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Prediction of recurrence risk in endometrial 
cancer with multimodal deep learning
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Melanie E. Powell12, Linda R. Mileshkin    13, Helen Mackay14, Alexandra Leary15, 
Dionyssios Katsaros16, Hans W. Nijman17, Stephanie M. de Boer2, Remi A. Nout18, 
Marco de Bruyn    17, David Church19,20, Vincent T. H. B. M. Smit1, 
Carien L. Creutzberg2, Viktor H. Koelzer    4,21,22 & Tjalling Bosse    1,22 

Predicting distant recurrence of endometrial cancer (EC) is crucial for 
personalized adjuvant treatment. The current gold standard of combined 
pathological and molecular profiling is costly, hampering implementation. 
Here we developed HECTOR (histopathology-based endometrial cancer 
tailored outcome risk), a multimodal deep learning prognostic model using 
hematoxylin and eosin-stained, whole-slide images and tumor stage as 
input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 
randomized trials. HECTOR demonstrated C-indices in internal (n = 353) 
and two external (n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, 
respectively, outperforming the current gold standard, and identified 
patients with markedly different outcomes (10-year distant recurrence-free 
probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and 
high-risk groups, respectively, by Kaplan–Meier analysis). HECTOR also 
predicted adjuvant chemotherapy benefit better than current methods. 
Morphological and genomic feature extraction identified correlates of 
HECTOR risk groups, some with therapeutic potential. HECTOR improves  
on the current gold standard and may help delivery of personalized 
treatment in EC.

EC is the most common gynecological malignancy in high-income coun-
tries and is increasing in incidence1. Although most women with localized 
disease are cured by surgery, 10–20% develop distant recurrence2, which 
is typically incurable. Adjuvant chemotherapy can reduce this risk, at the 
expense of toxicity3,4. Thus, current guidelines recommend such adjuvant 
treatment based on a combination of clinicopathological risk factors (for 
example, histological subtype, grade, lymphovascular space invasion 
(LVSI), FIGO (International Federation of Gynaecology and Obstetrics) 
tumor stage) and, if available, the molecular classification of EC. The last 
identifies patients with favorable and unfavorable outcomes defined by 
POLE mutation (POLEmut) or p53 abnormality (p53abn), respectively, 

and intermediate outcomes characterized by mismatch repair deficiency 
(MMRd) or no specific molecular profile (NSMP)5–8. Recent efforts have 
been made to combine clinicopathological and molecular factors9; how-
ever, in practice, challenges remain as a result of the complexity of com-
bining an increasing number of factors, high-interobserver variability in  
the assessment of histopathological factors, and costs and turnaround- 
times of molecular testing. In addition, histological slides contain lots  
of visual information, some with prognostic potential10, that is only  
partly captured in the grading and tumor histotyping by pathologists.

Deep learning (DL) models, including those using digitized hema-
toxylin and eosin (H&E)-stained tumor slides, have shown great promise 
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HECTOR design and performance
To design HECTOR and obtain the most performant DL model for 
prediction of distant recurrence based on the highest C-index33, we 
conducted ablation studies on the fivefold crossvalidation (Supple-
mentary Table 3). HECTOR’s first step comprises a vision transformer 
for patch-level, self-supervised representational learning (Fig. 1a). 
HECTOR’s second step is a multimodal, three-arm architecture to 
predict distant recurrence-free probabilities (Fig. 1b). The three-arm 
architecture fuses prognostic information from the H&E-stained WSI 
of the tumor-containing uterine section, the image-based molecular 
class as predicted by im4MEC directly from the H&E WSI11 and the sur-
gically assessed anatomical stage (as three-tiered based on the FIGO 
2009 system, wherein stage I indicates a tumor confined in the uterus, 
stage II a cervical extent and stage III beyond, including vaginal, adnexal, 
pelvic and lymph nodes)34. To do this, we combined attention-based 
multiple instance learning with Embedding layers to map the discrete 
risk factors (the image-based molecular class and anatomical stage) to 
a higher-dimensional continuous vector space, with the importance of 
each factor controlled by gating-based attention16,35. Ablation studies  
(Supplementary Table 3) also included multitask learning36, with a 
second training objective predicting the image-based molecular class 
instead of the frozen im4MEC, or replacing attention-based multiple 
instance learning with DL models that integrate spatial information of 
the patches, such as transformer23 and attention-based graph neural 
network15. These two architectures did not outperform attention-based 
multiple instance learning for this task. Further details are provided 
in Methods and a summary of the HECTOR configuration is provided 
in Supplementary Tables 4 and 5.

HECTOR demonstrated a mean C-index of 0.795 (95% confidence 
interval (CI): 0.768–0.822) on fivefold crossvalidation. Notably, the 
addition of the image-based molecular class arm as predicted by 
im4MEC to the H&E WSI (referred to as two-arm or one-arm model, 
respectively) boosted performance from 0.775 (95% CI: 0.748–0.802) 
to 0.782 (95% CI: 0.759–0.805) with no need for extra input data. Adding  
the anatomical stage (as three-tiered FIGO 2009, stage I, II or III) fur-
ther improved the C-index to 0.795 (95% CI: 0.768–0.822), yielding 
the final architecture of HECTOR (Fig. 2a). The cumulative area under 
the receiver operating curve (AUC)37 and integrated Brier score38 are 
reported in Supplementary Table 6. We also observed that HECTOR 
concentrated high attention to fewer regions while ignoring large 
parts of the H&E WSI compared with a model relying on the H&E WSI 
(Extended Data Fig. 2).

On the unseen internal test set, HECTOR obtained a C-index of 
0.789 and, on the UMCG external test set, a C-index of 0.828. The per-
formance in the LUMC external test set is depicted in ‘Performance 
with multiple WSIs’.

To aid clinical interpretation, we first defined categorical  
HECTOR risk groups as quartiles of the continuous risk scores in the 
training set. The groups from the first two quartiles were then com-
bined for simplification because these had very similar clinical out-
comes in the training set (distant recurrence-free probabilities of 98.1% 
and 95.8% by Kaplan–Meier analysis, respectively; Supplementary 
Fig. 3) and applied on to the internal and external test sets. Second, we 
computed the hazard ratio (HR) of HECTOR using a Cox’s proportional 
hazard (CPH) model with both continuous and categorical HECTOR risk 
scores as the independent variable and time to distant recurrence as 
the dependent variable.

HECTOR showed strong prognostic value as a continuous variable 
in the training test set (HR = 5.06; 95% CI: 4.35–5.89; P = 9.00 × 10−99), the 
internal test set (HR = 2.69; 95% CI: 2.07–3.49; P = 1.31 × 10−13) and the 
UMCG external test set (HR = 5.84; 95% CI: 3.06–11.14; P = 8.37 × 10−8). 
On the internal test set, 10-year distant recurrence-free probabilities 
for HECTOR low- (n = 175), intermediate- (n = 82) and high- (n = 96) risk 
groups were 97.0% (95% CI: 0.930–0.988), 77.7% (95% CI: 0.670–0.854) 
and 58.1% (95% CI: 0.469–0.677), respectively (log rank P = 1.78 × 10−10; 

in the prediction of molecular alterations11–13, cell composition14 and 
prognosis15–21, outperforming standard pathologist-based assessment. 
This is particularly true of the latest generation of self-supervised 
learning and whole-slide image (WSI) prediction DL models, which use 
attention-based networks22, graphs15,19 or (vision) transformers23,24 to 
provide more granular and interpretable image representation. In addi-
tion, multimodal DL models for prognosis prediction are promising to 
outperform unimodal approaches that solely rely on the morphologi-
cal information provided by H&E WSIs16,21. We previously developed a 
DL model, image-based (im) four molecular classes in EC (im4MEC), 
to accurately predict the molecular EC classification from tumor H&E 
WSIs, and showed that image-based molecular classes predicted prog-
nosis11. Others have classified EC binary recurrence25 or used uni-/
multimodal DL models to predict EC overall survival15,16,19,21 (concord-
ance indices (C-indices) of 0.629–0.687), but these have relied on 
more detailed tumor profiling, such as multiplex immunofluorescence 
staining25 or the combination of H&E WSIs with genomic and/or tran-
scriptomic data16, neither of which is deliverable in clinical practice at 
present. Thus, there remains a pressing unmet need for a method that 
can predict EC distant recurrence from input data generated as part of 
routine clinical diagnostics.

In the present study, we report the development and evaluation of 
HECTOR (Fig. 1)—a multimodal DL model to predict distant recurrence 
from H&E WSI and anatomical stage for postsurgical women with EC—
across eight EC cohorts including three large randomized trials3,26–31.

Results
EC cohorts
HECTOR is a two-step DL model wherein the first step consists  
of self-supervised tumor image representational learning and the  
second of the distant recurrence prediction task (Fig. 1).

To train and validate the distant recurrence prediction task of 
HECTOR, we collected and curated tumor-containing, H&E-stained 
WSIs of the hysterectomy specimen and comprehensive clinicopatho-
logical datasets, molecular and clinical distant recurrence data for 
2,072 patients with tumor stages (FIGO 2009) I–III EC across eight 
cohorts, including the PORTEC-1, -2 and -3 randomized trials3,26–30 
(Extended Data Fig. 1; study CONSORT diagram shown as Supple-
mentary Figs. 1 and 2 and Supplementary Tables 1 and 2). Of these, 
two population-based cohorts were held out as two external test sets: 
patients treated at the University Medical Center Groningen31 (UMCG; 
n = 160 patients) and the Leiden University Medical Center (LUMC; 
n = 151 patients) where the LUMC external test set also simulates a 
diagnostic scenario with up to three tumor blocks per patient. The 
remaining patients were divided randomly into a 20% held-out inter-
nal test set (n = 353) and 80% training set (n = 1,408) where fivefold 
crossvalidation was performed. The median duration of follow-up in 
the training set, internal test set, UMCG external test set and LUMC 
external test was 7.8, 8.4, 5.3 and 2.9 years, respectively, during which 
246 (17.5%), 62 (17.6%), 14 (8.8%) and 24 (15.9%) patients had distant 
recurrence. Importantly, patients who underwent chemotherapy, 
predominantly the experimental treatment arm of the PORTEC-3 
randomized trial (n = 225), were excluded from training because this 
treatment influences distant recurrence risk3,4 (Extended Data Fig. 1). 
These PORTEC-3 patients were, however, used for downstream analysis 
of adjuvant chemotherapy benefit by HECTOR.

To train HECTOR’s self-supervised learning step (which requires 
a large imaging dataset without outcome data), we enriched the train-
ing set with one additional cohort of the TCGA-UCEC32 (The Cancer 
Genome Atlas Uterine Corpus Endometrial Carcinoma) as well as the 
WSIs that were excluded for the distant recurrence task owing to cancer 
metastasized at diagnosis (FIGO 2009, stage IV) or missing outcome 
(n = 1,862; Methods).

Altogether, including the two training steps and the downstream 
analyses, the present study comprised tumor data from 2,751 patients.
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Fig. 2d). The corresponding HR for HECTOR high- and intermediate-risk 
groups in the internal set, using the HECTOR low-risk group as the refer-
ence, were 15.63 (95% CI: 6.58–37.13; P = 4.81 × 10−10) and 7.67 (95% CI: 
3.06–19.22; P = 1.37 × 10−5), respectively. In the UMCG external test set, a 
similar stratification was observed with 5-year distant recurrence-free 
probabilities for HECTOR low- (n = 102), intermediate- (n = 44), and 
high- (n = 14) risk groups of 93.9% (95% CI: 0.859–0.974), 91.4% (95% 
CI: 0.756–0.972) and 19.0% (95% CI: 0.0097–0.553), respectively (log 
rank P = 5.56 × 10−10; Supplementary Fig. 4). The corresponding HR for  
the HECTOR intermediate group in the UMCG external test set was  
2.26 (95% CI: 0.61–8.42; P = 0.225) and in the high-risk group was  
20.42 (95% CI: 5.92–70.50; P = 2.00 × 10−6), respectively.

Comparison with current prognostic gold standard
We compared DL-based risk scores (that is, the one-, two-arm and 
HECTOR models) with the current standards for EC prognostication 

comprising clinicopathological risk factors and the molecular EC 
classification on the fivefold crossvalidation (Fig. 2a). For this, we first 
compared C-indices by type of input required: (1) a ‘base’ CPH model 
including variables defined by pathologists using H&E images alone  
(histological subtype, grade and LVSI); (2) the base model plus anato
mical stage; and (3) the base model plus anatomical stage and molecular 
EC class. In the fivefold crossvalidation, given the H&E-based input data, 
the one- and two-arm model discrimination was superior to the base 
CPH model (C-index = 0.681; 95% CI: 0.624–0.738). HECTOR model 
discrimination was superior to the base CPH model plus anatomical 
stage which used the same inputs (C-index = 0.716; 95% CI: 0.672–0.761) 
and better or as good as the base CPH model plus anatomical stage and 
molecular EC class (C-index = 0.762; 95% CI: 0.732–0.791), which requires 
sequencing, immunohistochemistry (IHC) and expert pathology.

We further compared HECTOR prognostic values against cur-
rent clinicopathological and molecular risk factors in multivariable 

...

H
&

E 
W

SI

Segmentation, patching, and sampling Features

Transformer ×2

Patch merging

Transformer ×2

MLP head

Transformer ×2

Patch merging

Transformer ×4

Patch merging

a

180 µm

...

σ

Low risk High risk
HECTOR risk scores –1–4

0 0.7 1.4 2.7
0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n 
m

od
ul

e
O

ne
 h

ot
 e

nc
od

in
g

FC FC

Low

High

...

Em
be

dd
in

g

FC

G
at

ed
 fu

si
on

H
&

E 
W

SI
An

at
om

ic
al

 s
ta

ge

At
te

nt
io

n 
po

ol
in

g

FC

Em
be

dd
in

g

FC

im
4M

EC

Stage I

Stage II
Stage III

Merged features

imPOLEmut
imMMRd
imNSMP

imp53abn

Predicted distant recurrence-free

Pr
ob

ab
ili

tie
s

C
ou

nt
s

b

...

Time (years)

Step I: endometrial cancer patch representation learning

Step II: multimodal time-to-event supervised training

Fig. 1 | Overview of HECTOR. a, Tissue segmented from the H&E WSI of EC, 
subsequently patched at 180 μm. A multistage vision transformer60 was trained 
using self-supervised learning by randomly sampling patches from WSIs of 1,862 
patients, excluding any patients of the internal and external test sets. Patch-
level features are extracted from the last eight transformer blocks. b, HECTOR 
taking the H&E WSI and the (FIGO 2009) anatomical stage I–III category as 
inputs. Extracted patch-level features are spatially and semantically averaged. 
The patch features are passed into both an attention-based multiple instance 

learning model and the im4MEC DL model (with all layers frozen), which predicts 
the molecular class from the H&E WSI as imPOLEmut, imMMRd, imNSMP or 
imp53abn11. Both the anatomical stage category and image-based molecular class 
are fed through the Embedding layers. Gating-based attention is applied on the 
resulting three embeddings16,35, followed by a Kronecker product for fusion. The 
−log(likelihood loss) was used to predict the distant recurrence-free probability 
function over discrete time61. Risk scores were defined as the integrated 
predicted probabilities. MLP, multilayer perceptron; FC, Fully Connected layer.
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analysis using HECTOR continuous risk scores as the independent 
variable. HECTOR retained prognostic values in multivariable models in  
which known risk factors (histological subtype, grade, LVSI, FIGO 2009 
stage I–III, age, molecular class) combined as one risk score (referred 
to as the CLINICAL risk score) were not prognostic (HECTOR HR = 4.62 
(95% CI: 3.72–5.73; P = 5.02 × 10−44) versus CLINICAL HR = 1.08 (95% CI: 
0.90–1.30; P = 0.402)) (Fig. 2b). Similar multivariable analysis, includ-
ing risk factors as individual variables, showed independent prognostic 

value of HECTOR (HR = 5.26; 95% CI: 4.21–6.56; P = 2.30 × 10−48), with 
only FIGO 2009 stage III disease retaining statistical significance 
(HR = 1.50; 95% CI: 1.05–2.14; P = 0.026) (Fig. 2c). Other known risk 
factors were no longer prognostic after inclusion of the HECTOR  
risk score, suggesting that these factors were captured by HECTOR. 
For instance, the POLEmut and p53abn molecular classes derived from 
ground-truth sequencing and IHC, respectively—HR = 0.66 (95% CI: 
0.26–1.69; P = 0.384) and HR = 0.90 (95% CI: 0.61–1.34; P = 0.616)—and 
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Fig. 2 | Performance of HECTOR. a, Comparison of HECTOR performance 
using the C-index with alternative unimodal and two-arm DL models and CPH 
models fitted on clinicopathological and molecular risk factors. b, Comparison 
of prognostic values between HECTOR and clinicopathological and molecular 
risk factors combined into one risk score in a multivariable analysis. Data are 
presented as the HRs and 95% CIs (n = 1,254 patients). c, Residual prognostic 
value of all established clinicopathological and molecular risk factors when using 
HECTOR-predicted risk scores in a multivariable analysis. Data are presented as 
the HRs and 95% CIs (n = 1,254 patients). d, The 10-year distant recurrence-free 

probability analysis using the Kaplan–Meier method by HECTOR risk groups  
in the internal test set and log rank test P value. e, Experiments conducted in  
the LUMC external test set (n = 151 patients) with the input of multiple WSIs.  
f, C-index of HECTOR in the LUMC external test set randomly using one to three 
WSIs for all patients and repeating the experiment 100×. g, The 5-year distant 
recurrence-free probability analysis using the Kaplan–Meier method by HECTOR 
risk groups when using up to three WSIs (postaggregated by median) in the 
LUMC external test set and log rank test P value. GR3, grade 3; EEC, endometrioid.
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histological factors such as LVSI (HR: 1.05; 95% CI: 0.77–1.42, P = 0.776) 
would not be of additive prognostic value for the prediction of distant 
recurrence.

Given the current prognostic gold standards that would 
classify p53abn EC as high-risk tumors and MMRd and NSMP as 
intermediate-risk tumors with heterogeneous outcomes, we validated 
the capacity of HECTOR to refine prognosis within the MMRd, NSMP 
and p53abn molecular classes in the training and internal test sets. In 
particular, the HECTOR low-risk group also identified about 5.3% (16 
out of 300) of p53abn EC cases with excellent prognosis in the entire 
dataset (Supplementary Fig. 5). Along these lines, we estimated the 
number of patients with markable different risk classification between 
HECTOR and the ESGO-ESTRO-ESP 2021 guidelines5 which combine 
clinicopathological and molecular factors (Supplementary Fig. 6). 
Among all patients with intermediate- to high-risk tumors based on 
the guidelines (and no report of distant recurrence), 48.2% (552 cases 
out of 1,146) of patients were predicted to be HECTOR low risk and 
16.9% (62 cases out of 366) were predicted to be HECTOR low risk 
among high-risk tumors only. Among all guideline-based low-to-high 
intermediate-risk tumors, 11.2% (131 out of 1,170) of patients were pre-
dicted to be HECTOR high risk and 4.9% (14 out of 287) when restricting 
to only low-risk tumors.

Performance with multiple WSIs
To evaluate the prognostic value and robustness of HECTOR in a second 
real-world external test set, we leveraged the fact that most cases in 
the LUMC cohort had multiple tumor-containing H&E WSIs derived 
from different tissue blocks per patient (121 of 151 cases had 3 WSIs, 
21 had 2 and 9 had 1; Fig. 2e). This enabled us to validate the external 
performance of HECTOR in a diagnostic setting and subsequently  
test robustness to selection of the H&E WSI. The initial evaluation, 
using a HECTOR score derived from random selection of a single  
WSI per patient repeated 100×, demonstrated a mean C-index of  
0.802 (95% CI: 0.799–0.804) for prediction of distant recurrence on 
the LUMC external test set (Fig. 2f).

HECTOR performance and risk stratification were slightly 
improved by the addition of further WSIs (taking per-patient HECTOR  
risk scores as either the mean or the median scores across WSIs) with 
C-indices of 0.810 (95% CI: 0.808–0.811) with up to 2 WSIs per patient, 
and 0.813 or 0.815 with up to 3 WSIs (Fig. 2f). A different method 
was tested wherein the WSIs were combined as one single input bag  
of images, yielding a C-index of 0.805. The 5-year distant recurrence- 
free probabilities using the median of HECTOR risk scores per patient 
were 98.4% (95% CI: 0.891–0.998) in HECTOR low risk (n = 70), 74.8% 
(95% CI: 0.534–0.874) in HECTOR intermediate risk (n = 44) and 
52.6% (95% CI: 0.323–0.694) in HECTOR high risk (n = 37; log rank 
P = 1.00 × 10−6) (Fig. 2g and Supplementary Fig. 7). The corresponding 
HR (for the continuous HECTOR risk score) was 3.73 (95% CI: 2.34–5.96; 
P = 3.17 × 10−8) and (for the categorical high risk versus intermediate 
risk) 34.51 (95% CI: 4.52–263.39; P = 6.37 × 10−4) versus 15.08 (95% CI: 
1.91–119.16; P = 0.010). Furthermore, HECTOR performance in patient 
stratification of the LUMC external test set extended to overall survival 
(5-year probabilities of 88.4% (95% CI: 0.769–0.944), 69.9% (95% CI: 
0.468–0.845) and 47.0% (95% CI: 0.289–0.633) for low, intermediate 
and high risk, respectively; Supplementary Fig. 8).

Potential confounding by intratumoral heterogeneity also 
appeared to be minimal because 85 cases out of the 142 cases with 
more than 1 WSI had consistent HECTOR risk group predictions across 
the WSIs and only 3 cases with 3 WSIs had a different predicted HECTOR 
risk group for each WSI (Supplementary Figs. 9–12 and Supplementary 
Notes p16).

Association with prognostic factors and input contribution
DL prognostic models may provide information on the correlates or 
features that determine clinical outcome. Initial analysis of the internal 

test set by multiple linear regression (Fig. 3a,b) revealed that lower  
HECTOR risk scores were associated with established favorable risk  
factors of endometrioid (EEC) histological subtype, grade 1 and  
POLEmut EC, and higher HECTOR risk scores with unfavorable fac-
tors, including non-EEC histological subtypes, grade 3, FIGO stage III,  
LVSI, p53abn EC, estrogen receptor negativity and L1 cell adhesion 
molecule (L1CAM) positivity (Supplementary Tables 7–9 and Supple-
mentary Fig. 13). MMRd EC, grade 2 and FIGO 2009 stage II were spread 
throughout the risk score axis and were not statistically significant.

For deeper explainability, we evaluated the impact of the H&E WSI, 
im4MEC and anatomical stage on the prediction, that is, whether each 
modality decreased (negative contribution) or increased (positive con-
tribution) the HECTOR risk scores of developing distant recurrence. We 
used the normalized Integrated Gradient (IG) values for the H&E WSIs, 
and differences in predicted risk scores with fixed value of im4MEC 
or FIGO anatomical stage for the same case in the internal test set. 
The H&E WSIs mainly had a positive contribution with values linearly 
increasing alongside HECTOR risk scores (Fig. 3c and Supplementary 
Fig. 14). We also noted higher magnitude of contributions toward 
grade 3 EEC or non-EEC histological subtypes and LVSI (Fig. 3d). Both 
observations may indicate that unfavorable morphological features 
captured in H&E WSIs are a strong driver of risk score predictions. 
The use of image-based molecular class and FIGO 2009 stage I–III was 
consistent with domain expertise in EC with imPOLEmut and imMMRd 
mainly decreasing and imp53abn strongly increasing the HECTOR risk 
scores given accurate predictions (Fig. 3e, Supplementary Table 8 and 
Supplementary Fig. 15) and higher anatomical stage increasing the 
HECTOR risk scores (Fig. 3f and Supplementary Fig. 16).

These analyses enabled us to dissect data of the six patients with 
distant recurrence predicted as HECTOR low risk in the internal test 
set (Supplementary Table 10 and Supplementary Fig. 17). Experimen-
tal tests, in which the image-based molecular class was replaced by 
the true molecular class, showed no effect of misclassification by 
im4MEC in these instances on to the HECTOR risk group. Review of 
the single WSI input by an expert gynecopathologist revealed that, at 
least in two cases, WSIs were missing unfavorable visual features that 
were reported in the pathology report (substantial LVSI or high-grade 
tumoral areas). We also noted three cases predicted as HECTOR high 
risk with a POLE mutation. Although the same experiment confirmed 
that the image-based molecular class had little or no effect in the  
HECTOR predictions of these instances, these three cases all had  
notably FIGO 2009, stage II or III disease (Supplementary Table 11).

Morphological correlates of outcome risk
To identify the prognostic morphological features that may have been 
used by HECTOR, the top 5% regions of the H&E WSIs with the highest 
impact on the risk scores (decreasing and increasing) were extracted 
and reviewed by an expert gynecopathologist in the internal test set 
(Fig. 4a and Supplementary Figs. 18–22). Within the HECTOR low- 
risk group, the morphological features decreasing the risk score were 
identified as smooth luminal borders, inflamed stroma and intra
epithelial lymphocytes, intraepithelial neutrophils and abundant 
compact normal myometrium without tumor. Morphological features 
increasing the risk score in the HECTOR high-risk group were a rag-
ged luminal tumor surface (also referred to as hobnailing), LVSI, solid  
tumor growth with marked nuclear atypia, desmoplastic stromal reac-
tion and the presence of mitotic figures (Fig. 4a). Within the HECTOR 
low-risk group, we observed morphological features with positive 
contribution, although relatively less common, as surface changes 
mimicking hobnailing, retraction artifacts mimicking LVSI, loose myo-
metrium with edema mimicking desmoplasia and solid tumor growth 
with scattered high-grade nuclear atypia (Extended Data Fig. 3a).

Mitotic activity, inflammatory cell density and the size of the 
tumor nuclei were quantified using DL-based image analysis tools 
(Fig. 4b and Methods). More inflammatory cells were present in the 
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top 5% regions decreasing the risk scores and this effect was more 
pronounced in the HECTOR low-risk group (P = 0.011). A higher mitotic 
density and larger tumor nuclei were found in the top 5% regions in the 
HECTOR high-risk group (both P < 0.001). These results remained con-
sistent across image-based molecular classes and FIGO 2009 stages I–III 

(Supplementary Figs. 23–25) and when filtering in regions containing 
tumor cells (Supplementary Fig. 26). In a quantitative spatial analysis, 
we computed the overlap of the top 5% regions with the tumor and 
invasive border areas (Extended Data Fig. 3b). The latter showed that 
the regions increasing the risk scores were picked out more from the 
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Fig. 3 | HECTOR explainability by analysis of HECTOR risk score with 
prognostic factors and analysis of input contribution. a, Heatmap of 
established prognostic factors for patients included in the internal test set 
(n = 353 patients) ordered by predicted HECTOR risk scores. Cases with multiple 
alterations in POLE, MMR and/or p53 are shown. Cases lacking any of these  
three specific molecular alterations are considered as NSMP according to the 
World Health Organization 2020 classification of female genital tumors62.  
b, Association of the prognostic factors and continuous HECTOR risk scores using 
multiple single linear regression with the HECTOR continuous risk scores as the 
dependent variable. Data are presented as the coefficients of the linear regression 
and 95% CIs (n = 353 patients). c, Analysis of the contribution to the HECTOR risk 
scores of the WSI modality in the internal test set (n = 353 patients), using the IG 
method63. The IG values of the patches were normalized and averaged by WSI. 

d, IG-normalized values of the WSIs stratified by histological subtypes (top) and 
presence of LVSI (bottom) in the internal test set (n = 353 patients). The box plots 
are defined by the center tick as the median value, the lower and upper parts of 
the box as the first (Q1) and third (Q3) quartiles, respectively, and the bounds of 
whiskers are (Q1 − 1.5 × IQR, Q3 + 1.5 × IQR) where IQR is the interquartile range 
(Q3 − Q1). Any outlier points beyond the whiskers are displayed with point marks. 
e, The contribution of the image-based molecular classes to the continuous 
HECTOR risk score in the internal test set, using the imNSMP as the reference 
(ref.) group. The difference in predicted risk score is computed between the risk 
score given by the image-based molecular class and the one produced by using 
imNSMP. f, The contribution of FIGO 2009 stage to the continuous HECTOR risk 
score in the internal test set, using FIGO 2009 stage II as the reference group.  
CCC, clear cell; GR1–3, grades 1–3; SEC, serous; wt, wild-type.
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tumor than from the invasive border area. Tumor and invasive border 
areas contributed almost the same in regions decreasing the risk scores, 
notably in the HECTOR low-risk group.

Genomic alterations, immune and transcriptional signatures
For comprehensive analysis of the molecular correlates of HECTOR 
risk scores, we analyzed the TCGA-UCEC (n = 381 FIGO, stage I–III ECs) 
dataset (Fig. 5 and Supplementary Fig. 27). Coding driver mutations 
in ARID1A, CTCF, CTNNB1, FGFR2, KRAS and PTEN were enriched in 
the HECTOR low-risk group (all P < 0.005), whereas PPP2R1A and 
TP53 mutations were more frequent in the HECTOR high-risk group 
(P = 2.19 × 10−3 and P = 2.81 × 10−7, respectively) (Fig. 5a and Supple-
mentary Table 12). Using transcriptional data, we performed an  
analysis of CIBERSORT-defined lymphocyte populations using multi-
ple linear regression (Fig. 5b). This revealed that increasing HECTOR 

scores were positively correlated with memory B cells (P = 0.008), 
activated dendritic cells (P < 0.001) and resting mast cells (P = 0.029), 
and inversely correlated with CD8+ T cells (P < 0.001), follicular helper 
T cells (P < 0.001), regulatory T cells (P < 0.001) and natural killer (NK) 
cell activation (P = 0.049). Notably, these associations were inde-
pendent of EC molecular class and tumor mutational burden (TMB) 
(Supplementary Table 13). Further transcriptomic analysis (Fig. 5c, 
Supplementary Fig. 27c and Supplementary Table 15) confirmed that 
variation in lymphocyte populations was reflected in the differen-
tial expression of canonical immune cell markers, including CD1C, 
BTLA and CD40LG (enriched in the HECTOR low-risk cases). HECTOR 
high-risk tumors also demonstrated upregulation of genes predic-
tive of worse outcomes in EC, including L1CAM and CLDN6, whereas 
HECTOR low-risk cases showed upregulation of genes associated with 
hormone signaling (C1orf64 and OVGP1).
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Fig. 4 | Morphological features contributing to HECTOR risk scores. a, The top 
5% of the regions increasing and decreasing the risk score, from the IG method63, 
extracted for qualitative review and quantitative analysis. A representative 
selection of four patches for each morphological subtype (each selected from 
a different patient) showed the increasing risk score in the HECTOR high-risk 
group (right). A representative selection of four patches for each morphological 
subtype (each selected from a different patient) showed the decreasing risk score 
in the HECTOR low-risk group (left). Each patch is 180 × 180 μm2. b, Among the 

top 5% regions, decreasing and increasing the risk score, inflammatory cells, 
mitotic figures and the tumor nuclei area detected and computed with DL-based 
image analysis tools14,64. The average by patient is reported in the internal test 
set (n = 353). The box plots are defined by the center tick as the median value, 
the lower and upper parts of the box Q1 and Q3 quartiles, respectively, and the 
bounds of whiskers are (Q1 − 1.5 × IQR, Q3 + 1.5 × IQR). Any outlier points beyond 
the whiskers are displayed with point marks.
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Adjuvant chemotherapy response prediction by HECTOR
The investigation of whether HECTOR could predict the benefit of 
chemotherapy for distant recurrence risk was conducted using the 
PORTEC-3 randomized trial3. In this trial, patients with high-risk stage 
I–III EC were randomized to concurrent and adjuvant external beam 
radiotherapy with or without platinum- and paclitaxel-based chemo-
therapy. HECTOR risk scores were predicted on all PORTEC-3 cases 
for whom WSI was available (n = 442), which included the patients 
who underwent chemotherapy (n = 225). Importantly, these 225 
cases had not been used in either training or test sets (Extended 
Data Fig. 4, Supplementary Table 14 and Supplementary Fig. 28). 

Analysis of distant recurrence-free probabilities by treatment arm 
and HECTOR demonstrated a statistically significant interaction 
between chemotherapy and HECTOR risk score as either a continuous 
or a categorical variable (PINTERACTION = 0.014 and PINTERACTION = 0.064, 
respectively).

We examined this in detail across HECTOR risk groups (Fig. 6a). 
Within HECTOR low- (n = 92) and HECTOR intermediate-risk (n = 177) 
groups, outcomes were similarly favorable in both treatment arms, 
as evidenced by similar probability of EC distant recurrence (log rank 
P = 0.244 and 0.807, respectively). In contrast, among women clas-
sified as HECTOR high risk (n = 173), those who received adjuvant 
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chemotherapy had significantly improved distant recurrence-free 
probabilities compared with those treated with external beam radio-
therapy alone (5-year distant recurrence-free probability of 62.2% (95% 
CI: 0.511–0.715) versus 42.0% (95% CI: 0.311–0.526); log rank P = 0.007; 
HR = 0.561 (95% CI: 0.366–0.862; P = 0.008)). Exploratory analysis sug-
gested that the predictive accuracy was greater than that provided by 
prognostic factors currently used to identify patients with high-risk 
tumors who were likely to benefit from adjuvant chemotherapy, includ-
ing serous histological subtype, FIGO 2009 stage III and the p53abn 
molecular class (Fig. 6b). Further exploratory analyses suggested 
that HECTOR also identified patients who benefited from adjuvant 
chemotherapy within the NSMP and MMRd molecular classes (Sup-
plementary Figs. 29 and 30). These results remained consistent when 
sub-stratifying by the image-based molecular class arm of HECTOR 
(Supplementary Fig. 31). Thus, HECTOR demonstrated significant 
predictive utility that may exceed that offered by current methods.

Discussion
HECTOR, a DL model trained and validated in 2,072 patients with stage 
I–III EC3,26–31, with long-term follow-up, predicts postoperative distant 
recurrence risk using only H&E-stained tumor slide(s) of the hysterec-
tomy specimen and anatomical stage. HECTOR obtained C-indices of 
0.789, 0.828 and 0.815 in three unseen test sets for distant recurrence 
outcome. Its performance is on a par with clinically implemented prog-
nostic DL tools in other cancer types (C-indices of 0.714 and 0.744 for 
colorectal cancer recurrence39, AUC of 0.78 for 10-year prostate cancer 
distant recurrence40) and also favorably compares with molecular prog-
nostic assays such as OncotypeDX (C-index of 0.641 for 10-year breast 
cancer distant recurrence41). Notably, HECTOR outperformed the cur-
rent diagnostic gold standard of combined pathological and molecular 
analysis for distant recurrence risk prediction, and was also found 
to be predictive of adjuvant chemotherapy benefit in the PORTEC-3 
randomized trial3. Pending prospective validation, our results suggest 
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Fig. 6 | Impact of the addition of adjuvant chemotherapy to external beam 
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recurrence-free probability by Kaplan–Meier analysis from the PORTEC-3 trial 
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http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | July 2024 | 1962–1973 1971

Article https://doi.org/10.1038/s41591-024-02993-w

that HECTOR may have the potential to be a highly effective tool for 
individualized prognostication of women with EC, while delivering 
shorter turnaround times and reducing testing costs. HECTOR may 
also enable biomarker discoveries for improving targeted treatment 
decision-making.

HECTOR performance is the result of a new multimodal, integra-
tive, three-arm architecture which leveraged prognostic information 
from the H&E WSI, the image-based molecular class from im4MEC11 
and anatomical stage34. This multimodal architecture outperformed 
alternative DL models using only H&E-based information, corroborat-
ing other studies16,42. It is interesting that nesting of the im4MEC model 
within HECTOR boosted the performance, in contrast to other studies 
where integration of copy number variation or transcriptomics did 
not improve prediction of overall survival in EC16. We demonstrated 
that the prognostic value of categorical clinical risk factors, such as 
the anatomical stage, can be learned end to end by the DL model to 
increase predictive accuracy. HECTOR takes a step toward integrating 
patient-level imaging, image-based molecular and clinical insights, 
which may benefit similar studies in other cancer types where unimodal 
DL models have been developed on images only17,20,39.

Our preliminary investigations of model explainability and risk 
score correlates offer good prospects to improve our understanding of 
the biology of EC and other cancer types. For example, the association 
of HECTOR low-risk scores with immune cell infiltrate is consistent with 
data showing better prognosis of immune-infiltrated EC10, although at 
present it is unclear whether HECTOR directly quantified lymphocyte 
subtypes such as T cells from H&E WSIs. The upregulation of CLDN6 in 
HECTOR high-risk ECs is consistent with this being a predictor of dis-
tant recurrence43. Cases with combined HECTOR high risk and CLDN6 
upregulated could be actionable as a chimeric antigen receptor T cell 
target44. Although desmoplastic stromal reaction is known to predict 
bad prognosis in colorectal cancer, the association that we describe in 
the present study has not previously been reported in EC45. Whether 
this represents a morphological readout of L1CAM overexpression46 
is presently unclear. We also confirmed well-established, unfavorable 
histopathological risk factors in EC aligning with higher HECTOR risk 
scores5. Thus, we expect the outperformance of standard histopathol-
ogy by HECTOR probably being driven by the nonlinear combination 
of each factor and, more importantly, the noncategorical processing 
of the visual information from the WSIs.

HECTOR’s design holds considerable promise for scaling to 
clinical implementation because it is built on two broadly available 
and cost-effective inputs routinely obtained in diagnostics: one 
H&E-stained tumor slide from which we used the image-based rather 
than the true molecular classes and high-level clinical information of 
the tumor extension at diagnosis (to the cervix or beyond the uterus 
excluding distant) which is independent of an evolving FIGO staging 
system9. After appropriate validation in a prospective clinical trial 
setting, HECTOR may have great potential to individualize triage 
of women with EC in the adjuvant setting from low to high risk of 
distant recurrence. Subsequent treatment decision-making by clini-
cians could be guided accordingly because HECTOR low-risk predic-
tion could provide a means to de-escalate adjuvant treatment or to 
encourage adjuvant systemic therapy recommendation for patients 
predicted to be HECTOR high risk (such as chemotherapy3,4 or tar-
geted therapies in clinical trials47–49). The therapeutic guidance within 
HECTOR high risk can be supported by selective targeted molecular 
testing such as MMRd or even DL-based molecular predictions given 
a good accuracy11. Although our data support that HECTOR could 
reduce under- and over-treatment for women with EC, it would also 
spare challenges and expenses of resource-limited environments 
where molecular testing and expert pathologist review are difficult 
or not feasible. We speculate that future technical improvements of 
HECTOR could be an extension of its inputs to consecutive digitized 
H&E-stained hysterectomy sections followed by three-dimensional 

reconstruction50, routinely performed IHC-stained WSIs51, preop-
erative radiology images52 or a clinical report encoding patient-level 
clinical information53. Moreover, DL-based assessment of the anatomi-
cal stage by leveraging histology images of the cervical, ovarian and 
(or radiology images of) lymph node sections would make HECTOR 
independent of pathology review.

Our study has several strengths. Our total cohort of 2,751 patients, 
including 3 randomized trials, makes this one of the largest DL-based 
prognostic studies in EC performed to date. Our state-of-the-art multi
modal DL methodology allowed us to leverage prognostic informa-
tion from multiple factors, including those beyond the H&E image 
alone. Expert pathology review and molecular profiling enabled us to 
benchmark our methodology against the current gold standard in risk 
stratification of EC. Limitations of our study are that our current model 
based on multiple instance learning is unaware of the spatial relation-
ship between regions and was not designed to leverage information 
between multiple WSIs, both of which may improve performance54,55; 
although context-aware architectures have not been found to improve 
performance in this task. In addition, complex interactions of the 
morphology, molecular and anatomical stage may be further opti-
mized by experimenting with other early-to-late fusion techniques42, 
or learning more generalizable morpho-molecular representations 
using pretext tasks. Some patients in the study did not undergo surgical 
staging lymphadenectomy26,27, a consideration that may have intro-
duced some noise in the anatomical stage input and may explain the 
residual prognostic value of advanced disease stage III in multivariable 
analysis. Given that POLEmut EC mutations rarely metastasize56, we 
acknowledge the possibility that the risk may be overestimated in these 
rare instances by HECTOR. Furthermore, not all morphological cor-
relates observed in the H&E regions (for example, structural changes) 
were quantified in the present study owing to the lack of available 
labeled datasets that could have been used for training DL-based, 
EC-specific image analysis tools. Importantly, HECTOR performance 
needs further validation both in unselected cohorts more diverse 
than the ones of largely European ancestry that we examined and in 
prospective trials. As such, prospective validation will be conducted 
first in the PORTEC-4a trial57. Moreover, as the therapeutic landscape 
of EC is rapidly evolving, the most suitable adjuvant systemic therapy 
for HECTOR high-risk patients needs to be continuously validated4,58 
or (prospectively) explored in other randomized trials47–49,59.

In summary, validation and extension of HECTOR could help  
delivery of precision medicine to advance prognostication of women 
with stage I–III EC who underwent primary surgery, with improvement 
worldwide on both systemic therapy recommendation and treatment 
de-escalation.
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Methods
Ethics statement
The PORTEC-1, PORTEC-2 (NCT00376844) and PORTEC-3 (NCT00411138)  
study protocols were approved by the Medical Ethical Committee Lei-
den, Den Haag, Delft and the medical ethics committees at participating 
centers. Studies were conducted in accordance with the principles of 
the Declaration of Helsinki. Ethical permissions for the retrospective 
use of the clinical trials and retrospective cohorts (TransPORTEC study, 
Medisch Spectrum Twente (MST)) were obtained by the Medical Ethi-
cal Committee Leiden (nos. B21.065 and B21.011), as well as the LUMC 
cohort (nWMO‐D4‐2023‐002) and the Danish Cohort by the Center 
for Regional Udvikling, De Videnskabsetiske Komiteer (H-16025909). 
All study participants of the clinical trials provided informed consent. 
The ethical boards have provided a waiver for informed consent for 
the other studies. For the UMCG cohort, the medical ethical commit-
tee granted permission for the use of the data and provided a waiver 
for informed consent owing to the observational nature of the study.

Cohorts
We used formalin-fixed paraffin-embedded (FFPE) tumor material and 
clinicopathological data of patients with EC from three randomized 
trials and six clinical cohorts. We included study participants of the 
female sex, independent of gender identity.

The PORTEC-1 trial recruited 714 women with early stage 
intermediate-risk EC from 1990 to 1997, and after primary surgery, 
randomly assigned to pelvic external beam radiotherapy or no adju-
vant treatment26. The PORTEC-2 trial randomized 427 women with 
early stage, high- to intermediate-risk EC between 2000 and 2006 to 
external beam radiotherapy or vaginal brachytherapy27. The PORTEC-3 
randomized trial included 660 women with stage I–III high-risk EC from 
2006 and 2013, and randomly allocated them to pelvic external beam 
radiotherapy alone or external beam radiotherapy combined with 
concurrent and adjuvant chemotherapy3. The retrospective Trans-
PORTEC study included 116 high-risk EC tumors from international 
patients using the same inclusion criteria as the PORTEC-3 from 5 
institutions (LUMC and UMCG, the Netherlands; University College 
London and St Mary’s Hospital, Manchester, UK; and Institute Gustave 
Roussy, Villejuif, France)28. The prospective cohort of MST included 257 
patients with stage I–III high-risk EC, with the same inclusion criteria as 
PORTEC-3, who were treated between 1987 and 2015 at MST, Enschede 
in the Netherlands29. The Danish cohort consisted of 451 patients with 
high-grade EC who were prospectively registered in the Danish gyneco-
logical cancer database30. The UMCG cohort is a population-based 
cohort consisting of patients treated at the UMCG between 1984 and 
2004, that is, 278 patients with follow-up data collected until 2010  
(ref. 31). The LUMC cohort is a retrospectively collected, population- 
based cohort of 222 patients diagnosed and treated at the LUMC 
between 2012 and 2021. Finally, the publicly available TCGA-UCEC 
cohort32 of 529 patients was downloaded from the cBioPortal65,66.

Datasets
One representative H&E-stained slide of the hysterectomy specimen was 
included for each patient depending on the availability of the tumor mate-
rial (Supplementary Figs. 1 and 2, and Supplementary Tables 1, 2 and 14). 
For the LUMC cohort, we collected three diagnostic H&E-stained tumor 
slides per patient case with EC, each from a different FFPE tumor tissue 
block. H&E slides were scanned at ×40 magnification using two scanners 
3Dhistech P250 (resolution 0.19 µm per pixel) and 3Dhistech P1000 
(resolution 0.24 µm per pixel). Any image provided in the manuscript is 
an unprocessed scan. Qualitative review was conducted on all WSIs by our 
expert pathologist, after which cases with no tumor, poor tissue quality 
and out-of-focus scanning issues were excluded, yielding 2,560 cases with 
at least one WSI per case (CONSORT chart in Supplementary Figs. 1 and 2).

In the present study, some cases were excluded from the supervised 
training of HECTOR based on the following criteria: (1) missing time to 

distant recurrence follow-up data, (2) FIGO 2009 stage IV34 because they 
already have distant recurrence at time of diagnosis and (3) treatment 
with adjuvant chemotherapy because it may have lowered the risk of 
distant recurrence3,4. The categorical anatomical stages I, II and III are 
defined following the FIGO 2009 classification34. Hence, it represents 
a tumor confined in the uterus (stage I), a tumor spread to the cervi-
cal stroma (stage II) or to the vagina, adnexa, pelvis and lymph nodes 
(stage III) at diagnosis. Distant recurrence in the adjuvant setting was 
defined as any recurrence outside the pelvis. Hence, distant recurrence 
included abdominal metastasis and para-aortic lymph node metastasis. 
Time to distant recurrence was defined to start at randomization (for 
PORTEC-1, -2 and -3) or date of primary surgery (MST, TransPORTEC 
study, Danish, UMCG and LUMC cohort) and to end at the date of the 
diagnosis of metastasis, or the date of last follow-up or death in patients 
without metastasis. We also stress that adjuvant chemotherapy was not 
the standard of care at the time the clinical cohorts were collected and 
that the vast majority of patients treated with adjuvant chemotherapy 
originated from the PORTEC-3 randomized trial (n = 225).

Following the aforementioned criteria, 2,072 cases were included 
for the supervised train–test split: 584 from PORTEC-1 (ref. 26), 395 
from PORTEC-2 (ref. 27), 217 from PORTEC-3 (ref. 3), 67 from the 
TransPORTEC study28, 226 from the MST cohort29, 272 from the  
Danish cohort30, 160 from the UMCG cohort31 and 151 from the LUMC 
cohort. Then we held out one internal test set and two external test 
sets, all representing an unselected population. The internal test set 
was obtained by randomly sampling 20% of the supervised training 
set, stratified by discrete time intervals and censorship status to ensure 
the presence of enough events across time (n = 353, of which 116 were 
from PORTEC-1, 100 from PORTEC-2, 43 from PORTEC-3, 13 from  
the TransPORTEC study, 35 from the MST cohort and 46 from the 
Danish cohort; median follow-up of 8.45 years with 62 events). The 
first external test set is the UMCG cohort (n = 160 patients; 5.32-year 
median follow-up time with 14 events). The second external test set is 
the LUMC cohort (n = 151 patients: 121 with 3 WSIs, 21 with 2 WSIs and 
9 with 1 WSI; 2.90-year median follow-up time with 24 events). Finally, 
the remaining 1,408 WSIs were used for supervised training of HEC-
TOR (468 from PORTEC-1, 295 from PORTEC-2, 174 from PORTEC-3, 54 
from the TransPORTEC study, 191 from the MST cohort and 226 from 
the Danish cohort; median follow-up of 7.77 years with 246 events).

In addition, the HECTOR risk scores were predicted on the pre-
viously excluded, chemotherapy-treated cases from the PORTEC-3 
randomized trial3 (n = 225), as well as the patients with stages I–III from 
TCGA-UCEC (n = 381).

For the self-supervised learning, we used only the 1,408 WSIs 
already reserved for supervised training, and thus strictly limited to 
only those that were not part of the internal and external test sets. In 
addition, the self-supervised learning training was enriched by cases 
with any stage of disease, whose treatment or distant recurrence out-
come data were unknown (n = 454 of which 31 from the TransPORTEC 
study, 5 from the MST cohort, 16 from the Danish cohort and 402 from 
TCGA-UCEC), resulting in 1,862 cases for self-supervised learning.

Performance evaluation
Hyperparameter optimization and model comparisons (includ-
ing architecture choices for patch representational learning with 
self-supervised learning) were evaluated on the supervised down-
stream task guided by the C-index metric33 (using a tau = 10 years 
and scikit-survival Python package (v.0.17.2)). To this end, a fivefold 
crossvalidation routine was performed on the 1,408 WSIs reserved for 
supervised training. The most performant architecture and hyperpa-
rameters were selected based on the highest mean C-index over the five 
folds. The final model, referred to as HECTOR, is then retrained on the 
full training set and evaluated on to the internal and the two external 
test sets (UMCG and LUMC). The cumulative AUC37 and Brier scores38 
were additionally computed.
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Given the fact that the LUMC external test set contains up to 
three WSIs per case, as opposed to one in the internal test set and the 
UMCG external test set, we performed multiple experiments to derive 
patient-level risk scores using random sampling. First, we randomly 
selected one WSI per case and repeated this experiment 100×, yield-
ing a mean C-index and CI. Second, we randomly selected up to two 
WSIs for each case when available, then averaged with the mean the 
two risk scores per patient and repeated it 100×. Third, we selected 
all available WSIs of the external test set with up to three WSIs per 
case when available and computed the mean and median of the two 
or three risk scores. In an additional experiment, we combined each 
patient’s WSIs by merging the patch features from all available WSIs 
into a single feature bag.

WSI preprocessing
WSI segmentation was performed using Otsu thresholding. Nonover-
lapping patching was performed at 180 µm and patches were resized 
to 256 × 256 pixels2. On average, this procedure generated a bag of 
10,185 patches per WSI.

Vision transformer-based patch representational learning
We followed advancements in self-supervised learning by adopting 
vision transformer-based DL models that are capable of learning 
fine-grained, patch-level representation at multiple resolutions. For 
this, we trained EsVIT60 and compared it with CtransPath67, an alternative 
model trained on the histopathology domain (Supplementary Table 3). 
We modified the initial proposed four-stage Swin68, transformer-based 
architecture of EsVIT to capture cell- and region-level tissue information 
and to fit our computational resources. The patch size of stage 1 was 
doubled to 8 pixels to reduce the sequence length and increase field of 
view to capture cell views. In stages 2–4, we kept the two-factor feature 
map merging rate and resized the input images to 256 × 256 pixels2 
instead of 224 × 224 pixels2 to avoid indivisible patch size at stage 4. 
Finally, the number of stacked transformers in stage 3 was reduced from 
six to four and the rest were kept to two. The first embedding dimension 
remained unchanged at 96 and the number of attention heads by stage 
was also kept unchanged, that is, 3, 6, 12 and 24 (Supplementary Table 4).

A dataset of 3,702,447 patches was curated by randomly extracting 
up to 2,000 patches per WSI at 180 µm resized to 256 × 256 pixels2 from 
the 1,862 WSIs appointed for self-supervised learning. Thereafter, the 
modified EsVIT was trained on 3 Nvidia RTX 8000 GPUs (graphic pro-
cessing units) with a batch size of 128 for 100 epochs with a window of 
14 to encourage learning of long-term dependencies between patches. 
For performance improvement, we also used the view- and region-level 
prediction DINO (self-distillation with no labels) heads with no weight 
normalization and frozen layers at first epoch and the default output 
dimension of 65,536 (ref. 60). We followed the EsVIT authors’ recom-
mendations with a smaller batch size by increasing the momentum 
teacher to 0.9996 and starting with the initial teacher temperature of 
0.04. The teacher temperature was adjusted halfway through training 
from 0.04 to 0.02 for further loss decrease. We optimized with AdamW 
and default parameters, default optimization routines of the learning 
rate (linear warm-up for ten epochs followed by cosine scheduler to 
1 × 10−6) and weight decay (cosine scheduler from 0.04 to 0.4). The data 
augmentation was used exactly as done in the original publication60.

After the training was completed, the patch-level features were 
extracted from the attention heads of the stacked transformers at 
each stage. For our downstream task, we observed an improvement 
by extracting the last 8 blocks compared with the default last 4 men-
tioned in the publication60, yielding feature vectors of size 3,456 (Sup-
plementary Table 3).

Multimodal DL prognostic model
To build the multimodal model for distant recurrence prediction task, 
ablation studies were first performed using the H&E WSI modality only 

(referred to as H&E-based, one-arm model) followed by integrating the 
image-based molecular classes derived from the H&E-based predic-
tions of im4MEC11 (referred to as two-arm model) and the categorical 
stage (hence referred to as HECTOR). This section describes HECTOR 
with Supplementary Table 5 summarizing the architecture and training 
parameters, whereas ‘Ablation studies’ provides further details about 
some training experiments and the choice of the architecture.

The H&E-based, one-arm model takes as input the bag of 180-µm 
patch-level features of size 3,456 extracted from EsVIT60, where the 
number of patches per bag varies. To train toward time-to-event data 
and given a batch size of one of the attention-based multiple instance 
learning (AttentionMIL) model, the time scale was discretized into 
four intervals based on the quartiles of the distribution of uncensored 
patients and the −log(likelihood loss) was used61.

Within the AttentionMIL model, we reported a slight performance 
increase by adding another WSI preprocessing step. Specifically, WSI 
morphological information was spatially and semantically compressed 
by averaging highly correlated, nearby patch-level features using a  
L2 norm threshold of three patches and a cosine similarity of 0.8. This 
step reduced the bag of features from 10,185 patches on average to 1,723 
at 180 µm (Supplementary Table 3). Each mean patch-level feature is 
compressed by 3 Fully Connected layers gradually down to 512. The 
attention module computes attention scores on latent features reduced 
to 256 before pooling, resulting in a slide-level embedding of size 512.

To leverage the well-established prognostic value of the molecular 
class (here image-based derived from the H&E-based predictions of 
im4MEC11) and the categorical (FIGO 2009) stage I, II and III variable, and 
given the AttentionMIL model computes an H&E slide-level embedding 
from the patches, we experimented with intermediate-to-late fusion 
to integrate slide-level, image-based molecular class and patient-level 
anatomical stage information at the H&E slide-level embedding. We 
proposed an approach of first encoding each categorical risk factor 
to higher-dimensional vector space with a learnable Embedding layer 
of size 16 followed by Elu activation function and one Fully Connected 
layer of size 8. Next, a gating-based attention mechanism with bilinear 
product was applied on the embeddings from different modalities to 
weight the importance of each modality based on ref. 16. To capture 
all interactions and retain unimodal embeddings, one was appended 
to the attention-weighted embeddings and then fused using the Kro-
necker product35. It is important to note that, for using the image-based 
molecular class as an input modality for HECTOR, we retrained the 
im4MEC model on the training set specifically designed for the present 
study. This was done to avoid any information leakage because some 
cases used for training the original im4MEC model were used as testing 
on validation in the present study.

The final multimodal embedding was further reduced by using two 
Fully Connected layers of size 256 and 128 before the survival categori-
cal head of a Fully Connected layer with output size as the number of 
discrete time intervals. Each Fully Connected layer in the architecture 
was followed by a dropout of 0.25 and a ReLU activation function.

HECTOR was trained for 24 epochs with an initial learning rate 
of 3 × 10−5 decayed by a factor of 10 at epochs 2, 5 and 15. The Adam 
optimizer was used with default parameters and a weight decay of 
1 × 10−5. HECTOR was also developed by adapting sections of open 
access repositories11,16,21.

Ablation studies
To find first the optimal architecture to predict distant recurrence from 
the H&E modality (one-arm model), three state-of-art WSI classifica-
tion architectures were adapted to our distant recurrence prediction 
task: AttentionMIL22, a Graph Attention Network following ref. 15, with 
a radius up to 32 connected patch nodes and a transformer architec-
ture following ref. 23. Both of these architectures were adapted from 
their open access repository. They were both trained on the same fea-
ture bags extracted using EsVIT with a batch size of one and the same 
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discrete survival loss (−log(likelihood loss)). We found that the Atten-
tionMIL architecture yielded a higher C-index than the Graph Attention 
Network and the transformer in this prognostic task while featuring 
far lower computational complexity (Supplementary Table 3), which 
corroborates the findings of ref. 15 for TCGA-UCEC.

To incorporate the image-based molecular class predicted by 
im4MEC from the H&E WSIS, experiments included: (1) transfer learn-
ing in which the AttentionMIL backbone was pretrained toward the 
molecular class and subsequently fine-tuned on the prognostic task; 
(2) multitask learning in which a second training objective was added to 
predict the image-based molecular class in addition to the prognosis; 
and (3) fusion of the image-based molecular class derived from the 
frozen im4MEC model (as extracted from either an intermediate layer 
or the final predicted categorical class, followed by an Embedding 
layer and attention gate). In experiment 2, a second classification head 
was implemented which was trained using the weighted sum of the 
survival loss (−log(likelihood loss)) and the cross-entropy classifica-
tion loss. The weight factor was considered as a hyperparameter and 
was optimized using the fivefold crossvalidation. Experiment 3 which 
consisted of the inclusion of the predicted categorical class using 
an Embedding layer and attention gate resulted in the highest mean 
C-index (Supplementary Table 3).

Experiments around fusing the stage category included nota-
bly training with the extended FIGO 2009 taxonomy or a reduced 
three-class taxonomy (I, II and II) followed by an Embedding layer and 
attention gate, the latter achieving the highest C-index (Supplemen-
tary Table 3).

Association with clinicopathological data analysis
We performed multiple single linear regression analyses using  
the HECTOR continuous risk scores as the dependent variable and 
the clinicopathological data as the regressor. Statistical tests were 
two sided with statistical significance accepted with P values <0.050. 
Regression coefficients and exact P values have been reported in  
Supplementary Table 7.

Input contribution
The IG method63 was used to measure the contribution of the WSI and to 
identify the patches within a WSI relevant to the prediction of the haz-
ard function. Given the discrete time intervals, IG scores were averaged 
over the four neuron targets. The IG baseline for feature missingness 
was represented as patch-level features derived from white patches. 
All IG scores were patient-wise normalized between −1 and +1 while 
maintaining the sign and the IG score of zero, and further averaged to 
get a WSI-level IG score. Positive IG value toward 1 means that it con-
tributed positively to increase the risk score, whereas negative means 
it contributed to decrease the risk score. Selection of representative 
patches was performed once by an expert pathologist within the top 
5% patches, increasing and decreasing the risk scores for each case.

The contribution of the predicted image-based molecular class 
by im4MEC and the FIGO stage was calculated by fixing the stage- 
and image-based molecular class values with the value of our choice 
(referred to as the ‘reference group’) followed by computing the dif-
ference in predicted risk scores. Similar to the IG method, a positive or 
negative difference means a positive or negative contribution to the 
risk score, respectively.

Cell-level composition
As part of the explainability section of HECTOR to quantify visual 
features of extracted patches with high contribution, we first used the 
cell segmentation and classification Hover-Net14 DL model to obtain 
inflammatory cell counts, retrained on EC-specific WSIs11. Then, 
mitotic figures were detected with a pan-cancer DL-based detector64 
that was fine-tuned on EC tissue for the purpose of the present study. 
Fine-tuning was performed by extending the original training set69 

with additional data points that we internally annotated in 10 WSIs 
from the PORTEC datasets selected to cover the variability of EC histo-
logical types. Region-level inflammatory and mitotic activity density 
were defined as absolute count normalized by the area in square milli
meters and further averaged over the number of regions to obtain a 
patient-level density value. The size of tumor nuclei was reported in 
mm2 and averaged by patient. The statistical association between the 
HECTOR risk scores and the patient-level quantity of visual features 
was tested with linear regressions within the regions of interest, that is, 
the regions with either a negative or a positive contribution. Statistical 
tests were two sided with statistical significance accepted for P values 
<0.050. The coefficients of linear regressions and exact P values were 
the following: coefficient −0.0109 (95% CI: −0.019 to −0.002), P = 0.011, 
for the patient-level inflammatory density within the negative regions; 
and coefficient 0.0447 (95% CI: 0.033–0.057), P = 1.96 × 10−12 for the 
patient-level mitotic density within the positive regions; coefficient 
377.916 (95% CI: 297.677–458.155), P = 3.10 × 10−19, for the patient-level 
tumor nuclei area within the positive regions.

Outcome analysis
Analysis of distant recurrence-free probabilities was conducted accord-
ing to the Kaplan–Meier method and the two-sided log rank test with sta-
tistical significance accepted for P < 0.050. Cutoffs for the HECTOR risk 
groups were defined by taking the quantiles (25%, 50% and 75%) of the 
distribution of HECTOR risk scores in the training set only. In the training 
set, the first two groups (<25% and between 25% and 50%) did not show 
any major difference in prognosis and were therefore merged into one 
group named the HECTOR low-risk group. As a result, we defined the 
HECTOR low-risk group as cases with a risk score below the median risk 
score value of the training set, the HECTOR intermediate-risk group as 
those with a risk score between median and third quartile values of the 
training set and the HECTOR high-risk group as those with a risk score 
greater than the third quartile value of the training set. These same 
cutoff values were applied to the unseen internal, UMCG and LUMC 
external test sets, and the TCGA-UCEC and PORTEC-3.

To compare the DL model performance with well-established 
clinicopathological risk factors, we fitted CPH models on these clin-
icopathological risk factors in EC and calculated the corresponding 
C-index. First, we used risk factors that can be visually assigned on 
histological slides: the histological subtype, the grade and LVSI. Then 
we added the FIGO 2009 stage I–III variable. Finally, we included the 
molecular class of EC (POLEmut, MMRd, NSMP and p53abn). To main-
tain consistency within validation sets in the fivefold crossvalidation 
and the internal test sets, missing molecular class (115 out of 1,408 in 
crossvalidation and 38 out of 353 in the internal test set) was imputed 
using mean substitution.

To estimate HECTOR’s prognostic value as compared to the  
clinicopathological risk factors, we computed HRs using CPH with 
HECTOR continuous risk scores. For these analyses, we included all 
cases with a complete set of clinicopathological and molecular risk 
factors (n = 1,254). First, we corrected the HECTOR risk scores for 
all clinicopathological risk factors combined into one risk score in a 
multivariable analysis. To this end, a CPH model was first fitted on to 
these clinicopathological risk factors. Then, the derived risk scores, 
referred to as ‘clinical’, were calculated by taking the linear combina-
tion of the CPH coefficients and the variables. In the second analysis, 
we corrected HECTOR’s continuous risk scores for the histological 
subtype, the grade, LVSI, stage, the molecular class and, in addition, 
L1CAM and age as continuous data in a multivariable analysis.

The histological subtype categorical variable was processed as 
grade 3 EEC versus the reference group low-grade EEC and non-EEC 
versus the reference EEC. The reference group for molecular class was 
NSMP and stage I for the FIGO 2009 stage variable.

All statistical tests were two sided with statistical significance 
accepted for P values <0.050.
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Genomic and transcriptomic correlation analysis
To analyze the frequency of driver mutations by HECTOR risk groups, 
the genomic features were extracted from ref. 70 using MC3 MAF 
(mutation annotation format) data. The mutational status of the top 19 
oncogenic drivers in EC was downloaded from the cBioPortal portal65,66 
and annotated by OncoKB71. The statistical comparison of propor-
tions with oncogenic mutations between HECTOR risk groups was 
performed using the two-sided χ2 tests for each individual gene with 
P < 0.050 accepted as significant. Exact P values and sample size are 
reported in Supplementary Table 12.

The association between the HECTOR continuous risk scores and 
each immune cell subset was performed using the log2(transformed 
proportion of the immune cell subset) as a fraction of the whole tumor, 
using the leukocyte fraction values. Linear regressions were performed 
with the HECTOR continuous risk scores as the independent variable. 
In addition, we tested the associations by correcting for the molecular 
class and TMB as additional independent variables. Two-sided P values 
<0.050 are accepted as significant. Regression coefficients and exact 
P values have been reported in Supplementary Table 13.

Messenger RNA sequencing (mRNA-seq) and clinical data from 
TCGA-UCEC were downloaded from firebrowse.org. Differentially 
expressed genes were assessed between HECTOR high-risk and HEC-
TOR low-risk cases by DESeq2 (ref. 72) (v.1.40.1). Genes with a likelihood 
ratio test P value adjusted using a Benjamini–Hochberg false discovery 
rate (FDR) were accepted if <0.050 (Supplementary Table 15).

Analysis of adjuvant chemotherapy effect
We predicted the HECTOR risk scores for the patients included in 
the PORTEC-3 (ref. 3) treatment arm who did receive concurrent and 
adjuvant chemotherapy (n = 225) and, thus, who had been previously 
left out from training and any test sets. The effect of the combination 
of adjuvant chemotherapy and external beam radiotherapy over 
external beam radiotherapy alone was analyzed by: (1) analyzing 
distant recurrence-free probabilities by treatment arm stratified by 
HECTOR risk group and measuring group-wise treatment effect with 
the Kaplan–Meier method and the two-sided log rank test and/or  
HR of treatment variable with the univariable Cox’s model; (2) calcu
lating the statistical significance of the interaction term between 
the HECTOR continuous risk scores and the treatment binary vari-
able; and (3) calculating the statistical significance of the interaction 
term between the HECTOR high-risk group and the treatment binary 
variable (corrected for HECTOR intermediate-risk group and using  
HECTOR low-risk group as a reference group). To measure the statis-
tical significance of the interaction term defined as the HECTOR risk 
score (continuous or categorical) multiplied by the treatment binary 
variable, a multivariable Cox’s regression analysis was performed. 
Similar analyses were performed to test the interaction between 
serous histological subtype and the chemotherapy treatment binary 
variable (corrected for EEC and clear cell histological subtype), and the 
FIGO 2009 stage III (corrected for stages I–II) and p53abn (corrected 
for MMRd, NSMP as a reference group and POLEmut tumors removed 
to reach convergence).

All statistical tests were two sided with statistical significance 
accepted with P values <0.050.

Software and packages
EsVIT and HECTOR were implemented with Pytorch (v.1.8.1 and v.1.10.0, 
respectively). IG was implemented with Captum Python package 
(v.0.6.0), metrics such as the C-index with scikit-survival Python pack-
age (v.0.17.2), CPH models and the Kaplan–Meier method with Lifelines 
Python package (v.0.27.1), χ2 tests with Scipy Python package (v.1.5.2), 
boxplot visualizations with altair Python package (v.4.2.0) and linear 
regression with statsmodels Python package (v.0.13.5). Differentially 
expressed genes were performed using DESeq2 (v.1.40.1)72 and R v.4.3.0 
(2023-04-21 ucrt). Additional packages for image processing included 

Openslide Python package (v.1.1.2), OpenCV (v.4.3.0.36) and Pillow 
(v.7.2.0). Annotations were done with QuPath (v.0.4.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The tumor material and datasets generated during or analyzed in 
the present study are not publicly available owing to restrictions by 
privacy laws. Data and tumor material from PORTEC-1, PORTEC-2, 
PORTEC-3, MST and the TransPORTEC study are held by the PORTEC 
study group and the international TransPORTEC consortium. Data 
and tumor material from the Danish cohort are held by the coauthor 
of this article, G.Ø. Data and tumor material from the UMCG cohort 
are held by the coauthors of this article, H.W.N. and M.d.B., and from 
the LUMC by the coauthors N.H. and T.B. Requests for sharing of all 
data and material should be addressed to the corresponding author 
within 15 years of the date of publication of this article and include a 
scientific proposal. Depending on the specific research proposal, the 
TransPORTEC consortium (PORTEC-3 and TransPORTEC study) or the 
PORTEC study group (PORTEC-1, PORTEC-2 and MST) or coauthors 
G.Ø., H.W.N. and M.d.B., or N.H. and T.B., will determine when, for 
how long, for which specific purposes and under which conditions 
the requested data can be made available, subject to ethical consent. 
Requests for data access will be processed within a 3-month timeframe. 
TCGA-UCEC images, mutational status and clinical data are publicly 
available via the cBioPortal65,66 for Cancer Genomics at https://www.
cbioportal.org/study/clinicalData?id=ucec_tcga_pan_can_atlas_2018.  
The mRNA-seq data of the TCGA-UCEC were downloaded from  
http://firebrowse.org/?cohort=UCEC.

Code availability
The code base is available at https://github.com/AIRMEC/HECTOR.
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Extended Data Fig. 1 | Overview of the data split and downstream analyses 
performed in this study. One representative WSI per patient from an Formalin-
Fixed Paraffin-Embedded (FFPE) block was included. 20% of cases meeting 
inclusion criteria were randomly held out for an internal test set (n = 353). The 
remaining 80% was used for five-cross validation (n = 1,408 patients). This 
training dataset was enriched with dropped WSIs of FIGO 2009 stage IV cases or 
those with missing outcome such as the TCGA-UCEC cohort21 for training with 

self-supervised learning (n = 1,862). Two cohorts were held out as external test 
sets, the UMCG external test set (n = 160) and the LUMC external test set (n = 151). 
The LUMC external test set contains up to three FFPE blocks per case. More 
details for training and data split are provided in Methods. Altogether, including 
the two training steps and all downstream analyses, this comprehensive analysis 
comprised data of 2,751 tumors of women. CT, chemotherapy.
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Extended Data Fig. 2 | Shifts of attention scores from unimodal to multimodal  
model. a, Model using only H&E WSI (unimodal) and a corresponding example of 
the normalized attention scores shown as overlaid on the H&E WSI as a heatmap 
where red is high attention score and blue low attention score. b, The two-arm 
model with H&E WSI and image-based molecular class predicted by im4MEC, and 
a corresponding example of the normalized attention scores shown as overlaid 
on the H&E WSI. c, The multimodal three-arm HECTOR model with H&E WSI, 

image-based molecular class, and stage, and a corresponding example of the 
normalized attention scores shown as overlaid on the H&E WSI. d, Density plot of 
the normalized attention scores of the heatmap shown in a,b,c for each model. 
e, Quantitative analysis of the distribution shift between the three models in the 
internal test set (n = 353 patients) using the WSI-level skewness and median of the 
normalized attention scores.
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Extended Data Fig. 3 | Morphological features increasing risk score in 
HECTOR high versus low risk group and quantitative spatial analysis.  
a, A representative selection of four patches for each morphological subtype 
(each selected from a different patient) increasing the risk score in the HECTOR 
low risk group as compared to the features increasing the risk score in the 
HECTOR high risk. Each patch is 180 × 180 μm. b, Spatial analysis of top 5% regions 
decreasing and increasing the risk score in all WSIs of the LUMC test set based 

on the manually annotated areas: tumor and invasive border. (left) An example 
showing the annotation of the tumor area and invasive border of one WSI and 
heatmap showing the contribution of the regions using the IG methods. (right) 
The relative contribution of these two annotated areas averaged by WSI shown 
for each HECTOR risk group. Data are presented as the mean values and standard 
deviation (n = 414 WSIs).
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Extended Data Fig. 4 | Overview of the PORTEC-3 randomized trial and 
analysis of treatment response prediction by HECTOR. In PORTEC-3, 660 
evaluable patients were randomized (1:1) between adjuvant external beam 
radiotherapy (EBRT) alone and external beam radiotherapy in combination with 

concurrent and adjuvant chemotherapy (CT). For 442 patients whose WSI was 
available, HECTOR risk scores were inferred. HECTOR risk groups cutoffs were 
kept the same as the training set (Methods).
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