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CDS8"T cells are the dominant clonally expanded lymphocyte population
inmultiple sclerosis (MS) lesions but their clonal identity, function and
antigen specificity are not well understood. A comprehensive single-cell
RNA-sequencing and T cell receptor-sequencing analysis of the cerebrospinal
fluid and blood from individuals in the MS and control cohorts revealed
asubset of 23 highly expanded and activated CD8" T cell clonotypes that

were enriched predominantly in the cerebrospinal fluid in the MS cohort.
Using unbiased and targeted antigen discovery approaches, six CD8" T cell
clonotypes recognizing Epstein-Barr virus (EBV) antigens and multiple novel
mimotopes were identified. Although the majority of mimotopes did not
elicit functional responses, three of the expanded CD8' T cell receptors from
patients with MS were reactive to EBV. EBV DNA and transcripts were detected
in cerebrospinal fluid, including in patients with MS who had highly expanded
EBV-specific CD8" T cells. These findings shed vital insight into the role of CD8*
TcellsinMS and support animportant role of EBV in MS immunopathology.

Multiple sclerosis (MS) is an inflammatory demyelinating condition
of the central nervous system (CNS) characterized by substantial
T cell involvement’. Both CD4*and CD8" T cells are found within the
perivascular spaces as well as in the parenchyma of MS lesions*>.
CDS8'T cells are enriched and clonally expanded relative to CD4"
T cells in MS lesions*”, suggesting local antigen-driven expansion.
Specific major histocompatibility complex (MHC) I alleles also alter
MS susceptibility®, providing additional support for a critical role

of cytotoxic CD8" T cells in MS biology. The goal of this study was to
identify T cells, particularly CD8" T cells, that are uniquely expanded
in the CNS and determine their phenotypic characteristics and
antigen specificity.

Acquisition of CNS tissue to analyze the infiltrating T cell response
in MS is invasive and rarely performed early in the disease course.
Cerebrospinal fluid (CSF) is a transit site of ymphocytes entering the
CNS’ and provides a window into the immune responses within the
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Table 1| Overview of participant characteristics

Cohort n Gender Meanage Untreated OCB* ActiveMRI
(female/male) (yr) (%) (%) (%)
RR-MS 11 7/A 11 100 82 64
ClIs 2 2/0 44 100 0 0
OND 2 2/0 35 50 100 Not tested
HC 3 1/2 34 N/A 0 Not tested

Active MRI refers to contrast enhancement on MRI within 30 days of blood and CSF analysis;
N/A, not applicable; OCB’, positive oligoclonal band status; RR-MS, relapsing-remitting MS.

CNS. Studies of the CSF repertoire have indeed indicated high clonal
overlap with expanded T cell populations in MS lesions®”’.

Single-cell-sequencing technologies provide powerful oppor-
tunities for deep phenotyping and clonal characterization of T cells
in numerous diseases, including MS'°™, yet detailed analyses of
CSF-expanded T cells and their antigen specificity in MS are lacking.
In this study, CSF and blood from individuals with early untreated
MS as well as control participants were subjected to single-cell
RNA-sequencing (scRNA-seq) paired with single-cell T cell recep-
tor (TCR)-sequencing (scTCR-seq). After identifying a subset of
CSF-expanded CD8'T cellsinthe patients with MS, their antigen speci-
ficity was investigated using a combination of unbiased and targeted
antigen discovery methodologies.

Results

Study participants

A total of 18 individuals were enrolled in the study—11 with
relapsing-remitting MS, two with clinically isolated syndrome (CIS),
two with other neuro-inflammatory disorders (OND) and three healthy
controls (HCs). The demographics of the four cohorts are presented in
Tablelandthose of eachindividualin Supplementary Table 1. Allof the
patientsinthe MS and CIS (MS/CIS) cohort were treatment-naive (that
is, no previous history ofimmunomodulatory orimmunosuppressive
therapies) at the time of sample collection but one of the patients with
OND was onimmunotherapy with a TNF-a inhibitor.

Identification of T cell subsets by single-cell sequencing

Paired peripheral blood and CSF were collected on the same day for
each study participant. Freshly acquired samples comprised of all
unseparated cell subsets underwent paired scRNA-seq and scTCR-seq
using 10X Genomics 5’ library preparation kits to permit combined
single-cell transcriptional phenotyping and TCR clonal analysis. The
scRNA-seq data of all participants in this study were previously pub-
lished®. All major immune cell subsets were readily identified from
the scRNA-seq data, with T cell clusters comprising the largest frac-
tions (Fig. 1a). To characterize conventional TCRaf3 T cells, all subse-
quent analyses focused on only those T cells with paired scRNA-seq
and scTCR-seq data (Fig. 1b). A total of 48,468 individual T cells were
identified from the blood and CSF across all participants (Fig. 1c). As
expected, TCR-associated genes (CD3E and CD3D) were highly upregu-
lated with minimal expression of non-T cell-associated genes (for exam-
ple, CDI19; Extended Data Fig. 1). We identified 33,349 CD4" and 15,119
CDS8'T cells expressing paired TCRaf3 genes (described in Methods) for
analysis from the combination of blood and CSF of all 18 participants
(Supplementary Table 2).

Pseudotime analysis of T cells in the CSF revealed distinct popu-
lations of T cells largely segregated based on T cell subsets (that is,
CD4" or CD8"), highlighting the distinct transcriptional signatures
associated with different T cell states and functions (Fig.1d). Both CD8"
and CD4" T cells were distinct between the peripheral blood and CSF
(Fig.1e,f). Forinstance, CD8' T cells (Supplementary Table 3) in the CSF
displayed significantly increased expression of various genes relative
to the peripheral blood, including genes associated with migration

and trafficking (CXCR3, CXCR4, CCL4,ITGB1 and ITGA4), signaling and
activation (CD2, FYNand DUSP2), and cytotoxicity (GZMK and GZMA).In
contrast, peripheral blood-derived CD8' T cells expressed significantly
higherlevels of FOS, JUN, DUSPI1 and GADD45B, indicating an alternate
activation state. In a comparison of only memory (CD27-expressing)
CDS8' T cells, there was significant upregulation of genes associated
with T cell activation (HLA-DRA), chemokines (CCL4 and XCLI) and
cholesterolmetabolism (LDLR and SQLE), and downregulation of genes
associated with T cell signaling (FOS, FOSB,JUN and JUNB) in the CSF rel-
ativetotheblood (Extended DataFig.2a and Supplementary Table 4).
In the CSF, CD4" T cells (Supplementary Table 3) had significantly
increased expression of genes similar to their CD8" T cell counterparts
(ITGB1,ITGA4, CXCR3, GZMA, GZMK and CD2) as well as distinct genes
(JUN, FOS, DUSP1, CCR7 and HCST).

Giventhe disproportionate number of participantsin the different
disease categories (Table 1), we grouped the patients with MS or CIS
(MS/CIS; n=13) and performed differential gene expression against
the combined group of HCs and patients with OND (HC/OND; non-MS
group; n=5; Fig.1g). In CD8" T cells combined from the peripheral
blood and CSF, various genes were differentially expressed between the
MS/CIS and HC/OND groups (Fig. 1h). In particular, genes associated
with tissue trafficking (CXCR4, CCLS5,KLF2,ITGA4,ITGB1and CD69) and
cytotoxicity (GZMK, KLRG1 and GZMA) were upregulated in the MS/CIS
cohort (Supplementary Table 5). In contrast, genes associated with
central memory status (CCR7, SELL and LEFI) and TCR signaling (CD8B,
CD3D, CD3E, LCK, ZAP70 and LAT) were downregulated relative to the
HC/OND group. Asimilar profile was observed for CD4" T cells from the
blood and CSF of patients with MS/CIS, including increased expression
of genes related to tissue migration (/TGB1, CD69, ITGA4, CXCR3 and
CXCR4) and cytokine secretion (/L32 and GZMK), and reduced central
memory status (CCR7, LEF1, SELL and TCF7) and TCR signaling (LCK;
Fig.liand Supplementary Table 5). Overall, these data suggest that both
CD8"and CD4" T cells in the patients with MS/CIS are more activated
withincreased effector functions and tissue homing capacity than the
HC/OND cohort, consistent with other studies™"%.

T cell clonal analysis
The clonal repertoire of T cell subsets was compared across compart-
ments (thatis, peripheral blood versus CSF) and across disease states
(that is, MS/CIS versus HC/OND). T cell clonotypes were defined as
Tcellssharingidentical Vand] genes and CDR3 amino-acid sequences
for paired TCRap sequences similar to previous studies'®. A total of
31,756 unique CD4" T cell clonotypes and 10,825 unique CD8" T cell clo-
notypeswere identified fromall individuals (Supplementary Table 2).
The CD4"and CDS8' T cell diversities (measured by Shannon entropy)
were significantly higher in MS/CIS compared with HC/OND in the
peripheralblood and CSF (Extended Data Fig. 3). The diversity of CD4"
T cells was significantly higher in blood compared with CSF but not
for CD8'T cells (Extended Data Fig. 3). These findings suggest a more
diverse array of CD4" and CD8" T cell clonotypes are present in both
the blood and CSF of patients with MS/CIS.
Tcellclonal expansionis a hallmark of previous antigen encounter;
therefore, our analysis focused on T cell clonality in the CSF. T cells were
dividedinto three different categories of clonal expansion: unexpanded
(single cell of a given clonotype), moderately expanded (>1 cell but
<0.75% of the CSF T cell repertoire of anindividual) or highly expanded
(>0.75% of the CSF T cell repertoire of anindividual). We chose 0.75% as
the cutofffor highly expanded clonotypes asit represented arelatively
high threshold based on the clonal expansion observed in the CSF of
our patient cohorts as well as others'®". Although small fractions of
clonally expanded CD4" T cells were observed in the CSF, much larger
populations of highly and moderately expanded CD8" T cells were
observed in similar proportions in the MS/CIS and HC/OND groups
(Fig.2a).CD4"and CD8" T cell clonal expansion in the CSF was overall
similar between the patients with CIS or MS (Supplementary Table 6).
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Fig.1|Single-cell-sequencing analysis of T cells in blood and cerebrospinal
fluid. a, Major immune cell subsets from combined blood and CSF of all
patients were identified by scRNA-seq. mDC, myeloid dendritic cells; NK,
natural killer cells; pDC, plasmacytoid dendritic cells; Ty, effector memory
cells.b,c,g, T cells were defined after integration of the scRNA-seq and
scTCR-seq data, allowing segregation of T cells by CD4/CD8 status

(b), compartment (CSF; ¢) and disease status (g). d, Pseudotime trajectory

analysis of CD4*and CD8" T cells in CSF and peripheral blood (PB).

e,f h, Analysis of differential gene expression between CSF-derived and
PB-derived CD8" (e) and CD4" (f) T cells as well as between MS/CIS-derived and
HC/OND-derived CD8" (h) and CD4" (i) T cells. Differential gene expression
comparisons were performed using a two-sided Wilcoxon ranked-sum test with
Bonferroni correction (adjusted P). Genes with adjusted P < 0.05 are indicated
inred. UMAP, uniform manifold approximation and projection.

Cerebrospinal fluid enrichment of highly expanded T cell
clonotypes

To delineate between T cells expanded similarly in the blood and CSF
versus those preferentially expanded in the CSF, the abundance of all
T cell clonotypes in the blood and CSF was compared in all individu-
als. The overwhelming majority of T cell clonotypes were detected
in the blood or CSF only, whereas only about 1.5% of all clonotypes
were found inboth compartments (Fig. 2b). We postulated that highly

expanded T cell clonotypes (that is, CSF frequency of >0.75%) that were
enrichedinthe CSF relative to the peripheral blood were more likely to
beresponsivetolocal antigens in the CSF and/or CNS (albeit not neces-
sarily CNS-specific antigens). Enriched CSF-expanded T cell clonotypes
were defined as those with a CSF frequency at least twofold higher than
the peripheral-blood frequency from the same individual. This yielded
33 highly CSF-enriched and expanded T cell clonotype varying from
approximately twofold to more than100-fold higher frequenciesinthe
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Fig.2|T cell clonal expansion in cerebrospinal fluid. a, CD8* and CD4" T cell
clonal expansion was compared between MS/CIS and HC/OND subjects.

b, Clonal frequencies of all T cell clonotypes in the CSF and blood that were highly
expanded T cells and enriched at least twofold more frequently than the blood

of the same individual are highlighted in red. c,d, Frequency of highly expanded
and enriched T cells according to CD8 (n = 24) or CD4 (n = 10) status (c) and MS/
CIS (n=25) or HC/OND (n = 9) status (d). Data are the mean + s.e.m.; unpaired

two-tailed Student’s ¢-test with Welch’s correction; NS, not significant. e, Analysis
of differential gene expression between highly expanded and unexpanded T cells
inthe CSF. Two-sided Wilcon ranked-sum test with Bonferroni correction; genes
withadjusted P< 0.05are indicated inred. f,g, Unbiased clustering of all CSF T
cells (f; the 11 distinct clusters are numbered) overlaid with highly expanded/
enriched T cells (g).
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reactivity to the corresponding EBV peptides (n = 3) or no-stimulation control
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by HLA-B*08:01-expressing APCs (left) and EPLPQGQLTAY (EBV BZLF1,,_¢,) was
presented by HLA-B*35:01-expressing APCs (right).

CSF relative to peripheral blood (Fig. 2b and Supplementary Table 7).
More than 70% of the highly expanded and CSF-enriched T cell clono-
typesinthe CSFwere CD8" T cells. The frequencies of highly expanded
CSF-enriched CD8"and CD4" T cells were similar, ranging from 0.76 to
4.9% of the entire CSF repertoire of an individual (Fig. 2c). Although
there were no statistically significant differencesinthe mean frequen-
cies of highly expanded CSF-enriched T cell clonotypes between MS/CIS
and HC/OND, only participants in the MS/CIS cohort had CSF-enriched
T cells with frequencies greater than 2% (Fig. 2d). One patient with MS
(patientidentifier (ID), MS6) had 11 highly enriched T cell clonotypes,
the majority of which were CD8" T cells, which encompassed nearly
20% of their CSF repertoire (Supplementary Table 7). These findings
therefore provide strong support for robust oligoclonal CD8" T cell
expansion and enrichment in the CSF, with the greatest expansion
found in MS/CIS.

Single-cell transcriptomics of cerebrospinal fluid-expanded

T cells

Highly expanded and unexpanded T cells in the CSF were compared
by scRNA-seq analysis. Substantial differential gene expression
changes were observed in highly expanded T cells in comparison to
their unexpanded counterparts (Fig. 2e and Supplementary Table 8).
In particular, genes associated with cytotoxic CD8* T cell function
(CD8A, CD8B,NKG7,KLRDI1, GZMA, GZMH, GZMM, GZMK and EOMES)
and chemotaxis (CCL5 and CCL4) were significantly increased in

highly expanded T cells, whereas genes associated with naive status
were significantly reduced (/L7R, LTB and LDHB). Targeted gene
expression analysis revealed increased expression of additional
genes associated with effector/memory differentiation (KLRGI
and CD27), tissue homing (CXCR3 and CCRS) and resident memory
status (CD69 and IGTAE) as well as inhibitory genes associated with
chronicantigen exposure (HOPX, TIGIT, DUSP2, PDCD1 and LAG3) in
highly CSF-expanded CD8" and CD4" T cells (Extended Data Fig. 4).
Atissue-resident-memory (Tgy) phenotype of CSF-expanded T cells
coexpressing CD69 and IGTAE was confirmed by the reduced
expression of KLF2 and S1PR1 genes (Extended Data Fig. 2b,c and
Supplementary Table 9). In contrast, CSF-unexpanded T cells
expressed higher levels of genes associated with central memory/
nonactivation (SELL, CCR7,IL7R, TCF7 and LEFI) as well as the integrin
gene /ITGBI. To further characterize CSF-enriched and expanded
T cell clonotypes, the 33 T cell clonotypes were overlaid with 11 dis-
tinct CSF T cell clusters (Fig. 2f,g). The overwhelming majority of the
enriched and expanded clonotypes were found in cluster 1, which
was defined by a significantly increased expression of a number of
genes associated with cytotoxic effector CD8' T cells, including
CD8A,CD8B, PLEK, DUSP2, EOMES, GZMK, GZMA, GZMH, PRF1, NKG7,
CCLS5 and CCL4 (Supplementary Table 10). Overall, these data indi-
cate that highly clonally expanded T cells in the CSF express gene
profiles indicative of substantial antigen experience, cytotoxicity
and distinct tissue homing capacities.
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Fig. 4| Antigen discovery of highly expanded cerebrospinal fluid-enriched
CDS8' T cells. a, Individual TCRap pairs were cloned into plasmids and expressed
in primary human CD8* T cells by nonviral CRISPR knock-in. Candidate antigens
for testing specificity were identified in three parallel strategies, screened

by pMHC tetramer binding and validated by cytokine production to cognate
antigen. b, Candidate antigens for four TCRs identified by pMHC yeast display
(unbiased antigen discovery) were tested for tetramer binding and cytokine

reactivity experiments. Data are the mean + s.e.m. Each peptide was tested a
minimum of two times using T cells from different donors for tetramer and
cytokine, respectively (RLVWDLETL, n = 6 and 4; RLIFDVPWL, n = 2 (both tests);
RLLWDWEFV, n =3 (both tests); RLVWDLEIL, n =7 and 6; LVDYAKPPR, n = 6 and
5; RVIWEPEFR, n=5and 2; KYMWEPWFK n=5and 4; GYEIMLLDY n=2and 3;
GYDVKELSY n=2and 3; CSERNPWTF n=5and 4, ATDVGWWWY, n=5and 2).

Clonal relationships of expanded cerebrospinal fluid-enriched

T cells

Nearly all CSF T cell clonotypes across allindividuals were unique. Only
21identical TCRs (that is, same V and ] genes and CDR3 amino-acid
sequences for the paired a and 3 chains) were found betweenthe periph-
eralblood of differentindividuals and another three that were identical
between the blood and CSF of different individuals, irrespective of
disease status (Fig. 3a). To further assess clonal relationships, Grouping
of Lymphocyte Interactions with Paratope Hotspots 2 (GLIPH2) was
employed, an algorithm to help identify TCRs with potentially shared
specificity based on sequence similarity within the CDR3p region’®. All
CSF T cell clonotypes were analyzed using GLIPH2 and the output was
then queried against the 33 CSF high-enriched CDR3 sequences. Using
thisapproach, 19 clonally related networks comprised of a total of 44
clonotypeswereidentified (Fig. 3b and Supplementary Table 11). Most
of the networks comprised two related clonotypes and two networks
were comprised of five clonotypes each. Almost all networks consisted
of clonotypes from the same individual and were identified primarily
amongtheindividuals with MS or CIS (Fig. 3b). Nearly all of the clonally
related T cellswere CD8' T cells (Supplementary Table 11), suggesting
potential shared antigen specificity.

Antigen discovery of highly expanded cerebrospinal
fluid-enriched CD8" T cells

Antigen discovery efforts focused on the 23 highly expanded,
CSF-enriched CD8' T cell clonotypes (=0.75 of the CSF repertoire and
enriched at least twofold in the CSF relative to the blood) that com-
prised more than 70% of the expanded CSF-enriched T cells. Several

different strategies were undertaken (Fig. 4a). An unbiased antigen
discovery approach was first employed using a peptide:MHC (pMHC)
yeastdisplay library inwhich approximately 1-10 x 108 random peptides
are displayed on a given MHC allele for probing recognition against
individual TCRs". Of the 23 CD8" TCRs, 18 were successfully expressed
and tested against specific MHC I allele libraries based on library avail-
ability and the alleles of the participants from whom the TCRs were
derived. Four TCRs (three MS/CIS and one HC) demonstrated sub-
stantial enrichment of specific peptides from three different MHC |
libraries (Supplementary Table 12).

To validate these candidate antigens, each TCR was expressed
individually in primary human CD8" T cells by nonviral CRISPR-
Cas9-mediated TCR knock-in (Extended Data Fig. 5a). Candidate
TCR-expressing CD8" T cells were then probed for antigen specificity
using pMHC I tetramers loaded with peptides identified from the yeast
display library screen. Three of the four tested TCRs demonstrated
robust tetramer binding to most or all of the library-identified pep-
tides (Fig. 4b and Extended Data Fig. 5b). The ability of CD8" T cells
expressing these TCRs torespond functionally to the same antigens was
tested by intracellular cytokine stimulation using antigen-presenting
cells (APCs) expressing the relevant MHC I allele. Strikingly, only TCR
clonotype 54189_65570 demonstrated cytokine production to peptide
CSERNPWTFY; none of the other TCR-expressing CD8" T cells were
functionally responsive to the respective yeast display-derived pep-
tides (Fig. 4b). As nearly all of the yeast display peptides identified by
pMHC I tetramers were not naturally occurring (that is, mimotopes),
the analysis was extended to an array of foreign and human peptide
homologs (Supplementary Table 12). Varying degrees of tetramer
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Fig. 5| EBV reactivity of highly expanded cerebrospinal fluid-enriched CD8"
Tcells. a,b, Representative flow cytometry analysis of tetramer binding (a) and
cytokine production (b) of three TCRs (from patients with MS) with predicted
reactivity to four different viral epitopes. The percentage of cells in the gated
regions areindicated. ¢, Percentage tetramer binding and cytokine reactivity

of each TCR. Cytokine reactivity reflects the subtracted background from the
no-stimulation control. Data are the mean +s.e.m.; TCR 86333_1456 FLRGRAYGL,
n=>5tetramer and 3 cytokine; TCR 69317_24418 EPLPQGQLTAY, n = 11tetramer and
9 cytokine; TCR86333_17042 VTEHDTLLY and TCR 86333 17042 FLRGRAYGL, n=2
(allgroups).d, Frequencies and degree of enrichment of the three EBV-specific
clonotypes (highlighted in red) relative to all other highly enriched and expanded

Tcell clonotypes. e, TCR sequencing alignment of expanded CD8" TCRs to EBV-
and CMV-specific TCRsin the peripheral blood (PB) and CSF. f, EBV-specific TCR
alignment of all expanded CD8" T cell clonotypes in the PB and CSF of MS/CIS

and HC/OND study participants. g,h, Summary of functional reactivity of Jurkat
cells expressing the indicated TCR specific for EBV EBNA3A o5 ,0,:B*08:01(g) or
EBV BZLF1s,_¢,:B*35:01 (h) to theindicated peptides (n = 3 EBV peptides and 2
peptide homologs). Responses reflect the mean + s.e.m. frequency of CD69 and
NFAT-mCherry double-positive cells with the no-stimulation background control
subtracted. Amino-acid differences between cognate EBV peptides (leftmost of
each plot) and self-peptide homologs are indicated in red. Each peptide was tested
inaminimum of two independent experiments.
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binding were observed depending on the TCR tested but none of the
peptide homologs elicited cytokine responses above background
(Extended Data Fig. 6a,b). Thus, although the unbiased antigen dis-
covery approach yielded novel mimotopes of several CD8" T cell
clonotypes detectable by pMHC I tetramer binding, none exhibited
functional reactivity to naturally occurring antigens.

Probing viral specificity of clonally expanded CD8" T cells

The highly expanded CSF-enriched TCR clonotypes were queried
against several public TCR databases, including VDJdb?°, TCRex”
and TCRmatch?, as an additional TCR antigen discovery strategy
(Fig. 4a). One CD8" T cell clonotype (86333_1456) from participant
MS8 demonstrated an exact matchtoboth TCRa and - sequences with
awell-described Epstein—-Barr virus (EBV) epitope, EBNA3A 45 ,o; (FLR-
GRAYGL; Supplementary Table13), whichis restricted by HLA-B*08:01,
anallele carried by thisindividual (Supplementary Table1). Thisiden-
tical clonotype was also moderately expanded in the CSF from an
individual with Alzheimer’s disease”. A second CD8' T cell clonotype
(69317_24418) from participant MS6 was a near-exact match toa TCR
specific for the EBV epitope BZLF1,_, (EPLPQGQLTAY) restricted by
HLA-B*35:01, an allele also carried by this individual.

These TCRs were expressed in primary human CD8" T cells as
described earlier and their specificity was again tested by pMHC |
tetramer analysis. TCR86333_1456 and TCR 69317_24418 showed robust
tetramer staining to EBNA3A,; ,,,:B*08:01 and BZLF1,,_¢,:B*35:01,
respectively (Fig. 5a). To confirm functional reactivity, primary human
CDS8" T cells expressing each of these TCRs were stimulated with APC
lines expressing cognate HLA and loaded with or without cognate EBV
peptide. Each TCR demonstrated clear cytokine production to the
relevant EBV peptide (Fig. 5b,c), confirming both CSF-expanded and
enriched CD8'T cell clonotypes are specific to EBV antigens.

In light of these findings, the possibility that additional
CSF-enriched and expanded CD8* T cells may be specific for viral anti-
gens, in particular EBV, was further explored. Note that severe acute
respiratory syndrome coronavirus 2 peptides were not tested as all sam-
pleswere collected previous to the coronavirus disease 2019 pandemic.
Nineteen TCRs were tested against panels of pMHC I tetramers loaded
with previously identifiedimmunodominant viral epitopesrestricted by
HLA matchingthat of the TCR donors. A total of 98 peptidesrestricted
by eight different MHC I alleles were screened (Supplementary Table 14).
Each TCR was screened with individual pMHC tetramers, exceptinthe
case of HLA-A*02:01 where tetramers were pooled in groups of five
due to the large number of candidate peptides. Each TCR was tested
against the indicated peptides a minimum of two times using two dif-
ferent T cell donors for TCR expression. No specific tetramer signal
was observed for any of the TCRs to any of the peptides beyond the two
EBV epitopes already identified for TCRs 86333_1456 and 69317_24418
(Extended Data Fig. 7). Although TCR 86333_17042 from participant
MS8 showed an identical match for a TCRp sequence specific for EBV
and cytomegalovirus (CMV) antigens with corresponding MHC I alleles
(Supplementary Table13), it did not show any notable tetramer binding
or cytokine reactivity to either viral antigen (Fig. 5a-c).

Potential reactivity to EBV was further assessed for the other
CSF-expanded and enriched CD8" T cells given the EBV reactivity of
two clonotypes. EBV-transformed lymphoblastoid cell lines (LCLs)
were employed tosurvey awide array of processed EBV epitopes across
a multitude of HLA alleles. NFAT-mCherry-expressing Jurkat cells
transfected with the CD8 co-receptor and asingle candidate TCR were
co-cultured with partially HLA-matched LCLs. Fully HLA-mismatched
LCLs and TCR-expressing Jurkat cells from HLA-mismatched patients
were used as negative controls. This enabled testing of 16 additional
candidate TCRs against at least two different LCLs matching 3-6 MHC
lalleles (Supplementary Table 15). Almost all TCRs showed no detect-
able reactivity; however, TCR 94669 _8198 from patient MS27 demon-
strated aclear reproducible response to LCLs only when matching the

HLA-A*29:02 allele (Fig. 6a-c). No response was elicited from primary
B cells from the same donor used to generate the LCLs, indicating this s
very likely to be an EBV-specific response rather than a B cell self-antigen
oralloreactiveresponse. Toidentify a potential specific EBV epitope, Jur-
katreporter cells expressing TCR 94669_8198 were tested against seven
candidate EBV peptidesidentified from The Immune Epitope Database
(FLYALALLL, VFGQQAYFY, AYSSWMYSY, FVYGGSKTSLY, VFSDGRVAC,
VSSDGRVAC and ILLARLFLY) presented by HLA-A*29:02-expressing
APCs.Nofunctional response was elicited, however, indicating reactiv-
ity toastill unspecified EBV epitope (Extended Data Fig. 8).

We also explored EBV specificity for CD8" T cell clonotypes that
were aligned to the highly CSF-expanded and enriched CD8" T cell
clonotypes that were EBV-reactive (Fig. 3b). Only GLIPH2-derived
TCR sequences from CD8" T cells that shared the same MHC |
allele as that of the aligned EBV-specific clonotype were tested
(Supplementary Table 16). Unlike the EBV-specific clonotype
86333_1456, the GLIPH2-aligned TCRs 86333 _17042 and 86333 _18519
(all from MS8) showed no detectable reactivity to EBNA3A peptide
FLRGRAYGL restricted by HLA-B*08:01 (Fig. 3c). TCR 53778_13077
from MS10 was aligned by GLIPH2 to TCR 69317_24418 from MS6,
specific for the BZLF1B*35:01-restricted peptide EPLPQGQLTAY. Strik-
ingly, TCR 53778_13077 was found by VDJdb search to exactly match a
TCR previously demonstrated to be specific for EPLPQGQLTAY?. This
specificity was validated by stimulating Jurkat reporter cells express-
ing TCR 53778 13077 with or without EPLPQGQLTAY presented by
HLA-B*35:01-expressing APCs. Notably, TCR 53778 13077 was moder-
ately expanded in the CSF (0.35%) and enriched approximately three-
fold relative to the blood of MS10 (Supplementary Table 2).

These findings indicate that at least three highly expanded
CD8" T cells in the CSF of patients with MS are specific for EBV, but
the specificities for most of the enriched T cell clonotypes remain
unknown (Fig. 5d). The overwhelming majority of clonotypes were
not enriched in the CSF of the 18 study participants (Fig. 2b and
Supplementary Table 2) or the three patients with MS and EBV-specific
clonotypes (Extended Data Fig. 9a). To assess whether EBV specific-
ity among expanded CD8" T cells in the CSF was overall enhanced
compared with the blood, TCR sequencing alignment (identical V
genes,] genes and CDR3 amino-acid sequences for paired TCRa.and -3
chains) was performed against all expanded CD8" TCR sequences (>1
TCR per clonotype) in VDJdb*® with CMV used as a comparison. EBV-
and CMV-aligned CD8" TCR sequences in the blood were very similar;
however, EBV specificity was markedly increased in the CSF, whereas
no CMV specificity was found (Fig. Se). When the EBV-aligned CD8"
TCR sequences of the MS/CIS and HC/OND groups were compared,
EBV-specific TCR alignment was only observed in the patients with MS/
CIS (Fig. 5f). This provides additional support that EBV-specific CD8"
T cell expansionis uniquely increased in the CSF in MS.

Transcriptional profiles of EBV-specific CD8" T cells

CDS8' T cells of different viral specificities can exhibit distinct phe-
notypic characteristics®. The transcriptional profiles of the three
CSF-expanded CD8" T cell clonotypes were therefore compared
against all other CSF-expanded and enriched CD8" T cells. Differ-
ential gene expression analysis revealed three genes that were sig-
nificantly increased in the EBV-specific CD8" T cells, most notably
CXCRS (Supplementary Table 17), which is associated with migration
to B cell follicles and control of chronic infections®. Specific genes
associated with memory differentiation, migration and tissue resi-
dency were also compared. Consistent with previous reports®*, CD27
was particularly abundant in the expanded EBV-specific CD8" T cells
(Extended Data Fig. 9b). In addition, KLF2, CXCR4, S1IPRI and CCL4
were more abundant in EBV-specific CD8" T cells. In contrast, CXCR3,
CD69 and CCLS5 were more abundant in non-EBV-specific expanded
CDS8'T cells. These findings therefore indicate a distinct phenotype
of CSF-expanded CD8" T cells that are specific for EBV. Rather than
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Fig. 6 | Cerebrospinal fluid-expanded CDS8* T cell reactivity to
EBV-transformed B cells. a, Representative flow cytometry analysis of Jurkat
reporter cells expressing the indicated TCR and CD8 co-receptor that were
co-cultured with partially HLA-matched (matching allele indicated in red)
EBV-transformed LCLs. Reactivity was assessed by coexpression of CD69 and
NFAT-mCherry. Fully HLA-mismatched LCLs and mismatched TCR-expressing
Jurkat cells were used as negative controls. a,b, The percentage of cells in the
gated regionsisindicated. b, Representative flow cytometry analysis of Jurkat

Mismatched TCR normalized,
mCherry*CD69" FC

Mismatched MHC normalized,
mCherry*CD69* FC
reporter cells expressing TCR 94669_8198 were co-cultured with LCLs or primary
uninfected B cells from the same donor. ¢, Summary of all candidate TCRs tested
and the corresponding matching MHC I alleles expressed by different LCL lines.
The mCherry*CD69" signal of a given TCR-expressingJurkat cell line co-cultured

with partially MHC-matched LCLs was normalized to the signal observed from
completely MHC-mismatched LCLs (left) or mismatched TCR-expressing Jurkat
cells (right), which was reported as fold change (FC).

expressing Tgy, markers and genes associated with lymphocyte recruit-
ment, these findings suggest that EBV-expanded CD8" T cells in the
CSF are an effector population associated with follicular homing and
B cellinteractions.

Lack of self-antigen cross-reactivity of EBV-specific CD8' T cells
To determine whether the two EBV peptide-reactive CD8" T cell
clonotypes may be cross-reactive against self-antigens, the TCRs
were screened against panels of self-peptides with partial sequence
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Fig.7|Detection of EBV DNA and transcripts in cerebrospinal fluid. a, Summary
of EBV DNA ddPCR results from CSF supernatant in which EBER2 was normalized
toahousekeeping gene (MS/CIS, n=13; HC/OND, n =5).b, EBV cDNA for each of
theindicated genes were measured by ddPCR and normalized to a housekeeping
gene. Each sample was runin duplicate and each dot represents the average result

MS/CIS HC/OND

MS/CIS HC/OND CIS/MS HC/OND

from eachstudy participant. Data are the mean + s.e.m. MS/CIS and HC/OND
samples were compared using an unpaired two-tailed Student’s t-test with Welch’s
correction; NS, notsignificant; n =13 for MS/CIS for all genes except EBER2 where
n=12duetolack of sufficient sample for MS27 and n = 5in HC/OND for all genes
except BamHI-Wwhere n =4 due to alack of sufficient sample for OND4.

homology (Supplementary Table 18). Using NFAT-mCherry-expressing
Jurkatcells transfected with the CD8 co-receptor and TCR 86333_1456
or 69317 24418, high reactivity to the respective EBV peptides was
confirmed (Fig. 5g,h). Strikingly, no notable reactivity was observed
for any of the self-peptide homologs. Although this does not entirely
exclude the possibility for self-antigen cross-reactivity, it raises the
possibility that the CSF enrichment of these clonally expanded CD8*
T cells may be driven by reactivity to EBV.

Presence of EBV in cerebrospinal fluid

To assess for the presence of EBV in CSF, DNA was extracted from the
CSF of all study participants and PCR amplified with primers specific for
the EBV BZLF1gene (Extended Data Fig.10a). The PCR amplicons were
Sanger sequenced for further confirmation (Supplementary Table 19).
Inthis manner, EBV DNA was detected in 6/13 MS/CIS samples and 2/5
HC/OND samples (Supplementary Table 20), including patients MS6
and MS8who also harbored highly expanded EBV-reactive CD8' T cells
intheir CSF. The presence of EBV DNA was further quantified by droplet
digital PCR (ddPCR) viaamplification of the EBER2 gene normalized to
ahousekeeping gene. EBV was detected in the CSF of nearly all patients
and control study participants, although the relative abundance varied
widely with the highest levels found in patients with MS/CIS (Fig. 7a
and Extended DataFig.10b). EBV transcripts to several latent and lytic
genes were also assessed by complementary DNA quantification. EBER2
cDNAwas overallless detectable than DNA and there was no significant
difference between MS/CIS and HC/OND (Fig. 7a,b). EBNA3A (latency
lligene) and BZLFI (early lytic gene) were mostly undetectable withno
significant difference between the two cohorts (Fig. 7b). Strikingly, a
significant increase was observed in BamHI-W transcripts in the MS/
CIS cohort, including patients MS6, MS8 and M27 with highly expanded
EBV-specific CD8" T cells in CSF. This therefore suggests that EBV reacti-
vationis enhanced in the CSF in patients with MS/CIS, which may drive
the expansion of EBV-specific CD8" T cells.

Discussion

CDS8' T cells are the dominant lymphocyte population in MS lesions>"?,
where they are highly clonally expanded***’, suggesting reactivity
to hitherto unknown local antigens. Although previous studies have
explored changes ingene expression and T cell clonal expansionin the
CSF of patients with MS'*">%, numerous questions remain regarding the
identity of clonally expanded CD8" T cells and their antigen specificity
inMS. Our comprehensive transcriptional and clonal analysisidentified
CSF-infiltrating T cells with increased expression of genes associated
with T cell activation, the Ty, phenotype and CNS migration in the MS/
CIS cohort, consistent with previous reports'® ">, As clonally expanded
CD8'T cellsare presentinthe CSF in normal physiologic conditions and
in CNS pathology'*'”*, identification of MS-specific CD8" T cell clonal

populations remains a challenge. Invoking a strategy used to identify
disease-relevant T cellsininflammatory arthritis'®** and cancer”, asubset
of highly clonally expanded and CSF-enriched CD8" T cells that had the
highest frequencies in the patients with MS/CIS was identified. It was
noteworthy that more than70% of the highly expanded and CSF-enriched
T cell clonotypes were CD8" given that more than twice as many CD4*
T cellswere analyzed. These CSF-enriched T cell clonotypes were widely
characterized by ahighly differentiated, antigen-experienced and cyto-
toxic phenotype with high CNS-trafficking potential, consistent with
other reports®. These gene signatures were very similar to GZMB and
Trumarkersenrichedin CD8' T cellsin MS lesions**, strongly suggesting
these T cell clonotypes are CNS-infiltrating.

Smallnetworks of highly expanded CSF-enriched T cells with shared
TCRsequence featuresto other less-expanded clonotypes were found,
which overwhelmingly occurred within the same individual. These find-
ingssuggest that distinct, clonally expanded T cells may be contributory
to MS pathology, unlike other autoimmune conditions with preferential
TCR usage'®. Combined with the inherent technical challenges in T cell
antigen discovery, these findings highlight the difficultiesinidentifying
the antigen specificity of clonally expanded T cellsin MS.

The majority of studies on candidate T cell auto-antigens in MS
have focused on CD4" T cells**>*. Through the use of three parallel
antigen discovery strategies, our study provides substantial new insight
into the antigen specificity of CD8" T cells in MS. Novel mimotopes to
several MS-derived CD8* TCRs were identified by pMHC yeast display,
a powerful unbiased antigen screening tool. Although the majority
of mimotopes and naturally occurring peptide homologs were read-
ily detectable by pMHC I tetramers, only one elicited a measurable
functional response. The reason for the discrepancy between pMHC
tetramer binding and functional reactivity isunclear but could be due
to the absence of catch bonds by high-affinity TCR ligands®. Nonethe-
less, these candidate peptides provide an important framework for
identifying TCRs with similar specificities in other individuals.

The methodology of testing individual TCRs in primary human
T cellsby pMHC tetramer screening, followed by validation with func-
tional reactivity is highly rigorous and ensured only genuine positive
results. This approach was particularly importantin the case ofa TCR
that demonstrated an exact TCR3 match to another antigen-specific
clonotype yet did not share the same specificity, highlighting the
need to validate every TCRaf} individually. Antigen specificity should
therefore be interpreted cautiously when based solely on partial TCR
sequence matching.

Three distinct CSF-expanded and enriched CD8" T cell clono-
types specific for EBV antigens were identified from three different
patientsinthe MS cohort. Although EBV-specific CD8" T cells have been
previously reported in the CSF of MS and other neuro-inflammatory
conditions®*’, the present study used paired TCRap analysis to
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unequivocally demonstrate EBV reactivity of highly enriched and
clonally expanded CSF CD8" T cell populations in MS. These findings
are particularly relevantinlight of recent evidence that EBV infectionis
aprerequisite for the subsequent development of MS*’. Interestingly,
the EBNA3A:B*08:01-specific CD8* TCRidentified in one of the patients
with MS participatingin this study was highly related to expanded CD8*
Tcell clonotypes previously found in several patients with Alzheimer’s
disease”. Our findings therefore provide further support that EBV may
be related to multiple forms of CNS pathology.

The mechanism by which EBV is involved in MS pathogenesis
remains unresolved. The fact that the EBV-specific CD8" T cell clono-
typesidentified here were highly expanded and enriched in the CSF sug-
geststhese T cellsmay be responding to antigenin the CNS. EBV-specific
B cellsand CD4" T cells in MS have been suggested to be cross-reactive
to CNS autoantigens* ** (that is, molecular mimicry). We were unable
to demonstrate cross-reactivity of the two EBV peptide-specific CD8"
T cell clonotypes against partially homologous self-peptides, but this
doesnot completely rule out suchamechanism. Alternatively, the find-
ingsof CD8' T cells reactive against EBV late latent and lytic antigens are
consistent with other reports****’ and could indicate EBV reactivation
in the CNS***. In addition to the detection of EBV DNA in the CSF of
most study participants, the increased expression of EBV transcripts
in the MS/CIS cohort suggests that EBV reactivation drives expansion
of EBV-specific CD8" T cells. These findings are consistent with other
recent results* and suggest that EBV-specific CD8* T cell expansionin
the CSF could be aprotective response to control reactivated EBVin MS.

There are multiple mechanisms by which EBV could gain access
to the CNS. In addition to primary infection of cells within the CNS¥,
a number of studies have described the induction of ‘atypical’
T-bet'CXCR3' B cells by EBV***°, which could enable their migrationinto
the CNS. EBV expressionis highly dynamic, permitting the virus to exist
invarious latency or lytic programs®. Itis plausible that dysregulation
of EBV expressionis relevant to MS pathology. Clinical trials using adop-
tive T cell therapies targeting EBV in MS did not show a clear benefitin
progressive MS*°, however, it remains unclear how such therapies may
alter EBV viral loads and expression as well as relapse and magnetic
resonance imaging (MRI) outcomes. Itisalsoimportant to consider that
EBV reactivationin MS may represent an epiphenomenon as memory
B cell differentiation into plasma cells is a trigger of EBV reactivation.
Thus, itis possible that EBV reactivation and expansion of EBV-specific
CDS8" T cells are simply markers of B cell activation, whichis ultimately
the driver of MS pathology independent of EBV.

This study was limited by the smaller population of control partici-
pants. Follow-up studies with larger numbers of well-matched MS and
control participants are needed to more clearly identify disease-relevant
TcellpopulationsinMS. Inaddition, longitudinal analyses of T cell clonal
expansionin earlier versus later stages of MS are needed. Although the
transcriptional phenotyping analyses suggest a pro-inflammatory
cytotoxic phenotype of CSF-expanded CD8' T cells, furtherinvitroand
invivo analyses are needed to determine what role these cells play in MS.
Itisalsoimportanttoacknowledge that despite the rigor of the antigen
specificity testing, this approach was not exhaustive and was limited
in the breadth of antigens that were tested. Given that various foreign
and self-antigens are considered viable antigenic targets in MS, future
studies willneed toincorporate high-throughput approaches to probe
multiple target antigens simultaneously. The detection of EBV in the CSF
ofindividuals without MS probably reflects the fact that the majority of
the general population, with or without MS, is chronically infected with
EBV.Giventhat thereare only trace B cellsinthe CSF and CNS of healthy
individuals, itis possible that cell-free EBV DNA originated in the blood.
Alternatively, there are other cellular reservoirs in the CNS where EBV
hasbeenidentified evenin healthy individuals®.

Elucidatingtherole of CD8" T cellsin MS requires the assessment of
their clonal repertoireinthe CNS, identification of their antigenic tar-
getsand determination of their in vivo functions. This study provides

important progress towards all three aims by demonstrating a small
population of predominantly CD8" T cells that were highly expanded
and enriched in the CSF of patients with MS with strongly upregulated
genes associated with antigen exposure, CNS migration and cytotoxic-
ity. The finding of EBV specificity of three of these CD8" T cell clonal
populationsin the presence of EBV helps to advance the understanding
of MS pathogenesis and may permit the development of novel disease
biomarkers and therapies.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Research ethics statement

The studies in this Article have been approved by the University of
California San Francisco (UCSF) Institutional Review Board research
ethics committee (protocol numbers10-02389 and 14-15278). Informed
consent was obtained from all participants in this study. No compensa-
tion was provided to the study participants.

Study cohort

The participants, MS/CIS and control, were enrolled through the UCSF
ORIGINS or Expression, Proteomics, Imaging, Clinical (EPIC) stud-
ies (https://epicstudy.ucsf.edu/). Healthy controls and patients with
OND were enrolled in the biobanking study ‘Immunological Studies
of Neurologic Subjects’. All enrolled participants with MS or CIS were
diagnosed according to the 2017 McDonald criteria®. Basic demo-
graphicand clinical information for all research participantsis shown
inTable 1and Supplementary Table 1.

Single-celllibrary preparation

Blood and CSF samples were collected from the enrolled participants
onthesame day duringclinical and research procedures after informed
consent. CSF (20-30 ml) was collected by lumbar puncture from each
individual. Blood and CSF were processed immediately after collectionin
preparation for single-cell library preparation as previously described”.
Unfractionated peripheral blood mononuclear cells (PBMCs) wereiso-
lated using CPT mononuclear cell preparation tubes (BD Biosciences)
and resuspended in 2% fetal bovine serum (FBS). The CSF was centri-
fuged at 400g and 4 °C for 15 min, resuspended in 80 pl supernatant
and counted. Single-cell sequencing libraries were prepared using 5’
scRNA-seqand 5’ T cell V(D)) scTCR-seq kits (10X Genomics).

Single-cell sequencing analysis

Raw data for both scRNA-seq and scTCR-seq datasets were processed
using CellRanger (v3.0.1and v3.1.0, respectively) by 10X Genomics.
The cellranger count and cellranger vdj commands were run withinput
Ensembl GRCh38.v93 and GRCh38.v94 references for the scRNA-seq
and scTCR-seq data, respectively. All data were analyzed using a cus-
tom bioinformatics pipeline that included Seurat (v3.1.2-v4.3.0),
the Spliced Transcripts Alignment to a Reference (STAR) algorithm*
(v2.5.1), SingleR* (v1.1.7) and DoubletFinder** (v2.0.2). TCR V(D)) con-
tig assemblies outputted from CellRanger were further annotated
and analyzed using Immcantation (v3.1.0). TCR clonal families were
identified using Change-O* (v0.4.6), which generated clone IDs for
both TCRa and -p chain assemblies. The scRNA-seq data have been
uploaded to the Gene Expression Omnibus (GEO) repository under
BioProject PRINA549712 (GEO accession number GSE133028) and the
scTCR-seq data have been uploaded under BioProject PRJNA1232831
(GEO accession number GSE291328).

Quality control for single-cell data

Across both RNA-seq and VD) data, reads present in more than one
samplethatshared the same cell barcode and unique molecular identi-
fier were filtered using previously described methods®. The R package
DropletUtils was used tofilter out these reads in the RNA-seq dataand
SingleCellVDJdecontamination (https://github.com/UCSF-Wilson-Lab/
SingleCellVDJdecontamination) was used to apply the same methods
to filter out these reads in the VD) data.

Allgene counts from scRNA-seq datawere combined using Seurat.
Only genes present in two or more cells were included. Only cells con-
taining transcripts of between 700 and 2,500 genes were included. The
PercentageFeatureSet function was used to calculate the percentage of
mitochondrial transcript expression for each cell. Cells that expressed
atleast10% mitochondrial genes were omitted. Gene counts were nor-
malized using the R package SCTransform®. The parameter do.correct.
umi was set equal to TRUE and var.to.regess was set to nCount_RNA.

Allfiltered cells were clustered using 20 principal components (PCs)
inSeurat. Clusters were formed using ashared nearest-neighbor graph
in combination with dimensional reduction using uniform manifold
approximation and projection®’. Doublet detection and removal were
performed for each sample using DoubletFinder* with expected dou-
blet rates set based on the 10X Genomics reference manual. Cumulative
sums were iteratively calculated for each PC to measure the per cent
variance accounted for with the data. To determine areasonable num-
ber of PCs, athreshold of 90% variance was applied, whichresulted in12
PCsbeinginputted whenreclustering cells. Clusters of cells with a high
expression of platelet markers (PPBPand PF4) or hemoglobin subunits
(HBB, HBAI and HBA2) were omitted. Among the remaining cells, all
V gene transcripts (TRAV, TRBV, IGHV, IGKV and IGLV) were removed
and anadditional round of reclustering was performed with nine PCs.

Assembled TCR contigs outputted from CellRanger were inputted
into the Immcantation pipeline for asecond round of alignments to the
VDJ region using IgBLAST. Contigs containing fewer thanthree unique
molecularidentifiers were omitted. Only contigs that alignedin frame
(both the FUNCTIONAL and IN_FRAME output fields were TRUE) and
across the constant region were retained. Cells in the TCR VD) data
wereonly kept if these contained one TCRf chain and one TCRa chain.
If cells had multiple chains, TCRa or -3, which passed these thresholds,
the contig with the largest number of unique molecular identifiers and
or reads was kept.

Cell-type annotation and differential gene expression analysis
Cell-type annotations were generated using previously described
methods”. Cell types were defined by performing differential gene
expression analysis for each cluster. The normalized gene expression
profile for each cluster was compared with the remaining cells using
a Wilcoxon rank-sum test using the FindAlIMarkers function (min.
pct=0.1,logfc.threshold = 0.25, return.thresh = 0.01). The most upregu-
lated genes, with the highest positive average log-transformed fold
change, were compared with a custom panel of canonical gene makers
(Supplementary Table 21) spanning several key immune cell types—B
cells,CD4*and CD8" T cells, natural killer (NK) cells, classicalmonocytes,
inflammatory monocytes, macrophages, plasmacytoid dendritic cells
and monocyte-derived dendritic cells. In addition to these manual
cell-type annotations, another set of cell types was determined using the
automated cell-type annotation tool SingleR, which used the combined
Blueprint and ENCODE reference dataset for fine-tuning predictions®.
AT cell subset was created by filtering for cells that overlap both
RNA-seq and TCR VDJ data. All clusters annotated as T cells had their
annotations modified by CD8 gene expression. Among the T cells,
any cell with CD8A or CD8B expression was annotated as a CD8" T cell.
Theremaining T cells were then annotated as CD4 " T cells. Differential
gene expression analyses were performed using the FindMarkers com-
mand in Seurat with the Wilcoxon test and the following parameters:
P-adjusted value cutoff = 0.05 and log(fold change) cutoff = 0.

T cellimmune repertoire analysis

The TCR contigs outputted from Immcantation were clustered based
onsimilaritiesbetween their TCR variableregion genes (TRAVor TRBV),
TCRjoiningregion genes (TRA/or TRBJ) and complementary determin-
ingregion3 (CDR3) amino-acid sequences. ATCR clonotype was defined
ascells containing TCRacand -3 chains, each containingidentical Vand]
genes, and CDR3 amino-acid sequences. Cell counts were computed for
eachclonelD, including separate cell counts for PBMC and CSF samples.
Shannon’s entropy was calculated between CSF and PBMC samples
of different disease groups using the alphaDiversity functionin the R
package alakazam. Specifically, the exponential of diversity scores (D)
from the Shannon-Wiener index were extracted from the output of
alphaDiversity by filtering for the diversity order (g =1). Clonal expan-
sion was defined as clones containing more than one cell. Among the
expanded clonal families of TCRs, CSF enrichment of highly expanded
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clones was determined by the ratio of the CSF to peripheral-blood
frequencies. Clones with a CSF frequency of >0.75% were annotated as
CSF highly expanded. Clones that were expanded in CSF (that is, more
thansingletons), but with frequenciesless than highly expanded, were
labeled as moderately expanded. Among the expanded clonal families
of TCRs, CSF enrichment of highly expanded clones was determined
by the ratio of the CSF to peripheral-blood frequencies. CSF highly
expanded TCRs were inputted into GLIPH2 to generate glyph groups,
whichindicated which TCRs were predicted to target the same epitope.
These glyphgroups were used to create anetwork using the R package
igraph and graphically displayed using Cytoscape.

HLA genotyping

HLA sequencing was performed as previously described, adapted to
include HLA class II’®. For each sample, 100 ng high-quality DNA was
fragmented using a Library preparation enzymatic fragmentation kit
2.0 (Twist Bioscience). After fragmentation, the DNA was repaired,
and poly(A) tails were attached and ligated to Illumina-compatible
dual-index adapters with unique barcodes. After ligating, the frag-
ments were purified with a 0.8% ratio of AMPure XP magnetic beads
(Beckman Coulter). Double size selection was performed (0.42x and
0.15x ratios) and libraries of approximately 800 bp were selected, at
whichpointlibraries were amplified and purified using magnetic beads.
After fluorometric quantification, each sample was pooled (30 ng per
sample) via ultrasonic acoustic energy. A Twist target enrichment kit
(Twist Bioscience) was then used to perform target capture on pooled
samples.Sample volumes were then reduced using magnetic beads and
DNA libraries were bound to 1,394 biotinylated probes. Probes were
designed specifically to target all exons, introns and regulatory regions
of the classical HLA loci, including HLA-A, HLA-B, HLA-C, HLA-DPB],
HLA-DRB1and HLA-DQBI1. Next, streptavidin magnetic beads were used
to capture fragments targeted by the probes. The captured fragments
were then amplified and purified. A BioAnalyzer instrument (Agilent)
was then used to analyze the enriched libraries. After evaluation, the
enriched libraries were sequenced using a paired-end 150-bp sequenc-
ing protocol onthe NovaSeq platform (Illumina). Following sequenc-
ing, HLA genotypes were predicted using HLA Explorer (Omixon).

TCRcloning

The TCR sequences for each a and 3 gene pair were codon-optimized
and used to generate gene blocks (IDT) in which the TCRf3 and TCRa
sequences were separated by aP2A sequence. Flanking homology arms
wereincluded to permit knock-ininto the human TRAClocus, as previ-
ously described*’. The gene blocks were cloned into pUC19 plasmids by
Gibson assembly and the sequence was verified by Sanger sequencing.

Primary human T cell culture

Primary human CD8" T cells were isolated from commercially pur-
chased leukopaks (Vitalant or Stemcell; unidentified healthy donors).
PBMCswereisolated by Ficoll centrifugationand cryopreserved before
each experiment. In all experiments, T cells were cultured in RPMI
medium containing 10% FBS, 2-mercaptoethanol, penicillin-strep-
tomycin with L-glutamine, sodium pyruvate, MEM vitamin solution
and nonessential amino acids (all Fisher Scientific). TCR knock-in was
performed as previously described*’, with minor changes. Briefly,
CD8" T cells were isolated from thawed PBMCs by negative selection
(Miltenyi) and rested overnight with 5 ng ml™ human IL-7. The CD8"
T cells were stimulated 1:1with anti-human CD3/CD28 magnetic Dyna
beads (Fisher Scientific), 20 ng ml™ human IL-2, 5 ng mI™ human IL-7
and 5 ng ml™IL-15 for 48 h previous to T cell electroporation.

Ribonucleoprotein production for TCR knock-in

Guide RNAs specific for the human TRAC locus were generated by
incubating CRISPR RNA (crRNA; AGAGTCTCTCAGCTGGTACA) 1:1 with
trans-activating crRNA (Dharmacon) for 30 min at 37 °C to yield a final

concentration of 80 puM. Polyglutamic acid (0.8 volume) was added to
the guide RNA as previously described®. Cas9 (QB3; Macrolab) was added
1:1withthe guide RNA and incubated for 15 minat 37 °C to yielda20 pM
ribonucleoprotein, which was used immediately for electroporation.

TCR knock-in of primary human T cells

Dyna beads were removed from the T cell culture using an EasySep
separation magnet (StemCell) 48 h after CD8" T cell stimulation. The
T cells were then centrifuged at 200g for 9 min and resuspended in
Lonza electroporation P3 buffer with supplement (20 pl per 1 x10°
Tcells). The T cells (20 pl) were electroporated with 3.5 pl ribonucleo-
proteinand1 pg TCR-encoding plasmid DNA (1-2 pl) usinga Lonza4D
Nucleofector 96-well electroporation system and pulse code EH115
(ref. 61). CD8" T cells were immediately rescued by the addition of 80 pl
warmed T cell medium and incubationin a37 °Cincubator for 15 min.
The cells were then splitinto fifths in 96-well round-bottomed plates;
T cell medium plus 10 ng mI™ IL-2 was added to the samples to a final
volume of 200 pl. The CD8' T cells were expanded for a minimum of
96 hbefore testing for pMHC tetramer binding. The T cells were re-fed
with a half volume of fresh medium and IL-2 every 3-4 days.

pMHC tetramer screening

Ultraviolet photolabile pMHC I monomers for HLA-A*01:01,
HLA-A*A2:01, HLA-A*03:01, HLA-A*24:02, HLA-B*08:01, HLA-B*15:01,
HLA-B*35:01 and HLA-B*44:02 were obtained from the NIH Tetramer
Core. Custom peptide-loaded MHC | monomers were generated
by ultraviolet light-ligand exchange as previously described®.
HLA-A*31:01 pMHC monomers (Easymers) were purchased from
ImmunAware and loaded with custom peptides according to the sup-
plier’sinstructions. Tetramerization was carried out using streptavidin
conjugated to the fluorophores phycoerythrin and allophycocyanin
(Life Technologies). CD8" T cells were treated with 100 nM dasatinib
(StemCell) for 30 minat 37 °C, followed by staining with the appropriate
tetramers (2-3 pg ml™) for 30 min at room temperature. All tetramers
were used within 3-4 weeks of synthesis. The cells were washed in FACS
buffer (1xDPBS without calcium or magnesium, 0.1% sodium azide,
2 mMEDTA and 1% FBS) and stained with anti-CD8 PECy7 (eBioscience;
SK1), anti-TCR BV421 (BioLegend; IP26), a PerCP/Cy5.5 dump antibody
mixture containing anti-CD4 (BioLegend; RPA-T4), anti-CD14 (BioLe-
gend; HCD14), anti-CD16 (BioLegend; B73.1), anti-CD19 (BioLegend;
HIB19; all antibodies at 1:100) and Aqua506 viability dye (1:1,000; Life
Technologies) for 30 minat4 °C. The cells were then washed and resus-
pendedin FACS buffer, and analyzed by flow cytometry (LSRFortessa).
Only experiments where the forward versus side-scatter gate contained
at least 10% lymphocytes and CD8" T cells expressed fewer than 20%
TCRs were used for analysis to ensure a large number of T cells with
high TCR-knockout efficiency was achieved (Extended Data Fig. 5a).

pMHCyeast display selection

Yeast libraries were developed as previously described”. Yeast allele
libraries were thawed in SDCAA (pH 5) medium, passaged, induced in
SGCAA (pH 5) and selected using biotinylated soluble TCR coupled to
streptavidin-coated magnetic MACS beads (Miltenyi) as previously
described®. Briefly, 2 x 10° yeast cells from all four length libraries
underwent negative selection with 250 pl beads in 5 ml PBE (PBS con-
taining 0.5% BSA and 1 mM EDTA) for 1 h with rotation at 4 °C. After
passage through an LS column (Miltenyi) on a magnetic stand and
three washes with 3 ml PBE, the flow-through was incubated with 250 pl
beads (pre-incubated with400 nM biotinylated TCR) for 3 hat 4 °Cwith
rotation. The yeast were magnetically separated through an additional
LS column, washed three times with 3 ml PBE and the elution was cul-
tured overnightin SDCAA (pH 5) following an SDCAA wash to remove
residual PBE. The yeast were induced in SGCAA (pH 5) for 2-3 days
before further selection, with subsequent selections using 50 pl beads
or TCR-coated beads in 500 pl PBE.
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Deep sequencing of pMHC yeast libraries

DNA was isolated from 5-10 x 107 yeast cells per selection using
a Zymoprep Il kit (Zymo Research). Unique barcodes and random
eight-mer sequences were added to the sequencing product by PCR
and amplified for 25 cycles to allow for downstream demultiplex-
ing and improved clustering. A subsequent PCR added Illumina chip
primer sequences, resulting in products containing lllumina P5-Truseq
read 1-(N8)-Barcode-pHLA-(N8)-Truseq read 2-llluminaP7. Thelibrary
was purified by double-sided SPRIbead isolation (Beckman Coulter),
quantified using a KAPA library amplification kit (Illumina) and deep
sequenced on an Illlumina MiSeq instrument with a 2 x 150 V2 kit for
low-diversity libraries.

Generation of HLA-expressing APC lines

Thegenes for HLA-A*31:01, HLA-A*29:02, HLA-B*08:01 and HLA-B*35:01
were codon-optimized and synthesized as gene blocks (IDT). The
gene blocks were cloned into the pHR-CMV Lacz lentivirus vector by
Gibson assembly and sequences were verified by Sanger sequencing.
The vector was expressed in K562 cells by lentiviral transduction and
selected by puromycin.

Cytokine assays

The APCs for all cytokine assays were T2 cells expressing HLA-A*02:01,
HLA-A*01:01 or HLA-A*03:01, or K562 cells expressing HLA*29:02,
HLA-A*31:01, HLA-B*08:01 or HLA-B*35:01. The APCs were pulsed over-
night with 10 pg ml™ peptide or vehicle control in serum-free medium.
CD8' T cells (2 x 10%) were stimulated with peptide-loaded APCs (1 x 10°
per condition) for 6 h in the presence of 1:500 GolgiStop (BD), 1:500
GolgiPlug (BD) and 1:200 CD28/CD49d (Fastimmune; BD). The cells
were washed with FACS buffer and stained with the cell surface antibod-
ies as described in the ‘pMHC tetramer screening’ section (anti-CDS8,
anti-TCR, dump channel antibody mixture and live/dead dye). Next,
the cells were washed, fixed and stained with anti-human IFN-y Alexa
647 (BioLegend; 4S.B3) and anti-human TNF-a Alexa488 (BioLegend;
Mab11) in permeabilization buffer (BD). Finally, the cells were washed
and collected on an LSRFortessa system.

Generation of TCR-expressing NFAT-mCherry Jurkat cells

Jurkat E6-1T cells (American Type Culture Collection, TIB-152) were
maintained in RPMI medium supplemented with L-glutamine and
10% FBS. Endogenous TRAC and TRBCI expression in Jurkat cells
were knocked out with synthetic crRNAs designed using the Alt-R
system (IDT) containing the following genomic target sequences:
TRBC1, 5-CGTAGAACTGGACTTGACAG-3" and TRAC, 5-CTTCAAGAG
CAACAGTGCTG-3'. The crRNA was complexed with 1:1trans-activating
c¢rRNA (IDT; 0.2 nmol each), followed by 0.1 nmol recombinant Cas9 pro-
tein(Macrolab). Theribonucleoproteins were then transduced intoJur-
kat T cells usinga Amaxa P3 primary cell nucleofector kit (Lonza; pulse
code CK116). TRAC knockout was performed first and loss of surface
TCRa expression was confirmed by flow cytometry. TRAC-knockout
cells underwent subsequent knockout of TRBC1, which had previ-
ously been shown to lead to loss of TCRaf3 expression in line with
overexpressed TCRa. To track TCR activation, a lentiviral vector was
constructed that contained the NFAT transcriptional reporter NBV**
upstream of a minimal CMV reporter driving mCherry fluorescent
marker expression, and constitutive expression of iRFP670 under a
Pgk promoter provided a marker of transduction. Jurkat cells lack-
ing endogenous TCRaf3 expression were transduced with the vector
and sorted for iRFP fluorescence and lack of mCherry background
fluorescence. For TCRs corresponding to CD8* T cells, an additional
lentiviral vector encoding human CD8a was expressed in the Jurkat
cells and the cells were sorted for uniform CD8« expression before
TCRtransduction. For TCR expression, lentiviral expression constructs
that encode a human Pgk promoter and the coding sequence of each
specific TCRa chain with the IRES-neomycin resistance gene or each

TCRp chain with the IRES-blasticidin resistance gene were generated.
Lentiviral particles were packaged in HEK293T cells following stand-
ard protocols and concentrated 10x using the Lenti-X Concentrator
reagent (Takara). Viral particles were added to T cells at a low multi-
plicity of infection and expression was ensured by passaging cells for
5 days under antibiotic selection with 10 pg ml™blasticidin (Gibco) and
1mg mI™ G418 (Teknova).

TCR-expressing Jurkat cell assays

TCR-expressing Jurkat cells (1 x 10°) were stimulated for 24 h with
HLA-allele-transduced APCs (1 x 10°) loaded with 10 pug ml™ peptide
or vehicle control. Antigen-reactive CD8" cells were identified by coex-
pression of NFAT-mCherry and anti-human CD69-phycoerythrin
(BioLegend; FN50).

Generation of lymphoblastoid cell lines

A Pan B cell isolation kit (Miltenyi) was used to isolate B cells from
frozen PBMCs. The B cells (1 x 10° cells mI™) were incubated 1:1 with
pre-warmed EBV supernatant (B95.8 strain) for 1 h at 37 °C, followed
by the addition of 1 pg mI™ R848 and 100 ng mI™ CD40L. The cells
were cultured for two weeks, with medium changes as needed, and
expanded into larger plates. The LCLs were cryopreserved for future
useincellular assays.

TCR-expressingJurkat cell co-culture with lymphoblastoid
celllines

Jurkat cells expressing the TCR of interest (target TCR Jurkat cells)
were co-cultured with LCLs carrying at least one matching MHC |
allele (HLA-matched LCLs) at a 1:1 ratio (100,000 cells each per well)
in a 96-well plate for 24 h at 37 °C. To assess specificity, negative con-
trol conditions included co-culture of (1) target TCR Jurkat cells with
HLA-mismatched LCLs and (2) HLA-matched LCLs with Jurkat cells
expressing an HLA-mismatched TCR. Jurkat reactivity was assessed
by measurement of coexpression of NFAT-mCherry and CD69-phyco-
erythrin as described in the ‘TCR-expressingJurkat cell assays’ section.

DNA and RNA extraction from cerebrospinal fluid

Cell-free CSF supernatant was obtained after centrifugation as
described earlier for single-cell sequencing and stored at —-80 °C. DNA
and RNA were each extracted from 400 pl CSF supernatant using a
ZYMO Quick-DNA/RNA pathogen MagBead kit (Zymo Research) accord-
ing to the manufacturer’s instructions. The extracted DNA was eluted
in 50 pl nuclease-free water. DNase | treatment was performed on the
RNA-extraction samples before elutioninto 30 pl nuclease-free water.
AnEBV-transformed LCL was used as a positive control; Jurkat cells and
water only were used as negative controls. The DNA concentration and
purity were assessed using a Nanodrop spectrophotometer (Thermo
Fisher Scientific). The extracted DNA and RNA were stored at —20 °C
until use for PCR amplification. Complementary DNA was synthesized
using aProtoScript first strand cDNA synthesis kit (NEB) using 6 pl RNA
per 20 plreaction volume according to the manufacturer’sinstructions.

PCR amplification of cerebrospinal fluid DNA

The following previously described® primers (IDT) for the BZLF1
promoter were used: 5’-AGCATGCCATGCATATTTC-3’ (forward) and
5-TTGGCAAGGTGCAATGTTT-3’ (reverse). PCR reactions were per-
formed using a Qiagen Taq PCR core kit according to the manufac-
turer’sinstructions. Each 30-pl reaction contained 1XxPCR Buffer with
MgCl,,200 pMdNTPs, 0.2 pM forward and reverse primers,10-100 ng
template DNA, 0.75 U Qiagen Taq DNA polymerase and nuclease-free
water to the final volume. Amplification was carried out in a thermal
cycler (Bio-Rad thermal cycler with 96-deep-well C1000 block) using
the following cycling conditions: an initial denaturation step at 95 °C
for3 min, followed by 34 cycles of denaturationat 95 °Cfor 30 s, anneal-
ing at 58 °C for 30 s and extension at 72 °C for 1 min. A final extension
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step at 72 °C for 5 min was performed, followed by a hold at 4 °C. The
PCR products were analyzed using agarose gel electrophoresis and
visualized under ultraviolet light using a gel documentation system
(LI-COR Odyssey M Imager). For samples showing positive amplifica-
tion, the remaining PCR reaction volume was directly submitted to
Molecular Cloning Laboratories for Sanger sequencing. CSF samples
were considered EBV-positive if sequencing results correctly aligned
to the reference sequence of the amplified target.

Analysis of cerebrospinal fluid DNA and cDNA using ddPCR
Primers and probes for ddPCR were synthesized as PrimeTime qPCR
assays (IDT). Probes targeting EBV genes were labeled with FAM and
probes for the housekeeping reference genes (RPP30 or GAPDH) were
labeled with HEX (Supplementary Table 22). Oligonucleotides were
used as previously published for EBER2 (ref. 66), BamHI-W*" and RPP30
(ref. 68). A volume of 1.25 pl of each 20x target primers—-probe mix in
Tris-EDTA was used with 2xddPCR Supermix for probes without deox-
yuridine triphosphate and 10 pl DNA. A total reaction volume of 20 pl
was loaded with a 70-pl oil droplet using a QX100 droplet generator
(Bio-Rad). The emulsion of approximately 40 pl was slowly transferred
to ddPCR 96-well plates (Bio-Rad, 12001925) and heat-sealed with foil.
Amplification was carried out in a thermal cycler (Bio-Rad Thermal
Cycler with 96-Deep Well C1000 block) using the following cycling
conditions: aninitial denaturation step at 95 °C for 10 min; 39 cycles of
30sat94 °Cand1minat57 °C, followed by 10 min at 98 °C. Analysis of
the ddPCR datawas performed using the Bio-Rad QuantaSoftTM soft-
ware. Data from the droplet reader are given as copies per microlitre
and relative expression was calculated as the target gene:reference
gene ratio. Any sample that was not detected by the housekeeping
gene was repeated and the threshold was set separately according
to the negative control with water. All samples were run in duplicate.

Statistical analyses

Differential gene expression comparisons between groups were per-
formed using the two-sided Wilcoxon rank-sum test with Bonferroni
correction. Shannon entropy results were compared using Brown-
Forsythe’s and Welch’s analysis of variance with multiple compari-
sons using Dunnett T3 corrections. Comparisons of CSF-enriched
clonotypes T cell (for example, CD8" versus CD4" T cells and MS/CIS
versus HC/OND) and ddPCR results were performed using unpaired
two-tailed Student’s t-tests with Welch’s correction using GraphPad
Prism (v10.6.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldata are available in the main text or the supplementary materials.
The scRNA-seqdatahave been uploaded to the Gene Expression Omni-
bus (GEO) repository under BioProject PRJNA549712 (GEO accession
number GSE133028) and the scTCR-seq datahave been uploaded under
BioProject PRJNA1232831at GEO accession number GSE291328. Source
dataare provided with this paper.

Code availability

The code for all scRNA-seq and scTCR-seq analysis can be
found at https://github.com/UCSF-Wilson-Lab/MS_Tcell_CSF_PBMC_
single_cell_study_analysis.
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Extended Data Fig. 1| T cell gene expression analysis. Expression for the indicated genes is shown for all T cells (blood and CSF combined) after merging scRNA-seq
and scTCR-seq data.
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of tetramer binding and cytokine reactivity of the indicated peptides to two n=4andn=2,ATEIGWWWY n=6andn=2, ATDAGWWWGn=6andn=2,
different TCRs. Cytokine reactivity reflects subtracted background from AKDAGWWWY n=6andn=4,YTEVSWWWY n=4andn=4).
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Extended Data Fig. 8| HLA-A*29:02 EBV peptide testing. Representative flow cytometry analysis of Jurkat reporter cells expressing TCR 94669_8198 were co-cultured
with HLA-A*29:02-expressing K562 cells pulsed with the indicated EBV peptides or no peptide for 24 h (all tested in triplicate). Antigen reactivity was assessed by
coexpression of CD69 and NFAT-mCherry.

Nature Immunology


http://www.nature.com/natureimmunology

Article

https://doi.org/10.1038/s41590-025-02412-3

All other highly expanded
CD8+ T cell clonotypes

Frequency of T cell clonotypes in CSF (%)

Expansion category
o CSF highly expandedienriched
 Allother clonotyppes

Cell count

o
0000

0 1 2 3 4 5
Frequency of T cell clonotypes in PB (%)

Average Expression
° ° ® l 04
0.0
-0.4

Percent Expressed
.25

et . o .. o
@ 100
CcD27 KLF2 ITGAE CXCR3 CXCR4 CD69 S1PR1 CCL4 CCL5
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Extended Data Fig. 10 | EBV DNA PCR amplification in CSF. a, Representative
agarose gel of BZLF1DNA amplification (239-bp fragment) in the CSF supernatant
ofthe indicated patient samples. DNA from EBV-transformed lymphoblastoid
celllines (LCL) were used as positive control and water as a negative control.
Samples with a positive band underwent Sanger sequencing for confirmation.

b, Representative DNA ddPCR results of EBER2 and RPP30 (housekeeping gene)
from CSF supernatant is shown. The two columns with many positive droplets
with high signal are from LCLs as positive control. The positive threshold (purple
line) was defined as the signal above the water negative control.
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All scRNA-seq data is available on BioProject PRINA549712 (GEO accession no. GSE133028). All scTCR-seq data will be made publicly available without restrictions
on BioProject PRINA1232831 effective January 1, 2026 (GEO accession no. GSE291328).
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Population characteristics Age, sex, diagnosis, MRI and CSF information, and treatment status were provided in Table 1 and Supplemental Table 1 of the
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Recruitment MS/CIS and control participants were enrolled through the University of California San Francisco (UCSF) ORIGINS or
Expression, Proteomics, Imaging, Clinical (EPIC) studies (https://epicstudy.ucsf.edu/). This study is designed to enroll patients
early after experiencing an acute CNS demyelinating event. Healthy controls and OND patients were enrolled in the
biobanking study “Immunological Studies of Neurologic Subjects”. Informed consent was obtained from all participants in
this study. No compensation was provided to study participants. We are not aware of any self-selection bias which would
alter the results of this study as all patients and controls meeting eligibility criteria were able to enroll.
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Sample size Sample size was determined by sample availability. No sample size calculations were performed. Given the disproportionate number of
participants in different disease categories, we grouped MS and CIS patients together (n = 13) and against OND and HC together as a
comparison non-MS group (n = 5).

Data exclusions  No data were excluded. Specific criteria were employed for quality control and analysis of scRNA-seq and scTCR-seq data as described in
Materials and Methods.

Replication All flow cytometry experiments were performed in a minimum of two independent experiments. ddPCR experiment results were performed
in duplicate.

Randomization  Samples were allocated based on clinical disease category.

Blinding Researchers were not blinded during sample acquisition and data analysis as it was important for the investigators to know the disease status
of the subjects in order to complete the data analysis.
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Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

For pMHC | tetramer analysis: Primary human CD8+ T cells expressing TCRs of interest were generated by CRISPR knockin as
described in Materials and Methods. CD8+ T cells were treated wisdfsdfdth 100 nM dasatinib (StemCell) for 30 min at 37 °C
followed by staining with the appropriate tetramers (2-3 pg/mL) for 30 min at room temperature. Cells were washed in FACS
buffer and stained with the indicated cell surface antibodies for 30 minutes at 4°C. Cells were then washed and resuspended
in FACS buffer and analyzed by flow cytometry.

For intracellular cytokine staining: APCs for were pulsed with 10 pug/ml peptide or vehicle control overnight in serum-free
media. CD8+ T cells (2 x 105) were stimulated with peptide-loaded APCs (1 x 105 per condition) for 6 hours in the presence
of 1:500 GolgiStop (BD), 1:500 GolgiPlug (BD), and 1:200 CD28/CD49d (Fastimmune; BD). Cells were washed with FACS buffer
and stained with the indicated cell surface antibodies for 30 minutes at 4°C. Cells were washed, fixed, and stained with anti-
human IFNg Alexa 647 and anti-human TNFa Alexa 488 in permeabilization buffer (BD). Cells were then washed and
collected on an LSRFortessa.

For Jurkat assays: TCR-expressing Jurkats were stimulated for 24 hours with HLA allele transduced APCs loaded with 10 ug/
ml peptide or vehicle control. Antigen-reactive CD8+ cells were identified by co-expression of NFAT-mCherry and anti-human
CD69 PE.

BD LSRFortessa

BD FACSDiva v9.0 was used for sample collection.
Flowjo v10.10.0 was used for analysis.

No sorting was performed in this study.

Lymphocytes were identified by FSC-A/SSC-A followed by singlet gating using FSC-H/FSC-W. CD8+ T cells were selected
against CD14/CD16/CD19 dump channel negative cells followed by live cell selection. After gating on TCR+ expressing CD8+ T
cells, antigen-specific CD8+ T cells were identified by pMHC tetramer dual positivity (PE/APC) or intracellular cytokine
production (IFNg vs TNFa). After gating on live CD8+ T cells in TCR-expressing Jurkats, antigen reactivity was determined by
dual positivity of NFAT-mCherrry and CD69 PE.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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