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Disease and healthcare burden of COVID-19 in the

United States
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As of 24 April 2020, the SARS-CoV-2 epidemic has resulted
in over 830,000 confirmed infections in the United States'.
The incidence of COVID-19, the disease associated with this
new coronavirus, continues to rise. The epidemic threatens to
overwhelm healthcare systems, and identifying those regions
where the disease burden is likely to be high relative to the
rest of the country is critical for enabling prudent and effec-
tive distribution of emergency medical care and public health
resources. Globally, the risk of severe outcomes associated
with COVID-19 has consistently been observed to increase
with age*:. We used age-specific mortality patterns in tan-
dem with demographic data to map projections of the cumu-
lative case burden of COVID-19 and the subsequent burden
on healthcare resources. The analysis was performed at the
county level across the United States, assuming a scenario in
which 20% of the population of each county acquires infec-
tion. We identified counties that will probably be consistently,
heavily affected relative to the rest of the country across a
range of assumptions about transmission patterns, such as
the basic reproductive rate, contact patterns and the efficacy
of quarantine. We observed a general pattern that per capita
disease burden and relative healthcare system demand may
be highest away from major population centers. These find-
ings highlight the importance of ensuring equitable and ade-
quate allocation of medical care and public health resources to
communities outside of major urban areas.

SARS-CoV-2 was first identified in December 2019 in Wuhan,
China, and the first infection was detected in the United States on
7January 2020 (ref. °). The virus is both highly transmissible and
virulent. Estimates of the basic reproductive number, R, range from
1.4 to 6.49 (ref. ©), with an estimated overall case fatality rate of 1.4%
(ref. ”), which is highly varied across age classes. As of 24 April 2020,
>2,626,000 confirmed cases of SARS-Cov-2 and >181,000 deaths
had been recorded globally. Currently, the cumulative reported inci-
dence of COVID-19 in the United States is the highest in the world'.

As the COVID-19 epidemic expands within the United States, a
central focus of public health efforts will be limiting fatalities. A key
driver of this outcome will be keeping the case burden of patients
with COVID-19 within the treatment capacity of the healthcare
system. If the medical system is overwhelmed, the standard of care
for all individuals seeking medical care could be reduced, thereby
exacerbating negative health outcomes®. Patients critically ill with
COVID-19 might fare particularly poorly. High mortality rates
within this group will probably be further compounded by short-
ages of intensive care facilities and/or access to mechanical venti-
lation equipment’. Patients without COVID-19 and who require
care for other conditions will also be affected by the health system’s
inability to meet their needs.

Effective allocation of limited medical resources, such as health-
care workers, protective equipment and ventilators, is required to
reduce the likelihood of the healthcare system being overwhelmed.
However, to achieve this, information on the distribution of the bur-
den of disease and how that burden aligns with healthcare system
capacity is required.

Several factors probably contribute to the heterogeneous dis-
tribution of COVID-19 burden across the United States. The first
of these is demography. The incidence of COVID-19 consistently
rises with increasing age> (noting that incidence observed from
diagnostic testing does not necessarily reflect total infections). This
age-dependent pattern of infection seems to be largely driven by dif-
ferences in susceptibility and symptomatic infection rates between
age classes rather than by differences in transmission potential>'.
Rates of hospitalization and intensive care unit admission are also
higher in individuals aged >60years than in younger age classes''.
Thus, variation in age structure between counties could lead to dif-
ferences in the per capita burden of disease between regions. Access
to healthcare could also affect the distribution of COVID-19 bur-
den. Many rural areas of the United States might have insufficient
or no resources to provide acute or critical care. Residents of such
areas could therefore be at increased risk for insufficient treatment.
Finally, limited healthcare system capacity in rural areas could lead
to an unexpected influx of cases to hospitals in more densely popu-
lated regions.

The temporal distribution of COVID-19 spread could also con-
tribute to heterogeneity in disease burden across the United States.
The magnitude and timing of the epidemic peak, for example,
determine the minimum healthcare system capacity needed to
provide adequate care. However, obtaining accurate predictions of
the epidemic peak is often challenging in emerging outbreaks due
to limited and often unreliable data on incidence, as well as to the
challenges associated with modeling the effects of rapidly deployed
and changing mitigation efforts. County-level variability in testing
standards and efforts'>", nonpharmaceutical interventions (NPIs)
such as social distancing'* and outbreak onset', and a lack of sero-
logical data also limit efforts to accurately model epidemic trajec-
tories beyond several weeks. By contrast, projections of cumulative
disease burden are less hindered by these challenges as these are not
aimed at describing an epidemic time course. Although such pro-
jections miss the nuance of the intensity and timing of outbreaks,
their estimates of the spatial footprint of disease burden contain
core information relevant to informing resource distribution.
Comparing the expected cumulative number of critical and severe
infections against healthcare resources in each county in the United
States allows for the identification of regions that may experience
particularly high disease burden. Furthermore, analysis of simu-
lations of multiple transmission scenarios (for example, different
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Table 1| Policy summary

The now widely prevalent new coronavirus
SARS-CoV-2 poses a grave public health threat in
the United States, particularly in areas where cases
could overwhelm healthcare systems. Allocation
of emergency medical and public health resources
can help to mitigate this problem, but this requires
efficient identification of regions that are severely
affected.

Background

Main findings and
limitations

Leveraging the relationship between age and
COVID-19 disease severity, we projected

the cumulative disease burden for each of

3,142 counties and county equivalents.in the United
States using a modified SEIR model. Comparing
these burdens with hospital capacity, we identified
counties that will probably be consistently, heavily
affected relative to the rest of the country, and
found that the per capita burden of disease and
the relative strain on the healthcare system could
be higher in rural areas. To circumvent uncertainty
surrounding the time course of the epidemic,

we projected the long-term cumulative burden

of COVID-19 rather than peak burden. These
projections ignore the temporal component of
disease spread and assume that cumulative
incidence is identical among counties. Due to these
limitations, our results should be interpreted as

an approximation of the spatial distribution of
COVID-19 burden rather than as a set of
epidemiological forecasts.

Our findings highlight the importance of ensuring
equitable and adequate distribution of medical

care and public health resources to urban and rural
areas to reducing the total mortality associated with
COVID-19.

Policy implications

contact patterns) allows for possible identification of those regions
with consistently high disease burdens without needing to forecast
an exact epidemic trajectory.

Here, we project the cumulative case burden (case numbers)
and cumulative per capita burden (cases per person) of severe and
critical COVID-19 cases in each county within the United States
by combining demographic data and age-specific risk factors under
the assumption that 20% of the population becomes infected. We
calculate the cumulative healthcare system burden, using case/bed
ratio that each county could experience, as its own residents (and
those from nearby counties with limited or nonexistent medical
resources) seek care. We repeat this analysis for a range of trans-
mission scenarios, map the expected burden of COVID-19 for each
scenario and identify those regions consistently expected to experi-
ence the highest cumulative burden of disease. A summary of the
main findings, limitations and policy implications of this study is
given in Table 1.

We developed a modified, age-stratified susceptible-exposed-
infected-recovered (SEIR) epidemic model (based on the model
of Davies et al.’) to project the number of COVID-19 cases for all
counties (and county equivalents such as independent cities) in the
United States. In this model, susceptible individuals (S) become
infected in a density-dependent fashion and enter the exposed (E)
class, before eventually becoming either asymptomatically infected
(I,) or mildly symptomatic (but not yet clinically presenting) (Iy).
Following published estimates®, we assume that relative susceptibil-
ity to infection and the fraction of individuals who become mildly
symptomatic rather than asymptomatically infected are higher in
older age classes than in younger age classes. Individuals in the I,
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class eventually become fully symptomatic (I.). Asymptomatic and
symptomatic individuals recover with immunity to classes R, and
R, respectively. All individuals in the infected classes (I, I, I) are
infectious; however, our model assumes that the relative infectious-
ness of asymptomatic individuals is scaled by factor b,, and the
relative infectiousness of fully symptomatic individuals is scaled by
factor b to account for the effects of case isolation and quarantine.
Mixing between individuals of different age classes is determined
by a parameter 6. For =1, mixing patterns reflect empirically mea-
sured rates for the United Kingdom'®. For =0, mixing patterns are
homogeneous; for 0 <0< 1, mixing patterns are intermediate. This
model aims to specifically project the age distribution of cases over
a wide variety of transmission scenarios, and is not intended to pro-
duce epidemiological forecasts. As such, we include epidemiological
details that could result in differences in disease burden between
age classes, such as age-specific mixing patterns and rates of symp-
tom presentation. However, we do not vary the components of our
model linked to interventions (for example, transmission rate, mix-
ing patterns) over time or by location.

We investigated a scenario in which 20% of the population in
each county becomes infected. A 20% cumulative infection rate rep-
resents a pessimistic scenario over the next few months, but perhaps
this will be an optimistic scenario beyond that time frame'’. A 20%
cumulative infection rate is independent of R, and is not equivalent
to 20% of the herd immunity threshold. We intentionally ignored
spatial variation in the progression of the epidemic, to simplify
comparisons of disease burden between regions.

As we aim to provide general estimates of relative distribution
of disease burden rather than make precise predictions of case load
over time, we sought to identify patterns of disease burden that
are robust to different assumptions about the dynamics of epide-
miological spread. Accordingly, we varied our assumptions about
the overall transmissibility of COVID-19, age structure of contact
patterns and the contributions of fully symptomatic individuals to
transmission. For each set of assumptions, we simulated our model
for each county in the United States using demographic data from
the 2018 American Community Survey'®. We then extracted the
number of individuals in each age class who had become symp-
tomatically infected by the time the cumulative population infec-
tion rate had reached 20%. We present detailed results for the most
optimistic scenario and most pessimistic scenario. In the optimistic
scenario (transmission, R, =2, relative infectivity of fully symptom-
atic individuals, bo=0.1 and mixing structure, 6=1; see Methods)
transmission is slow, fully symptomatic individuals are effectively
quarantined and mixing patterns exhibit a strong age structure,
potentially decreasing transmission from asymptomatically infected
(and thus nonquarantined) individuals in less vulnerable age
classes (such as children) to individuals in more vulnerable age
classes (such as the elderly). By contrast, the pessimistic sce-
nario (R,=5, #=0, bo=1) is characterized by high transmission,
well-mixed contact patterns and ineffective quarantine. Results
for 25alternate combinations of R, 6 and b are summarized in
Extended Data Figs. 1-4.

To evaluate the sensitivity of our results to the effects of crowding
on transmission and epidemic size, we also investigated alternative
scenarios in which R, increases as a linear function of urban popu-
lation, from Ry=2 in counties with 0% of residents living in urban
areas, to Ry, in counties with 100% of residents living in urban
areas. In an optimistic scenario we set Ry__to 3 (other parameters:
0=1, b.=0.1) and, in a pessimistic scenario, we set Ry __to 5 (other
parameters: =0, b.=1). Disease burden in each county was calcu-
lated when the cumulative number of infections reached 20% of the
herd immunity threshold multiplied by the population size, rather
than 20% of the population size (see Methods). The relationship
between crowding and R, has not been definitively established and,
as such, these results should be interpreted cautiously.
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Fig. 1| Population characteristics of the United States and their relationships with disease burden. a, Population of each county. b, Fraction of individuals
within each county >60 years of age. ¢, Fraction of the population of each county classified as living in a rural area according to the 2010 US Census®.
d-k, The relationship between population characteristics (x axes) and metrics of disease burden (y axes) for the optimistic transmission scenario (blue)
and pessimistic scenario (red). d, Total population vs. projected cumulative hospitalizations. e, Fraction of population over 60 vs. projected cumulative
hospitalizations per capita. f, Fraction of population residing in rural area vs. projected cumulative hospitalizations per capita. g, Fraction of population
residing in rural area vs. projected cumulative hospitalizations per hospital bed. h, Total population vs. projected cumulative ICU admissions. i, Fraction

of population over 60 vs. projected cumulative ICU admissions per capita. j, Fraction of population residing in rural area vs. projected ICU admissions per
capita. h, Fraction of population residing in rural area vs. projected ICU admissions per ICU bed.

Using our projections of cumulative symptomatic infections,
we further estimated the number of severe cases (that is, requiring
hospitalization) and critical cases (that is, requiring intensive care)
using published rates of these outcomes for various age classes''. In
all transmission scenarios, the areas with high relative burdens of
hospitalizations and intensive care unit (ICU) admissions gener-
ally had large populations (Figs. 1a,d,h, 2a,d and 3a,d). However,
we observed the opposite pattern for the per capita burden of hos-
pitalizations and ICU admissions, which were distributed hetero-
geneously and were higher in rural areas than in major population
centers (Fig. 1¢,f;j). Due to the positive correlation between age and
disease severity, areas with the highest per capita burden were those
with the highest percentages of individuals >60years of age (Figs.
1b,e,i, 2b,e and 3b,e). Although more elderly age classes were dispro-
portionately affected in the pessimistic transmission scenario (Figs.
2g and 3g), the sets of counties with very high projected burdens
of per capita hospitalizations and ICU admissions remained similar
across different transmission scenarios. Indeed, of the 315 counties
at or above the 90% quantile of per capita hospitalization in the opti-
mistic transmission scenario (Fig. 1, legend), 308 counties were also
at or above this quantile in the pessimistic scenario. The median
percentage of people residing in rural areas among these 308 coun-
ties was 100%, which is significantly greater than the median of all
counties (57.54%, Mann-Whitney U=696,348, n, =308, n,=3,142,
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two-sided P<2.2x107'¢). Of the 315 counties at or above the 90%
quantile of per capita ICU admissions in the optimistic transmission
scenario, 313 were also at or above this quantile in the pessimistic
scenario. Again, the median percentage of people residing in rural
areas among these 313 counties was 100%, significantly greater than
the median of all counties (Mann-Whitney U=725,670, n,=313,
n,=3,142, two-sided P<2.2x 107'¢).

Next, we evaluated how projected case burdens aligned with
healthcare system capacity. We obtained data on the number of hos-
pital beds and ICU beds in each county from the American Hospital
Association 2018 annual survey'’. We distributed cases to health-
care systems within and outside of their county of origin based on
an allocation algorithm (see Methods). This algorithm distributes
severe and critical cases based on relative distance and the relative
capacity of healthcare systems to provide care (quantified as the
number of hospital beds and ICU beds, respectively). The majority
of cases originating from within a county with substantial medi-
cal resources stay within that county. Most severe and critical cases
originating from within a county with few hospitals or ICU beds are
allocated to nearby counties with greater care capacity. All severe
or critical cases originating in a county that lacks the capacity to
provide appropriate care entirely are distributed to nearby counties.

The maps of relative hospitalizations per bed (Fig. 2¢,f) and
relative ICU admissions per bed (Fig. 3¢,f) indicate those counties
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Fig. 2 | Projected cumulative burden of hospitalizations in the United States. a-c, Optimistic scenario; d-f, pessimistic scenario. a,d, Relative number of
hospitalizations in each county. b,e, Number of projected hospitalizations per capita in each county. a,b,d,e, Cases not yet allocated to healthcare systems.
¢f, Cumulative number of hospitalizations per hospital bed after allocation of cases to healthcare systems. g, Cumulative fraction of each age class
hospitalized in each transmission scenario. Each of the 315 lines for each transmission scenario represents a different county. h,i, Counties estimated to be
in the 90% quantile of hospitalizations per capita (h) and hospitalizations per hospital bed (i) (after case allocation). Colors in h,i indicate whether these

counties were estimated to be in the 90% quantile in the optimistic scenario, the pessimistic scenario, both or neither. A high-resolution version of this

figure is provided in Supplementary Information.

expected to experience a higher burden of disease relative to medi-
cal resources. The burden of cases relative to hospital and ICU beds
was generally highest away from urban centers in counties with
substantial rural populations (Extended Data Fig. 5d,h). Several
regions have a high concentration of counties with a high burden,
including much of the western United States, the northern Midwest,
Florida and northern New England. These patterns are robust to
assumptions about transmission rates and age-specific mixing pat-
terns. The optimistic and pessimistic transmission scenarios each
identified 248 counties as being at or above the 90% quantile of
cumulative hospitalizations per hospital bed; 247 counties were
identified in both transmission scenarios. The median percentage
of people residing in rural areas among these 247 counties (38.97%)
is lower than the median for all counties with hospital beds (51.82%,
Mann-Whitney U=246,652, n,=247, n,=2,478, two-sided
P=4.64%x1077). Nevertheless these data indicate that the healthcare
system burden is not concentrated in urban centers. In the case of
ICU admissions per bed, all of the 136 counties identified as being at
or above the 90% quantile were the same for both transmission sce-
narios. These 136 counties (median percentage of residents living
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in rural areas=31.11%) were not identified as being more rural
than all counties with ICU beds (median percentage of residents
living in rural areas = 36.21%, Mann-Whitney U= 85,746, n, =136,
n,=1,353, two-sided P=0.19) but, again, a pattern emerges of
healthcare system burden not being concentrated in urban areas.
For analyses where R, varied as a function of the percentage of
population residing in urban areas, the per capita and per hospital
and ICU bed burdens of disease were not generally higher in rural
areas, but rather were distributed heterogeneously across urban
and rural areas (Extended Data Fig. 6). Counties at or above the
90% quantile for various metrics of disease burden were less rural
than comparable counties, but were not heavily concentrated in
the urban end of the urban-rural distribution (Extended Data
Figs. 9-10). Otherwise, results from these analyses (Extended
Data Figs. 6-10) largely agree with those presented above, indicat-
ing that our finding that disease burden is not expected to be con-
centrated only in urban areas is robust to assumptions about the
effects of crowding on transmission patterns and epidemic size.
Even with unprecedented efforts to rapidly develop a vaccine®,
a pharmaceutical intervention against COVID-19 is unlikely to be
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whether these counties were estimated to be in the 90% quantile in the optimistic scenario, the pessimistic scenario, both or neither. A high-resolution

version of this figure is provided in Supplementary Information.

available in the near future. SARS-Cov-2 transmission is expected
to continue over the coming months and will probably affect every
locality in the United States. We aimed to identify counties that
consistently emerge as being likely to experience a large burden of
disease on their population and healthcare systems (across a range
of assumptions about transmission patterns). We identified sev-
eral regions in need of additional support, including much of the
western portion of the country, the northern Midwest, Florida and
northern New England. At a fine geographical scale, our results
suggest that considerable rural-urban inequities exist, with the
per capita burden of disease being higher away from major popula-
tion centers.

Before even considering the increased case burden that these
more rural places are projected to experience relative to the
rest of the country, it is evident that hospitals—and, to a greater
extent, hospitals with the capacity to provide intensive care—are
unevenly distributed. Many regions have limited, or no, facilities
equipped to provide the type of acute or critical care required to
treat COVID-19 (ref. °). Case fatality rates in these regions could
rise above the national average if people are unable to access care.
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Bolstering the capacity of rural health systems, ensuring equi-
table access to care and implementing public health measures
such as testing and contact tracing in both urban and rural areas
should be central goals of COVID-19 management strategies in
the United States. While the healthcare systems of major popu-
lation centers were not identified as weak spots in our analysis,
they do service a much larger number of people. Given the con-
sequences of their potential failure, they should remain a priority
for response efforts.

Our findings are robust to different assumptions about transmis-
sion patterns. However, it is imperative that they be interpreted in
the context of our methodology. We were deliberately conservative
in not considering the impact of potential therapeutics and vac-
cines. Our results only underscore the urgency of developing these
interventions. Likewise, we did not consider the impact of other
NPIs such as social distancing. Our findings point to the impor-
tance of implementing these measures in urban and rural regions.
We specifically did not attempt to predict the epidemic peak tim-
ing or magnitude. Given the time-invariant scenario we model (that
is, 20% of the population acquires infection), it is likely that our
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projections will not precisely match future observed patterns of
disease burden in the short term, as many regions are still in the early
phases of their epidemics, or in the long term, as the timing, extent
and efficacy of interventions will vary among regions. However, our
results provide an approximation of the expected patterns of burden
rooted in basic features of demography and health system capac-
ity. Notably, we did not consider how other factors linked with an
increased risk of severe disease, such as comorbidities’' (for example,
hypertension, pulmonary disease), or decreased access to medical
care, such as noninsurance rate and socioeconomic status®, might
exacerbate disease burden in certain regions. Incorporating such
factors into mathematical models and their forecasts is an essen-
tial area of future research, and could reveal additional ‘hotspots’ of
disease burden that were not identified in our analyses, which con-
sidered the role of demography alone. Future work should also seek
to identify if and where disease burden is disproportionately high in
certain racial or minority groups. Finally, we urge public health offi-
cials using our results to carefully consider location-specific details
and nuances not explicitly included in our analyses when planning
their response, and to focus on patterns of relative burdens rather
than projections for individual counties.

In conclusion, we have identified areas in the United States
expected to be particularly heavily affected by COVID-19. Our
findings suggest that ensuring equitable allocation of medical care
and public health resources to communities away from major popu-
lation centers will be crucial as the country attempts to mitigate the
consequences of the ongoing COVID-19 epidemic.
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Methods

Data. We obtained counts of the number of individuals in 10-year age bins for all
counties in the United States (we include non-county federally incorporated places
in the set of all counties for the purposes of our analyses) from the 2018 American
Community Survey, available from the United States Census Bureau'®. We define
the set of age categories as G = {0-9, 10-19,...,70-79, 80+}. We obtained data

on hospital location and bed number from the American Hospital Association
2018 annual survey". We used the calculated total of all beds for each hospital to
represent the number of hospital beds, and the number of adult medical/surgical
intensive care beds to represent the number of ICU beds. We aggregated hospital
and ICU bed data by county in accordance with American Hospital Association
data use policy. We obtained the numbers of individuals in each county living in
rural and urban areas from the 2010 US census™.

Mechanistic models. We developed an age-stratified mechanistic epidemiological
model based on that of Davies et al.” that follows a SEIR framework. This model
assumes no births or deaths. The subscript i denotes the index of the age strata.
The parameter r, denotes the rate of symptomatic infection for age class G,. The
parameter u; denotes the relative susceptibility of age class G;. We set values for r;
and u; according to the means of the consensus estimates from Davies et al.’:

r ={0.40, 0.25, 0.37, 0.42, 0.51, 0.59, 0.2, 0.76, 0.76}

u ={0.33,0.37, 0.69, 0.81, 0.74, 0.8, 0.89, 0.77, 0.77}

The infected class is decomposed into asymptomatic (I,), symptomatic, pre-clinical
(I,) and symptomatic, clinical (I.) classes to reflect relevant aspects of SARS-Cov-2
epidemiology, namely that not all infected individuals show symptoms and that
individuals are frequently quarantined upon presenting symptoms. We also
decomposed the recovered class into separate compartments for those recovered
from symptomatic infection, Ry, and those recovered from asymptomatic infection,
R,, to simplify calculations of total symptomatic and asymptomatic cases. This
model framework allows us to impose assumptions about the infectivity of
asymptomatic and fully symptomatic individuals (b, and b, respectively) relative
to the infected class probably responsible for the bulk of transmission (I,).

ds; K4 Ip, + belc, + bal
siuiﬂzqdw

dt j=1 I\]]

E; 2
= S,‘ u; ﬂ C,'_" - (SEEi
dt 26Ty

de‘
dt

= ri6gE; — oplp,

dic
=S = splp, — bl
dt PLP; CLC;

dl A

T = (1 — T,‘)(SEE,‘ — 5AIA.

Here, C is the contact matrix whose entries C;; correspond to the mean number
of contacts between individuals in the ith and jth age classes of G, § parameters
determine the mean amount of time () that individuals spend in each class and f is
the transmission parameter.

We used this model to simulate a wide range of plausible epidemiological
scenarios. Specifically, we considered values for b in {0.1, 0.5, 1}, values for R,
in {2, 4, 6} and values for the degree of homogeneous mixing in {0, 0.5, 1}. In the
sections below, we describe how we constructed the contact matrix C. We set
the values of the following model parameters according to published estimates’:
by = 0.5,6p = %.,51: = ﬁ ,6c = 2—19 0 = % After constructing C and fixing these
variables, we used numerical methods combined with the next-generation matrix
approach™ to calculate the value for § that corresponds to the value R, we wished
to assume for each scenario.

Rescaling the contact matrix. We used the ‘socialmixr’> R package to retrieve the
UK contact matrix from the POLYMOD study'®, with contacts binned according
to the following age categories: {0-9,10-19,...,60-69, 70+}. We term this matrix
A. No finer resolution was available for contacts involving individuals over the age

NATURE MEDICINE

of 70. However, to account for differences between individuals in the age classes
70-79 and 80+ in terms of relevant COVID-19 parameters, we synthesized a new
matrix, B, that includes contacts for individuals in the age classes 70-79 and 80+:

_ N7o-79
Bizo-79 = Aizot
Nro+
Nsot
Bigo+ = Aizo+
Nyot

Bro-79; = Az0+

Bsotj = Az0+

where N, is the number of individuals in the entire United States in age class x.
Next, we constructed the contact matrix used in our model C by rescaling B to
reflect our assumptions about mixing patterns:

(1-6)37,B;
9

ij = + 6 B; i

The quantity 6 represents the degree of homogeneous mixing. When 6=1,
contact patterns are identical to the POLYMOD contact patterns. When 6=0,
contact rates are homogenous across age classes. Values of 6 between 0 and
1 correspond to mixing patterns intermediate between the POLYMOD and
homogenous scenarios. This rescaling procedure preserves the total number
of contacts experienced by each age class while changing the identity of those
contacts.

Model simulation. For each scenario in each county, we used the following
conditions to initiate the model:

Si=N—4
Ei=1
Ip, =1
Ic, =1
Ip =1
R, =0
Ry, =0

The number of individuals within each age class for the county of interest is N..
We then simulated the model in R using the ‘ode’ function in the ‘deSolve’
package” with the ‘Isoda’ integrator and a step size of 0.25. We truncated the
O\ Iy ety R R
simulation when Z: ST Ty, To, T 7R, 1Ry, — 02
and then extracted the number of individuals in each age-stratified
compartment.

Case estimation. We calculated the total number of symptomatic infections

in each age class by the time that the cumulative infection rate reached 20% as

Ip, + Ic, + Ry, at the end of the simulation. We then calculated the number of

hospitalizations in each age class by multiplying the number of symptomatic

infections in each age class by age-stratified estimates'' of hospitalization rates for

symptomatic cases: {0.001, 0.003, 0.012, 0.032, 0.049, 0.102, 0.166, 0.243, 0.273}.
We then calculated the number of ICU admissions in each age class by

multiplying the number of hospitalizations by age-stratified estimates'" of the rate

of ICU admissions for patients given hospitalization: {0.05, 0.05, 0.05, 0.063, 0.122,

0.274, 0.432, 0.709}.

Case distribution. We distributed cases originating in a given county to the
healthcare systems of that county and other counties using the following algorithm.

o Let the county of origin be denoted as ¢, and the potential destination counties
s Cpp . sCy

o Let the distances between the center of population of the county of ¢, and each
potential destination county ¢; be d;
We obtained the latitude and longitude of the center of population for each
county from publicly available data from the 2010 US census, and calculated
pairwise distances between counties using the Rpackage ‘geosphere’™.

e We next removed all destination counties with d,;>400km.
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+  Wecalculated a digtance weight, y, for each remaining potential destination
county as y; = %€

o We calculated a bed weight, z, for each county as the number of total hospital
beds in ¢, For projections involving ICU admissions, we used the number of
ICU beds rather than the number of hospital beds.

o We then calculated a composite weight, w,, for each county as
W= z

DR DI

o Lastly, cases originating in ¢, were then distributed to counties c,...,cy propor-
tional to —32 Wy

XY N
Dom T

‘Alternate optimistic’ and ‘alternate pessimistic’ scenarios. For the two scenarios
in which we varied R, between counties according to the percentage of the

population residing in rural areas, the value of R, for each county was calculated as:

Ry =2+ (Ry,,, — 2)x percentage population residing in urban area
Instead of truncating our simulations at a 20% cumulative infection rate, we
truncated our simulations when the following condition was met, indicating that
the cumulative infections rate was equal to 20% of the herd immunity threshold:

O IpHl +1a+Rs +Ry, 1

Do s e e e =02x({1—g
= SitEi+Ip;+1c; +1a, +Rs; +Ra; Ry
i=

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Data underlying the maps of disease burden are available from the corresponding
author upon request. The data used in our analyses, with the exception of hospital
capacity data from the American Hospital Association Annual Survey, which are
not publicly available, are included as Supplementary Information.

Code availability

The code used to conduct analyses and generate figures is included as
Supplementary Information, and is available at https://github.com/ianfmiller/
covid19-burden-mapping.
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N transmisison scenarios identifying
county as being at or above 90% quantile
of per capita hospitalizations
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Extended Data Fig. 1| The rural-urban distribution of U.S. counties with heavy COVID-19 burden. a, Per capita hospitalizations. b, Cumulative
hospitalizations per hospital bed. ¢, per capita ICU admissions. d, Cumulative hospitalizations per ICU bed. Counties identified as being in the 90%
quantile for various metrics of disease burden in the optimistic and pessimistic transmission scenarios (purple bars) and comparable counties across the
entire US (grey bars).
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N transmission scenarios identifying
county as being at or above 90% quantile
of hospitalizations per hospital bed
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Extended Data Fig. 2 | Counties at or above 90% quantile of per capita hospitalizations. Colors indicate the number of transmission scenarios in which
each county was identified as being at or above the 90% quantile of per capita hospitalizations.
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N transmission scenarios identifying
county as being at or above 90% quantile
of per capita ICU admissions
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Extended Data Fig. 3 | Counties at or above 90% quantile of hospitalizations per hospital bed. Colors indicate the number of transmission scenarios
in which each county was identified as being at or above the 90% quantile of hospitalization per hospital bed. Counties without hospital beds are
colored grey.
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N transmission scenarios identifying
county as being at or above 90% quantile
of ICU admissions per ICU bed
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Extended Data Fig. 4 | Counties at or above 90% quantile of per capita ICU admissions. Colors indicate the number of transmission scenarios in which
each county was identified as being at or above the 90% quantile of ICU admissions per capita.

NATURE MEDICINE | www.nature.com/naturemedicine


http://www.nature.com/naturemedicine

LETTERS NATURE MEDICINE

a b
. 90% quantile hospitalizations per capita 300 . 90% quantile hospitalizations per hospital bed
600 . us . US counties with hospital beds
8 8 200
k] o
< 400 =]
3 3
8 8
z 2!
200 100
0 0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
fraction of population residing in rural area fraction of population residing in rural area
c d
100
- 90% quantile ICU admissions per capita . 90% quantile ICU admissions per ICU bed
500 7 us [T Us counties with ICU beds
75
3 3
'~§ 400 § &
8 8
z Z
200 25
0 0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
fraction of population residing in rural area fraction of population residing in rural area

Extended Data Fig. 5 | Counties at or above 90% quantile of per capita ICU admissions per ICU bed. Colors indicate the number of transmission
scenarios in which each county was identified as being at or above the 90% quantile of ICU admissions per ICU bed. Counties without ICU beds are
colored grey.
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Extended Data Fig. 6 | Relationships between population characteristics and disease burden for alternative optimistic and pessimistic scenarios.
A-H Relationship between population characteristics (x-axes) and metrics of disease burden (y-axes) for the alternative optimistic (blue points) and
pessimistic (red points) scenarios in which RO increased as a linear function of urban population.
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Extended Data Fig. 7 | Projected cumulative burden of hospitalizations in the U.S. for alternative optimistic and pessimistic scenarios. In the alternative
optimistic and pessimistic scenarios, RO increased as a linear function of urban population. (a-¢) optimistic scenario. (d-f) pessimistic scenario.

a, d, Relative number of hospitalizations in each county. b, @ Number of projected hospitalizations per capita in each county. In a, b, d, and e cases have
not yet been allocated to healthcare systems. ¢, f, Cumulative number of hospitalizations per hospital bed after cases have been allocated to healthcare
systems. g, Cumulative fraction of each age class hospitalized in each transmission scenario. Each of the 315 lines for each transmission scenario
represents a different county. h, i, Counties estimated to be in the 90% quantile of hospitalizations per capita and hospitalizations per hospital bed (after
case allocation). Colors in h, i indicate whether the counties were estimated to be in the 90% quantile in the optimistic scenario, the pessimistic scenario,
both, or neither. A high-resolution version of this figure is provided in the Supplementary Information.
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Extended Data Fig. 8 | Projected cumulative burden of ICU admissions in the U.S. for alternative optimistic and pessimistic scenarios. In the alternative
optimistic and pessimistic scenarios, RO increased as a linear function of urban population. (a-¢) Optimistic scenario. (d-f) Pessimistic scenario.

a, d, Relative number of ICU admissions in each county. b, e, Number of projected ICU admissions per capita in each county. In a, b, d, and e cases have
not yet been allocated to healthcare systems. ¢, f, Cumulative number of ICU admissions per ICU bed after cases have been allocated to healthcare
systems. g, Cumulative fraction of each age class requiring ICU admission in each transmission scenario. Each of the 315 lines for each transmission
scenario represents a different county. H and | Counties estimated to be in the 90% quantile of ICU admissions per capita and ICU admissions per ICU bed
(after case allocation). Colors in H and | indicate whether the counties were estimated to be in the 90% quantile in the optimistic scenario, the pessimistic
scenario, both, or neither. A high-resolution version of this figure is provided in the Supplementary Information.
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Extended Data Fig. 9 | The rural-urban distribution of U.S. counties with heavy COVID-19 burden for alternative optimistic and pessimistic scenarios.

In the alternative optimistic and pessimistic scenarios, RO increased as a linear function of urban population. a, Per capita hospitalizations. b, Cumulative
hospitalizations per hospital bed. ¢, per capita ICU admissions. d,Cumulative hospitalizations per ICU bed. Counties identified as being in the 90% quantile
for various metrics of disease burden in the optimistic and pessimistic transmission scenarios (purple bars) and comparable counties across the entire US
(grey bars).
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Median percentage of population residing in rural area
Metric Counties identified at or Mann-Whitney U Two-sided p value
Comparable counties
above 90% quantile
Per capita 41.01 59.54
277982 SOMAI0
hospitalizations (N =269) (N total counties = 3142)
Per capita ICU 45.18 59.54
291914 2.35%1010
admissions (N =245) (N total counties = 3142)
Hospitalizations 34.52 51.82
201652 <2.2%10°16
per hospital bed (N =241) (N counties with hospital beds = 2478)
ICU admissions 27.02 36.21
73457 1.2%103
per ICU bed (N =131) (N counties with ICU beds = 1353)

Extended Data Fig. 10 | The comparative rurality of U.S. counties with heavy COVID-19 burden for alternative optimistic and pessimistic scenarios. In
the alternative optimistic and pessimistic scenarios, RO increased as a linear function of urban population. Mann-Whitney U tests indicated that the sets
of counties identified as being heavily burdened in both scenarios were less rural than the set of comparable counties.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[ ] Life sciences [ ] Behavioural & social sciences  [X| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
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Study description We analyzed publicly available data using a mathematical model.
Research sample We used publicly available data.

Sampling strategy No data was collected.

Data collection No data was collected.

Timing and spatial scale  No data was collected.

Data exclusions No data was collected.
Reproducibility No data was collected.
Randomization No data was collected.
Blinding No data was collected.

Did the study involve field work? [ | Yes X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
D Antibodies IXI |:| ChlP-seq
D Eukaryotic cell lines IXI |:| Flow cytometry
D Palaeontology and archaeology g |:| MRI-based neuroimaging

D Animals and other organisms
|:| Human research participants
|:| Clinical data

|:| Dual use research of concern
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