nature immunology

Article

https://doi.org/10.1038/s41590-025-02387-1

A distinct monocyte transcriptional state
links systemicimmune dysregulationto
pulmonary impairmentinlong COVID

Received: 17 March 2025

Accepted: 3 December 2025

Published online: 14 January 2026

W Check for updates

Saumya Kumar ®'"?, Chaofan Li®3#, Liang Zhou"?, Qiuyao Zhan'?,
Ahmed Alaswad'?, Sonja Volland ®°, Bibiana Costa®'?,

Simon Alexander Krooss"?%72%, |sabel Klefenz® '°, Hagen Schmaus
Antonia Zeuzem"?°", Dorothee von Witzendorff'?"""?, Helena Lickei"*>°"?,
Lea Pueschel ®°, Anke R. M. Kraft® 292, Markus Cornberg ® 29112,
Andreas Rembert Koczulla™*'", |sabell Pink'®"’, Marius M. Hoeper ® 7,

121
’

Cheng-Jian Xu'?'¢, Susanne Haussler>'*?°?, Miriam Wiestler ®°,
Mihai G. Netea® '*?2, Thomas Illig®7%3%, Jie Sun®*4?* & Yang Li ® 1217182324

The mechanisms driving immune dysregulation inlong COVID disease
remain elusive. Here we integrated single-cell multiome data, immuno-

logical profiling and functional assays to investigate immune alterations
across multiple cohorts. A transcriptional state in circulating monocytes
(LC-Mo) was enriched in individuals with mild-moderate acute infection

and accompanied by persistent elevations of plasma CCL2, CXCL11and

TNF. LC-Mo showed TGF3 and WNT-[3-catenin signaling and correlated with
fatigue severity. Protein markers of LC-Mo were increased inindividuals

with pronounced fatigue or dyspnea, and those with severe respiratory
symptoms showed higher LC-Mo expression. Epigenetically, LC-Mo exhibited
AP-1- and NF-kBI1-driven profibrotic programs. LC-Mo-like macrophages in
bronchoalveolar lavage samples from individuals with severe respiratory
symptoms displayed a profibrotic profile, and individuals with a high LC-Mo
transcriptional state showed impaired interferon responses after stimulation.
Collectively, our findings define a pathogenic monocyte transcriptional state
linking systemic immune dysfunction to persistent long COVID disease,
providing mechanistic insights and potential therapeutic targets.

Long COVID affects 10-20% of individuals after severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection, with symptoms rang-
ing from mild discomfort to severe, long-lastingimpairments such as
fatigue, respiratory issues and neurological problems. These symptoms
canpersist for over 3 years (refs. 1-5), representing a substantial health
burdenand prompting effortsto better characterize long COVID (LC),
including biomarker discovery for improved diagnosis®™°.

LC presents with diverse symptoms reflecting multiorgan sys-
tem abnormalities ™. The evidence suggests multiple possible

causes, including persistence of viral remnants or reactivation of
latent viruses”*"". Yet, persistent immune dysregulation is a con-
sistent finding in LC studies'®"**"°_ Although most LC cases follow
mild-to-moderate acute illness, many studies do not stratify indi-
viduals by acute infection (Al) severity®®, which is crucial because
severe cases, especially those treated in the intensive care unit, develop
immune changes due to intensive medical interventions?**., Failing to
account for these differences may confound LC-associated molecular
signatures, highlighting the importance of refined patient grouping.
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To address this gap, we stratified individuals with LC by acute
COVID-19 severity to better resolve immune heterogeneity and iden-
tify molecular features underlying chronic symptoms. We applied
single-cell multiomics profiling of peripheral blood mononuclear
cells (PBMCs) and measured plasma cytokines from individuals with
LC with fatigue and respiratory symptoms using longitudinal and
cross-sectional samples. We identified a distinct circulating CD14*
monocyte state associated with LC (‘LC-Mo’), which was enriched in
individuals with mild-to-moderate Al. This state coincided with per-
sistent elevation of circulating cytokines, indicating systemic inflam-
mation. Intwo independent cohorts of individuals with LC with severe
respiratory symptoms and abnormal lung function, LC-Mo expression
was increased in circulating CD14* monocyte subsets. In broncho-
alveolarlavage (BAL) myeloid cells fromindividuals with severe respira-
tory symptoms, LC-Mo-like macrophages showed a profibrotic gene
expression profile. Functionally, CD14* monocytes from individuals
with LC-Mo enrichment showed dysregulated responses to ex vivo
stimulation, indicatingimpaired immune regulation. Together, these
findings provide systemicinsightinto the cellular and molecular basis
of LC and highlight potential therapeutic targets.

Results
LC has adistinct transcriptome after mild or moderate disease
Individuals presenting with headache, dyspnea or fatigue to the
pneumology outpatient clinic at Hannover Medical School (MHH)
wererecruited according to the German S1guidelines*and the Delphi
Consensus Criteria” for LC (4-12 weeks) and post-COVID-19 syndrome
(>12weeks). These criteriaincluded symptoms persisting beyond the
acute phase of SARS-CoV-2 infection or its treatment, new symptoms
emerging after recovery and attributed to prior infection or worsen-
ing of pre-existing conditions. Because heterogeneity in LC molecular
profiles may be shaped by acute disease severity and treatment, we
stratified individuals with acute SARS-CoV-2 infection (Al) and LC into
those with mild-to-moderate (WHO score of 1-5) Al (AI™ and LC*") and
those with severe (WHO scores 6-9) Al (AI® and LC*S).
Cohort1lincluded 45 individuals recruited between April 2020
and August 2021 at MHH, of which 9 gave longitudinal samples and
36 gave cross-sectional samples (n =78 total samples), including
11 donors with Al categorized as AI™ (n =7 donors, 42.8% women,
median age = 52, range 23-66 years of age, WHO score range 1-5) and
AP (n=4donors,50%women, median age = 37, range 32-54, WHO score
range 6-9),37 donorswith LC categorized as LC*™ (n =29 donors, 8 lon-
gitudinal donors with two to three time points and 21 single-time-point
donors, 58% women, median age = 49, range 31-84 years) and LC** (n =8
donors, 3 with two to four time points, 5 single-time-point donors,
25% women, median age =46, range 19-75) and 8 donors who had
recovered after 4-8 months of LC (R*; 1 longitudinal donor with two
time points and 7 single-time-point donors, 37.5% women, median
age =38, range 19-65), in addition to 6 prepandemic noninfected

controlindividuals (NI; 50% women, median age = 40, range 24-61).LC
andR'“samples were collected 1.7-10.2 months after infection. Cohort
2included 117 LC*™ donors (24 donors with two to four time points,
93 single-time-point donors, 58.9% women, median age = 48, range
19-83) and 25 LC* donors (12 longitudinal donors, 13 single-time-point
donors,20% women, median age = 53, range 18-81), recruited between
May 2020 and August 2021 at MHH, along with 33 prepandemic NIsam-
ples (48.4% women, median age = 40, range 25-65). Cohort 3 included
only LC*™donors (n =8 donors, 62.5% women, median age = 45, range
21-63), allwithrespiratory postacute sequelae of SARS-CoV-2 infection
(PASC) recruited between October and November 2023 at the Pulmo-
nary Rehabilitation Clinicin Schonau am Konigssee, Germany. Cohort
4included LC* donors (n =29, 58.6% women, median age = 49, range
33-72),LC*donors (n=11donors, 18% female, median age = 57, range
35-81), 8 donorsrecovered from Al (R*) and 2 NI donors (60% women,
median age = 41, range 29-67) recruited between August 2020 and June
2022 at MHH. Cohort5included LC donors (n=9 donors, 44.4% women,
median age = 64, range 62-83, including 5 with respiratory PASC) and
NI donors (n=2 donors, 50% women, median age = 77, range 73-77),
recruited between October 2020 and November 2021 at Mayo Clinic,
apreviously published study® (Fig. 1a and Methods).

Clinicalassessment included blood gas analysis, pulmonary func-
tion tests and standardized participant-reported outcome measures:
the fatigue assessment scale (FAS), validated in chronic fatigue®*
and LC, and the modified medical Research Council (mMRC) dyspnea
scale (0-4, where Oindicates no breathlessness, lindicates breathless-
nessonexertion, 2indicates breathlessness when hurrying or walking
uphill, 3 indicates stopping for breath after ~-100 m or a few minutes,
and 4 indicates too breathless to leave the house or when dressing),
along with quality-of-life metrics®. All clinical assessment data were
systematically collected at each participant visit for cohorts1-4 (Fig.1b
and Supplementary Tables 1-5).

To study molecular signatures of disease progression, we strati-
fied samplesin cohorts1and2 by months since Al (months1.5/1.7-2.9,
3-5.9,6-8.9 and 9-11; Fig. 1cand Methods). For cohort 1, we generated
single-nucleus RNA-sequencing (snRNA-seq) and single-nucleus assay
for transposase-accessible chromatin with sequencing (snATAC-seq)
datafrom 78 PBMC samples from NI, R, AIM, AI®, LC*™ and LC** donors
across all time points. In cohort 2 we measured the concentrations
of 14 cytokines in plasma samples from LC*™ or LC*® and NI donors
across all time points. Validation was performed using single-cell
RNA-sequencing (scRNA-seq; cohort 3), flow cytometry (cohort 4)
and a published PBMC/BAL single-cell dataset®® (cohort 5). All sam-
ples, except those from participants with Al, were PCR negative at
collection. We used an integrative multistep analysis to identify
cell-type-specificimmune dysregulation and link and assess relevance
inLC (Extended Data Fig.1a).

Analysis of single-cell datafrom cohort 1 PBMCs yielded 118,000
high-quality cells (Fig. 1d). snRNA-seq data showed distinct patterns

Fig. 1| Transcriptomes of circulating immune cells show heterogeneity in
individuals with LC. a, Schematic showing the distribution of samples across
cohort 1, whichincluded longitudinal and cross-sectional PBMC samples
(n=78) from Nl donors (n = 6) and donors with Al (n =11), LC*™ (WHO 1-5;
n=39),LC* (WHO 6-9; n=13) and R'* (n =9), collected 1.7-10.2 months after
infection; cohort 2, which included longitudinal and cross-sectional samples
(n=238) from Nldonors (n=33) and donors with LC* (n=158) and LC*® (n = 47)
collected at 1.5-11 months after infection; cohort 3, which included PBMCs
from LC*™ donors (n = 8) collected 8-42 months after infection; cohort 4, which
included PBMC samples (n = 40) from R* donors and Nl donors (n=10) and
donors with LC*" (n=29) and LC* (n =11) collected 3-14 months after infection;
and cohort 5, which consisted of PBMC (n =11) and BAL (n = 9) samples from
individuals with LC with unknown acute-phase severity (LC*™™; n=9) and NI
donors (n=2; GEO: GSE263817). b, Number of individuals with LC in cohorts1-5
exceeding thresholds for fatigue (FAS > 21), respiratory symptoms (dyspnea > 0)

or cardiology symptoms (top) and number of samples with pulmonary

function tests (PFT), bronchial dilation tests (BDT), blood gas analysis (BGA),
electrocardiogram (ECG), FAS and mMRC scores and quality-of-life (QoL)
assessments (bottom). Empty boxes denote missing data. ¢, Distribution of LC
samples across months 1.7-2.9(LC*", n =10; LC*, n =4),3-5.9 (LC*™, n = 11; LC*S,
n=3),6-8.9 (LC*Y,n=10;LC*, n=4) and 9-11 (LC*™, n=8; LC*, n=2) in cohort
1(top) and months 1.5-2.9 (LC*, n=43;LC*, n=8),3-5.9 (LC"™, n =56; LC"S,
n=19),6-8.9 (LC*, n=47;LC*, n=13) and 9-11 (LC*, n=12; LC**, n=7) in cohort
2 (bottom).d, UMAP of snRNA-seq data from 78 PBMC samples from all donors
and all time pointsin cohort1,asinaand c. e, Expression of genes significant

by two-sided Wilcoxon test (Benjamini-Hochberg method-adjusted P value of
<0.05and log, (fold change) > 0.8) in CD14" monocytes, CD16° monocytes, CD4"
Tcells, CD8" T cells, B cells and NK cells, with genes consistently upregulated
across labeled LC*™time points; HSPC, hematopoietic stem and progenitor cells;
moDCs, monocyte-derived dendritic cells; pDCs, plasmacytoid dendritic cells.
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Fig. 2| TNF and inflammatory pathways in circulating immune cells indicate
systemicinflammationinLC. a, GSEAin CD14" monocytes, CD8" T cells and NK
cells from LC*™ samples compared to Al and R'“ samples as in Fig. 1e. Pathways

are plotted with an adjusted P of <0.1 (Kolmogorov-Smirnov-based test with
permutation-derived Pvalues, adjusted using the Benjamini-Hochberg method);
NES, normalized enrichment score. b, Expression of CCL2, CXCL11and TNF in

the plasma of NI control individuals (n = 33) and individuals with LC at months
1.5-2.9(n=51),3-5.9 (n=75),6-8.9 (n=60) and 9-12 (n =19) from cohort 2. Data
were analyzed by two-sided Wilcoxon rank-sum test; ****P < 0.00001, **P < 0.001,
**P < 0.01and *P < 0.05. The box plots show the median (center), first and third
quartiles (bounds) and 1.5 times the interquartile range (whiskers). ¢, Correlation
between the amount of TNF in the plasma and pO, levelsin blood in LC donors at

months1.5-2.9 (n=51),3-5.9 (n=75),6-8.9 (n=60) and 9-12 (n =19). Data were
analyzed by Spearman correlation. Pvalues were determined using the exact/
permutation-based test. The gray shaded area indicates the 95% confidence
interval.d, Correlation between AUC score and TGF and WNT-f3 catenin
signaling pathways in CD14* monocytes, IFNa/IFNB and TLR4 and TLR9 cascade
signalingin NK cells and IFNa/IFNB and WNT-f catenin signaling in CD8" T cells
withaFAS score; red, statistics calculated using only LC samples (LC*and LC*S);
blue, statistics calculated using samples from individuals with LC*™ (n = 39), LC*
(n=13)and R** (n =9). Data were analyzed by Spearman correlation. P values
were determined using the exact/permutation-based test. The gray shaded area
indicates the 95% confidence interval; NS, not significant.

inLC*"and LC* compared to R*“and Al across major PBMCs (Fig. 1e).
LC*showed downregulated Al genes by months 6-8.9, whereas LC*®
retained an acute COVID-19-like transcriptomic profile, indicating
heterogeneity based on Al history (Fig. 1e). Differential gene expression
(DGE) analysisidentified 1,737 upregulated genes in CD14" monocytes
from LC* donors compared to those from Al and R (Fig. 1e), with
upregulation over 1.7-8.9 months, and showed participant-specific
heterogeneity (Fig. 1e and Extended Data Fig. 1b). LC** CD14" mono-
cytesshowed persistent upregulation of proinflammatory (CSF1, IRFS,
RELA and NOTCHI) and anti-inflammatory (TGFB1, SMADs, ENG and
SERPINEI) markers (Extended Data Fig. 1c) at all time points, whereas
othersignaturegenesshowedincreased expressionfrom3t08.9 months
(Fig.1e). Thissignature diminished during months 9-11, possibly due to
lower cellnumbers (Extended Data Fig. 1d), but showed upregulation
of a subset of acute-phase genes, including /L1B, SI00A4, PDIA3 and
MTRNR2L1.LC* natural killer (NK) cells also showed distinctincreased
expression of SREBF1, TAGLN2, TNIP1, NFKBIA and CD83 among
others compared to R and AINK cells (Fig. 1e). Collectively, transcrip-
tional profiles in individuals with LC reflected differences based on
Al severity, with notable molecular changes in LC* monocytes and
NK cells, whereas LC* displayed persistent but milder expression of
acute-phase genes.

TNF and TNF signaling genes are upregulated in LC*™

We next performed gene set enrichment analysis (GSEA) using pseudo-
bulk counts for each cell subsetin LC*™ or LC* samples across all time
points, comparing them to the Al and R'° cell samples. LC*™ showed
persistent upregulation of the TNF signaling pathway and persistent
downregulation of interferon (IFN) signaling and response pathways
across all major cell subsets (CD4" and CD8" T cells, B cells and CD14*
and CD16" monocytes) compared to Al, up to month 8.9 (Fig. 2a and
Extended Data Fig. 2a). CD8" T cells and NK cells from LC*V samples
exhibited increased activation of the ‘TLR signaling cascades’ pathway

relative to R" samples at months 3-8.9 (Fig. 2a). In LC* CD14* mono-
cytes, the TNF signaling pathway was transiently upregulated at months
1.7-5.9 and downregulated at months 6-8.9, whereas pathways includ-
ing transforming growth factor-f (TGF3), WNT-[3-catenin and Notch
signaling were upregulated at months 3-8.9 compared to in Al and
R CD14* monocytes (Fig. 2a). In LC*, the TNF signaling pathway was
sparsely activatedin CD14" monocytes and CD8' T cells up to 5.9 months
(Extended DataFig.2b). LC* CD14* monocytes upregulated PD-1sign-
alingand MHC class Ilantigen presentation pathways compared to Al,
but not R (Extended Data Fig. 2b, top). CD8"and CD4* T cells and NK
cells from LC* samples displayed increased activation of IFN response
pathways compared to CD8" and CD4" T cells and NK cells from R*
samples (Extended Data Fig. 2b).

We also profiled 14 proinflammatory cytokinesin cohort 2 plasma
using amultiplex bead-based assay (Extended DataFig.2c), excluding
interleukin-4 (IL-4) and IL-5 due to low detection. CXCL11, CCL2 and
TNF were persistently elevated in individuals with LC compared to
in NI donors up to month 9 (Fig. 2b). TNF mRNA was also persistently
upregulated inindividuals with LC*™ across mostimmune cell types and
time points (Extended Data Fig. 2d). TNF protein exhibited a statisti-
cally significant negative correlation with arterial oxygenation (pO,)
in individuals with LC (Fig. 2c), which remained statistically signifi-
cantin LC*™, but not in LC*, up to month 8.9 (Extended Data Fig. 3a).
No other cytokines showed consistent correlations across all time
points (Extended Data Fig. 3b,c).

Correlation analysis between key pathways upregulated in
CD8" T cells, NK cells and CD14" monocytes and FAS scores indicated
that TGFf3 and WNT-f-catenin signaling in CD14" monocytes showed
modest positive correlations with FAS scoresin LC alone and stronger
correlations when LC and R were combined (Fig. 2d). IFNa/IFN
induction pathways positively correlated with FAS scoresin CD8" T cells
and NK cells in both LC only or LC + R*“ combined analyses (Fig. 2d).
WNT--catenin signaling in CD8" T cells and Toll-like receptor (TLR)

Fig. 3 | Distinct cell subclusters drive LC signatures in NK cells, CD8* T cells
and CD14" monocytes. a, UMAP of CD8* T cells (left) and violin plots of AUC
scores of TNF and TLR1-TLR2 pathways (right) within the identified subclusters
CD226" CD8" T cells (CO), SI0O0A4* CD8 T cells (C1), CD69*GZMK* CD8" T cells
(C2), CD69"GZMK* CD8" T cells (C3) and KLRC2'KLRDI* CD8' T cells (C4) from
alldonors and all time points in cohort 1, as in Fig. 1a. Data were analyzed by
two-sided Wilcoxon rank-sum test; ****P < 0.00001. b, UMAP of NK cells (left) and
violin plots of AUC scores of TNF and TLR1-TLR2 pathways (right) in identified
subclusters PRF1'GZMB* NK cells (C0), GZMB*KLRFI* NK cells (C1), GZMK TGFBI*
NK cells (C2), IFNG* NK cells (C3) and CALR'SIO0A9" NK cells (C4) from all donors
atalltime points asin Fig. 1a. Data were analyzed by two-sided Wilcoxon rank-sum
test; ***P < 0.00001. ¢, UMAP of CD14" monocytes fromall cohort 1donors at all
time points showing subclusters /L1B* (MC1), SI00A4* (MC2), FCNI* (MC3) and
TGFBI' (MC4) cells. d, Top significantly upregulated markers in MC1-MC4 CD14"
monocyte subclusters asin c. Plotted genes were significant with a Benjamini-
Hochberg method-adjusted Pvalue of <0.05 (two-sided Wilcoxon test).

e, Differential enrichment of neighborhoods representing transcriptional
statesin LC*™ compared to AI™ (top) and LC*™ compared to R (bottom) at

months1.7-2.9,3-5.9, 6-8.9 and 9-11. Each dot represents a neighborhood of
~150-400 cells. Transcriptional states show significant enrichment with a spatial
false discovery rate (FDR) of <0.1 (F-test statistic from the quasilikelihood F-test,
graph-weighted FDR). f, AUC scores of TNF, TGF3 and WNT-f-catenin signaling
pathways in MC1-MC4 CD14* monocyte subclusters asin c. Data were analyzed
by two-sided Wilcoxon rank-sum test; ****P < 0.00001. Horizontal dashed lines
ina, bandfserve as visual reference for comparison of relative shifts in pathway
AUC scores across clusters. g, Correlation of the percentage of MC1, MC2, MC3
or MC4 CD14" monocyte subclusters with FAS score and pO, (LC*, n=38; LC*,
n=13;R', n=9). Datawere analyzed by Spearman correlation. Pvalues were
determined using the exact/permutation-based test. The gray shaded area
indicates the 95% confidence interval. h, Box plot showing FAS score in MC4™
(>10% of CD14" monocytes found within MC4, n =13), MC4" (<10% of CD14*
monocytes within MC4, n = 26) and R'® (n = 7) samples from individuals with LC*Y,
LC* and R'“. Data were analyzed by two-sided Wilcoxon rank-sum test; **P < 0.01.
The box plot shows the median (center), first and third quartiles (bounds) and
1.5times the interquartile range (whiskers).

Nature Immunology | Volume 27 | February 2026 | 200-212

204


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02387-1

*kkk

*kkk
0.3 4 Akkk T co
=} *kkk o
X O [
L5 *okkk < g 020+
=z 8 S 8
3
2 024 88 0.15 |
0)2 o <
& Sq =2 o010
o = 10 -
< 25 i L
= 532 014 ¥ 2
> -] 5 - --N7 - - 3% 005
L8 T
UMAP 1 =
0 0+
*kkk
b kkkk oy ® CO
e‘v 0.3 4 *kkk 0 @ wxxx c1
®co is PLLLE R *AEE ®c2
=8 *kkk o @ 02 PR .
c1 a — 2 e c3
@© @ O
®C2 SO 0.2 [
> e c4
e c3 0)2 S <
c [’d
®c4 £ 2=
[l a3 014
~ 23 01+ x £ - A -
N S - -~ - . 2%
< L ® Q
S Za
s —
o
UMAP 1
Average
C d expression
MC4 @@+ @@ 220 -De@o00@ccecconc-00-0- o
1.0
® MC1 05
® MC2 o
© MC3 MC3 e @0 - °-0:00000 -0 [ ] ce @ ‘@-0--00 -@©-0-00 s
® Mc4 410
MC2 {@¢ 200 -2:0-@e@0c - ©20000:-:-00:0:::Q@- -0-0:-020:--@-0-00 Percent
o~ expressed
% ° 25
% MCl @@ - ® c000 - Qo@000c 0000 -00-0-:0Q - -0-0--00 -@-0-00 ® 50
Y3
UMAP 1 L e O B B B T
N R AU R R R R0 1209 0 AR A0 O R L RIUD RN BN RN gk®
O R N S B A R TR R R A R P e OB AR S R R R R e
BT RO GRS TERAELR WEE
e Months 1.7-2.9 Months 3-5.9 Months 6-8.9 Months 9-11
. 4 *hKK
MC4 o - *RkK
o a— ® MCl
¥ ¢ 0.3 ® MC2
. ol
MC3 + oo . -~ £3 ® MC3
ER] @ Mc4
>
28 o024
Lc™versus AIM - MC2 W aesee o Do o -- £ i
S
o2
" S - -t - T -
mct - W E Dan- S L8
g
T T T T T T T T T T T T T T
8 -4 0 4 5 0 5 5 0 5 -5 0 5 0.25 — —
*kkk
2 0204 hdddd
MmC4 L) p - I
ERS
53 o015
> @
20
Mc3 4
£2 010
Lc* versus R ) £3 r y ¢ -
mez Bitew Ao - B o-- g&s, 3 2 oo+
L8
s o
MC1 wmeme - o o . o v T T T
*kkk
T T T T T T T T T T T T T akatadd
6 -3 0 3 6 -5 0 5 -5 0 5 -4 0 4 " o0s e
. LC/ © 0.3 -
log (fold change) ey 8
g R £89
40 R=-03,P=0.023 R=031,P=0.02 - -° 29 02
o ® o o 75 . ,g’<
o I3 g 30 g . az
@ = = I @3
< 50 3 ] 50 & 2 01 a § N/ -
8 4 o N =3
g 8 g 825 a
— 25+ . N I < 0
5 . . 9) 9] Q
s . . s = =)
0 T T T T T o T T T T T T T T T T T T T T T h i
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 *x W vcd
FAS score FAS score FAS score FAS score 60 NS mea®
**k
R=017,P=0,19 < R=0.13,P=0231 40 4 R=0.079, P= 055 90 4 R=-0.28,P=0%Q31 504 T [IR¢
. [} .
o 75 e o) . ° < i |
o & 8 3 30 | g % |
= c < 2 i
3 50 8 € o ¥ y—L
n (7]
<4 @ o 20 < 204 —:J
g Q o] I lﬁ
= 25 . S 2 04 10 1
15} . . ™
s . = Q o4
o e = o
0 - T T T T T o T T T T T T T T T T T T T T T
60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 60 70 80 90 100
PO, PO, PO, PO,

Nature Immunology | Volume 27 | February 2026 | 200-212

205


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02387-1

a ClustO b (] d RA+ NI
Clust1 . _ KkEE
ey o B Kokxk Clust0 kol @ Resp-PASC 8 B Lo
@ e o k)
8 020 Clustl £ 020 Resp-PASC-BHR  § &
3 Clust2 g o2 M crs
O o015 o 015 g9
o 2 2 8.t
% o 010 5 0.0 oS
= = ~ - = - - -5
=] O 0.05 b
3 9 o0.05
UMAP 1 -
e *kkk *kk *kkk *k *%k RA + NI
Kkkk *kkk *kk * * e
200 ‘ | 750 "
- ~ 300 750 ﬁ o S n#,_, * mL.C
[T L = = L—# = . —
S 300 | s ﬂ“‘ L | [ <
=) = = ‘ = = 500 |
o & 200 - & 500 F;| & 500 =
?( 200 | | Q 2 . 2 &
3 | 8 ¢] 8 e 250
3 1
== 100 _ 250 250 |
B r— warnan
100 ——
0 0 0+ 0 01
* Hk *%k NS
A
f *kkk *kk *k *%* RA+NI
*kk *hAK 900 *kk 250 * M pst
~ 400+ =
g } - £ 200 | * BEs * \ — = W Ds2
S < - S 600 | 2 500 Woss
2 O 200 - @ o g
D I i L
< 200 3 I - o
I FL (S O 300 = 2501
T o e, EHE O e
0+ 04 01 07
9 *kk KKKk *kk * A
Kkk Hhkk e * R*+ NI
400 4 R ‘ Fatigue
= = 300 o I:—‘q 7504 C % m 600 M Extreme fatigue
= 300 = T < =
o 2 200 A = 500 ':T - 4
S 200 4 8 = S i
< = =4 &
2 | 8 o =4
0o | 22T 100 4 o 250 4 004 . - =ra coma
0+ 0 0 0

Fig. 4| LC-Mo-specific proteins show elevated expressionin LC CD14"
monocytes. a, UMAP of CD14* monocytes fromindividuals with LC*" (n = 8) from
cohort 3 showing SIO0A8'S100A9* CD14" monocyte (Clust0), CTNNBI'EMPI*
CD14" monocyte (Clustl) and FCNI*CCL3* CD14" monocyte (Clust2) subclusters.
b, LC-Mo signature AUC scores within SIO0A8'SIO0A9" CD14* monocytes
(Clust0), CTNNBI'EMPI* CD14* monocytes (Clustl) and FCNI*CCL3* CD14*
monocytes (Clust2) as in a. Data were analyzed by two-sided Wilcoxon rank-

sum test; ***P < 0.00001. ¢, LC-Mo AUC scores in Clust1 CD14" monocytes from
individuals with LC*™in cohort 3 with Resp-PASC (n = 5) or Resp-PASC-BHR
(n=3).Datawere analyzed by two-sided Wilcoxon rank-sum test; ****P < 0.00001.
Horizontal dashed linesin b and c serve as visual reference for comparison of
relative shifts in pathway AUC scores across clusters. d, Percentage of CD14*

monocytes among PBMCs in donors recovered from acute COVID-19 (R*)
combined with NI (R* + NI, n=10), donors with LC*™ (n = 29) and donors with LC*
(n=11)in cohort4. e, MFlof HLA-DQ, CD120b, CALR, CD99 and TGF in samples
from individuals with LC*, LC*™and R* + Nl asind. f,g, MFl of HLA-DQ, CD120b,
CALR and TGFBinR*+ NI (n=10) and LC donorsin cohort 4 categorized based

on mMRC dyspneascore (DS) as DS1(n=14), DS2 (n=11) and DS3 (n=4) (f) orin
R*+ NI (n=10) and LC donors in cohort 4 with fatigue (n =14, FAS score 22-34)
and extreme fatigue (n = 14, FAS score 35-47) based on FAS category (g). P values
in d-g were calculated using a two-sided Wilcoxon rank-sum test; ****P < 0.00001,
***P<0.001,*P<0.01and *P< 0.05. Box plots show the median (center), first and
third quartiles (bounds) and 1.5 times the interquartile range (whiskers).

signaling cascades in NK cells, but not TNF signaling in these cells,
also correlated with FAS scores (Fig. 2d). These results indicate that
persistent upregulation of inflammatory pathways and cytokines in
LC*immune cells might contribute to the clinical symptomsin LC.

The LC*'monocyte signature characterizes a transcriptional
state

Next, we performed a reclustering analysis of CD8* T cells, NK cells
and CD14" monocytes from all donor samples. CD8" T cells and NK
cells each resolved into five clusters (Fig. 3a,b). Differential neigh-
borhood abundance analysis (DA) comparing LC groups at each
time point to Al and R*“ was performed. A neighborhood defines
a small local group of cells with similar gene expression profiles,
representing transitional states. LC* samples exhibited statistically
significant increased abundance of neighborhoods in CD69"CD27"
CDS8"' T cells (C3), GZMB'KLRFI' NK cells (C1) and CD69' TGFBI' NK
cells (C2; Extended Data Fig. 4a,b), whereas LC*® samples showed
increased abundance of neighborhoodsin C2NK cells at months 6-8.9
(Extended Data Fig. 4c,d). C3 CD8" T cells and C2 NK cells showed

GZMK'GZMB" signatures (Extended Data Fig. 4e,f), reported to accu-
mulate after SARS-CoV-2 infection and in aging®~°. These clusters
showed higher expression of TNF and TLR signaling genes (Fig.3a,b),
suggesting the contribution of persistent TNF signalingin the expan-
sion of CD69"CD27""GZMK* CD8* T cells and CD69* TGFBI'GZMK* NK
cellsinindividuals with LCAM,

Within CD14* monocytes, four primary clusters (MC1-MC4)
were identified (Fig. 3c). MC1showed high expression of MHC class 11
molecules, /L1Band NFKB1; MC2 showed elevated NFKBI and SI00A4;
MC3 showed increased expression of FCNI1, IFN-stimulated genes
(IFI44, IFI16 and IFI30) and alarmins SIO0A8 and SI00A9; and MC4 dis-
played higher levels of IRF1,IRF8, TGFB1, CTNNB1, ENG and NOTCH]1,
amongothers (Fig. 3d). DA comparing LC samples with Al and R*“ sam-
ples across all time points showed a consistent significant increase
in MC4 neighborhoods in LC*™in both men and women (Fig. 3e and
Extended DataFig. 4g), with thisbecoming prominent from month 3
onward (Fig. 3e and Extended Data Fig. 5a). By contrast, MC1 neigh-
borhoods showed amarked increase, primarily at months1.7-2.9, and
‘tapering off’ by month 11 (Fig. 3e). LC*® did not exhibit consistent
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changes in MC4, except for a small number of neighborhoods at
months 6-8.9 attributable to one participant (Extended Data Fig. 5b).
Further, area under the curve (AUC) scores of pathways (calculated
per cell from all donors) revealed that MC4, which was uniquely
abundant in LC*, showed significantly higher expression of TGF8
and WNT-B-catenin signaling genes than MC1, MC2 and MC3 (Fig. 3f).
MC1showed higher expression of the TNF signaling genes (Fig. 3f),
whereas MC1 and MC3 showed higher IFNy response gene expres-
sion (Extended Data Fig. 5c). We further performed trajectory
analysis (unstratified by disease category or groups) that revealed
that lineage 3 overlapped closely with the MC4 immune program
(Extended Data Fig. 5d,e), indicating that MC4 cells in LC*¥ have a
distinct transcriptional profile compared to MC1-MC3. We next
assessed the correlation between the frequency of MC4 within CD14*
monocytes for allLC and R* samples from all time points with clinical
parameters. A modest but statistically significant positive correla-
tion was found between MC4 proportion and FAS score, whereas
the correlation with pO, was negative (Fig. 3g). By contrast, a higher
MCI1 proportion was negatively correlated with FAS score (Fig. 3g).
The modest MC4-FAS correlation likely reflected participant hetero-
geneity (Extended Data Fig. 5f). Individuals with LC with a high pro-
portion of MC4 (MC4") exhibited significantly greater fatigue than
those with LC with a low proportion of MC4 (MC4") or R'° (Fig. 3h).
These findings indicate that increased MC4 abundance (referred
to hereafter as LC monocyte transcriptional state (LC-Mo state)) is
associated with LC, as demonstrated by its correlation with both FAS
scores and pO, levels.

LC monocytes exhibit increased LC-Mo protein marker
expression
To validate the LC-Mo state, we generated and analyzed scRNA-seq
data from PBMCs from cohort 3, comprising eight individuals with
LC*™ with LC symptoms reported for 8-42 months at the time of
sampling (Supplementary Table 3 and Methods). All individuals
with LC reported fatigue and dyspnea (classified as respiratory
PASC (‘Resp-PASC’), n =5), and three exhibited bronchial hyper-
responsiveness (BHR)?, termed ‘Resp-PASC-BHR'’ (n=3). Three clusters
(ClustO-Clust2) were identified within CD14* monocytes (Fig. 4a).
Clustlshowedsignificantly elevated AUC scores for the LC-Mo signature
(Fig. 4b). Individuals with Resp-PASC-BHR showed significantly higher
expression of the LC-Mo signature in Clustl than those with Resp-PASC
(Fig. 4c), providing independent validation of the LC-Mo state in LC*™
and suggesting a link with progression to severe respiratory PASC.
We next performed flow cytometry analysis on PBMCs from donors
in cohort 4, which included 40 LC samples 3-14 months after acute
COVID-19 (Supplementary Table 4 and Methods) and 10 R* or NIdonors.
LC showed a significant increase in CD14" monocyte percentages
compared to R* + NI (Fig. 4d), independent of acute COVID-19 severity.
We assessed the expression of 11 proteins (HLA-DR, HLA-DQ, CD105,
CD51, TGFf1, CD99, CD120b, CALR, IRF8, IFNGR1 and CD163) cor-
responding to LC-Mo transcripts in total CD14" monocytes in sam-
ples from individuals with LC and R* + NI (Extended Data Fig. 6a).
Median fluorescenceintensity (MFI) of HLA-DQ, CD120b, CALR, CD99

and TGFB1wasssignificantly higher in LC compared toinR* + NI (Fig. 4e
and Extended DataFig. 6b), whereas HLA-DR, CD51, CD105, IRF8, IFNGR1
and CD163 showed no significant difference (Extended Data Fig. 6c).
Stratification by fatigue scores and dyspnea (range 1-3) revealed
consistently higher MFI of CALR, CD120b, HLA-DQ and TGFf1 in
thosewithmore severe LC symptoms (Fig. 4f,g), and TGFB1MFlinversely
correlated with pO, (Extended Data Fig. 6d, top). MFI of both TGFf1
and IRF8 positively correlated with each other (Extended Data
Fig. 6d,bottom). Thus, protein markers specific toLC-Mo were elevated
in LC, supporting an association between the LC-Mo signature and
LC pathology.

Chromatin profiling reveals AP-1/NF-kB1 activity in LC-Mo

We next investigated epigenetic regulation using snATAC-seq data
from individuals with LC in cohort 1. Examination of motif signals in
the chromatin landscapes of CD14" monocytes, CD8" T cells and NK
cells from individuals with LC*™ compared to those with R at multi-
ple time points identified a persistent positive signal for AP-1family
activity in CD8" T cells and NK cells (Extended Data Fig. 7a). In CD14*
monocytes, AP-1motifaccessibility was elevated up tomonth 5.9, after
which motifenrichment shifted toward transcription factors involved
indownstream TGFf signaling, notably SP1and KLF family of transcrip-
tion factors at months 3-8.9 (Extended Data Fig. 7b). MC4 showed the
highest number of differentially accessible regions (Fig. 5a). The open
chromatin landscape of MC4 showed highest enrichment for motifs
for ETS family transcription factors, including GABPA, ETV1, ETV4,
SPI1and SPIC (Fig. 5b). Correlating open chromatin regions with gene
expression revealed significant positive associations for proangiogenic
and cell adhesion genes (VEGFA, ENG, TGFB1, RXRA, ICAMI and ITGAS)
and genes implicated in inflammatory/metabolic diseases (TTC7A,
LMNA and IER3) among others (Fig. 5¢). AP-1family, SMADs, NF-kB1
and RELA transcription factor motifs showed amarked increase within
theaccessible chromatin regions of these genes (Fig. 5d). Within MC4,
correlation of transcription factor transcripts and target gene tran-
scripts with accessible motifs enabled pinpointing of noncoding regula-
toryregions associated with gene expression, such as those for /[ER3and
LMNA, and establishment of gene-transcription factor relationships
(such as NF-kBland AP-1family likely regulators of LMNA; Fig.5e-gand
Extended Data Fig. 7c). Insummary, these findings indicate that LC-Mo
isdriven by ETS, AP-1and NF-kB1 transcription factors.

BAL myeloid cells show LC-Mo and profibrotic programs

Circulating monocytes contribute to PASC pathogenesis, particu-
larly pulmonary fibrosis***?. To assess whether LC-Mo participates
in fibrotic lung remodeling, we analyzed paired PBMC and BAL fluid
samples from a public dataset® (cohort 5) consisting of nine individ-
uals with LC of unknown severity during Al (LCN), classified based
on lung function as Resp-PASC (n = 5) or nonResp-PASC (n =4), and
PBMCs from NI donors (n =2; Supplementary Table 5). Circulat-
ing CD14" myeloid cells were reclustered to identify CD14"'CD16~
monocytes (Extended Data Fig. 8a), leading to six clusters (CLO-CLS5;
Fig. 6a). CL5 showed the highest enrichment of LC-Mo signature
AUC scores (Fig. 6b and Extended Data Fig. 8b). Within cluster 5,

Fig. 5| AP-1and NF-kB1 transcription factors regulate LC-Mo in CD14"
monocytes fromindividuals with LC*™. a, Top significant peaks calculated
from snATAC-seq data from cohort1(n =78), with aggregated peaks from
cellsin MC1-MC4 subclusters; data were analyzed by two-sided Wilcoxon test
(Benjamini-Hochberg method-adjusted P < 0.05). b, Top ChromVar transcription
factor motif enrichmentin open chromatin regions in MC4 compared to MC1-
MC3; Avg diff, average difference. ¢, Expression of genes significantly correlated
with open chromatin regions within the MC4 subcluster (Pearson’s correlation
(Benjamini-Hochberg method-adjusted P < 0.05)).d, Scatter plot of enriched
transcription factors motifs (fold enrichment) within open chromatin regions
correlated with the expression of genes in ¢ against the ChromVar transcription

factors motif enrichment as inb; TF, transcription factor. Dashed horizontal
lines represent-0.1and 0.1 ChromVAR average difference; dashed vertical line
represents 0.5 fold enrichment. e, Correlation (Corr) between the expression
ofgenesin cwith the expression of transcription factorsidentified inband d.
Data were analyzed by Pearson’s correlation. Absolute correlations of >0.3 are
plotted. The black asterisk indicates transcription factors with motifs in the open
chromatin of the correlated gene. f,g, Coverage plots showing the chromatin
accessibility regions and gene expression of /[ER3 (f) and LMNA (g) in subclusters
MC1-MC4 and correlations between open chromatin regions and transcription
factors with binding sites (gray lined boxes); bp, base pairs; P,q;, adjusted Pvalue.
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Resp-PASC exhibited significantly higher LC-Mo expression than
nonResp-PASC or NI (Fig. 6¢).

We nextintegrated CD14" monocytes from PBMCs and CD163" or
CD14" myeloid cells from BAL fluid. This integrated dataset identified
ClI1 with >75% cells from BAL fluid and expressing MARCO'FABP4",
markers for tissue-resident alveolar macrophages, two clusters

(C12and CI3) with>65% of cells from PBMCs and expressing LYZ'CD14",
markers for circulating monocytes, and three mixed clusters (CI4-CI6)
with comparable proportion of cells from both PBMCs and BAL (Fig. 6d
and Extended DataFig. 8c,d). PBMC monocytesin CL5 primarily local-
ized to clusters Cl4-Clé6 (Fig. 6e), suggesting amacrophage-polarized
phenotype. Among these, cluster Cl4 had the highest LC-Mo signature
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Fig. 6| The LC-Mo cluster is enriched in profibrotic monocyte-derived
alveolar macrophages in BAL fluid from individuals with LC. a, UMAP of
CD14* monocytes cells from PBMCs of cohort 5 (GEO: GSE263817)* subclusters
FABP4*C1QA* CD14" monocytes (CLO), NKG7'GZMB* CD14* monocytes (CL1),
FCNI'SI00A9* CD14" monocytes (CL2), KLRC2'LAG3' CD14* monocytes (CL3),
NLRCS' CD14* monocytes (CL4) and TREM2'CALR' CD14" monocytes (CL5) from
NIdonors (n=2)and LC" donors (n=9). b, AUC scores of the LC-Mo signature
in CLO-CLS5 asin a; data were analyzed by two-sided Wilcoxon rank-sum test;
***+P < (0.00001. ¢, AUC scores of the LC-Mo signature in CL5in PBMC CD14*
monocytes from individuals with LC Resp-PASC (n = 5) and nonResp-PASC (n=4)
and Nldonors (n = 2); data were analyzed by two-sided Wilcoxon rank-sum test;
***+P < 0.00001.d, Integrated UMAP of CD163" or CD14" myeloid cells from
PBMCs and BAL samples of individuals with LC*™ (n = 9) showing MARCO*FABP4*
macrophages (CI1), LYZ'CD14* monocytes (CI2-CI3) and mix clusters from

Average log, (FC) (Cl4 versus CI5)

PBMCs and BAL samples with TREM2*CCL2* (C14), CCL23*(CI5) and NUPRS" (C16).
e, UMAP as ind showing CLS5 cells. f, LC-Mo AUC score within CI1-Cl6 (left) and
profibrotic gene signature® AUC score as in d. Data were analyzed by two-sided
Wilcoxon rank-sum test; ****P < 0.00001. Horizontal dashed linesinb, cand f
serve as visual reference for comparison of relative shifts in pathway AUC scores
across clusters. g, Ratio of CI4/CI5 or CI4/ClI6 cells within each individual with
Resp-PASC (n =5) or nonResp-PASC (n =4). Data were analyzed by two-sided
Wilcoxon rank-sum test. Box plots show the median (center), first and third
quartiles (bounds) and 1.5 times the interquartile range (whiskers). h, Scatter
plots showing log, (fold change) (log, (FC)) of DGE in the Cl4 versus CI5 and

Cl4 versus CI6 clusters. Genes significant with an adjusted P value of <0.05 in
both comparisons are labeled (two-sided Wilcoxon rank-sum test, Benjamini-
Hochberg method-adjusted P < 0.05). All data correspond to cohort 5
scRNA-seq data.

enrichment and higher expression of a profibrotic gene set defined
in prior COVID-19 BAL studies® and including TREM2, CALM1, LGMN
and APOE (Fig. 6f and Extended Data Fig. 8e). Individuals with
resp-PASC showed a higher proportion of Cl4 cells and higher Cl4/
Cl5and Cl4/Clé ratios thanindividuals without resp-PASC (Fig. 6g and
Extended Data Fig. 8f). Differential expression analysis revealed that
Cl4 cells upregulated the expression of SPP1, CCL13, CCL2 and FOLR2
comparedto CI5 or Cl6 cells from bothindividuals with resp-PASC and
non-resp-PASC (Fig. 6h). These results indicate LC-Mo enrichment in

Resp-PASC PBMCs andits association with a profibrotic transcriptional
profileinlung myeloid cells.

Individuals with LC-Mo exhibit dysregulated monocyte
function

To assess the functional implications of LC-Mo during immune
challenge, we stimulated PBMC samples from cohort 1 (months
1.7-2.9 and 6-8.9) with heat-inactivated Pseudomonas aeruginosa
for 4 hand performed single-cell multiome profiling in samples from
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Fig.7|LC-Mois linked to dysregulation of CD14* monocyte functionin

LC"™, a, Volcano plot showing DGE in CD14* monocytes from LC-Mo" (>10% of
CD14* monocytes exhibiting the LC-Mo state) versus LC-Mo' (<10% of CD14*
monocytes exhibiting the LC-Mo state) LC*M (n=7), LC*® (n=5) and R (n = 6)
samples collected from cohort1at month 1.7-2.9 and month 6-8.9 time points
and stimulated with P. aeruginosafor 4 h. Selected significant labeled genes with
anadjusted Pvalue of <0.05 are shown inred, whereas all other genes are shown
ingray. Data were analyzed by Wilcoxon rank-sum test, Benjamini-Hochberg

method-adjusted P < 0.05. b, GSEA enrichment of pathways in nonstimulated
LC-Mo" versus LC-Mo" and stimulated LC-Mo" versus LC-Mo" (unstimulated
LC-Mo", n =11; unstimulated LC-Mo'"°, n = 23; stimulated LC-Mo", n = 4;
stimulated LC-Mo'", n =14). Pathways plotted with an adjusted Pvalue of <0.1
(Kolmogorov-Smirnov-based test with permutation-derived P values, adjusted
using the Benjamini-Hochberg method). ¢, Dot plot showing gene expression

of chemokine and cytokine genes (top) and IFN response genes (bottom) in
stimulated and nonstimulated CD14* monocytes from LC-Mo"and LC-Mo® asina.

individuals with LC*™ (n=7), LC*® (n=5) and R** (n = 6; Extended Data
Fig. 9a,b). Stimulation resulted in a reduction in the numbers of
CD14" and CD16" monocytes compared to unstimulated samples
(Extended DataFig. 9c,d), consistent with prior reports®***. Joint analysis
of stimulated and unstimulated samples showed that stimulated
LC*M CD14* monocytes exhibited significant downregulation of the
inflammatory response, IFNy signaling, IL-10 signaling, cytokine
signaling and IL-6-JAK-STAT3 signaling pathways relative to stimu-
lated R*“ CD14* monocytes (Extended Data Fig. 9¢). Next, we clas-
sified donors as LC-Mo" (>10% of CD14* monocytes exhibiting the
LC-Mo state) or LC-Mo" (<10%); all R and LC*S samples were LC-Mo'°
(Extended DataFig. 5f). Comparison of stimulated LC-Mo" and LC-Mo'
identified DHFR, HMOXI, EREG and GCLC among the top significantly
upregulated DEGs (Fig. 7a). Pathways related to ‘IFNa response’ and
‘cytokine signaling’ were significantly decreased in expression (Fig. 7b)
in stimulated LC-Mo" compared to stimulated LC-Mo". At the gene
level, stimulation induced cytokine and chemokine gene expression
(CCL3,CCL4,CXCL3and IL6) inboth stimulated LC-Mo"and stimulated
LC-Mo'", whereas IFN response genes (IRF9, ASCC3, XAF1, SAMDOYL,
LILRB4 and CGAS) were downregulated in LC-Mo" (Fig. 7c). Motif
accessibility analysis of stimulated LC-Mo" and stimulated LC-Mo'"
showed that FOXO and TCF (especially TCF7L2) and ZIC motifs were
more accessible in stimulated LC-Mo", whereas stimulated LC-Mo'"
showed increased ETS and AP-1 motifaccessibility compared to stimu-
lated LC-Mo" (Extended Data Fig. 9f). Together, these data suggest

that LC-Mo might contribute to the functionalimmune dysregulation
observed inindividuals with LC.

Discussion

Using high-resolution single-cell multiome analysis, immunologi-
cal profiling and functional assays on PBMC and BAL samples from
individuals with LC experiencing fatigue and dyspnea, we identified
persistent elevations of proinflammatory mediators such as TNF, CCL2
and CXCLI11 up to 9 months after infection. We also defined a distinct
circulating CD14* monocyte state (LC-Mo) associated with LC. This
state, predominantin individuals with LC*¥, showed increased TGFB/
WNT-f-cateninsignaling thatincreased over time and exhibited inter-
individual variability. Individuals with severe resp-PASC displayed
higher LC-Mo gene expression, whereas individuals with higher LC-Mo
proportions showed reduced IFN responses after in vitro stimulation,
suggesting acompromised immune response.

Although 14 individualsin cohort1and 51in cohort 2 were enrolled
before the 3-month National Academies of Sciences, Engineering, and
Medicine cutoff for LC, over 70% had symptoms extending beyond
this period, aligning with established diagnostic criteria. Overlapping
symptoms with post-intensive care syndrome complicate LC hetero-
geneity. Our data revealed molecular differences in PBMCs based on
the severity of the Al. Circulating monocytes have been implicated in
severe COVID-19 disease and in resp-PASC***>**?%%_ Although oxygen
saturation in cohort 1 was normal, MC4 cell proportions negatively
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correlated with oxygen saturation, suggesting subtle gas exchange
defects. Nevertheless, increased LC-Mo expressionin PBMCs and BAL
fluid fromindividuals withsevere resp-PASCin cohorts3and 5, together
with a profibrotic BAL phenotype, supportalink to lung pathology.

Sustained TNF expression, reported in post-COVID cohorts®'*?$,
paralleled persistent TNF and/or NF-kB signaling in immune subsets,
driving systemic inflammation. Enrichment of GZMK*CD8* T and NK
cells in LC*, shown to expand after SARS-CoV-2 infection®* and in
chronic inflammatory diseases**?****°, and increased AP-1 accessibil-
ity were consistent with TNF-driven activation*. Upregulated TLR
pathways in CD8* T cells and NK cells indicated ongoing viral sensing
and potential NF-kBlactivation, fitting with evidence of persistent viral
reservoirs or remnants***,

By contrast, CD14* monocytes fromindividuals with LC*™ showed
transient TNF signaling, with persistent TGFBI expression and activa-
tion of TGF3 and WNT--catenin pathways for up to 11 months. MC4
proportions showed coexpression of TGF3 and IRF8 mRNA and protein,
shownto synergistically drive neuroinflammationin the experimental
autoimmune encephalomyelitis mouse model*®, and displayed motifs
for ETS1, AP-1, NF-kBland SMAD, transcription factors linked to adhe-
sion and fibrosis****, MC4 proportions modestly correlated with FAS
scores and blood pO,, and flow cytometry confirmed elevated TGFf31
in CD14" monocytes. LC-Mo enrichment was also validated in two
independent cohorts with severe Resp-PASC patients, thereby linking
LC-Mo to lung fibrosis.

Althoughassociations between LC-Mo and symptom severity were
noted, correlations were modest, leaving causality undetermined.
Further functional studies are needed to clarify these mechanisms. Our
study focused on respiratory symptoms and fatigue, so the involve-
ment of LC-Mo in other organ systems remains open. Comparison to
unstratified recovered controls (due to limited sample size) restricts
interpretation; future work with stratified groups and consideration
of'vaccination or comorbidities will be important.

In conclusion, we provide a systems view of LC with fatigue and
respiratory involvement, identifying a pathogenic monocyte state
linked to severe symptoms and offering insights into disease mecha-
nisms and heterogeneity.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
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Methods

Cohorts

Cohorts 1, 2 and 4. Sample collection and analyses were approved by
the ethics committee of the MHH (ethics vote 9001_BO _K). All partici-
pants gave written broad consent. Blood was collected fromindividuals
who were admitted to the hospital due to COVID-19, as well as from
ambulatory individuals after SARS-COV-2 infection showing symptoms
indicative of LC >4 weeks after infection in accordance with the German
S1 guideline for LC and post-COVID syndrome at the MHH. Cohort 1
included individuals with AIM (n =7, 42.8% women, age median =52,
range 23-66 years) and Al* (n = 4, 50% women, age median = 37, range
32-54years), individuals with LC symptoms (LC*™ (n =29, 8 longitudinal
withtwo to three time points, 21 single-time-point donors, 58% women,
median age = 49, range 31-84) and LC* (n = 8, 3 longitudinal with two
to four time points, 5 single-time-point donors, 25% women, median
age = 46, range 19-75)), donors recovered from LC (4-8 months of
LC; R (n =8, 37.5% women, median age = 38, range 19-65)) and pre-
pandemic NI controlindividuals (n = 6,50% women, median age = 40,
range 24-61). LC and R* samples were collected 1.7-10.2 months after
infection, and all groups were recruited between April 2020 and August
2021at MHH. Cohort 2 included individuals with LC*™ (n = 117, 24 longi-
tudinal with two to four time points, 93 single-time-point donors, 58.9%
women, median age =48, range 19-83) and LC*® (n =25, 12 longitudi-
nal, 13 single-time-point donors, 20% women, median age = 53, range
18-81), recruited between May 2020 and August 2021 at MHH, along
with prepandemic NIsamples (n =33, 48.4% women, median age = 40,
range 25-65). Cohort 4 included individuals with LC*™ (n =29, 58.6%
women, median age =49, range 33-72) and LC*® (n=11, 18% women,
median age = 57, range 35-81) and individuals recovered from Al (R*
n=8andNIn=2,60%women, median age = 41, range 29-67), recruited
between August 2020 and June 2022 at MHH. Allindividuals with Al had
apositive SARS-CoV-2 PCR test at admission or externally before admis-
sion. Allindividuals with LC had a prior proven SARS-CoV-2 infection.
The SARS-CoV-2 strain in individuals with Al or LC was not recorded.
Clinical parameters, including blood gas measurements, pulmonary
function tests, FAS and mMRC scores and quality-of-life assessments,
were systematically collected at each visit.

Cohort 3.Sample collection and analyses were approved by the ethics
committee of the Philipps University Marburg (Az.:24-289 ‘Entschliis-
selung der molekularen Pathophysiologie des Post-Covid-Syndroms
und pradisponierender Faktoren mit Hilfe neuer Sequenzierungstech-
nologien und Phénotypisierung von Immunzellen’). All participants
gave written broad consent. Samples was collected from individuals
withLC* (n =8, 62.5% women, median age = 45, range 21-63), all with
resp-PASC and recruited between October 2023 and November 2023
during their stay at the Pulmonary Rehabilitation Clinic in Schénau
am Konigssee, Germany. All individuals with LC had prior proven
SARS-CoV-2 infection, and samples were collected >6 months after
SARS-CoV-2 infection, one sample per participant. The SARS-CoV-2
straininindividuals with Alor LCwas notrecorded. Clinical parameters,
including blood gas measurements, pulmonary function tests, FAS
and mMRCscores and quality-of-life assessments, were systematically
collected for each participant.

Cohort 5. Biosample collection for both PBMCs and BAL fluid is avail-
able at ref. 23 and included individuals with LC (n =9, 44.4% women,
median age = 64, range 62-83), including five with resp-PASC, and
NI donors (n=2,50% women, median age 77, range 73-77), recruited
between October 2020 and November 2021 at Mayo Clinic.

Sample processing for PBMCs

Sample processing for cohorts 1-4 and storage was performed follow-
ing the standard procedures of the Hannover Unified Biobank (HUB)
as described by Kopfnagel et al.*’. PBMCs were isolated from whole

blood using Ficoll gradient centrifugation. Cohort 5 PBMC and BAL
sample processing was performed similar to as described previously®.

Cytokine assay (cohort 2)

The Quanterix HD SP-X Imaging and Analysis System was used to meas-
ure plasma samples. The following panels were used in this study:
Human Corplex cytokine panel110-Plex array including IL-12p70, IL-1B,
IL-4, IL-5, IL-6, IL-8, TNF, IFNy, IL-10 and IL-22. The Simoa chemokine
panel14-plexkit contained four chemokines, including IP-10 (CXCL10),
MCP1 (CCL2), MIP1-$3 (CCL19) and ITAC (CXCL11). IL-4 and IL-5 were
excluded from further analysis due to being below the limit of detec-
tion. The detection values were log, transformed. All plasma samples
were processed accordingto standard biobanking protocols and stored
at a minimum temperature of -80 °C. For the experiments, the sam-
pleswere randomized and measured according to the manufacturer’s
manual. The study protocol conformed to the ethical guidelines of the
Declaration of Helsinki, and the ethics committee of MHH approved this
study apriori (9001_BO_K,No.9472_BO_K_2020, broad consent: 2923-
2015). Informed consent was obtained from all participants included
inthe study.

P. aeruginosa stock production

AP.aeruginosa clinical isolate CH5464 was streaked from frozen glyc-
erolstocks onto LB agar plates and incubated overnight at 37 °C. Bacte-
riafromsingle colonies were used to inoculate an overnight preculture
in LB medium. This preculture was then diluted in fresh LB medium and
grown at 37 °C with shaking at 180 rpm until reaching the early station-
ary phase. The culture was centrifuged at 10,000g for 10 min, and the
supernatant was discarded. The pellet was washed twice with PBS and
incubated at 80 °C for 60 minto inactivate the bacteriainawaterbath.
Afterward, the suspension was centrifuged again at 10,000g for 10 min
to remove cellular debris. The bacterial suspension was adjusted to a
concentration of 108 colony-forming units (c.f.u.) per ml and stored
at —20 °C for future use. To confirm complete bacterial inactivation,
100 pl of the bacterial suspension was plated on blood agar plates.

In vitro PBMC stimulation

We conducted scMultiome-seq analysis on PBMCs from individuals
with LC across five time points: the acute phase; 3, 9 and 12 months
after infection and during recovery. Heat-inactivated P. aeruginosa
strain and a mock stimulation condition were tested over the course
of four experimental runs. A pilot study was performed using samples
from two healthy individuals, with cells stimulated for 4 and 24 h at
four different concentrations to determine the optimal conditions.
Based on this pilot study, the 4-h time point and 2.5 x 10° c.f.u. per ml
were identified as optimal.

For the main experiment, PBMCs were thawed according to an
optimized protocol based on 10x Genomics guidelines (CGO00365,
RevB). The cells were counted and resuspended at a concentration of
5x10° cells per ml in warm RPMI. Cell suspension (100 pl) was plated
into a 96-well, round-bottom plate and rested for 1 h at 37 °C. Follow-
ing this rest period, the RPMI medium was replaced with 100 pl of
heat-inactivated P. aeruginosa corresponding to a concentration of
2.5x10° c.f.u. per ml. The cells were incubated at 37 °C for 4 h. After
incubation, the plates were centrifuged at 300gfor 5 min, and the cells
were collected for nucleiisolation and library preparation.

Isolation of nuclei and library preparation (cohort 1)

scMultiome-seq analysis was performed on both directly thawed and
stimulated PBMCs. To manage sequencing costs, cells from three to
four donorswere pooled together. After pooling, the cells were treated
with DNaseItoremove free DNA and centrifuged at 300g for 10 min at
4°C. The cell pellets were resuspended and incubated with 300 pl of
prechilled 1x lysis buffer onice for 3 min. Lysis was stopped by adding
1 ml of ice-cold wash buffer, followed by centrifugation at 500g for
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Sminat4 °C. The nuclei were washed twice with 500 pl of wash buffer
andresuspended in Diluted Nuclei Buffer. To ensure purity and disso-
ciation of single nuclei, the suspension was passed through a 40-pm
Flowmi strainer and inspected under a microscope.

Approximately 20,000 nucleiwere loaded into a Chromium Con-
troller to produce single-cell gel beads, following the 10x Genomics
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression pro-
tocol (CGO00338, Rev C). After transposition, the nuclei were treated
with a transposase enzyme, which selectively fragmented the acces-
sible DNA regions and added adapter sequences to the fragmented
DNA ends. The transposed nuclei were loaded onto a Chromium Next
GEM ChipJ (PN-1000234), alongside partitioning oil and barcoded gel
beads. PCR amplification was performed, targeting approximately
10,000 nuclei per library. Sequencing was performed using the Illu-
minaNovaSeq 6000 platform, witha minimum read depth 0of 20,000
read pairs per cell for scRNA libraries and 25,000 read pairs per cell
for scATAC libraries.

Cell capture and library preparation (cohort 3)

We thawed cells following the 10x Genomics thawing protocol
(CG00039, Rev D), cells from four donors were pooled together, and
approximately 29,000 cells were loaded into the Chromium X (10x
Genomics) to generate single-cell gel beads in emulsion according to
the 10x Genomics protocol (CG0O00731, Rev A). scRNA-seq libraries
were prepared using a Chromium GEM-X Single Cell 3' Reagent Kits
v4 (10x Genomics) and sequenced on the NovaSeq 6000 platform
(Illumina), with a minimum depth of 20,000 read pairs per cell.

Sample preparation for ex vivo flow cytometry experiments
(cohort 4)

PBMCs were isolated from fresh whole blood using standard Ficoll
density gradient centrifugation and cryopreservedin liquid nitrogen
for deferred use. Ex vivo phenotyping ofimmune cells was performed
from cryopreserved PBMCs. In brief, thawed PBMCs were stained
with a Zombie NIR Fixable Viability kit (Biolegend, 423106) at room
temperature in PBS for 15 min. Nonspecificimmunolabeling conferred
by Fc receptor binding was blocked by the addition of 10% Gamunex
solution (Grifols Deutschland). Surface markerimmunolabeling was
performed in cell staining buffer (PBS, BSA and EDTA) (Biolegend,
420201) and Brilliant Stain Buffer (BD, 563794) overnight at 4 °C with
antibodies to the ontogeny markers anti-human CD3, CD14, CD16
and HLA-DR; macrophage markers CD163 and CD206 and the mark-
ers identified from the transcriptomic analysis CD51, CD99, CD105,
CD120b and HLA-DQ (see antibody details in the table). After fixation
and permeabilization (BD, 554714) for 30 min at room temperature,
immunolabeling of intracellular markers was performed for 30 min
in Permwash buffer (BD, 554714) at 4 °C with antibodies to CALR,
IFNGR1, TGFB1 and IRF8. Next, cells were immunolabeled with the
secondary antibodies AF488 and AF568 for 30 minin Permwash buffer
(BD, 554714) at 4 °C to label the unconjugated antibodies CALR and
IFNGRI, respectively. All donors were also immunolabeled with the
correspondent isotype controls for the used antibodies. Cells were
washed with PBS, and datawere acquired on afive-laser Sony spectral
analyzer (ID7000, Sony) and analyzed with FlowJo software v10.10.0
(Tree Star).

Antibody list
Antibody Fluorochrome Clone Company Catalog
CD3 SparkBlue SK7 BioLegend 344852
CD14 PacBlue 63D3 BioLegend 367122
CD16 BUV563 3G8 BD 568289
CD51 APC NKI-M9 BioLegend 327913
CD99 PE hec2 BioLegend 398205

Antibody Fluorochrome Clone Company Catalog
CD105 BUV421 43A3 BioLegend 323219
CD120b PE-DAZZLE 3G702 BioLegend 358413
CD163 FITC/PE-Cy7 GHI/61 BioLegend  333618/2268070
CD206 APC-Cy7/PE-Cy7  15-2 BioLegend  321120/321124
CALR Purified Abcam ab2907
AFA488 Invitrogen
HLA-DQ BB700 Tu169 BD 745976
HLA-DR AF700 1243 BioLegend 307626
IFNGR1 Purified Abcam ab154400
AF568 Invitrogen
IRF8 PE REA516 Miltenyi 130-122-927
TGFB1 PE-CF594 TW4-9E7  BD 562422
Statistical methods

No statistical method was used to predetermine sample size. The sam-
ples were randomized before processing for single-cell experiments.
The investigators were not blinded to allocation during the experi-
ments or during outcome assessment. All statistics in the manuscript
arereported as specified in the figure legends.

Genotyping

Genotyping of DNA samplesisolated from participantsin the current
study was performed using the GSA-MDv3 array (Infinium, Illumina)
following the manufacturer’sinstructions. Intotal, 725,875 variants of
48individuals were called by Optical 7.0 with default settings

Genotype processing for demultiplexing

Genotype datawere reformatted into PLINK binary format files®. Qual-
ity control was performed at both the sample and single-nucleotide
polymorphism (SNP) levels. Samples were excluded if they exhibited
sex mismatches, missing genotyping rates of >0.05, heterozygosity
ratesbeyond three standard deviations from the mean or relatedness
across samples. A total of 58 samples passed these filters. SNPs were
further filtered based on a minor allele frequency of >0.01 and an
SNP missingness rate of <0.05. Genotype imputation was conducted
using the Minimac4 server®, using the TOPMed r3 reference panel**
and EAGLE v2.4 for phasing. The final analysis included a total of
6,050,031 variants.

Data preprocessing for multiome datasets and demultiplexing
BCL files from each library were converted to FASTQ files using
cellranger-arc mkfastq with default parameters and using the
respective sample sheet with the 10x barcodes. The 10x Genomics
cellranger-arc count pipeline (v2.0.2) was used with default parameters
using the human reference genome GRCh38-2020-A-2.0.0 obtained
from 10x Genomics website. Demultiplexing was performed using
Souporcell (v2.4)%. To assess the concordance between the geno-
types of each donor in Souporcell-generated VCF and a reference
VCF, BCFtools was used to perform a genotype check with parameter
‘gtcheck’ and the ‘-u GT’ option to compare the genotype fields in the
two VCFfiles.

Quality control and integration of multiome datasets (cohort 1)
Once the donor for each cell was assigned after demultiplexing, only
single cells with both RNA and ATAC data were considered. Seurat
version 5.0 (ref. 54) was used for downstream analysis. The follow-
ing filtration criteria were used: ‘nCount_RNA < 6,000 and nCount_
ATAC < 15,000, mitochondrial percentage < 20, RNA features < 3,000,
TSSenrichment >1and <10, while nucleosome_signal < 2. RNA integra-
tion across libraries was performed using ‘RPCAlntegration’ and the
top 30 dimensions for both clustering and UMAP generation. Further,
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multiple resolutions varying from 0.2 to 0.8 were performed to get
clusters, and canonical markers were used for identifying cell subsets
(using a combination of known markers and those used by Azimuth
celltype. 12). For ATAC integration across libraries, signac version
1.13 (ref. 55) was used. Integration anchors were found by using ‘rlsi’
and 2-30 top dimensions, followed by integration using the top
30 dimensions.

Participant and sample stratification and sample category
classifications (cohorts 1,2 and 3)

We first stratified individuals with LC into two groups based on their
acute COVID-19 disease WHO scores, where LC samples fromindividu-
alswithacute COVID-19 WHO scores between1and 5 were classified as
LC*and LC samples fromindividuals with acute COVID-19 WHO scores
between 6 and 9 were classified as LC*. Further samples were also strati-
fied based ontime points of collection resulting in NI, Al, T2:1.5/1.7-2.9
months, T3:3-5.9 months, T4: 6-8.9 months and T5: 9-12 months.

For cohort 1, to ensure that our findings were not convoluted by
COVID-19 infection imprinting on immune cells and were unique to
LC, we performed transcriptome comparisons either to Al samples
or to R*. All recovered samples were considered as one category.
Consequently, within each group of participants (LC*¥ or LC*), com-
parisons were performed as T2 versus Al, T3 versus Al, T4 versus Al or
T2versusR', T3 versus R'*“and so on. In heat maps, the transcriptome
signatures were plotted for all categories, including pre-pandemic
healthy controls.

For cohort 3, the LC-MO signature was checked in CD14" mono-
cytesof eachindividual with LC. Participants were further groupedinto
Resp-PASC-BHR (N =3) and Resp-PASC (N =5) groups based on their
pulmonary function test results, as shown in Supplementary Table 3.

DGE analysis per cell type

For each of the major cell types (CD14" monocytes, CD16" monocytes,
CD8" T cells, NK cells, CD4" T cells and B cells), DGE analysis was per-
formed for LC samples separately for mild/moderate and severe sam-
ples. Comparisons were made against acute COVID-19 samples and
against recovered samples using Seurat FindMarkers. Genes upregu-
lated and downregulated in these comparisons with an adjusted P
value of <0.05 and log, (fold change) of >0.8 were considered for each
cell-type analysis.

Pathway analysis per cell type

Pseudobulk of each donor at each time point was calculated, fol-
lowed by similar comparisons as described in the previous section
using DESeq2. GSEA using Hallmark and REACTOME pathways as
background was performed using the fgsea R package. Furthermore,
immune-related pathways that showed statistical significance in any
comparisons were plotted. The whole list of statistically significant
pathways resulting from all comparisonsis shownin Source Data Fig. 2a
and Extended Data Fig. 2a,b.

Pathway correlations with clinical parameters

For each sample and cell type (CD14" monocytes, CD8" T cells and
NK cells), we computed pseudobulk gene expression profiles. Subse-
quently, AUC scores for the selected upregulated immune pathways,
asdescribedinFig.2c, were calculated ineach sample. The AUC scores
ofthese pathways were then correlated with clinical parameters using
Spearman correlations. Only significant correlations were plotted.

Cytokine data analysis

Cytokine measurements for each measured cytokine were log, trans-
formed. Comparisons and statistical tests against COVID-naive healthy
controls for each measured cytokine were performed. The Spearman
correlation test was performed to assess the correlation between
transformed cytokine measurements and clinical parameters.

Subclustering analysis of CD8" T cells, NK cells and monocytes
CDS8" Tcells, NK cellsand CD14" monocytes were subsetted separately
andreanalyzed. Libraries contributing less than 60 cells were removed,
andintegration was performed using ‘RPCAIntegration’ and k.weight
as 60. The top 10 principal components were used for UMAP and Find-
Neighbors calculation. For clustering CD8" T and NK cells, a resolution
of 0.4 was used. For CD14"monocytes, aresolution of 0.2 was used. An
AUC score for Hallmark pathways enriched in pseudobulk analysis was
calculated for each cell using the AUCell R package and raw counts of
each cell.

Neighborhood enrichment analysis

MiloR* was used for differential neighborhood analysis. The KNNGraph
and neighborhoods were calculated with k = 50 and d = 50. The design
matrixincluded the samplelD, severity_timePointand recovered or not
as covariates. Differential neighborhood tests were calculated for LC*™
samples (T2, T3, T4 and T5) from different time points against acute
COVID-19 samples (Al) or against R'. The resulting differential neigh-
borhoods were annotated based on cell clusters previously obtained
for each cell subset. Neighborhoods with a spatial FDR of <0.1 were
considered significant.

Pseudotime and trajectory analysis

ASeurat RNA assay of CD14" monocytes was used to create asinglecell
experiment object using scater. Diffusion maps were calculated using
the destiny R package®’. Average dimensionality was calculated using
the find_sigmas function with logCounts of single-cell data. Diffu-
sionMap was calculated using 40 principal components and sigmas
calculated in the previous step. The top diffusion components (DCs)
were inspected, and DC1 and DC3 were used because DC2 showed
sample-dependant bias. Slingshot>® was used for trajectory calcula-
tions. Clustering was calculated using the top 15 DCs and the Mclust
package. Clusters with>90% of cells from COVID-naive healthy controls
were chosen as the starting clusters for trajectory calculation, result-
inginthreelineages. The expression of genesinvolved in key pathways
(from pathway enrichment analysis) and selected upregulated genes
fromthe MC4 cluster were plotted against pseudotime values of each
cell. Similarly, AUC scores of key pathways calculated per cell were
plotted against pseudotime.

Peak calling and peak-to-gene linkage

Peaks were called for each major cell subset as identified from
RNA-based annotations using Macs3 and Ensembl.Db.Hsapiens.v86.
Peaks were linked to RNA assay-based gene expression using the Link-
Peaks command. Differential peaks within each cluster were calculated
using Seurat function FindMarkers with the ‘LR’ test and nCount_peaks
asthelatent.variable.

Transcription factor motif annotation and enrichment

TheJaspar2020 database was used as background for the motif matrix
using only the human-specific motif collection. Chromvar was used to
calculate transcription factor activity for each cell. Differential tran-
scription factor motif activity for any comparison was calculated using
FindMarkers with mean.fxn set to ‘rowMeans’. Motif enrichment was
assessed by correcting for background peaks using MatchRegionStats.

Analysis of scRNA-seq datasets (cohort 3)

Once the donor for each cell was assigned after demultiplexing, the
doublets were filtered out, and singlets were kept. Seurat version 5.0
was used for downstream analysis. The following filtration criteriawere
used: ‘nCount_RNA < 8,000 and nFeature RNA < 3,500 and mitochon-
drial percentage < 20”.RNA integration across libraries was performed
using ‘RPCAlntegration’and the top 30 dimensions for both clustering
and UMAP generation. Multiple resolutions varying from 0.2 to 0.5
were carried out to obtain clusters, and canonical markers were used
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for identifying cell subsets (using a combination of known markers
and those used by Azimuth celltype.I2) to identify CD14* monocytes.
Further, these cells were subsetted and reintegrated with 15 principal
components, and clustering was performed with a resolution of 0.2.
LC-Mo/MC4 AUC scores were calculated for each cell using raw counts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Single-cell multiome data were submitted to European Genome-
Phenome Archive and are accessible through the following IDs:
EGAS50000000142, EGAS50000000143, EGASO000001215 and
EGAS0000001216. Source data are provided with this paper.

Code availability
Scripts and code are available at github.com/CiiM-Bioinformatics-
group/LongCOVID.

References

49. Kopfnagel, V. et al. The Hannover Unified Biobank (HUB)—
centralized standardised biobanking at Hannover Medical School.
Open J. Bioresour. 8, 2 (2021).

50. Purcell, S. et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am. J. Hum. Genet. 81,
559-575 (2007).

51. Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster
genotype imputation. Bioinformatics 31, 782-784 (2015).

52. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the
NHLBI TOPMed Program. Nature 590, 290-299 (2021).

53. Heaton, H. et al. Souporcell: robust clustering of single-cell
RNA-seq data by genotype without reference genotypes. Nat.
Methods 17, 615-620 (2020).

54. Hao, Y. et al. Dictionary learning for integrative, multimodal and
scalable single-cell analysis. Nat. Biotechnol. 42, 293-304 (2024).

55. Stuart, T, Srivastava, A., Madad, S., Lareau, C. A. & Satija, R.
Single-cell chromatin state analysis with Signac. Nat. Methods 18,
1333-1341(2021).

56. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. &
Marioni, J. C. Differential abundance testing on single-cell data
using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245-253
(2022).

57. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell
data in R. Bioinformatics 32, 1241-1243 (2016).

58. Street, K. et al. Slingshot: cell lineage and pseudotime inference
for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

Acknowledgements

This project was supported by an ERC Starting Grant 948207
(ModVaccine) to Y.L., the COVID-19-Research Network of the state of
Lower Saxony (COFONI) through funding from the Ministry of Science

and Culture of Lower Saxony in Germany (14-76403-184) to Y.L. and
T.l., the Lower Saxony Center for Al and Causal Methods in Medicine
(CAIMed) grant (ZN4257) and German Federal Ministry of Education
and Research grants (O1EQ2302A, FEDCOV, 031L0318A, AID-PAIS) to
Y.L. and US National Institutes of Health grants AG069264, Al147394,
HL170961, Al176171 and AGO90337 to J.S. S.A.K. was supported by the
PRACTIS Clinician Scientist Program, funded by MHH and DFG (DFG
ME 3696/3), and by funding from Julitta und Richard Mdller Stiftung
(COVIDCODE). The COVID-19 biobank of MHH was funded by the
Lower Saxony Ministry of Science and Culture.

Author contributions

Y.L., T.I.and S.K. conceived and designed the study. I.P., SV., Dv.W.,
H.L., S.AK., LK., A.R.K. and M.M.H. acquired clinical samples and
collected clinical data. L.Z., A.A. and A.Z. generated data. S.K. and
Q.Z. performed data analysis and investigation. S.K., Y.L. and S.V.
coordinated project administration. B.C., A.RM.K,, H.S., DVW., H.L.,
L.P. and C.L. performed experiments. Y.L., T.l., J.S., S.H., A.R.M.K.,, MW.,
M.C. and C.-J.X. provided resources. Y.L., M.G.N and J.S. supervised
the study. Y.L. and T.I. acquired funding. S.K. and Y.L. wrote the original
paper. All authors reviewed and approved the final paper.

Funding
Open access funding provided by Helmholtz-Zentrum fir
Infektionsforschung GmbH (HZI).

Competing interests

M.G.N. is the scientific founder of Biotrip, Salvina, TTxD and Lemba.
MHH has received fees for consultations or lectures from 35Pharma,
Acceleron, Actelion, Aerovate, AOP Health, Bayer, Ferrer, Gossamer,
Inhibikase, Janssen, Keros, MSD and Novartis. The other authors
declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41590-025-02387-1.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41590-025-02387-1.

Correspondence and requests for materials should be addressed to
Yang Li.

Peer review information Nature Inmunology thanks Ryan Thwaites,
Onur Boyman and the other, anonymous, reviewers for their
contribution to the peer review of this work. Peer reviewer reports are
available. Primary Handling Editor: loana Staicu, in collaboration with
the Nature Immunology team.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Immunology


http://www.nature.com/natureimmunology
https://ega-archive.org/studies/EGAS50000000142
https://ega-archive.org/studies/EGAS50000000143
http://ega-archive.org/datasets/EGAS0000001215
http://ega-archive.org/datasets/EGAS0000001216
http://github.com/CiiM-Bioinformatics-group/LongCOVID
http://github.com/CiiM-Bioinformatics-group/LongCOVID
https://doi.org/10.1038/s41590-025-02387-1
https://doi.org/10.1038/s41590-025-02387-1
http://www.nature.com/reprints

Article

https://doi.org/10.1038/s41590-025-02387-1

LCper ific si d
. correlates to clinical features
Inflammation (cohort 1)
inLC
features
5 (cohort2) Figure 12
g )
5
a Neighbourhood analysis per cell type
(CD8" T cells, NK cells, CD14° monocytes)
oMo
Clinical features correlates to LC-Mo
Figure 3
Investigated LC-Mo F(;g:« fﬂom:é;ly of
Validation of signature in an ‘monocytes
oMo independent cohort | for LC-Mo markers
& ohort 3) (cohort 4)
S
5 Figued Figues
|51
<1
=
5
[ Investigated open chromatin regions
i
e within CD8+ T cells, NK cells and sub-
[t clusters of CD14* Monocytes
LCMo by
Figues
Crosstissue Evaluated LC-Mo signature in paired blood and BAL of
profile of independent LC patients
LCMo (Cohort 5)
§ Figure 6
k1
5
I
Functional exvivo stimulation of LC samples and
response to evaluated response differences between
stimulation LC:Mo® and LC-Mo®

(Cohort1)

SKIL
SMAD7
SMADé&
SKI
BCAR3
PMEPA1
ENG
NCOA3
AHRR
IRF8
CSF1
NOTCH1
ITGA5
TGFB1
CALR
SERPINE1

| RELA

Figure 7

I category

TimePoint

Mean gene
expression

4
]

0

l -2
-4

Extended Data Fig. 1| LC patients show heterogenous expression of LC

signature. a, Schematic view of analysis flow for the study. b, Mean expression
of LC signature genes in LC* (n = 4) participants with longitudinal time points

b
NI R P1 P2 P3 P4

D1 D2 D3 RTR2R3 T2 T3 T2 T3 T4 T3 T4 T2 T3

fiee— —
o e g —— —
— = e mean gene
= e S expression
4
[\ 2
LI o

4000

3000

2000

1000

Category
I NIR
WAl

. LCAM
. LCAs

Timepoint

Number of Monocytes

RLC 0

S e

R
[ Month 1.7-2.9 RSN R Q&
Month 3-5.9 o ST (e
Month 6-8.9 SENING
Month 9-11

and NI (n=3) and R*“ (n =3) (cohort1).c, Mean expression of LC signature genes
showing consistent expression at all timepoints d, Number of CD14" monocytes
ineach category at all time points.

Nature Immunology


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02387-1

d

Vs AIM vs AM

cD4T

vsAM  VsRLC Vs RS

boells cd16Mono

"TNFR2 NON CANONICAL NF KB PATHWAY L3
TNFASIGNALING VIANFKE | © @ o o . . e o o
TGF BETA SIGNALING . . L]
SIGNALING BY NOTCH4 .
SIGNALING BY NOTCH —log10 FDR
® 5
@® 10
@ 5
@

PD 1 SIGNALING
OAS ANTIVIRAL RESPONSE .

NEGATIVE REGULATION OF NOTCH4
SIGNALING

INTERFERON SIGNALING | @

INTERFERON GAMMA SIGNALING

INTERFERON GAMMA RESPONSE
NES

l :
| 1

INTERFERON ALPHA RESPONSE

INTERFERON ALPHA BETA SIGNALING
INFLAMMATORY RESPONSE

IL6 JAK STAT3 SIGNALING

FCERI MEDIATED NF K8 ACTIVATION
DECTIN 1 MEDIATED NONGANONICAL NF
KB SIGNALING
CYTOKINE SIGNALING IN IMMUNE SYSTEM °
‘CLASS | MHC MEDIATED ANTIGEN
PROCESSING PRESENTATION
'BETA CATENIN INDEPENDENT WNT
SIENAING

ANTIGEN PRESENTATION FOLDING
ASSEMBLY AND PEPTIDE LOADING OF .

CLASS IMHC

|
o

®
°
[ ]
e 0@ o
°
[ ]

ccLi9 ccL2 CcXCL10 ] CxcL11
s ns ns o R s ns. ns ns T e r e
"
8 6
10 9
6 9 4
7
8
2
4 5
7
3 4
IFNg IL10 IL12p70 IL1b
5 * s ns 5o ns ns ns. ns ns ns * ns * ns ns ns
5
= 25 o
s
g
B 00 0
£ -5
£
g ! -25
s
8
Iy -5 1
>
g
< -50 -0 ‘
-10
-75 -10
IL22 L6 [ TNFa
50
ns ns ns. ns 8 ns ns ns ns ns ns ns ns . e wmeowtong
4
25
4 $ 4
2
g
o 4
o
-25
-4 2 -4
-50

Extended Data Fig. 2| LC*™ and LC*S show different pathways activein LC.

a, Significant GSEA pathways in LC* at different time points compared to Al or
R',inB cells, CD4* T and CD16* monocytes b, GSEA pathways comparing LC*

at different time points from for all major cell subsets (top and bottom) (cohort
1). Pathways plotted with adj Pval < 0.1 (Kolmogorov-Smirnov-based test with
permutation-derived p-values, adjusted using the Benjamini-Hochberg method).
¢, comparing measured cytokine levels (CCL19, IFNg, IL10, IL12p70, IL1b, IL22,

VsAIS  VsRIC VsA®  VsR'C Vs AIS Vs R

CD14 Mono CcD8T NK

TOLL LIKE RECEPTOR CASCADES o
TNFA SIGNALING VIA NFKB ® * 0 . LR
TGF BETA SIGNALING °

TCF DEPENDENT SIGNALING IN RESPONSE .
TO WNT

REGULATION OF TLR BY ENDOGENOUS .

LIGAND NES

PD1SIGNALNG | @ @ @ *

NOTCH SIGNALING .

NEGATIVE REGULATION OF NOTCH4 *
SIGNALING

MYD88 INDEPENDENT TLR4 CASCADE o 4

MHC CLASS Il ANTIGEN PRESENTATION | @

INTERFERON SIGNALING o o

INTERFERON GAMMA SIGNALING
—log10 FDR

® 5
@ 10
@ s

INTERFERON GAMMA RESPONSE

INTERFERON ALPHA RESPONSE

INTERFERON ALPHA BETA SIGNALING

INFLAMMATORY RESPONSE

FCERI MEDIATED NF KB ACTIVATION o

DEGRADATION OF BETA CATENIN BY THE °
DESTRUCTION COMPLEX

DECTIN 1 MEDIATED NONCANONICAL NF

KB SIGNALING

CLASS | MHC MEDIATED ANTIGEN

PPROCESSING PRESENTATION

VsAIS  VsRLC VsAIS  VsRC

cd16Mono cDaT
TNFS BIND THEIR PHYSIOLOGICAL PR
RECEPTORS

"TNFR2 NON CANONICAL NF KB PATHWAY L]
TNFA SIGNALING VIA NFKB ° [ XN ] o o

TGF BETA SIGNALING L
‘TCF DEPENDENT SIGNALING IN RESPONSE e
TOWNT

SIGNALING BY NOTCH4. ° o

SIGNALING BY NOTCH e
REGULATION OF TLR BY ENDOGENOUS °
LIGAND

NES

PD 1 SIGNALING .

NEGATIVE REGULATION OF NOTCH4 ® o
SIGNALING 0

MHC CLASS Il ANTIGEN PRESENTATION . o

IRAK4 DEFICIENCY TLR2 4 .
INTERFERON SIGNALING
INTERFERON GAMMA SIGNALING

INTERFERON GAMMA RESPONSE -log10 FDR

[ ]
@
[ BH

INTERFERON ALPHA RESPONSE
INTERFERON ALPHA BETA SIGNALING

INFLAMMATORY RESPONSE °
IL6 JAK STAT3 SIGNALING . o o o

FCERI MEDIATED NF KB ACTIVATION

DECTIN 1 MEDIATED NONCANONICAL NF .
KB SIGNALING

CYTOKINE SIGNALING IN IMMUNE SYSTEM °

GLASS | MHC MEDIATED ANTIGEN

PROCESSING PRESENTATION

BETA CATENIN INDEPENDENT WNT

anTigen presenTatioN FORBING

ASSEMBLY AND PEPTIDE LOADING OF

GLASS IMHC

d

[ D N category
cD14* —

TimePoint category
TNF

. NIR
HA

Monocytes . I - B
WLcs
CD16+ . i TimePoint
NI
Monocytes [ | . ccL2 Ric
B TNF man
W As
Month 1.7-2.9
NK cells . CcCL2 mgm gzg:g
| e Month 9-11
CD4* T cells L [ | ™ et
[ coe W
0
B coLe
+ -2
CD8* T cells f w B
B cells || [

IL6,1L8, IP10) in LC patients at different time points with NI (n =33), LC: month
1.5-2.9 (n =51), month 3-5.9 (n = 75) month 6-8.9 (n = 60) month 9-12 (n =19)
(cohort 2). Two-sided Wilcox Rank Sum Test ****: p value < 0.00001, **: p
value <0.001, **: p value < 0.01, *: p value < 0.05, ns = not significant. Boxplot
shows the median (centre), first and third quartiles(bounds) and 1.5 times the
interquartile range (whiskers) d, Mean mRNA expression of TNF, CCL2 and
CXCL11across all categories (cohort1).

Nature Immunology


http://www.nature.com/natureimmunology

Article https://doi.org/10.1038/s41590-025-02387-1

a b T2: Month 1.5-2.9

LCgroup e Lc™ e (c*

CCL19 CXCL10 CXCL11
m
8{ R=0.15,p=0.28 ¥ R=ﬁ.q76'p=059. 7 R=0.023,p=0.37.
LCAM LCAM LCAM . . . 6
Month 1.5-2.9 Month 3-5.9 Month 6-8.9 7 1o G
s . o . . 2| s
41 R=-032,p=0.039 . 4] R=-0.39,p=0.0033 R=-0.28,p=0.058 9 P . i
. . 5 .
3 3 4 ° . 8 . 3
1 . 4% o afe = 2%
2 2 o 70 80 90 100 70 80 90 100 70 80 920 100 70 80 20 100
1 — IFNg 1L10 1L12p70 IL1b
g ! o 8 o . " é R=-0.18,p=0.21 2| R=-02p=016 25 R=0.061, p=0.67 R=-0.15,p=0.29¢
£ . = o . =25 .
g, s “ . B 1
5 70 80 90 60 70 80 90 100 70 80 920 100 E &7 o
£ LCAS LCAS LCAS g
8 Month 1.5-29 Month 3-5.9 Month 6-8.9 g -’
gaoTy R=-0.13,p=06 30 ) ‘ = > - =
§ | R=-0s4p=017 a0y A=019P=08 . . 2 7o s s w0 70 & s w0 70 & s
255 2l . 25| R=-0.36,p=023 122 L6 TNFa
o . . . . @ 3 . 5 4 .
20 o s 2o \ 20 o 2] R=-0.0088,p=0.95 ‘o R=-0.12,p=0.38 . R=-0.31,p=0.825
o o o o e y M 5
.
5 15 : s & ° .
i . L 5 L] 2 .
1.0 . 1.0 . d
1.0 o ., 1 | s,
80 90 100 60 70 80 90 60 70 80 E) 2 5 o .
P02 70 80 920 100 70 80 20 100
C T3: Month 3.5-5.9 T4: Month 6-8.9
LCgroup ® Lc*™ e L c* LCgroup ® Lc™ e ¢
CcCL19 CcCL2 CXCL10 CXCL11 CCL19 CCL2 CXCL10 CXCL11
1
o{R=-021,8=007 R=-021p30071 | ,o|Re-021,5-0068 | & =-Q.17?¢7='0.14 s{ R=-0.080.8 75, | | R=-003, p a5 R=20.23 1= Q081 | o|R=-0.14,p2Q27
LR Y ) 10~ 5 . . *% . B . o |8 .
: . ~
6 ?" N ° .. = w ‘E by, 6 4
4 8 e % o 6 . 2 . o
4 Py (M o .o i 4 2 . -
7 L ‘. . 1) LY
3 . .o 4 et 13 e e
60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 o
60 70 80 90 100
E IFNg IL10 11270 L1 = IFNg 1L10 1L12p70 IL1b
2 = 0057, psl62e *1R=-0.25,p=0.031 R=-0.0632p2059 | _|R=-0.052p=066 £ 50 - 50 g - g
&5 f=-0057.p% g P 00 00%p ) 00, p S |R=-0.1,p=042 R=-0.18,p=0.16 R=0.042,p=0.75 R=-0.095, p=0.47
3 3 Q.. o0 2%y 346 . 2,5
2 2o Lo, 0 2 25 =~
g50 e . . 6 S0l *
= P 5.0 ] ® o
3 ae 3 T 254
£75 -2 "~. ol B 7 9 g e oy 0
g
& . H 10.0 o oo ol . 8% wwehpe *
3 60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 l?"‘775 .
22 ) TNFa 2 60 70 80 90 100 60 70 80 920 100 60 70 80 90 100 60 70 80 90 100
3
,| R=0.020,p=0%1 “R& -o.y,!:o,zl +{R=-0.34,p=00024 50 L2 , LT
3 ot S, | ala A R=-0.18,p=0.16 R=-0.26,p = 0.042
1 o 25 . .
2 . o ‘
0 5 11 ;‘l.-'.g : 4 0.01¢ RO o —
i Yo latiie ! . ® X3 0 0 .
2 & : e 0 25] ¢ ®o e .
3 =t . . . 4 )
60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 -5.0
002 = =
T5 Month 9_12 60 70 80 90 100 60 70 80 90 100
LCgroup e Lc™ e Lc*
CCL19 ccL2 CXCL10 cxcL11
*1R=0.1%p=048 |110{R=-0075p2076 | 9{R=-031p=02 R=0.19,p=045
% o Y o - 6
8 - 105 B oo | 8 o .
/-‘/ o 5 0
7 P Ve | 100 S 7 e (B
. (] . ® . ® o
95 6 A .o
6 . . . 4 ke
70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90
E IFNg IL10 IL12p70 IL1b
2 2Te O 0 O
E 3/ R=%0%4,p . R=—0.58.p=9.11 00{R=-0.14,p3Q58 | 31R=-0.13,p=06
{
[ = 2 . 25 —— | M
g i :
e o 4 501® | o
8’ 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90
22 L6 s TNFa
25{__ = v =
R=-0.26,p=0,28 . R=2047, , R—0.0§1.p—AE4 o{ paroges o iags
® el 0 e
he . 04e .
2 . 2
2 -4
-4
5.0 . . . > .
70 75 80 85 90 70 75 80 85 90 70 75 80 85 90 70 75 80 85 90
pO2
Extended Data Fig. 3| TNF significantly negatively correlates with pO2in (n=51), month 3-5.9 (n = 75) month 6-8.9 (n = 60) month 9-12 (n = 19). Spearman
LC*M, a, TNF correlation with partial pressure O2 calculated separately for LCY correlation P values for Spearman correlation were computed using the exact/
and LC* (cohort2) at month1.5-2.9 (LC*¥ n = 43, LC**n = 8), month 3-5.9 (LC*™ permutation-based test. The gray shaded area indicates the 95% confidence
n=56,LC*n=19) and month 6-8.9 (LC*Mn=47,LC* n=13) band c Correlation interval.

of allmeasured cytokines as for each time point against pO2. LC: month 1.5-2.9

Nature Immunology


http://www.nature.com/natureimmunology

Article https://doi.org/10.1038/s41590-025-02387-1

CD8 T cells NK cells
a Lo b Lo
Month 3-5.9 vs RL€ Month 6-8.9 vs RL€ Month 3-5.9 vs R€ Month 6-8.9 vs RLC

ca4 cad ca- u';;. wfe | ca- T ore L e%ee ©Up-regulated
o (]

s ° D g r Down-regulated
C3- n!#p > o o C3o .‘o o oo Cc3- w C3- *‘v ONs
C2- -*v - c2- .&\ c2- "p .| c2- ” B 3
C1- *0 c1- -‘. c14 ” v | C14 * e
nt

co{ gfpe co- co ’- co- ’-

T T T T T T T T T
-25 00 25 50 25 00 25 50 0 5 -5.0-25 0.0 25 50 7.5
Log Fold Change Log Fold Change Log Fold Change Log Fold Change
AS
C LCAS d LC
Month 3-5.9 vs RLC Month 3-5.9 vs R'€ Month 6-8.9 vs RL€
000 °
C4 ..?.... ° C4 = 0.’*‘ ° C4 = ...:o:;. °®®

Cc3- o h* C3- o &fe 8!*-: VRSS| C3- *w

Code @ om c2- “+'° c2- ” e
c1- ..‘v.. c1-o’ Cc1+ ' oo
co- “, co- o.’ca. o| co- ’-

T T T T T T T T T T
-50-25 00 25 50 75 -50-2500 25 50 75

6 -4 2 0 2 4

Log Fold Change Log Fold Change Log Fold Change
CD8 T cells
04-.~.-.......-..... @ e .. @ - - ce0e®: - -@o - - - Average Expression
1
ca| . Y T XX IR T IR I Y T I°
-1
co{e -+ @@ @00 @e -0 @ @ - -c000.. Qo . - Percent Expressed MC4 Perct cells
e 25
® 2
(;1................. @ 8 e v s o - e @ - - e R X ® 50
® @75 ®
c{- -+ -@-@ ..oo...o--.~--...-~- ®: - - ce0 - - @o - - - g @
SDNDLAE TR OO QLI OL FS AR DO B DA PPN PATSH AN SR BA D
cﬁo"@"&%‘%ﬁ%‘?o CEFP SEE Qoo‘éf&p %Q\(%_,o EREGCEAN \\%’5\" N &,\z‘&é éjg& . .. @
<SS v .
f . ¢
NK cells
® [ ]
Average Expression
cafoee - -+ . @00 @--0@O0:  0@cco - - @:-0 - @ - -@ccoo0 - , ..
] .
[ n *
C3{0@: -+ c@e@: - - o - o- -0 00000 (1r0-¢ @ @0 5 3 1 g 28 °
8 .
L
c2-® o . . oo - - o eceo - . s e - c e . T
: . b Percent Expressed * * b ¢
. 25 . .
Clde @ : - ¢ c@Qe @ « « o - ....“..4....0...................4A. ;gg |
.
00{0®- -+ @c@- - ......Q... - 00000 @0 ¢ @ - @eco0 - - - o o
L N J 7
BTN R F PP PR R D RO U R F RGNS R RPN PR T A2 AN N TSRS ™ T2 T3 T4 75 T1 T2 T3 T4 T5
&%0“\0@0‘?0‘%3\0@2\%?@ gvooc%,g\,rafc%e{( AR Ii % #‘;@000%%‘%%@%‘@% f{fg& SRS 5
N Q
Extended DataFig. 4 | LC* CD8' T and NK cells show increased abundance significant enrichment with spatial FDR < 0.1in red and blue (F-test statistic from
of GZMK' cells. a,b, Neighbourhood enrichment analysis in LC*™ (cohort 1) the quali-likelihood F-test, graph weighted FDR). e, GZMK" cells signature derived
compared toR“inCD8* Tandb, in NK cells. ¢,d, Neighbourhood abundance from Jonnson et.al*® shown in gene expression profile within CD8" T sub-clusters,
enrichment analysis in LC* compared to R*in CD8" Tand d, in NK cells. Red f, within NK sub-clusters. g, Proportion of MC4 cells in CD14* monocytes of LC*M
dots represent increased significant enrichment of neighbourhoods; blue dots samples from multiple time points stratified on sex.

represent significantly decreased enrichment. Transcriptional states showing

Nature Immunology


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02387-1

a b

LCAs

@ Up-regulated
Down-regulated

@ nNs

Month 3-5.9 vs Al

Month 1.7-2.9 vs AI®

Month 6-8.9 vs AI®

Month 9-11 vs AI®

Month 3-5.9 vs R\¢

Month 6-8.9 vs R*

MC4

MC3

cellCluster

MC2

ARy

—
|| l MCt
,(\% .51, n_& 10\ S

e v}’
oe* »s\o»p\rL 0‘”*@\ 0 -5 0 5 -0 -5 0 5 -10

0”’*00*06\ °*
Log Fold Change Log Fold Change

C

Inflammatory Response (195 genes) IL-2 STATS signalling(193 genes)

0.2

0.1

0.0

-5 0 5
Log Fold Change

IFNAB Response (51 genes)

0.10
0051 -~ -~ 3 - -3
.00

& ¢

M0 5
Log Fold Change

NOTCH Signalling (29 genes)

4044

-50 -25 00 25 50 -4 0 4 8
Log Fold Change Log Fold Change

IFNG Response (68 genes)

bobé

& ¢ ¢ ¢ ¢ ¢ &
L
NI R LAV AIS LCAS
0.03
0.02 ® MCt
8‘ ® mMc2
a 5 ® MC3
0.01 . "\ . ® MC4
8 “» L.
0.00 "‘I‘h—-h ' M i’ r
0.00 0.01 0.02 ‘
C_1
- 000 001 0.2 0.00 001 0.02 0.00 001 002 000 0.01 000 001 0.02 000 001 0.02
DC_1
e *
13 100%
° Pathways z 5%
502 —  IFNG signalling 5
12 3 w
o == |L2 STATS signalling _‘c’ LCAM
2 3 " 5] o
== NOTCH signallin 50%
i ignalling S . RLC
9 — A e
g \ TGFB signalling £ LcAs
1 4\ £ o1 TNFalpha signalling 3
a o o 25%
- == WNT Beta Catenin signalling °
0%
N 0.0 0 04 59 =210
0.00 0.05 0.10 0.15 0.00 0.05 0.10 045 % of MC4 cells (binned)

lineage 1 Pseudotime lineage 3 Pseudotime

Extended Data Fig. 5| LC-Mo show adistinct transcriptional program.

a, Mean gene expression of MC4 signature in CD14* monocytes of LC*™ (n=5)
patients with longitudinal samples in cohort 1, with sampling day of each
individual and percentage of MC4-like cells in each sample b, Differential
neighbourhood enrichmentin CD14* monocyte of LC*S compared to Al* and
R'. Red dots represent increased significant enrichment of neighbourhoods;
blue dots represent significantly decreased enrichment. Transcriptional states
showing significant enrichment with spatial FDR < 0.1 (F-test statistic from

the quali-likelihood F-test, graph weighted FDR) ¢, Pathway AUC scores within
monocyte clusters. Two-sided Wilcox Rank Sum Test ****: pvalue < 0.00001,

***: pvalue < 0.001, **: pvalue < 0.01, *: pvalue < 0.05, NS = Non-significant d-e,
Distinct trajectories of CD14* monocytes derived from pseudotime d, Diffusion
map of all CD14* monocytes with predicted lineages (left) cells split on categories
of samples (right) e, AUC scores of pathways arranged across lineage 1and
lineage 3. f, Percentage of MC4 cells within CD14* monocytes, categorised and
binned.

Nature Immunology


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02387-1

Monocytic cells | ™ Single Cells Live cells
h bl sk 95.5

HLA-DR+

Q2 AND Q3|
91,8

Zombie-NRA <L Zombie-NR - A

SparkBe-550-A - CO3 :Sparalue-550 - Ares AFTO0AHLA-OR AF700 - Ares

bt

/\ LCc1Ab

Lciiso
AR-NI1 Ab
AR-NI11SO
o 1* 108 1* 10t ° w0t 10 f et ° ' 10 a0 0 w0t ot gt o 1t e
CALR (AF488) —» (D99 (PE) ——»>  TGFB1 (PE-CF594) —» HLA-DQ (BB700)—J» CD120b (PE-DAZZLE) —>
C IFNGR1 CD51 CD105 IRF8
ns ns LC group d
E3 RA+NI TGFB1
AM . °
B o R=-0.27,p%0.093
\AS
- JTe 600
.
.
o
= T 400
L
200 e
.
0
70 80 90 100 110
p02
D16 T Markers Cor
T ns ns TGFB1 050
o - T IRF8 025
400 ‘
500 o | IFNGR1 000
g HLA_DR 025
HLA_DQ
T cD99
=
CDs1
CD163
CD120b
CD105
- CALR

| 200

100

Extended DataFig. 6 | Flow cytometry of CD14" monocytes shows higher
expression of LC-Moin LC patients. a, Gating strategy implemented to identify
Monocyte subsets in cohort 4. b, Histograms for the flow cytometry analysis

of CALR, CD99, TGFB1, HLA-DQ, and CD120b surface expression enriched

for all CD14" monocytes from R*+NI compared to LC. R*+NI, LC antibody, and
isotype-stained cells are shown in blue, red, and black, respectively. Shownis a
representative donor of biological replicates with similar results ¢, Comparison
of Median Fluorescence Intensity (MFI) of measured markers (IFNGR1, CD51,
CDI105, IRF8, HLA-DR, CD16 and CD163) in CD14* monocytes. R*+NI (n=10),

LC*™ (n=29), LC* (n=11). P-values calculated using two-sided Wilcox Rank Sum
Test***: p value < 0.00001, ***: p value < 0.001, **: p value < 0.01, *: p value < 0.05.
Boxplot shows the median (centre), first and third quartiles(bounds) and 1.5
times the interquartile range (whiskers) d, TGFB1 MFI correlation with blood pO2
(top), the gray shaded areaindicates the 95% confidence interval. correlation

of significant markers in LC patients among each other (bottom). Spearman
correlation P values were computed using a t-distribution approximation applied
to rank-transformed data. ***: p value < 0.001, **: p value < 0.01, *: p value < 0.05.

Nature Immunology


http://www.nature.com/natureimmunology

Article https://doi.org/10.1038/s41590-025-02387-1

TNE signalling d " TFs (ti ints vs R) TGFB downstream and others TFs
a signalling downstream [Fs {timepoints vs b implicated in anti-inflammatory function
(timepoints vs R)
CD14 Mono cos T NK
Tex21 D14 Mond | CD8 T NK
SMADS —
‘SMAD3 z:g @
SMAD2::SMAD3::SMAD4 -log10 FDR
RELA SPI1 g
NFKB2 SPZE; ® 20
NFKB1 P8 . 40
JUND(var2)
JUND [ ) SP4 @ «0
JUNB(var2) SP3 @ =
JUNB SP2
JUN(ar2) —log10 FDR RXHA"\?I;:\
JUN::JUNB(var.2) o avg_diff
JUN:JUNB [ ) ® 25 RUNX3 o8
JUN ® s RUNX2 -
IRF9 RARA:RXRA 04
IRF8 . 75 PPARG
IRF7 PPARD 0.0
i ] PPARA:RXRA o4
IRF3 avg_diff bagiid |
IRF2 15 KLFe 08
FOSL2::JUND(var.2) - 1.0 K
FOSL2:JUND . ) g
FOSL2:JUNB(var.2) 0.5 KLF3
FOSL2:JUNB [ ) 0.0 KLF2
FOSL2::JUN(var.2) 05 KLF16
FOSL2:JUN ' 10 i"::i
FosL2 K
FOSL1:JUND(var2) . -15 KLF13
FOSL1:JUND KLF11
FOSL1:JUNB KLF10
FOSL1:JUN(var.2) FOXP3
FOSL1:JUN FOXos
FosLt FOXO4
FOSB:JUNB(var2) FOX03
FOSB:JUNB o FOXN3
FOSBIJUN FOXL1
FOS:JUND FOXK2
FOS:JUNB Foxit
FOS:UN(var2) FOXE1
FOS:JUN :giz:
E:T‘iz FOXA3
BATF:JUN :gi:f
a::;: CEBPG(var2) o
BACH1 CEBPG :
CEBPE
> o b G o o o ) CEBPD [ ]
N“’w i qu\' i o® 6’1 2 Cid CEBPB [ ]
& oo@ & oo‘v‘\ & & °o® o‘\& CEBPA [
& K KO S R 5
C IER3 peaks
o
o0
H H ws
g . o
H H
%
=
2 4
o e o o oo soreo sore) soren soren
chr6 position (bp) chr6 position (bp)
LMNA peaks
wez <
% s H e
£ wos H e
= H
R T ostion oy o on i s
2
T S s s
Extended DataFig. 7| CD8'T and NK cells show persistent increased AP-1 Wilcox Rank Sum Test, adjusted using the Benjamini-Hochberg method) c,
accessibility inLC*". a,b, ChromVar motif accessibility enrichments (cohort1) of ~ Coverage plot of highlighted peaks in Fig. 5 fand g, showing normalized signal
AP-1family in CD14* monocytes of LC*", CD8" T cells and NK cells in comparison ineach of MC1-4 clusters.

toR*. Plotted TF motifs are significant with an adjusted P-value < 0.05 (two-sided

Nature Immunology


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02387-1

Cl

>

W ea cl
B revc

2 Cl4

o

% of cells

cI3

, [ -

ciz

Cl2

ci3

Cl

Percent Expressed

-0
.25
® 50
5

Average Expression
2

1
0
-1

b CXCL10

LGMN

RBPJ
ITGAS
ITGAV

IFNGR1
TNFRSF1B
TGFBR1
CTNNB1
PDIA3
GNB4.
CALR
LGALS3
PDLIM1
FCN1

. @e -

Average expression
2

1
0
-1

[

Percent expressed

N ]

cLo CHc12CL3 cLaCls

Average expression
2

1
0
-1

Percent expressed
. 25
® 50
® 75
@ 100

00000000000 ¢ -00

>

T gh D D P D AT PR PN -
S S S \"&"é‘i:s&@ S ESLES &S \L\',\c?iesr@' oo\%}} ‘}o@'é’fy”’

&

Percent Expressed
.25
® 50
®75

Average Expression
2

1
4
-1
-2

50

00 _ 00

c00 - ©:00:00-:00000000000000¢ - 0000000000

cc0c0000c0@e00@o
@
o

cell proportion
N
o

c 00 @000
0000
5

z

ko

X

.
cee0::00-@-0

. 0

c90:00 Q0 -
Cen

000 -0 00

ce@-00 Q¢ -

@e@c000 -0¢ .00 -

e00

000
%l00@-cc0-00-0¢ -

! .
S R J
Extended Data Fig. 8| LC-Mo like macrophages show pro-fibrotic signature.

a, Blood (cohort 5) CD14*, CD16* Monocytes and monocyte derived DCs from
independent cohort (GSE263817)* b, Gene expression profile of clusters showing
LC-Mo/MC4 like genes in clusterS. (c) Proportion of blood and BAL Monocyte/
Macrophage cellsin each of the cluster as described in Fig. 6d. d, Gene expression

TRAM moAM

nonResp-PASC

Resp-PASC

Cl4
Cls
Cle

asdescribed in (GSE263817)* for Tissue resident Alveolar Macrophages (TRAM)
and monocyte derived Macrophages(moAM) e, Gene expression profile derived
from Wendisch et al. > of CI1-Cl6 clsuters as shown in Fig. 6d f, Proportion of cells
ineither Cl4, CI5 or Cl6 clusters from each donor classified into PASC categories.

Nature Immunology


http://www.nature.com/natureimmunology
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE263817
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE263817

Article

https://doi.org/10.1038/s41590-025-02387-1

of
e B b
a ® CD14 Monocytes Treg e - . Percent Expressed
® CD16 Monocytes ribo ° . © -0
10 lasmaB .
® CD4-T P e 20
& ® CD8-T pDCs ® ° e 4
o ® cycling NK N . [ J ® 60
g ©® moDCs moDCs ° ° .
5 o ® NK cycling . ® - o [ ) [ Average Expression
® pDCs CD8-T ° . [ ) 2
©® plasmaB CD4-T . B i 1
® ribo CD16 Monocytes{ * @ .
_10 © Treg CD14 Monocytes{ . 0
B . e =
U SRR o) > >
N X & & & ’\
Ee) N X
0q0§00 §F L oog- +\§~
Stimulated samples only
e TRAFFICKING AND PROCESSING OF ENDOSOMAL Py
un-stimulated stimulated l
TNFA SIGNALING VIA NFKB [ )
100 SIGNALING BY INTERLEUKINS | L
CellType RESPONSE TO ELEVATED PLATELET CYTOSOLIC °
s RAC1 GTPASE CYCLE .
. CD14 Monocytes PEPTIDE LIGAND BINDING RECEPTORS | (@)
75 . CD16 Monocytes PD 1 SIGNALING ° _10g10 padi
I coer PS3PATHWAY | © 910 pad)
® . CD8-T ner mepiared BETAT RS BEFUN BN * e 2
T 'SURFACE RECEPTORS BY RECRUITING THEM TO . o
g 50 . cycling wiroric TeLoRFHNSEVABRIVESS .
N B moncs MHC CLASS Il ANTIGEN PRESENTATION ° ®s
B KRAS SIGNALING UP . . 8
IRE1ALPHA ACTIVATES CHAPERONES [ ]
2 [ pocs INTERLEUKIN 4 AND INTERLEUKIN 13 | o
SIGNALING
[T plasma INTERLEUKIN 10 SIGNALING | (@) NES
. ribo INTERFERON GAMMA SIGNALING ® 2
. Treg INFLAMMATORY RESPONSE . l 1
0 IL6 JAK STATS SIGNALING °
Samples GPCR LIGAND BINDING (] 0
ER TO GOLGI ANTEROGRADE TRANSPORT . 4
. . EPITHELIAL MESENCHYMAL TRANSITION .
Non-stimulated Stimulated ENDGSOMAL VACUGLAR AT — % I 2
DISEASES ASSOCIATED WITH .
‘GLYCOSAMINOGLYCAN METABOLISM
CYTOKINE SIGNALING IN IMMUNE SYSTEM °
COHESIN LOADING ONTO CHROMATIN .
CLASS A 1 RHODOPSIN LIKE RECEPTORS
CHEMOKINE RECEPTORS BIND CHEMOKINES |
ANTIMICROBIAL PEPTIDES °
ANTIGEN PRESENTATION FOLDING ASSEMBLY °
AND PEPTIDE LOADING OF CLASS | MHC

mild/moderate LC vs Recovered

A E i
stm{- 00 - 0000000 - 00¢° - @9ee@-0 ve:aogexpressm
LC-Mo® o
Non-stim-'..0.......'...°...°. 3
. Percent Expressed
X tim1- 00 - 0000000 - @ 0o o . 30
LC-MoM ® 40
® 50
Non-stim--..........@‘.. [ XX KX ]
———T—T—T—TTTTTT T T T T T
d v > P NN A D
c‘,&c’id" o o‘{“\ O* cS“V o+ *9 ,<o+ é\'é\ 4v‘°p"i<‘& \C?\?f‘ 4 f\d‘cﬁv
LC-Mo stm{+@ QDo o@oec@e - -00000000@-0:-0000 © o o O e 0o 00 ° F"EtmExpressed
-Mo
® 60
.
Nonstim{e @ - @ e@e c@e c@0c00000@:-0 - 0000°-0000000000000000000000 ¢ Aw oo
\verage Expression
Sin 4@ @+ 000 +@e - 000000000 ¢ 0000°0°00000000000000000000 - I{;zg
LC-MoM -05
-1.0
Non-stim{® ()« @® =@ o0 ° @:-0:-00 . o0 . o0 o “WOO
——TTT
O T e
PRI

Extended DataFig. 9| LC-Mo" patients show increased FOXO family
accessibility after stimulation. a, UMAP of all cells from non-stimulated and
stimulated samples (cohort 1subset) b, Canonical markers identifying each of the
cell subsets asin ac, Percentage of cell subsets per sample from both stimulated
and -non-stimulated samples. d UMAP of stimulated and non-stimulated cells

(Myeloid only) e, GSEA pathway enrichment in comparison of stimulated LC*"

vs stimulated R““f, Chromvar TF accessibility in LC-Mo" and LC-Mo" before and
after stimulation. TF motifs are significant with adj Pval < 0.05 (two-sided Wilcox
Rank Sum Test, using the Benjamini-Hochberg method).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested

X X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X ][]

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection A detailed description of the data and sample collection can be found in the methods section of the manuscript.
EDTA blood was collected from patients which were admitted to the hospital due to COVID-19, as well as from ambulatory patients after
SARS-COV-2-infection showing Post-COVID19 symptoms (at least 4 weeks after acute COVID-19) at the Hannover Medical school (MHH) or the
Siloah hospital. PBMCs were isolated from whole blood using Ficoll gradient centrifugation. 10x Genomics Chromium Next GEM Single Cell
Multiome ATAC + Gene Expression protocol and single cell GEM-X 3° Reagent Kits v4 were used to generate single cell multiome data.
Sequencing was performed using the Illumina NovaSeq 6000 platform.
The Quanterix HD SP-X Imaging and Analysis System™ was used to measure the plasma samples. Human Corplex cytokine panel 1 10-Plex
array was used.

Data analysis For data analysis, we employed the statistical language R(version > 4).A detailed description of the analysis can be found in the methods
section of the manuscript. All code for the analysis is made freely available on github.com/CiiM-Bioinformatics-group/LongCOVID.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single cell multi-ome data and scRNA-seq data was submitted to EGA and is accessible through following IDs:
EGAS50000000142, EGAS50000000143, EGASO000001215 and EGAS0000001216

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Our study included patients of both sexes and therefore applies to both sexes. Sexes were self-reported and later confirmed
by DNA genotyping. Single cell dataset from both sexes were equally represented in the datasets.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics The only relevant population characteristic is the past history of COVID -19 infection. All patients were tested PCR negative at
the time of visit and sample collection.

Recruitment Patients reporting to the pneumological outpatient clinic at Hannover Medical School (MHH, Hannover, Germany) with
symptoms such as headaches, dyspnoea and fatigue were recruited based on established LC criteria, 1) Symptoms that
persist after acute COVID-19 or its treatment. 2) New symptoms that appear after the end of the acute COVID-19 phase, and
can be a consequence of the SARS-CoV-2 infection and 3) Worsening of a pre-existing illness as a result of a SAR-CoV-2
infection. The diagnosis was made in accordance with the German S1 guidelines and the Delphi Consensus Criteria of post
COVID-19. The cohort included individuals with all severity of acute COVID-19 (WHO score 1-9).

Ethics oversight The ethics committee of the Hannover Medical School (MHH) approved the sample collection and analyses (ethics vote
9001_BO_K).Informed consent was obtained from all individual participants included in the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Samples were chosen to balance the age, gender and acute COVID-19 severity for samples collected for different time points. Where possible,
longitudinal samples from same patients were used.

Data exclusions  Single cells with low quality, high mitochondrial gene expression and doublets were excluded from the data analysis of single cell multiome
analysis of discovery cohort.

Replication Findings from single cell data of cohort 1 were vaidated with findings from another single cell study of independent cohort 3 and with publicly
available datasets.

Randomization  Samples were randomized to include random 4 different donors for each pool during 10X experiments. Additionally, sample timepoint was
randomised along with different donors before 10X experiments.

Blinding The investigators performed the stratification of the long covid samples to identify differences in long covid disease. Therefore, blinding to
group allocations was not possible for the further analysis.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Antibodies

Antibodies used For Human:
CD3 SparkBlue SK7 BioLegend 344852
CD14 PacBlue 63D3 BiolLegend 367122
CD16 BUV563 3G8 BD 568289
CD51 APC NKI-M9 BiolLegend 327913
CD99 PE hec2 BiolLegend 398205
CD105 BUV421 43A3 BiolLegend 323219
CD120b PE-DAZZLE 3G702 BiolLegend 358413
CD163 FITC/PE-CY7 GHI/61 BioLegend 333618/2268070
CD206 APC-CY7/PE-CY7 15-2 BiolLegend 321120/321124
CALR purified abcam ab2907
AF488 invitrogen
HLA-DQ BB700 Tul69 BD 745976
HLA-DR AF700 L243 BiolLegend 307626
IFNGR1 purified ab154400 ab154400
AF568 invitrogen
IRF8 PE REA516 Miltenyi 130-122-927
TGFB1 PE-CF594 TW4-9E7 BD 562422

Validation All used antibodies are validated/ quality control tested for the analysis of human cells by flow cytometry according to the
manufacturer's information.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtres foreach seed stock- tised-ornovel genotype generated—Describe-any-experiments-tsed-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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Plots
Confirm that:
g The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Cryopeserved PBMCs were thawed, stained with the Zombie NIR™ Fixable Viability Kit (Biolegend) at room temperature (RT)
in PBS for 15min. Unspecific immunolabeling conferred by Fc receptor binding was blocked by the addition of 10% Gamunex
solution (Grifols Deutschland GmbH, Frankfurt am Main, Germany). Surface marker immunolabeling was performed in cell
staining buffer (PBS, BSA, EDTA) and Brilliant Stain Buffer (BD), overnight at 4 C with anti-human CD3, CD14, CD16, HLA-DR,
CD163 and CD206, CD51, CD99, CD105, CD120b and HLA-DQ antibodies. For intracellular staining, cells were fixed and
permeabilized (BD) for 30min at RT, immunolabeling of intracellular markers was performed for 30min in Permwash buffer
(BD) at 4°C with anti-human primary CALR, IFNGR1, TGFB1 and IRF8 antibodies. Next cells were immunolabeled with the
secondary antibody AF488 and AF568 for 30min in Permwash buffer (BD) at 4°C to label the unconjugated antibodies CALR
and IFNGR1, respectively. All donors were also immunolabeled with the correspondent isotype controls for the used
antibodies. Cells were washed with PBS.

Instrument The samples were acquired on a Sony spectral analyzer (ID7000, Sony).
Software The samples were analyzed with the FlowJo software (10.10.0 Tree Star).

Cell population abundance Monocytes correspond to roughly 5-10% of the PBMC samples, with a loss of 30% during freeze-thawing process. Purity of
monocytes was determined by the expression of CD14+, CD16+ and HLA-DR surface markers.

Gating strategy SSC-A/FSC-A gate to select monocytic cells -> FSC-H/FSC-A gate to select single cells -> Live/Dead gate to select viable cells ->
CD3- gate to exclude T cells -> HLA-DR gate to exclude NK cells -> CD14+/CD16+ gate to select classical (CD14+), non-classical
(CD16+), and intermediate (CD14+/CD16+) (see also Supplementary Fig. 5c).

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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