 
SCAPIS dosages used to determine the correlation structure.

Sensitivity analyses. Sensitivity analyses were performed for the 149 
genome-wide locus-species associations by (1) excluding participants 
with antibiotic use in the 6 months before sampling, (2) excluding 
participants with self-reported IBD, (3) retaining an unrelated subset 
where no participant had third degree relatedness or closer with any 
other participant using a KING-robust kinship estimator threshold of 
0.0442, (4) retaining one random spouse in SIMPLER and one random 
participant living at the same address in MOS to assess cohabitation 
(SCAPIS was removed for this analysis), (5) using centered log ratio plus 
RIN transformation for species analyzed using linear regression, (6) 
using Firth correction for species analyzed using logistic regression, 
(7) removing age2 from the covariates, (8) analyzing SCAPIS-Uppsala 
and SCAPIS-Malmö as two separate cohorts in the meta-analysis and 
(9–12) adding BMI, alcohol intake, smoking or fiber intake, respec-
tively, as covariates. The analyses adding alcohol, smoking and fiber 
were performed in SCAPIS only, where data on these variables were 
nearly complete.

External replication. Associations passing the study-wide threshold 
were assessed in HUNT by applying the same models as in the Swedish 
cohorts and using REGENIE with the same model specifications. We 
further assessed the validity of our findings using summary statistics 
from the published FINRISK9 and Dutch Microbiome Project7 studies. 
Details are given in the Supplementary Note.

GWAS of higher taxa. We also performed GWAS of 455 genera, 106 
families, 50 orders, 21 classes, 17 phyla and 3 superkingdoms. Relative 
abundances were created for these higher-level taxa by summation 
of their respective species-level relative abundances. The 364 taxa 
detected in 5–50% of samples in each cohort were analyzed using logis-
tic regression (absence/presence), and 288 taxa with prevalence >50% 
were analyzed using RIN-transformed relative abundances and linear 
regression. Study-wide significance was considered at P < 5.4 × 10−11, 
the same level as for species.
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GWAS of functional modules. Functional gut metabolic and gut–brain 
modules were attributed to species that contained at least two-thirds of 
the genes needed for the functionality of that module. If an alternative 
reaction pathway within a module existed, only one such pathway was 
required. All reaction pathways were required for modules with fewer 
than four steps. Module abundances were defined as the sum of the 
relative abundances of all species in a module. Similar to the GWAS of 
the species, two modules detected in 5–50% of samples in each cohort 
were analyzed using logistic regression (absence/presence) and 115 
modules with prevalence >50% were analyzed using RIN-transformed 
relative abundances and linear regression. Study-wide significance 
was considered at P < 4.3 × 10−10.

Interaction analysis for ABO, secretor status and Lewis blood groups. 
Blood groups A, B, AB and O were determined based on allele combina-
tions of ABO genetic variants rs505922 and rs8176746 (ref. 74), secretor 
status based on FUT2 genetic variant rs601338 (ref. 75) and Lewis sta-
tus (positive, negative) based on allele combinations of FUT3 variants 
rs812936, rs28362459 and rs3894326 (ref. 75). Blood groups A and AB 
were combined into antigen A, and blood groups B and AB into anti-
gen B. Mixed models were run for each cohort with species associated 
with ABO, FUT2 or FUT3–FUT6 at the study-wide significance level as 
outcome using the lmer (for species assessed with linear regression in 
the GWAS) and glmer (for species assessed with logistic regression in 
the GWAS) functions of the lmerTest v.3.1-3 R package. The interaction 
between antigen (ABO A, B or Lewis) and secretor status was estimated 
with covariates sex, age, age2, plate and genetic PCs 1–10. First-degree 
relatedness, determined by KING76 kinship coefficient ≥0.177, was used as 
a random effect. For the logistic mixed models, random and fixed effects 
coefficients were optimized in the penalized iteratively reweighted 
least squares step (setting nAGQ = 0). Cohort-specific results were 
meta-analyzed with the rma function of the metafor v.4.4-0 R package 
using the fixed-effect inverse-variance weighted method. Study-wide  
significance was considered at Bonferroni-corrected P < 3.3 × 10−3.

GWAS of GLP-1. After overnight fasting, GLP-1 levels were measured in 
MDC and PPP-Botnia study participants (Supplementary Note) before 
and 2 h after a 75-g oral glucose load. GWAS of GLP-1 was performed in 
2,588 people with fasting and 2,613 with 2-h GLP-1 in MDC, and in 926 
people with fasting and 898 with 2-h GLP-1 in PPP-Botnia. GLP-1 levels 
were log-transformed before analysis. SNPTEST77 v.2.5.6 was used for 
genome-wide association analyses, using the frequentist score method 
adjusted for age, sex and the genetic PC1-4. Results were filtered based 
on MAF > 0.01, Hardy-Weinberg equilibrium P > 5 × 10−7, and impu-
tation info scores >0.4. A fixed-effect meta-analysis was performed 
using GWAMA78.

Functional mapping. Genetic variants associated with microbial alpha 
diversity or species at the genome-wide significant level were mapped 
to functional pathways using FUMA26 v.1.5.2. One (out of 2,353) variant 
without an rsID was removed. If a genetic variant was associated with 
several traits or was multiallelic, the trait or allele pair with the lowest 
P was used as input.

Colocalization. Pairwise colocalization analyses were performed 
to investigate whether microbial richness and the eight study-wide 
significant species colocalized in the identified study-wide signifi-
cant loci and with sex hormone binding globulin, WHRadjBMI, LDL 
cholesterol, IBD, glucose and stool frequency. Details are provided in 
the Supplementary Note.

Mendelian randomization. We performed two-sample MR analyses to 
investigate bidirectional effects between specific species (C. saudiense, 
T. sanguinis, Intestinibacter sp9005540355) and BMI, WHR and LDL 
cholesterol. Details are provided in the Supplementary Note.

Plasma metabolomics
The plasma metabolomics analysis in SCAPIS has been described else-
where79 and in the Supplementary Note. Associations of genetic vari-
ants with plasma metabolites were analyzed using the same REGENIE 
pipeline as for the microbiome, adjusting for age, age2, sex, delivery 
batch and genetic PCs 1–10. Metabolites detected in fewer than 100 
samples were excluded. Those detected in 5–50% of samples were 
analyzed by logistic regression, and those in ≥50% of samples were 
RIN-transformed and analyzed by linear regression. We report one 
lead SNP per study-wide locus; when several species were associated, 
we selected the lead SNP among those replicated in HUNT, prioritizing 
the lowest P value in Swedish cohorts. FDR correction (Benjamini–
Hochberg) of 5% was applied.

Stool metabolomics
To find stool metabolites associated with the study-wide significant 
loci, we downloaded GWAS of stool metabolites summary statistics 
(only P < 10−5 available) from Zierer et al.80 (Supplementary Table 16) 
and lifted the genomic coordinates over to GRCh37 using Ensembl 
Variation 112 for variants with an rsID and https://genome.ucsc.edu/ 
cgi-bin/hgLiftOver for variants without an rsID. Genetic variants that 
could not be lifted over were removed (247 out of 46,765). We assessed 
the same lead variants per study-wide locus as described for the genetic 
association with plasma metabolites. A lookup was performed for 
genetic variants within 100 kb of the locus region corresponding to 
the study-wide significant lead variant.

Short-chain fatty acids
In MOS, a panel of nine plasma SCFAs was measured81. Laboratory 
method for SCFA measurement is described in the Supplementary 
Note. The association of genetic variants with SCFAs was assessed with 
the same REGENIE pipeline as described above for the microbiome, 
with age, age2, sex, SCFA measurement batch and genetic PCs 1–10 
as covariates. SCFAs were RIN-transformed and assessed using linear 
regression. We assessed the same lead SNPs per study-wide locus as 
described for the genetic association with plasma metabolites. FDR 
correction (Benjamini–Hochberg) of 5% was applied.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Complete GWAS summary statistics are available in the GWAS catalog 
with accession numbers GCST90670368 to GCST90671939. De-hosted 
anonymized metagenomic sequencing data from SCAPIS used in 
this study can be found at the European Nucleotide Archive under 
accession number PRJEB51353. scRNA-seq data are available in the 
GEO repository with accession numbers GSE284419 and GSE269778, 
and on Dryad (https://doi.org/10.5061/dryad.8pk0p2ns8). The 
metagenomics, metabolomics and genetic data supporting the 
conclusions of this article were provided by the SCAPIS, SIMPLER 
and MOS central data offices, and are not shared publicly due to 
confidentiality and ethical restrictions. Data will be shared by the 
respective data offices only after permission from the Swedish Ethical 
Review Authority (https://etikprovningsmyndigheten.se) and from 
the respective boards (https://www.scapis.org/data-access, https://
www.simpler4health.se and https://www.malmo-kohorter.lu.se/
malmo-offspring-study-mos).

Code availability
We used publicly available software for the analysis, as described in 
Methods. The code for the analyses presented in this paper is available 
via GitHub at https://github.com/MolEpicUU/GWAS_scripts for the 
GWAS pipeline via Zenodo at https://doi.org/10.5281/zenodo.16947117 
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(ref. 82), and https://github.com/MolEpicUU/GWAS_microbiome for 
the meta-analysis and post-GWAS analyses scripts available via Zenodo 
at https://doi.org/10.5281/zenodo.16925644 (ref. 83).
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Extended Data Fig. 1 | Regional association plots of variants in the 
OR51E1-OR51E2, LCT, ABO, and FUT3-FUT6 gene loci. a-h, Regional association 
plots of (a) richness with variants in the OR51E1-OR51E2 gene locus (within a 
100-kb window); (b) Negativibacillus sp000435195, (c) Phocea massiliensis,  
(d) Bifidobacterium adolescentis, and (e) Copromonas sp000435795 with variants 
in the LCT gene locus (within a 1-Mb window); (f) Mediterraneibacter torques, 
and (g) Faecalibacterium longum with variants in the ABO gene locus (within a 
100-kb window); (h) Clostridium sp900540255 with variants in the FUT3-FUT6 

gene locus (within a 100-kb window). The lead variant is indicated as the purple 
diamond. Other variants are indicated by dots colored according to the linkage 
disequilibrium (r2) values with the lead variant calculated using SCAPIS dosages. 
P values in a, c, d, e, and f were calculated using linear, and in b and h using 
logistic regression (two-sided tests). The horizontal dashed gray line indicates 
the genome-wide significance threshold (−log10(5 × 10−8)). For the ABO locus, the 
non-coding genes are also plotted (in gray).
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Extended Data Fig. 2 | Validation of imputed genotypes by Sanger sequencing. 
a, Results from Sanger sequencing of 73 samples from the SCAPIS cohort and 
75 samples from the SIMPLER-V cohort compared to the imputed genotype 

dosages for rs10836441. b, Results from Sanger sequencing of 73 samples from 
the SCAPIS cohort and 75 samples from the SIMPLER-V cohort compared to the 
imputed genotype dosages for rs4556017.
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Extended Data Fig. 3 | Single-cell expression analysis of candidate genes 
in human and mouse cells in intestinal tissues. a,b, Single-cell expression 
analysis of candidate genes in human duodenal, ileal, and colonic epithelial (a) 
and immune (b) cells from donors. Heatmaps of mean gene expression were 
generated from the different intestinal epithelial and immune cell clusters in the 
dataset from Hickey et al.22. T-cells data were absent for duodenum. c, Single-cell 
expression in mouse enteroendocrine cells (EECs) from different regions of the 
gut24. Mean gene expression in different EEC clusters per gastrointestinal (GI) 
region. EECs were purified by flow cytometry from NeuroD1-Cre/YFP mice, and 

analyzed by 10× single-cell RNA sequencing. Cells were clustered by k-means and 
annotated according to their expression of gut hormone genes: D (somatostatin), 
G (gastrin), I (cholecystokinin), K (glucose-dependent insulinotropic 
polypeptide), L (glucagon-like peptide 1 and peptide YY), Insl5 (insulin-like 
peptide 5), N (neurotensin), X (ghrelin), EC (enterochromaffin cells expressing 
Tph1 as a marker for serotonin biosynthesis), ECL (enterochromaffin-like cells 
expressing histidine decarboxylase as a marker for histamine biosynthesis). USI, 
upper small intestine; LSI, lower small intestine; LI, large intestine.
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Extended Data Fig. 4 | Single-cell expression in enteroendocrine cells from 
duodenal and ileal human-derived organoids. a,b, Feature maps represent gene 
expression in human enteroendocrine cells (EEC) clusters from the duodenum 
(a) and ileum (b)23. EECs were labeled by inserting a yellow fluorescent protein 
downstream of the Chromogranin A promoter in organoids, by CRISPR-Cas9. 
Fluorescent cells were purified by flow cytometry and analyzed by 10× single-cell 

RNA sequencing. Cells were clustered by k-means and annotated according to 
their expression of gut hormone genes: D (somatostatin), I (cholecystokinin), K 
(glucose-dependent insulinotropic polypeptide), L (glucagon-like peptide 1 and 
peptide YY), M/X (motilin and ghrelin), EC (enterochromaffin cells expressing 
TPH1 as a marker for serotonin biosynthesis).
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Extended Data Fig. 5 | Quantile-quantile plots. Quantile-quantile plots and genomic inflation factors for the GWAS of microbiome features (richness and species) 
with study-wide significant findings. Observed P values were from linear or logistic models (two-sided tests).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Robustness of genetic microbiome associations across 
subgroups and model specifications. a-c, Sensitivity analysis of 149 genome-
wide associations restricted to (a) individuals without antibiotic use in the 
past 6 months (n = 14,171), (b) individuals without inflammatory bowel disease 
(n = 15,260), or (c) unrelated participants (n = 14,229) compared to using data 
from all participants (n = 16,017). Related participants were identified based on 
kinship coefficients, and individuals were excluded until there were no pairs 
remaining with 3rd degree relatedness or closer. d, Sensitivity analysis of 149 
genome-wide associations restricted to one participant from each household 
in SIMPLER and MOS (n = 6,983) compared to using data from all participants in 
those cohorts (n = 7,284). e-i, In the full dataset (n = 16,017), sensitivity analyses 
were also performed for (e) the 56 genome-wide linear regression associations 
with centered log-ratio (CLR) transformation before the rank-based inverse 
normal transformation compared to rank-based inverse normal transformation 
only, (f) the 93 genome-wide logistic regression associations using Firth 
correction compared to not using Firth correction, and (g) the 149 genome-

wide associations without age2 as a covariate compared to including it, (h) 
analyzing SCAPIS-Malmö and SCAPIS-Uppsala separately compared to models 
pooling them with site adjustment (original analysis), and (i) including vs. not 
including body mass index (BMI) as an additional covariate. j-l, Finally, sensitivity 
analyses were performed for the 149 genome-wide associations comparing the 
original model in SCAPIS (n = 8,733) with models including (j) alcohol intake 
(n = 8,707), (k) smoking behavior (n = 8,452), or (l) fiber consumption (n = 8,624) 
as an additional covariate. Smoking behavior (3% missing) was categorized 
into current smokers (12%), former smokers (35%), and never smokers (49%). 
Mean ± s.d. for fiber consumption and median (25th-75th percentile) for 
alcohol consumption in SCAPIS were 12.0 ± 4.2 g/day and 5.9 (2.0-10.6) g/day, 
respectively. The diagonal black line indicates where values of y = x, the red line 
a slope from linear regressions of beta coefficients from the sensitivity analysis 
and the original analysis, and in the upper left corner the Pearson correlation 
coefficient r is shown.
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Extended Data Fig. 7 | Regional association plots of variants in the FUT2, 
MUC12, CORO7–HMOX2, FOXP1, and SLC5A11 gene loci. a-h, Regional 
association plots of (a) Clostridium sp001916075, (b) Blautia A obeum, and 
(c) Clostridium sp900540255 with variants in the FUT2 gene locus (within a 
300-kb window); (d) Coprobacillus cateniformis with variants in the MUC12 gene 
locus (within a 500-kb window); (e) Clostridium saudiense, and (f) Turicibacter 
sanguinis with variants in the CORO7-HMOX2 gene locus (within a 500-kb 
window); (g) Intestinibacter sp900540355 with variants in the FOXP1 gene locus 

(within a 1-Mb window); and (h) Agathobaculum butyriciproducens with variants 
in the SLC5A11 gene locus (within a 300-kb window). The lead variant is indicated 
as the purple diamond. Other SNPs are indicated by dots colored according 
to the linkage disequilibrium (r2) values with the lead variant calculated using 
SCAPIS dosages. P values in a, c, d, e, g, and h were calculated using logistic and in 
b and f using linear regression (two-sided tests). The horizontal dashed gray line 
indicates genome-wide significance threshold (−log10(5 × 10−8)).
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Extended Data Fig. 8 | Bidirectional Mendelian randomization of gut species 
and metabolic traits. Forest plot showing results from bidirectional inverse 
variance weighted Mendelian randomization (MR) analyses (two-sided tests) 
of specific gut species (n = 16,017) with adiposity traits (n = 694,649) and LDL 
(n = 1.32 M). Data are presented as inverse variance weighted regression betas 
representing genetically proxied increase in either species abundance or trait, 

with estimates passing false discovery rate threshold (q < 0.05) depicted as 
filled circles and those with q ≥ 0.05 as empty circles. Gray lines show the 95% 
confidence intervals. Genetic variants P-threshold, variant inclusion threshold 
used to create the genetic instruments; LDL, low-density lipoprotein cholesterol; 
WHR, waist-hip ratio adjusted for body mass index (BMI).
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis All statistical analyses used R version 4.3.1, unless stated otherwise. 
 
1. Bioinformatic processing, calculation of relative abundances, and microbial taxonomic annotation were conducted at Cmbio using the 
CHAMP profiler based on the Human Microbiome Reference HMR05 catalog. 
2. Calculation of alpha diversity measures using vegan package v2.5-7 
3. For simulations to assess the type I error of logistic and linear models, identifying the species prevalence cut-off where a linear model 
becomes unreliable (R v.4.1.1). 
4. Principal components were calculated in the unrelated samples set with PLINK 1.9. 
5. For imputation of the SCAPIS and MOS genotype data to the HRC r1.1, we used the Sanger Imputation Service with the pipeline “Pre-
phasing and imputation with EAGLE2+PBWT”. For the imputation of the SIMPLER -V and SIMPLER-U genotype data  to the HRC r1.1 panel, the 
Michigan Imputation Server was used (EAGLE v.2.4 + minimac v4).  
6. For genome-wide association analyses GWAS of microbiome composition (species and higher taxonomic levels) and function, metabolites, 
short-chain fatty acids, we used the software REGENIE v3.3, METAL v2011-03-25, PLINK v2.00-alpha-5-20230923, SumHer v6 and the meta 
v6.5-0 R package. SNPTEST v.2.5.6 was used for genome-wide association analyses of GLP-1.   
7. For functional pathways mapping, we used FUMA v1.5.2. 
8. For causal inferences analyses (Mendelian randomization), we used MendelianRandomization v0.9.0 R package (R v4.2.2).  
9. For the stool metabolomics analyses coordinates were lifted over using Ensembl Variation 112 and https://genome.ucsc.edu/cgi-bin/
hgLiftOver.  
10. Colocalization was performed using TwoSampleMR v0.5.7 and coloc v5.2.2 R packages. 
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becomes unreliable (R v.4.1.1). 
4. Principal components were calculated in the unrelated samples set with PLINK 1.9. 
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11. Antigen - secretor status interactions were performed using the lmerTest v3.1-3 and metafor v4.4-0 R packages. 
12. For the species - metabolite Spearman correlations we used the ppcor v1.1 R package. 
13. For calculation of kinship estimator, we used KING as implemented in PLINK v.2.0.  
14. For analyzing data from Sanger sequencing we used Sequencher v5.4.6 
15. For functional annotation, EggNOG-mapper v.2.0.1 was used  
 
Code related to the analyses in this study are available at https://github.com/MolEpicUU/GWAS_scripts and https://github.com/MolEpicUU/
GWAS_microbiome and in Zenodo: https://doi.org/10.5281/zenodo.16947117 and https://doi.org/10.5281/zenodo.16925644

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Complete GWAS summary statistics are available in the GWAS catalog with accession numbers GCST90670368 to GCST90671939. De-hosted anonymized 
metagenomic sequencing data from SCAPIS used in this study can be found at the European Nucleotide Archive under accession number PRJEB51353. Single-cell 
RNA-seq data is available in the GEO repository with accession number GSE284419 and GSE269778, and on Dryad (https://doi.org/10.5061/dryad.8pk0p2ns8). The 
metagenomics, metabolomics and genetic data supporting the conclusions of this article were provided by the SCAPIS, SIMPLER, and MOS central data offices, and 
are not shared publicly due to confidentiality and ethical restrictions. Data will be shared by the respective data offices only after permission from the Swedish 
Ethical Review Authority (https://etikprovningsmyndigheten.se) and from the respective boards (https://www.scapis.org/data-access, https://
www.simpler4health.se, and https://www.malmo-kohorter.lu.se/malmo-offspring-study-mos).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The genome-wide association study performed here utilized genetic information and fecal metagenomic data from both 
sexes from 16,017 adults of European ancestry from four Swedish cohorts. The sex balance in the dataset is SCAPIS (52.5% 
female), SIMPLER-Västmanland (37.7% female) and SIMPLER-Uppsala (100% female), MOS (47.1% female). 
 
SCAPIS and MOS: sex was obtained from the Swedish population register. 
SIMPLER-Västmanland and SIMPLER-Uppsala: Invitation sent to all women for mammography screening (identified from the 
Swedish population register); men were identified from the Swedish population register. 
 
Sex-stratified analyses were conducted for associations of study-wide significant loci-species combinations, and Mendelian 
randomization analyses of specific gut microbial species with several adiposity traits and LDL cholesterol.

Population characteristics SCAPIS 
The Swedish CArdioPulmonary BioImage Study (SCAPIS) is a multi-center cohort comprising 30,154 individuals aged 50-65. 
For this analysis, 8,733 participants of European ancestry from the Malmö and Uppsala sites with both gut microbiome and 
genotype data were included. At baseline, participants provided blood samples during the first visit and were asked to collect 
fecal samples at home, storing them at -20°C until samples were brought to the study center for the second visit. DNA 
extracted from whole blood was used for genotyping. Birth year and sex were obtained from the Swedish population register. 
 
SIMPLER-Västmanland and SIMPLER-Uppsala 
The Swedish Infrastructure for Medical Population-Based Life-Course and Environmental Research (SIMPLER; https://
www.simpler4health.se/w/sh/en) includes data from two large, ongoing population-based studies: the Cohort of Swedish 
Men (COSM) and the Swedish Mammography Cohort (SMC).58 The COSM initially enrolled 48,850 men born between 1918 
and 1952 living in Västmanland and Örebro counties in 1997. The SMC enrolled 66,651 women by sending invitations to all 
women born between 1914 and 1948 living in Uppsala and Västmanland counties between 1987 and 1990. The current 
analysis is based on a randomly selected subsample from these studies who were invited for clinical examination with 
genotype and gut microbiome data: SIMPLER-Västmanland (SIMPLER-V) and SIMPLER-Uppsala (SIMPLER-U). SIMPLER-V 
includes 4,515 COSM and SMC participants from Västmanland examined between 2010 and 2019. SIMPLER-U includes 981 
women from the county of Uppsala, examined between 2003 and 2009 (no stool collected) and re-examined between 2015 
and 2019 (stool collected).  
 
MOS 
The Malmö Offspring Study (MOS) includes participants aged ≥18 who are children or grandchildren of participants from the 
Malmö Diet and Cancer Study (MDC)-Cardiovascular Cohort, a subset of the larger MDC.59 Data collection in MOS began in 
2013 and included 4,721 participants by 2020. The current study included 1,788 participants with genotype and gut 
microbiome data who attended baseline measurements between 2013 and 2017. 

Recruitment SCAPIS: 30,154 participants aged 50-64 years invited from a random selection from the Swedish population register in areas 
adjacent to study sites.  
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SIMPLER-Västmanland and SIMPLER-Uppsala: Invitation sent to all women for mammography screening (identified from the 
Swedish population register); men were identified from the Swedish population register. 
 
Sex-stratified analyses were conducted for associations of study-wide significant loci-species combinations, and Mendelian 
randomization analyses of specific gut microbial species with several adiposity traits and LDL cholesterol.
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The Swedish CArdioPulmonary BioImage Study (SCAPIS) is a multi-center cohort comprising 30,154 individuals aged 50-65. 
For this analysis, 8,733 participants of European ancestry from the Malmö and Uppsala sites with both gut microbiome and 
genotype data were included. At baseline, participants provided blood samples during the first visit and were asked to collect 
fecal samples at home, storing them at -20°C until samples were brought to the study center for the second visit. DNA 
extracted from whole blood was used for genotyping. Birth year and sex were obtained from the Swedish population register. 
 
SIMPLER-Västmanland and SIMPLER-Uppsala 
The Swedish Infrastructure for Medical Population-Based Life-Course and Environmental Research (SIMPLER; https://
www.simpler4health.se/w/sh/en) includes data from two large, ongoing population-based studies: the Cohort of Swedish 
Men (COSM) and the Swedish Mammography Cohort (SMC).58 The COSM initially enrolled 48,850 men born between 1918 
and 1952 living in Västmanland and Örebro counties in 1997. The SMC enrolled 66,651 women by sending invitations to all 
women born between 1914 and 1948 living in Uppsala and Västmanland counties between 1987 and 1990. The current 
analysis is based on a randomly selected subsample from these studies who were invited for clinical examination with 
genotype and gut microbiome data: SIMPLER-Västmanland (SIMPLER-V) and SIMPLER-Uppsala (SIMPLER-U). SIMPLER-V 
includes 4,515 COSM and SMC participants from Västmanland examined between 2010 and 2019. SIMPLER-U includes 981 
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and 2019 (stool collected).  
 
MOS 
The Malmö Offspring Study (MOS) includes participants aged ≥18 who are children or grandchildren of participants from the 
Malmö Diet and Cancer Study (MDC)-Cardiovascular Cohort, a subset of the larger MDC.59 Data collection in MOS began in 
2013 and included 4,721 participants by 2020. The current study included 1,788 participants with genotype and gut 
microbiome data who attended baseline measurements between 2013 and 2017. 

Recruitment SCAPIS: 30,154 participants aged 50-64 years invited from a random selection from the Swedish population register in areas 
adjacent to study sites.  
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SIMPLER-Västmanland and SIMPLER-Uppsala: (SMC) From March 1987 to December 1990, all women living in Uppsala 
County of central Sweden and who were born in 1914 through 1948 (n = 48,517) and all women living in the adjacent 
Västmanland County (n = 41,786) who were born in 1917 through 1948 received an invitation by mail to participate in a 
population-based mammography screening program, along with a questionnaire. Returning of the questionnaire was their 
informed consent. The SMC population is comparable to the general Swedish population with regards to age distribution, 
education level and body mass index (BMI). (COSM)  In the fall of 1997, all men born in 1918 through 1952 living in 
Västmanland and Örebro counties in central Sweden (n = 100,303) received an invitation to participate in the study, along 
with a self-administered questionnaire. The COSM population is comparable to the general Swedish population with regards 
to age distribution, education level and BMI.  
 
MOS: Participants were children and grandchildren of index individuals in Malmö Diet and Cancer Study—Cardiovascular 
Cohort, which was a random, subpopulation of the Malmö Diet and Cancer Study. The participants were 18 years or older 
and living in Malmö or the nearby catchment area.

Ethics oversight The current association study has been approved by the Swedish Ethical Review Authority (DNR 2022-06137-01 and DNR 
2024-01992-02). All participants in the respective cohorts below have provided written informed consent to participate in 
the studies and have their samples and data collected, stored, and processed. The Swedish Ethical Review Board has 
approved the data collection, and the approval numbers are provided: SCAPIS (DNR 2010-228-31M), SIMPLER (DNR 
2009/2066-32, DNR 2009/1935-32, DNR 2010/0148-32, DNR 2014/892-31/3), MDC (DNR 532/2006, DNR 51-90), and MOS 
(DNR 2012-594). The PPP-Botnia study received approval from the Ethics Committee of Helsinki University (approval number 
608/2003). The HUNT study was approved by the local ethical review board (Regionale kommitter for medicinsk og 
helsefaglig forskningsetik Midt-Norge; REK-656785).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size was based on the number of participants in the respective cohorts who have both high-quality data of gut microbiome and 
genotype data, resulting in 16,017 participants across 4 Swedish cohorts. The need for larger size for a microbiome GWAS is a recognized 
issue in the field (Sanna et al, Nat Genet 2022, 54:100-106). However it is challenging to combine data from multiple cohorts to increase 
power due to biological and technical variation, including in metagenomic data processing, among cohorts. This study is the largest multi-
cohort analysis with microbiome data processed with a harmonized bioinformatics pipeline in each of the cohorts. The sample size of each 
cohort included is outlined below.  
SCAPIS: For this analysis, 8,733 participants of European ancestry from the Malmö and Uppsala sites data were included. 
SIMPLER-Västmanland and SIMPLER-Uppsala: SIMPLER-V includes 4,515 COSM and SMC participants from Västmanland examined between 
2010 and 2019. SIMPLER-U includes 981 women from the county of Uppsala, examined between 2003 and 2009 (no stool collected) and re-
examined between 2015 and 2019 (stool collected).  
MOS: The current analysis included 1,788 participants.

Data exclusions For genotyping data, samples from individuals of non-European ancestry, failure in sex check, excess heterozygosity, and other quality control 
criteria including Hardy-Weinberg equilibrium, and minor allele frequency or count, were excluded. For gut microbiome data, only data that 
passed quality control was included.  
 
Sensitivity analysis excluding individuals with antibiotic use in the past 6 months or self-reported inflammatory bowel disease;  
exclusion of individuals who used antibiotics in the last six months or self-reported inflammatory bowel disease did not impact the genome-
wide significant associations;   
exclusion of persons in the same household resulting in only one person per household from SIMPLER and MOS did not impact results from 
SIMPLER and MOS cohorts;   
excluding related participants resulting in only one participant from each related pair (meaning, no more related participant up to 3rd degree) 
did not affect the genome-wide findings;    
MOS: Participants who were also part of the SCAPIS cohort were excluded from the MOS data.

Replication Replication was conducted in the large Norwegian HUNT cohort of 12,652 individuals. We also used published summary statistics from two 
previous studies in FINRISK (n=5,959) and Dutch Microbiome Project (n=7,738) to validate the present findings. Best matching species were 
identified and our results were consistent with all 7 available associations in FINRISK, and 2 out of 4 in the Dutch cohort. The study in FINRISK 
used an earlier GTDB version (R89) for taxonomic annotations compared to our study (R214) while the Dutch study annotated their taxa by 
using MetaPhlAn2, which uses NCBI nomenclature.

Randomization This is a population-cohort study and not an intervention study. Thus randomization is not applicable.

Blinding This is a population-cohort study and not an intervention study. Thus blinding is not applicable.
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Sample size The sample size was based on the number of participants in the respective cohorts who have both high-quality data of gut microbiome and 
genotype data, resulting in 16,017 participants across 4 Swedish cohorts. The need for larger size for a microbiome GWAS is a recognized 
issue in the field (Sanna et al, Nat Genet 2022, 54:100-106). However it is challenging to combine data from multiple cohorts to increase 
power due to biological and technical variation, including in metagenomic data processing, among cohorts. This study is the largest multi-
cohort analysis with microbiome data processed with a harmonized bioinformatics pipeline in each of the cohorts. The sample size of each 
cohort included is outlined below.  
SCAPIS: For this analysis, 8,733 participants of European ancestry from the Malmö and Uppsala sites data were included. 
SIMPLER-Västmanland and SIMPLER-Uppsala: SIMPLER-V includes 4,515 COSM and SMC participants from Västmanland examined between 
2010 and 2019. SIMPLER-U includes 981 women from the county of Uppsala, examined between 2003 and 2009 (no stool collected) and re-
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Data exclusions For genotyping data, samples from individuals of non-European ancestry, failure in sex check, excess heterozygosity, and other quality control 
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passed quality control was included.  
 
Sensitivity analysis excluding individuals with antibiotic use in the past 6 months or self-reported inflammatory bowel disease;  
exclusion of individuals who used antibiotics in the last six months or self-reported inflammatory bowel disease did not impact the genome-
wide significant associations;   
exclusion of persons in the same household resulting in only one person per household from SIMPLER and MOS did not impact results from 
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excluding related participants resulting in only one participant from each related pair (meaning, no more related participant up to 3rd degree) 
did not affect the genome-wide findings;    
MOS: Participants who were also part of the SCAPIS cohort were excluded from the MOS data.
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used an earlier GTDB version (R89) for taxonomic annotations compared to our study (R214) while the Dutch study annotated their taxa by 
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Eukaryotic cell lines
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Animals and other organisms
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