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Prostate-specific antigen (PSA) screening for prostate cancer remains
controversial because it increases overdiagnosis and overtreatment of
clinically insignificant tumors. Accounting for genetic determinants of
constitutive, non-cancer-related PSA variation has potential to improve
screening utility. In this study, we discovered 128 genome-wide significant
associations (P <5 x 107®) in a multi-ancestry meta-analysis of 95,768 men
and developed a PSA polygenic score (PGS;s,) that explains 9.61% of
constitutive PSA variation. We found that, in men of European ancestry,

using PGS-adjusted PSA would avoid up to 31% of negative prostate biopsies
but also resultin12% fewer biopsies in patients with prostate cancer, mostly
with Gleason score <7 tumors. Genetically adjusted PSA was more predictive
of aggressive prostate cancer (odds ratio (OR) =3.44,P=6.2 x10™, area
under the curve (AUC) = 0.755) than unadjusted PSA (OR=3.31,P=1.1x107%,

AUC =0.738) in106 cases and 23,667 controls. Compared to a prostate
cancer PGS alone (AUC = 0.712), including genetically adjusted PSA
improved detection of aggressive disease (AUC = 0.786, P=7.2 x107*). Our
findings highlight the potential utility of incorporating PGS for personalized
biomarkers in prostate cancer screening.

Prostate-specific antigen (PSA) is an enzyme produced by the prostate
gland that degrades gel-forming seminal proteins to release motile
sperm and is encoded by the KLK3 (kallikrein 3) gene' . As prostate
epithelial tissue becomes disrupted by a tumor, greater PSA concen-
trations are released into circulation®’. PSA levels can also rise due
to prostatic inflammation, infection, benign prostatic hyperplasia,
older age andincreased prostate volume’™. Increased body mass index
is associated with lower PSA levels, but the underlying mechanisms
remain unclear®’. Low PSA levels, thus, do not rule out prostate can-
cer, and PSA elevation is not sufficient for a conclusive diagnosis®.
Although PSA testing reduces deaths from prostate cancer’, between

20% and 60% of cancers detected using PSA testing are estimated to
be overdiagnoses'* . Inaddition, the long-termrisk of lethal prostate
cancer remains low, especially in men with PSA below the age-specific
median'>". As a result, clinical guidelines in the United States and
globally advise against population-level PSA screening and promote
ashared decision-making model™'.

Oneavenue for refining PSA screening is to account for variability
in PSA due to genetic factors. PSAis highly heritable, with40 independ-
ent loci identified in the largest previous genome-wide association
study (GWAS)'"8, The goal of genetically correcting PSA levels is to
increase the relative variation in PSA attributable to prostate cancer,
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thereby improving their predictive value for disease detection. Thefirst
study to genetically correct PSA usingjust four variants reclassified 3%
of participants to warranting biopsy and 3% to avoiding biopsy”. Incor-
porating additional genetic predictors has the potential to personalize
PSA testing, reduce overdiagnosis-related morbidity and improve
detection of lethal disease. To maximize the utility of this approach,
itis critical to distinguish genetic variants that influence constitutive
PSA levels from those affecting prostate tumor development. PSA
and prostate cancer share many genetic loci”" %, but the extent to
which this overlap reflects screening bias remains unclear, as GWASs
of prostate cancer may capture signals for disease susceptibility and
incidental detection due to benign PSA elevation.

Our study explores the genetic architecture of PSA levels in
men without prostate cancer, with a view toward assessing whether
genetic adjustment of PSA improves clinical decision-making related
to prostate cancer diagnosis. It also provides a novel framework for
the clinical translation of polygenic scores (PGSs) for non-causal
cancer biomarkers.

Results

The study design of the Precision PSA study is illustrated in Fig. 1. Using
data from five studies (Methods), we conducted genome-wide analy-
ses of PSA levels <10 ng ml™ in cis-gender men never diagnosed with
prostate cancer. GWAS results were meta-analyzed within ancestry
groups and then combined across populations for a total sample size
of 95,768 individuals.

Genetic architecture of PSA variation

The heritability (h?) of PSA levels was investigated using several
methods to assess sensitivity to underlying modeling assumptions
(Methods). Across 26,491 men of European ancestry in the UK Biobank
(UKB) withlinked clinical records, the median PSA value was 2.35 ng ml ™
(Supplementary Fig. 1). Using individual-level data for variants with
minor allele frequency (MAF) > 0.01and imputation INFO > 0.80, PSA
heritability was h?=0.41 (95% confidence interval (CI): 0.36-0.46)
based on GCTA? and h?=0.30 (95% Cl: 0.26-0.33) based on LDAK**
(Supplementary Table 1 and Extended Data Fig. 1). Applying LDAK
to GWAS summary statistics generated from the same individuals
produced similar estimates (h*= 0.35, 95% CI: 0.28-0.43), whereas
other methods™* were biased downward. In the European ancestry
GWAS meta-analysis (n,; = 85,824), LDAK estimated h?=0.30 (95%
Cl: 0.29-0.31). Sample sizes for other ancestries were too small for
reliable heritability estimates.

The multi-ancestry meta-analysis of 95,768 men from five studies
identified 128 independentindex variants (P < 5.0 x 1078, linkage disequi-
librium (LD) r* < 0.01 within £10-Mb windows) across 90 chromosomal
cytoband regions (Fig. 2). The strongest associations were in known
PSA loci'”"??, such as KLK3 (rs17632542, P= 3.2 x 107%%%),10q26.12
(rs10886902, P=8.2 x10™8), MSMB (rs10993994, P=7.3 x107%),
NKX3-1 (rs1160267, P= 6.3 x107%%), CLPTMIL (rs401681, P=7.0 x 107%*)
and HNFIB (rs10908278, P=2.1x107*%). Eighty-two index variants
were independent of previously detected associations in the Genetic
Epidemiology Research on Adult Health and Aging (GERA) cohort”;
they mapped to 56 cytobands where PSA signals have not previously
been reported. Associations initially detected in the UKB (Extended
Data Fig. 1b) strengthened in the meta-analysis: TEX1I in Xq13.1
(rs62608084, P=1.7 x10%*); THADA in 2p21 (rs11899863,P=1.7 x 1073);
OTX1in 2pl15 (rs58235267, P=4.9 x1075); SALL3in 18923 (rs71279357,
P=1.8x10");and ST6GALIin3q27.3 (rs12629450, P=2.6 x 10°). Addi-
tional novel findings included CDKSRAPI (rs291671, P=1.2 x 107'8),
LDAH (rs10193919, P=1.5x107%), ABCC4 (rs61965887, P=3.7 x 10,
INKA2 (rs2076591, P=2.6 x 1072), SUDS3 (rs1045542, P=1.2 x107),
FAFI(rs12569177, P=3.2 x107), JARID2 (rs926309, P=1.6 x 10™%), GPC3
(rs4829762, P=5.9 x 10™2), EDA (rs2520386, P= 4.2 x10™") and ODF3
(rs7103852,P=1.2 x10°°) (Supplementary Tables 2and 3).

Of the 128 index variants, 96 reached genome-wide significance
in the European ancestry meta-analysis, as did three in the East Asian
ancestry meta-analysis (KLK3: rs2735837 and rs374546878; MSMB:
rs10993994; n;,s = 3,337), two in the Hispanic/Latino meta-analysis
(KLK3:1s17632542 and rs2735837; nys;ar = 3,098) and one in the African
ancestry meta-analysis (FGFR2: rs10749415; n, = 3,509) (Supple-
mentary Table 4). Effect sizes from the European ancestry GWAS were
modestly correlated with estimates from other ancestries (Spearman’s
Prsiiar = 0.48,P=1.1x10"5; pprr=0.27,P=2.0 x 1073, pss = 0.16, P= 0.068)
(Supplementary Fig. 2). However, cross-population comparisons
of correlations should be interpreted with caution as they are con-
founded by higher sampling error ingroups with smaller sample sizes.

There was heterogeneity (Cochran’s Q Py, < 0.05) across
ancestry-specific fixed-effects meta-analyses for 12 of 128 index vari-
ants, four of which had effects in different directions: rs58235267
(0TX1), rs1054713 (KLKI), rs10250340 (EIF4HPI) and rs7020681
(SLC35D2) (Supplementary Table 5). An alternative meta-analysis
approach, MR-MEGA?, which partitions effect size heterogeneity
into components correlated with ancestry and residual variation,
identified one additional signal in 5q15 (rs291812, Pygmeca = 1.0 X 1078)
that was driven by the East Asian ancestry results (Pg,s=1.2 x107°)
(Supplementary Table 6).

Predicted functional consequences of the 128 index variants were
explored using CADD?. Scores >13 (corresponding to the 5% most
deleterious substitutions genome-wide) were observed for 16 of the
128index variants detected in the original fixed effects meta-analysis,
including ten new signals: rs10193919 (LDAH); rs7732515 in 5q14.3;
rs11899863 (THADA); rs58235267 (OTX1);rs926309 (JARID2); rs4829762
(GPC3) and rs13268, a missense variant in FBLNI; rs78378222 in TP53
and rs3760230 in SMG6; and rs712329 in SLC25A21 (Supplementary
Table 7). Sixty-one variants had significant (false discovery rate
(FDR) < 0.05) effects on gene expression, including 15 prostate tis-
sue expression quantitative trait loci (eQTLs) for 17 eGenes, 55 blood
eQTLs for 185 eGenes and nine eQTLs with effects in both tissues.
Notable eGenes included RUVBLI, a chromatin-remodeling factor
that modulates pro-inflammatory NF-kB signaling and transcription
of Mycand B-catenin®’; ODF3, which maintains elastic structuresin the
sperm tail’’; and LDAH, which promotes cholesterol mobilization in
macrophages®. Several PSA-associated variants were eQTLs for genes
involved inimmune response (/F/ITM2, IFITM3 and HS1BP3).

Impact of PSA-related selection bias on prostate cancer GWAS

Because prostate cancer detection often hinges on PSA elevation,
geneticfactors resultingin higher constitutive PSA levels may appear
toincrease prostate cancer risk because of more frequent screening. Of
the128lead PSA variants, 52 (41%) were associated with prostate cancer
attheBonferroni-corrected threshold (P < 0.05/128) in the PRACTICAL
consortium’s European ancestry GWAS*? (Supplementary Table 8).
Using the method by Dudbridge et al.”?, we investigated whether index
event bias could partly explain these shared signals*?** (Methods,
Fig.3and Supplementary Table 9). Applying the estimated bias correc-
tion factor (b =1.144) decreased the number of variants associated with
prostate cancer from 52 to 34 (Extended Data Fig. 2). When we corrected
209 European ancestry prostate cancer risk variants (P<5.0 x 1078,
LD r?<0.01) for screening bias, 93 (45%) remained genome-wide sig-
nificant. Notably, rs76765083 (KLK3) remained genome-wide signifi-
cant but reversed direction. Sensitivity analyses using SlopeHunter™
resultedin150 (72%) variants with P < 5 x 108 (Supplementary Table 10).

Development and validation of PGS,

We considered two approaches for constructing a PGS for PSA: clump-
ing genome-wide significant associations from the multi-ancestry
meta-analysis (PGS,,) and a genome-wide score generated using
the Bayesian PRS-CSx algorithm (PGS,) (ref.36) (Methods). Each
score was validated in the Prostate Cancer Prevention Trial (PCPT)
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Fig.1| Overview of the Precision PSA study design. Genome-wide association
analyses were conducted in men without prostate cancer and meta-analyzed
within each population: European ancestry (EUR), African ancestry (AFR), East
Asian ancestry (EAS) and Hispanic/Latino ancestry (HIS/LAT). Ancestry-stratified
results were used to develop a genome-wide PGS,s, comprised of approximately
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1.1million variants and were also combined into a multi-ancestry meta-analysis

0f 95,768 men. PGS, was validated in the PCPT and the SELECT and was used to
compute PSA® values. We examined how using PSA® values affects eligibility for
prostate biopsy and evaluated associations with incident prostate cancer.

and the Selenium and Vitamin E Cancer Prevention Trial (SELECT),
which were excluded from the discovery GWAS. Most of the men in
both cohorts were of European ancestry, although SELECT offered
larger sample sizes for other ancestry groups (Extended Data Fig. 3).
PGS, was ultimately selected, as it was more predictive of baseline PSA
than PGS,,¢ in multi-ancestry analyses and most ancestry subgroups
(Supplementary Table 11).

In the PCPT, PGS, accounted for 8.13% of variation in baseline
PSA levels (B per s.d. increase = 0.186, P=3.3 x 10™) in the pooled
multi-ancestry sample of 5,883 men (Fig. 4a-c and Supplementary
Table11). PGS, was associated with PSA across age groups, although
effects attenuated in participants aged >70 years (Extended Data
Fig.4). PGS, was validated in 5,725 participants of European ancestry
(EUR = 0.80) (PGScs,: B =0.194, P=1.7 x10™), but neither PGS,,s nor
PGS, reached nominal significance in the admixed European and
Africanancestry (0.20 < AFR/EUR < 0.80,n=103) or East Asian ancestry
(EAS >0.80, n=55) populations.

In the SELECT, PGS, was associated with baseline PSA levels in
the pooled sample 0f 25,917 men ( = 0.258, P=1.3 x10™*") and among
men of European ancestry (n= 22,253, Bpgs = 0.283, P=5.5 x107°9),
accounting for 9.61% to 10.94% of variation, respectively (Fig. 4b-d
and Supplementary Table 11). PGS, also validated in the East Asian
(n=257,3=0.258, P=5.9 x1077) and admixed EAS/EUR (n =321,
B=0.315,P=5.2x10™"?) ancestry groups. Inmen with admixed AFR/EUR
ancestry (n=1,763), PGS, explained 4.22% of PSA variation (f = 0.157,
P=4.8x107"). PGS, was more predictive than PGS, (B =0.163,
P=8.2x10"versus 3 =0.098,P=8.0 x10"®) inmen of African ancestry

(AFR>0.80, n=1,173) and the pooled AFR and admixed (0.20 <EUR/
AFR < 0.80) group (n=2,936).

We also examined associations withtemporal trendsin PSA: veloc-
ity, calculated using log(PSA) values at two timepoints, and doubling
time in months (Methods and Supplementary Table 12). In menwitha
PSA increase (SELECT pooled sample: n=14,908), PGS, was associ-
ated withlessrapid velocity (PGScs,: B =-4.06 x10™,P=3.7x107°) and
longer doubling time (PGSc,: B =10.41,P=1.9 x107%).Inmen witha PSA
decrease between the first and last timepoint (SELECT pooled sample:
n=6,970), PGS, was only suggestively associated with slowing PSA
decline (3=5.02x107*, P=0.068). The same pattern was observed
in the PCPT, with higher PGS, values conferring less rapid changes
inPSA.

PGS, referred to as PGS,s, from here onward, was used to geneti-
cally adjust baseline or earliest pre-randomization PSA values (PSA®)
for each individual, relative to the population mean (Methods and
equationsland?2).PSA®and unadjusted PSA were strongly correlatedin
the PCPT (Pearson’sr=0.841,0.833-0.848) and the SELECT (r= 0.854,
0.851-0.857). The number of participants with PSA® > 4 ng ml™, acom-
monly used threshold for diagnostic testing, increased from O to 24
in the PCPT and from 5 to 413 in the SELECT (Fig. 4e,f), reflecting the
preferential trial selection of men with low PSAS?,

Impact of PSA-related bias on PGS associations

Inmen of European ancestry in the UKB excluded from the PSA GWAS,
there was astrong positive relationship between the 269-variant pros-
tate cancer PGS (PGS,4)** and PGS, in cases (n =11,568, p = 0.190,
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Fig.2|Multi-ancestry GWAS of PSA levels. a, Manhattan plot depicting the
results of the GWAS meta-analysis of PSA levels in 95,768 men without prostate
cancer. The genome-wide significance threshold of P< 5 x 108 is indicated by the
dotted black line. Index variants within known PSA-associated loci are annotated
with the corresponding cytoband. Novel findings are highlighted in yellow.

b, Circular dendogram shows the nearest gene(s) for novel PSA-associated
variants. Genome-wide significant (P < 5 x 107®) index variants were selected
using LD-based clumping (LD r* < 0.01 within +10-Mb windows). All GWAS
Pvalues are two-sided and derived from a fixed-effects inverse-variance-
weighted meta-analysis using METAL.

P=2.3x107%)and controls (n=152,884, 3 = 0.236, P <107°°) (Extended
DataFig.5and Supplementary Table13). Re-fitting PGS,¢, using weights
corrected for index event bias (PGS,,*¥) substantially attenuated asso-
ciations in cases (B,q = 0.029, P=2.7 x107) and controls (B,4 = 0.052,
P=22x10"%),

To further characterize the impact of this bias, we examined
PGS, associations with prostate cancer statusin 3,673 cases and 2,363
biopsy-confirmed, European ancestry controls from GERA. PGS ¥
had alarger magnitude of association with prostate cancer (OR for top
decile =3.63,95% Cl: 3.01-4.37) than PGS,, (odds ratio (OR) =2.71,95%
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Fig.3|Influence of PSA-related index event bias on prostate cancer

GWAS. a, Conceptual diagram depicts how selection on PSA levels induces

an association between genetic variant G and U, acomposite confounder

that captures polygenic and non-genetic factors. This selection induces an
association with prostate cancer (PrCa) via path G-U~>PrCa, inaddition to the
direct G>PrCaeffects. Bi-directional dotted lines show that PSAis not only a
disease biomarker but also influences screening behavior and the likelihood of
prostate cancer detection. b,c, The impact of bias correction is shown for 209
prostate cancer risk variants. Independent risk variants were selected from the
PRACTICAL GWAS meta-analysis (85,554 cases and 91,972 controls of European

Besa

ancestry) by Conti etal.* using LD clumping (LD r*< 0.01, P< 5 x 107%). For each
variant, associations with PSA (Bys,) are based on aninverse-variance-weighted
fixed-effects meta-analysis in men of European ancestry (n = 85,824). b, GWAS
effect sizes for prostate cancer (Bp,c,) are aligned to the risk-increasing allele.
Bias-adjusted effect sizes (B,;) are denoted by triangles. ¢, Two-sided GWAS
Pvalues for prostate cancer (P,,,) were derived from an inverse-variance-
weighted fixed-effects meta-analysis. Two-sided bias-adjusted P values (P,q),
denoted by triangles, were calculated from a chi-squared test statistic based on
B.q;and corresponding standard errors. Genome-wide significance threshold
(P<5x107%) isindicated by the horizontal dotted line.

Cl:2.28-3.21) and higher areaunder the curve (AUC: 0.685 versus 0.677,
P=3.91x107% (Supplementary Table 14). Theimpact of bias correction
was most pronounced for Gleason =7 tumors (PGS,¢,*% AUC = 0.692
versus PGS, AUC = 0.678, P=1.91x107%), although these AUC esti-
mates areinflated dueto overlap with the GWAS used to develop PGS,
(ref. 32).In case-only analyses, PGS;s, and PGS,¢, were inversely associ-
ated with Gleasonscore, illustrating how screening bias decreases the
likelihood of identifying high-grade disease (Supplementary Table 15).
Compared to Gleason <6 tumors, ans.d. increasein PGS,g, wasinversely
associated with Gleason 7 disease (OR=0.79, 95% CI: 0.76-0.83) and
Gleason =8 disease (OR = 0.71, 95% CI: 0.64-0.81). Patients in the top
decile of PGS,¢, were approximately 30% less likely to have Gleason >8
tumors (OR = 0.72,95% Cl: 0.54-0.96) than Gleason <6 tumors, but this
association was attenuated after bias correction (PGS,¢,°%: OR =0.94,
95% ClI: 0.75-1.17).

Impact of genetic adjustment of PSA on biopsy eligibility
Among GERA participants who underwent prostate biopsy, we exam-
ined how adjustment using PGS, reclassified individuals for biopsy

recommendationat age-specific thresholds used by Kaiser Permanente:
40-49 yearsold =2.5 ng ml™; 50-59 years old = 3.5 ng ml™; 60-69 years
old =4.5ng ml;and 70-79 years old = 6.5 ng ml™ (Methods). For men
of European ancestry, mean PSA levels in men with a negative biopsy
(n=2,363,7.2ng ml™) were higher than in men without prostate cancer
who did not have a biopsy (n=24,811, 1.5 ng ml™) (Supplementary
Table16). Relative toall controls, where standardized PGS, = 0, biop-
sied menwere enriched for PSA-increasingalleles (cases: PGS s, = 0.278;
controls: PGSps, = 0.934). After genetic adjustment, 31.7% of
biopsy-negative men were reclassified below the PSA level for recom-
mending biopsy, and 2.5% became biopsy eligible, resulting in a net
reclassification 0f29.3% (27.5% to 31.21%) (Fig. 5a). Among 3,673 cases,
PSA®values below the biopsy referral threshold were more prevalent
than upward adjustment, resulting in a net reclassification of -8.6%
(-9.48% to -7.67%) (Fig. 5a). Of the patients who became ineligible,
most had Gleason <7 tumors (n =300, 72%; Supplementary Table 16).
Inmen of African ancestry, there were few changes in biopsy eligibility
among patients (n = 392), with 3.1% reclassified upward and 4.6% down-
ward (Fig. 5b and Supplementary Table 16). Of 108 biopsy-negative
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Fig. 4| Validation of the PGS, in two cancer prevention trials.
a-f, Performance of PGS;¢, was evaluated in the PCPT and the SELECT.
a,b, Violin plots show the distribution of baseline log(PSA) within quantiles

of PGSy, comprising 1,058,173 and 1,071,278 variants in the PCPT (a) and the
SELECT (b). Box plots extend from the 25th to the 75th percentiles, with a trend
line connecting the median value within each age stratum. Two-sided P values
were derived from linear regression models for the effect of a quantile increase

in PGS;s, onlog(PSA). c,d, Crossbar plots show the effect estimates () and

corresponding 95% Cls per s.d. increase in the standardized PGS;s, on baseline

log(PSA)

SELECT (pooled: n =25,917)

P=8.7x107%
log(4) -
log() | . 1° H
log(0.3)
log(0.1)
1 2 3 4 5
PGSy, quantile
0.45 +
P=5.1x10"
5 _ -610
3 030 1 P=5.5x10
5 ==}
o [ o |
= — -619
o P=12x10 P=4.8x10"°
2
- I P=5.9x10"
P=8x107°
o]
T T T T T
> 3 & &
Fa Oo Ca Bo O K
S P& PSS P
% Pt ‘?‘(\,, \(\// N\ N\
N N <

PSA (ng ml™)

SELECT (pooled: n =25,917)

10 A
& PSA
& PSA®
8
! § .|
e |
4 g I ——————————— | R Rl Al
24
o4

2 3 4 5

PGSy, quantile

log(PSA) inthe PCPT (c) and the SELECT (d). Ancestry-stratified and pooled
multi-ancestry estimates are presented. Two-sided Pvalues based on linear
regression models are annotated. e,f, Comparison of distributions for PSA and
PSAS, with the horizontal line at 4 ng ml™, acommonly used threshold for further
diagnostic testing. Box plots show the median value, with lower and upper
hinges corresponding to the 25th and 75th percentiles or first and third quartiles.
Whiskers extend as amultiple of the interquartile range (IQR x 1.5). Outlying
values beyond the end of the whiskers are plotted individually.

controls, 75 (69.4%) were reclassified below the referral threshold based
on_PSAG, reflecting high enrichment for predisposition to PSA elevation
(PGSps4=1.710). The overall net reclassification was positive, suggest-

ing that PSA® has some clinical utility in both populations.

PSA genetic adjustment improves prostate cancer detection

The utility of PSAS, alone and in combination with PGS,,, was first
assessed in the PCPT, where end-of-study biopsies were performed
in all participants, effectively eliminating potential misclassification
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of prostate cancer status. Among 335 cases and 5,548 controls, PGS,
was not associated with prostate cancer incidence (pooled: OR per
s.d.=1.01, P=0.83), confirming that it captures genetic determinants
of non-cancer PSA variation. The magnitude of association for geneti-
cally adjusted baseline PSA® with prostate cancer (OR per unitincrease
inlog(PSA ng ml™) =1.90, 95% CI: 1.56-2.31) was slightly larger than
for PSA (OR =1.88, 95% Cl:1.55-2.29) in the European ancestry group
(Supplementary Table17). The magnitude of association with prostate
cancer was larger for PGS,,,*¥ (pooled and European: OR pers.d. =1.57,
95% Cl:1.40-1.76) than for PGS,4, without bias correction (pooled:
OR=1.52,95%Cl:1.36-1.70; European: OR =1.53,95% Cl: 1.36-1.72) (Sup-
plementary Table 17). The model with PGS,¢,*¥ and PSA® achieved the
best classificationinthe pooled (AUC = 0.686) and European ancestry
(AUC = 0.688) populations and outperformed PGS, ¥ alone (pooled:
AUC =0.656, Py,c = 7.5 x107*; European: AUC = 0.658, Py ,c =1.4 x107%).

The benefit of genetically adjusting PSA was most evident for
detection of aggressive prostate cancer, defined as Gleason >7,
PSA >10 ng ml™, T3-T4 stage and/or distant or nodal metastases. In
the PCPT, PSAC conferred an approximately threefold risk increase
(pooled: OR =2.87,95% Cl:1.98-4.65, AUC = 0.706; European: OR = 2.99,
95% Cl:1.95-4.59, AUC = 0.711) compared to PGS,¢,°Y (pooled: OR =1.55,
95% Cl:1.23-1.95, AUC = 0.651; European: OR =1.55, 95% CI:1.22-1.96,
AUC = 0.657) (Fig. 6a and Supplementary Table 18). The model with
PSA® and PGS,,*Y achieved AUC = 0.726 (European: AUC = 0.734) for
aggressive tumors but had lower discrimination for non-aggressive
disease (pooled and European: AUC = 0.681) (Supplementary Table19).
Among patients with prostate cancer, PSA® (pooled: OR =2.06, 95%
Cl:1.23-3.45) and baseline PSA (pooled: OR =1.81, 85% Cl: 1.12-3.10)
were associated with higher likelihood of aggressive compared to
non-aggressive tumors, whereas PGS,,, (pooled: OR=0.91, P=0.54)
and PGS,,,*¥ (OR = 0.97, P=0.85) were not (Supplementary Table 20).

In the SELECT, associations with risk of prostate cancer over-
all (Supplementary Table 21), aggressive disease (Fig. 6b and Sup-
plementary Table 22) and non-aggressive disease (Supplementary
Table 23) inthe pooled and European ancestry analyses were similar to
the PCPT.Inmen of East Asian ancestry, associations for PSA® (OR = 2.15,
95% Cl: 0.82-5.62) were attenuated compared to PSA (OR =2.60, 95%
Cl: 1.03-6.54). This was also observed in men of African ancestry,
although the effect size for PSA® derived using PGS ,s (OR =3.37,95%
Cl:2.38-4.78) was larger than for PSA® based on PGS, (OR = 2.68,95%
Cl:1.94-3.69), consistent with the larger proportion of variationin PSA
explained by PGS,,s than PGS, in this population. Models for prostate
cancer including PSA® were calibrated in the pooled and European
ancestry individuals, whereas, in the African ancestry subgroup, PSA®
inaccurately estimated risk inupper deciles (Supplementary Figs.3-6).

Thelargestimprovement in discrimination from PSA® (OR =3.81,
95% Cl: 2.62-5.54, AUC = 0.777) relative to PSA (OR =3.40, 95% CI:
2.34-4.93, AUC = 0.742, P,y = 0.026) and to PGS,¢, (OR=1.76, 95%
Cl:1.41-2.21, AUC = 0.726, P, = 0.057) was for aggressive tumors in
men of European ancestry (106 cases, 23,667 controls). In the pooled
African ancestry population (18 cases, 2,733 controls), PSA®based on
PGS,,5(OR=2.96,95% Cl:1.43-6.12), but not PGS, (OR = 2.48,95% ClI:
1.24-4.97), was more predictive than unadjusted PSA (OR =2.82, 95%
Cl:1.33-5.99) (Supplementary Table 22). The best model for aggressive
disease included PSA® and PGS,¢,*" for pooled (AUC = 0.788, 95% CI:
0.744-0.831) and European ancestry (AUC = 0.804, 95% Cl: 0.757-0.851)
populations, but, for African ancestry individuals, unadjusted PSA
and PGS,, without bias correction achieved the highest AUC of 0.828
(95% CI: 0.739-0.916). PSA® was better calibrated than PSA in pooled
and European ancestry groups but notin African ancestry participants
(Supplementary Figs.7 and 8).

Discussion
Serum PSA is the most widely used biomarker for prostate cancer
detection, although concerns with specificity and, to alesser degree,

sensitivity have limited adoption of PSA testing for population-level
screening. Leveraging PGS to personalize diagnostic biomarkers, such
as PSA, provides a new avenue for translating GWAS discoveries into
clinical practice. This concept, termed ‘de-Mendelization’, is essen-
tially Mendelian randomizationinreverse—subtracting the genetically
predicted component of trait variance instead of using it to estimate
causal effects. De-Mendelization of non-causal predictive biomarkers
canmaximize disease-related signal and improve disease detection®**,
Although previous work on PSA genetics' and other biomarkers
hasalluded to the potential of genetic adjustment to produce clinically
meaningful shifts in the PSA distribution, the value of this approach
for reducing overdiagnosis and detecting aggressive disease has not
been previously shown.

Risk-stratified, personalized screening for prostate cancer will
require parallel efforts to elucidate the genetic architecture of prostate
cancer susceptibility and PSA variation in individuals without disease.
Our GWAS advancesthese efforts by discovering 82 novel PSA-associated
variants. The strongest novel signals map to genes involved in repro-
ductive processes, potentially reflecting non-cancer function of PSAin
liquefying seminal fluid. TEX11 on Xq13.1, for example, is preferentially
expressed in male germ cells and early spermatocytes. TEX1I muta-
tions cause meiotic arrest and azoospermia, and this gene regulates
homologous chromosome synapsis and double-strand DNA break
repair*’. ODF3 encodes a component of sperm flagella fibers and has
been linked to regulation of platelet count and volume*. Other novel
loci contained genes involved in embryonic development, epigenetic
regulationand chromatin organization, including DNMT3A, OTX1, CHD3,
JARID2, HMGA1, HMGA2 and SUDS3. DNMT3A is amethyltransferase that
regulates imprinting and X-chromosome inactivation and has been
studied extensively in the context of height*, clonal hematopoiesis
and hematologic cancers**. CHD3is involved in chromatin remodeling
during development and suppresses herpes simplex virus infection®.
Multiple PSA-associated variants were ingenes related to infectionand
immunity, including HLA-A; ST6GAL1, involved inIgG N-glycosylation*’;
KLRGI,whichregulates naturalkiller (NK) cell function and IFN-y produc-
tion*; and FUT2, which affects ABO precursor H antigen presentation
and confers susceptibility to viral and bacterial infections*®.

Although our GWAS wasrestricted to men without prostate cancer,
several cancer susceptibility genes were among the PSA-associated loci,
including a pan-cancer risk variant in TP53 (rs78378222) (ref.49) and
signals in TP63, GPC3 and THADA. Although we cannot rule out undi-
agnosed prostate cancer inour participants, its prevalenceis unlikely
to be high enough to produce appreciable bias. Pervasive pleiotropy
and omnigenic architecture®® may explain the diverse functions of PSA
lociimplicated ininflammation, epigenetic regulation and growth fac-
tor signaling. Even established tumor suppressor genes, such as TP53,
GPC3and THADA, have pleiotropic effects on obesity via dysregulation
of cellgrowth and metabolism® >, Furthermore, distinct p63 isoforms
regulate epithelial and craniofacial development as well as apoptosis
of male germ cells and spermatogenesis’***. Mutations in GPC3 cause
Simson-Golabi-Behmel syndrome, whichis characterized by visceral
and skeletal abnormalities and excess risk of embryonic tumors®.

Distinguishing variants that influence prostate cancer detection
via PSA screening from genetic signals for prostate carcinogenesis has
implications for deciphering biological mechanisms and developing
risk prediction models. Prostate cancer detection depends on PSA test-
ing, whereas PSA screening is influenced by genetic factors affecting
constitutive PSA levels. The bias arising from this complex relationship
may be substantial. Our findings suggest that bias-corrected effect
sizes more accurately capture the contribution of GWAS-identified
variants to prostate cancer risk, without conflating it with detection.
Correction for PSA-related bias and subsequent improvement in
PGS, performance for detecting aggressive disease is an extension
of de-Mendelization. Adjusting risk allele weights may be a more effec-
tive strategy thanfiltering out variants based on associations with PSA.

38,40
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where Gleason <7 represents potentially indolent disease. Gleason score is not
applicable to men with a negative prostate biopsy (controls).

Generally, the improvements in PSA® and PGS,, are proportional to
the extent of their de-noising of signals for PSA elevation unrelated to
prostate cancer. The impact of bias correction was most pronounced
in populations selected for high PSA, such as men who underwent
prostate biopsy in GERA, but it was also observed in the PCPT and the
SELECT, which enrolled men with low PSA.

Our investigation of index event bias has several limitations.
The Dudbridge method assumes that direct genetic effects on PSA

levels and prostate cancer susceptibility are uncorrelated, and vio-
lations of this assumption over-attribute shared genetic signals to
selection bias®. Although SlopeHunter relaxes this assumption®,
analyses of PGS, suggest that it under-corrects selection bias.
SlopeHunter relies on clustering to distinguish PSA-specific from
pleiotropic variants®, with small or poorly separated clusters
resulting in unstable bias estimates. Disentangling genetic associa-
tions between PSA and prostate cancer with greater certainty will
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of African and East Asian genetic ancestry. ORs and 95% Cls were estimated per
1-unitincrease in log(PSA ng mI™) and log(PSA® ng ml™) and per s.d. increase

in the prostate cancer genetic risk score (PGS,,) from Conti et al.*>, which was
standardized to achieve s.d. equal to 1. All Pvalues are two-sided. AUC is based on
the full model with all covariates.

require experiments such as CRISPR screens and massively parallel
reporter assays.

Another limitation is that the reported magnitude of biopsy
reclassification may be specific to GERA and Kaiser Permanente clini-
calguidelines and biased because GERA controls comprised 30% of the
PSAdiscovery GWAS. Because it was unlikely for men with low PSAtobe
biopsied, and most patients with prostate cancer already had PSA values
atorabove thebiopsy referral cutoff, there were limited opportunities to
increase biopsy eligibility in this population. Despite these limitations,
our findings indicate that genetically adjusted PSA may reduce overdi-
agnosis and overtreatment, albeit accompanied by some undesirable
loss of sensitivity. Although reclassifying cases to not receive biopsy is
concerning, most suchreclassifications occurred among patients with
non-aggressive disease, a group susceptible to overdiagnosis®.

Our PGS-based approach updates the first application of PSA
genetic correction by Gudmundsson et al."’ while retaining straight-
forward calculation of the genetic correction factor. Increasing the
specificity of an established, clinically useful biomarker is efficient
and would have low adoption barriers. However, analytic choices,
suchas selecting an optimal PGS algorithm and reference population
for obtaining mean PGS,,, are not trivial. The choice of reference
population affects the magnitude of correction and clinical decisions
based onabsolute PSA values. Furthermore, any new biomarker would
require validation in real-world settings to identify populations who
would benefit most and characterize barriers toimplementation, such
as physician familiarity with PGS and patient education about genetic
testing. Genetically adjusted PSA should also be evaluated in conjunc-
tionwithother procedures used for prostate cancer detection, suchas
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targeted magnetic resonanceimaging, and explored as a criterion for
refining selection of participants into screening trials.

Our study highlights theimportance and challenge of developing
aPGSthatadequately performsacross the spectrumof ancestry. Com-
pared to PGS,,5, PGS, did notimprove performance inmen of African
ancestry. This may reflect the ‘meta’ estimation procedure, which
does not require a separate dataset for hyperparameter tuning but is
less accurate®. GWAS efforts in larger and more diverse cohorts are
underway and will expand the catalog of PSA-associated variants and
increase their utility. Genetic adjustment using a PGS, that does not
explainasufficiently high proportion of trait variation risks decreasing
the accuracy of PSA screening.

Future research should assess whether genetically adjusted PSA
levels improve prediction of prostate cancer mortality and investi-
gate PSA-related biomarkers, such as the ratio of free to total PSA and
pro-PSA (a precursor PSA isoform), which may have higher specificity
for prostate cancer detection®®*’, Although PGS, was associated with
PSA doubling time and velocity, these metrics assess change between
two timepoints and may not capture PSA trajectories that are meaning-
ful for disease detection®. Clinical guidelines for PSA kinetics are also
lackingin the context of prostate cancer screening. Regardless, we think
that genetic adjustment may improve the accuracy of any heritable PSA
biomarker and may be a valuable addition to multi-omic biomarkers.

In summary, by detecting genetic variants associated with
non-prostate cancer PSA variation, we developed a PGS,, that cap-
tures the contribution of common genetic variants toaman’sinherent
PSAlevel. We showed that astraightforward calculation of genetically
adjusted, personalized PSA levels using PGS,¢, provides clinically mean-
ingful improvements in prostate cancer diagnostic characteristics.
Moreover, genetic determinants of PSA provide an avenue for mitigat-
ing selection bias due to PSA screening in prostate cancer GWASs and
improving disease prediction. These results illustrate a proof of con-
ceptforincorporating genetic factorsinto PSA screening for prostate
cancer and expanding this approach to other diagnostic biomarkers.
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Methods

Informed consent was obtained from all study participants. The UKB
received ethics approval from the Research Ethics Committee (refer-
ence:11/NW/0382) in accordance with the UKB Ethics and Governance
Framework. The research was conducted with approved access to UKB
data under application number 14105. We used previously published
PSA GWAS results from the GERA cohort by Hoffmann et al.”. The
original study was approved by the Kaiser Permanente Northern Cali-
forniainstitutional review board and the University of California, San
Francisco Human Research Protection Program Committee on Human
Research. The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer
Screening Trial was approved by the institutional review board at each
participating center and the National Cancer Institute. The informed
consent document signed by PLCO study participants allows use of
these databy investigators for discovery and hypothesis generationin
theinvestigation of the genetic contributions to cancer and other adult
diseases. Our study includes publicly posted genomic summary results
fromthe PLCO Atlas®. No institutional review board review is required
for PLCO summary datause. The Vanderbilt University Medical Center
institutional review board approved the BioVU study. The Malmo Diet
and Cancer Study (MDCS) was approved by the local ethics committee.

Study populations and phenotyping

Genome-wide association analyses of PSA levels were conducted using
germline genetic data derived from DNA extracted from non-prostatic
tissues (for example, blood and buccal swabs). Analyses were restricted
to cis-gender men, defined as individuals of biological male sex and
self-reported male gender identity who had never been diagnosed
with prostate cancer. Men with a history of surgical resections of the
prostate were excluded in studies for which thisinformation was avail-
able. Toreduce potential for reverse causation, analyses were limited to
PSAvalues <10 ng ml™, which corresponds to low-risk prostate cancer
based on the D’Amico prostate cancer risk classification system®, and
PSA >0.01 ng ml™, to ensure that individuals had a functional prostate
notimpacted by surgery or radiation.

The UKBisapopulation-based prospective cohort of over 500,000
individuals aged 40-69 years at enrollmentin 2006-2010 with genetic
and phenotypic data®. Health-related outcomes were ascertained via
individual record linkage to national cancer and mortality registries
and hospital inpatient encounters. PSA values were abstracted from
primary care records for a subset of participants with genetic data.
Field code mappings used to identify PSA values included any serum
PSA measure except for free PSA or ratio of free to total PSA (Supple-
mentary Table 25).

The Kaiser Permanente GERA cohort used in this analysis was previ-
ously described in Hoffmann et al.”. Inbrief, prostate cancer status was
ascertained from the Kaiser Permanente Northern California Cancer
Registry, the Kaiser Permanente Southern California Cancer Registry
orthroughreview of clinical electronic health records. PSA levels were
abstracted from Kaiser Permanente electronic health records from
1981 through 2015.

The PLCO Cancer Screening Trial is acompleted randomized trial
thatenrolled approximately 155,000 participants between November
1993 and July 2001. The PLCO Cancer Screening Trial was designed to
determine the effects of screening on cancer-related mortality and
secondary endpoints in men and women aged 55-74 years®*. Men ran-
domizedto the screening arm of the trial underwent annual screening
with PSA for 6 years and digital rectal exam (DRE) for 4 years®. These
analyses were limited to menwithabaseline PSA measurement who were
randomized to the screening arm of the trial (n =29,524). Men taking fin-
asteride atthe time of PSA measurement were excluded from analysis.

The Vanderbilt University Medical Center BioVU resource is a
synthetic derivative biobank linked to de-identified electronic health
records®. Analyses were based on PSA levels that were measured as
part of routine clinical care.

The MDCS is a population-based prospective cohort study that
recruited men and women aged between 44 years and 74 years of age
who were living in Malmo, Sweden between 1991 and 1996 to investi-
gate the impact of diet on cancer risk and mortality®. These analyses
included men from the MDCS who were not diagnosed with prostate
cancer as of December 2014 and had available genotyping and baseline
PSA measurements®.

The PCPT is a completed phase 3 randomized, double-blind,
placebo-controlled trial of finasteride for prostate cancer preven-
tion that began in 1993 (ref. 8). The PCPT randomly assigned 18,880
men aged 55 years or older who had a normal DRE and PSA level
<3 ng ml™ to either finasteride or placebo. For men with multiple
pre-randomization PSA values, the earliest value was selected. Cases
included all histologically confirmed prostate cancers detected dur-
ing the 7-year treatment period and tumors that were detected by
the end-of-study prostate biopsy. Our analyses included the subset
of PCPT participants that was genotyped on the Illumina Infinium
Global Screening Array 24 v2.0.

TheSELECTisacompleted phase 3 randomized, placebo-controlled
trial of selenium (200 pg per day from L-selenomethionine) and/or
vitamin E (400 IU per day of all rac-a-tocopheryl acetate) supplementa-
tion for prostate cancer prevention®. Between 2001and 2004, 34,888
eligible participants were randomized. The minimum enrollment age
was 50 years for African American men and 55 years for all other men®.
Additional eligibility requirements included no prior prostate cancer
diagnosis, <4 ng ml™ of PSA in serum and a DRE not suspicious for
cancer. For menwho had multiple pre-randomization PSA values, the
earliest value was selected. Our analyses included a subset of SELECT
participants genotyped on the lllumina Infinium Global Screening
Array24v2.0.

Quality control and genome-wide association analyses
Standard genotyping and quality control (QC) procedures were
implemented in each participating study. Before meta-analysis, we
applied variant-level QC filters that included low imputation quality
(INFO < 0.30), MAF < 0.005 and deviations from Hardy-Weinberg
equilibrium (P, <1x107). Sample-level filtering was performed to
remove samples with discordant genetic sex and self-reported gender
and callrate < 0.97. One sample from each pair of first-degree relatives
was also excluded. GWAS phenotypes and adjustment covariates are
reportedin Supplementary Table 26. Genome-wide association analy-
ses performed linear regression of log(PSA) as the outcome, using age
and genetic ancestry principal components (PCs) as the minimum set
of covariates.

UKB. Genotyping and imputation for the UKB cohort were previously
described®. In brief, participants were genotyped on the UKB Affy-
metrix Axiom array (89%) or the UK BiLEVE array (11%) with imputa-
tion performed using the Haplotype Reference Consortium (HRC)
and the merged UK10K and 1000 Genomes phase 3 reference pan-
els. Genetic ancestry PCs were computed using fastPCA based on
a set of 407,219 unrelated samples and 147,604 genetic markers®.
Association analyses in the UKB were restricted to individuals of
European ancestry based on self-report (‘White’) and after exclud-
ing samples with either of the first two genetic ancestry PCs out-
side of 5s.d. of the population mean, as previously descibed*. We
removed samples with discordant self-reported and genetic sex as
well as one sample from each pair of first-degree relatives identified
using KING?. Using a subset of genotyped autosomal variants with
MAF > 0.01 and call rate > 97%, we filtered samples with heterozygo-
sity >5 s.d. from the mean. For participants with multiple PSA meas-
urements, the median value PSA was used. Sensitivity analyses were
conducted comparing this approach to a GWAS of individual-specific
random effects derived from fitting a linear mixed model to repeated
log(PSA) values.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02277-9

GERA. Genotyping, imputation and QC of the GERA cohort were
previously described”***°. In brief, all men were genotyped for over
650,000 single-nucleotide polymorphisms (SNPs) on four race/
ethnicity-specific Affymetrix Axiom arrays that were optimized for
individuals who self-identified as non-Hispanic white, Latino, East
Asianand African American, respectively®®*’. Genotype QC procedures
and imputation for the original GERA cohort were performed on an
array-wise basis, as previously described”’°. Pre-phasing was done by
SHAPEIT version 2.5 (ref. 71) and imputation with IMPUTE2 version 2.3.1
(ref. 72) using the 1000 Genomes phase 3 release with 2,504 samples.
The top ten genetic ancestry PCs from EIGENSTRAT version 4.2 were
included in the linear model as ancestry covariates”. Analyses were
conducted accordingto self-identified race/ethnicity groups. Residu-
alswere computed from linear mixed models that werefit torepeated
log(PSA) measures. This approach was nearly identical to along-term
average, except that it used the median instead of the mean to handle
any potential outlier PSA level values.

PLCO Atlas. Our study used GWAS summary statistics from the
PLCO Atlas Project, a resource for multi-trait GWAS. Genotyping,
QC and imputation procedures for this resource are described by
Machiela et al.®’. The Atlas Project combined genotyping data pre-
viously generated by high-density arrays for 25,831 participants
(OncoArray, Omni2.5M and OmniExpress) with a new round of gen-
otyping using the Illumina Global Screening Array (GSA). For par-
ticipants genotyped on multiple genotyping arrays (n=1,192), data
from only one array were retained, with the following prioritization:
GSA > OncoArray > Omni2.5M > OmniExpress. Extensive QC filtering
was performed for subsequent imputation and association analyses.
Iterative 80% and 95% sample-level and variant-level call rate filters were
applied to remove poorly genotyped samples and variants. Samples
with > 20% estimated contamination based on VerifylDintensity”
were also removed. Samples with discordant self-reported gender
and genetically inferred sex were identified based on X-chromosome
method-of-moments F coefficient from PLINK, using 0.5 as the thresh-
old (F coefficients are close to 0.0 for males and 1.0 for females). Het-
erozygosity outliers were detected using absolute values from PLINK
method-of-moments F coefficients > 0.2.

Genetic ancestry was determined using GRAF” on aset 0f 10,000
pre-selected fingerprinting variants. Participants were assigned to
nine ancestral groups: ‘African’, ‘African American’, ‘East Asian’, ‘Euro-
pean’, ‘Hispanicl’, ‘Hispanic2’, ‘Other’, ‘Other Asian” and ‘South Asian’.
Hispaniclincluded individuals of Dominican or Puerto Rican ancestry,
whereas Hispanic2included individuals of Mexican or Latin American
ancestry. For parsimony, we merged ‘African’ and ‘African American’
intoan‘African American (Combined)’ and ‘East Asian’and ‘Other Asian’
into an ‘East Asian (Combined)’. Imputation was performed using the
TOPMed 5breference panel, whichis accessible viathe TOPMed Impu-
tation Server hosted on the Michigan Imputation Server. Beforeimputa-
tion, variants with MAF < 0.01, missingness > 0.05and Hardy-Weinberg
deviations (P, <1 x107¢) were removed. Genotyped data were aligned
toreference datasets using acommunity-recommended script (HRC-
1000G-check-bim.plfrom https:/www.well.ox.ac.uk/~wrayner/tools/)
that was modified to support the TOPMed 5b reference panel using a
pre-existing testimputation with 1000 Genomes subjects. Pre-phasing
using phased reference data from TOPMed release 5b was conducted
using Eagle 2.4 (ref. 76). Imputation was conducted against the same
reference panel using minimac4. GWAS was based on the first PSA value
for each PLCO participant.

BioVU. Participants were identified using Vanderbilt University Medi-
cal Center’s BioVU resource, a DNA biobank comprising ~270,000
individuals and linked to a de-identified electronic health record®.
All participants (n = 8,074) were genotyped on Illumina’s Expanded
Multi-Ethnic Genotyping Array (MEGA®) platform. Genetic ancestries

were assigned by running principal component analysis using SNPRel-
ate’’ onaset of pruned SNPs (Rsq < 0.5, MAF > 0.1). Participants were
classified as European ancestry if their first two PCs were within 4 s.d.
of the median for the participants reporting ‘White’ as their race. Par-
ticipants were classified as African ancestry if their first two PCs were
within 4 s.d. of the median for participants reporting their race as
‘Black’. AllQC procedures were performed using PLINK version1.90. We
removed onerandomly selected sample out of each pair of related indi-
viduals (pi-hat > 0.2) identified using identity-by-descent. We excluded
participants with SNP missingness > 3% or heterozygosity >5 s.d. from
the mean. Beforeimputation, datawere pre-processed using the HRC-
1000G-check-bim.pl (from http://www.well.ox.ac.uk/~wrayner/tools/)
and pre-phased using Eagle version 2.4 (ref. 76). Genetic data were
imputed on the Michigan Imputation Server using 1000 Genomes
phase 3 version 5 as the reference panel. For men with multiple PSA
measurements, the median PSA was used.

MDCS. Data from multiple batches of genotyping of 4,069 MDCS
participants using different lllumina Omni arrays were merged. For
variants that appeared more than once under different names on
the same lllumina array, those with the higher genotyping rate were
retained. Indels, ambiguous palindromic (for example, A/T or C/G
alleles) and multi-allelic variants were removed. Only SNPs that we
could unambiguously map to the 1000 Genomes phase 1 dataset were
kept. Individuals with >10% missingness were removed. Next, SNPs
with a missingness rate >10% or deviation from Hardy-Weinberg
equilibrium (P, < 0.001) were removed. At this stage, the PCs of
ancestry were computed. Individuals forwhomthe inferred sex based
on X-chromosome heterozygosity was not male, or for whom there
were more than two genetic mismatches with 40 SNPs that we had
previously genotyped in these samples with targeted genotyping®’,
were excluded.

To assess genetic ancestry, MDCS data were combined with data
from HapMap phase 3 for variants present in all genotyping batches.
These SNPs were further filtered to have < 0.01% missingness and LD
pruned (-indep-parwise 50 50.05). SMARTPCA in EIGENSOFT (https://
github.com/chrchang/eigensoft) was runontheresulting 18,299 SNPs
togenerate the top ten genetic ancestry PCs. Analyses were restricted
toindividuals of European ancestry based on clustering with HapMap
reference populations and exclusion of outliers with a z-score on PC1
and PC2 > 5. Imputation was performed using the TOPMed 5b refer-
ence panel, which is accessible via the TOPMed Imputation Server
hosted on the Michigan Imputation Server. Before imputation, the
input file was aligned to the build37 reference genome on the basis of
chromosome, position and alleles. A total of 847,133 SNPs that passed
pre-imputation QC were uploaded to the imputationserver. Fromthe
resultingimputed files, analyses wererestricted to individuals without
aprostate cancer diagnosis by 31December 2014, with individual miss-
ingness <3% and a z-score < 5.0 for heterozygosity. Log(PSA) values
were analyzed using robust linear regression with Tukey biweights.
GWAS was performed using linear regression onthe residuals extracted
from the fitted models.

PCPT and SELECT. Participants from PCPT and SELECT were geno-
typed on the lllumina Infinium Global Screening Array 24 v2.0 and
underwent the same QC and imputation procedures. Genotyping call-
ingand QC were performed at the Center for Inherited Disease Research
atJohns Hopkins. After removal of samples that failed to produce valid
output during initial processing and clustering, the completion rate
was 0.9951 and 0.9959 in PCPT and SELECT, respectively. A two-stage
filter by completionrate threshold of 0.8 for samples and 0.8 for vari-
ants, followed by 0.95 for samples and 0.95 for variants, was performed.
Samples with discordantself-reported gender and genetically inferred
sex were identified based on X-chromosome method-of-moments F
coefficient from PLINK, using 0.5 as the threshold (F coefficients are
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close to 0.0 for males and 1.0 for females). Identity-by-descent for all
subject pairs was determined using PLINK, with close (first and second
degree) relativesidentified based onathreshold of 0.20. One randomly
selected sample from each pair of relatives was retained.

Ancestry was estimated using a set of LD-pruned markers and run-
ning SNPWEIGHTS ® with the reference panel provided containing the
following populations: European, West African and East Asian, with a
threshold of 0.8 used for imputed ancestry designation. Participants
were assigned to asingle ancestry groupifthe ancestry score was >0.80
forjust one group. Participants were assigned to an admixed cluster if
their ancestry score was > 0.20 and <0.80 for only one group (for exam-
ple, ADMIXED_AFRwhere AFR =0.75,EUR = 0.17,EAS = 8). Intermediate
ancestry clustersincluded individuals with ancestry scores matching
those criteria in multiple groups: 0.20 < AFR_EUR < 0.80 (for exam-
ple, AFR=0.65,EUR=0.33) and 0.20 < EAS_EUR < 0.80 (for example,
EUR = 0.55, EAS = 0.43). Autosomal heterozygosity was assessed using
the method-of-moments F coefficient calculated within each ancestry
cluster. Heterozygosity outliers were identified and excluded using a
threshold of 0.10. Principal component analysis was performed with
SMARTPCA in EIGENSOFT (https://github.com/chrchang/eigensoft)
on a set of LD-pruned markers after splitting by ancestry cluster, to
resolve more detailed population substructure. Genetic ancestry
PCs were not computed for small clusters (n < 50) or individuals who
failed other QC filters. For validation of PGS, in PCPT and SELECT,
we combined ADMIXED_AFR and AFR_EUR and treated this asasingle
group with admixed AFR and EUR ancestry proportions (AFR/EUR).
ADMIXED _EAS and EAS_EUR were also combined into a single cluster
with admixed EAS and EUR ancestry (EAS/EUR).

To prepare genotype data for imputation with the TOPMed 5b
reference panel, variants with MAF < 0.001, call rate < 98% or evidence
of deviation from Hardy-Weinberg equilibrium (P <107°) were
removed. After these QC steps, atotal of 474,046 variants remained for
PCPT, and 491,015 variants were retained for SELECT. Before submitting
the data to the TOPMed Imputation Server, files were pre-processed
using the check-bim.pl script (http://www.well.ox.ac.uk/~-wrayner/
tools/). Next, chromosomal positions were lifted over from GRCh37/
hg19 to GRCh38 and aligned against the TOPMed reference SNP list
based on chromosome, position and alleles to ensure that reference
and alternate alleles were correct in the resulting VCF files.

Heritability of PSA levels attributed to common variants
Heritability of PSA levels was estimated using individual-level dataand
GWAS summary statistics. UKB participants with available PSA and
genetic data were analyzed using LDAK version 5.1 (ref. 24) and GCTA
version1.93 (ref. 23), following the approach previously implemented in
the GERA cohort”. Genetic relationship matrices were filtered to ensure
that no pairwise relationships with kinship estimates >0.05 remained.
Heritability was estimated using common (MAF > 0.01) LD-pruned
(r* < 0.80) variants with imputation INFO > 0.80. We implemented the
LDAK-Thin model using the recommended genetic relatedness matrix
(GRM) settings (INFO > 0.95, LD r* < 0.98 within 100 kb) and the same
parameters as GCTA for comparison (LD r* < 0.80, INFO > 0.80). For
both methods, sensitivity analyses were conducted using more strin-
gent GRM settings (kinship = 0.025, genotyped variants).

Summary statistics from GWAS results based on the same set of
UKB participants (n=26,491) and from a European ancestry GWAS
meta-analysis (n = 85,824) were analyzed using LDAK, LD score
regression (LDSR)* and an extension of LDSR using a high-definition
likelihood (HDL) approach®. For LDSR, we used the default panel com-
prising variants available in HapMap3 with weights computed in 1000
Genomes version 3 EUR individuals and in-house LD scores computed
in UKB European ancestry participants*’. The baseline linkage disequi-
librium (BLD)-LDAK model was fit using pre-computed tagging files
calculated in UKB GBR (white British) individuals for HapMap3 vari-
antsfromthe LDSR default panel. HDL analyses were conducted using

the UKB-derived panel restricted to high-quality imputed HapMap3
variants®. AllGWAS summary statistics had sufficient overlap with the
reference panels, not exceeding the 1% missingness threshold for HDL
and the 5% missingness threshold for LDAK and LDSR.

Genome-wide meta-analysis

Each ancestral population was analyzed separately, and GWAS sum-
mary statistics were combined via meta-analysis (Fig. 1). We first
used METAL” to conduct an inverse-variance-weighted fixed-effects
meta-analysis in each ancestry group and then meta-analyzed the
ancestry-stratified results. Multi-ancestry meta-analysis results were
processed using clumping to identify independent association signals
by grouping variants based on LD within specific windows. Clumps
were formed around index variants with the lowest genome-wide sig-
nificant (P < 5 x107®) meta-analysis Pvalue. All other variants with LD
r’>0.01within a £10-Mb window were considered non-independent
and assigned to that lead variant. Since over 90% of the meta-analysis
consisted of individuals of European ancestry, clumping was per-
formed using 1000 Genomes phase 3 EUR and UKB reference panels,
which yielded concordant results. We confirmed that LD among the
resulting lead variants did not exceed r*=0.05 using a merged 1000
Genomes ALL reference panel.

We first examined heterogeneity in the multi-ancestry fixed-effects
meta-analysis results using Cochran’s Q statistic. To assess het-
erogeneity specifically due to ancestry, we applied MR-MEGA%, a
meta-regressionapproach for aggregating GWAS results across diverse
populations. Summary statistics fromeach GWAS were meta-analyzed
using MR-MEGA without combining by ancestry first. The MR-MEGA
analysis was performed across four axes of genetic variation derived
from pairwise allele frequency differences, based on the recommenda-
tion for separating major global ancestry groups. Index variants from
the MR-MEGA analysis were selected using the same clumping param-
eters as described above (LD r* < 0.01 within a +10-Mb window), based
onthemerged1000 Genomes ALL reference panel. For each variant, we
reporttwo heterogeneity Pvalues: one thatis correlated with ancestry
and accounted for in the meta-regression (Py..an.) and the residual
heterogeneity thatis not due to population genetic differences (Pyec.res)-

PGS,s, development and validation
We implemented two strategies for generating a genetic score
for PSA levels. In the first approach, we selected 128 variants that
were genome-wide significant (P <5 x107®) in the multi-ancestry
meta-analysis and were independent (LD r* < 0.01 within a +10-Mb
window) in 1000 Genomes EUR and (LD r* < 0.05) 1000 Genomes
ALL populations (PGS,,). Each variant in PGS,,; was weighted by the
meta-analysis effect size estimated using METAL. As an alternative strat-
egy toclumpingand thresholding, we fitagenome-wide score using the
PRS-CSx algorithm®, which takes GWAS summary statistics from each
ancestry group as inputs and estimates posterior SNP effect sizes under
coupled continuous shrinkage priors across populations (PGScs,).
Analyses were conducted using pre-computed population-specific
LD reference panels fromthe UKB, whichincluded 1,287,078 HapMap3
variants that areavailablein both the UKB and 1000 Genomes phase 3.
We calculated asingle trans-ancestry PGS that canbe applied to all
participantsin the target cohort, rather than optimizing a PGS within
each ancestry group. This approach is more robust to differences in
geneticancestry assignments across studies and does not require sepa-
rate testing and validation datasets for parameter tuning each ancestry
group?. To facilitate this type of analysis, PRS-CSx provides a -meta
optionthatintegrates population-specific posterior SNP effects using
aninverse-variance-weighted meta-analysis in the Gibbs sampler®. The
global shrinkage parameter was set to ¢p = 0.0001. PRS-CSx was run
ontheintersection of variants that werein the LD reference panel and
had imputation quality (INFO > 0.90), resulting in1,058,163 variantsin
PCPTand1,071,268 variants in SELECT. Because PRS-CSx considers only
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autosomes, chrX variants that were included in PGS,,s were added to
PGS, separately, when output files from each chromosome produced
by the PLINK-score command were concatenated.

The predictive performance of PGS, and PGS, was evaluated
intwoindependent cancer prevention trials that were notincludedin
the meta-analysis: PCPT and SELECT. Analyses were conducted in the
pooled sample for each cohort, whichincluded individuals of all ances-
tries who passed QCfilters (Supplementary Note). Ancestry-stratified
analyses were conducted for clusters with n > 50 with available genetic
ancestry PCs. Ancestry scores were computed with SNPWEIGHTS’®.
Individuals with ancestry scores >0.80 for asingle group were assigned
to clusters for predominantly European (EUR), West African (AFR)
and East Asian (EAS) ancestry. Admixed individuals with intermedi-
ate ancestry scores for at least one group were assigned to separate
clusters: 0.20 < EUR/AFR < 0.80 or 0.20 < EUR/EAS < 0.80. Pooled
analyses were adjusted for ten within-cluster PCs and global ancestry
proportions (AFR and EAS).

Index event bias analysis

Index event bias occurs when individuals are selected based on the
occurrence of an event or specific criterion. This is analogous to the
direct dependence of one phenotype on another, as in the commonly
used example of cancer survival**. Due to unmeasured confounding,
this dependence can induce correlations between previously inde-
pendent risk factors among those selected®**. Genetic effects on
prostate cancer can be viewed as conditional on PSA levels, because
elevated PSA typically triggers diagnostic investigation. Genetic fac-
tors resulting in higher constitutive PSA levels may also increase the
likelihood of prostate cancer detection due to more frequent testing
(Fig. 4). This selection mechanism could bias prostate cancer GWAS
associations by capturing both direct genetic effects on disease risk
andselection-induced PSA signals. Inthe GWAS setting, methods using
summary statistics have been developed to estimate and correct for
this bias*™. Although typically derived assuming a binary selection
trait, these methods are still applicable to selection or adjustment
based on quantitative phenotypes®. In this study, we conceptualized
PSA variation as the selection trait and prostate cancer incidence as
the outcome trait (Fig. 4).

We applied the method described in Dudbridge etal.**, which tests
forindex eventbias and estimates the corresponding correction factor
(b) by regressing genetic effects onthe selection trait (PSA) against their
effectsonthe subsequent trait (prostate cancer), with inverse variance
weights: w=1/(SE,,,)*. Summary statistics for prostate cancer were
obtained from the most recent prostate cancer GWAS from the PRACTI-
CAL consortium™, Sensitivity analyses were performed using Slope-
Hunter®, an extension of the Dudbridge approach that allows for direct
geneticeffectsontheindextraitand subsequent trait to be correlated.
For both methods, analyses were conducted using relevant summary
statistics and 127,906 variants pruned at the recommended threshold™®
(LD r?< 0.10in250-kb windows) with MAF > 0.05in the 1000 Genomes
EURreference panel. After merging the pruned 1000 Genomes variants
with each set of summary statistics, variants with large effects,
(181> 0.20) on either log(PSA) or prostate cancer, were excluded. The
resulting estimate (b), adjusted regression dilution using the SIMEX
algorithm, was used as a correction factor to recover unbiased genetic
effects for each variant: 8, .. = Bpca=b*Bpss, Where By, is the per-allele
effect onlog(PSA), andp,,, is the log(OR) for prostate cancer.

Theimpactofthebias correction was assessed in three ways. First,
genome-wide significant prostate cancer index variants were selected
fromthe European ancestry PRACTICAL GWAS meta-analysis (85,554
cases and 91,972 controls) using clumping (LD r* < 0.01 within 10 Mb)
(ref. 32). We tabulated the number of variants that remained associ-
ated at P< 5 x10"® after bias correction. Next, we fit genetic scores for
PSA and prostate cancer in men of European ancestry in the UKB who
were notincludedinthe PSA or prostate cancer GWAS (11,568 prostate

cancer cases and 152,884 controls). We compared the correlation
between the PGS for PSA (PGS,,), comprising 128 lead variants, and the
269-variant prostate cancer risk score fit with original risk allele weights
(PGS,¢) and with weights corrected for index event bias (PGS,¢*¥).
To allow adjustment for genetic ancestry PCs and genotyping array,
associations between the two scores were estimated using linear
regression models. Next, we examined associations for each genetic
score (PGS,¢o, PGS,40°Y, PGS,4,*7S) with prostate cancer in a subset of
GERA participants who underwent a biopsy. Because GERA controls
were included in the PSA GWAS meta-analysis, AUC estimates and
corresponding bootstrapped 95% Cls were obtained using tenfold
cross-validation. We also examined PGS associations with Gleason
score, a marker of disease aggressiveness, which was not available in
the UKB. Multinomial logistic regression models with Gleason score
<6 (reference),7 and >8 as the outcome were fit for each scorein 4,584
cases from the GERA cohort.

Application of genetically adjusted PSA for biopsy referral and
prostate cancer detection

Genetically corrected PSA values were calculated for individual i as
follows"":

PSA;

PSAC =
l a[

@

where q; is a personalized adjustment factor derived from PGSs,.
Because genetic effects were estimated for log(PSA), a;for correcting
PSAinng ml™ was derived as:

q, = SREG) @
exp(PGS)

PGS can be estimated in controls without prostate cancer or obtained

from an external control population”’. We see that a,>1when an

individual has a higher multiplicativeincrease in PSA than the sample

average due to their genetic profile, resulting in a lower genetically

adjusted PSA compared to the observed value (PSA? < PSA)).

We evaluated the potential utility of PGS, in two clinical contexts.
First, we quantified the impact of using PSA? on biopsy referrals by
examining reclassification at age-specific PSA thresholds used in the
Kaiser Permanente health system. Analyses were conducted in GERA
participants withinformation on biopsy date and outcome, comprising
prostate cancer cases notincluded in the PSA GWAS and controls that
were part of the PSA GWAS. To use the same normalization factor for
both cases and controls while mitigating bias due to control overlap
with the PSA discovery GWAS, a,for GERA participants was calculated
by substituting PGS from out-of-sample UKB controls (n=152,884).
Upward classification resulting in biopsy eligibility occurred when
PSAS > PSA; n PSAC > ref, where ref is the biopsy referral threshold.
Downward classification resulting in biopsy ineligibility was defined
as: PSAY < PSA; n PSA? < ref . Netreclassification (NR) was summarized
separately for cases and controls:

NRase = P (uplcase) — P(down]case)

NRcontrol = P (down|control) — P (uplcontrol)

This is equivalent to tabulating the proportion of individuals in
each biopsy eligibility category:

MRy = Pettle) _ (el

ncase ncase

Nineligible ) (neligible )

Neontrol

NRcontrol = (

Neontrol
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For each NR proportion, 95% Cls were obtained using the normal

approximation:
NR+1.96 x+/ w

Next, we assessed the performance of risk prediction models for
prostate cancer overall, aggressive prostate cancer and non-aggressive
prostate cancer in the PCPT and the SELECT.

Because both studies were excluded from the PSA GWAS
meta-analysis, a;and PSA? for then PCPT and the SELECT were calcu-
lated using PGS observed in each respective study. Consistent with the
PGS, validation analysis, pooled analyses included individuals of all
ancestries who passed QC filters. To facilitate ancestry-stratified analy-
sesin SELECT, especially for aggressive disease, we combined AFR and
AFR/EUR clustersintoasingle group (AFR pooled) and similarly pooled
EASand EAS/EUR (EAS pooled). Aggressive prostate cancer was defined
as Gleason score >7, PSA > 10 ng ml™, T3-T4 stage and/or distant or
nodal metastases. We compared AUC estimates for logistic regression
models using the following predictors, alone and in combination:
baseline PSA, genetically adjusted baseline PSA (PSA®) PGS,,, prostate
cancer risk score with original weights (PGS,,) (ref. 32) and weights
corrected for index event bias (PGS 4,*%Y).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

UK Biobank data are publicly available by request from https://www.
ukbiobank.ac.uk. To maintain individuals’ privacy, data on the GERA
cohortare available by application to the Kaiser Permanente Research
Bank (https://researchbank.kaiserpermanente.org/). All PLCO geno-
type data are available in the database of Genotypes and Phenotypes
(dbGAP) under accession number phs001286.v2.p2 (https://identifiers.
org/dbgap:phs001286.v2.p2). Companion phenotype data can be
requested through the NCI Cancer Data Access System (https://cdas.
cancer.gov/plco/). GWAS summary statistics are available directly from
the PLCO Atlas GWAS Explorer website (https://exploregwas.cancer.
gov/plco-atlas/) aswellas accessed directly through APlaccess (https://
exploregwas.cancer.gov/plco-atlas/#/api-access). Genome-wide
summary statistics for the PSA multi-ancestry meta-analysis and
ancestry-stratified summary statistics for the development of the
genome-wide PSA polygenic score are available from https://doi.
org/10.5281/zenodo.7460134. Scoring files for fitting PSA polygenic
scoresare available from the PGS Catalog: http://www.pgscatalog.org/
score/PGS003378/and http://www.pgscatalog.org/score/PGS003379/.

Code availability

Genome-wide association analyses were conducted using PLINK
version 2.0a3LM (https://www.cog-genomics.org/plink/2.0/).
Fixed-effectsinverse-variance-weighted meta-analysis was performed
with METAL using SCHEME STDERR (https://genome.sph.umich.edu/
wiki/METAL_Documentation). Weights for the genome-wide polygenic
score for PSA were estimated using PRS-CSx (https://github.com/
getian107/PRScsx). Scripts for fitting polygenic scores, performing
theindex eventbias analysis and calculating genetically adjusted PSA
values are available at https://github.com/lkachuri/precision_PSA.
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Extended DataFig. 1| Heritability (h?) of PSA levels and GWAS resultsinmen of GWAS summary statistics from the UK Biobank and the EUR meta-analysis
of European ancestry without prostate cancer. a, Crossbars show h? estimates, using the baseline linkage disequilibrium LDAK model and a high-definition
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annotated below, and corresponding 95% confidence intervals across statistical likelihood (HDL) method by Ning et al.* b, UKB GWAS results where known PSA
methods. In the UK Biobank (UKB), heritability was estimated using GCTA and loci are labeled with the corresponding cytoband region and new regions are
Linkage Disequilibrium Adjusted Kinships (LDAK)-Thin models from a genetic labeled with the nearest gene. Highlighted peaks include variantsin LD (r* > 0.01)

relatedness matrix (GRM) of common (MAF > 0.01) LD-pruned (r* < 0.80) variants  with the lead novel variant. Two-sided p-values are derived from linear
withimputation quality INFO > 0.80. These estimates were compared to analyses regression models.
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Extended Data Fig. 2| Impact of correction for PSA-related selection bias

on genetic associations with prostate cancer. Associations with prostate
cancer for 128 PSA-associated index variants were obtained from the PRACTICAL
GWAS by Conti etal.*? PSA index variants were selected from the multi-ancestry
GWAS meta-analysis using clumping and thresholding (P < 5x 1075, linkage
disequilibrium r* < 0.01). a, GWAS effect sizes for prostate cancer (By,c,) are
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aligned to the PSA-increasing allele. Bias-adjusted effect sizes (B,4) are denoted
by triangles. b, Two-sided GWAS p-values for prostate cancer (Py,c,) were derived
from aninverse-variance-weighted fixed-effects meta-analysis. Two-sided bias-
adjusted p-values (P,q), denoted by triangles, were calculated froma chi-squared
test statistic based on 3,4 and corresponding standard errors. Genome-wide
significance threshold (P < 5 x107%) is indicated by the dotted line.
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Extended DataFig. 3 | Ancestry composition of validation cohorts. Admixture  ancestry is shown. Single-ancestry clusters include individuals with ancestry
plots visualizing genetic ancestry proportions for participants within population  scores >0.80 in one ancestry group. Admixed ancestry clusters AFR/EUR and

clustersina, Prostate Cancer Prevention Trial (PCPT) and b, Selenium and EAS/EUR include individuals with ancestry proportions >0.20 and <0.80. For
Vitamin E Cancer Prevention Trial (SELECT). Both cohorts were excluded from analyses of prostate cancer risk in SELECT, AFR and AFR/EUR and EAS and EAS/
the PSA GWAS used for polygenic score development. For each individual, the EUR were combined into pooled African ancestry (n =2,936) and pooled East
proportion of African (AFR), European (EUR), and East Asian (EAS) genetic Asian ancestry (n =578), respectively.
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Extended Data Fig. 4 | Age-stratified PGS,, associations. Performance of the
genome-wide PGS¢, developed using the PRS-CSx algorithm was evaluated in
the two cancer prevention trials: a, Prostate Cancer Prevention Trial (PCPT) and
b, Selenium and Vitamin E Cancer Prevention Trial (SELECT). Crossbars visualize
the effect estimates () and corresponding 95% confidence intervals per standard
deviation (SD) increase in the standardized PGS,,. Associations between PGSy,

and baseline log(PSA) were estimated in the pooled sample and stratified

by age group. All p-valued are two-sided and derived from linear regression
models adjusted for age at baseline, top 10 population-specific genetic ancestry
principial components, and proportions of African and East Asian genetic
ancestry.
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Extended DataFig. 5| Impact ofindex event bias on polygenic score (PGS)
associations. Association between PGS for PSA (PGS;s,) and PGS for prostate
cancer (PGS,,) fit using original weights, as reported in Conti et al.*, is compared
to PGS, fit using weights that have been adjusted for index event bias (PGS ,,,*%)
using the Dudbridge et al.” method. Linear regression lines with shaded 95%

confidence intervals visualizing the PGS associationsin a, prostate cancer
cases and b, men not diagnosed with prostate cancer (controls) are overlaid on
individual data points summarized as hexbins. Analyses were restricted to male
UK Biobank participants of European ancestry who were excluded from the
GWAS of PSA levels.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested

XX X XK

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O OO0 o o

L] X X
X X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis - GWAS was performed using PLINK 2.0 (version 2.00a3LM)
- Fixed-effects inverse-variance-weighted meta-analysis was performed with METAL (version 2011), available from: http://csg.sph.umich.edu/
abecasis/Metal/download/
- Heritability analyses were performed using LDAK (version 5.1), GCTA (version 1.93.2beta), and HDL (version 1.4.0), available from: https://
github.com/zhenin/HDL
- Other statistical analyses and data visualizations were performed in R (version 4.1.2), including the use of the following R packages:
* SlopeHunter (version 0.0.2), available from: https://github.com/Osmahmoud/SlopeHunter
* Polygenic risk score modeling was performed using the PRS-CSx algorithm and reference panels, available from: https://github.com/
getian107/PRScsx (version 1.0.0. July 29, 2021)
- Scripts for fitting polygenic scores, performing the index event bias analysis, and calculating genetically adjusted PSA values are available
from: https://github.com/Ikachuri/precision_PSA

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

- The research was conducted with approved access to UK Biobank data under application number 14105 (PI: Witte). UK Biobank data are publicly available by
request from https://www.ukbiobank.ac.uk.

- To maintain individuals' privacy, data on the GERA cohort are available by application to the Kaiser Permanente Research Bank
(researchbank.kaiserpermanente.org).

- All PLCO genotype data is available in dbGaP18 under accession number phs001286.v2.p2 (https://identifiers.org/dbgap:phs001286.v2.p2). Companion phenotype
data can be requested through the NCI Cancer Data Access System (CDAS) (https://cdas.cancer.gov/plco/). GWAS summary statistics are available directly from the
PLCO Atlas GWAS Explorer website (https://exploregwas.cancer.gov/plco-atlas/) as well as accessed directly through APl access (https://exploregwas.cancer.gov/
plco-atlas/#/api-access).

- Scoring files for fitting PSA polygenic scores are available from the PGS Catalog: www.pgscatalog.org/score/PGS003378/ and www.pgscatalog.org/score/
PGS003379/.

- Genome-wide summary statistics for the PSA multi-ancestry meta-analysis and ancestry-stratified summary statistics for the development of the genome-wide PSA
polygenic score are available from: 10.5281/zenodo.7460135.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Because PSA levels are only relevant to individuals with a prostate, all analyses in the study were restricted to individuals of
male biological sex (as determined by analyses of genotype data using the Plink software). We additionally restricted to
individuals with self-reported male gender identity in an effort to reduce variability in PSA levels attributable to discordance
between biological sex and gender identity.

Population characteristics - The UK Biobank is a population-based prospective cohort of 502,611 individuals from the United Kingdom, ages 40 to 69 at
recruitment between 2006 and 2010. Age at PSA measurement ranged between 21.3 and 78.2 years (mean: 65.5 years).
Median PSA across all available values was 2.35 ng/mL (mean: 4.24 ng/mL).

- The Resource for Genetic Epidemiology Research on Aging (GERA) Cohort consists of 100,000 adults who are members of
the Kaiser Permanente Medical Care Plan, Northern California Region (KPNC), and participants in its Research Program on
Genes, Environment and Health (RPGEH). This analysis used data from men aged between 20 and 90 years (mean: 64.9
years). Median PSA across all available values was 1.4 ng/mL (mean: 4.82 ng/mL)

- The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial is a completed randomized trial that enrolled
approximately 155,000 participants aged 55 to 74 between November 1993 and July 2001. These analyses were limited to
men (mean age: 62.5 years) with a baseline PSA measurement who were randomized to the screening arm of the trial
(N=29,524) with mean PSA of 1.30 ng/mL (standard deviation = 0.88)

- In BioVU, the mean age at PSA measurement was 56.9 years and the median PSA level across all available measurements
was 1.00 ng/mL.

- PCPT randomly assigned 18,880 men aged 55 years or older who had a normal DRE and PSA level <3 ng/mL to either
finasteride or placebo. Analyses in this manuscript are based on 5883 participants aged between 55 and 85 years (mean:
63.2 years). Median PSA across all available values was 1.1 ng/mL (mean: 1.21 ng/mL)

- SELECT randomized 34,888 participants aged 50 or older between 2001 and 2004. The minimum enrollment age was 50
years for African American men and 55 years for all other men. Additional eligibility requirements included no prior prostate
cancer diagnosis, <4 ng/mL of PSA in serum, and a digital rectal exam not suspicious for cancer. Analyses in this manuscript
are based on 25,197 participants aged between 50 and 93 years (mean: 63.0 years). Median PSA across all available values
was 1.1 ng/mL (mean: 1.30 ng/mL)

- Details of the participants included in the PSA GWAS from other studies have been previously described: Malmo Diet and
Cancer Study (MDCS) [PMID: 22101116]

Recruitment Since population-level PSA screening is not currently recommended, all observational PSA data is subject to some level of
selection bias arising from patient and healthcare provider preferences, as well as variation in routine clinical care.

The UK Biobank is not representative of the general population across several sociodemographic, physical, lifestyle and
health-related characteristics, with evidence of a "healthy volunteer" selection bias, details of which are published elsewhere
(Fry et al, Am J Epidemiol 2017;186:1026-34. PMID 28641372). Analyses in the presented here are further restricted to a
subset of men within the UK Biobank who had linked GP records with available PSA values.

GERA was developed from a mailed survey sent to all adult members of the Kaiser Permanente Medical Care Plan,

Northern California Region (KPNC) who had been members for two years or more in 2007. The membership of KPNC is
representative of the general population in the 14 county area in which facilities are located, although the membership is
underrepresented for the extremes of income at both ends of the spectrum.

The Malm¢ Diet and Cancer Study (MDCS) is a population-based prospective cohort study that recruited men and women
aged between 44 and 74 years old who were living in Malmo, Sweden between 1991 and 1996. These analyses included men
from the MDCS who were not diagnosed with prostate cancer as of December 2014 and had available genotyping and
baseline PSA measurement.

The Vanderbilt University Medical Center BioVU resource is a synthetic derivative biobank linked to deidentified electronic
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health records. Analyses were based on PSA levels that were measured as part of routine clinical care.

PLCO enrolled approximately 155,000 participants aged 55 to 74 between November 1993 and July 2001. Men randomized
to the screening arm of the trial underwent annual screening with PSA for six years and digital rectal exam (DRE) for four
years. These analyses were limited to men randomized to the screening arm of the trial (N=29,524).

PCPT randomly assigned 18,880 men aged 55 years or older who had a normal DRE and PSA level <3 ng/mL to either
finasteride or placebo. Potential biases related to the PCPT design are discussed in detail by Goodman et al. (PMID:
16697846). In SELECT the minimum enrollment age was 50 years for African American men and 55 years for all other men.
Additional eligibility requirements included no prior prostate cancer diagnosis, <4 ng/mL of PSA in serum, and a DRE not
suspicious for cancer. Analyses presented in this manuscript included PCPT and SELECT participants who were genotyped on
the lllumina Infinium Global Screening Array (GSAMD) 24v2-0 array.

Ethics oversight Informed consent was obtained from all study participants. UK Biobank received ethics approval from the Research Ethics
Committee (REC reference: 11/NW/0382) in accordance with the UK Biobank Ethics and Governance Framework. The
Vanderbilt Institutional Review Board approved the BioVU study. We used previously published PSA GWAS results from the
GERA cohort by Hoffmann et al. (PMID: 28139693). The original study was approved by the Kaiser Permanente Northern
California Institutional Review Board and the University of California San Francisco Human Research Protection Program
Committee on Human Research. The Malmo Diet and Cancer Study (MDCS) was approved by the local ethics committee. The
PLCO study was approved by the institutional review board at each participating centre and the National Cancer Institute.
The informed consent document signed by the PLCO study participants allows use of these data by investigators for discovery
and hypothesis generation in the investigation of the genetic contributions to cancer and other adult diseases. Our study
includes publicly posted genomic summary results from PLCO Atlas. No IRB review is required for PLCO summary data use.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Multi-ancestry genome-wide meta-analysis of PSA levels included a total of 95,768 men. This was the final sample size after all relevant
exclusions (described below). Results of this analysis were used to develop a PSA genetic score that was validated in individuals that passed
quality control in the Prostate Cancer Prevention Trial (n=5883) and the Selenium and Vitamin E Cancer Prevention Trial (n=22,173). These
clinical trials have concluded and were converted to observational studies.

Data exclusions  Genome-wide association study (GWAS) of PSA levels excluded participants who were ever diagnosed with prostate cancer and individuals
with PSA values >10 or PSA=0 (as an indicator of prostate resection). Analyses in the Prostate Lung, Colorectal and Ovarian (PLCO) were
limited to men with a baseline PSA measurement who were randomized to the screening arm of the trial. In the UK Biobank we removed
participants who withdrew consent at a later date and no longer wish their data to be included.

Additional exclusions focused on ensuring that only high-quality genetic data were retained for downstream analyses. Detailed descriptions of
the quality control procedures performed by each contributing study are described in the Methods. Briefly, iterative 80% and 95% sample-
and variant-level call rate filters were applied to remove poorly genotyped or contaminated samples and variants. Heterozygosity outliers
within each ancestral population were detected using absolute values from PLINK method-of-moments F coefficients. Samples with values
more than five standard deviations from the population mean were excluded. We also excluded individuals with discordant self-reported and
genetically inferred sex based on X chromosome method-of-moments F coefficient from PLINK using 0.5 as the threshold (F coefficients are
close to 0.0 for males and 1.0 for females). KING version 2.0 (http://people.virginia.edu/~wc9c/KING/)was used to estimate relatedness
among the samples based on a subset of genotyped autosomal variants with minor allele frequency (MAF) >0.01 and genotype call rate 297%.
We excluded one individual from each pair of first-degree relatives. To further minimize potential population stratification in the UK Biobank,
we excluded individuals for whom either of the first two genetic ancestry principal components (PC's) were >5 standard deviations away from
the mean of the population.

GWAS analyses were limited to variants with MAF>0.005 and imputation quality INFO>0.30 in each of the contributing studies. We excluded
variants that were out of Hardy-Weinberg equilibrium in cancer-free individuals (p-value<1E-05 in UKB and p-value<1E-06 in some studies).

Replication The goal of the present analysis is to establish the predictive performance the PSA genetic score and the potential clinical utility of using this
score to correct PSA measurements. The PSA genetic score was developed from a GWAS of PSA levels in 95,768 men and was subsequently
validated in two independent studies that were not part of the GWAS: the Prostate Cancer Prevention Trial (PCPT) and the Selenium and
Vitamin E Cancer Prevention Trial (SELECT). We provide the genetic variants and corresponding weights (effect sizes) necessary to construct
the PSA genetic score and perform genetic adjustment of PSA levels to facilitate future replication of this work.

Lcoz Yy

Randomization Observational studies (GERA cohort, Malmo Diet & Cancer Study) and biobanks (UK Biobank, BioVU) that contributed data to the PSA GWAS
did not have a randomization or intervention component. Analyses in the PLCO were limited to baseline PSA values in the screening arm of
the trial. GWAS of PSA levels adjusted for the following minimum set of covariates: age at PSA measurement, the first 10 genetic ancestry
principal components, and genotyping array or imputation batch (where applicable). Association analyses of polygenic scores (PGS) and
genetically adjusted PSA in relation to prostate cancer incidence that were performed in the Prostate Cancer Prevention Trial (PCPT) and the




Selenium and Vitamin E Cancer Prevention Trial (SELECT) included randomization arm as a covariate in addition to age and genetic ancestry
principal components.

Blinding All data for performing genome-wide association analyses and developing polygenic scores were de-identified.
The researchers who carried out the analyses for this manuscript had no influence on how the genotyping, PSA measurement, or assessment
of cancer status was performed in any of the contributing studies.

Blinding is not relevant for our study because we used observational and EHR/biobank data (GERA, Malmo Diet & Cancer Study, UK Biobank,
BioVU). The clinical trials that contributed data to our study have all been completed and converted to observational cohorts: Prostate, Lung,
Colorectal and Ovarian (PLCO) Cancer Screening Trial, Prostate Cancer Prevention Trial (PCPT), and the Selenium and Vitamin E Cancer
Prevention Trial (SELECT). For the purpose of our manuscript, blinding in these trials is not relevant since our analyses focused on baseline/
pre-randomization PSA data for GWAS (in PLCO) and polygenic score validation (in PCPT and SELECT). For associations with prostate cancer in
this manuscript, both PCPT and SELECT were analyzed as observational case-control studies.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
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|:| Clinical data
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