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Littleis known about the genetic determinants of medication usein
preventing cardiometabolic diseases. Using the Finnish nationwide drug
purchase registry with follow-up since 1995, we performed genome-wide
association analyses of longitudinal patterns of medication usein
hyperlipidemia, hypertension and type 2 diabetes in up t0 193,933 individuals
(55% women) in the FinnGen study. In meta-analyses of up to 567,671
individuals combining FinnGen with the Estonian Biobank and the UK
Biobank, we discovered 333 independent loci (P< 5 x10) associated with
medication use. Fine-mapping revealed 494 95% credible sets associated
with the total number of medication purchases, changes in medication
combinations or treatment discontinuation, including 46 credible sets in 40
locinot associated with the underlying treatment targets. The polygenic risk
scores (PRS) for cardiometabolic risk factors were strongly associated with
the medication-use behavior. A medication-use enhanced multitrait PRS

for coronary artery disease matched the performance of a risk factor-based
multitrait coronary artery disease PRS in anindependent sample (UK
Biobank, n=343,676).In summary, we demonstrate medication-based
strategies for identifying cardiometabolic risk loci and provide genome-wide
tools for preventing cardiovascular diseases.

Cardiovascular disease (CVD) is the leading cause of excess mortality
in the developed countries’, and although approximately half of the
variability in cardiometabolic diseases is heritable?, most related harm
is preventable®*. Pharmacotherapies targeting cardiometabolic risk
factors—type 2 diabetes (T2D), hyperlipidemia and hypertension—
remain at the core of CVD prevention®®.

Challenges in pharmacological prevention of CVD involve iden-
tifying patients in need of therapy, setting the targets of the treat-
mentand selecting therapies of adequate efficacy and acceptable risk
profiles. In addition to socioeconomic factors, both the set and dose

of medicines that patients start their treatment with and continue to
use depends on factors such as cardiovascular risk profiles, disease
etiology, drug responsiveness and adverse effects*®. Abandoning
or inadequately adhering to therapies worsens outcomes’'°. With
limited tools to predict treatment suboptimality, pharmacotherapy
is traditionally optimized in a reactive trial-and-error manner when
patients experience side effects, miss their treatment targets or experi-
ence events such as myocardial infarction or stroke*®. Real-world data
fromelectronic health records and registries provide massive datasets
with sufficient statistical power to explore long-term medication use.

A full list of affiliations appears at the end of the paper.
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Fig.1| Workflow of the study. GWAS were performed for 12 phenotypes of
medication-use patternsin treating hyperlipidemia, hypertension and T2D
(three continuous analyses of the total number of medication purchases and nine
binary analyses of medication changing and fast discontinuation) in FinnGen,
with data capturing all medication purchases since 1January 1995. Meta-analyses
of up to 567,671 participants combined datain FinnGen (n =29,990-193,933),
EstBB (n=5,110-184,892) and UKBB (n = 188,846). Fine-mapping was performed
inFinnGen for all associated (P < 5 x 107%) regions. Genetic architectures between

medication-use traits and the underlying cardiometabolic risk were juxtaposed
by comparing genome-wide significant associations, calculating LDSC
regression genetic correlations and testing associations between PRS for LDL,
SBP and T2D and the medication-use phenotypes. A medication-use enhanced
multitrait PRS for CAD was built using MTAG method and its performance

was compared to atraditional CAD PRS by testing associations with CAD inan
independent sample (UKBB, n = 343,676).

Behavioral patterns derived from prescription data can be used as a
proxy to detect suboptimal or harmful prescriptions™'. Such studies
are essential to identify factors that influence interindividual variability
intreatment response and can inform clinicians on initial treatments
that are different from first-line therapies.

Genetic information has been proposed as a tool to optimize
pharmacotherapy™'* and advance drug development”. Despite the
progress in disease genetics, we have relatively limited knowledge on
the role of genetic factors driving the variation in lifelong patterns of
medication use in cardiometabolic diseases. Meanwhile, large-scale
genome-wide association studies (GWAS) have identified a complex
polygenicarchitecture comprising hundreds of associated loci for lipid
levels'®®, blood pressure’®?® and T2D???, and using genetic informa-
tionin clinical risk prediction shows promise of clinical relevance??*.
A study of self-reported medication use in the UK Biobank (UKBB)
revealed variants associated with medication use, but the self-reported
nature and ambiguous names of medications may have limitationsin

theaccuracy of the investigated phenotypes®. In contrast, pharmaco-
genetic associations, suchas the SLCOIBI polymorphism (rs4149056)
increasing risk for simvastatin-induced myopathy”’, have been identi-
fiedinsmaller pharmacogenetic studies?”?’, mostly having a relatively
narrow focus on drug response as the primary outcome.

Ourworkis asystematic study of genetic effects on medication-use
patterns using cardiometabolic medications asamodel. We test three
main hypotheses: (1) medication data can be used to identify genetic
factors underlying cardiometabolic diseases, (2) genome-wide data
inform us about the likelihood of medication switching and stop-
ping, and (3) medication-use-associated genetic variation allows
for enhancing polygenic prediction. We study three fundamental
medication-use patterns: the cumulative medication use, medication
switching and treatment discontinuation. We develop polygenic risk
scores (PRS) to predict medication patterns and use medication data
to identify risk factors for cardiometabolic diseases. We conduct a
genetic population-based biobank study comprising up to 193,933
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Table 1| Medication patterns in hyperlipidemia, hypertension and T2D derived from the nationwide drug purchase registry

in FinnGen
ATC codes n Patients Controls

Treatment of hyperlipidemia
(1) Drugs targeting hyperlipidemia, number of purchases C10 193,933
Participants with at least one purchase 77,439
(2) Changing simvastatin to another statin C10AA01 45134 19,228 25,906
(3) Fast discontinuation of statin use C10AA 76,499 7,459 68,990
Treatment of hypertension
(4) Drugs targeting hypertension, number of purchases C02, C03, CO7, C08, CO9 193,933
Participants with at least one purchase 121,491
(5) More than one antihypertensive group 125,586 82,551 43,035
(6) More than two antihypertensive groups 125,586 50,482 75,104
(7) More than three antihypertensive groups 125,586 22,476 103,110
(8) All five antihypertensive groups 125,586 2,900 122,686
(9) Fast discontinuation of hypertension medication use 125,212 14,661 110,551
Treatment of T2D
(10) Drugs targeting T2D, number of purchases A10B 193,933
Participants with at least one purchase 31,223
(11) Use of second-line agents in T2D A10BD, A10BH, A10BJ, A10BK 31,665 14,292 17,373
(12) Use of insulin A10A 29,990 6,861 23,129

The total number of participants included in the analyses, and the number of cases and controls for the binary traits, are presented.

Finnish participants of the FinnGen study’® linked to the nationwide
drug purchase registry covering every prescription drug purchase
in Finland since 1995. We perform GWAS for patterns of medication
use on (1) the total number of drug purchases during the follow-up,
(2) switching medications within the same therapeutic class and
(3) discontinuation of the use, and fine-map our findings to a
single-variant resolution. We meta-analyze our GWAS results using
184,892 participants in the Estonian Biobank (EstBB)* and 188,846
participants in the UKBB2. We evaluate the effect of genome-wide PRS
for low-density lipoprotein (LDL), systolic blood pressure (SBP) and
T2D on medication use. Finally, we build a medication-use-enhanced
multitrait PRS for coronary artery disease (CAD) (Fig. 1).

Results

Study population and medication-use patterns

FinnGen release 5 (ref. *°) (www.finngen.fi/en) consisted of 218,792
genotyped individuals of Finnish ancestry (Supplementary Figs.1-4)
with 5,118,565 years of drug-registry-based follow-up. In total, 56.5%
were women and the mean age at the end of the follow-up was 59.8
years. Overall, 44,343,661 drug purchases were recorded and 3,650,495
(8.2%) of these were drugs used in treating hyperlipidemia, hyperten-
sionor T2D.

We identified all participants’ complete purchase histories of
drugs targeting cardiometabolic risk factors: hyperlipidemia, hyper-
tensionand T2D. For each disorder, we used the sum of the total number
of purchases of the drugs to quantify the magnitude of the pharmaco-
logical intervention (Extended Data Fig. 1) and every purchase of any
package of any drug coded withanappropriate Anatomical Therapeu-
tic Chemical Classification (ATC) code during the study period (from
the start of the drug purchase registry, 1 January 1995, until death or
the end of follow-up, 31 December 2018) increased the sum by one.
Multiple factors, including the age of disease onset, cardiometabolic
disease severity, drug resistance, perceived cardiometabolic risk and
adherence, all affect this proxy of overall cumulative medication use.
Weincluded 193,933 participants (55.3% women), being at least 10 years

oldandaliveon1january1995 (Supplementary Table1a).Intotal, 77,439,
121,491and 31,223 participants recorded at least one purchase of drugs
used in treating hyperlipidemia, hypertension and T2D, respectively.
Thelongest treatmentdurations (mean =11.7 years, standard deviation,
s.d., =7.97) and most purchases were seenin hypertension (mean = 69.1,
excluding participants without purchases, s.d. = 67.6, median = 50). The
shortest treatments were seen in T2D (mean = 8.05 years, s.d. = 6.35)
and the fewest purchases in hyperlipidemia (mean =30.7,s.d. =27.1,
median = 25) (Supplementary Table 1b).

We identified common binary patterns in medication use
(Extended Data Fig. 2). Although simvastatin was the most common
first-choice statin, with 45,134 participants (59.0%) starting their
treatment with it, 19,228 (42.6%) switched to another statin. Early
discontinuation of statin use was frequent: 7,459 participants (9.86%)
stopped after one or two purchases, comparable with a previous esti-
mate®. In hypertension, 82,551 (65.7%) had purchases in more than
one and 2,900 (2.3%) in all five ATC-based medication subgroups. In
T2D, 14,292 (45.1%) recorded purchases of second-line treatments and
6,861 (22.9%) progressed to use insulin (Table 1; for EstBB and UKBB,
see Supplementary Table 2). Total purchases and medication changes
were positively correlated (r= 0.01-0.60) with one another, and each
of these was negatively correlated with medication discontinuation
(r=-0.46t0-0.03) (Extended Data Fig. 3).

Genome-wide association analyses in FinnGen

We conducted GWAS for the 12 medication-use phenotypes (Table 1) of
total purchases, medication switching and discontinuation of up to 24
yearsof data (mean =23.4,s.d. =2.68) on hyperlipidemia, hypertension
and T2D medications in FinnGen. Of 16.4 x 10° variants (10.3 x 10° with
minor allele frequency (MAF) > 0.005 included in quantitative analyses),
23,577 were genome-wide significant (GWS, P<5x1078) in at least one
analysis, with 6211 Mb windows of genome-wide significant associations
to medication-use phenotypes (Manhattan plots for FinnGen GWAS:
https://meds.finngen.fi). Combining all GWS variants from all analyses
within 1.5 Mb windows resulted in 303 independent loci: 91 with leading
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associations (smallest Pvalues) for hyperlipidemia, 145 for hypertension
and 67 for T2D medication patterns. Intotal, 298 loci had leading associa-
tions for the quantitative and five for the binary medication phenotypes
(Extended Data Figs. 4-6 and Supplementary Table 3).

Secondary sensitivity GWAS displayed overlapping GWS loci
(case-control analyses of ever having purchased the studied drugs: 132
overlapping/2 additional GWS loci, annual purchases: 225/7, total pur-
chases, excluding participants without any purchases: 73/5; Supplemen-
tary Tables 4-7). Alllinkage disequilibrium score regression (LDSC)***
genetic correlations (RGs) between theinitial and the sensitivity analy-
seswere closeto1(Supplementary Table 8). Sex-stratified GWAS of total
purchases (n,,omen = 107,231, n,,., = 86,702) supported shared genetic
architectures between the sexes as RGs between sexes were approxi-
mately 1for all medications (hyperlipidemia, hypertension, T2D) and
effect sizes for the 298 GWS lead variants were highly correlated (cor-
relation coefficient for lead variant effect sizes (r;) = 0.95) between
sexes (Supplementary Table 9 and Extended Data Fig. 7). Finally, we
performedinteraction analyses for the 303 lead variants, introducing
lead variant allele (G) x age or G x follow-up time interaction terms
in the models. Interactions with age were significant (P < 0.05/303
GWS lead variants) for 37 variants (Supplementary Table 10),
whereas there were no significant interactions with follow-up time.

Meta-analyses in FinnGen, the EstBB and the UKBB

In GWAS for all 12 medication-use patterns in EstBB with medication
purchase data (n.;; = 184,892, binary phenotypes n = 5,067-74,699)
and three medication quantity analyses using prescription data in
UKBB (nygg; = 188,846), we saw highly concordant effect directions
(251 out of 288lead variantsin FinnGen were concordantin allsamples,
Pvalue from binomial test (Py;om) = 6.0 X 10™; Supplementary Table 3).
We performed meta-analyses of all three samples for the number of
purchases (1., = 567,671), of FinnGen and EstBB for the binary pheno-
types (N, = 42,332-200,285) for all loci with asuspected association
inFinnGen (P<5x107%).Intotal, 333 independent loci were associated
with at least one medication phenotype (74 with leading association
for hyperlipidemia, 181 for hypertension and 78 for T2D), with astricter
criterion for genome-wide significance (P <5 x 107, including 94 loci
notsignificant (P> 5 x107®) in FinnGen (Supplementary Table 11).

Fine-mappinginFinnGen

Fine-mapping thesignificant (P < 5 x 107%) 480 locus-medication associ-
ations (alocus may be associated with multiple phenotypes) in FinnGen
using the sum of single effects method* resulted in 494 95% credible
sets (CS) in 347 locus-medication associations. In 73 CS the variant
with the highest posterior probability for causality was at least two-
fold Finnish-enriched compared with non-Finnish-Swedish-Estonian
European populations. Intotal, 81 CSincluded one or more functional
missense or predicted loss-of-function variants (Supplementary Tables
12-18). Overall, 448 CS overlapped with associations reported previ-
ously for the underlying trait (lipids, blood pressure and fasting glucose
levels), whereas 40 distinct loci (with 46 CS) had no previous GWS
associations in external summary statistics and the GWAS catalog.

CS for total number of medication purchases

Intotal, 450 CS were associated with the overall number of purchases of
drugs usedinthetreatment of hyperlipidemia (83 loci, 137 CS), hyper-
tension (145loci, 221CS) and T2D (77 loci, 92 CS) (Fig. 2, Extended Data
Fig. 4 and Supplementary Tables 14-16). Of loci, 255 were GWS in the
meta-analysis of FinnGen, UKBB and EstBB (P < 5 x 10™°) (Supplementary
Table 12). Most CS (85.2%) overlap with previously associated loci for
cardiometabolicrisk factors: variants elevatingrisk factor levels were
associated withmore purchases and risk factors that lowered variants
with fewer purchases. There were 38 loci containing 44 CS (including
six missense variants) that had no related previous GWS associations
(Supplementary Tables 14-16).
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Fig.2| GWAS association analysis results for the total number of medication
purchases in FinnGen. a-c, Manhattan plots with two-sided Pvalues of
quantitative SAIGE mixed-model GWAS (n=193,933) for the number of recorded
purchases of drugs used in the treatment of hyperlipidemia (a), hypertension (b)
and T2D (c). All loci containing one or more 95% CS are highlighted according to
their previously reported related cardiometabolic associations; loci that have
been previously associated with lipid-related traits (a), blood pressure-related
traits (b) or blood glucose-related traits (c). The horizontal line signifies genome-
wide significance (P <5 x 1078 without additional multiple testing correction.

The strongest associations (Pe,q variane < 107°°, Bayes factor
(BF)cs >10'°) for hyperlipidemia medications were in established
lipid loci (APOE, LDLR, PCSK9, APOCI, CBLC and ANKRD17). The 137
CSincluded 29 functional variants (28 missense, one predicted loss
of function). Nine loci had no previous lipid-related associations
(Supplementary Table 14).

In total, 221 CS associated with hypertension medication pur-
chases contained 49 functional variants. There were 20 loci that had
no associations with blood pressure (Supplementary Table 15). Over-
all, 92 CS associated with T2D medication purchases contained 21
functional variants. Of 11loci that had not been previously associated
with glucose-related traits, four contained a Finnish-enriched CSlead
variant (more than threefold) (Supplementary Table 16).
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butnot CAD; CAD, correlated effect model across medication use and CAD

but not therisk factor; CAD + RISK, correlated effect model across medication
use, risk factor and CAD. The variant association statistics used to compute

the posterior probabilities for LDL, SBP and T2D and came from previous
studies®*?"* with sample sizes 0f 340,951, 757,601 and 898,130, respectively. For
CAD, a meta-analysis including FinnGen, UKBB and CARDIOGRAMplusC4D?’
(n=811,555)*" was used.

CS for changes in medication use

CSinfourestablished lipid loci (PCSK9, CELSR2, APOE and CHD4) were
associated with switching simvastatin to another statin with shared
variant effect directions for LDL. A locus (P value in meta-analysis
(Poera) = 2.6 X 107°) without previous cardiometabolic associations
(nearest gene: AP000472.2) contained a 6.4-fold Finnish-enriched
lead variant (21:22082072:G:A, MAF = 8.0 x10™*) (Extended Data
Fig. 5aand Supplementary Tables 12 and 17).

Intotal, 32 CSwere associated with purchasing hypertension medi-
cations from different ATC-based medication groups (Table 1). One
locus (WNT2B) was associated with purchases from all four analyzed
thresholds of the number of antihypertensive drug groups (more than
one, two, three or four groups). Three loci (HOXA13, CASZ1, KCNK3)
were associated with three thresholds (more than one, two and three
groups) (Extended DataFig. 5c-fand Supplementary Tables12and 17).

A previously reported T2D locus (TCF7L2) was associated with
both using second-line T2D treatments (Ppe, = 2.1 X 10™) and insulin
(Poera=2.3 x107™) (one CS per analysis) (Extended Data Fig. Sh,i and
Supplementary Tables12 and 17).

Out of 37 CS containing loci-phenotype associations for medi-
cation changing, 24 were significant in meta-analyses (P<5x107°)
and 36 had concordant effect directions in FinnGen and EstBB
(Poinom = 7.3 X 107?) (Supplementary Table 12).

CSfor discontinuation of medication use

CSinknownlipid- (PCSK9, LDLR and APOE) and blood pressure-related
(WNT2B and HOXA13) loci were associated with discontinuation
of medication use in hyperlipidemia (Extended Data Fig. 5b and

Supplementary Table 18) and hypertension (Extended Data Fig. 5g and
Supplementary Table 18), respectively. The lead variants had the oppo-
site effect tothe underlying related risk factors, number of medication
purchases and medication changing.

Medication-use-specific associations and cardiometabolic risk
Weanalyzed whether the 40 medication-use-associated loci (with 46 CS)
without previous GWS associations for related cardiometabolic traits
would indicate cardiometabolic or medication-specific links. Of these
loci (20 CS), 18 were associated (P <5 x107) in the meta-analyses of
FinnGen, EstBB and UKBB and the remaining 22 loci had seven CS with at
least atwofold Finnish-enriched lead variant (Supplementary Table 19).
We compared hyperlipidemia, hypertension and T2D medication asso-
ciations with LDL'®, SBP' and T2D* in previous GWAS, respectively.
In total, 16 of the 35 lead variants present in external disease-related
summary statistics were associated with the risk factors (multiple
comparison adjusted P (P,g) < 0.05 at false discovery rate (FDR) 5%),
whereas 29 had shared effect directions (P, = 7.0 X 107) (Supple-
mentary Table 20). Eight were associated with CAD (P,4;< 0.05at FDR
5%) in ameta-analysis of FinnGen, UKBB and CARDIoGRAMplusC4D?*
(Nases = 113,168, n., = 811,555) and 35 had concordant effect directions
(Poinom = 9.3 x 107®) (Supplementary Table 21). Overall, 16 of the CS lead
variants were associated (P < 0.05 out of 231 endpoints) with at least
one cardiometabolic disease in a list of more detailed endpoints in
FinnGen (Supplementary Table 22).

Finally, we used a Bayesian framework to assess shared effect
with the underlying risk factor (LDL, SBP, T2D) and CAD in the 32 novel
autosomal associations for medication purchases. We found a likely
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CAD association (posterior inclusion probability (PIP) > 60%) in seven
loci,including alocus (chr4:147117893:A:G/TTC29) associated with CAD
and hyperlipidemia medication, but not with the underlying risk factor
(LDL).Sevenlocidid notassociate with either the considered risk factor
or CAD (PIP > 60% for association with medication use only) (Fig. 3).

Genetic correlations between medication use and
cardiometabolic risk

Using LDSC***, we report (P< 0.05at 0.05 FDR) genetic correlation (RG)
between the medication use and the underlying cardiometabolic risk
(RG approximately 0.9-1.0). Medication use was correlated with CAD
(Fig.4). Thisisinline with 158 of the 333 medication-use-associated
loci (P<5x107°) being associated with CAD (P, < 0.05 at FDR < 0.05,
shared direction of beta; Supplementary Table 23).

Ofthe non-cardiometabolic conditions, ADHD, depression, edu-
cational attainment, loneliness, personality trait neuroticism and
self-related health were all correlated with all three medication-use
phenotypes (medication GWAS summary statistics were from FinnGen,
others from external sources; Supplementary Table 24 and Extended
DataFig.8).Inasensitivity GWAS in EstBB (n =132,982-132,987) adjust-
ing for educational attainment (a proxy for socioeconomic status), we
did not observe any change in effect sizes or statistical significance
levels of the GWS lead variants (Supplementary Table 25 and Extended
DataFig.9).

Polygenic cardiometabolic risk associates with medicine use
The PRS of LDL, SBP and T2D were strongly associated with the related
medication-use patterns (Fig. 5and Supplementary Table 26). Partici-
pantsinthe highest decile recorded, on average, 15 (linear regression
coefficient (beta) =14.6; 95% confidence interval (95% CI) = 14.2-15.0),
42 (beta=42.0;95%Cl=40.9-43.1)and 12 (beta =11.9;95% Cl = 11.5-12.3)
more hyperlipidemia (mean number of purchases =12.2; s.d. =22.8),
hypertension (mean =40.1;s.d. = 61.6) and T2D purchases (mean = 6.54;
s.d.=21.9) compared with the bottom decile, respectively. In the top
decile of the LDL PRS, the odds of switching simvastatin to another
statin were 103% higher (odds ratio (OR) =2.03; 95% CI =1.85-2.23)
thaninthebottom decile. In contrast, the odds of discontinuing statin
use were lower in the top decile (OR = 0.421;95% Cl = 0.376-0.473). For
the top decile of the SBP PRS, the odds of using more than one group
of antihypertensives were 210% higher (OR = 3.11; 95% Cl = 2.93-3.31)
than in the bottom decile and the odds of having used all five groups
of antihypertensives were 320% higher (OR = 4.21;95% Cl = 3.42-5.17).
In contrast, the odds of discontinuing hypertension medication were
70% lower (OR = 0.305; 95% Cl = 0.280-0.333) in the top decile. Finally,
individuals in the top decile of the T2D PRS had 160% higher odds of
using insulin (OR =2.62; 95% Cl =2.21-3.10) and 120% higher odds to
use second-line treatments (OR = 2.23; 95% Cl =1.96-2.54).

Participants in the top deciles of the PRS started medication
use 3.9-6.3 years earlier than in the bottom deciles. All associations
remained significant in analyses adjusting for the age of treatment
onset (Supplementary Table 26).

A missense variant rs4149056 in SLCO1BI1 has previously been
associated with statin-induced myopathy?®. We did not observe
effect to statin discontinuation (OR, homozygous carriers versus
non-carriers =1.08; 95% Cl = 0.957-1.220; P=0.22) or switching sim-
vastatin (OR =1.08; 95% Cl = 0.982-1.190; P=0.11). There was a small
additive effect for total lipid-lowering drug purchases (OR = 0.988;
95% Cl=0.982-0.995; P=0.0004) and changing (OR =1.04; 95%
Cl=1.00-1.07; P=0.03) but not for discontinuation (OR =1.02; 95%
Cl=0.978-1.020; P=0.33). We summarize results for previously
reported pharmacogenomic variants in Supplementary Table 27.

Medication-use-enhanced polygenicrisk score for CAD
We used multitrait analysis of GWAS (MTAG)*® to perform a
joint analysis of CAD and the number of drug purchases for

CAD =C=
Medication
=@=— Hyperlipidemia
=@ Hypertension
LDL =il
—_—— T2D
P
SBP R N— @ <0.0001
A <001
B >005
T2D -
— e
0 0.3 0.6 0.9

Genetic correlation

Fig. 4| Genetic correlations between total numbers of drugs purchased

for cardiometabolic indications and the underlying cardiometabolic

risk factors and CAD. Genetic correlations between the total number of
hyperlipidemia, hypertension and T2D medication purchases (n=193,933)

and CAD (CARDIOGRAMplusC4D*, n=194,427), LDL'® (n = 340,951), SBP"’
(n=757,601) and T2D? (n = 898,130) estimated with LDSC. The association
statistics for LDL, SBP, T2D and CAD used to compute genetic correlations came
from previous studies. Point estimates of genetic correlation and their 95% CI,
indicated using error bars, are presented. The genetic correlation between LDL
and the total number of hypertension medications was not significant, whereas
all other genetic correlations were significant (two-sided P < 0.05 at 5% FDR).

hyperlipidemia, hypertensionand T2D, restricting analyses to HapMap
3 single-nucleotide polymorphisms (SNPs)*’. We built two PRS (CAD
PRS and MTAG-CAD PRS) from the two GWAS summary statistics. Both
PRS were associated with CAD in the UKBB (17,986 cases, n = 343,676).
Comparing the top 1% to the middle quintile, OR =4.40 for CAD PRS
(95% Cl=3.96-4.89) and 4.78 for MTAG-CAD PRS (95% CI = 4.31-5.30).
The MTAG PRS had a 22% higher pseudo-R?for CAD (R?1xc.prs = 0.0424,
R%s = 0.0348, Davidson-MacKinnonJ-test P(P, ) =1.0 x 10*®) and a
0.6 percentage points higher area under the receiver operating char-
acteristic curve (AUC) (AUCyac.prs = 0.790, AUCprs = 0.784). A simi-
lar risk factor MTAG PRS combining risks for CAD, hyperlipidemia,
hypertension and T2D resulted in an OR estimate between CAD PRS
and medication-enhanced MTAG-CAD PRS (OR 99% versus 1% = 4.68, 95%
CI=4.22-5.19,AUC=0.788, R? = 0.040) (Extended Data Table 1). Assess-
ing effect of rare variants with MAF < 1% excluded by MTAG, a CAD PRS
together with atraditional weighted-sum PRS based on effect sizes of the
lead SNPs of the medication-use GWS loci performed equally, whether
the rare variants were included (R?=0.0378) or not (R?=0.0374).

Discussion
In this study, we demonstrate the highly polygenic nature of lifelong
medicationusein cardiometabolic conditions. We discovered hundreds
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discontinuation of statin use (n = 76,499) (c), in comparison with differences in

f
0.6 1
0.6
°
0.5 | o’ %
0.5 % oo
°
,(% .Q .“ ‘Q T2D treatment
? I S 0.4 ‘. e’
g o ¥ 5 X @ Second line
=3 4 (4
8 0.4 g s
© o Insulin
0.3
8 °
0.3
0.2 4
0.2 1
| | | | | | | |
TT TIC CIC 0 25 50 75 100
SLC(?SL%Lg%ré%t)ype PRS percentile (T2D)
9
05 7o Antihypertensives
0.20 o from different
ﬂ therapeutic
04 QN groups
”. e
0.15 5 03 L -
> g éﬂ o2
E IR s
= T & 024 ”\’ °
° 0.10 4 ] ! l e3
0.1 4
0.05 H 5
o
| | | | | | | |
TT TIC CIc 0 25 50 75 100
SL(izinngr;%t)ype PRS percentile (SBP)

statin-associated myopathy-related SLCO1B1 genotypes (n = 45,134, P=0.11(d);
n=76,499,P=0.22(e)).f, Associations between T2D PRS and use of second-line
T2D treatments (n =31,665) and insulin (n = 29,990). g, Association between SBP
PRS and use of hypertension medications from different numbers of distinct
medication groups (n=125,586). PRS are splitinto bins of 1% (a) and 2% (b,c,f.g).
The LDL, SBP and T2D PRS were computed from the GWAS association statistics
from previous studies'®'** with sample sizes 0f 340,951, 757,601 and 898,130,
respectively. The error bars signify 95% CI.

of genetic predictors for temporal medication-use patterns: (1) the
total quantity of lifelong purchases, (2) changing medication and (3)
discontinuation. We report 333 independent loci associated with medi-
cation use and 495 CS with >95% posterior probability for causality.
Whereas most associations have been previously linked to lipid, blood
pressure or glucose-related traits, we discovered loci without previous
cardiometaboliclink. We developed polygenic predictors for medica-
tion use and showed how genetic association results for medication
use can refine polygenic prediction.

Most genetic factors driving the differences in medication use
in cardiometabolic conditions are shared with the underlying risk
factors. Most loci associated with total purchases and medication
changes (hyperlipidemia: APOE, PCSK9 and LDLR; hypertension:
WNT3B, HOXA13, CASZI and KCNK3; T2D: TCF7L2) have been associ-
ated with cardiometabolic risk factors with shared effect directions'* >,
In contrast, the associations for discontinuation (statins: PCSK9, LDLR
and APOE; antihypertensives: WNT3B, HOXA13, CASZI and KCNK3) had
opposite effect directions. The PRS for LDL, SBP and T2D were strongly
associated with medication-use patterns, supported by a reported
association between T2D PRS and T2D patients’ progression to use

insulin*. Genetic correlations were highest between total purchases
and the treatment targets. In contrast, known pharmacogenetic vari-
ants associated with medication-related adverse events*?®, such as
SLCOIBI increasing statin-related myopathy, were not among the
leading associations. Together, these results demonstrate the central
role of the underlying genetic liability in medication use.

There are several explanations for these findings. First, the total
number of purchases is an aggregate phenotype combining both the
length of the treatment and the number of different medications used
within a certain time window. It is driven by the underlying polygenic
risk for the risk factor itself associated with the age of onset***, levels
ofthe measured risk factor’®****and hard cardiovascular events'®?*+2,
Second, these factors are all driving earlier initiation of the medica-
tion, a greater number of different therapeutic agents used and the
total number of medications purchased. Third, the polygenic risk for
the underlying risk factor was inversely associated with treatment
discontinuation.

We propose reasons for the negative association between car-
diometabolic risk and treatment discontinuation. Patients with
higher genetic cardiometabolic risk are at higher risk for severe
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cardiometabolic diseases, cardiovascular complications and a fam-
ily history of CVD, all motivating the treatment, even if side effects
are experienced. Medical professionals might try to find tolerated
medication combinations if patients wanted to abandon the medi-
cations or side effects are experienced. Also, nonpharmacological
lifestyle-related interventions are more likely sufficient> if the genetic
risk is low as higher genetic risk correlates with higher measures of
cardiovascular risk factors'®*2, Finally, we know that higher genetic risk
forindividual risk factorsis associated with hard CVD outcomes'®?*42,
Insecondary prevention of CVD, the treatment is more aggressive and
the stricter treatment goals are unlikely to be met without ongoing
pharmacotherapy. Individuals with high inherited risk have a harder
time meeting the goals and need continued treatment, whereas indi-
viduals with lower genetic risk meet the goals more easily, sometimes
leading to treatment discontinuation.

In total, 40 associated loci were not previously linked with the
underlying risk factors. The link between medication use and cardio-
vascular risk, partially independent of the risk factors, may explain
why theselocihad notbeenreportedin well-powered risk factor stud-
ies'®*?!, because high CVD risk indicates pharmacological treatment
of CVD risk, despite normal risk factor measures>***. For example,
lipid-lowering treatment is initiated earlier and targets are stricter in
individuals with CVD or diabetes®. Whether these associations indicate
medication-specific pathways for action, including drug efficacy and
side effects or are more behavioral by nature, warrants further study.

A medication-enhanced multitrait PRS for CAD showed better
risk discrimination compared with a traditional single-trait CAD PRS,
although the improvement was not clinically meaningful. This is in
line with results for combining risk factor GWAS results with CAD for
polygenic prediction®. Rare variants may provide further predictive
power to the PRS.

The study has strengths and limitations. FinnGen consisted of
individuals linked to the Finnish drug purchase registry covering all
drug purchases since 1995, being superior to our other samples. The
Finnish bottleneck population provides for genetic discovery*® and
73 CShadaFinnish-enriched lead variant. Replicationin datasets with
enough carriers of Finnish-specific variants is therefore challenging.
By combining drugs with varying mechanisms for action to maximize
statistical power, the possible molecule-specific pharmacogenomic
aspects might be overlooked. The medication dosage could have an
effect, but dosage information was unavailable. For example, we may
underestimate the effect of SLCO1BI1 rs414956 polymorphisms on medi-
cation use as the related statin-induced myopathy is dependent on
simvastatin doses of at least 40 mg daily*’. However, our quantitative
phenotypes grouped together different medications and our binary
trajectory design was doseindependent, and we show the robust asso-
ciationbetween the underlying cardiovascular risk and the medication
patterns even without adjustment for dosage. In addition, because of
widespread off-label use and additional indications for many of the
studied medications*®, not all purchases were to treat cardiometabolic
conditions, but our key findings display the association between the
cardiometabolic risk and the studied medication patterns.

The long follow-up time in our study highlights time-dependent
progression in medication-use practices, seen in the overrepresenta-
tion of simvastatin, the first widely used statin*’, as the first-choice
statin in FinnGen. However, the wide use of simvastatin allowed us to
testassociations on switching to other statins. Although the medication
registry covers the whole nation of Finland, the biobank ascertainment
may cause biases, including survival bias, because participants need
to be alive until they are recruited (Supplementary Fig. 5). Given the
replicability of associations, it is unlikely that these biases largely affect
our main findings. Also, due to possible spectrum bias, the results
from our quantile-based PRS analyses should be generalized to other
populations with caution®. In addition, given the self-reporting of
psychological and socioeconomic factors in our study, the effect of

these traits may be underestimated. Finally, although the study was
conducted in three independent biobanks, all our samples were of
European ancestry, limiting the generalizability of our results™*2,

In summary, we demonstrate the highly polygenic genetic
architecture of lifelong medication-use patterns in hyperlipidemia,
hypertension and T2D largely shared with cardiometabolic traits.
Our findings highlight the possible utility of using risk-factor-related
genetic information for optimizing pharmacological treatment with
medicine-use-related genetic information to improve the prediction
and prevention of cardiometabolic diseases.
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Methods

Study sample

The data comprised 218,792 Finnish individuals from FinnGen
Data Freeze 5, which includes prospective epidemiological and
disease-based cohorts and hospital biobank samples (Supplementary
Table 28). The datawere linked by the unique national personal identi-
fication numbers to national hospital discharge (available from1968),
death (from1969), cancer (from1953) and drug purchase (from 1995)
registries. The registry data were available until 31 December 2018.

Drug purchase registry

The Finnish drug purchase registry managed by The Social Insurance
Institution of Finland (Kela) contains all prescription drug purchases
starting from 1 January 1995. All prescription drug purchases are
dated and coded with the national version of the World Health Organ-
ization ATC, thus enabling molecular and higher drug-group-level
classifications.

Medication-use phenotypes

We identified the analyzed drug-use phenotypes using the drug pur-
chaseregistry and ATC codes (Table ). First, we identified all purchases
of drugs used inthe management of three commonrisk factors of CVD,
hyperlipidemias, hypertensionand T2D, lipid-modifying agents (ATC
code starts with C10), agents used in the treatment of hypertension
(five different ATC groups: C02*,C03*,C07*, C08*and C09*) and blood
glucose-lowering drugs, excluding insulin (ATC = A10B*).

For the analysis of quantitative phenotypes of drugs used in the
treatment of hyperlipidemia, hypertension and T2D, we counted
all single drug purchases in these categories for all the study par-
ticipants. All the nonusers were included in these phenotypes with
zero purchases (Supplementary Table 1a). To exclude age-related
medicine-free follow-up from the analyses, we excluded all the par-
ticipants who were dead or younger than 10 years old at the beginning
of the follow-up (1January 1995), resulting in the final sample sizes of
193,933 participants.

For the analysis of binary phenotypes, we identified
risk-factor-specific common drug-use patterns from the purchase
registries for hyperlipidemias, hypertension and T2D from the whole
dataset of 218,588 individuals alive at the beginning of the follow-up.

Among the hyperlipidemia drug users, we identified as patients
(1) those who started with simvastatin (ATC: C10AAO1) but then
changed to another statin (ATC: CI0AA*, not CI0AAO1) and (2) those
who started using statins but stopped the use quickly (only one to two
purchases of statins, ATC = C10AA*, last purchase more than 1 year
before the end of the follow-up, excluding those discontinuing later
from the analysis) (Supplementary Fig. 6).

For medications used in the treatment of hypertension, we ana-
lyzed four thresholds of the number of drugs purchased from different
hypertension medicine subgroups, requiring atleast one purchase dur-
ing the follow-up: (3) more than one group, (4) more than two groups,
(5) more than three groups and (6) all five groups used. Controls were
individuals with records of subgroup purchases that are less than in
the case-defining groups (for example, controls for the first analysis
were individuals with purchases of drugs from one hypertensiondrug
subgroup, for the second analysis individuals with purchases from
one or two hypertension drug subgroups, and so on). Discontinua-
tion was defined by having only one or two purchases of hypertension
medication, withatleast1year of purchase free follow-up after the last
purchase (Supplementary Fig. 6).

For T2D, weidentified users of (7) second-line treatments (combi-
nations: ATC = A10BD*, DPP4: ATC = A10BH*, GLP-1: ATC = A10BJ* and
SGLT2: ATC = A10JK*) and (8) those starting insulin (ATC = A10A*) after
initially starting with non-insulin T2D drugs.

For these drug-use patterns, only non-case users of hyperlipidemia
(1and2), hypertension (3-6) and T2D (7 and 8) drugs were considered

as controls, and those participants who never purchased the related
drugs were excluded.

Genotyping and imputation

FinnGen samples were genotyped with lllumina (IlluminaInc.) and
Affymetrix arrays (Thermo Fisher Scientific). For imputation, a
population-specific SISu v.3 imputation reference panel (Parnetal.,
manuscriptin preparation) comprising 3,775 high-coverage (25-30x)
whole genomes was used (public protocol: https://www.protocols.io/
view/genotype-imputation-workflow-v3-0-xbgfijw). Postimputation
quality control involved nonreference concordance analyses, check-
ing expected conformity of the imputation information (INFO)-values
distribution, MAF differences between the target dataset and theimpu-
tation reference panel, and checking chromosomal continuity of the
imputed genotype calls. After these steps, variants with imputation
INFO score < 0.6 or MAF < 0.0001 were excluded. For details about
the genotype calling, quality controls and imputation in FinnGen,
see Kurki*®.

Genotyping of DNA samples from the EstBB* was done at the
Core Genotyping Lab of the Institute of Genomics, University of Tartu
using the Illumina Global Screening Arrays (GSA v.1.0, GSA v.2.0 and
GSA v.2.0_EST). Altogether 206,448 samples were genotyped and
PLINK format files were created using Illumina GenomeStudio v.2.0.4.
During the quality control all individuals with call-rate < 95% or mis-
matching sex, which was defined based on the heterozygosity of X
chromosome and sex in the phenotype data, were excluded from the
analysis. Variants were filtered by call-rate over 95% and Hardy-Wein-
berg equilibrium Pvalue <1x 107 (autosomal variants only). Variant
positions were updated to GenomeReference Consortium Human
Build 37 and all variants were changed to be from TOP strand using
reference information provided by Dr. W. Rayner from the University
of Oxford (https://www.well.ox.ac.uk/-wrayner/strand/). After quality
control the dataset contained 202,910 samples. Before imputation,
variants with MAF <1% and indels were removed. Prephasing was done
using the Eagle v.2.3 software 1 (number of conditioning haplotypes
Eagle2 uses when phasing each sample was set to: -Kpbwt =20,000)
and imputation was carried out using Beagle v.285ep18.793 (refs. *>**)
with aneffective populationsizen =20,000. As areference, an Estonian
population-specific imputation reference of 2,297 whole-genome
sequencing samples was used™.

The genotyping in the UKBB was performed using the Applied
Biosystems UK BiLEVE Axiom Array or the Applied Biosystems UKB
Axiom Array. Imputation was done using combined Haplotype
Reference Consortium, UK10K and 1000 Genomes Project phase 3
reference panels with IMPUTE4 software. For quality control, variants
with INFO score < 0.8, MAF < 0.01 and Hardy-Weinberg equilibrium P
value <1x10°were excluded. For a detailed description on genotyp-
ing, imputation and quality control in the UKBB, see Bycroft*.

GWAS
For GWAS analyses, we used scalable and accurate implementation
of generalized mixed model (SAIGE), which controls for unbalanced
case-control ratios of binary phenotypes and samplerelatedness by a
two-step approach: (1) fitting the null model with the covariates age,
sex, the first ten principal components and genotyping batch (for
batches with atleast ten cases and controls) as fixed effects and assum-
ingtherandomeffectsare distributed as N(0, T¢), where @is the genetic
relationship matrix and 7is the additive genetic variance, and (2) test-
ing for association between each genetic variant and phenotypes by
applyingsaddle-point approximationto the score test statistics, which
obtains more accurate Pvalues than the normal approximationinthe
presence of the unbalanced case-control ratios of binary phenotypes*®.
For the analysis of quantitative phenotypes, we used SAIGE
mixed-modellinear regression. Before the final association analyses, we
transformed the count datato continuous phenotypes (Supplementary
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Fig.7) withthe rank-based inverse normal transformation (INT) using
the ‘rankNorm’ function of the R-package rNRNOmni*, as required
(https://saigegit.github.io//SAIGE-doc/). Age, age?, follow-up time (end
ofthefollow-up—1January1995), sex (imputed with PLINK, notincluded
inthe sex-stratified analyses), the first ten first principal components
of ancestry and genotyping batch (for batches with at least ten cases
and controls) were used as fixed-effect covariates. To account for the
possible typelerror of rare variants using INT-normalized phenotypes,
we excluded variants with MAF < 0.005. Also, we excluded participants
dead or under 10 years old at the beginning of the follow-up.

Genome-wide association analyses in EstBB and UKBB
Weidentified the drug-use phenotypes at the EstBB in the same way as
described above for the FinnGen cohort by using the drug purchasing
data of biobank participants and purchased drug ATC codes. Sample
sizes for genome-wide analyses were as follows. Quantitative drug pur-
chases phenotypes: hyperlipidemia n=184,880 (1, chases-0 = 28,659),
hypertension n1=184,892 (n,chasess0 = 74,534) and T2D n=184,880
(Mpyrchasesso = 12,795) (there were 12 new participants in the hyperten-
sion analysis because their inclusion in the EstBB was confirmed by
arecorded hypertension prescription purchase); binary phenotypes
switching from simvastatin: 3,013 patients and 2,054 controls; dis-
continuation of statins: 5,005 patients and 21,679 controls; the four
thresholds of the number of drugs purchased from different hyperten-
sion medicine subgroups: (1) more than one group, 45,365 patients
and 29,334 controls, (2) more than two groups, 26,490 patients and
48,209 controls, (3) more thanthree groups, 12,542 patients and 62,157
controls, (4) more than four groups, 3,103 patients and 71,596 controls;
users of traditionally second-line T2D drugs: 3,501 patients and 9,268
controls; starting insulin after other T2D drugs: 1,728 patients and
10,614 controls.

We conducted GWAS using the SAIGE software. For the analysis
of quantitative phenotypes we normalized the phenotypes with the
rank-based INT using the ‘rankNorm’ function of the R-package RNOmni
and used SAIGE mixed-modellinear regression for genome-wide analy-
sis, adjusting for covariates age at the end of follow-up, age at the end
of follow-up squared, follow-up time (end of the follow-up to1January
2004), sex and the first ten principal components of the genotype
matrix. All individuals who were less than 10 years old at the begin-
ning of follow-up were excluded from the analysis. For the analysis of
binary phenotypes we used SAIGE mixed-model logistic regression
and adjusted for the covariates age at the end of follow-up, sex and ten
principal components. For the first steps of SAIGE models we used only
the genotyped data and set the parameters trace CV cutoff to 0.002,
ratio CV cutoff to 0.001 and LOCO to TRUE. For the second steps of
SAIGE models, we used imputed dataand the parameters minMAF was
setto 0.0001, minMACto1land LOCO to TRUE.

Inthe UKBB we identified proxy drug-use phenotypes for the total
number of medication purchases in the UKBB general practitioner
prescription data (data field 42039) by counting all prescriptions for
hyperlipidemia (British National Formulary code (BNF) = 02120*),
hypertension (BNF = 0202*, 0204*, 0205* and 020602*) and T2D
(BNF = 060102*) and normalizing the phenotypes. We did not consider
thebinary phenotypesin the UKBB because the datawere restricted to
prescriptions by general practitioners and there are no data available
for whether the prescriptions were dispensed. The final sample was
restricted to 188,846 participants, with atleast one prescription of any
kindin the records. We conducted GWAS using the SAIGE software. In
the UKBB, instead of the lacking follow-up time covariate, we adjusted
for birthyear.

Meta-analyses

GWAS analyses for (1) the total number of purchases in hyperlipi-
demia, hypertensionand T2D in FinnGen, EstBB and UKBB, (2) binary
medication purchase phenotypes in FinnGen and EstBB and (3) CAD

summary statistics from FinnGen, UKBB*® (https://pheweb.org/
UKB-SAIGE/pheno/411) and CARDIOGRAM4+*” were combined using
aninverse-variance weighted fixed-effect meta-analysis with GWAMA
v.2.2.2 (ref. *®). For the medication-use pattern meta-analyses, all loci
(1.5 Mb) with a potential association (P < 5 x 107 for the lead variant)
inFinnGen were included. A stricter criterion for genome-wide signifi-
cance was used (P<5x107%)". For chromosomes 1-22, we included all
variantsthat were presentin FinnGen and at least one additional cohort
(EstBB, UKBB or both). Chromosome X variants were only analyzed in
FinnGenand interpreted genome-wide significance only if meeting the
stricter meta-analysis threshold of significance (P < 5x107).

Bayesian fine-mapping

Using GWAS summary statistics from the medication pattern analyses,
we fine-mapped all regions where the lead variant reached the standard
genome-wide significant Pvalue of <5 x 10 in FinnGen using the sum
of single effects method® to allow discovery of associations driven
by Finnish-enriched variants, possibly missed in other populations.
Fine-mapping regions were formed using a 3 Mb window (+1.5 Mb)
around eachlead variantand combining overlapping regionsinto one.
Linkage disequilibrium (LD) between each variant was calculated from
individual-level FinnGen data and a minimum pairwise correlation
value of 0.5 (r*=0.25) for variants in a CS was required. We report all
95% CS and for CS with over ten variants, wereport those variants with
a>0.01 probability of being causal. We report which CS areinlociwith
a genome-wide significant association for the given medication-use
phenotype in the meta-analysis (P < 5 x107%) and which CS lead vari-
ants are Finnish enriched, with a minor allele over twofold enriched
in Finns as compared to non-Finnish-Swedish-Estonian European in
gnomADv.2.0.1%°.

Automatized novelty reporting

To evaluate the possible novelty of the found CS associations, we
compared our results to those in the GWAS catalog®® and the largest
available GWAS summary statistics with non-overlapping samples
(lipid-lowering agent patterns against statin-use adjusted LDL'®, blood
pressure-related medication patterns against hypertension medication
adjusted SBP summary statistics”, and glucose-lowering medication
patterns against T2D”), using a3 Mbwindow (1.5 Mb) around each 95%
CStop variant. For loci with no corresponding genome-wide significant
(P<5x107%) variants in the respective GWAS summary statistics, we
checked all the previous associations in the GWAS catalog. If no asso-
ciations related to the indication of the drugs used (lipid-modifying
agents: lipid levels, lipid-level measurements and morbidities, and use
of lipid-modifying agents; glucose-lowering agents: glucose-related
measurements, morbidities and use of glucose altering agents; blood
pressure medications: blood pressure measurements and morbidities,
and use of blood pressure modifying agents) were found, we considered
theassociationto be of potential novelty. We also report whether these
possibly novel loci have been previously associated with any CVDs or
any other known CVD risk factors. (For amore detailed description of
the automated novelty reporting method, see https://aaltodoc.aalto.fi/
handle/123456789/41629.)

Cardiometabolic phenome-wide association study in FinnGen
Forthelead variants of the CSin the possibly novelloci, we performed
a cardiometabolic phenome-wide association study in FinnGen,
testing the lead variants associations among 231 cardiometabolic
endpoints: T1D, T2D, all endpoints from the ICD-10 main category
IX ‘Diseases of the circulatory system’ with a name starting with 19_*
and hyperlipidemia endpoints (E4 HYPERCHOL, E4_ HYPERGLYCER,
E4_HYPERLIPMIX, E4_HYPERCHYLO, E4_HYPERLIPNAS, E4_LIPODEF,
E4_LIPOPROTNAS). A P value of <0.05/231 (the number of the con-
sidered cardiometabolic endpoints) (= 2.16 x 10™*) was considered
statistically significant. The full list of FinnGen endpoints with detailed
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descriptions of their definitions (https://www.finngen.fi/en/research-
ers/clinical endpoints) and thorough documentation (https://finngen.
gitbook.io/documentation/methods/endpoints) are available online.
The publicly available results for FinnGen R5 phenome-wide associa-
tion study are available online (https://r5.finngen.fi/).

LD scoreregression

To estimate the genetic correlation between the medication pheno-
types and the underlying risk factors we used LDSC software®**, LDSC
usesthe LD score regression method, which quantifies the contribution
of each variant by examining the relationship between test statistics
and LD. We used LD scores readily calculated from the 1000 Genomes
Project (EUR)®. To restrict to a set of common, well-imputed vari-
ants, we retained only those SNPs in the HapMap 3 reference panel®.
The medication-use summary statistics from GWAS conducted in
FinnGen were compared with summary statistics from external sources
(Supplementary Table 24).

PRS

We calculated genome-wide PRS for LDL, SBP and T2D using the
PRS-continuous shrinkage priors (CS) method, a Bayesian method to
infer posterior effect sizes for variants using summary statistics from
GWAS and an external LD reference panel®. For the input weights, we
used available summary statistics from external GWAS for LDL'®, SBP",
T2D” and aselected set of other health-related traits (Supplementary
Table 28) and limited our variants to those in the HapMap 3 (ref.*)
reference panel. The1000 Genomes Project (EUR)* was usedasan LD
reference panel. Traditional PRS for medication use were calculated as
effect-size weighted sums of thelead variantsin the GWSlociin FinnGen
(Supplementary Table 3), after pruning the summary statistics to vari-
antsin the UKBB. Two traditional weighted-sum PRS were calculated,
one excluding and the other including rare variants (MAF <1%).

Bayesian meta-analysis

We analyzed the hypothesized shared effect of specific variants using a
previously reported method of Bayesian meta-analysis®. Thisapproach
uses GWAS summary statistics to infer an approximate BF (ABF) for
different assumptions about heterogeneity between studies, and the
probability of amodelis derived fromits ABF relative to the sumof all
model ABFs for a particular variant. We used this Bayesian framework to
comparethe effect between medication phenotypesin FinnGenand the
respective cardiometabolic risk factors (RISK) in studies in non-Finns
when the overlap between cases was negligible'®'>*, For CAD effect,
we used the GWAS summary statistics from the meta-analysis (CAD).
The models used in all tests were the null model, where the effect on
RISK and CAD is zero (MED ONLY); endpoint-specific models, where
the effect is assumed to be non-zero for only one endpoint (RISK or
CAD); and the shared effect model, where the effect is fixed or highly
correlated between RISK and CAD (CAD + RISK). Inmodel comparison,
amodel was considered supported if the posterior probability of the
modelwas >60%. Prior probability distribution was uniform. Analyses
were performed for loci found in all summary statistics (medication
use, risk factor and CAD).

Traditional and MTAG-PRS for CAD in the UKBB

Forthe medication-enhanced multitrait PRS of CAD, we jointly analyzed
the summary statistics for the total number of purchased medications
inthe treatment of hyperlipidemia, hypertensionand T2D (in FinnGen)
and CAD* using MTAG?® with variants found in HapMap 3 (ref.*’) and
all the summary statistics with a MAF of >0.01, resulting in 1,168,733
variants. The PRS were calculated using PRS-CS as described above, the
traditional PRS using the CAD summary statistics and the MTAG-PRS
using the MTAG-CAD summary statistics, both with the same 1,168,733
variants. For therisk factor enhanced multitrait PRS, we used a similar
approachwith FinnGen R5 GWAS summary statistics for hypertension

(https://r5.finngen.fi/pheno/19_ HYPTENS), T2D (https://r5.finngen.
fi/pheno/T2D) and a custom hyperlipidemia GWAS (cases: cases of
FinnGenR5endpoints E4_ HYPERCHOL, E4_HYPERGLYCER, E4_HYPER-
LIPMIX, E4_ HYPERLIPNAS or International Classifcation of Diseases
10threvision (ICD-10) diagnosis code E78.0-5in the Register of Primary
Health Care Visits/'Avohilmo’, N, = 29,837, Neonerois = 188,955).

CAD definitioninthe UKBB

Inthe analyses testing the associations between the CAD PRS and CAD
inthe UKBB, CAD was defined as (1) any of 120-125,146 or R96 (ICD-10)
asthe primary or secondary cause of death (from data fields 40,001 and
40,002, age from data field 40,007), (2) any of 120.0, 121-122 (ICD-10)
or 410, 4110 (ICD-9) in the hospital inpatient records (from data fields
41,270 and 41,271), or (3) any coronary revascularization procedure
(OPCS-4, variable 41,272, codes K40, K41, K42, K43, K44,K45,K46,K49,
K501and K75, and age defined based on datafield 41,282; OPSC-3, data
field 41,273, code 3,043, self-reported operations, data field 20,004,
codes 1,070 and 1,095, with age being defined based on data field
20,010). Diagnoses dating both before and after the study recruitment
were considered. The analyses wererestricted to participants of White
British ethnicity (self-reported, data field 21,000).

Statistical models

R(v.3.6.0,4.0.3,4.1.2and 4.1.3) was used for the analyses of age or time
dependencies of the significant associations. We performed interaction
analyses for the FinnGen GWS locilead variants by introducing G x age
or G x follow-up timeinteraction termsinthe (linear or logistic) regres-
sion models, where age and follow-up time in the interaction terms
were dummy variables split to be O or 1 by their sample medians. In
addition, the same covariates were used as in the original GWAS analy-
ses (including continuous age and follow-up time). The analyses were
restricted to 134,695 non-related independent FinnGen RS samples.
For the PRS calculation, we used PLINK 2.0. R (v.4.0.0-4.1.3) was used
in the analysis of PRS and drug-use patterns. Separate models were
created for continuous normalized PRS and decile stratified PRS. In
the analysis of associations between the PRS and the medication-use
patterns, linear regression was used for the continuous traits and
logistic regression for the binary traits. Age, sex, follow-up time, the
first ten principal components and genotyping batch were included
as covariates, and the sensitivity analyses were restricted to medi-
cation users only and adjusted for age of onset for the medication
use. For the analyses studying the relationship between the PRS and
the age of onset we used linear regression and included, age, sex, the
first ten principal components and genotyping batch as covariates. In
the analyses in the UKBB testing associations between PRS and CAD
diagnosis, we used a logistic regression model with age, sex and the
first ten principal components as covariates. Davidson-MacKinnon
J-test was used to test the specification of the non-nested models®*
and the Nagelkerke pseudo-R? was used as a measure of model fit®.
AUCs were calculated by splitting the dataset by random sampling
into training (75%) and validation datasets (25%), repeated for a total
of100 rounds.

Ethics

Patients and control subjects in FinnGen provided informed consent
for biobank research, based on the Finnish Biobank Act. Alternatively,
olderresearch cohorts, collected before the start of FinnGen (in August
2017), were based on study-specific consents and later transferred to
the Finnish Biobanks after approval by Valvira, the National Supervisory
Authority for Welfare and Health. Recruitment protocols followed
the Biobank protocols approved by Valvira. The Coordinating Ethics
Committee of the Hospital District of Helsinki and Uusimaa approved
the FinnGen study protocol HUS/990/2017. The FinnGen study is
approved by the Finnish Institute for Health and Welfare, approval
number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017,
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THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/
2019, THL/1721/5.05.00/2019, digital and population data service
agency VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3,
the Social Insurance Institution (KELA) KELA 58/522/2017, KELA
131/522/2018, KELA 70/522/2019, KELA 98/522/2019, and Statistics
Finland TK-53-1041-17. The Biobank Access Decisions for FinnGen sam-
ples and data utilized in FinnGen Data Freeze 5 include: THL Biobank
BB2017_55,BB2017 111, BB2018 19, BB 2018 34, BB 2018 67, BB2018 71,
BB2019_7, BB2019_8, BB2019_26, Finnish Red Cross Blood Service
Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank
AB17-5154, Biobank Borealis of Northern Finland_2017 1013, Biobank of
Eastern Finland 1186/2018, Finnish Clinical Biobank Tampere MHO004,
Central Finland Biobank 1-2017 and Terveystalo Biobank STB 2018001.
The EstBB study was approved by the Ethics Review Committee on
Human Research of the University of Tartu. At recruitment, partici-
pants signed an informed consent to allow follow-up linkage of their
electronic health records. UKBB has approval from the North West
Multi-center Research Ethics Committee as a Research Tissue Bank
approval. All participants provided an informed consent for their
participationin UKBB.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The FinnGen GWAS associations for medication-use patterns can be
explored with the PheWeb portal (https://med.finngen.fi). The FinnGen
release 5 GWAS results for the clinical endpoints can be browsed
with the FinnGen PheWeb portal (https://r5.finngen.fi/). Registered
researchers can access the medication-use pattern GWAS summary
statistics, which have been added to be part of FinnGen R5 public
release (https://www.finngen.fi/en/access_results). The FinnGen data
may be accessed by approved researchers through Finnish Biobanks’
FinBB portal (www.finbb.fi; email: info.fingenious@finbb.fi). Access
to EstBB (https://genomics.ut.ee/en/content/estonian-biobank) and
access to UKBB (http://www.ukbiobank.ac.uk/resources/) isrestricted
for approved researchers and can be requested. Previously reported
GWAS associations can be accessed at the NHGRI-EBI GWAS Catalog
(https://www.ebi.ac.uk/gwas/) and gnomAD can be accessed at https://
gnomad.broadinstitute.org/.

Code availability

The full genotyping and imputation protocol for FinnGenis described
at https://doi.org/10.17504/protocols.io.xbgfijw. Codes for FinnGen
pipelines can be accessed at https://github.com/FINNGEN. Codes
for ATC- and BNF-based medication phenotypers for the quantita-
tive phenotypes and code (based on the qqman package: https://
cran.r-project.org/web/packages/qqgman/index.html) to draw a
Manhattan plot withadded functionality to highlight two sets of SNPs
withtwo different colors canbe accessed at https://github.com/yujir0/
Medication-Use-Patterns.
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Counting the number of prescription drug purchases

A) Hyperlipidemia B) Hypertension C) Type 2 diabetes
' Prescription of C10* drug Prescription of C02*,C03*,C07*, O Prescription of A10B* drug
C08* or C09* drug
O Any other drug Any other drug OAny other drug
No. No. No.
purchases purchases purchases
" 0000 =~ 000 - o Q000
2 O@O® =2 ™ Oee0 = 2 OO0 =
IDs alive and age > 10 IDs alive and age > 10 IDs alive and age > 10
Follow-up I i (%7 } '_f]i_\ i
year 1995 (FinnGen) 2018 (FinnGen) 1995 (FinnGen) 2018 (FinnGen) 1995 (FinnGen) 2018 (FinnGen)
2004 (EstBB) 2020 (EstBB) 2004 (EstBB) 2020 (EstBB) 2004 (EstBB) 2020 (EstBB)

Extended Data Fig.1| Drug use quantitative phenotypes. Drugs used in the
treatment of a) Hyperlipidemia b) Hypertension and c) Type 2 diabetes. Dots
indicate the prescriptions and text in bold indicates the drug ATC code for the
specific phenotype. We added all the single purchases in underlying drug groups,

the non-users were included with O purchases of the specific drug. Participants
dead before or less than10 years old at the start of follow-up (Jan 1st, 1995 for
FinnGen and Jan 1st, 2004 for EstBB) were excluded from the analysis.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-022-02122-5

Hyperlipidemia

Hypertension

A) Switching from simvastatin

Started with simvastatin and switched +
sum statin purchases 2 3
controls 2 3 purchases only simvastatin

@ Prescription of simvastatin C10AA01
O Some other statin C10AA*

D3 . O Does not

qualify

Type 2 diabetes

B) Purchases from different drug subgroups

In four analyses cases are individuals with purchases respectively from >1, >2, >3 or >4 groups
controls with records of subgroup purchases less than in the case defining group

‘ Prescription of C02* .Prescription of CO7* OPrescription of C09*
(O Prescription of C03* @) Prescription of C08*
1st analysis
Case: >1 groups = ID1, ID3-ID8

D1 ..“ m Control: 1 group = 1D2
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s OOO0®

s COCO00®
o QOO0 ®

b7 OOO. “ 4th analysis

D8 m m Case: >4 groups = ID7

Control: <4 groups = ID1-1D6, ID8

2nd analysis
Case: >2 groups = ID3, ID5-ID8
Control: <2 groups = ID1-ID2, ID4
3rd analysis
Case: >3 groups = ID5, ID7-ID8
Control: < 3 groups = ID1-ID4,I1D6

Hyperlipidemia/ Hypertension/
Type 2 diabetes

C) 2nd line drugs

Users of traditionally 2nd line T2D drugs
controls with T2D drugs, but no 2nd line

Prescription of 2nd line A10BD*, A10BH*, A10BJ*
or A10JK*
O Prescription of the other remaining A10B* drugs

ID1 (m Case
ID2 O Control
ID3 @@ Does not

qualify

Extended Data Fig. 2| Drug use binary phenotypes. Drugs used in the
treatment of a, e) Hyperlipidemiab, e) Hypertension and c-e) Type 2 diabetes.
Dotsindicate the prescriptions and text in bold indicates the drug ATC code
for the specific phenotype. a) Cases for simvastatin switching were defined
asindividuals who started statin treatment with simvastatin but were later
prescribed another statin and control participants who purchased only
simvastatin. At least 3 purchases of statins were required for both the cases
and controls. b) Cases for the analysis of four thresholds of drugs purchased
from different hypertension medicine subgroups were defined as participants
with purchases of drugs from >1, >2, >3, and >4 different hypertension drug

D) Insulin-users E) Stopping drugs quickly

Cases with 1 or 2 purchases of drugs

controls 2 3 purchases +last purchase at least

1 year before the end of follow-up
Hyperlipidemia: Prescription of statin C10A*

O Hypertension: Prescription of C02*,C03*,C07*,
P " €08* or C09*drug

First prescribed A10B*, later insulin
controls with A10B*, never insulin

O Prescription of insulin A10A*

O Prescription of A10B*
Type 2 diabetes: Prescription of A10B*

End of
ID2 (X)O CD Control follow-up
ps OO OOO  Does not o1 OO Case

qualify ID2 O Case

s OOOOO | contro

ID4 CD Does not
L qualify

<1 year|

treatments, cases were defined as individuals with prescriptions of ALOBD*,
A10BH*, A10BJ*, or A10JK* and controls with prescriptions of any of the remaining
A10B*drugs. Individuals with prescriptions for both did not qualify for the
analysis. d) In the analysis of insulin users, cases are first prescribed A10B* (non-
insulin diabetes drugs) and later A10A* (insulin) and controls only with AIOB*
prescriptions. Participants with first insulin prescriptions and later A10B* did

not qualify. ) For the analysis of rapid stop of drug use done separately for the
drug use phenotypes, cases were participants with only 1or 2 prescriptions of the
specific drug group and controls with 3 or more prescriptions. Individuals with
the last purchase less than1year before the end of follow-up did not qualify for

subgroups. Controls were individuals with records of subgroup purchases that
areless thanin the case-defining groups. c) For the analysis of T2D second-line

the analysis.
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HT: Discontinuation =
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HT: 5 medications =
HT: >3 medications =
HT: >2 medications =
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HL: Discontinuation =

HL: Changing simvastatin =

T2D: Number of purchases =
HT: Number of purchases =

HL: Number of purchases =
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Extended Data Fig. 3| Correlation metrics between the medication use between each phenotype combination calculated in the overlapping sample
pattern phenotypes. HL = Hyperlipidemia, HT = Hypertension, T2D = Type 2 intersection (Pearson’s correlation coefficient for continuous-continuous
Diabetes. a) Sample overlap displayed by the Jaccard Index (the intersection of phenotype pairs, Point-biserial correlation coefficient for continuous-binary
samples divided by the union of samples) for each phenotype. b) Correlation pairs, and Phi-coefficient for binary-binary pairs.
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Extended Data Fig. 4| QQ-plots, number of purchases (FinnGen). Two-sided
-log,y-transformed P values of quantitative SAIGE mixed-model GWAS analyses
for the total number of prescriptions of a) Drugs used in the treatment of
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inthe treatment of type 2 diabetes (excluding insulins) in 193,933 FinnGen RS
participants.
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Extended Data Fig. 5| Manhattan plots, binary analyses (FinnGen). Using 2nd line type 2 diabetes medications i) Using insulin in type 2 diabetes. All
Manhattan plots, binary analyses (FinnGen). Two-sided -log10-transformed loci containing >195% credible set(s) are highlighted related to their previously
P values of binary SAIGE mixed-model GWASs for a) Changing simvastatin to reported related cardiometabolic associations; loci that have been previously
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Extended Data Fig. 6 | QQ-plots, binary analyses (FinnGen). Two-sided -log;,-
transformed P values of binary SAIGE mixed-model GWASs for a) Changing
simvastatin to another statin b) Discontinuation of statin use ¢) Discontinuation
of hypertension medication use d) Hypertension medications from more than
1different therapeutic group e) Hypertension medications from more than2

different therapeutic groups f) Hypertension medications from more than 3
different therapeutic groups g) Hypertension medications fromall 4 therapeutic
groups h) Using 2nd line type 2 diabetes medications i) Using insulinin type 2
diabetes. The error bands indicate 95% confidence intervals for the quantiles of a
normal distribution.
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Extended Data Fig. 7 | Effect sizes in sex-stratified genome-wide association stratified genome-wide analyses for the total number of prescriptions of drugs
analyses. Effect sizes (regression coefficient betas) with 95% confidence used inthe treatment of hyperlipidemia, and type 2 diabetes (excluding insulins)
intervals (error bars) of the lead variants in genome-wide significant loci (in the in193,933 FinnGen RS participants.

analyses of all participants) for females (n =107,231) and males (n = 86,702) in sex-
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Extended Data Fig. 8 | LDSC genetic correlations. Linkage disequilibrium score regression (LDSC) genetic correlation estimates: the total number of medication
purchases (hyperlipidemia, hypertension, and type 2 diabetes) and selected cardiometabolic and socioeconomic, psychological, and psychiatric traits.
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Extended Data Fig. 9 | Betas in EstBB without and with educational attainment. Effects of the independent 289 medication use lead association (in FinnGen) found

in EstBB without (x-axis) and with (y-axis) the inclusion of educational attainment as a covariate in the GWAS models. Including educational attainment had no effect
oneither effect directions or sizes.
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Extended Data Table 1| Comparison of associations between the traditional and MTAG-based coronary artery disease
(CAD) polygenic risk scores and CAD in the UKBB. The UKBB contained 343,676 samples (17,986 CAD cases). The middle
quintile of the PRS (40th to 60th percentiles) was used as the reference group. The AUCs and Nagelkerke pseudo-R? were
calculated using PRSs as continuous variables in the models including the PRS and all covariates or only the PRS. 75% of the
full sample was used for training and 25% for validation

PRS OR: OR: OR: OR: AUC - AUC - AUC - AUC - R2-
>99% >95% <5% 1% covariates, full model, full model, PRS only, PRS
PRS PRS PRS PRS full sample training validation validation only,
sample sample sample full
sample
CAD 4.10 2.06 0.51 0.27 0.755 0.785 0.784 0.635 0.0348
(3.69- (1.98- (0.46- (0.20- (0.749- (0.783- (0.779- (0.628-
4.56) 2.15) 0.58) 0.36) 0.760) 0.787) 0.789) 0.643
MTAG-CAD 4.78 2.24 0.45 0.24 0.755 0.791 0.790 0.650 0.0424
(medications) (4.31- (2.15- (0.39- (0.17- (0.749- (0.789- (0.785- (0.642-
5.30) 2.34) 0.51) 0.33) 0.760) 0.793) 0.795) 0.657)
MTAG-CAD 4.68 2.22 0.51 0.26 0.755 0.789 0.788 0.644 0.0396
(risk factors) (4.22- (2.13- (0.45- (0.19- (0.749- (0.787- (0.783- (0.637-
5.19) 2.32) 0.57) 0.35) 0.760) 0.790) 0.793) 0.652)
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FINNGEN/finemapping-pipeline), genetic ancestry and PCA pipeline (https://github.com/FINNGEN/pca_kinship), PRS-CS pipeline (https://
github.com/FINNGEN/CS-PRS-pipeline). The full genotyping and imputation protocol for FinnGen is described at https://doi.org/10.17504/
protocols.io.xbgfijw.

Codes for ATC- and BNF-based medication phenotypers for the quantitative phenotypes and code (based on the ggman package: https://
cran.r-project.org/web/packages/qgman/index.html) to draw a Manhattan plot with added functionality to highlight two sets of SNPs with
two different colors can be accessed at https://github.com/yuj1r0/Medication-Use-Patterns.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The FinnGen GWAS associations for medication use patterns can be explored with the PheWeb portal (https://med.finngen.fi). The summary statistics have been
added to be part of FinnGen R5 public release (https://www.finngen.fi/en/access_results). The FinnGen release 5 GWAS results for the clinical endpoints can be
browsed with the FinnGen PheWeb portal (https://r5.finngen.fi/). The FinnGen data may be accessed through Finnish Biobanks’ FinBB portal (web link:
www.finbb.fi, email: info.fingenious@finbb.fi). Access to Estonian Biobank (https://genomics.ut.ee/en/content/estonian-biobank) and access to UK Biobank (http://
www.ukbiobank.ac.uk/resources/) can be requested. Previously reported GWAS associations can be accessed at The NHGRI-EBI GWAS Catalog (https://
www.ebi.ac.uk/gwas/) and gnomAD can be accessed (https://gnomad.broadinstitute.org/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex was imputed with PLINK. All participants were included in the analyses regardless of sex, and Imputed sex was included
as a covariate in all analyses, excluding sex-stratified analyses. Effect sizes of genome-wide significant loci lead variants were
compared in sex-stratified analyses.

Population characteristics Our main dataset, FinnGen release 5, consisted of 218,792 genotyped individuals of Finnish ancestry with a total of 5,118,565
years of drug-registry-based follow-up. Of the cohort 56.5% were female and the mean age at the end of the follow-up was
59.8 years. A total of 44,343,661 drug purchases were recorded and 3,650,495 (8.2%) of these were drugs used in the
treatment of hyperlipidemia, hypertension, or T2D. The Estonian Biobank (EstBB) consisted of 184,892 individuals (females:
65.5%, mean age: 44.2 years) and the UK Biobank (UKBB) consisted of 343, 676 individuals (females: 53.7%, mean age: 56.9
years).

Recruitment Data in FinnGen Data Freeze 5 are administred by regional biobanks (Auria Biobank, Biobank of Central Finland, Biobank of
Eastern Finland, Biobank of Eastern Finland, Borealis Biobank, Helsinki Biobank, Tampere Biobank), the Blood Service
Biobank, the Terveystalo Biobank, and biobanks administered by the Finnish Institute for Health and Welfare. EstBB is a
population-based cohort of 200,000 participants. At recruitment, participants have signed a consent to allow follow-up
linkage of their electronic health records. UKBB comprises phenotype data from 500,000 volunteer individuals from the UK
population aged between 40 and 69 during recruitment in 2006-2010. Data for all participants have been linked with national
Hospital Episode statistics.

Ethics oversight The FinnGen Study protocol UHUS/990/2017) was approved by the Ethics Review Board of the Hospital District of Helsinki
and Uusimaa. EstBB study was approved by the Ethics Review Committee on Human Research of the University of Tartu.
UKBB has approval from the North West Multi-centre Research Ethics Committee (MREC) as a Research Tissue Bank (RTB)
approval.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were determined by the current biobank sample sizes of FinnGen, EstBB and UKBB. The sample sizes were considered sufficient
as performing genome-wide association studies in biobanks of these sizes (hundreds of thousands), including meta-analysis, is the state-of-
the-art for genomic discovery for polygenic traits.

Data exclusions  In FinnGen and EstBB we excluded participants dead or less than 10 years at the beginning of the follow-up from the quantitative analyses
(not expected to have any prescription medication purchases). In UKBB the analyses were restricted to "white British" ethnicity (self-reported,
UKBB Data-field 21000), and participants without any prescriptions were excluded from the GWAS analyses.
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Replication For the GWAS analyses, quantitative phenotypes were analyzed in 3 biobanks: FinnGen, EstBB and UKBB. Binary GWAS analyses were
performed in FinnGen and EstBB. A high concordance of effect directions (87.2%) was checked between the biobanks for all 303 significant
(p<5e-8) loci lead variants in FinnGen. A meta-analysis was performed for all loci with a suggestive association (p<5e-6) in FinnGen:
quantitative traits (FinnGen, EstBB, UKBB) and binary traits (FinnGen + EstBB). 333 loci were significant (p<5e-9), including 94 loci not
significant (p>5e-8) in the initial FinnGen analyses. Of the all 347 CS containing fine-mapped loci-phenotype associations (loci lead variant
p<5e-8 and 21 95% CS) in FinnGen, 282 (81.3%) were genome-wine significant in the meta-analysis (p<5e-9).

Randomization  Analyses were performed in population based biobanks. Participants were allocated into groups by their medication use behavior
(quantitative and binary phenotypes). Age, Age2, follow-up time (end of the follow-up — 1.1.1995), sex (imputed with PLINK, not included in
the sex-stratified analyses), the first 10 first principal components of ancestry, and genotyping batch (for batches with at least 10 cases and
controls) were used as covariates.

Blinding Blinding was not relevant as no intervention occured. The data points were collected from the biobank participants medical records and blood
samples (genotype data), and all data were collected before any of the analyzes of this study were planned (so this study protocol could not
have had any effect on any data points). Also, blinding of the studied predictors (genomes), was not applicable. The data was
pseudonymized, and the participants could not be identified nor interacted with.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data
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