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A distinct monocyte transcriptional state 
links systemic immune dysregulation to 
pulmonary impairment in long COVID
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The mechanisms driving immune dysregulation in long COVID disease  
remain elusive. Here we integrated single-cell multiome data, immuno
logical profiling and functional assays to investigate immune alterations 
across multiple cohorts. A transcriptional state in circulating monocytes 
(LC-Mo) was enriched in individuals with mild–moderate acute infection 
and accompanied by persistent elevations of plasma CCL2, CXCL11 and 
TNF. LC-Mo showed TGFβ and WNT–β-catenin signaling and correlated with 
fatigue severity. Protein markers of LC-Mo were increased in individuals 
with pronounced fatigue or dyspnea, and those with severe respiratory 
symptoms showed higher LC-Mo expression. Epigenetically, LC-Mo exhibited 
AP-1- and NF-κB1-driven profibrotic programs. LC-Mo-like macrophages in 
bronchoalveolar lavage samples from individuals with severe respiratory 
symptoms displayed a profibrotic profile, and individuals with a high LC-Mo 
transcriptional state showed impaired interferon responses after stimulation. 
Collectively, our findings define a pathogenic monocyte transcriptional state 
linking systemic immune dysfunction to persistent long COVID disease, 
providing mechanistic insights and potential therapeutic targets.

Long COVID affects 10–20% of individuals after severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection, with symptoms rang-
ing from mild discomfort to severe, long-lasting impairments such as 
fatigue, respiratory issues and neurological problems. These symptoms 
can persist for over 3 years (refs. 1–5), representing a substantial health 
burden and prompting efforts to better characterize long COVID (LC), 
including biomarker discovery for improved diagnosis6–10.

LC presents with diverse symptoms reflecting multiorgan sys-
tem abnormalities11–13. The evidence suggests multiple possible 

causes, including persistence of viral remnants or reactivation of 
latent viruses7,14–17. Yet, persistent immune dysregulation is a con-
sistent finding in LC studies10,11,14,16–19. Although most LC cases follow 
mild-to-moderate acute illness, many studies do not stratify indi-
viduals by acute infection (AI) severity6–8, which is crucial because 
severe cases, especially those treated in the intensive care unit, develop 
immune changes due to intensive medical interventions20,21. Failing to 
account for these differences may confound LC-associated molecular 
signatures, highlighting the importance of refined patient grouping.
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control individuals (NI; 50% women, median age = 40, range 24–61). LC 
and RLC samples were collected 1.7–10.2 months after infection. Cohort 
2 included 117 LCAM donors (24 donors with two to four time points, 
93 single-time-point donors, 58.9% women, median age = 48, range 
19–83) and 25 LCAS donors (12 longitudinal donors, 13 single-time-point 
donors, 20% women, median age = 53, range 18–81), recruited between 
May 2020 and August 2021 at MHH, along with 33 prepandemic NI sam-
ples (48.4% women, median age = 40, range 25–65). Cohort 3 included 
only LCAM donors (n = 8 donors, 62.5% women, median age = 45, range 
21–63), all with respiratory postacute sequelae of SARS-CoV-2 infection 
(PASC) recruited between October and November 2023 at the Pulmo-
nary Rehabilitation Clinic in Schönau am Königssee, Germany. Cohort 
4 included LCAM donors (n = 29, 58.6% women, median age = 49, range 
33–72), LCAS donors (n = 11 donors, 18% female, median age = 57, range 
35–81), 8 donors recovered from AI (RA) and 2 NI donors (60% women, 
median age = 41, range 29–67) recruited between August 2020 and June 
2022 at MHH. Cohort 5 included LC donors (n = 9 donors, 44.4% women, 
median age = 64, range 62–83, including 5 with respiratory PASC) and 
NI donors (n = 2 donors, 50% women, median age = 77, range 73–77), 
recruited between October 2020 and November 2021 at Mayo Clinic, 
a previously published study23 (Fig. 1a and Methods).

Clinical assessment included blood gas analysis, pulmonary func-
tion tests and standardized participant-reported outcome measures: 
the fatigue assessment scale (FAS), validated in chronic fatigue24–26 
and LC, and the modified medical Research Council (mMRC) dyspnea 
scale (0–4, where 0 indicates no breathlessness, 1 indicates breathless-
ness on exertion, 2 indicates breathlessness when hurrying or walking 
uphill, 3 indicates stopping for breath after ~100 m or a few minutes, 
and 4 indicates too breathless to leave the house or when dressing), 
along with quality-of-life metrics27. All clinical assessment data were 
systematically collected at each participant visit for cohorts 1–4 (Fig. 1b 
and Supplementary Tables 1–5).

To study molecular signatures of disease progression, we strati-
fied samples in cohorts 1 and 2 by months since AI (months 1.5/1.7–2.9, 
3–5.9, 6–8.9 and 9–11; Fig. 1c and Methods). For cohort 1, we generated 
single-nucleus RNA-sequencing (snRNA-seq) and single-nucleus assay 
for transposase-accessible chromatin with sequencing (snATAC-seq) 
data from 78 PBMC samples from NI, RLC, AIM, AIS, LCAM and LCAS donors 
across all time points. In cohort 2 we measured the concentrations 
of 14 cytokines in plasma samples from LCAM or LCAS and NI donors 
across all time points. Validation was performed using single-cell 
RNA-sequencing (scRNA-seq; cohort 3), flow cytometry (cohort 4) 
and a published PBMC/BAL single-cell dataset23 (cohort 5). All sam-
ples, except those from participants with AI, were PCR negative at 
collection. We used an integrative multistep analysis to identify 
cell-type-specific immune dysregulation and link and assess relevance 
in LC (Extended Data Fig. 1a).

Analysis of single-cell data from cohort 1 PBMCs yielded ~118,000 
high-quality cells (Fig. 1d). snRNA-seq data showed distinct patterns 

To address this gap, we stratified individuals with LC by acute 
COVID-19 severity to better resolve immune heterogeneity and iden-
tify molecular features underlying chronic symptoms. We applied 
single-cell multiomics profiling of peripheral blood mononuclear 
cells (PBMCs) and measured plasma cytokines from individuals with 
LC with fatigue and respiratory symptoms using longitudinal and 
cross-sectional samples. We identified a distinct circulating CD14⁺ 
monocyte state associated with LC (‘LC-Mo’), which was enriched in 
individuals with mild-to-moderate AI. This state coincided with per-
sistent elevation of circulating cytokines, indicating systemic inflam-
mation. In two independent cohorts of individuals with LC with severe 
respiratory symptoms and abnormal lung function, LC-Mo expression 
was increased in circulating CD14⁺ monocyte subsets. In broncho
alveolar lavage (BAL) myeloid cells from individuals with severe respira-
tory symptoms, LC-Mo-like macrophages showed a profibrotic gene 
expression profile. Functionally, CD14⁺ monocytes from individuals 
with LC-Mo enrichment showed dysregulated responses to ex vivo 
stimulation, indicating impaired immune regulation. Together, these 
findings provide systemic insight into the cellular and molecular basis 
of LC and highlight potential therapeutic targets.

Results
LC has a distinct transcriptome after mild or moderate disease
Individuals presenting with headache, dyspnea or fatigue to the  
pneumology outpatient clinic at Hannover Medical School (MHH) 
were recruited according to the German S1 guidelines22 and the Delphi 
Consensus Criteria21 for LC (4–12 weeks) and post-COVID-19 syndrome 
(>12 weeks). These criteria included symptoms persisting beyond the 
acute phase of SARS-CoV-2 infection or its treatment, new symptoms 
emerging after recovery and attributed to prior infection or worsen-
ing of pre-existing conditions. Because heterogeneity in LC molecular 
profiles may be shaped by acute disease severity and treatment, we 
stratified individuals with acute SARS-CoV-2 infection (AI) and LC into 
those with mild-to-moderate (WHO score of 1–5) AI (AIM and LCAM) and 
those with severe (WHO scores 6–9) AI (AIS and LCAS).

Cohort 1 included 45 individuals recruited between April 2020 
and August 2021 at MHH, of which 9 gave longitudinal samples and  
36 gave cross-sectional samples (n = 78 total samples), including  
11 donors with AI categorized as AIM (n = 7 donors, 42.8% women, 
median age = 52, range 23–66 years of age, WHO score range 1–5) and 
AIS (n = 4 donors, 50% women, median age = 37, range 32–54, WHO score 
range 6–9), 37 donors with LC categorized as LCAM (n = 29 donors, 8 lon-
gitudinal donors with two to three time points and 21 single-time-point 
donors, 58% women, median age = 49, range 31–84 years) and LCAS (n = 8 
donors, 3 with two to four time points, 5 single-time-point donors, 
25% women, median age = 46, range 19–75) and 8 donors who had 
recovered after 4–8 months of LC (RLC; 1 longitudinal donor with two 
time points and 7 single-time-point donors, 37.5% women, median 
age = 38, range 19–65), in addition to 6 prepandemic noninfected 

Fig. 1 | Transcriptomes of circulating immune cells show heterogeneity in 
individuals with LC. a, Schematic showing the distribution of samples across 
cohort 1, which included longitudinal and cross-sectional PBMC samples 
(n = 78) from NI donors (n = 6) and donors with AI (n = 11), LCAM (WHO 1–5; 
n = 39), LCAS (WHO 6–9; n = 13) and RLC (n = 9), collected 1.7–10.2 months after 
infection; cohort 2, which included longitudinal and cross-sectional samples 
(n = 238) from NI donors (n = 33) and donors with LCAM (n = 158) and LCAS (n = 47) 
collected at 1.5–11 months after infection; cohort 3, which included PBMCs 
from LCAM donors (n = 8) collected 8–42 months after infection; cohort 4, which 
included PBMC samples (n = 40) from RA donors and NI donors (n = 10) and 
donors with LCAM (n = 29) and LCAS (n = 11) collected 3–14 months after infection; 
and cohort 5, which consisted of PBMC (n = 11) and BAL (n = 9) samples from 
individuals with LC with unknown acute-phase severity (LCUN; n = 9) and NI 
donors (n = 2; GEO: GSE263817). b, Number of individuals with LC in cohorts 1–5 
exceeding thresholds for fatigue (FAS > 21), respiratory symptoms (dyspnea > 0) 

or cardiology symptoms (top) and number of samples with pulmonary 
function tests (PFT), bronchial dilation tests (BDT), blood gas analysis (BGA), 
electrocardiogram (ECG), FAS and mMRC scores and quality-of-life (QoL) 
assessments (bottom). Empty boxes denote missing data. c, Distribution of LC 
samples across months 1.7–2.9(LCAM, n = 10; LCAS, n = 4), 3–5.9 (LCAM, n = 11; LCAS, 
n = 3), 6–8.9 (LCAM, n = 10; LCAS, n = 4) and 9–11 (LCAM, n = 8; LCAS, n = 2) in cohort 
1 (top) and months 1.5–2.9 (LCAM, n = 43; LCAS, n = 8), 3–5.9 (LCAM, n = 56; LCAS, 
n = 19), 6–8.9 (LCAM, n = 47; LCAS, n = 13) and 9–11 (LCAM, n = 12; LCAS, n = 7) in cohort 
2 (bottom). d, UMAP of snRNA-seq data from 78 PBMC samples from all donors 
and all time points in cohort 1, as in a and c. e, Expression of genes significant 
by two-sided Wilcoxon test (Benjamini–Hochberg method-adjusted P value of 
<0.05 and log2 (fold change) > 0.8) in CD14+ monocytes, CD16+ monocytes, CD4+ 
T cells, CD8+ T cells, B cells and NK cells, with genes consistently upregulated 
across labeled LCAM time points; HSPC, hematopoietic stem and progenitor cells; 
moDCs, monocyte-derived dendritic cells; pDCs, plasmacytoid dendritic cells.
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in LCAM and LCAS compared to RLC and AI across major PBMCs (Fig. 1e). 
LCAM showed downregulated AI genes by months 6–8.9, whereas LCAS 
retained an acute COVID-19-like transcriptomic profile, indicating 
heterogeneity based on AI history (Fig. 1e). Differential gene expression 
(DGE) analysis identified 1,737 upregulated genes in CD14+ monocytes 
from LCAM donors compared to those from AI and RLC (Fig. 1e), with 
upregulation over 1.7–8.9 months, and showed participant-specific 
heterogeneity (Fig. 1e and Extended Data Fig. 1b). LCAM CD14+ mono-
cytes showed persistent upregulation of proinflammatory (CSF1, IRF8, 
RELA and NOTCH1) and anti-inflammatory (TGFB1, SMADs, ENG and  
SERPINE1) markers (Extended Data Fig. 1c) at all time points, whereas 
other signature genes showed increased expression from 3 to 8.9 months 
(Fig. 1e). This signature diminished during months 9–11, possibly due to 
lower cell numbers (Extended Data Fig. 1d), but showed upregulation 
of a subset of acute-phase genes, including IL1B, S100A4, PDIA3 and 
MTRNR2L1. LCAM natural killer (NK) cells also showed distinct increased 
expression of SREBF1, TAGLN2, TNIP1, NFKBIA and CD83 among  
others compared to RLC and AI NK cells (Fig. 1e). Collectively, transcrip-
tional profiles in individuals with LC reflected differences based on 
AI severity, with notable molecular changes in LCAM monocytes and 
NK cells, whereas LCAS displayed persistent but milder expression of 
acute-phase genes.

TNF and TNF signaling genes are upregulated in LCAM

We next performed gene set enrichment analysis (GSEA) using pseudo
bulk counts for each cell subset in LCAM or LCAS samples across all time 
points, comparing them to the AI and RLC cell samples. LCAM showed 
persistent upregulation of the TNF signaling pathway and persistent 
downregulation of interferon (IFN) signaling and response pathways 
across all major cell subsets (CD4+ and CD8+ T cells, B cells and CD14+ 
and CD16+ monocytes) compared to AI, up to month 8.9 (Fig. 2a and 
Extended Data Fig. 2a). CD8+ T cells and NK cells from LCAM samples 
exhibited increased activation of the ‘TLR signaling cascades’ pathway 

relative to RLC samples at months 3–8.9 (Fig. 2a). In LCAM CD14+ mono-
cytes, the TNF signaling pathway was transiently upregulated at months 
1.7–5.9 and downregulated at months 6–8.9, whereas pathways includ-
ing transforming growth factor-β (TGFβ), WNT–β-catenin and Notch 
signaling were upregulated at months 3–8.9 compared to in AI and 
RLC CD14+ monocytes (Fig. 2a). In LCAS, the TNF signaling pathway was 
sparsely activated in CD14+ monocytes and CD8+ T cells up to 5.9 months 
(Extended Data Fig. 2b). LCAS CD14+ monocytes upregulated PD-1 sign-
aling and MHC class II antigen presentation pathways compared to AI, 
but not RLC (Extended Data Fig. 2b, top). CD8+ and CD4+ T cells and NK 
cells from LCAS samples displayed increased activation of IFN response 
pathways compared to CD8+ and CD4+ T cells and NK cells from RLC 
samples (Extended Data Fig. 2b).

We also profiled 14 proinflammatory cytokines in cohort 2 plasma 
using a multiplex bead-based assay (Extended Data Fig. 2c), excluding 
interleukin-4 (IL-4) and IL-5 due to low detection. CXCL11, CCL2 and 
TNF were persistently elevated in individuals with LC compared to 
in NI donors up to month 9 (Fig. 2b). TNF mRNA was also persistently 
upregulated in individuals with LCAM across most immune cell types and 
time points (Extended Data Fig. 2d). TNF protein exhibited a statisti-
cally significant negative correlation with arterial oxygenation (pO2) 
in individuals with LC (Fig. 2c), which remained statistically signifi-
cant in LCAM, but not in LCAS, up to month 8.9 (Extended Data Fig. 3a).  
No other cytokines showed consistent correlations across all time 
points (Extended Data Fig. 3b,c).

Correlation analysis between key pathways upregulated in 
CD8+ T cells, NK cells and CD14+ monocytes and FAS scores indicated  
that TGFβ and WNT–β-catenin signaling in CD14+ monocytes showed 
modest positive correlations with FAS scores in LC alone and stronger 
correlations when LC and RLC were combined (Fig. 2d). IFNα/IFNβ 
induction pathways positively correlated with FAS scores in CD8+ T cells 
and NK cells in both LC only or LC + RLC combined analyses (Fig. 2d). 
WNT–β-catenin signaling in CD8+ T cells and Toll-like receptor (TLR) 

Fig. 2 | TNF and inflammatory pathways in circulating immune cells indicate 
systemic inflammation in LC. a, GSEA in CD14+ monocytes, CD8+ T cells and NK 
cells from LCAM samples compared to AI and RLC samples as in Fig. 1e. Pathways 
are plotted with an adjusted P of <0.1 (Kolmogorov–Smirnov-based test with 
permutation-derived P values, adjusted using the Benjamini–Hochberg method); 
NES, normalized enrichment score. b, Expression of CCL2, CXCL11 and TNF in 
the plasma of NI control individuals (n = 33) and individuals with LC at months 
1.5–2.9 (n = 51), 3–5.9 (n = 75), 6–8.9 (n = 60) and 9–12 (n = 19) from cohort 2. Data 
were analyzed by two-sided Wilcoxon rank-sum test; ****P < 0.00001, ***P < 0.001, 
**P < 0.01 and *P < 0.05. The box plots show the median (center), first and third 
quartiles (bounds) and 1.5 times the interquartile range (whiskers). c, Correlation 
between the amount of TNF in the plasma and pO2 levels in blood in LC donors at 

months 1.5–2.9 (n = 51), 3–5.9 (n = 75), 6–8.9 (n = 60) and 9–12 (n = 19). Data were 
analyzed by Spearman correlation. P values were determined using the exact/
permutation-based test. The gray shaded area indicates the 95% confidence 
interval. d, Correlation between AUC score and TGFβ and WNT–β catenin 
signaling pathways in CD14+ monocytes, IFNα/IFNβ and TLR4 and TLR9 cascade 
signaling in NK cells and IFNα/IFNβ and WNT–β catenin signaling in CD8+ T cells 
with a FAS score; red, statistics calculated using only LC samples (LCAM and LCAS); 
blue, statistics calculated using samples from individuals with LCAM (n = 39), LCAS 
(n = 13) and RLC (n = 9). Data were analyzed by Spearman correlation. P values 
were determined using the exact/permutation-based test. The gray shaded area 
indicates the 95% confidence interval; NS, not significant.

Fig. 3 | Distinct cell subclusters drive LC signatures in NK cells, CD8+ T cells 
and CD14+ monocytes. a, UMAP of CD8+ T cells (left) and violin plots of AUC 
scores of TNF and TLR1–TLR2 pathways (right) within the identified subclusters 
CD226+ CD8+ T cells (C0), S100A4+ CD8+ T cells (C1), CD69+GZMK+ CD8+ T cells 
(C2), CD69hiGZMK+ CD8+ T cells (C3) and KLRC2+KLRD1+ CD8+ T cells (C4) from 
all donors and all time points in cohort 1, as in Fig. 1a. Data were analyzed by 
two-sided Wilcoxon rank-sum test; ****P < 0.00001. b, UMAP of NK cells (left) and 
violin plots of AUC scores of TNF and TLR1–TLR2 pathways (right) in identified 
subclusters PRF1+GZMB+ NK cells (C0), GZMB+KLRF1+ NK cells (C1), GZMK+TGFB1+ 
NK cells (C2), IFNG+ NK cells (C3) and CALR+S100A9+ NK cells (C4) from all donors 
at all time points as in Fig. 1a. Data were analyzed by two-sided Wilcoxon rank-sum 
test; ****P < 0.00001. c, UMAP of CD14+ monocytes from all cohort 1 donors at all 
time points showing subclusters IL1B+ (MC1), S100A4+ (MC2), FCN1+ (MC3) and 
TGFB1+ (MC4) cells. d, Top significantly upregulated markers in MC1–MC4 CD14+ 
monocyte subclusters as in c. Plotted genes were significant with a Benjamini–
Hochberg method-adjusted P value of <0.05 (two-sided Wilcoxon test).  
e, Differential enrichment of neighborhoods representing transcriptional  
states in LCAM compared to AIM (top) and LCAM compared to RLC (bottom) at 

months 1.7–2.9, 3–5.9, 6–8.9 and 9–11. Each dot represents a neighborhood of 
~150–400 cells. Transcriptional states show significant enrichment with a spatial 
false discovery rate (FDR) of <0.1 (F-test statistic from the quasilikelihood F-test, 
graph-weighted FDR). f, AUC scores of TNF, TGFβ and WNT–β-catenin signaling 
pathways in MC1–MC4 CD14+ monocyte subclusters as in c. Data were analyzed 
by two-sided Wilcoxon rank-sum test; ****P < 0.00001. Horizontal dashed lines 
in a, b and f serve as visual reference for comparison of relative shifts in pathway 
AUC scores across clusters. g, Correlation of the percentage of MC1, MC2, MC3  
or MC4 CD14+ monocyte subclusters with FAS score and pO2 (LCAM, n = 38; LCAS, 
n = 13; RLC, n = 9). Data were analyzed by Spearman correlation. P values were 
determined using the exact/permutation-based test. The gray shaded area 
indicates the 95% confidence interval. h, Box plot showing FAS score in MC4hi 
(>10% of CD14+ monocytes found within MC4, n = 13), MC4lo (<10% of CD14+ 
monocytes within MC4, n = 26) and RLC (n = 7) samples from individuals with LCAM, 
LCAS and RLC. Data were analyzed by two-sided Wilcoxon rank-sum test; **P < 0.01. 
The box plot shows the median (center), first and third quartiles (bounds) and  
1.5 times the interquartile range (whiskers).

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-025-02387-1

C0
C1
C2
C3
C4

****
****

**** ****

0

0.1

0.2

0.3

****
****

**** ****

0

0.05

0.10

0.15

0.20

0.25 C0
C1
C2
C3
C4

TN
F 

si
gn

al
in

g 
vi

a 
N

F-
κB

pa
th

w
ay

s 
AU

C
 s

co
re

TL
R1

–T
LR

2 
ca

sc
ad

e
pa

th
w

ay
s 

AU
C

 s
co

re

C0
C1
C2
C3
C4

C0
C1
C2
C3
C4

****
****

****
****

0.1

0.2

TL
R1

–T
LR

2 
ca

sc
ad

e
pa

th
w

ay
s 

AU
C

 s
co

re

****
****

****
****

0

0.1

0.2

0.3

TN
F 

si
gn

al
in

g 
vi

a 
N

F-
κB

pa
th

w
ay

s 
AU

C
 s

co
re

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

MC1
MC2
MC3
MC4

Average 
expression

−1.0
−0.5
0
0.5
1.0

Percent 
expressed

25
50
75

MC1

FC
N1

MC2

MC3

MC4

PDE4B

HLA
-D

QA1

HLA
-D

QB1

HLA
-D

RA

HLA
-D

RB1

CD10
9
RIPK2

EREG
IL1

B

LU
CAT1

NF-κB
1

NLR
P3

NF-κB
IA

NF-κB
IZ
NLR

P1

S10
0A4

ITGAX
IC

AM1
CD36

S10
0A8

S10
0A9

S10
0A6

FLV
CR2

IFNAR1

IFNAR2

IFNGR2
IFI44

IFI30
IFI16

ITGA5
LM

NA

CTNNB1
DHFR

ENG

NCOA3

RUNX2
TGFB1

NOTCH1

ITGAV
KLF

13
RBPJ

LG
MN

IRF8
IRF1

RUNX3

EP300

CD300LF

TNFAIP2

TNFRSF1B

MC1

MC2

MC3

MC4

−8 −4 0 4 −5 0 5 −5 0 5 −5 0 5

Months 1.7–2.9 Months 3–5.9 Months 6–8.9 Months 9–11

MC1

MC2

MC3

MC4

−6 −3 0 3 6 −5 0 5 −5 0 5 −4 0 4

LCAM versus AIM

LCAM versus RLC

****
****

****

0

0.1

0.2

0.3

****
****

****

0.1

0.2

0.3

****
****

****

0

0.05

0.10

0.15

0.20

0.25

MC1
MC2
MC3
MC4

TN
F 

si
gn

al
in

g 
vi

a 
N

F-
κB

pa
th

w
ay

 A
U

C
 s

co
re

TG
Fβ

 s
ig

na
lin

g
pa

th
w

ay
 A

U
C

 s
co

re

W
N

T–
β-

ca
te

ni
ng

 s
ig

na
lin

g
pa

th
w

ay
 A

U
C

 s
co

re

R = −0.27, P = 0.04 R = −0.13, P = 0.33 R = −0.3, P = 0.023 R = 0.31, P = 0.02

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0

25

50

75

0

10

20

30

40

0

20

40

0

25

50

75

R = 0.17, P = 0.19 R = 0.13, P = 0.31 R = 0.079, P = 0.55 R = −0.28, P = 0.031

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

0

30

60

90

0

10

20

30

40

0

20

40

0

25

50

75

RLC

LCAM

LCAS

M
C

1 p
er

ce
nt

ag
e

M
C

1 p
er

ce
nt

ag
e

M
C

2 
pe

rc
en

ta
ge

M
C

2 
pe

rc
en

ta
ge

M
C

3 
pe

rc
en

ta
ge

M
C

3 
pe

rc
en

ta
ge

M
C

4 
pe

rc
en

ta
ge

M
C

4 
pe

rc
en

ta
ge

**
**

NS

0

10

20

30

40

50

60
MC4hi

MC4lo

RLC

a

b

c d

e f

g

h
FAS score FAS scoreFAS scoreFAS score

pO2 pO2 pO2 pO2

log (fold change)

FA
S 

sc
or

e

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-025-02387-1

signaling cascades in NK cells, but not TNF signaling in these cells, 
also correlated with FAS scores (Fig. 2d). These results indicate that 
persistent upregulation of inflammatory pathways and cytokines in 
LCAM immune cells might contribute to the clinical symptoms in LC.

The LCAM monocyte signature characterizes a transcriptional 
state
Next, we performed a reclustering analysis of CD8+ T cells, NK cells 
and CD14+ monocytes from all donor samples. CD8+ T cells and NK 
cells each resolved into five clusters (Fig. 3a,b). Differential neigh-
borhood abundance analysis (DA) comparing LC groups at each 
time point to AI and RLC was performed. A neighborhood defines 
a small local group of cells with similar gene expression profiles, 
representing transitional states. LCAM samples exhibited statistically 
significant increased abundance of neighborhoods in CD69hiCD27hi 
CD8+ T cells (C3), GZMB+KLRF1+ NK cells (C1) and CD69+TGFB1+ NK 
cells (C2; Extended Data Fig. 4a,b), whereas LCAS samples showed 
increased abundance of neighborhoods in C2 NK cells at months 6–8.9 
(Extended Data Fig. 4c,d). C3 CD8+ T cells and C2 NK cells showed 

GZMK+GZMBlo signatures (Extended Data Fig. 4e,f), reported to accu-
mulate after SARS-CoV-2 infection and in aging28–30. These clusters 
showed higher expression of TNF and TLR signaling genes (Fig. 3a,b), 
suggesting the contribution of persistent TNF signaling in the expan-
sion of CD69hiCD27hiGZMK+ CD8+ T cells and CD69+TGFB1+GZMK+ NK 
cells in individuals with LCAM.

Within CD14+ monocytes, four primary clusters (MC1–MC4) 
were identified (Fig. 3c). MC1 showed high expression of MHC class II  
molecules, IL1B and NFKB1; MC2 showed elevated NFKB1 and S100A4; 
MC3 showed increased expression of FCN1, IFN-stimulated genes 
(IFI44, IFI16 and IFI30) and alarmins S100A8 and S100A9; and MC4 dis-
played higher levels of IRF1, IRF8, TGFB1, CTNNB1, ENG and NOTCH1, 
among others (Fig. 3d). DA comparing LC samples with AI and RLC sam-
ples across all time points showed a consistent significant increase 
in MC4 neighborhoods in LCAM in both men and women (Fig. 3e and 
Extended Data Fig. 4g), with this becoming prominent from month 3  
onward (Fig. 3e and Extended Data Fig. 5a). By contrast, MC1 neigh-
borhoods showed a marked increase, primarily at months 1.7–2.9, and 
‘tapering off’ by month 11 (Fig. 3e). LCAS did not exhibit consistent 

****
****

****
***

***
****

*
**

*
**

0

250

500

750

0

250

500

750

0

250

500

750

0

100

200

300

0

100

200

300

400

H
LA

-D
Q

 (M
FI

)

C
D

12
0b

 (M
FI

)

C
AL

R 
(M

FI
)

C
D

99
 (M

FI
)

TG
Fβ

 (M
FI

)

RA + NI

LCAM

LCAS

*
**

30

60

90

Pe
rc

en
ta

ge
 o

f 
C

D
14

+  m
on

oc
yt

es

RA + NI

LCAM

LCAS

RA + NI***
***

****
****

***
***

*
*

0

200

400

600

0

250

500

750

0

100

200

300

0

100

200

300

400 Fatigue
Extreme fatigue

H
LA

-D
Q

 (M
FI

)

C
AL

R 
(M

FI
)

C
D

12
0b

 (M
FI

)

TG
Fβ

 (M
FI

)

***
****

*

****
***

**
***

**
**

*
**

NS

0

250

500

750

0

300

600

900

0

100

200

300

0

200

400
DS1
DS2
DS3

H
LA

-D
Q

 (M
FI

)

C
AL

R 
(M

FI
)

C
D

12
0b

 (M
FI

)

TG
Fβ

 (M
FI

)

RA + NI

****
****

0.05

0.10

0.15

0.20

0.25 ****

0.05

0.10

0.15

0.20
Resp-PASC
Resp-PASC-BHR

a b c d

e

f

g

UMAP 1

U
M

AP
 2

Clust0
Clust1
Clust2

Clust0
Clust1
Clust2

LC
-M

o 
AU

C
 s

co
re

LC
-M

o 
AU

C
 s

co
re

Fig. 4 | LC-Mo-specific proteins show elevated expression in LC CD14+ 
monocytes. a, UMAP of CD14+ monocytes from individuals with LCAM (n = 8) from 
cohort 3 showing S100A8+S100A9+ CD14+ monocyte (Clust0), CTNNB1+EMP1+ 
CD14+ monocyte (Clust1) and FCN1+CCL3+ CD14+ monocyte (Clust2) subclusters. 
b, LC-Mo signature AUC scores within S100A8+S100A9+ CD14+ monocytes 
(Clust0), CTNNB1+EMP1+ CD14+ monocytes (Clust1) and FCN1+CCL3+ CD14+ 
monocytes (Clust2) as in a. Data were analyzed by two-sided Wilcoxon rank-
sum test; ****P < 0.00001. c, LC-Mo AUC scores in Clust1 CD14+ monocytes from 
individuals with LCAM in cohort 3 with Resp-PASC (n = 5) or Resp-PASC-BHR 
(n = 3). Data were analyzed by two-sided Wilcoxon rank-sum test; ****P < 0.00001. 
Horizontal dashed lines in b and c serve as visual reference for comparison of 
relative shifts in pathway AUC scores across clusters. d, Percentage of CD14+ 

monocytes among PBMCs in donors recovered from acute COVID-19 (RA) 
combined with NI (RA + NI, n = 10), donors with LCAM (n = 29) and donors with LCAS 
(n = 11) in cohort 4. e, MFI of HLA-DQ, CD120b, CALR, CD99 and TGFβ in samples 
from individuals with LCAS, LCAM and RA + NI as in d. f,g, MFI of HLA-DQ, CD120b, 
CALR and TGFβ in RA + NI (n = 10) and LC donors in cohort 4 categorized based 
on mMRC dyspnea score (DS) as DS1 (n = 14), DS2 (n = 11) and DS3 (n = 4) (f) or in 
RA + NI (n = 10) and LC donors in cohort 4 with fatigue (n = 14, FAS score 22–34) 
and extreme fatigue (n = 14, FAS score 35–47) based on FAS category (g). P values 
in d–g were calculated using a two-sided Wilcoxon rank-sum test; ****P < 0.00001, 
***P < 0.001, **P < 0.01 and *P < 0.05. Box plots show the median (center), first and 
third quartiles (bounds) and 1.5 times the interquartile range (whiskers).
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changes in MC4, except for a small number of neighborhoods at 
months 6–8.9 attributable to one participant (Extended Data Fig. 5b). 
Further, area under the curve (AUC) scores of pathways (calculated 
per cell from all donors) revealed that MC4, which was uniquely 
abundant in LCAM, showed significantly higher expression of TGFβ 
and WNT–β-catenin signaling genes than MC1, MC2 and MC3 (Fig. 3f). 
MC1 showed higher expression of the TNF signaling genes (Fig. 3f), 
whereas MC1 and MC3 showed higher IFNγ response gene expres-
sion (Extended Data Fig. 5c). We further performed trajectory 
analysis (unstratified by disease category or groups) that revealed 
that lineage 3 overlapped closely with the MC4 immune program 
(Extended Data Fig. 5d,e), indicating that MC4 cells in LCAM have a 
distinct transcriptional profile compared to MC1–MC3. We next 
assessed the correlation between the frequency of MC4 within CD14+ 
monocytes for all LC and RLC samples from all time points with clinical 
parameters. A modest but statistically significant positive correla-
tion was found between MC4 proportion and FAS score, whereas 
the correlation with pO2 was negative (Fig. 3g). By contrast, a higher 
MC1 proportion was negatively correlated with FAS score (Fig. 3g). 
The modest MC4–FAS correlation likely reflected participant hetero-
geneity (Extended Data Fig. 5f). Individuals with LC with a high pro-
portion of MC4 (MC4hi) exhibited significantly greater fatigue than 
those with LC with a low proportion of MC4 (MC4lo) or RLC (Fig. 3h). 
These findings indicate that increased MC4 abundance (referred 
to hereafter as LC monocyte transcriptional state (LC-Mo state)) is 
associated with LC, as demonstrated by its correlation with both FAS 
scores and pO2 levels.

LC monocytes exhibit increased LC-Mo protein marker 
expression
To validate the LC-Mo state, we generated and analyzed scRNA-seq 
data from PBMCs from cohort 3, comprising eight individuals with  
LCAM with LC symptoms reported for 8–42 months at the time of 
sampling (Supplementary Table 3 and Methods). All individuals  
with LC reported fatigue and dyspnea (classified as respiratory 
PASC (‘Resp-PASC’), n = 5), and three exhibited bronchial hyper- 
responsiveness (BHR)31, termed ‘Resp-PASC-BHR’ (n = 3). Three clusters 
(Clust0–Clust2) were identified within CD14+ monocytes (Fig. 4a). 
Clust1 showed significantly elevated AUC scores for the LC-Mo signature 
(Fig. 4b). Individuals with Resp-PASC-BHR showed significantly higher 
expression of the LC-Mo signature in Clust1 than those with Resp-PASC 
(Fig. 4c), providing independent validation of the LC-Mo state in LCAM 
and suggesting a link with progression to severe respiratory PASC.

We next performed flow cytometry analysis on PBMCs from donors 
in cohort 4, which included 40 LC samples 3–14 months after acute 
COVID-19 (Supplementary Table 4 and Methods) and 10 RA or NI donors. 
LC showed a significant increase in CD14+ monocyte percentages  
compared to RA + NI (Fig. 4d), independent of acute COVID-19 severity. 
We assessed the expression of 11 proteins (HLA-DR, HLA-DQ, CD105, 
CD51, TGFβ1, CD99, CD120b, CALR, IRF8, IFNGR1 and CD163) cor-
responding to LC-Mo transcripts in total CD14+ monocytes in sam-
ples from individuals with LC and RA + NI (Extended Data Fig. 6a).  
Median fluorescence intensity (MFI) of HLA-DQ, CD120b, CALR, CD99 

and TGFβ1 was significantly higher in LC compared to in RA + NI (Fig. 4e 
and Extended Data Fig. 6b), whereas HLA-DR, CD51, CD105, IRF8, IFNGR1 
and CD163 showed no significant difference (Extended Data Fig. 6c). 
Stratification by fatigue scores and dyspnea (range 1–3) revealed  
consistently higher MFI of CALR, CD120b, HLA-DQ and TGFβ1 in  
those with more severe LC symptoms (Fig. 4f,g), and TGFβ1 MFI inversely 
correlated with pO2 (Extended Data Fig. 6d, top). MFI of both TGFβ1  
and IRF8 positively correlated with each other (Extended Data  
Fig. 6d, bottom). Thus, protein markers specific to LC-Mo were elevated 
in LC, supporting an association between the LC-Mo signature and 
LC pathology.

Chromatin profiling reveals AP-1/NF-κB1 activity in LC-Mo
We next investigated epigenetic regulation using snATAC-seq data 
from individuals with LC in cohort 1. Examination of motif signals in 
the chromatin landscapes of CD14+ monocytes, CD8+ T cells and NK 
cells from individuals with LCAM compared to those with RLC at multi-
ple time points identified a persistent positive signal for AP-1 family 
activity in CD8+ T cells and NK cells (Extended Data Fig. 7a). In CD14+ 
monocytes, AP-1 motif accessibility was elevated up to month 5.9, after 
which motif enrichment shifted toward transcription factors involved 
in downstream TGFβ signaling, notably SP1 and KLF family of transcrip-
tion factors at months 3–8.9 (Extended Data Fig. 7b). MC4 showed the 
highest number of differentially accessible regions (Fig. 5a). The open 
chromatin landscape of MC4 showed highest enrichment for motifs 
for ETS family transcription factors, including GABPA, ETV1, ETV4, 
SPI1 and SPIC (Fig. 5b). Correlating open chromatin regions with gene 
expression revealed significant positive associations for proangiogenic 
and cell adhesion genes (VEGFA, ENG, TGFB1, RXRA, ICAM1 and ITGA5) 
and genes implicated in inflammatory/metabolic diseases (TTC7A, 
LMNA and IER3) among others (Fig. 5c). AP-1 family, SMADs, NF-κB1 
and RELA transcription factor motifs showed a marked increase within  
the accessible chromatin regions of these genes (Fig. 5d). Within MC4, 
correlation of transcription factor transcripts and target gene tran-
scripts with accessible motifs enabled pinpointing of noncoding regula-
tory regions associated with gene expression, such as those for IER3 and 
LMNA, and establishment of gene–transcription factor relationships 
(such as NF-κB1 and AP-1 family likely regulators of LMNA; Fig. 5e–g and 
Extended Data Fig. 7c). In summary, these findings indicate that LC-Mo 
is driven by ETS, AP-1 and NF-κB1 transcription factors.

BAL myeloid cells show LC-Mo and profibrotic programs
Circulating monocytes contribute to PASC pathogenesis, particu-
larly pulmonary fibrosis23,32. To assess whether LC-Mo participates 
in fibrotic lung remodeling, we analyzed paired PBMC and BAL fluid 
samples from a public dataset23 (cohort 5) consisting of nine individ-
uals with LC of unknown severity during AI (LCUN), classified based 
on lung function as Resp-PASC (n = 5) or nonResp-PASC (n = 4), and 
PBMCs from NI donors (n = 2; Supplementary Table 5). Circulat-
ing CD14+ myeloid cells were reclustered to identify CD14+CD16−  
monocytes (Extended Data Fig. 8a), leading to six clusters (CL0–CL5; 
Fig. 6a). CL5 showed the highest enrichment of LC-Mo signature  
AUC scores (Fig. 6b and Extended Data Fig. 8b). Within cluster 5, 

Fig. 5 | AP-1 and NF-κB1 transcription factors regulate LC-Mo in CD14+ 
monocytes from individuals with LCAM. a, Top significant peaks calculated  
from snATAC-seq data from cohort 1 (n = 78), with aggregated peaks from 
cells in MC1–MC4 subclusters; data were analyzed by two-sided Wilcoxon test 
(Benjamini–Hochberg method-adjusted P < 0.05). b, Top ChromVar transcription 
factor motif enrichment in open chromatin regions in MC4 compared to MC1–
MC3; Avg diff, average difference. c, Expression of genes significantly correlated 
with open chromatin regions within the MC4 subcluster (Pearson’s correlation 
(Benjamini–Hochberg method-adjusted P < 0.05)). d, Scatter plot of enriched 
transcription factors motifs (fold enrichment) within open chromatin regions 
correlated with the expression of genes in c against the ChromVar transcription 

factors motif enrichment as in b; TF, transcription factor. Dashed horizontal 
lines represent −0.1 and 0.1 ChromVAR average difference; dashed vertical line 
represents 0.5 fold enrichment. e, Correlation (Corr) between the expression 
of genes in c with the expression of transcription factors identified in b and d. 
Data were analyzed by Pearson’s correlation. Absolute correlations of >0.3 are 
plotted. The black asterisk indicates transcription factors with motifs in the open 
chromatin of the correlated gene. f,g, Coverage plots showing the chromatin 
accessibility regions and gene expression of IER3 (f) and LMNA (g) in subclusters 
MC1–MC4 and correlations between open chromatin regions and transcription 
factors with binding sites (gray lined boxes); bp, base pairs; Padj, adjusted P value.
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Resp-PASC exhibited significantly higher LC-Mo expression than 
nonResp-PASC or NI (Fig. 6c).

We next integrated CD14+ monocytes from PBMCs and CD163+ or 
CD14+ myeloid cells from BAL fluid. This integrated dataset identified 
CI1 with >75% cells from BAL fluid and expressing MARCO+FABP4+, 
markers for tissue-resident alveolar macrophages, two clusters  

(CI2 and CI3) with >65% of cells from PBMCs and expressing LYZ+CD14+, 
markers for circulating monocytes, and three mixed clusters (CI4–CI6) 
with comparable proportion of cells from both PBMCs and BAL (Fig. 6d 
and Extended Data Fig. 8c,d). PBMC monocytes in CL5 primarily local-
ized to clusters CI4–CI6 (Fig. 6e), suggesting a macrophage-polarized 
phenotype. Among these, cluster CI4 had the highest LC-Mo signature 
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enrichment and higher expression of a profibrotic gene set defined 
in prior COVID-19 BAL studies33 and including TREM2, CALM1, LGMN 
and APOE (Fig. 6f and Extended Data Fig. 8e). Individuals with 
resp-PASC showed a higher proportion of CI4 cells and higher CI4/
CI5 and CI4/CI6 ratios than individuals without resp-PASC (Fig. 6g and 
Extended Data Fig. 8f). Differential expression analysis revealed that 
CI4 cells upregulated the expression of SPP1, CCL13, CCL2 and FOLR2 
compared to CI5 or CI6 cells from both individuals with resp-PASC and 
non-resp-PASC (Fig. 6h). These results indicate LC-Mo enrichment in 

Resp-PASC PBMCs and its association with a profibrotic transcriptional 
profile in lung myeloid cells.

Individuals with LC-Mo exhibit dysregulated monocyte 
function
To assess the functional implications of LC-Mo during immune  
challenge, we stimulated PBMC samples from cohort 1 (months 
1.7–2.9 and 6–8.9) with heat-inactivated Pseudomonas aeruginosa  
for 4 h and performed single-cell multiome profiling in samples from  
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Fig. 6 | The LC-Mo cluster is enriched in profibrotic monocyte-derived 
alveolar macrophages in BAL fluid from individuals with LC. a, UMAP of 
CD14+ monocytes cells from PBMCs of cohort 5 (GEO: GSE263817)23 subclusters 
FABP4+C1QA+ CD14+ monocytes (CL0), NKG7+GZMB+ CD14+ monocytes (CL1), 
FCN1+S100A9+ CD14+ monocytes (CL2), KLRC2+LAG3+ CD14+ monocytes (CL3), 
NLRC5+ CD14+ monocytes (CL4) and TREM2+CALR+ CD14+ monocytes (CL5) from 
NI donors (n = 2) and LCUN donors (n = 9). b, AUC scores of the LC-Mo signature 
in CL0–CL5 as in a; data were analyzed by two-sided Wilcoxon rank-sum test; 
****P < 0.00001. c, AUC scores of the LC-Mo signature in CL5 in PBMC CD14+ 
monocytes from individuals with LC Resp-PASC (n = 5) and nonResp-PASC (n = 4) 
and NI donors (n = 2); data were analyzed by two-sided Wilcoxon rank-sum test; 
****P < 0.00001. d, Integrated UMAP of CD163+ or CD14+ myeloid cells from 
PBMCs and BAL samples of individuals with LCUN (n = 9) showing MARCO+FABP4+ 
macrophages (Cl1), LYZ+CD14+ monocytes (CI2–CI3) and mix clusters from 

PBMCs and BAL samples with TREM2+CCL2+ (CI4), CCL23+(CI5) and NUPR8+ (CI6). 
e, UMAP as in d showing CL5 cells. f, LC-Mo AUC score within CI1–CI6 (left) and 
profibrotic gene signature33 AUC score as in d. Data were analyzed by two-sided 
Wilcoxon rank-sum test; ****P < 0.00001. Horizontal dashed lines in b, c and f 
serve as visual reference for comparison of relative shifts in pathway AUC scores 
across clusters. g, Ratio of CI4/CI5 or CI4/CI6 cells within each individual with 
Resp-PASC (n = 5) or nonResp-PASC (n = 4). Data were analyzed by two-sided 
Wilcoxon rank-sum test. Box plots show the median (center), first and third 
quartiles (bounds) and 1.5 times the interquartile range (whiskers). h, Scatter 
plots showing log2 (fold change) (log2 (FC)) of DGE in the CI4 versus CI5 and 
CI4 versus CI6 clusters. Genes significant with an adjusted P value of <0.05 in 
both comparisons are labeled (two-sided Wilcoxon rank-sum test, Benjamini–
Hochberg method-adjusted P < 0.05). All data correspond to cohort 5  
scRNA-seq data.

http://www.nature.com/natureimmunology
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE263817


Nature Immunology

Article https://doi.org/10.1038/s41590-025-02387-1

individuals with LCAM (n = 7), LCAS (n = 5) and RLC (n = 6; Extended Data  
Fig. 9a,b). Stimulation resulted in a reduction in the numbers of 
CD14+ and CD16+ monocytes compared to unstimulated samples 
(Extended Data Fig. 9c,d), consistent with prior reports34,35. Joint analysis  
of stimulated and unstimulated samples showed that stimulated 
LCAM CD14+ monocytes exhibited significant downregulation of the 
inflammatory response, IFNγ signaling, IL-10 signaling, cytokine 
signaling and IL-6–JAK–STAT3 signaling pathways relative to stimu-
lated RLC CD14+ monocytes (Extended Data Fig. 9e). Next, we clas-
sified donors as LC-Mohi (>10% of CD14+ monocytes exhibiting the 
LC-Mo state) or LC-Molo (<10%); all RLC and LCAS samples were LC-Molo 
(Extended Data Fig. 5f). Comparison of stimulated LC-Mohi and LC-Molo 
identified DHFR, HMOX1, EREG and GCLC among the top significantly 
upregulated DEGs (Fig. 7a). Pathways related to ‘IFNα response’ and 
‘cytokine signaling’ were significantly decreased in expression (Fig. 7b) 
in stimulated LC-Mohi compared to stimulated LC-Molo. At the gene 
level, stimulation induced cytokine and chemokine gene expression 
(CCL3, CCL4, CXCL3 and IL6) in both stimulated LC-Mohi and stimulated 
LC-Molo, whereas IFN response genes (IRF9, ASCC3, XAF1, SAMD9L, 
LILRB4 and CGAS) were downregulated in LC-Mohi (Fig. 7c). Motif 
accessibility analysis of stimulated LC-Mohi and stimulated LC-Molo 
showed that FOXO and TCF (especially TCF7L2) and ZIC motifs were 
more accessible in stimulated LC-Mohi, whereas stimulated LC-Molo 
showed increased ETS and AP-1 motif accessibility compared to stimu-
lated LC-Mohi (Extended Data Fig. 9f). Together, these data suggest 

that LC-Mo might contribute to the functional immune dysregulation 
observed in individuals with LC.

Discussion
Using high-resolution single-cell multiome analysis, immunologi-
cal profiling and functional assays on PBMC and BAL samples from 
individuals with LC experiencing fatigue and dyspnea, we identified 
persistent elevations of proinflammatory mediators such as TNF, CCL2 
and CXCL11 up to 9 months after infection. We also defined a distinct 
circulating CD14⁺ monocyte state (LC-Mo) associated with LC. This 
state, predominant in individuals with LCAM, showed increased TGFβ/
WNT–β-catenin signaling that increased over time and exhibited inter-
individual variability. Individuals with severe resp-PASC displayed 
higher LC-Mo gene expression, whereas individuals with higher LC-Mo 
proportions showed reduced IFN responses after in vitro stimulation, 
suggesting a compromised immune response.

Although 14 individuals in cohort 1 and 51 in cohort 2 were enrolled 
before the 3-month National Academies of Sciences, Engineering, and 
Medicine cutoff for LC, over 70% had symptoms extending beyond 
this period, aligning with established diagnostic criteria. Overlapping 
symptoms with post-intensive care syndrome complicate LC hetero-
geneity. Our data revealed molecular differences in PBMCs based on 
the severity of the AI. Circulating monocytes have been implicated in 
severe COVID-19 disease and in resp-PASC23,32,33,36,37. Although oxygen 
saturation in cohort 1 was normal, MC4 cell proportions negatively 
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Fig. 7 | LC-Mo is linked to dysregulation of CD14+ monocyte function in 
LCAM. a, Volcano plot showing DGE in CD14+ monocytes from LC-Mohi (>10% of 
CD14+ monocytes exhibiting the LC-Mo state) versus LC-Molo (<10% of CD14+ 
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correlated with oxygen saturation, suggesting subtle gas exchange 
defects. Nevertheless, increased LC-Mo expression in PBMCs and BAL 
fluid from individuals with severe resp-PASC in cohorts 3 and 5, together 
with a profibrotic BAL phenotype, support a link to lung pathology.

Sustained TNF expression, reported in post-COVID cohorts8,13,38, 
paralleled persistent TNF and/or NF-κB signaling in immune subsets, 
driving systemic inflammation. Enrichment of GZMK⁺ CD8⁺ T and NK 
cells in LCAM, shown to expand after SARS-CoV-2 infection30 and in 
chronic inflammatory diseases28,29,39,40, and increased AP-1 accessibil-
ity were consistent with TNF-driven activation41. Upregulated TLR 
pathways in CD8⁺ T cells and NK cells indicated ongoing viral sensing 
and potential NF-κB1 activation, fitting with evidence of persistent viral 
reservoirs or remnants42–45.

By contrast, CD14⁺ monocytes from individuals with LCAM showed 
transient TNF signaling, with persistent TGFB1 expression and activa-
tion of TGFβ and WNT–β-catenin pathways for up to 11 months. MC4 
proportions showed coexpression of TGFβ and IRF8 mRNA and protein, 
shown to synergistically drive neuroinflammation in the experimental 
autoimmune encephalomyelitis mouse model46, and displayed motifs 
for ETS1, AP-1, NF-κB1 and SMAD, transcription factors linked to adhe-
sion and fibrosis47,48. MC4 proportions modestly correlated with FAS 
scores and blood pO2, and flow cytometry confirmed elevated TGFβ1 
in CD14⁺ monocytes. LC-Mo enrichment was also validated in two 
independent cohorts with severe Resp-PASC patients, thereby linking 
LC-Mo to lung fibrosis.

Although associations between LC-Mo and symptom severity were 
noted, correlations were modest, leaving causality undetermined. 
Further functional studies are needed to clarify these mechanisms. Our 
study focused on respiratory symptoms and fatigue, so the involve-
ment of LC-Mo in other organ systems remains open. Comparison to 
unstratified recovered controls (due to limited sample size) restricts 
interpretation; future work with stratified groups and consideration 
of vaccination or comorbidities will be important.

In conclusion, we provide a systems view of LC with fatigue and 
respiratory involvement, identifying a pathogenic monocyte state 
linked to severe symptoms and offering insights into disease mecha-
nisms and heterogeneity.
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Methods
Cohorts
Cohorts 1, 2 and 4. Sample collection and analyses were approved by 
the ethics committee of the MHH (ethics vote 9001_BO_K). All partici-
pants gave written broad consent. Blood was collected from individuals 
who were admitted to the hospital due to COVID-19, as well as from 
ambulatory individuals after SARS-COV-2 infection showing symptoms 
indicative of LC >4 weeks after infection in accordance with the German 
S1 guideline for LC and post-COVID syndrome at the MHH. Cohort 1 
included individuals with AIM (n = 7, 42.8% women, age median = 52, 
range 23–66 years) and AIS (n = 4, 50% women, age median = 37, range 
32–54 years), individuals with LC symptoms (LCAM (n = 29, 8 longitudinal 
with two to three time points, 21 single-time-point donors, 58% women, 
median age = 49, range 31–84) and LCAS (n = 8, 3 longitudinal with two 
to four time points, 5 single-time-point donors, 25% women, median 
age = 46, range 19–75)), donors recovered from LC (4–8 months of 
LC; RLC (n = 8, 37.5% women, median age = 38, range 19–65)) and pre-
pandemic NI control individuals (n = 6, 50% women, median age = 40, 
range 24–61). LC and RLC samples were collected 1.7–10.2 months after 
infection, and all groups were recruited between April 2020 and August 
2021 at MHH. Cohort 2 included individuals with LCAM (n = 117, 24 longi-
tudinal with two to four time points, 93 single-time-point donors, 58.9% 
women, median age = 48, range 19–83) and LCAS (n = 25, 12 longitudi-
nal, 13 single-time-point donors, 20% women, median age = 53, range 
18–81), recruited between May 2020 and August 2021 at MHH, along 
with prepandemic NI samples (n = 33, 48.4% women, median age = 40, 
range 25–65). Cohort 4 included individuals with LCAM (n = 29, 58.6% 
women, median age = 49, range 33–72) and LCAS (n = 11, 18% women, 
median age = 57, range 35–81) and individuals recovered from AI (RA 
n = 8 and NI n = 2, 60% women, median age = 41, range 29–67), recruited 
between August 2020 and June 2022 at MHH. All individuals with AI had 
a positive SARS-CoV-2 PCR test at admission or externally before admis-
sion. All individuals with LC had a prior proven SARS-CoV-2 infection. 
The SARS-CoV-2 strain in individuals with AI or LC was not recorded. 
Clinical parameters, including blood gas measurements, pulmonary 
function tests, FAS and mMRC scores and quality-of-life assessments, 
were systematically collected at each visit.

Cohort 3. Sample collection and analyses were approved by the ethics 
committee of the Philipps University Marburg (Az.:24-289 ‘Entschlüs-
selung der molekularen Pathophysiologie des Post-Covid-Syndroms 
und prädisponierender Faktoren mit Hilfe neuer Sequenzierungstech-
nologien und Phänotypisierung von Immunzellen’). All participants 
gave written broad consent. Samples was collected from individuals 
with LCAM (n = 8, 62.5% women, median age = 45, range 21–63), all with 
resp-PASC and recruited between October 2023 and November 2023 
during their stay at the Pulmonary Rehabilitation Clinic in Schönau 
am Königssee, Germany. All individuals with LC had prior proven 
SARS-CoV-2 infection, and samples were collected >6 months after 
SARS-CoV-2 infection, one sample per participant. The SARS-CoV-2 
strain in individuals with AI or LC was not recorded. Clinical parameters, 
including blood gas measurements, pulmonary function tests, FAS 
and mMRC scores and quality-of-life assessments, were systematically 
collected for each participant.

Cohort 5. Biosample collection for both PBMCs and BAL fluid is avail-
able at ref. 23 and included individuals with LC (n = 9, 44.4% women, 
median age = 64, range 62–83), including five with resp-PASC, and 
NI donors (n = 2, 50% women, median age 77, range 73–77), recruited 
between October 2020 and November 2021 at Mayo Clinic.

Sample processing for PBMCs
Sample processing for cohorts 1–4 and storage was performed follow-
ing the standard procedures of the Hannover Unified Biobank (HUB) 
as described by Kopfnagel et al.49. PBMCs were isolated from whole 

blood using Ficoll gradient centrifugation. Cohort 5 PBMC and BAL 
sample processing was performed similar to as described previously23.

Cytokine assay (cohort 2)
The Quanterix HD SP-X Imaging and Analysis System was used to meas-
ure plasma samples. The following panels were used in this study: 
Human Corplex cytokine panel 1 10-Plex array including IL-12p70, IL-1β, 
IL-4, IL-5, IL-6, IL-8, TNF, IFNγ, IL-10 and IL-22. The Simoa chemokine 
panel 1 4-plex kit contained four chemokines, including IP-10 (CXCL10), 
MCP1 (CCL2), MIP1-β (CCL19) and ITAC (CXCL11). IL-4 and IL-5 were 
excluded from further analysis due to being below the limit of detec-
tion. The detection values were log2 transformed. All plasma samples 
were processed according to standard biobanking protocols and stored 
at a minimum temperature of –80 °C. For the experiments, the sam-
ples were randomized and measured according to the manufacturer’s 
manual. The study protocol conformed to the ethical guidelines of the 
Declaration of Helsinki, and the ethics committee of MHH approved this 
study a priori (9001_BO_K, No. 9472_BO_K_2020, broad consent: 2923-
2015). Informed consent was obtained from all participants included 
in the study.

P. aeruginosa stock production
A P. aeruginosa clinical isolate CH5464 was streaked from frozen glyc-
erol stocks onto LB agar plates and incubated overnight at 37 °C. Bacte-
ria from single colonies were used to inoculate an overnight preculture 
in LB medium. This preculture was then diluted in fresh LB medium and 
grown at 37 °C with shaking at 180 rpm until reaching the early station-
ary phase. The culture was centrifuged at 10,000g for 10 min, and the 
supernatant was discarded. The pellet was washed twice with PBS and 
incubated at 80 °C for 60 min to inactivate the bacteria in a waterbath. 
Afterward, the suspension was centrifuged again at 10,000g for 10 min 
to remove cellular debris. The bacterial suspension was adjusted to a 
concentration of 108 colony-forming units (c.f.u.) per ml and stored 
at −20 °C for future use. To confirm complete bacterial inactivation, 
100 µl of the bacterial suspension was plated on blood agar plates.

In vitro PBMC stimulation
We conducted scMultiome-seq analysis on PBMCs from individuals 
with LC across five time points: the acute phase; 3, 9 and 12 months 
after infection and during recovery. Heat-inactivated P. aeruginosa 
strain and a mock stimulation condition were tested over the course 
of four experimental runs. A pilot study was performed using samples 
from two healthy individuals, with cells stimulated for 4 and 24 h at 
four different concentrations to determine the optimal conditions. 
Based on this pilot study, the 4-h time point and 2.5 × 106 c.f.u. per ml 
were identified as optimal.

For the main experiment, PBMCs were thawed according to an 
optimized protocol based on 10x Genomics guidelines (CG000365, 
Rev B). The cells were counted and resuspended at a concentration of 
5 × 106 cells per ml in warm RPMI. Cell suspension (100 µl) was plated 
into a 96-well, round-bottom plate and rested for 1 h at 37 °C. Follow-
ing this rest period, the RPMI medium was replaced with 100 µl of 
heat-inactivated P. aeruginosa corresponding to a concentration of 
2.5 × 106 c.f.u. per ml. The cells were incubated at 37 °C for 4 h. After 
incubation, the plates were centrifuged at 300g for 5 min, and the cells 
were collected for nuclei isolation and library preparation.

Isolation of nuclei and library preparation (cohort 1)
scMultiome-seq analysis was performed on both directly thawed and 
stimulated PBMCs. To manage sequencing costs, cells from three to 
four donors were pooled together. After pooling, the cells were treated 
with DNase I to remove free DNA and centrifuged at 300g for 10 min at 
4 °C. The cell pellets were resuspended and incubated with 300 µl of 
prechilled 1× lysis buffer on ice for 3 min. Lysis was stopped by adding 
1 ml of ice-cold wash buffer, followed by centrifugation at 500g for 
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5 min at 4 °C. The nuclei were washed twice with 500 µl of wash buffer 
and resuspended in Diluted Nuclei Buffer. To ensure purity and disso-
ciation of single nuclei, the suspension was passed through a 40-µm 
Flowmi strainer and inspected under a microscope.

Approximately 20,000 nuclei were loaded into a Chromium Con-
troller to produce single-cell gel beads, following the 10x Genomics 
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression pro-
tocol (CG000338, Rev C). After transposition, the nuclei were treated 
with a transposase enzyme, which selectively fragmented the acces-
sible DNA regions and added adapter sequences to the fragmented 
DNA ends. The transposed nuclei were loaded onto a Chromium Next 
GEM Chip J (PN-1000234), alongside partitioning oil and barcoded gel 
beads. PCR amplification was performed, targeting approximately 
10,000 nuclei per library. Sequencing was performed using the Illu-
mina NovaSeq 6000 platform, with a minimum read depth of 20,000 
read pairs per cell for scRNA libraries and 25,000 read pairs per cell 
for scATAC libraries.

Cell capture and library preparation (cohort 3)
We thawed cells following the 10x Genomics thawing protocol 
(CG00039, Rev D), cells from four donors were pooled together, and 
approximately 29,000 cells were loaded into the Chromium X (10x 
Genomics) to generate single-cell gel beads in emulsion according to 
the 10x Genomics protocol (CG000731, Rev A). scRNA-seq libraries 
were prepared using a Chromium GEM-X Single Cell 3ʹ Reagent Kits  
v4 (10x Genomics) and sequenced on the NovaSeq 6000 platform 
(Illumina), with a minimum depth of 20,000 read pairs per cell.

Sample preparation for ex vivo flow cytometry experiments 
(cohort 4)
PBMCs were isolated from fresh whole blood using standard Ficoll 
density gradient centrifugation and cryopreserved in liquid nitrogen 
for deferred use. Ex vivo phenotyping of immune cells was performed 
from cryopreserved PBMCs. In brief, thawed PBMCs were stained 
with a Zombie NIR Fixable Viability kit (Biolegend, 423106) at room 
temperature in PBS for 15 min. Nonspecific immunolabeling conferred 
by Fc receptor binding was blocked by the addition of 10% Gamunex 
solution (Grifols Deutschland). Surface marker immunolabeling was 
performed in cell staining buffer (PBS, BSA and EDTA) (Biolegend, 
420201) and Brilliant Stain Buffer (BD, 563794) overnight at 4 °C with 
antibodies to the ontogeny markers anti-human CD3, CD14, CD16 
and HLA-DR; macrophage markers CD163 and CD206 and the mark-
ers identified from the transcriptomic analysis CD51, CD99, CD105, 
CD120b and HLA-DQ (see antibody details in the table). After fixation 
and permeabilization (BD, 554714) for 30 min at room temperature, 
immunolabeling of intracellular markers was performed for 30 min 
in Permwash buffer (BD, 554714) at 4 °C with antibodies to CALR, 
IFNGR1, TGFB1 and IRF8. Next, cells were immunolabeled with the 
secondary antibodies AF488 and AF568 for 30 min in Permwash buffer 
(BD, 554714) at 4 °C to label the unconjugated antibodies CALR and 
IFNGR1, respectively. All donors were also immunolabeled with the 
correspondent isotype controls for the used antibodies. Cells were 
washed with PBS, and data were acquired on a five-laser Sony spectral 
analyzer (ID7000, Sony) and analyzed with FlowJo software v10.10.0 
(Tree Star).

Antibody list

Antibody Fluorochrome Clone Company Catalog

CD3 SparkBlue SK7 BioLegend 344852

CD14 PacBlue 63D3 BioLegend 367122

CD16 BUV563 3G8 BD 568289

CD51 APC NKI-M9 BioLegend 327913

CD99 PE hec2 BioLegend 398205

Antibody Fluorochrome Clone Company Catalog

CD105 BUV421 43A3 BioLegend 323219

CD120b PE-DAZZLE 3G702 BioLegend 358413

CD163 FITC/PE-Cy7 GHI/61 BioLegend 333618/2268070

CD206 APC-Cy7/PE-Cy7 15-2 BioLegend 321120/321124

CALR Purified Abcam ab2907

AF488 Invitrogen

HLA-DQ BB700 Tu169 BD 745976

HLA-DR AF700 L243 BioLegend 307626

IFNGR1 Purified Abcam ab154400

AF568 Invitrogen

IRF8 PE REA516 Miltenyi 130-122-927

TGFB1 PE-CF594 TW4-9E7 BD 562422

Statistical methods
No statistical method was used to predetermine sample size. The sam-
ples were randomized before processing for single-cell experiments. 
The investigators were not blinded to allocation during the experi-
ments or during outcome assessment. All statistics in the manuscript 
are reported as specified in the figure legends.

Genotyping
Genotyping of DNA samples isolated from participants in the current 
study was performed using the GSA-MDv3 array (Infinium, Illumina) 
following the manufacturer’s instructions. In total, 725,875 variants of 
48 individuals were called by Optical 7.0 with default settings

Genotype processing for demultiplexing
Genotype data were reformatted into PLINK binary format files50. Qual-
ity control was performed at both the sample and single-nucleotide 
polymorphism (SNP) levels. Samples were excluded if they exhibited 
sex mismatches, missing genotyping rates of ≥0.05, heterozygosity 
rates beyond three standard deviations from the mean or relatedness 
across samples. A total of 58 samples passed these filters. SNPs were 
further filtered based on a minor allele frequency of >0.01 and an 
SNP missingness rate of <0.05. Genotype imputation was conducted 
using the Minimac4 server51, using the TOPMed r3 reference panel52 
and EAGLE v2.4 for phasing. The final analysis included a total of 
6,050,031 variants.

Data preprocessing for multiome datasets and demultiplexing
BCL files from each library were converted to FASTQ files using 
cellranger-arc mkfastq with default parameters and using the 
respective sample sheet with the 10x barcodes. The 10x Genomics 
cellranger-arc count pipeline (v2.0.2) was used with default parameters 
using the human reference genome GRCh38-2020-A-2.0.0 obtained 
from 10x Genomics website. Demultiplexing was performed using 
Souporcell (v2.4)53. To assess the concordance between the geno-
types of each donor in Souporcell-generated VCF and a reference 
VCF, BCFtools was used to perform a genotype check with parameter 
‘gtcheck’ and the ‘-u GT’ option to compare the genotype fields in the 
two VCF files.

Quality control and integration of multiome datasets (cohort 1)
Once the donor for each cell was assigned after demultiplexing, only 
single cells with both RNA and ATAC data were considered. Seurat 
version 5.0 (ref. 54) was used for downstream analysis. The follow-
ing filtration criteria were used: ‘nCount_RNA < 6,000 and nCount_
ATAC < 15,000, mitochondrial percentage < 20, RNA features < 3,000, 
TSS enrichment > 1 and <10, while nucleosome_signal < 2’. RNA integra-
tion across libraries was performed using ‘RPCAIntegration’ and the 
top 30 dimensions for both clustering and UMAP generation. Further, 

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-025-02387-1

multiple resolutions varying from 0.2 to 0.8 were performed to get 
clusters, and canonical markers were used for identifying cell subsets 
(using a combination of known markers and those used by Azimuth  
celltype. l2). For ATAC integration across libraries, signac version 
1.13 (ref. 55) was used. Integration anchors were found by using ‘rlsi’ 
and 2–30 top dimensions, followed by integration using the top 
30 dimensions.

Participant and sample stratification and sample category 
classifications (cohorts 1, 2 and 3)
We first stratified individuals with LC into two groups based on their 
acute COVID-19 disease WHO scores, where LC samples from individu-
als with acute COVID-19 WHO scores between 1 and 5 were classified as 
LCAM and LC samples from individuals with acute COVID-19 WHO scores 
between 6 and 9 were classified as LCAS. Further samples were also strati-
fied based on time points of collection resulting in NI, AI, T2: 1.5/1.7–2.9 
months, T3: 3–5.9 months, T4: 6–8.9 months and T5: 9–12 months.

For cohort 1, to ensure that our findings were not convoluted by 
COVID-19 infection imprinting on immune cells and were unique to 
LC, we performed transcriptome comparisons either to AI samples 
or to RLC. All recovered samples were considered as one category. 
Consequently, within each group of participants (LCAM or LCAS), com-
parisons were performed as T2 versus AI, T3 versus AI, T4 versus AI or 
T2 versus RLC, T3 versus RLC and so on. In heat maps, the transcriptome 
signatures were plotted for all categories, including pre-pandemic 
healthy controls.

For cohort 3, the LC-MO signature was checked in CD14+ mono-
cytes of each individual with LC. Participants were further grouped into 
Resp-PASC-BHR (N = 3) and Resp-PASC (N = 5) groups based on their 
pulmonary function test results, as shown in Supplementary Table 3.

DGE analysis per cell type
For each of the major cell types (CD14+ monocytes, CD16+ monocytes, 
CD8+ T cells, NK cells, CD4+ T cells and B cells), DGE analysis was per-
formed for LC samples separately for mild/moderate and severe sam-
ples. Comparisons were made against acute COVID-19 samples and 
against recovered samples using Seurat FindMarkers. Genes upregu-
lated and downregulated in these comparisons with an adjusted P 
value of <0.05 and log2 (fold change) of >0.8 were considered for each 
cell-type analysis.

Pathway analysis per cell type
Pseudobulk of each donor at each time point was calculated, fol-
lowed by similar comparisons as described in the previous section 
using DESeq2. GSEA using Hallmark and REACTOME pathways as 
background was performed using the fgsea R package. Furthermore, 
immune-related pathways that showed statistical significance in any 
comparisons were plotted. The whole list of statistically significant 
pathways resulting from all comparisons is shown in Source Data Fig. 2a 
and Extended Data Fig. 2a,b.

Pathway correlations with clinical parameters
For each sample and cell type (CD14+ monocytes, CD8+ T cells and 
NK cells), we computed pseudobulk gene expression profiles. Subse-
quently, AUC scores for the selected upregulated immune pathways, 
as described in Fig. 2c, were calculated in each sample. The AUC scores 
of these pathways were then correlated with clinical parameters using 
Spearman correlations. Only significant correlations were plotted.

Cytokine data analysis
Cytokine measurements for each measured cytokine were log2 trans-
formed. Comparisons and statistical tests against COVID-naive healthy 
controls for each measured cytokine were performed. The Spearman 
correlation test was performed to assess the correlation between 
transformed cytokine measurements and clinical parameters.

Subclustering analysis of CD8+ T cells, NK cells and monocytes
CD8+ T cells, NK cells and CD14+ monocytes were subsetted separately 
and reanalyzed. Libraries contributing less than 60 cells were removed, 
and integration was performed using ‘RPCAIntegration’ and k.weight 
as 60. The top 10 principal components were used for UMAP and Find-
Neighbors calculation. For clustering CD8+ T and NK cells, a resolution 
of 0.4 was used. For CD14+ monocytes, a resolution of 0.2 was used. An 
AUC score for Hallmark pathways enriched in pseudobulk analysis was 
calculated for each cell using the AUCell R package and raw counts of 
each cell.

Neighborhood enrichment analysis
MiloR56 was used for differential neighborhood analysis. The kNNGraph 
and neighborhoods were calculated with k = 50 and d = 50. The design 
matrix included the sampleID, severity_timePoint and recovered or not 
as covariates. Differential neighborhood tests were calculated for LCAM 
samples (T2, T3, T4 and T5) from different time points against acute 
COVID-19 samples (AI) or against RLC. The resulting differential neigh-
borhoods were annotated based on cell clusters previously obtained 
for each cell subset. Neighborhoods with a spatial FDR of <0.1 were 
considered significant.

Pseudotime and trajectory analysis
A Seurat RNA assay of CD14+ monocytes was used to create a singlecell 
experiment object using scater. Diffusion maps were calculated using 
the destiny R package57. Average dimensionality was calculated using 
the find_sigmas function with logCounts of single-cell data. Diffu-
sionMap was calculated using 40 principal components and sigmas 
calculated in the previous step. The top diffusion components (DCs) 
were inspected, and DC1 and DC3 were used because DC2 showed 
sample-dependant bias. Slingshot58 was used for trajectory calcula-
tions. Clustering was calculated using the top 15 DCs and the Mclust 
package. Clusters with >90% of cells from COVID-naive healthy controls 
were chosen as the starting clusters for trajectory calculation, result-
ing in three lineages. The expression of genes involved in key pathways 
(from pathway enrichment analysis) and selected upregulated genes 
from the MC4 cluster were plotted against pseudotime values of each 
cell. Similarly, AUC scores of key pathways calculated per cell were 
plotted against pseudotime.

Peak calling and peak-to-gene linkage
Peaks were called for each major cell subset as identified from 
RNA-based annotations using Macs3 and Ensembl.Db.Hsapiens.v86. 
Peaks were linked to RNA assay-based gene expression using the Link-
Peaks command. Differential peaks within each cluster were calculated 
using Seurat function FindMarkers with the ‘LR’ test and nCount_peaks 
as the latent.variable.

Transcription factor motif annotation and enrichment
The Jaspar2020 database was used as background for the motif matrix 
using only the human-specific motif collection. Chromvar was used to 
calculate transcription factor activity for each cell. Differential tran-
scription factor motif activity for any comparison was calculated using 
FindMarkers with mean.fxn set to ‘rowMeans’. Motif enrichment was 
assessed by correcting for background peaks using MatchRegionStats.

Analysis of scRNA-seq datasets (cohort 3)
Once the donor for each cell was assigned after demultiplexing, the 
doublets were filtered out, and singlets were kept. Seurat version 5.0 
was used for downstream analysis. The following filtration criteria were 
used: ‘nCount_RNA < 8,000 and nFeature_RNA < 3,500 and mitochon-
drial percentage < 20’. RNA integration across libraries was performed 
using ‘RPCAIntegration’ and the top 30 dimensions for both clustering 
and UMAP generation. Multiple resolutions varying from 0.2 to 0.5 
were carried out to obtain clusters, and canonical markers were used 
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for identifying cell subsets (using a combination of known markers 
and those used by Azimuth celltype.l2) to identify CD14+ monocytes. 
Further, these cells were subsetted and reintegrated with 15 principal 
components, and clustering was performed with a resolution of 0.2. 
LC-Mo/MC4 AUC scores were calculated for each cell using raw counts.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Single-cell multiome data were submitted to European Genome–
Phenome Archive and are accessible through the following IDs: 
EGAS50000000142, EGAS50000000143, EGAS0000001215 and 
EGAS0000001216. Source data are provided with this paper.

Code availability
Scripts and code are available at github.com/CiiM-Bioinformatics- 
group/LongCOVID.

References
49.	 Kopfnagel, V. et al. The Hannover Unified Biobank (HUB)—

centralized standardised biobanking at Hannover Medical School. 
Open J. Bioresour. 8, 2 (2021).

50.	 Purcell, S. et al. PLINK: a tool set for whole-genome association 
and population-based linkage analyses. Am. J. Hum. Genet. 81, 
559–575 (2007).

51.	 Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster 
genotype imputation. Bioinformatics 31, 782–784 (2015).

52.	 Taliun, D. et al. Sequencing of 53,831 diverse genomes from the 
NHLBI TOPMed Program. Nature 590, 290–299 (2021).

53.	 Heaton, H. et al. Souporcell: robust clustering of single-cell 
RNA-seq data by genotype without reference genotypes. Nat. 
Methods 17, 615–620 (2020).

54.	 Hao, Y. et al. Dictionary learning for integrative, multimodal and 
scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

55.	 Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. 
Single-cell chromatin state analysis with Signac. Nat. Methods 18, 
1333–1341 (2021).

56.	 Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & 
Marioni, J. C. Differential abundance testing on single-cell data 
using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 
(2022).

57.	 Angerer, P. et al. destiny: diffusion maps for large-scale single-cell 
data in R. Bioinformatics 32, 1241–1243 (2016).

58.	 Street, K. et al. Slingshot: cell lineage and pseudotime inference 
for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

Acknowledgements
This project was supported by an ERC Starting Grant 948207 
(ModVaccine) to Y.L., the COVID-19-Research Network of the state of 
Lower Saxony (COFONI) through funding from the Ministry of Science 

and Culture of Lower Saxony in Germany (14-76403-184) to Y.L. and 
T.I., the Lower Saxony Center for AI and Causal Methods in Medicine 
(CAIMed) grant (ZN4257) and German Federal Ministry of Education 
and Research grants (01EQ2302A, FEDCOV, 031L0318A, AID-PAIS) to 
Y.L. and US National Institutes of Health grants AG069264, AI147394, 
HL170961, AI176171 and AG090337 to J.S. S.A.K. was supported by the 
PRACTIS Clinician Scientist Program, funded by MHH and DFG (DFG 
ME 3696/3), and by funding from Julitta und Richard Müller Stiftung 
(COVIDCODE). The COVID-19 biobank of MHH was funded by the 
Lower Saxony Ministry of Science and Culture.

Author contributions
Y.L., T.I. and S.K. conceived and designed the study. I.P., S.V., D.v.W., 
H.L., S.A.K., I.K., A.R.K. and M.M.H. acquired clinical samples and 
collected clinical data. L.Z., A.A. and A.Z. generated data. S.K. and 
Q.Z. performed data analysis and investigation. S.K., Y.L. and S.V. 
coordinated project administration. B.C., A.R.M.K., H.S., D.v.W., H.L., 
L.P. and C.L. performed experiments. Y.L., T.I., J.S., S.H., A.R.M.K., M.W., 
M.C. and C.-J.X. provided resources. Y.L., M.G.N and J.S. supervised 
the study. Y.L. and T.I. acquired funding. S.K. and Y.L. wrote the original 
paper. All authors reviewed and approved the final paper.

Funding
Open access funding provided by Helmholtz-Zentrum für 
Infektionsforschung GmbH (HZI).

Competing interests
M.G.N. is the scientific founder of Biotrip, Salvina, TTxD and Lemba. 
MHH has received fees for consultations or lectures from 35Pharma, 
Acceleron, Actelion, Aerovate, AOP Health, Bayer, Ferrer, Gossamer, 
Inhibikase, Janssen, Keros, MSD and Novartis. The other authors 
declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41590-025-02387-1.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41590-025-02387-1.

Correspondence and requests for materials should be addressed to 
Yang Li.

Peer review information Nature Immunology thanks Ryan Thwaites, 
Onur Boyman and the other, anonymous, reviewers for their 
contribution to the peer review of this work. Peer reviewer reports are 
available. Primary Handling Editor: Ioana Staicu, in collaboration with 
the Nature Immunology team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/natureimmunology
https://ega-archive.org/studies/EGAS50000000142
https://ega-archive.org/studies/EGAS50000000143
http://ega-archive.org/datasets/EGAS0000001215
http://ega-archive.org/datasets/EGAS0000001216
http://github.com/CiiM-Bioinformatics-group/LongCOVID
http://github.com/CiiM-Bioinformatics-group/LongCOVID
https://doi.org/10.1038/s41590-025-02387-1
https://doi.org/10.1038/s41590-025-02387-1
http://www.nature.com/reprints


Nature Immunology

Article https://doi.org/10.1038/s41590-025-02387-1

Extended Data Fig. 1 | LC patients show heterogenous expression of LC 
signature. a, Schematic view of analysis flow for the study. b, Mean expression 
of LC signature genes in LCAM (n = 4) participants with longitudinal time points 

and NI (n = 3) and RLC (n = 3) (cohort 1).c, Mean expression of LC signature genes 
showing consistent expression at all timepoints d, Number of CD14+ monocytes 
in each category at all time points.
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Extended Data Fig. 2 | LCAM and LCAS show different pathways active in LC.  
a, Significant GSEA pathways in LCAM at different time points compared to AIM or 
RLC, in B cells, CD4+ T and CD16+ monocytes b, GSEA pathways comparing LCAS 
at different time points from for all major cell subsets (top and bottom) (cohort 
1). Pathways plotted with adj Pval < 0.1 (Kolmogorov-Smirnov-based test with 
permutation-derived p-values, adjusted using the Benjamini-Hochberg method). 
c, comparing measured cytokine levels (CCL19, IFNg, IL10, IL12p70, IL1b, IL22, 

IL6, IL8, IP10) in LC patients at different time points with NI (n = 33), LC: month  
1.5-2.9 (n = 51), month 3-5.9 (n = 75) month 6-8.9 (n = 60) month 9-12 (n = 19) 
(cohort 2). Two-sided Wilcox Rank Sum Test ****: p value < 0.00001, ***: p 
value < 0.001, **: p value < 0.01, *: p value < 0.05, ns = not significant. Boxplot 
shows the median (centre), first and third quartiles(bounds) and 1.5 times the 
interquartile range (whiskers) d, Mean mRNA expression of TNF, CCL2 and 
CXCL11 across all categories (cohort 1).
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Extended Data Fig. 3 | TNF significantly negatively correlates with pO2 in 
LCAM. a, TNF correlation with partial pressure O2 calculated separately for LCAM 
and LCAS (cohort 2) at month 1.5-2.9 (LCAM n = 43, LCAS n = 8), month 3-5.9 (LCAM 
n = 56, LCAS n = 19) and month 6-8.9 (LCAM n = 47, LCAS n = 13) b and c Correlation 
of all measured cytokines as for each time point against pO2. LC: month 1.5-2.9 

(n = 51), month 3-5.9 (n = 75) month 6-8.9 (n = 60) month 9-12 (n = 19). Spearman 
correlation P values for Spearman correlation were computed using the exact/
permutation-based test. The gray shaded area indicates the 95% confidence 
interval.
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Extended Data Fig. 4 | LCAM CD8+ T and NK cells show increased abundance 
of GZMK+ cells. a,b, Neighbourhood enrichment analysis in LCAM (cohort 1) 
compared to RLC in CD8+ T and b, in NK cells. c,d, Neighbourhood abundance 
enrichment analysis in LCAS compared to RLC in CD8+ T and d, in NK cells. Red 
dots represent increased significant enrichment of neighbourhoods; blue dots 
represent significantly decreased enrichment. Transcriptional states showing 

significant enrichment with spatial FDR < 0.1 in red and blue (F-test statistic from 
the quali-likelihood F-test, graph weighted FDR). e, GZMK+ cells signature derived 
from Jonnson et.al28 shown in gene expression profile within CD8+ T sub-clusters, 
f, within NK sub-clusters. g, Proportion of MC4 cells in CD14+ monocytes of LCAM 
samples from multiple time points stratified on sex.
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Extended Data Fig. 5 | LC-Mo show a distinct transcriptional program.  
a, Mean gene expression of MC4 signature in CD14+ monocytes of LCAM (n = 5) 
patients with longitudinal samples in cohort 1, with sampling day of each 
individual and percentage of MC4-like cells in each sample b, Differential 
neighbourhood enrichment in CD14+ monocyte of LCAS compared to AIS and 
RLC. Red dots represent increased significant enrichment of neighbourhoods; 
blue dots represent significantly decreased enrichment. Transcriptional states 
showing significant enrichment with spatial FDR < 0.1 (F-test statistic from 

the quali-likelihood F-test, graph weighted FDR) c, Pathway AUC scores within 
monocyte clusters. Two-sided Wilcox Rank Sum Test ****: pvalue < 0.00001, 
***: pvalue < 0.001, **: pvalue < 0.01, *: pvalue < 0.05, NS = Non-significant d-e, 
Distinct trajectories of CD14+ monocytes derived from pseudotime d, Diffusion 
map of all CD14+ monocytes with predicted lineages (left) cells split on categories 
of samples (right) e, AUC scores of pathways arranged across lineage 1 and 
lineage 3. f, Percentage of MC4 cells within CD14+ monocytes, categorised and 
binned.
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Extended Data Fig. 6 | Flow cytometry of CD14+ monocytes shows higher 
expression of LC-Mo in LC patients. a, Gating strategy implemented to identify 
Monocyte subsets in cohort 4. b, Histograms for the flow cytometry analysis 
of CALR, CD99, TGFB1, HLA-DQ, and CD120b surface expression enriched 
for all CD14+ monocytes from RA+NI compared to LC. RA+NI, LC antibody, and 
isotype-stained cells are shown in blue, red, and black, respectively. Shown is a 
representative donor of biological replicates with similar results c, Comparison 
of Median Fluorescence Intensity (MFI) of measured markers (IFNGR1, CD51, 
CD105, IRF8, HLA-DR, CD16 and CD163) in CD14+ monocytes. RA+NI (n = 10),  

LCAM (n = 29), LCAS (n = 11). P-values calculated using two-sided Wilcox Rank Sum 
Test * **: p value < 0.00001, ***: p value < 0.001, **: p value < 0.01, *: p value < 0.05. 
Boxplot shows the median (centre), first and third quartiles(bounds) and 1.5 
times the interquartile range (whiskers) d, TGFB1 MFI correlation with blood pO2 
(top), the gray shaded area indicates the 95% confidence interval. correlation 
of significant markers in LC patients among each other (bottom). Spearman 
correlation P values were computed using a t-distribution approximation applied 
to rank-transformed data. ***: p value < 0.001, **: p value < 0.01, *: p value < 0.05.
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Extended Data Fig. 7 | CD8+T and NK cells show persistent increased AP-1 
accessibility in LCAM. a,b, ChromVar motif accessibility enrichments (cohort 1) of 
AP-1 family in CD14+ monocytes of LCAM, CD8+ T cells and NK cells in comparison 
to RLC. Plotted TF motifs are significant with an adjusted P-value < 0.05 (two-sided 

Wilcox Rank Sum Test, adjusted using the Benjamini-Hochberg method) c, 
Coverage plot of highlighted peaks in Fig. 5 f and g, showing normalized signal  
in each of MC1-4 clusters.
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Extended Data Fig. 8 | LC-Mo like macrophages show pro-fibrotic signature. 
a, Blood (cohort 5) CD14+, CD16+ Monocytes and monocyte derived DCs from 
independent cohort (GSE263817)23 b, Gene expression profile of clusters showing 
LC-Mo/MC4 like genes in cluster5. (c) Proportion of blood and BAL Monocyte/
Macrophage cells in each of the cluster as described in Fig. 6d. d, Gene expression 

as described in (GSE263817)23 for Tissue resident Alveolar Macrophages (TRAM) 
and monocyte derived Macrophages(moAM) e, Gene expression profile derived 
from Wendisch et al. 33 of CI1-CI6 clsuters as shown in Fig. 6d f, Proportion of cells 
in either CI4, CI5 or CI6 clusters from each donor classified into PASC categories.
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Extended Data Fig. 9 | LC-Mohi patients show increased FOXO family 
accessibility after stimulation. a, UMAP of all cells from non-stimulated and 
stimulated samples (cohort 1 subset) b, Canonical markers identifying each of the 
cell subsets as in a c, Percentage of cell subsets per sample from both stimulated 
and -non-stimulated samples. d UMAP of stimulated and non-stimulated cells 

(Myeloid only) e, GSEA pathway enrichment in comparison of stimulated LCAM 
vs stimulated RLC f, Chromvar TF accessibility in LC-Mohi and LC-Molo before and 
after stimulation. TF motifs are significant with adj Pval < 0.05 (two-sided Wilcox 
Rank Sum Test, using the Benjamini-Hochberg method).
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