LETTERS

https://doi.org/10.1038/541591-020-0944-y

natare,,
medicine

W) Check for updates

A single-cell atlas of the peripheral immune
response in patients with severe COVID-19
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There is an urgent need to better understand the pathophysi-
ology of Coronavirus disease 2019 (COVID-19), the global
pandemic caused by SARS-CoV-2, which has infected more
than three million people worldwide'. Approximately 20%
of patients with COVID-19 develop severe disease and 5%
of patients require intensive care’. Severe disease has been
associated with changes in peripheral immune activity, includ-
ing increased levels of pro-inflammatory cytokines®“ that may
be produced by a subset of inflammatory monocytes®¢, lym-
phopenia™ and T cell exhaustion®'°. To elucidate pathways
in peripheral immune cells that might lead to immunopathol-
ogy or protective immunity in severe COVID-19, we applied
single-cell RNA sequencing (scRNA-seq) to profile periph-
eral blood mononuclear cells (PBMCs) from seven patients
hospitalized for COVID-19, four of whom had acute respira-
tory distress syndrome, and six healthy controls. We iden-
tify reconfiguration of peripheral immune cell phenotype in
COVID-19, including a heterogeneous interferon-stimulated
gene signature, HLA class Il downregulation and a develop-
ing neutrophil population that appears closely related to plas-
mablasts appearing in patients with acute respiratory failure
requiring mechanical ventilation. Importantly, we found that
peripheral monocytes and lymphocytes do not express sub-
stantial amounts of pro-inflammatory cytokines. Collectively,
we provide a cell atlas of the peripheral immune response to
severe COVID-19.

To profile the peripheral immune response to severe COVID-19,
we performed Seq-Well-based'"'? massively parallel single-cell RNA
sequencing (scRNA-seq) on eight peripheral blood samples from
seven hospitalized patients with polymerase chain reaction with
reverse transcription (RT-PCR)-confirmed SARS-CoV-2 infection
and six healthy controls. The demographics and clinical features of
these patients are listed in Fig. 1a. The seven patients profiled were
male, aged 20 to >80 years. We collected samples between 2 and
16 days following symptom onset; healthy controls were asymp-
tomatic, four male and two female, and aged 30-50 years (Fig. 1a
and Extended Data Fig. 1). Four of eight COVID-19 samples were
collected from ventilated patients who were diagnosed with acute
respiratory distress syndrome (ARDS; Fig. la). One patient (C1)
was sampled twice: at nine days post-symptom onset while only
requiring supplemental oxygen and at 11 days post-symptom onset
following intubation. Three patients received azithromycin, which

has potential immunomodulatory effects", at some point prior to
sampling (Fig. 1a). Five patients received remdesivir in the hospital,
four prior to sampling.

We sequenced 44,721 cells with an average of 3,194 cells per sam-
ple (Supplementary Table 1). We created a cells-by-genes expres-
sion matrix and performed dimensionality reduction by uniform
manifold approximation and projection (UMAP) and graph-based
clustering, which identified 30 clusters (Fig. 1b,c). We calculated
each cluster’s most highly differentially expressed (DE) genes to
manually annotate clusters with their respective cellular identities
(Fig. 1b,c, Supplementary Table 2 and Methods). Dimensionality
reduction indicated substantial phenotypic differences between
patients with COVID-19 and controls, predominantly in mono-
cytes, T cells and natural killer (NK) cells (Fig. 1b,c).

We next quantified COVID-19-driven changes in the cell type
proportions. Several innate immune cell subsets were depleted in
patients with COVID-19, including y8 T cells, plasmacytoid den-
dritic cells (pDCs), conventional dendritic cells (DCs), CD16*
monocytes and NK cells, with the latter three cell types only signifi-
cantly depleted in samples from patients with ARDS (Fig. 1d). These
trends were not explained by the time post-fever or post-symptom
onset (Extended Data Fig. 2). We also noted increased plasmablast
proportions in patients with COVID-19; these levels were most
elevated in patients with ARDS (Fig. 1d), suggesting that more
severe cases may be associated with a more robust humoral immune
response, similar to previous reports''. Peripheral plasmablasts
from patients with COVID-19 did not appear to share particular
immunoglobulin V genes (Extended Data Fig. 3a).

Finally, a novel cell population that we annotated as ‘develop-
ing neutrophils’ was significantly increased only in patients with
ARDS (Fig. 1d). These cells express several genes encoding neu-
trophil granule proteins (for example, ELANE, LTF and MMPS;
see Fig. 4 and Supplementary Table 2 and 3)'°, but do not express
genes encoding canonical neutrophil markers such as FCGR3B
and CXCR2 (Supplementary Table 3), and occupy a similar space
as plasmablasts rather than canonical neutrophils in the UMAP
embedding (Fig. 1¢). In addition, they encompassed cells expressing
CEACAMS, ELANE and LYZ, similar to recently described neutro-
phil progenitors'”'%, suggesting that these cells represent neutrophils
at various developmental stages.

We next analyzed monocytes with more granularity, as this
cellular compartment appeared to be most strongly remodeled
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Fig. 1| Expansion of plasmablasts and depletion of multiple innate immune cell subsets in the periphery of patients with COVID-19. a, Demographics,
sample characteristics and disease course of patients with COVID-19. b, UMAP dimensionality reduction embedding of peripheral blood mononuclear cells
(PBMCs) from all profiled samples (n=44,721 cells) colored by donor of origin. IDs of patients with COVID-19 (n=7) begin with ‘C" and are colored in
shades of orange (patients who were not ventilated at the time of draw) or red (patients with ARDS who were ventilated at the time of draw) and those of
healthy donors begin with ‘H’ (n=6) and are colored in blues. ¢, UMAP embedding of the entire dataset colored by orthogonally generated clusters labeled
by manual cell type annotation. d, Proportions of each cell type in each sample colored by donor of origin. The x axes correspond to the ventilation or ARDS
status of each patient. Shown are exact two-sided P values by the Wilcoxon rank-sum test. n=6, n=4 and n=4 biologically independent samples for
Healthy, NonVent and ARDS, respectively. Boxplot features: minimum whisker, 25th percentile —1.5 X inter-quartile range (IQR) or the lowest value within;
minimum box, 25th percentile; center, median; maximum box, 75th percentile; maximum whisker, 75th percentile +1.5 x IQR or greatest value within.
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Fig. 2 | Robust HLA class Il downregulation and type | interferon-driven inflammatory signatures in monocytes are characteristics of SARS-CoV-2

infection. a, UMAP embedding of all monocytes colored by sample of origin.

n=10,339 cells are plotted from n=14 biologically independent samples.

b, UMAP embedding of monocytes colored by CD14 and FCGR3A (encoding CD163, to distinguish between CD14+ and CD16* monocytes), HLA-DPBT and

HLA-DMA (illustrating HLA class Il downregulation in patients with COVID-1

9) and ST00A9 and IFI27 (demonstrating canonical inflammatory signatures

in patients with COVID-19). ¢, UMAP embedding of monocytes colored by genes encoding pro-inflammatory cytokines previously reported to be produced
by circulating monocytes in severe COVID-19¢, namely TNF, IL6, IL1B, CCL3, CCL4 and CXCL2. d,gh, Heatmaps of DE genes (d), differentially regulated
canonical pathways (g) and differentially regulated predicted upstream regulators (h) between CD14* monocytes of each COVID-19 sample compared

to CD14* monocytes of all healthy controls. The heatmap in d is colored by average log(fold-change), while heatmaps in g and h are colored by z-score.

All displayed genes, pathways and regulators are statistically significant at the P < 0.05 confidence level by Seurat’s implementation of the Wilcoxon
rank-sum test (two-sided, adjusted for multiple comparisons using Bonferroni's correction, in d) or Ingenuity Pathway Analysis (IPA) implementation of
the Fisher exact test (right-tailed, in g and h). The 50 genes (d), 25 pathways (g) or 50 regulators (h) with the highest absolute average log(fold-change)
or z-score across all donors are labeled. Genes with a net positive average log(fold-change) or z-score are labeled in red; genes with a net negative average
log(fold-change) or z-score are labeled in blue. DPS, days post-symptom onset; DTF, days from first reported or measured fever. e, Boxplot showing

the mean HLA class Il module score of CD14+ monocytes from each sample,

colored by healthy donors (blue), non-ventilated patients with COVID-19

(orange) or ventilated patients with COVID-19 (red). Shown are exact P values by two-sided Wilcoxon rank-sum test. n=6, n=4 and n=4 biologically
independent samples for Healthy, NonVent and ARDS, respectively. f, Dot plot depicting percent expression and average expression of all detected HLA
genes in CD14+ monocytes by donor. i, Boxplot showing the IFNA module score of each cell, colored by healthy donors (blue), non-ventilated patients
with COVID-19 (orange) or ventilated patients with COVID-19 (red). j, Scatter plots depicting the correlation between the mean ISG module score of
CD14* monocytes in each sample and the patient age (top) and time-distance from first measured or reported fever (bottom). Shown are Pearson’s r,

exact two-sided P values and the 95% confidence interval. n=8 (top) and n=

A, 1,561; C1B,1,858; C2, 217; C3,1,102; C4, 713; C5, 462; C6, 277; C7, 2,095;

6 (bottom) independent biological samples. Number of cells for d,f-i: C1
H1, 680; H2, 325; H3, 215; H4, 166, H5, 444; H6, 224. For d,g-h, cells from

all healthy controls (n=2,054 cells) are used to generate comparisons with each COVID-19 sample. For e,i, boxplot features: minimum whisker, 25th

percentile —1.5 % IQR or the lowest value within; minimum box, 25th percent
percentile + 1.5 X IQR or greatest value within.

in patients with COVID-19 (Fig. 1b,c). Dimensionality reduction
of monocytes alone indicated a strong phenotypic shift in CD14*
monocytes and a depletion of CD16* monocytes (Fig. 2a,b). We first
examined expression of genes encoding inflammatory cytokines
previously reported to be produced by circulating monocytes in
COVID-19°°. Notably, we did not identify substantial expression of

1072

ile; center, median; maximum box, 75th percentile; maximum whisker, 75th

pro-inflammatory cytokine genes TNF, IL6, ILI1B, CCL3, CCL4 or
CXCL2 by peripheral monocytes (Fig. 2c), suggesting that periph-
eral monocytes do not contribute to the putative cytokine storm
in COVID-19.

To determine genes driving phenotypic remodeling in COVID-19
samples, we identified DE genes, pathways and upstream regulators by
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comparing cells of each COVID-19 sample to cells of all healthy con-
trols (Fig. 2d and Supplementary Tables 4-24). Eight genes encoding
HLA class IT molecules were downregulated in at least six COVID-19
samples relative to healthy controls (Fig. 2d), concordant with other
studies'*”. Scoring of individual cells by expression of all HLA class
II-encoding genes revealed that this downregulation was significant
in all patients with COVID-19, but potentially more prominent in
ventilation-dependent patients (Fig. 2e,fand Supplementary Table 25).
HLA class II downregulation is reflected in differentially regulated
gene pathways including reduction of crosstalk between dendritic
cells and natural killer cells (Fig. 2g and Supplementary Table 11).
HLA class IT downregulation was also noted in B cells (Extended Data
Fig. 3b,c and Supplementary Table 10), and the extent of downregu-
lation tended to be greater in older patients (Extended Data Fig. 4).
Non-classical HLA class I genes HLA-E and HLA-F were also down-
regulated to a lesser degree and in fewer samples, while canonical
HLA class I genes HLA-A, HLA-B and HLA-C were not consistently
up- or downregulated (Fig. 2f).

Additionally, 32 interferon (IFN)-stimulated genes (ISGs) were
upregulated by CD14* monocytes in at least one COVID-19 sam-
ple, but this IFN signature was not uniform across all COVID-19
samples (Fig. 2d and Supplementary Table 4). Analysis of upstream
regulators in CD14* monocytes revealed an absence of predicted
IFN and IFN regulatory factor (IRF) activities in donors C2, C3 and
C7 relative to the remaining COVID-19 donors (Fig. 2h). Similar
patterns were observed in other cellular compartments (Extended
Data Figs. 5 and 6 and Supplementary Tables 18-24). To analyze
this orthogonally, we scored individual CD14* monocytes in the
dataset by their expression of known ISGs and again saw minimal
appreciable ISG signatures in donors C2, C3 and C7 (Fig. 2i and
Supplementary Table 25). The differential ISG signature was not
explained by ventilation or ARDS (Fig. 2h,i), but a higher ISG score
trended towards a positive correlation with age and a negative cor-
relation with time-distance from fever onset (Fig. 2j).

We next analyzed T and NK lymphocytes in COVID-19 sam-
ples. UMAP embedding of T and NK cells identified substantial
differences in cellular phenotypes of CD4* T, CD8* T and NK cells
(Fig. 3a,b). We found that CD56%™ NK cells, generally thought to
contribute to antiviral host defense through cell-mediated cytotox-
icity’*?, were depleted primarily in ventilator-dependent patients,

whereas CD56"%¢" NK cells, which are considered robust producers
of IFN-y and tumor necrosis factor a*’, were significantly depleted in
all COVID-19 samples (Fig. 3c). Additionally, we identified a clus-
ter of proliferative lymphocytes cells that appeared to be increased
in most patients with COVID-19 (Fig. 3c). As SARS-CoV-2 infec-
tion has been associated with cytotoxic lymphocyte exhaustion'’,
we profiled the expression of genes encoding canonical exhaus-
tion markers by T and NK cells. However, there was no significant
evidence of CD8" T cell exhaustion in patients with COVID-19
and, although exhaustion markers appeared elevated among CD4*
T cells, these changes were not significant (Extended Data Fig. 7 and
Supplementary Table 25). NK cells from most patients with COVID-
19 appeared exhausted based on expression of LAG3, PDCDI and
HAVCR?2 (Fig. 3d). Similar to our observations in peripheral mono-
cytes, we did not detect substantial expression of pro-inflammatory
cytokine genes by T or NK cells (Fig. 3¢ and Extended Data Figs. 5
and 8); this again indicates that transcription of pro-inflammatory
cytokines by peripheral leukocytes is unlikely to be a major
contributor to the putative cytokine storm in COVID-19.

We next calculated T and NK cell DE genes from each sample
from a patient with COVID-19 relative to healthy controls, and
used these genes to identify enriched gene pathways and upstream
regulators. NK cells displayed a remarkably heterogeneous response
between patients with COVID-19 (Fig. 3f and Supplementary Table
7). The most frequently downregulated genes included FCGR3A,
AHNAK and FGFBP2, which are associated with peripheral NK cell
maturity’’. The most commonly upregulated genes included ISGs
and NK cell activation genes like PLEK and CD38>*. We observed
similar heterogeneity of DE genes in CD4" and CD8* T cells, where
the most commonly upregulated genes were ISGs (Extended Data
Fig. 5 and Supplementary Tables 8 and 9).

Analysis of predicted upstream regulators indicated a strong
IFN-driven response that was starkly absent from half of the profiled
COVID-19 samples in both NK cells, CD4* and CD8" T cells (Fig. 3g,
Extended Data Figs. 5 and 6 and Supplementary Tables 21-23).
Given the importance of the IFN response and recent reports
that this response is diminished during COVID-19%%, we evalu-
ated ISG upregulation in each cell type to determine if ISGs were
coordinately expressed across all cell types or between individuals
(Fig. 3h). Although some ISGs were upregulated by most donors in

>
>

Fig. 3 | Heterogeneous patterns of NK cell exhaustion and IFN response in COVID-19. a, UMAP embedding of CD4* T cells, CD8* T cells and NK cells
colored by sample of origin. b, UMAP embedding colored by lineage genes (CD3D, CD3G, CD4, CD8A, FCGR3A and NCAMT) and selected functional/
phenotypic markers (GZMB and MKI67). For a,b, n=22,016 cells are plotted from n=14 biologically independent samples. ¢, Boxplots depicting proportions
of CD569™ NK cells, CD56&" NK cells and proliferating lymphocytes among total T and NK cells by sample of origin. The cells used to calculate each
proportion are highlighted in bold black in the adjacent UMAP embeddings and were identified by manually labeling clusters generated by clustering CD4*
T cells, CD8* T cells and NK cells alone. Shown are exact two-sided P values from the Wilcoxon rank-sum test. n=386 (top), n=4,899 (middle), n=781
(bottom) total from n=6, n=4 and n=4 biologically independent samples for Healthy, NonVent and ARDS, respectively. d, Boxplot showing the mean
expression score by only NK cells of three canonical markers of NK cell exhaustion: LAG3, PDCD1 (encoding PD-1) and HAVCR2 (encoding TIM-3). Shown

are exact two-sided P values by Wilcoxon rank-sum test. e, Boxplot showing the mean expression score by only NK cells of four canonical NK cell cytokine
genes (CCL3, CCL4, IFNG and TNF). Shown are exact P values by Wilcoxon rank-sum test. For d,e, n=6, n=4 and n=4 biologically independent samples for
Healthy, NonVent and ARDS, respectively. In c-e, boxplot features: minimum whisker, 25th percentile — 1.5 x IQR or the lowest value within; minimum box,
25th percentile; center, median; maximum box, 75th percentile; maximum whisker, 75th percentile +1.5 X IQR or greatest value within. f,g, Heatmaps of DE
genes (f) and differentially regulated predicted upstream regulators (g) between NK cells of each COVID-19 sample compared to NK cells of all healthy
controls. As in Fig. 2, fis colored by average log(fold-change), while g is colored by z-score. All displayed genes and regulators are statistically significant at
the P< 0.05 confidence level by Seurat's implementation of the Wilcoxon rank-sum test (two-sided, adjusted for multiple comparisons using Bonferroni's
correction, f) or IPA's implementation of Fisher exact test (right-tailed, g). The 50 genes or regulators with the highest absolute average log(fold-change)
or z-score across all donors are labeled. Genes with a net positive average log(fold-change) or z-score are labeled in red; genes with a net negative average
log(fold-change) or z-score are labeled in blue. DPS, days post-symptom onset; DTF, days from first reported or measured fever. Number of cells for f,g: C1
A, 354; C1B, 387; C2, 271; C3, 328; C4,104; C5, 518; C6, 58; C7,130; cells from all healthy controls (n=4,707 cells) were used to generate comparisons
with each COVID-19 sample. h,i, Heatmaps of differentially upregulated ISGs (h; Supplementary Table 25) and cytokines (i; Supplementary Table 25) in
donors with COVID-19, colored by the number of COVID-19 samples in which the gene was differentially expressed relative to all healthy controls. DE
genes used to construct these heatmaps are provided in Supplementary Tables 4-10. An ISG or cytokine was counted as differentially expressed if it had

an average log(fold-change) > 0.25 and an adjusted two-sided P value < 0.05 by Seurat’s implementation of the Wilcoxon rank-sum test. n= 8 biologically
independent COVID-19 samples compared to n=6 biologically independent healthy controls.
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a given cell type (for example, IFI27 in CD14* monocytes), generally
ISG upregulation was not uniform within cell types or between sub-
jects (Fig. 3h). In addition, we identified very few cytokines whose
upregulation was consistent between most patients with COVID-19
(Fig. 3i). These results collectively indicate heterogeneous periph-
eral immune activation in COVID-19.

We next analyzed the phenotypes of plasmablasts and devel-
oping neutrophils, which appeared to be phenotypically related
by dimensionality reduction (Fig. 1c). Indeed, when embedding
only these cell types, developing neutrophils appeared to project
linearly from plasmablasts, suggestive of a continuum of cellular
phenotype between the two cell types (Fig. 4a). Cellular complex-
ity (the number of genes sequenced per cell divided by the unique
molecular identifiers (UMIs) per cell) was not higher in develop-
ing neutrophils, making it unlikely that these cells were multiplets
(Extended Data Fig. 9). These cells are also unlikely to represent
granulocytes that have phagocytosed B cells, a feature of hemo-
phagocytic lymphohistiocytosis (HLH), which can be triggered by

NATURE MEDICINE

severe acute infections, because these patients did not have clinical
characteristics of HLH.

To analyze if there was any transition between the two cell types,
we performed a cellular trajectory analysis by RNA velocity**’.
Surprisingly, this analysis demonstrated that the linear continuum
of cellular phenotype represented a differentiation bridge from
plasmablasts to developing neutrophils (Fig. 4a); this spectrum of
plasmablast-to-neutrophil phenotype was observed in all patients
with ARDS and appeared unrelated to the transcriptional dynamics
of canonical neutrophils (Extended Data Fig. 10). The cells along
this differentiation bridge had lost expression of genes encoding
canonical plasmablast markers CD27, CD38 and TNFRSF17 and
instead sequentially acquired expression of genes encoding pri-
mary (DEF3A, ELANE and MPO), secondary (CHI3DL1, LCN2
and LTF) and tertiary (MMP8, MMP9 and CAMP) neutrophil
granule proteins, similar to canonical neutrophil development
(Fig. 4b). Recovery of inferred latent time, which is based solely on a
cell’s transcriptional dynamics, also suggested a continuum from
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Fig. 4 | Developing neutrophils are characteristic of patients with severe COVID-19 and may differentiate from plasmablasts. a, UMAP embedding

of plasmablasts and developing neutrophils, colored by annotated cell type and overlaid with the RNA velocity stream. b, UMAP embedding colored by
canonical plasmablast marker genes (CD27, CD38 and TNFRSF17) and genes encoding primary (DEF3A, ELANE and MPO), secondary (CHI3DLT, LCN2 and
LTF) and tertiary (MMP8, MMP9 and CAMP) neutrophil granule proteins®><°°, ¢, UMAP embedding colored by inferred latent time. d, Scatter plots showing
expression of a selection of cluster-defining genes across inferred latent time. e, UMAP embedding colored by orthogonally generated clusters. f, Dot plot
depicting expression of CEBP family members in each identified cluster. For all panels, n=3,187 cells from n=8 biologically independent COVID-19 samples

and n=6 biologically independent healthy controls.

plasmablasts to developing neutrophils (Fig. 4c). Although cells
at the beginning of this continuum are defined by expression of
Ig genes, neutrophil markers like CSF3R and MNDA (encoding
myeloid nuclear differentiation antigen) are upregulated as latent
time progresses (Fig. 4d).

A lymphocyte-to-granulocyte differentiation process is not with-
out precedent. Similar transitions have been described from B cells
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to macrophages or granulocytes, and the C/enhancer binding pro-
tein (EBP) transcription factor family has been implicated in con-
trolling this transdifferentiation’”*. Two C/EBP family members,
CEBPE and CEBPD, both known drivers of myeloid and granu-
locyte cell fates™*, are selectively expressed by the two clusters of
cells along the differentiation bridge (Fig. 4e,f); the transition from
CEBPE to CEBPD recapitulates neutrophil development in mice™.
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Collectively, we observe a developing neutrophil population that
may be characteristic of ARDS in severe COVID-19 infection;
our data suggest that these cells may derive from plasmablasts,
but they may also represent developing neutrophils derived from
emergency granulopoiesis®.

There are several limitations of our study. Our sample size is
small, only peripheral blood was evaluated and patients varied in
the timing of their clinical presentation, which could influence their
transcriptional landscapes. A subset of the patients were treated with
the antibiotic azithromycin, which has known immunomodulatory
activity'’, while another subset were treated with the antiviral rem-
desivir, which targets the viral RNA-dependent RNA polymerase’*
and is not known to have direct immunomodulatory effects. Future
studies are needed to further define the origins and phenotypes of
the developing neutrophil population observed in the setting of
ARDS at both the transcriptional and phenotypic level. Such stud-
ies will optimally require freshly isolated whole-blood samples from
patients who are severely ill with COVID-19 as granulocytes typi-
cally fail to survive cryopreservation.

Overall, we used single-cell transcriptomics to characterize
peripheral immune responses in severe COVID-19. We observed
marked changes in the immune cell composition and phenotype
in SARS-CoV-2 infection and immunological features of severe
COVID-19 in patients with ARDS. This work represents a resource
for understanding peripheral immunity in severe COVID-19 and
presents new directions for the study of COVID-19 immunology
and therapeutic development.
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Methods

Subjects and specimen collection. We collected blood from seven patients
enrolled in the Stanford University ICU Biobank study from March-April 2020
after written informed consent from patients or their surrogates (Stanford IRB
approval #28205). Eligibility criteria included age >18 years and admission to
Stanford Hospital with a positive SARS-CoV-2 nasopharyngeal swab by RT-PCR.
Patients admitted to the wards or ICU were included, and the majority were
co-enrolled in ongoing COVID-19 treatment trials at Stanford. Screening of new
admissions via an electronic medical records review of all subjects was performed
by the study coordinator (J.R.), research fellow (A.R.), COVID-19 clinical
consultants (P.G. and A.S.) and the study principal investigator (A.J.R.), and was
done every day with a goal enrollment within less than 48 h of admission to the
hospital. Patients were phenotyped for ARDS using the Berlin criteria (acute onset
of hypoxemic respiratory failure with a PaO,/FIO, ratio (i.e., the ratio of the partial
pressure of arterial oxygen to the percentage of inspired oxygen) of <300 on at
least 5cm of positive end-expiratory pressure, bilateral infiltrates on chest X-ray)*.
To protect the identity of the COVID-19 subjects, ages are reported as ranges. For
controls, blood was collected from six asymptomatic adult donors as part of the
Profiling Healthy Immunity study after written informed consent (Stanford IRB
approval #26571). All donors were asked for consent for genetic research.

Blood draws from patients occurred in concert with usual care to avoid
unnecessary personal protective equipment usage. For both patients with COVID-
19 and healthy controls, blood was collected into heparin tubes (Becton, Dickinson
and Co.) and PBMCs were isolated by density gradient centrifugation using
Ficoll-Paque Plus medium (GE Healthcare) and washed with Ca/Mg-free PBS.
Blood was processed within 4h of collection for all samples, and within 1h for
most. Samples from patients with COVID-19 and healthy controls were processed
side by side to avoid variation from processing.

scRNA sequencing by Seq-Well. The Seq-Well platform for scRNA-seq was
utilized as described previously''>*. Immediately after Ficoll separation, 50,000
PBMCs were resuspended in RPMI+10% FCS at a concentration of 75,000 cells
per ml. A 200-pl volume of this cell suspension (15,000 cells) was then loaded onto
Seq-Well arrays pre-loaded with mRNA capture beads (ChemGenes). Following
four washes with Dulbecco’s phosphate-buffered saline (DPBS) to remove serum,
the arrays were sealed with a polycarbonate membrane (pore size of 0.01 um) for
30min at 37 °C and then frozen at —80°C for no less than 24h and no more than
14 days to allow batching of samples processed at irregular hours. Next, arrays
were thawed, cells lysed, transcripts hybridized to the mRNA capture beads,

and beads recovered from the arrays and pooled for downstream processing.
Immediately after bead recovery, mRNA transcripts were reverse-transcribed
using Maxima H-RT (Thermo Fisher EPO0753) in a template-switching-based
rapid amplification of cDNA ends (RACE) reaction, excess unhybridized
bead-conjugated oligonucleotides were removed with exonuclease I (NEB
MO0293L) and second-strand synthesis was performed with Klenow fragment
(NEB M0212L) to enhance transcript recovery in the event of failed template
switching®. Whole transcriptome amplification (WTA) was performed with
KAPA HiFi PCR Mastermix (Kapa Biosystems KK2602) using ~6,000 beads per
50-pl reaction volume. Resulting libraries were then pooled in sets of six (~36,000
beads per pool) and products purified by Agencourt AMPure XP beads (Beckman
Coulter, A63881) with a 0.6x volume wash followed by a 0.8 volume wash. The
quality and concentration of WTA products were determined using an Agilent
Fragment Analyzer (Stanford Functional Genomics Facility), with a mean product
size of >800bp and a non-existent primer peak indicating successful preparation.
Library preparation was performed with a Nextera XT DNA library preparation
kit (Illumina FC-131-1096) with 1ng of pooled library using dual-index primers.
Tagmented and amplified libraries were again purified by Agencourt AMPure

XP beads with a 0.6x volume wash followed by a 1.0x volume wash, and quality
and concentration were determined by fragment analysis. Libraries between 400
and 1,000 bp with no primer peaks were considered successful and pooled for
sequencing. Sequencing was performed on a NovaSeq S2 instrument (Illumina;
Chan Zuckerberg Biohub). The read structure was paired-end with read 1
beginning from a custom read 1 primer'! containing a 12-bp cell barcode and an
8-bp UMI, and with read 2 containing 50 bp of mRNA sequence.

Alignment and quality control of sequencing data. Sequencing reads were
aligned and count matrices assembled using STAR* and dropEst*", respectively.
Briefly, the mRNA reads in read 2 demultiplexed FASTQ files were tagged with
the cell barcode and UMI for the corresponding read in the read 1 FASTQ file
using the dropTag function of dropEst. Next, reads were aligned with STAR using
the GRCh37 (hg19) human reference genome, which included the complete
genome sequences for all SARS-CoV-2 strains sequenced from California before
24 March 2020 (10 SARS-CoV-2 sequences). No SARS-CoV-2 reads were aligned
from these samples using this strategy, even when the outFilterMultimapNmax
behavioral option of STAR was increased from 10 (default) to 20 to accommodate
potential multiple-mapping SARS-CoV-2 reads. Count matrices were built from
the resulting BAM files using dropEst*. Count matrices for intron-aligned reads
were also generated to computationally analyze cellular trajectory. Cells that had
fewer than 1,000 UMIs or greater than 15,000 UMISs, as well as cells that contained
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greater than 20% of reads from mitochondrial genes or rRNA genes (RNA18S5

or RNA28S5), were considered low quality and removed from further analysis. To
remove putative multiplets (where more than one cell may have loaded into a given
well on an array), cells that expressed more than 75 genes per 100 UMIs were also
filtered out. Genes that were expressed in fewer than 10 cells were removed from
the final count matrix.

scRNA-seq computational pipelines and analyses. The R package Seurat was
used for data scaling, transformation, clustering, dimensionality reduction,
differential expression analysis and most visualization*. Data were scaled and
transformed and variable genes identified using the SCTransform() function,
and linear regression was performed to remove unwanted variation due to
cellular complexity (no. of genes per cell, no. of UMIs per cell) or cell quality

(% mitochondrial reads, % rRNA reads). Principal component analysis was
performed using variable genes, and the first 50 principal components (PCs)
were used to perform UMAP to embed the dataset into two dimensions. Next,
the first 50 PCs were used to construct a shared nearest-neighbor graph (SNN;
FindNeighbors()) and this SNN was used to cluster the dataset (FindClusters())
using a graph-based modularity-optimization algorithm of the Louvain method
for community detection. Despite upstream filtering for high-quality cells and
regression on genes reflective of cell quality, two clusters were identified where
65% or 100% of the positively enriched genes were of mitochrondrial or ribosomal
origin, and these clusters were removed from further analysis**.

Cellular identity was determined by finding DE genes for each cluster using
Seurat’s implementation of the Wilcoxon rank-sum test (FindMarkers()) and
comparing those markers to known cell type-specific genes from previous
datasets**". Cluster annotation was confirmed using the R package SingleR™,
which compares the transcriptome of each single cell to reference datasets to
determine cellular identity. Although clustering is often insufficient to separate
cytotoxic T cells from NK cells'**, SingleR identified the majority of cells in
clusters 0 and 11 (94% and 76%, respectively) as NK cells. Indeed, these two
clusters were the only clusters in the dataset to be significantly enriched for both
NCAM1I and FCGR3A (Supplementary Table 2) and we thus annotated them as
NK cells. We also observed that cluster 22, where 89% of cells were annotated
as T cells by SingleR, was significantly enriched for genes encoding yd TCR
constant chains TRGCI, TRGC2 and TRDC, and we thus annotated them as yd
T cells (Supplementary Table 2). The majority of cells in cluster 24 were labeled
as common myeloid progenitors by SingleR, but this cluster also contained cells
annotated as seven different lineages of hematopoietic stem cells and progenitors.
Closer examination revealed that this cluster consisted of two groups of cells, one
expressing CLC and the other expressing CD34, and we therefore labeled them as
stem cells (SCs) and eosinophils for downstream analysis. A total of 98% of cells in
cluster 27 were annotated by SingleR as myelocytes (46%), pro-myelocytes (22%),
CD34" pre-B cells (14%) or <q>HSC G-CSF (17%). Although these cells expressed
several genes encoding for primary, secondary and tertiary neutrophil granule
proteins (for example, ELANE, MPO, LTF, CTSG, LCN2 and MMPS3), they were
distinct from cluster 25 (labeled manually and by SingleR as neutrophils) and did
not express canonical neutrophil markers like FCGR3B and CXCR2. As these cells
demonstrated features similar to immature neutrophils and progenitors at various
developmental stages'”', we annotated these cells as ‘developing neutrophils’

Gene pathway and upstream regulator analysis was performed with Ingenuity
Pathway Analysis (IPA; Qiagen). The parent Seurat object was divided into
individual objects consisting of cells from a particular cellular compartment
(for example, CD4* T cells, NK cells, CD16* monocytes and so on). Next, DE
genes between the cells from each sample from a patient with COVID-19 and
the cells from all healthy controls were calculated by FindMarkers() and cell
quality-associated markers were removed. The average log(fold-change) of each
DE gene calculated by FindMarkers() was supplied to IPA. To construct heatmaps
of DE genes, genes were filtered to have a two-sided P value <0.05 by Seurat’s
implementation of the Wilcoxon rank-sum test, and the average log(fold-change)
of each DE gene plotted. To construct heatmaps of canonical pathways and
predicted upstream regulators, genes were filtered to have a right-sided P
value <0.05 by IPAs implementation of Fisher’s exact test, and the z-score of each
pathway or regulator was plotted. Analysis of cellular trajectory by RNA velocity
was performed using the package scVelo using dynamical modeling™. For all
dot plots, average expression was calculated as the mean of e*— 1, where x is the
SCT-transformed count of each gene in cells of a given identity class. Dot plots
with hierarchical clustering were generated using FlexDotPlot™.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this Article.

Data availability

Processed count matrices with de-identified metadata and embeddings

are available for download from the COVID-19 Cell Atlas (https://www.
covid19cellatlas.org/#wilk20) hosted by the Wellcome Sanger Institute. Processed
data are also available for viewing and exploration on the publicly accessible
cellxgene platform by the Chan Zuckerberg Initiative at https://cellxgene.
cziscience.com/d/Single_cell_atlas_of_peripheral_immune_response_to_SARS_
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CoV_2_infection-25.cxg/. Raw sequencing data are available at the NCBI Gene
Expression Omnibus (accession no. GSE150728). Requests for additional materials
can be made via email to the corresponding authors.

Code availability
All scripts used for data analysis are available from GitHub (https://github.com/
ajwilk/2020_Wilk_COVID).
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Extended Data Fig. 1| Demographic characteristics of all analyzed donors. a, Age, sex, and race of n=6 profiled healthy donors. b, Races represented by
n=7 patients with COVID-19 in this study.
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Extended Data Fig. 6 | Differentially regulated genes, canonical pathways, and upstream regulators in CD8* T cells. a, Heatmap of DE genes for each
COVID-19 sample colored by average log(fold-change). DE genes were calculated by comparing gene expression of individual COVID-19 samples with
gene expression of all healthy controls using Seurat's implementation of the Wilcoxon rank-sum test. Only DE genes with a two-sided p value<0.05
adjusted for multiple comparisons by Bonferroni's correction are shown. These DE genes were used to identify b, enriched canonical pathways and
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Extended Data Fig. 7 | CD8* and CD4* T cells from COVID-19 patients do not consistently express higher levels of exhaustion markers. a, b, Dot plot
depicting the percent and average expression of canonical genes associated with T cell exhaustion by (a) CD8* and (b) CD4* T cells from n=8 COVID-19
samples and n=6 healthy controls. c-d, Boxplot showing the mean T cell exhaustion of module score®” (see Supplementary Table 25) of CD8* T cells (c)
or CD4+ T cells (d) from each sample, colored by healthy donors (n=6, blue), non-ventilated COVID-19 patients (n=4, orange), or ventilated COVID-19
patients (n=4, red). Shown are exact two-sided p values by Wilcoxon rank-sum test. Boxplot features correspond to: minimum whisker = 25th percentile
- 1.5 * inter-quartile range (IQR) or the lowest value within; minimum box = 25th percentile; center = median; maximum box = 75th percentile; maximum
whisker = 75th percentile + 1.5 * IQR or greatest value within.

57. Miller, B. C. et al. Subsets of exhausted CD8* T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326-336 (2019).
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|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Sequencing data was collected using a NovaSeq S4.

Data analysis Reads were aligned against hg19 (Ensembl: Homo_sapiens.GRch37.74; which included the complete genome sequences for all SARS-
CoV-2 strains sequenced from California before March 24, 2020) using Drop-seq Tools (v.1.13) using STAR_2.5.4. Count matrices were
assembled with dropEst_0.6.8.

R version 3.6.1 was used for downstream analysis with the following packages: Seurat_3.1.1, sctransform_0.2.0, ggplot2_3.2.1,
Matrix_1.2-17, reshape2_1.4.3, tidyverse_1.3.0, nichenetr_0.1.0, pheatmap_1.0.12, scater_1.13.27, SingleR_0.99.13, ggpubr_0.2.3,
FlexDotPlot_0.1.1, ggrepel_0.8.1, Hmisc_4.2-0, factoextra_1.0.5, circlize_0.4.8, Matrix.utils_0.9.7, SummarizedExperiment_1.15.9,
SingleCellExperiment_1.7.11, dplyr_0.8.3, plyr_1.8.4.

Python version 3.7.4 was used with packages: scvelo_0.1.23, scanpy_1.4.4, anndata_0.6.22, pandas_0.25.1, matplotlib_3.1.1
Ingenuity Pathway Analysis (Qiagen) was used for gene pathway enrichment analysis and upstream regulator discovery.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Processed count matrices with de-identified metadata and embeddings are available for download from the Covid-19 Cell Atlas (https://www.covid19cellatlas.org/
#wilk20) hosted by the Wellcome Sanger Institute. Processed data is also available for viewing and exploration on the publicly accessible cellxgene platform by the
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Chan Zuckerberg Initiative at https://cellxgene.cziscience.com/d/Single_cell_atlas_of peripheral_immune_response_to_SARS_CoV_2_infection-25.cxg/. Raw
sequencing data are available at the NCBI Gene Expression Omnibus (accession number GSE150728). Requests for additional materials can be made via email to the
corresponding authors.
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Sample size 7 patients with confirmed COVID-19 (1 patient sampled twice); 6 healthy controls. Sample size was not pre-determined; all available
specimens were processed for sequencing.

Data exclusions  Cells with fewer than 1,000 or more than 15,000 unique transcript reads were removed from analysis as low quality cells or potential
doublets. Any cell that contained more than 75 genes per 100 sequenced UMIs were removed as potential doublets. These cells would add
unwanted noise to downstream analysis. Any cell from which >20% of sequencing reads aligned to either mitochondrial genes or ribosomal

RNA (RNA18S5 and RNA28S5) were also removed from analysis, as these have been shown to be low quality cells. All exclusion criteria were
pre-established for this data analysis.

Replication Given the small number of available specimens, we were unable to perform technical replicates on individual samples.
Randomization  Samples were not allocated into experimental groups.

Blinding Blinding to COVID-19 status was not possible as the patient-derived vs. control-derived samples were acquired from different locations.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology & |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics All available demographic characteristics for COVID-19 patients and healthy controls are listed in Table 1 and Extended Data
Table 1. The seven patients profiled were male, aged 20 to >80 years of age. We collected samples between two and sixteen
days following symptom onset; healthy controls were asymptomatic, four male and two female, and aged 30-50 years.

Recruitment Eligible participants were adults (age >18 yo) admitted to Stanford Hospital (wards or ICU) with RT-PCR-confirmed SARS-CoV-2.
All patients with documented COVID-19 in Stanford hospital were offered enrollment.

Ethics oversight This study was approved by the Stanford Institutional Review Board IRB-28205 and IRB-26571.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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