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Predicting distant recurrence of endometrial cancer (EC) is crucial for
personalized adjuvant treatment. The current gold standard of combined
pathological and molecular profiling is costly, hampering implementation.
Here we developed HECTOR (histopathology-based endometrial cancer
tailored outcomerisk), amultimodal deep learning prognostic model using
hematoxylin and eosin-stained, whole-slide images and tumor stage as
input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3
randomized trials. HECTOR demonstrated C-indices ininternal (n = 353)
and two external (n =160 and n = 151) test sets of 0.789, 0.828 and 0.815,
respectively, outperforming the current gold standard, and identified
patients with markedly different outcomes (10-year distant recurrence-free
probabilities 0f 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and
high-risk groups, respectively, by Kaplan-Meier analysis). HECTOR also
predicted adjuvant chemotherapy benefit better than current methods.
Morphological and genomic feature extraction identified correlates of
HECTOR risk groups, some with therapeutic potential. HECTOR improves
onthe current gold standard and may help delivery of personalized

treatmentin EC.

ECisthe most commongynecologicalmalignancy in high-income coun-
triesandisincreasinginincidence’. Although mostwomenwithlocalized
diseaseare cured by surgery,10-20% develop distant recurrence’, which
istypicallyincurable. Adjuvant chemotherapy canreduce thisrisk, at the
expense of toxicity**. Thus, current guidelines recommend such adjuvant
treatmentbased onacombination of clinicopathologicalrisk factors (for
example, histological subtype, grade, lymphovascular space invasion
(LVSI), FIGO (International Federation of Gynaecology and Obstetrics)
tumor stage) and, ifavailable, the molecular classification of EC. The last
identifies patients withfavorable and unfavorable outcomes defined by
POLE mutation (POLEmut) or p53 abnormality (p53abn), respectively,

andintermediate outcomes characterized by mismatch repair deficiency
(MMRd) or no specific molecular profile (NSMP)> "%, Recent efforts have
beenmade to combine clinicopathological and molecular factors’; how-
ever, in practice, challenges remain as a result of the complexity of com-
bining anincreasing number of factors, high-interobserver variability in
the assessment of histopathological factors, and costs and turnaround-
times of molecular testing. In addition, histological slides contain lots
of visual information, some with prognostic potential'®, that is only
partly captured in the grading and tumor histotyping by pathologists.
Deep learning (DL) models, including those using digitized hema-
toxylinand eosin (H&E)-stained tumor slides, have showngreat promise
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in the prediction of molecular alterations" ™, cell composition** and

prognosis” ', outperforming standard pathologist-based assessment.
This is particularly true of the latest generation of self-supervised
learning and whole-slideimage (WSI) prediction DL models, which use
attention-based networks?, graphs™" or (vision) transformers*?* to
provide more granular and interpretable image representation. In addi-
tion, multimodal DL models for prognosis prediction are promising to
outperformunimodal approachesthat solely rely onthe morphologi-
calinformation provided by H&E WSIs'**. We previously developed a
DL model, image-based (im) four molecular classes in EC (im4MEC),
toaccurately predict the molecular EC classification from tumor H&E
WSIs, and showed thatimage-based molecular classes predicted prog-
nosis'. Others have classified EC binary recurrence® or used uni-/
multimodal DL models to predict EC overall survival™'*"** (concord-
ance indices (C-indices) of 0.629-0.687), but these have relied on
more detailed tumor profiling, such as multipleximmunofluorescence
staining® or the combination of H&E WSIs with genomic and/or tran-
scriptomic data’, neither of which is deliverable in clinical practice at
present. Thus, there remains a pressing unmet need for amethod that
canpredict ECdistantrecurrence frominputdatagenerated as part of
routine clinical diagnostics.

Inthe present study, we report the development and evaluation of
HECTOR (Fig.1)—amultimodal DL model to predict distant recurrence
from H&E WSl and anatomical stage for postsurgical women with EC—
across eight EC cohorts including three large randomized trials***.,

Results

EC cohorts

HECTOR is a two-step DL model wherein the first step consists
of self-supervised tumor image representational learning and the
second of the distant recurrence prediction task (Fig. 1).

To train and validate the distant recurrence prediction task of
HECTOR, we collected and curated tumor-containing, H&E-stained
WSiIs of the hysterectomy specimen and comprehensive clinicopatho-
logical datasets, molecular and clinical distant recurrence data for
2,072 patients with tumor stages (FIGO 2009) I-IIl EC across eight
cohorts, including the PORTEC-1, -2 and -3 randomized trials***~°
(Extended Data Fig. 1; study CONSORT diagram shown as Supple-
mentary Figs. 1and 2 and Supplementary Tables 1and 2). Of these,
two population-based cohorts were held out as two external test sets:
patients treated at the University Medical Center Groningen® (UMCG;
n=160 patients) and the Leiden University Medical Center (LUMC;
n =151 patients) where the LUMC external test set also simulates a
diagnostic scenario with up to three tumor blocks per patient. The
remaining patients were divided randomly into a 20% held-out inter-
nal test set (n=353) and 80% training set (n=1,408) where fivefold
crossvalidation was performed. The median duration of follow-up in
the training set, internal test set, UMCG external test set and LUMC
external testwas 7.8, 8.4, 5.3 and 2.9 years, respectively, during which
246 (17.5%), 62 (17.6%), 14 (8.8%) and 24 (15.9%) patients had distant
recurrence. Importantly, patients who underwent chemotherapy,
predominantly the experimental treatment arm of the PORTEC-3
randomized trial (n =225), were excluded from training because this
treatment influences distant recurrence risk®* (Extended Data Fig. 1).
These PORTEC-3 patients were, however, used for downstream analysis
of adjuvant chemotherapy benefit by HECTOR.

To train HECTOR's self-supervised learning step (which requires
alargeimaging dataset without outcome data), we enriched the train-
ing set with one additional cohort of the TCGA-UCEC*? (The Cancer
Genome Atlas Uterine Corpus Endometrial Carcinoma) as well as the
WSIs that were excluded for the distant recurrence task owingto cancer
metastasized at diagnosis (FIGO 2009, stage IV) or missing outcome
(n=1,862; Methods).

Altogether, including the two training steps and the downstream
analyses, the present study comprised tumor datafrom2,751 patients.

HECTOR design and performance

To design HECTOR and obtain the most performant DL model for
prediction of distant recurrence based on the highest C-index*, we
conducted ablation studies on the fivefold crossvalidation (Supple-
mentary Table 3). HECTOR’s first step comprises a vision transformer
for patch-level, self-supervised representational learning (Fig. 1a).
HECTOR’s second step is a multimodal, three-arm architecture to
predict distant recurrence-free probabilities (Fig. 1b). The three-arm
architecture fuses prognostic information from the H&E-stained WSI
of the tumor-containing uterine section, the image-based molecular
classas predicted by im4MEC directly from the H&E WSI" and the sur-
gically assessed anatomical stage (as three-tiered based on the FIGO
2009 system, wherein stage lindicates atumor confined in the uterus,
stagellacervicalextentand stagelll beyond, including vaginal, adnexal,
pelvic and lymph nodes)**. To do this, we combined attention-based
multiple instance learning with Embeddinglayers to map the discrete
risk factors (the image-based molecular class and anatomical stage) to
ahigher-dimensional continuous vector space, withtheimportance of
each factor controlled by gating-based attention'®*. Ablation studies
(Supplementary Table 3) also included multitask learning®, with a
second training objective predicting the image-based molecular class
instead of the frozen im4MEC, or replacing attention-based multiple
instance learning with DL models thatintegrate spatial information of
the patches, such as transformer® and attention-based graph neural
network”. These two architectures did not outperform attention-based
multiple instance learning for this task. Further details are provided
in Methods and a summary of the HECTOR configuration is provided
inSupplementary Tables 4 and 5.

HECTOR demonstrated amean C-index of 0.795 (95% confidence
interval (CI): 0.768-0.822) on fivefold crossvalidation. Notably, the
addition of the image-based molecular class arm as predicted by
im4MEC to the H&E WSI (referred to as two-arm or one-arm model,
respectively) boosted performance from 0.775 (95% CI: 0.748-0.802)
t00.782(95% Cl: 0.759-0.805) with no need for extrainput data. Adding
the anatomical stage (as three-tiered FIGO 2009, stage I, Il or III) fur-
ther improved the C-index to 0.795 (95% CI: 0.768-0.822), yielding
the final architecture of HECTOR (Fig. 2a). The cumulative area under
the receiver operating curve (AUC)* and integrated Brier score®® are
reported in Supplementary Table 6. We also observed that HECTOR
concentrated high attention to fewer regions while ignoring large
parts of the H&E WSI compared with a model relying on the H&E WSI
(Extended DataFig. 2).

On the unseen internal test set, HECTOR obtained a C-index of
0.789 and, on the UMCG external test set, a C-index of 0.828. The per-
formance in the LUMC external test set is depicted in ‘Performance
with multiple WSIs'.

To aid clinical interpretation, we first defined categorical
HECTOR risk groups as quartiles of the continuous risk scores in the
training set. The groups from the first two quartiles were then com-
bined for simplification because these had very similar clinical out-
comesinthetrainingset (distant recurrence-free probabilities of 98.1%
and 95.8% by Kaplan-Meier analysis, respectively; Supplementary
Fig.3)and applied onto theinternal and external test sets. Second, we
computed the hazard ratio (HR) of HECTOR using a Cox’s proportional
hazard (CPH) model with both continuous and categorical HECTOR risk
scores as the independent variable and time to distant recurrence as
the dependent variable.

HECTOR showed strong prognostic value as a continuous variable
inthe training test set (HR = 5.06; 95% Cl: 4.35-5.89; P=9.00 x 10"%°), the
internal test set (HR =2.69; 95% Cl: 2.07-3.49; P=1.31x107) and the
UMCG external test set (HR = 5.84; 95% CI: 3.06-11.14; P=8.37 x10°5).
On the internal test set, 10-year distant recurrence-free probabilities
for HECTOR low- (n =175), intermediate- (n = 82) and high- (n = 96) risk
groups were 97.0% (95% Cl: 0.930-0.988), 77.7% (95% Cl: 0.670-0.854)
and 58.1% (95% CI: 0.469-0.677), respectively (logrank P=1.78 x 107;
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Fig.1|Overview of HECTOR. a, Tissue segmented from the H&E WSI of EC,
subsequently patched at 180 pm. A multistage vision transformer®® was trained
using self-supervised learning by randomly sampling patches from WSIs of 1,862
patients, excluding any patients of the internal and external test sets. Patch-
level features are extracted from the last eight transformer blocks. b, HECTOR
taking the H&E WSl and the (FIGO 2009) anatomical stage I-1ll category as
inputs. Extracted patch-level features are spatially and semantically averaged.
The patch features are passed into both an attention-based multiple instance
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learning model and the im4MEC DL model (with all layers frozen), which predicts
the molecular class from the H&E WSI as imPOLEmut, imMMRd, imNSMP or
imp53abn". Both the anatomical stage category and image-based molecular class
are fed through the Embedding layers. Gating-based attention is applied on the
resulting three embeddings'®*, followed by a Kronecker product for fusion. The
-log(likelihood loss) was used to predict the distant recurrence-free probability
function over discrete time®'. Risk scores were defined as the integrated
predicted probabilities. MLP, multilayer perceptron; FC, Fully Connected layer.

Fig.2d). The corresponding HR for HECTOR high-and intermediate-risk
groupsintheinternalset, using the HECTOR low-risk group as the refer-
ence, were 15.63 (95% CI: 6.58-37.13; P=4.81x107°) and 7.67 (95% CI:
3.06-19.22; P=1.37 x107%), respectively. In the UMCG external test set, a
similar stratification was observed with 5-year distant recurrence-free
probabilities for HECTOR low- (n =102), intermediate- (n = 44), and
high- (n =14) risk groups of 93.9% (95% CI: 0.859-0.974), 91.4% (95%
Cl: 0.756-0.972) and 19.0% (95% CI: 0.0097-0.553), respectively (log
rank P=5.56 x 107'°; Supplementary Fig.4). The corresponding HR for
the HECTOR intermediate group in the UMCG external test set was
2.26 (95% CI: 0.61-8.42; P=0.225) and in the high-risk group was
20.42(95% Cl:5.92-70.50; P=2.00 x 10°®), respectively.

Comparison with current prognostic gold standard
We compared DL-based risk scores (that is, the one-, two-arm and
HECTOR models) with the current standards for EC prognostication

comprising clinicopathological risk factors and the molecular EC
classification on the fivefold crossvalidation (Fig. 2a). For this, we first
compared C-indices by type of input required: (1) a ‘base’ CPH model
including variables defined by pathologists using H&E images alone
(histological subtype, grade and LVSI); (2) the base model plus anato-
mical stage; and (3) the base model plus anatomical stage and molecular
ECclass. Inthe fivefold crossvalidation, giventhe H&E-based input data,
the one- and two-arm model discrimination was superior to the base
CPH model (C-index = 0.681; 95% CI: 0.624-0.738). HECTOR model
discrimination was superior to the base CPH model plus anatomical
stage which used the same inputs (C-index = 0.716; 95% Cl: 0.672-0.761)
and better or as good as the base CPH model plus anatomical stage and
molecular ECclass (C-index = 0.762;95% CI: 0.732-0.791), which requires
sequencing, immunohistochemistry (IHC) and expert pathology.

We further compared HECTOR prognostic values against cur-
rent clinicopathological and molecular risk factors in multivariable
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Fig.2|Performance of HECTOR. a, Comparison of HECTOR performance

using the C-index with alternative unimodal and two-arm DL models and CPH
models fitted on clinicopathological and molecular risk factors. b, Comparison
of prognostic values between HECTOR and clinicopathological and molecular
risk factors combined into one risk score in a multivariable analysis. Data are
presented as the HRs and 95% Cls (n =1,254 patients). ¢, Residual prognostic
value of all established clinicopathological and molecular risk factors when using
HECTOR-predicted risk scores in a multivariable analysis. Data are presented as
the HRs and 95% Cls (n =1,254 patients). d, The 10-year distant recurrence-free

e
Random selection of
up to 3 WSIs Risk 1
isk score
LUMC external test set —— | recror X Patient-level
— . risk score
) Risk score 3
n =9 patients x1 WSI
&2 C-index
n = 21 patients x2 WSls T
éé<§ 4‘ b_, -HECTOR Patient-level
n =121 patients x3 WSIs risk score
Combined
as one WSI

2 WSIs per case
Randomly selected
and risk scores post-
aggregated by mean

3 WSIs per case
=== Combined as one WSI
- = = Risk scores postaggregated by mean
- == Risk scores postaggregated by median

1 WSI per case
"] Randomly selected

50 ' o
' o
' o
' o
' W
40 - i i\
' T
' o
' o
' o
. 307 1 o
£ : D
o / ] [
3 ' o
20 4 o ' '
P ' o
_ ' o
P ' P
' Vo
0 g -
' Vo
' '
' '
[ : i
o] T T T T T T 1
076 077 078 079 0.80 0.81 0.82 0.83
HECTOR C-index in the LUMC external test set (n = 151)
g LUMC external test set (n = 151)
10 1 .
8 o8
o
8
>
§= 06
£t a
3@
[Se)
29 044 "
2o P=1.00x10
3
2 0.2 { — HECTOR low
e HECTOR intermediate
— HECTOR high
0
0 1 2 3 4 5
Time (years)
Number at risk: LUMC external test set (n = 151)
— |70 60 54 44 30 10
44 38 28 20 12 6
— |37 25 17 1 9 6

probability analysis using the Kaplan-Meier method by HECTOR risk groups
intheinternal test set and log rank test Pvalue. e, Experiments conducted in
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f, C-index of HECTOR in the LUMC external test set randomly using one to three
WSis for all patients and repeating the experiment 100x. g, The 5-year distant
recurrence-free probability analysis using the Kaplan-Meier method by HECTOR
risk groups when using up to three WSIs (postaggregated by median) in the
LUMC external test set and log rank test P value. GR3, grade 3; EEC, endometrioid.

analysis using HECTOR continuous risk scores as the independent
variable. HECTOR retained prognostic values in multivariable modelsin
which known risk factors (histological subtype, grade, LVSI, FIGO 2009
stage I-1ll, age, molecular class) combined as one risk score (referred
toasthe CLINICAL risk score) were not prognostic (HECTORHR =4.62
(95% Cl:3.72-5.73; P=5.02 x 10**) versus CLINICAL HR = 1.08 (95% CI:
0.90-1.30; P=0.402)) (Fig. 2b). Similar multivariable analysis, includ-
ingrisk factors asindividual variables, showed independent prognostic

value of HECTOR (HR =5.26; 95% Cl: 4.21-6.56; P=2.30 x 10*), with
only FIGO 2009 stage Il disease retaining statistical significance
(HR =1.50; 95% CI: 1.05-2.14; P=0.026) (Fig. 2c). Other known risk
factors were no longer prognostic after inclusion of the HECTOR
risk score, suggesting that these factors were captured by HECTOR.
Forinstance, the POLEmutand p53abn molecular classes derived from
ground-truth sequencing and IHC, respectively—HR = 0.66 (95% CI:
0.26-1.69; P=0.384) and HR = 0.90 (95% CI: 0.61-1.34; P= 0.616)—and
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histological factors such as LVSI (HR:1.05; 95% Cl: 0.77-1.42, P= 0.776)
would not be of additive prognostic value for the prediction of distant
recurrence.

Given the current prognostic gold standards that would
classify p53abn EC as high-risk tumors and MMRd and NSMP as
intermediate-risk tumors with heterogeneous outcomes, we validated
the capacity of HECTOR to refine prognosis within the MMRd, NSMP
and p53abn molecular classes in the training and internal test sets. In
particular, the HECTOR low-risk group also identified about 5.3% (16
out of 300) of p53abn EC cases with excellent prognosis in the entire
dataset (Supplementary Fig. 5). Along these lines, we estimated the
number of patients with markable different risk classification between
HECTOR and the ESGO-ESTRO-ESP 2021 guidelines’ which combine
clinicopathological and molecular factors (Supplementary Fig. 6).
Among all patients with intermediate- to high-risk tumors based on
the guidelines (and no report of distant recurrence), 48.2% (552 cases
out of 1,146) of patients were predicted to be HECTOR low risk and
16.9% (62 cases out of 366) were predicted to be HECTOR low risk
among high-risk tumors only. Among all guideline-based low-to-high
intermediate-risk tumors, 11.2% (131 out 0f 1,170) of patients were pre-
dicted tobe HECTOR high risk and 4.9% (14 out of 287) whenrestricting
to only low-risk tumors.

Performance with multiple WSIs

To evaluate the prognostic value and robustness of HECTOR in a second
real-world external test set, we leveraged the fact that most cases in
the LUMC cohort had multiple tumor-containing H&E WSIs derived
from different tissue blocks per patient (121 of 151 cases had 3 WSlIs,
21 had 2 and 9 had 1; Fig. 2e). This enabled us to validate the external
performance of HECTOR in a diagnostic setting and subsequently
test robustness to selection of the H&E WSI. The initial evaluation,
using a HECTOR score derived from random selection of a single
WSI per patient repeated 100%, demonstrated a mean C-index of
0.802 (95% CI: 0.799-0.804) for prediction of distant recurrence on
the LUMC external test set (Fig. 2f).

HECTOR performance and risk stratification were slightly
improved by the addition of further WSIs (taking per-patient HECTOR
risk scores as either the mean or the median scores across WSIs) with
C-indices 0of 0.810 (95% CI: 0.808-0.811) with up to 2 WSIs per patient,
and 0.813 or 0.815 with up to 3 WSIs (Fig. 2f). A different method
was tested wherein the WSIs were combined as one single input bag
of images, yielding a C-index of 0.805. The 5-year distant recurrence-
free probabilities using the median of HECTOR risk scores per patient
were 98.4% (95% CI: 0.891-0.998) in HECTOR low risk (n =70), 74.8%
(95% CI: 0.534-0.874) in HECTOR intermediate risk (n =44) and
52.6% (95% CI: 0.323-0.694) in HECTOR high risk (n=37; log rank
P=1.00 x107°) (Fig. 2g and Supplementary Fig. 7). The corresponding
HR (for the continuous HECTOR risk score) was 3.73 (95% Cl: 2.34-5.96;
P=3.17 x107®) and (for the categorical high risk versus intermediate
risk) 34.51 (95% Cl: 4.52-263.39; P= 6.37 x10™*) versus 15.08 (95% Cl:
1.91-119.16; P = 0.010). Furthermore, HECTOR performancein patient
stratification of the LUMC external test set extended to overall survival
(5-year probabilities of 88.4% (95% CI: 0.769-0.944), 69.9% (95% CI.
0.468-0.845) and 47.0% (95% Cl: 0.289-0.633) for low, intermediate
and highrisk, respectively; Supplementary Fig. 8).

Potential confounding by intratumoral heterogeneity also
appeared to be minimal because 85 cases out of the 142 cases with
more than1WSIhad consistent HECTOR isk group predictions across
the WSIs and only 3 cases with 3 WSIs had a different predicted HECTOR
risk group for each WSI (Supplementary Figs. 9-12 and Supplementary
Notes p16).

Association with prognostic factors and input contribution
DL prognostic models may provide information on the correlates or
features that determine clinical outcome. Initial analysis of the internal

test set by multiple linear regression (Fig. 3a,b) revealed that lower
HECTOR risk scores were associated with established favorable risk
factors of endometrioid (EEC) histological subtype, grade 1 and
POLEmut EC, and higher HECTOR risk scores with unfavorable fac-
tors, including non-EEC histological subtypes, grade 3, FIGO stage lll,
LVSI, p53abn EC, estrogen receptor negativity and L1 cell adhesion
molecule (LICAM) positivity (Supplementary Tables 7-9 and Supple-
mentary Fig.13). MMRd EC, grade 2 and FIGO 2009 stage Il were spread
throughout the risk score axis and were not statistically significant.

For deeper explainability, we evaluated the impact of the H&E WSI,
im4MEC and anatomical stage on the prediction, thatis, whether each
modality decreased (negative contribution) or increased (positive con-
tribution) the HECTOR risk scores of developing distant recurrence. We
used the normalized Integrated Gradient (IG) values for the H&E WSis,
and differences in predicted risk scores with fixed value of im4MEC
or FIGO anatomical stage for the same case in the internal test set.
The H&E WSIs mainly had a positive contribution with values linearly
increasing alongside HECTOR risk scores (Fig. 3c and Supplementary
Fig. 14). We also noted higher magnitude of contributions toward
grade 3 EEC or non-EEC histological subtypes and LVSI (Fig. 3d). Both
observations may indicate that unfavorable morphological features
captured in H&E WSIs are a strong driver of risk score predictions.
The use ofimage-based molecular class and FIGO 2009 stage I-1llwas
consistent with domain expertise in ECwithimPOLEmut and imMMRd
mainly decreasing and imp53abn strongly increasing the HECTOR risk
scores given accurate predictions (Fig. 3e, Supplementary Table 8 and
Supplementary Fig. 15) and higher anatomical stage increasing the
HECTORTisk scores (Fig. 3f and Supplementary Fig. 16).

These analyses enabled us to dissect data of the six patients with
distant recurrence predicted as HECTOR low risk in the internal test
set (Supplementary Table 10 and Supplementary Fig.17). Experimen-
tal tests, in which the image-based molecular class was replaced by
the true molecular class, showed no effect of misclassification by
im4MEC in these instances on to the HECTOR risk group. Review of
the single WSIinput by an expert gynecopathologist revealed that, at
least in two cases, WSIs were missing unfavorable visual features that
werereportedinthe pathology report (substantial LVSIor high-grade
tumoral areas). We also noted three cases predicted as HECTOR high
risk with a POLE mutation. Although the same experiment confirmed
that the image-based molecular class had little or no effect in the
HECTOR predictions of these instances, these three cases all had
notably FIGO 2009, stage Il or lll disease (Supplementary Table 11).

Morphological correlates of outcome risk
Toidentify the prognostic morphological features that may have been
used by HECTOR, the top 5% regions of the H&E WSIs with the highest
impact on the risk scores (decreasing and increasing) were extracted
and reviewed by an expert gynecopathologist in the internal test set
(Fig. 4a and Supplementary Figs. 18-22). Within the HECTOR low-
risk group, the morphological features decreasing the risk score were
identified as smooth luminal borders, inflamed stroma and intra-
epithelial ymphocytes, intraepithelial neutrophils and abundant
compact normal myometrium without tumor. Morphological features
increasing the risk score in the HECTOR high-risk group were a rag-
ged luminal tumor surface (also referred to as hobnailing), LVSI, solid
tumor growth with marked nuclear atypia, desmoplastic stromal reac-
tion and the presence of mitotic figures (Fig. 4a). Within the HECTOR
low-risk group, we observed morphological features with positive
contribution, although relatively less common, as surface changes
mimicking hobnailing, retraction artifacts mimicking LVSI, loose myo-
metrium with edema mimicking desmoplasia and solid tumor growth
with scattered high-grade nuclear atypia (Extended Data Fig. 3a).
Mitotic activity, inflammatory cell density and the size of the
tumor nuclei were quantified using DL-based image analysis tools
(Fig. 4b and Methods). More inflammatory cells were present in the
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Fig.3 | HECTOR explainability by analysis of HECTOR risk score with
prognostic factors and analysis of input contribution. a, Heatmap of
established prognostic factors for patientsincluded in the internal test set
(n=353 patients) ordered by predicted HECTOR risk scores. Cases with multiple
alterations in POLE, MMR and/or p53 are shown. Cases lacking any of these

three specific molecular alterations are considered as NSMP according to the
World Health Organization 2020 classification of female genital tumors®.

b, Association of the prognostic factors and continuous HECTOR risk scores using
multiple single linear regression with the HECTOR continuous risk scores as the
dependent variable. Data are presented as the coefficients of the linear regression
and 95% Cls (n =353 patients). ¢, Analysis of the contribution to the HECTOR risk
scores of the WSI modality in the internal test set (n = 353 patients), using the IG
method®. TheIG values of the patches were normalized and averaged by WSL.

d, IG-normalized values of the WSIs stratified by histological subtypes (top) and
presence of LVSI (bottom) in the internal test set (n = 353 patients). The box plots
are defined by the center tick as the median value, the lower and upper parts of
the box as the first (Q1) and third (Q3) quartiles, respectively, and the bounds of
whiskersare (Q1 - 1.5 xIQR, Q3 +1.5 xIQR) where IQRis the interquartile range
(Q3 - Ql). Any outlier points beyond the whiskers are displayed with point marks.
e, The contribution of the image-based molecular classes to the continuous
HECTORT isk scorein the internal test set, using the imNSMP as the reference
(ref.) group. The difference in predicted risk score is computed between the risk
score given by the image-based molecular class and the one produced by using
imNSMP.f, The contribution of FIGO 2009 stage to the continuous HECTOR risk
scoreinthe internal test set, using FIGO 2009 stage Il as the reference group.
CCC, clear cell; GR1-3, grades 1-3; SEC, serous; wt, wild-type.

top 5% regions decreasing the risk scores and this effect was more
pronounced inthe HECTOR low-risk group (P=0.011). A higher mitotic
density and larger tumor nuclei were foundin the top 5% regionsin the
HECTOR high-risk group (both P< 0.001). These results remained con-
sistentacrossimage-based molecular classes and FIGO 2009 stages I-111

(Supplementary Figs.23-25) and when filtering in regions containing
tumor cells (Supplementary Fig. 26). In a quantitative spatial analysis,
we computed the overlap of the top 5% regions with the tumor and
invasive border areas (Extended Data Fig. 3b). The latter showed that
the regions increasing the risk scores were picked out more from the
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Fig. 4 |Morphological features contributing to HECTOR risk scores. a, The top
5% of the regions increasing and decreasing the risk score, from the IG method®,
extracted for qualitative review and quantitative analysis. A representative
selection of four patches for each morphological subtype (each selected from
adifferent patient) showed the increasing risk score in the HECTOR high-risk
group (right). Arepresentative selection of four patches for each morphological
subtype (each selected from a different patient) showed the decreasing risk score
inthe HECTOR low-risk group (left). Fach patch is 180 x 180 um? b, Among the

top 5% regions, decreasing and increasing the risk score, inflammatory cells,
mitotic figures and the tumor nuclei area detected and computed with DL-based
image analysis tools'**, The average by patient is reported in the internal test
set (n =353). The box plots are defined by the center tick as the median value,
the lower and upper parts of the box Q1 and Q3 quartiles, respectively, and the
bounds of whiskers are (Q1 - 1.5 xIQR, Q3 + 1.5 xIQR). Any outlier points beyond
the whiskers are displayed with point marks.

tumor thanfromtheinvasive border area. Tumor and invasive border
areas contributed almost the sameinregions decreasing the risk scores,
notably in the HECTOR low-risk group.

Genomicalterations, immune and transcriptional signatures

For comprehensive analysis of the molecular correlates of HECTOR
risk scores, we analyzed the TCGA-UCEC (n = 381 FIGO, stage I-1I1 ECs)
dataset (Fig. 5 and Supplementary Fig. 27). Coding driver mutations
in ARIDIA, CTCF, CTNNBI, FGFR2, KRAS and PTEN were enriched in
the HECTOR low-risk group (all P < 0.005), whereas PPP2RIA and
TP53 mutations were more frequent in the HECTOR high-risk group
(P=2.19x107%and P=2.81x107, respectively) (Fig. 5a and Supple-
mentary Table 12). Using transcriptional data, we performed an
analysis of CIBERSORT-defined lymphocyte populations using multi-
plelinear regression (Fig. 5b). This revealed that increasing HECTOR

scores were positively correlated with memory B cells (P=0.008),
activated dendritic cells (P < 0.001) and resting mast cells (P = 0.029),
andinversely correlated with CD8" T cells (P < 0.001), follicular helper
Tcells (P<0.001), regulatory T cells (P < 0.001) and natural killer (NK)
cell activation (P =0.049). Notably, these associations were inde-
pendent of EC molecular class and tumor mutational burden (TMB)
(Supplementary Table 13). Further transcriptomic analysis (Fig. 5c,
Supplementary Fig.27c and Supplementary Table 15) confirmed that
variation in lymphocyte populations was reflected in the differen-
tial expression of canonical immune cell markers, including CDIC,
BTLA and CD40LG (enriched in the HECTOR low-risk cases). HECTOR
high-risk tumors also demonstrated upregulation of genes predic-
tive of worse outcomes in EC, including LICAM and CLDN6, whereas
HECTOR low-risk cases showed upregulation of genes associated with
hormone signaling (CIorf64 and OVGPI).
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Fig. 5| Genomic and transcriptomic correlations of HECTOR risk groups
using TCGA-UCEC (n = 381). a, Analysis of the mutational frequency of the top
19 genes recognized as key oncogenic alterations in EC for each HECTOR risk
group. b, Association of HECTOR risk score with the immune activation gene
using multiple single linear regressions (Methods). Data are presented as the

coefficients of the linear regression and 95% Cls (n = 381). ¢, Differential gene
expression of HECTOR high-risk versus HECTOR low-risk TCGA-UCEC cases.
Pvalues of the likelihood ratio test were adjusted using the Benjamini-Hochberg
FDR and statistical significance accepted <0.050.

Adjuvant chemotherapy response prediction by HECTOR

The investigation of whether HECTOR could predict the benefit of
chemotherapy for distant recurrence risk was conducted using the
PORTEC-3 randomized trial’. In this trial, patients with high-risk stage
I-11EC were randomized to concurrent and adjuvant external beam
radiotherapy with or without platinum- and paclitaxel-based chemo-
therapy. HECTOR risk scores were predicted on all PORTEC-3 cases
for whom WSI was available (n = 442), which included the patients
who underwent chemotherapy (n = 225). Importantly, these 225
cases had not been used in either training or test sets (Extended
Data Fig. 4, Supplementary Table 14 and Supplementary Fig. 28).

Analysis of distant recurrence-free probabilities by treatment arm
and HECTOR demonstrated a statistically significant interaction
between chemotherapy and HECTORrisk score as either a continuous
or a categorical variable (Pyreraction = 0-014 and Piyreracrion = 0064,
respectively).

We examined this in detail across HECTOR risk groups (Fig. 6a).
Within HECTOR low- (n =92) and HECTOR intermediate-risk (n =177)
groups, outcomes were similarly favorable in both treatment arms,
as evidenced by similar probability of EC distant recurrence (log rank
P=0.244 and 0.807, respectively). In contrast, among women clas-
sified as HECTOR high risk (n =173), those who received adjuvant
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Fig. 6 | Impact of the addition of adjuvant chemotherapy to external beam
radiotherapy on distant recurrence in the PORTEC-3 randomized trial

by HECTORrisk group. a, The 6-year distant recurrence-free probability by
Kaplan-Meier analysis and log rank test P value shown for each HECTOR risk
group stratified by randomly allocated treatment. The Pvalue of the interaction
termusing categorical HECTOR risk group is shown. There was also a significant
interaction between the HECTOR continuous risk scores and the treatment

(Pinteraction = 0.014). b, For comparison with HECTOR selection, distant
recurrence-free probability by Kaplan-Meier analysis from the PORTEC-3 trial
for different gold standard prognostic factors in EC relying on serous histology,
the FIGO 2009 stage Il and the p53abn molecular class is shown. The log rank test
and interaction term Pvalues are displayed. EBRT, external beam radiotherapy;
CT, chemotherapy.

chemotherapy had significantly improved distant recurrence-free
probabilities compared with those treated with external beam radio-
therapy alone (5-year distant recurrence-free probability of 62.2% (95%
Cl:0.511-0.715) versus 42.0% (95% Cl: 0.311-0.526); log rank P = 0.007;
HR=0.561(95%Cl: 0.366-0.862; P= 0.008)). Exploratory analysis sug-
gested thatthe predictive accuracy was greater than that provided by
prognostic factors currently used to identify patients with high-risk
tumors who were likely to benefit from adjuvant chemotherapy, includ-
ing serous histological subtype, FIGO 2009 stage Il and the p53abn
molecular class (Fig. 6b). Further exploratory analyses suggested
that HECTOR also identified patients who benefited from adjuvant
chemotherapy within the NSMP and MMRd molecular classes (Sup-
plementary Figs. 29 and 30). These results remained consistent when
sub-stratifying by the image-based molecular class arm of HECTOR
(Supplementary Fig. 31). Thus, HECTOR demonstrated significant
predictive utility that may exceed that offered by current methods.

Discussion

HECTOR, aDL modeltrained and validated in 2,072 patients with stage
I-IIEC****, with long-term follow-up, predicts postoperative distant
recurrencerisk using only H&E-stained tumor slide(s) of the hysterec-
tomy specimen and anatomical stage. HECTOR obtained C-indices of
0.789,0.828 and 0.815 in three unseen test sets for distant recurrence
outcome. Its performanceis ona par withclinicallyimplemented prog-
nostic DL toolsin other cancer types (C-indices of 0.714 and 0.744 for
colorectal cancer recurrence®, AUC of 0.78 for 10-year prostate cancer
distantrecurrence*’) and also favorably compares with molecular prog-
nostic assays such as OncotypeDX (C-index of 0.641for 10-year breast
cancer distant recurrence*). Notably, HECTOR outperformed the cur-
rent diagnostic gold standard of combined pathological and molecular
analysis for distant recurrence risk prediction, and was also found
to be predictive of adjuvant chemotherapy benefit in the PORTEC-3
randomized trial’. Pending prospective validation, our results suggest
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that HECTOR may have the potential to be a highly effective tool for
individualized prognostication of women with EC, while delivering
shorter turnaround times and reducing testing costs. HECTOR may
also enable biomarker discoveries for improving targeted treatment
decision-making.

HECTOR performance is the result of anew multimodal, integra-
tive, three-arm architecture which leveraged prognostic information
from the H&E WSI, the image-based molecular class from im4MEC"
and anatomical stage®. This multimodal architecture outperformed
alternative DL models using only H&E-based information, corroborat-
ing other studies'®*. Itis interesting that nesting of the im4MEC model
within HECTOR boosted the performance, in contrast to other studies
where integration of copy number variation or transcriptomics did
not improve prediction of overall survival in EC'*. We demonstrated
that the prognostic value of categorical clinical risk factors, such as
the anatomical stage, can be learned end to end by the DL model to
increase predictive accuracy. HECTOR takes a step toward integrating
patient-level imaging, image-based molecular and clinical insights,
whichmay benefit similar studies in other cancer types where unimodal
DL models have been developed onimages only'”%*,

Our preliminary investigations of model explainability and risk
score correlates offer good prospects toimprove our understanding of
the biology of EC and other cancer types. For example, the association
of HECTOR low-risk scores withimmune cell infiltrate is consistent with
datashowingbetter prognosis ofimmune-infiltrated EC'°, although at
presentitis unclear whether HECTOR directly quantified lymphocyte
subtypessuchasT cells from H&E WSIs. The upregulation of CLDN6in
HECTOR high-risk ECs is consistent with this being a predictor of dis-
tant recurrence®. Cases with combined HECTOR high risk and CLDN6
upregulated could be actionable as a chimeric antigen receptor T cell
target**. Although desmoplastic stromal reaction is known to predict
bad prognosisin colorectal cancer, the association that we describein
the present study has not previously been reported in EC*. Whether
this represents a morphological readout of LICAM overexpression*®
is presently unclear. We also confirmed well-established, unfavorable
histopathological risk factors in EC aligning with higher HECTOR risk
scores’. Thus, we expect the outperformance of standard histopathol-
ogy by HECTOR probably being driven by the nonlinear combination
of each factor and, more importantly, the noncategorical processing
of the visual information from the WSls.

HECTOR'’s design holds considerable promise for scaling to
clinical implementation because it is built on two broadly available
and cost-effective inputs routinely obtained in diagnostics: one
H&E-stained tumor slide from which we used the image-based rather
than the true molecular classes and high-level clinical information of
the tumor extension at diagnosis (to the cervix or beyond the uterus
excluding distant) whichisindependent of an evolving FIGO staging
system’. After appropriate validation in a prospective clinical trial
setting, HECTOR may have great potential to individualize triage
of women with EC in the adjuvant setting from low to high risk of
distant recurrence. Subsequent treatment decision-making by clini-
cians could be guided accordingly because HECTOR low-risk predic-
tion could provide a means to de-escalate adjuvant treatment or to
encourage adjuvant systemic therapy recommendation for patients
predicted to be HECTOR high risk (such as chemotherapy** or tar-
geted therapiesin clinical trials*~*’). The therapeutic guidance within
HECTOR high risk can be supported by selective targeted molecular
testing such as MMRd or even DL-based molecular predictions given
agood accuracy". Although our data support that HECTOR could
reduce under- and over-treatment for women with EC, it would also
spare challenges and expenses of resource-limited environments
where molecular testing and expert pathologist review are difficult
or not feasible. We speculate that future technical improvements of
HECTOR could be an extension of its inputs to consecutive digitized
H&E-stained hysterectomy sections followed by three-dimensional

reconstruction®, routinely performed IHC-stained WSIs®', preop-
erative radiology images® or a clinical report encoding patient-level
clinicalinformation®’. Moreover, DL-based assessment of the anatomi-
cal stage by leveraging histology images of the cervical, ovarian and
(or radiology images of) lymph node sections would make HECTOR
independent of pathology review.

Our study has several strengths. Our total cohort of 2,751 patients,
including 3 randomized trials, makes this one of the largest DL-based
prognostic studiesin EC performed to date. Our state-of-the-art multi-
modal DL methodology allowed us to leverage prognostic informa-
tion from multiple factors, including those beyond the H&E image
alone. Expert pathology review and molecular profiling enabled us to
benchmark our methodology against the current gold standardin risk
stratification of EC. Limitations of our study are that our current model
based on multiple instance learning is unaware of the spatial relation-
ship between regions and was not designed to leverage information
between multiple WSIs, both of which may improve performance®*;
although context-aware architectures have not been found toimprove
performance in this task. In addition, complex interactions of the
morphology, molecular and anatomical stage may be further opti-
mized by experimenting with other early-to-late fusion techniques®,
or learning more generalizable morpho-molecular representations
using pretext tasks. Some patients in the study did not undergo surgical
staging lymphadenectomy”*¥, a consideration that may have intro-
duced some noise in the anatomical stage input and may explain the
residual prognostic value of advanced disease stage Il in multivariable
analysis. Given that POLEmut EC mutations rarely metastasize®, we
acknowledge the possibility that the risk may be overestimated in these
rare instances by HECTOR. Furthermore, not all morphological cor-
relates observed in the H&E regions (for example, structural changes)
were quantified in the present study owing to the lack of available
labeled datasets that could have been used for training DL-based,
EC-specific image analysis tools. Importantly, HECTOR performance
needs further validation both in unselected cohorts more diverse
than the ones of largely European ancestry that we examined and in
prospective trials. As such, prospective validation will be conducted
firstin the PORTEC-4a trial’. Moreover, as the therapeutic landscape
of ECisrapidly evolving, the most suitable adjuvant systemic therapy
for HECTOR high-risk patients needs to be continuously validated***
or (prospectively) explored in other randomized trials*~*>*.

In summary, validation and extension of HECTOR could help
delivery of precision medicine to advance prognostication of women
with stage I-1IlEC who underwent primary surgery, withimprovement
worldwide onboth systemic therapy recommendation and treatment
de-escalation.

Online content
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Methods

Ethics statement

ThePORTEC-1,PORTEC-2(NCT00376844)and PORTEC-3(NCT00411138)
study protocols were approved by the Medical Ethical Committee Lei-
den, Den Haag, Delftand the medical ethics committees at participating
centers. Studies were conducted in accordance with the principles of
the Declaration of Helsinki. Ethical permissions for the retrospective
use of the clinical trials and retrospective cohorts (TransPORTEC study,
Medisch Spectrum Twente (MST)) were obtained by the Medical Ethi-
cal Committee Leiden (nos. B21.065 and B21.011), as well as the LUMC
cohort ("(WMO-D4-2023-002) and the Danish Cohort by the Center
for Regional Udvikling, De Videnskabsetiske Komiteer (H-16025909).
Allstudy participants of the clinical trials provided informed consent.
The ethical boards have provided a waiver for informed consent for
the other studies. For the UMCG cohort, the medical ethical commit-
tee granted permission for the use of the data and provided a waiver
forinformed consent owing to the observational nature of the study.

Cohorts

We used formalin-fixed paraffin-embedded (FFPE) tumor material and
clinicopathological data of patients with EC from three randomized
trials and six clinical cohorts. We included study participants of the
female sex, independent of gender identity.

The PORTEC-1 trial recruited 714 women with early stage
intermediate-risk EC from 1990 to 1997, and after primary surgery,
randomly assigned to pelvic external beam radiotherapy or no adju-
vant treatment?®. The PORTEC-2 trial randomized 427 women with
early stage, high- to intermediate-risk EC between 2000 and 2006 to
external beamradiotherapy or vaginal brachytherapy”. The PORTEC-3
randomized trialincluded 660 women with stage I-1ll high-risk EC from
2006 and 2013, and randomly allocated them to pelvic external beam
radiotherapy alone or external beam radiotherapy combined with
concurrent and adjuvant chemotherapy®. The retrospective Trans-
PORTEC study included 116 high-risk EC tumors from international
patients using the same inclusion criteria as the PORTEC-3 from 5
institutions (LUMC and UMCG, the Netherlands; University College
London and St Mary’s Hospital, Manchester, UK; and Institute Gustave
Roussy, Villejuif, France)?. The prospective cohort of MST included 257
patients with stage I-1ll high-risk EC, with the same inclusion criteria as
PORTEC-3, who were treated between 1987 and 2015 at MST, Enschede
in the Netherlands®. The Danish cohort consisted of 451 patients with
high-grade ECwho were prospectively registered in the Danishgyneco-
logical cancer database®®. The UMCG cohort is a population-based
cohort consisting of patients treated at the UMCG between 1984 and
2004, that is, 278 patients with follow-up data collected until 2010
(ref. 31). The LUMC cohort is a retrospectively collected, population-
based cohort of 222 patients diagnosed and treated at the LUMC
between 2012 and 2021. Finally, the publicly available TCGA-UCEC
cohort* of 529 patients was downloaded from the cBioPortal®>*°,

Datasets
Onerepresentative H&E-stained slide of the hysterectomy specimenwas
included for each patient depending onthe availability of the tumor mate-
rial (Supplementary Figs.1and 2, and Supplementary Tables1,2 and 14).
Forthe LUMC cohort, we collected three diagnostic H&E-stained tumor
slides per patient case with EC, each from a different FFPE tumor tissue
block. H&E slides were scanned at x40 magnification using two scanners
3Dhistech P250 (resolution 0.19 um per pixel) and 3Dhistech P1000
(resolution 0.24 pm per pixel). Any image provided in the manuscriptis
anunprocessedscan. Qualitative review was conducted onall WSIs by our
expert pathologist, after which cases with no tumor, poor tissue quality
and out-of-focus scanningissues were excluded, yielding 2,560 cases with
atleastone WSI per case (CONSORT chartin Supplementary Figs.1and 2).
Inthe present study, some cases were excluded fromthe supervised
training of HECTOR based on the following criteria: (1) missing time to

distantrecurrence follow-up data, (2) FIGO 2009 stage IV** because they
already have distant recurrence at time of diagnosis and (3) treatment
with adjuvant chemotherapy because it may have lowered the risk of
distant recurrence®*. The categorical anatomical stages |, Il and Ill are
defined following the FIGO 2009 classification®*. Hence, it represents
atumor confined in the uterus (stage I), a tumor spread to the cervi-
cal stroma (stage II) or to the vagina, adnexa, pelvis and lymph nodes
(stage IlI) at diagnosis. Distant recurrence in the adjuvant setting was
defined asany recurrence outside the pelvis. Hence, distant recurrence
included abdominal metastasis and para-aortic lymph node metastasis.
Time to distant recurrence was defined to start at randomization (for
PORTEC-1, -2 and -3) or date of primary surgery (MST, TransPORTEC
study, Danish, UMCG and LUMC cohort) and to end at the date of the
diagnosis of metastasis, or the date of last follow-up or death in patients
without metastasis. We also stress that adjuvant chemotherapy was not
the standard of care at the time the clinical cohorts were collected and
that the vast majority of patients treated with adjuvant chemotherapy
originated from the PORTEC-3 randomized trial (n = 225).

Following the aforementioned criteria, 2,072 cases were included
for the supervised train-test split: 584 from PORTEC-1 (ref. 26), 395
from PORTEC-2 (ref. 27), 217 from PORTEC-3 (ref. 3), 67 from the
TransPORTEC study?®, 226 from the MST cohort?’, 272 from the
Danish cohort®®, 160 from the UMCG cohort™ and 151 from the LUMC
cohort. Then we held out one internal test set and two external test
sets, all representing an unselected population. The internal test set
was obtained by randomly sampling 20% of the supervised training
set, stratified by discrete timeintervals and censorship statusto ensure
the presence of enough events across time (n =353, of which 116 were
from PORTEC-1, 100 from PORTEC-2, 43 from PORTEC-3, 13 from
the TransPORTEC study, 35 from the MST cohort and 46 from the
Danish cohort; median follow-up of 8.45 years with 62 events). The
first external test set is the UMCG cohort (n =160 patients; 5.32-year
median follow-up time with 14 events). The second external test set is
the LUMC cohort (n =151 patients: 121 with 3 WSIs, 21 with 2 WSIs and
9 with 1WSI; 2.90-year median follow-up time with 24 events). Finally,
the remaining 1,408 WSIs were used for supervised training of HEC-
TOR (468 from PORTEC-1,295 from PORTEC-2, 174 from PORTEC-3, 54
from the TransPORTEC study, 191 from the MST cohort and 226 from
the Danish cohort; median follow-up of 7.77 years with 246 events).

In addition, the HECTOR risk scores were predicted on the pre-
viously excluded, chemotherapy-treated cases from the PORTEC-3
randomized trial® (n =225), as well as the patients with stages I-1ll from
TCGA-UCEC (n =381).

For the self-supervised learning, we used only the 1,408 WSIs
already reserved for supervised training, and thus strictly limited to
only those that were not part of the internal and external test sets. In
addition, the self-supervised learning training was enriched by cases
with any stage of disease, whose treatment or distant recurrence out-
come datawere unknown (n = 454 of which 31 from the TransPORTEC
study, 5fromthe MST cohort, 16 from the Danish cohortand 402 from
TCGA-UCEC), resulting in 1,862 cases for self-supervised learning.

Performance evaluation

Hyperparameter optimization and model comparisons (includ-
ing architecture choices for patch representational learning with
self-supervised learning) were evaluated on the supervised down-
stream task guided by the C-index metric®® (using a tau =10 years
and scikit-survival Python package (v.0.17.2)). To this end, a fivefold
crossvalidation routine was performed on the 1,408 WSIs reserved for
supervised training. The most performant architecture and hyperpa-
rameters were selected based on the highest mean C-index over the five
folds. The final model, referred toas HECTOR, is then retrained on the
full training set and evaluated on to the internal and the two external
test sets (UMCG and LUMC). The cumulative AUC* and Brier scores®
were additionally computed.
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Given the fact that the LUMC external test set contains up to
three WSIs per case, as opposed to one in the internal test set and the
UMCG external test set, we performed multiple experiments to derive
patient-level risk scores using random sampling. First, we randomly
selected one WSI per case and repeated this experiment 100x, yield-
ing amean C-index and Cl. Second, we randomly selected up to two
WSIs for each case when available, then averaged with the mean the
two risk scores per patient and repeated it 100x. Third, we selected
all available WSIs of the external test set with up to three WSIs per
case when available and computed the mean and median of the two
or three risk scores. In an additional experiment, we combined each
patient’s WSIs by merging the patch features from all available WSIs
into asingle feature bag.

WSI preprocessing

WSIsegmentation was performed using Otsu thresholding. Nonover-
lapping patching was performed at 180 um and patches were resized
to 256 x 256 pixels®. On average, this procedure generated a bag of
10,185 patches per WSI.

Vision transformer-based patch representational learning
We followed advancements in self-supervised learning by adopting
vision transformer-based DL models that are capable of learning
fine-grained, patch-level representation at multiple resolutions. For
this, we trained EsVIT®° and compared it with CtransPath®, an alternative
modeltrained onthe histopathology domain (Supplementary Table 3).
We modified theinitial proposed four-stage Swin®, transformer-based
architecture of EsVIT to capture cell-and region-level tissue information
and to fit our computational resources. The patch size of stage 1 was
doubled to 8 pixelsto reduce the sequence length and increase field of
viewto capture cell views. In stages 2-4, we kept the two-factor feature
map merging rate and resized the input images to 256 x 256 pixels®
instead of 224 x 224 pixels® to avoid indivisible patch size at stage 4.
Finally, the number of stacked transformers in stage 3 was reduced from
six tofour and the rest were kept to two. The firstembedding dimension
remained unchanged at 96 and the number of attention heads by stage
wasalsokept unchanged, thatis, 3, 6,12and 24 (Supplementary Table 4).
Adataset of 3,702,447 patches was curated by randomly extracting
up to2,000 patches per WSIat 180 pm resized to 256 x 256 pixels?from
the 1,862 WSIs appointed for self-supervised learning. Thereafter, the
modified EsVIT was trained on 3 Nvidia RTX 8000 GPUs (graphic pro-
cessing units) with abatchsize of 128 for 100 epochs with awindow of
14 toencourage learning of long-term dependencies between patches.
For performance improvement, we also used the view-and region-level
prediction DINO (self-distillation with no labels) heads with no weight
normalization and frozen layers at first epoch and the default output
dimension of 65,536 (ref. 60). We followed the EsVIT authors’ recom-
mendations with a smaller batch size by increasing the momentum
teacher to 0.9996 and starting with the initial teacher temperature of
0.04. Theteacher temperature was adjusted halfway through training
from 0.04 t0 0.02 for further loss decrease. We optimized with AdamwW
and default parameters, default optimization routines of the learning
rate (linear warm-up for ten epochs followed by cosine scheduler to
1x107°) and weight decay (cosine scheduler from 0.04 to 0.4). The data
augmentation was used exactly as done in the original publication®’.
After the training was completed, the patch-level features were
extracted from the attention heads of the stacked transformers at
each stage. For our downstream task, we observed an improvement
by extracting the last 8 blocks compared with the default last 4 men-
tioned in the publication®, yielding feature vectors of size 3,456 (Sup-
plementary Table 3).

Multimodal DL prognostic model
To build the multimodal model for distant recurrence predictiontask,
ablation studies were first performed using the H&E WSI modality only

(referred to as H&E-based, one-arm model) followed by integrating the
image-based molecular classes derived from the H&E-based predic-
tions of im4MEC" (referred to as two-arm model) and the categorical
stage (hence referred to as HECTOR). This section describes HECTOR
with Supplementary Table 5summarizing the architecture and training
parameters, whereas ‘Ablation studies’ provides further details about
some training experiments and the choice of the architecture.

The H&E-based, one-arm model takes as input the bag of 180-pm
patch-level features of size 3,456 extracted from EsVIT®’, where the
number of patches per bag varies. To train toward time-to-event data
and given abatch size of one of the attention-based multiple instance
learning (AttentionMIL) model, the time scale was discretized into
fourintervals based onthe quartiles of the distribution of uncensored
patients and the -log(likelihood loss) was used®".

Within the AttentionMIL model, we reported aslight performance
increase by adding another WSI preprocessing step. Specifically, WSI
morphologicalinformation was spatially and semantically compressed
by averaging highly correlated, nearby patch-level features using a
L2 normthreshold of three patches and a cosine similarity of 0.8. This
stepreduced the bag of features from 10,185 patches on average to1,723
at 180 pm (Supplementary Table 3). Each mean patch-level feature is
compressed by 3 Fully Connected layers gradually down to 512. The
attention module computes attentionscores onlatent features reduced
to 256 before pooling, resulting in aslide-level embedding of size 512.

Toleverage the well-established prognostic value of the molecular
class (here image-based derived from the H&E-based predictions of
im4MEC") and the categorical (FIGO2009) stagel, lland lll variable, and
giventhe AttentionMIL model computes an H&E slide-level embedding
from the patches, we experimented with intermediate-to-late fusion
tointegrate slide-level, image-based molecular class and patient-level
anatomical stage information at the H&E slide-level embedding. We
proposed an approach of first encoding each categorical risk factor
to higher-dimensional vector space with alearnable Embeddinglayer
of size16 followed by Elu activation function and one Fully Connected
layer of size 8. Next, a gating-based attention mechanism with bilinear
product was applied on the embeddings from different modalities to
weight the importance of each modality based on ref. 16. To capture
allinteractions and retain unimodal embeddings, one was appended
to the attention-weighted embeddings and then fused using the Kro-
necker product®. Itisimportant to note that, for using the image-based
molecular class as an input modality for HECTOR, we retrained the
im4MEC model onthe training set specifically designed for the present
study. This was done to avoid any information leakage because some
cases used for training the originalim4MEC model were used as testing
onvalidationin the present study.

The final multimodal embedding was further reduced by using two
Fully Connected layers of size 256 and 128 before the survival categori-
cal head of a Fully Connected layer with output size as the number of
discrete timeintervals. Each Fully Connected layer in the architecture
was followed by adropout of 0.25 and a ReLU activation function.

HECTOR was trained for 24 epochs with an initial learning rate
of 3 x107° decayed by a factor of 10 at epochs 2, 5 and 15. The Adam
optimizer was used with default parameters and a weight decay of
1x107°. HECTOR was also developed by adapting sections of open
access repositories™'*?,

Ablation studies

Tofind first the optimal architecture to predict distant recurrence from
the H&E modality (one-arm model), three state-of-art WSI classifica-
tion architectures were adapted to our distant recurrence prediction
task: AttentionMIL??, a Graph Attention Network following ref. 15, with
aradius up to 32 connected patch nodes and a transformer architec-
ture following ref. 23. Both of these architectures were adapted from
their openaccessrepository. They were both trained on the same fea-
ture bags extracted using EsVIT with a batch size of one and the same
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discrete survivalloss (—log(likelihood loss)). We found that the Atten-
tionMIL architectureyielded a higher C-index thanthe Graph Attention
Network and the transformer in this prognostic task while featuring
far lower computational complexity (Supplementary Table 3), which
corroborates the findings of ref. 15 for TCGA-UCEC.

To incorporate the image-based molecular class predicted by
im4MEC from the H&E WSIS, experiments included: (1) transfer learn-
ing in which the AttentionMIL backbone was pretrained toward the
molecular class and subsequently fine-tuned on the prognostic task;
(2) multitask learning in which asecond training objective wasadded to
predict theimage-based molecular class in addition to the prognosis;
and (3) fusion of the image-based molecular class derived from the
frozenim4MEC model (as extracted fromeither anintermediate layer
or the final predicted categorical class, followed by an Embedding
layer and attention gate). Inexperiment 2, a second classification head
was implemented which was trained using the weighted sum of the
survival loss (-log(likelihood loss)) and the cross-entropy classifica-
tion loss. The weight factor was considered as a hyperparameter and
was optimized using the fivefold crossvalidation. Experiment 3 which
consisted of the inclusion of the predicted categorical class using
an Embedding layer and attention gate resulted in the highest mean
C-index (Supplementary Table 3).

Experiments around fusing the stage category included nota-
bly training with the extended FIGO 2009 taxonomy or a reduced
three-class taxonomy (I, I1and II) followed by an Embedding layer and
attention gate, the latter achieving the highest C-index (Supplemen-
tary Table 3).

Association with clinicopathological data analysis

We performed multiple single linear regression analyses using
the HECTOR continuous risk scores as the dependent variable and
the clinicopathological data as the regressor. Statistical tests were
two sided with statistical significance accepted with Pvalues <0.050.
Regression coefficients and exact P values have been reported in
Supplementary Table 7.

Input contribution
ThelGmethod® was used to measure the contribution of the WSIand to
identify the patches within a WSIrelevant to the prediction of the haz-
ardfunction. Giventhe discrete timeintervals, IG scores were averaged
over the four neuron targets. The IG baseline for feature missingness
was represented as patch-level features derived from white patches.
All1G scores were patient-wise normalized between -1 and +1 while
maintaining the sign and the IG score of zero, and further averaged to
get a WSI-level IG score. Positive IG value toward 1 means that it con-
tributed positively toincrease therisk score, whereas negative means
it contributed to decrease the risk score. Selection of representative
patches was performed once by an expert pathologist within the top
5% patches, increasing and decreasing the risk scores for each case.
The contribution of the predicted image-based molecular class
by im4MEC and the FIGO stage was calculated by fixing the stage-
and image-based molecular class values with the value of our choice
(referred to as the ‘reference group’) followed by computing the dif-
ferenceinpredictedrisk scores. Similar to the IG method, a positive or
negative difference means a positive or negative contribution to the
risk score, respectively.

Cell-level composition

As part of the explainability section of HECTOR to quantify visual
features of extracted patches with high contribution, we first used the
cell segmentation and classification Hover-Net™ DL model to obtain
inflammatory cell counts, retrained on EC-specific WSIs™. Then,
mitotic figures were detected with a pan-cancer DL-based detector®*
that was fine-tuned on EC tissue for the purpose of the present study.
Fine-tuning was performed by extending the original training set®’

with additional data points that we internally annotated in 10 WSIs
fromthe PORTEC datasets selected to cover the variability of EC histo-
logical types. Region-level inflammatory and mitotic activity density
were defined as absolute count normalized by the areain square milli-
meters and further averaged over the number of regions to obtain a
patient-level density value. The size of tumor nuclei was reported in
mm?and averaged by patient. The statistical association between the
HECTOR risk scores and the patient-level quantity of visual features
wastested with linear regressions within the regions of interest, that s,
theregions with either anegative or a positive contribution. Statistical
tests were two sided with statistical significance accepted for Pvalues
<0.050. The coefficients of linear regressions and exact Pvalues were
the following: coefficient —0.0109 (95% CI: -0.019t0-0.002), P=0.011,
for the patient-levelinflammatory density within the negative regions;
and coefficient 0.0447 (95% Cl: 0.033-0.057), P=1.96 x 107 for the
patient-level mitotic density within the positive regions; coefficient
377.916 (95% Cl: 297.677-458.155), P=3.10 x 107, for the patient-level
tumor nuclei area within the positive regions.

Outcome analysis

Analysis of distant recurrence-free probabilities was conducted accord-
ingtothe Kaplan-Meier method and the two-sided log rank test with sta-
tistical significance accepted for P < 0.050. Cutoffs for the HECTOR risk
groups were defined by taking the quantiles (25%, 50% and 75%) of the
distribution of HECTORrisk scoresinthetrainingset only.Inthe training
set, the first two groups (<25% and between 25% and 50%) did not show
any major difference in prognosis and were therefore merged into one
group named the HECTOR low-risk group. As a result, we defined the
HECTOR low-risk group as cases with arisk score below the median risk
score value of the training set, the HECTOR intermediate-risk group as
those with arisk score between median and third quartile values of the
training set and the HECTOR high-risk group as those with arisk score
greater than the third quartile value of the training set. These same
cutoff values were applied to the unseen internal, UMCG and LUMC
external test sets, and the TCGA-UCEC and PORTEC-3.

To compare the DL model performance with well-established
clinicopathological risk factors, we fitted CPH models on these clin-
icopathological risk factors in EC and calculated the corresponding
C-index. First, we used risk factors that can be visually assigned on
histological slides: the histological subtype, the grade and LVSI. Then
we added the FIGO 2009 stage I-1ll variable. Finally, we included the
molecular class of EC (POLEmut, MMRd, NSMP and p53abn). To main-
tain consistency within validation sets in the fivefold crossvalidation
and the internal test sets, missing molecular class (115 out 0of 1,408 in
crossvalidation and 38 out of 353 in the internal test set) was imputed
using mean substitution.

To estimate HECTOR'’s prognostic value as compared to the
clinicopathological risk factors, we computed HRs using CPH with
HECTOR continuous risk scores. For these analyses, we included all
cases with a complete set of clinicopathological and molecular risk
factors (n=1,254). First, we corrected the HECTOR risk scores for
all clinicopathological risk factors combined into one risk score in a
multivariable analysis. To this end, a CPH model was first fitted on to
these clinicopathological risk factors. Then, the derived risk scores,
referred to as ‘clinical’, were calculated by taking the linear combina-
tion of the CPH coefficients and the variables. In the second analysis,
we corrected HECTOR'’s continuous risk scores for the histological
subtype, the grade, LVSI, stage, the molecular class and, in addition,
L1ICAM and age as continuous data in a multivariable analysis.

The histological subtype categorical variable was processed as
grade 3 EEC versus the reference group low-grade EEC and non-EEC
versus thereference EEC. The reference group for molecular class was
NSMP and stage I for the FIGO 2009 stage variable.

All statistical tests were two sided with statistical significance
accepted for Pvalues <0.050.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02993-w

Genomic and transcriptomic correlation analysis

To analyze the frequency of driver mutations by HECTOR risk groups,
the genomic features were extracted from ref. 70 using MC3 MAF
(mutationannotation format) data. The mutational status of the top 19
oncogenicdriversin EC was downloaded from the cBioPortal portal®®
and annotated by OncoKB”'. The statistical comparison of propor-
tions with oncogenic mutations between HECTOR risk groups was
performed using the two-sided x> tests for each individual gene with
P <0.050 accepted as significant. Exact P values and sample size are
reported in Supplementary Table 12.

Theassociationbetween the HECTOR continuous risk scores and
each immune cell subset was performed using the log,(transformed
proportionof theimmune cell subset) as afraction of the whole tumor,
using the leukocyte fraction values. Linear regressions were performed
with the HECTOR continuous risk scores as the independent variable.
Inaddition, we tested the associations by correcting for the molecular
classand TMB as additionalindependent variables. Two-sided Pvalues
<0.050 are accepted as significant. Regression coefficients and exact
Pvalues have been reported in Supplementary Table 13.

Messenger RNA sequencing (mRNA-seq) and clinical data from
TCGA-UCEC were downloaded from firebrowse.org. Differentially
expressed genes were assessed between HECTOR high-risk and HEC-
TOR low-risk cases by DESeq2 (ref. 72) (v.1.40.1). Genes with alikelihood
ratio test Pvalue adjusted using a Benjamini-Hochberg false discovery
rate (FDR) were accepted if <0.050 (Supplementary Table 15).

Analysis of adjuvant chemotherapy effect
We predicted the HECTOR risk scores for the patients included in
the PORTEC-3 (ref. 3) treatment arm who did receive concurrent and
adjuvant chemotherapy (n =225) and, thus, who had been previously
left out from training and any test sets. The effect of the combination
of adjuvant chemotherapy and external beam radiotherapy over
external beam radiotherapy alone was analyzed by: (1) analyzing
distant recurrence-free probabilities by treatment arm stratified by
HECTORTisk group and measuring group-wise treatment effect with
the Kaplan-Meier method and the two-sided log rank test and/or
HR of treatment variable with the univariable Cox’s model; (2) calcu-
lating the statistical significance of the interaction term between
the HECTOR continuous risk scores and the treatment binary vari-
able; and (3) calculating the statistical significance of the interaction
termbetween the HECTOR high-risk group and the treatment binary
variable (corrected for HECTOR intermediate-risk group and using
HECTOR low-risk group as areference group). To measure the statis-
tical significance of the interaction term defined as the HECTOR risk
score (continuous or categorical) multiplied by the treatment binary
variable, a multivariable Cox’s regression analysis was performed.
Similar analyses were performed to test the interaction between
serous histological subtype and the chemotherapy treatment binary
variable (corrected for EEC and clear cell histological subtype), and the
FIGO 2009 stage Il (corrected for stages I-11) and p53abn (corrected
for MMRd, NSMP as areference group and POLEmut tumors removed
toreach convergence).

All statistical tests were two sided with statistical significance
accepted with Pvalues <0.050.

Software and packages

EsVIT and HECTOR were implemented with Pytorch (v.1.8.1and v.1.10.0,
respectively). IG was implemented with Captum Python package
(v.0.6.0), metrics such as the C-index with scikit-survival Python pack-
age (v.0.17.2), CPH models and the Kaplan-Meier method with Lifelines
Python package (v.0.27.1), x> tests with Scipy Python package (v.1.5.2),
boxplot visualizations with altair Python package (v.4.2.0) and linear
regression with statsmodels Python package (v.0.13.5). Differentially
expressed genes were performed using DESeq2 (v.1.40.1)? and R v.4.3.0
(2023-04-21ucrt). Additional packages forimage processingincluded

Openslide Python package (v.1.1.2), OpenCV (v.4.3.0.36) and Pillow
(v.7.2.0). Annotations were done with QuPath (v.0.4.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The tumor material and datasets generated during or analyzed in
the present study are not publicly available owing to restrictions by
privacy laws. Data and tumor material from PORTEC-1, PORTEC-2,
PORTEC-3, MST and the TransPORTEC study are held by the PORTEC
study group and the international TransPORTEC consortium. Data
and tumor material from the Danish cohort are held by the coauthor
of this article, G.@. Data and tumor material from the UMCG cohort
are held by the coauthors of this article, H.W.N. and M.d.B., and from
the LUMC by the coauthors N.H. and T.B. Requests for sharing of all
data and material should be addressed to the corresponding author
within 15 years of the date of publication of this article and include a
scientific proposal. Depending on the specific research proposal, the
TransPORTEC consortium (PORTEC-3 and TransPORTEC study) or the
PORTEC study group (PORTEC-1, PORTEC-2 and MST) or coauthors
G.@.,HW.N. and M.d.B., or N.H. and T.B., will determine when, for
how long, for which specific purposes and under which conditions
the requested data can be made available, subject to ethical consent.
Requests for dataaccess will be processed within a3-month timeframe.
TCGA-UCEC images, mutational status and clinical data are publicly
available via the cBioPortal®>*® for Cancer Genomics at https:/www.
cbioportal.org/study/clinicalData?id=ucec_tcga_pan_can_atlas_2018.
The mRNA-seq data of the TCGA-UCEC were downloaded from
http://firebrowse.org/?cohort=UCEC.

Code availability
The code base is available at https://github.com/AIRMEC/HECTOR.
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Extended Data Fig.1| Overview of the data split and downstream analyses
performed in this study. One representative WSI per patient from an Formalin-
Fixed Paraffin-Embedded (FFPE) block was included. 20% of cases meeting
inclusion criteria were randomly held out for aninternal test set (n =353). The
remaining 80% was used for five-cross validation (n = 1,408 patients). This
training dataset was enriched with dropped WSIs of FIGO 2009 stage IV cases or
those with missing outcome such as the TCGA-UCEC cohort? for training with
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self-supervised learning (n =1,862). Two cohorts were held out as external test
sets, the UMCG external test set (n =160) and the LUMC external test set (n =151).
The LUMC external test set contains up to three FFPE blocks per case. More
details for training and data split are provided in Methods. Altogether, including
the two training steps and all downstream analyses, this comprehensive analysis
comprised data of 2,751 tumors of women. CT, chemotherapy.
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Extended DataFig. 2 | Shifts of attention scores from unimodal to multimodal
model. a, Model using only H&E WSI (unimodal) and a corresponding example of
the normalized attention scores shown as overlaid on the H&E WSl as a heatmap
where red is high attention score and blue low attention score. b, The two-arm
model with H&E WSl and image-based molecular class predicted by im4MEC, and
acorresponding example of the normalized attention scores shown as overlaid
onthe H&E WSI. ¢, The multimodal three-arm HECTOR model with H&E WSI,

image-based molecular class, and stage, and a corresponding example of the
normalized attention scores shown as overlaid on the H&E WSI. d, Density plot of
the normalized attention scores of the heatmap shownin a,b,c for each model.

e, Quantitative analysis of the distribution shift between the three models in the
internal test set (n = 353 patients) using the WSI-level skewness and median of the
normalized attention scores.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02993-w

HECTOR high risk

HECTOR low risk —

-1.0-08-06-04-02 0 02 04 06 08 10
|G score normalized
|

Top 5% regions Top 5% regions
decreasing increasing
risk score risk score
b Top 5% regions decreasing risk score Top 5% regions increasing risk score
= Tumor 807 B HECTOR low risk 807 I HECTOR low risk
Invasive border 704 HECTOR intermediate risk 704 HECTOR intermediate risk
W HECTOR high risk W HECTOR high risk
60 60
S 50 & 50
] g
c c
@ (‘D
© 40 © 40+
(o (o}
o o
30 30
20 20
10+ F\+ 10+
Decreasing s INCreasing _—
risk score |G score normalized risk score 0 T T 0 T T
Tumor Invasive border Tumor Invasive border

Extended Data Fig. 3| Morphological features increasing risk score in
HECTOR high versus low risk group and quantitative spatial analysis.

a, Arepresentative selection of four patches for each morphological subtype
(each selected from a different patient) increasing the risk score in the HECTOR
low risk group as compared to the features increasing the risk score in the
HECTOR highrisk. Each patch is 180 x 180 pm. b, Spatial analysis of top 5% regions
decreasing and increasing the risk score in all WSIs of the LUMC test set based

on the manually annotated areas: tumor and invasive border. (left) An example
showing the annotation of the tumor area and invasive border of one WSIand
heatmap showing the contribution of the regions using the IG methods. (right)
Therelative contribution of these two annotated areas averaged by WSIshown
for each HECTOR risk group. Data are presented as the mean values and standard
deviation (n =414 WSIs).
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analysis of treatment response prediction by HECTOR. In PORTEC-3, 660 available, HECTOR isk scores were inferred. HECTOR risk groups cutoffs were
evaluable patients were randomized (1:1) between adjuvant external beam kept the same as the training set (Methods).

radiotherapy (EBRT) alone and external beam radiotherapy in combination with
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Data collection  Scanning of images was conducted with the 3D Histech P250 and P1000 scanner at 40x magnification. Images were read and pre-processed
with Openslide Python package (version 1.1.2), OpenCV (version 4.3.0.36), and Pillow (version 7.2.0). Annotations were done with QuPath
(version 0.4.1).

Data analysis The custom deep learning model (HECTOR) was developed and trained using Pytorch (version 1.8.1 for the self-supervised learning and
version 1.10.0 otherwise). Integrated Gradient was implemented with Captum Python package (version 0.6.0); metrics such as the
concordance-index with scikit-survival Python package (version 0.17.2); Cox Proportional Hazard models and Kaplan Meier’s method with
Lifelines Python package (version 0.27.1); Chi square tests with Scipy Python package (version 1.5.2); Boxplots visualizations with altair Python
package (version 4.2.0); Linear regression with statsmodels Python package (version 0.13.5). Differentially expressed genes was performed
with DESeq272 (version 1.40.1) and R version 4.3.0 (2023-04-21 ucrt). We made publicly available the code at https://github.com/AIRMEC/
HECTOR.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The tumor material and datasets generated during or analyzed in this study are not publicly available due to restrictions by privacy laws. Data and tumor material
from PORTEC-1, PORTEC-2, PORTEC-3, MST, the TransPORTEC study, are held by the PORTEC study group and the international TransPORTEC consortium. Data and
tumor material from the Danish cohort are held by the coauthor of this article G.O. Data and tumor material from the UMCG cohort are held by the coauthors of
this article H.N and M.B; LUMC by the co-authors N.H and T.B. Requests for sharing of all data and material should be addressed to the corresponding author within
15 years of the date of publication of this Article and include a scientific proposal. Depending on the specific research proposal, the TransPORTEC consortium
(PORTEC-3 and TransPORTEC study) or the PORTEC study group (PORTEC-1, PORTEC-2, MST), or co-author G.O., H.N and M.B, or N.H and T.B, will determine when,
for how long, for which specific purposes, and under which conditions the requested data can be made available, subject to ethical consent. Requests for data
access will be processed within a 3-month timeframe. TCGA-UCEC images, mutational status and clinical data are publicly available via the cBioPortal65,66 for
Cancer Genomics at https://www.cbioportal.org/study/clinicalData?id=ucec_tcga_pan_can_atlas_2018. mRNA-seq data of the TCGA-UCEC were downloaded from
http://firebrowse.org/?cohort=UCEC.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We do not report on sex and gender. The findings of this study relate to endometrial cancer and apply to biologically female
individuals.
We reported in the methods "We included study participants of the female sex, independent of gender identity."

Reporting on race, ethnicity, or  We do not report on race, ethnicity or socially relevant groupings, nor have data related to this.
other socially relevant
groupings

Population characteristics All population characteristics of any cohort used are described in the Supplemental Figure 2 and Supplemental Tables 1,2,14,
in which we report the following characteristics : age, type of tumor, tumor stage, molecular characteristic of the tumor
(POLE mutation, Mismatch repair deficient, p53 abnormality), adjuvant treatment received, and median follow-up time.

Recruitment Cohorts used are the three PORTEC (1/2/3) randomized trials in which recruitment followed the design protocol of the
clinical trials as reported in their original publication as well as in the Methods section. The PORTEC-1 trial recruited 714
women with early-stage intermediate risk EC from 1990 to 1997, and after primary surgery, randomly assigned to pelvic
external beam radiotherapy or no adjuvant treatment. The PORTEC-2 trial randomized 427 women with early-stage high-
intermediate risk EC between 2000 to 2006 to external beam radiotherapy or vaginal brachytherapy. The PORTEC-3
randomized trial included 660 women with stage I-11l high risk EC from 2006 and 2013, and randomly allocated them to pelvic
external beam radiotherapy alone or external beam radiotherapy combined with concurrent and adjuvant chemotherapy.
The retrospective TransPORTEC study included 116 high-risk EC tumors from international patients using the same inclusion
criteria as the PORTEC-3 from five institutions (Leiden University Medical Center, The Netherlands; University Medical Center
Groningen, The Netherlands; University College London, United Kingdom; St Mary’s Hospital, Manchester, United Kingdom;
and Institute Gustave Roussy, Villejuif, France). The prospective cohort of Medisch Spectrum Twente (MST) included 257
patients with stage I-IIl high risk EC, with the same inclusion criteria as the PORTEC-3, who were treated between 1987 and
2015 at MST, Enschede in the Netherlands. The Danish cohort consisted of 451 high-grade EC of patients who were
prospectively registered in the Danish gynecological cancer database. The Leiden cohort is a retrospectively collected
population-based cohort of 222 patients diagnosed and treated at the Leiden University Medical Center between 2012 and
2021.

This study excluded patients if tumor data or material was missing such as an image of the tumor, or missing follow-up data.

Ethics oversight The PORTEC-1, PORTEC-2 (NCT00376844) PORTEC-3 (NCT00411138) study protocols were approved by the Medical Ethical
Committee Leiden — Den Haag — Delft and the medical ethics committees at participating centers. Studies were conducted in
accordance with the principles of the Declaration of Helsinki. Ethical permissions for the retrospective use of the clinical trials
and retrospective cohorts (TransPORTEC study, MST), were obtained by the Medical Ethical Committee Leiden — Den Haag —
Delft (numbers B21.065 and B21.011) as well as the LUMC Cohort (nWMO-D4-2023-002), and the Danish Cohort by the
Center for Regional Udvikling — De Videnskabsetiske Komiteer (H-16025909). All study participants of the clinical trials
provided informed consent. The ethical boards have provided a waiver for informed consent for the other studies. For the
UMCG cohort, the medical ethical committee granted permission of the use of the data and provided a waiver for informed
consent due to the observational nature of the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Deep learning-based methods benefit from the largest possible datasets for a better training and relatively large test sets. No minimum
sample size was calculated in our case as we possessed a sufficiently large cohort of 2,072 patients for training and testing the model. As for
the split between training, validation and testing, we followed standard split by sampling 20% for internal test set, and held out two external
test sets. As a result, the training dataset had 1,408 patients (with 246 clinical events), the internal test 353 patients (with 62 clinical events)
and the first external test set 151 patients (with 24 clinical events) and the second test set contained 160 patients (with 14 events), which is
sufficiently large for having enough events in each set and evaluating the accuracy of the model or using Kaplan-Meir's methods.
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Data exclusions  Exclusion criteria were pre-established before development and testing of the models based on 1) requirements for training the model and 2)
clinical knowledge of the disease based on previous publication. First exclusion criteria are the absence of tumor material or/and tumor data;
artifacts in the digitized tumor slide such as out of focus areas. In our specific study, where the supervised Deep learning-based developed
model is trained to predict distant recurrence-free probability, patients that already had distant recurrence at diagnosis (that is FIGO stage 1V)
and then the ones who received adjuvant chemotherapy were excluded from training-testing. This is because adjuvant chemotherapy likely
reduces this risk as shown in previous clinical publications. Moreover in our dataset in which treatment is known for any patient, the far
majority of patients treated with chemotherapy comes from the PORTEC-3 randomized trial and chemotherapy is not standard of care in the
Netherlands, and rarely given. Therefore, any bias which would exclude a specific type of tumor is very unlikely, as a matter of fact, all the
patients included in this study cover all tumor types, all stages | to lll, and all molecular types. These specificities were all reported in the
manuscript in the Methods as well as in the supplemental data with, for instance, a flow chart indicating exact number of patients being
excluded.

Replication We used 5 fold-cross validation. Furthermore we showed similar performance in 5 fold-cross validation, the internal and external test sets.

Randomization  The external test sets were blindly and randomly held-out. The internal test set was randomly sampled from the entire training set. Similarly,
the 5 fold-cross validation split was performed randomly.

Blinding Our manuscript describes the development and performance of a deep learning model. The developed model was tested one time after
development, in one internal and one external test set and performance was reported. The tumor slide images of internal and external test
sets were therefore completely unseen by the model, and no optimization on the internal nor external test set was performed. Furthermore,
the internal and external test sets were blindly and randomly held-out. Specifically, tumor characteristics in each test set were not analyzed
before testing the model performance in these test sets.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration The PORTEC-1 (there is no registration as clinical trial registration did not exist in the 90s. The PORTEC-1 study was supported by the
grant CKVO 90-01), PORTEC-2 (NCT00376844) PORTEC-3 (NCT00411138)




Study protocol

Data collection

Outcomes

Plants

For the clinical trials that were included in this study, that is the PORTEC-1, PORTEC-2, PORTEC-3, we can provide the protocols as
they are not available online. The PORTEC-1 protocol is in Dutch and the PORTEC-2 and PORTEC-3 in english.

The PORTEC-1 trial recruited 714 women with early-stage intermediate risk EC from 1990 to 1997, and after primary surgery,
randomly assigned to pelvic external beam radiotherapy or no adjuvant treatment. 19 departments of radiation oncology in the
Netherlands took part. The patients were evaluated and treated by their local radiation oncologist. Central blocked randomisation by
telephone was done at the Daniel den Hoed Cancer Centre trial office. The PORTEC-2 trial randomized 427 women with early-stage
high-intermediate risk EC between 2000 to 2006 to external beam radiotherapy or vaginal brachytherapy. 19 Dutch radiation
oncology departments participated. Patient details and answers about eligibility questions were entered by the data managers of the
participating centres. Eligibility check and randomisation were done on the basis of the original pathology diagnosis. Central review of
the pathology was done to assess histological type, stage, and grade. The PORTEC-3 randomized trial included 660 women with stage
I-111 high risk EC from 2006 and 2013, and randomly allocated them to pelvic external beam radiotherapy alone or external beam
radiotherapy combined with concurrent and adjuvant chemotherapy. 103 centres (oncology centres, university hospitals, regional
hospitals, or radiation oncology centres with referrals from regional hospitals) from six clinical trial groups which collaborated in the
Gynaecological Cancer Intergroup. Participating groups were the National Cancer Research Institute (NCRI; UK), Australia and New
Zealand Gynaecologic Oncology Group (ANZGOG; Australia and New Zealand), Mario Negri Gynaecologic Oncology Group (MaNGO;
Italy), Canadian Cancer Trials Group (CCTG; Canada), and Fedegyn (France). Central pathology review was done by reference
gynaecopathologists (as appointed by each participating group before the start of the trial) to determine final eligibility. The slides
and blocks were sent to each participating group's central review pathologists at one gynaecological pathology review site (in France
and Italy), two sites (in the UK and the Netherlands), or five to six sites (in Australia and New Zealand, and Canada), with the result of
the review confirming the patient's eligibility for the trial being sent to the local investigators within 1 week.

This is a deep learning-based study. We predefined the primary outcomes as the performance of the model measured by the
concordance-index between the predicted risk score of distant recurrence and the true time to distant recurrence. Secondary
outcomes were the survival area under the curve (AUC) and the Brier scores. Additionally, we analyzed the distant recurrence-free
probabilities and stratification with the Kaplan Meier's method, the log-rank test and Cox regression analyses.

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

-
was upp//tu. . .
Describe-any-atithentication-procedtures foreach seed stock-tised-or-novel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

>
Q
]
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




	Prediction of recurrence risk in endometrial cancer with multimodal deep learning

	Results

	EC cohorts

	HECTOR design and performance

	Comparison with current prognostic gold standard

	Performance with multiple WSIs

	Association with prognostic factors and input contribution

	Morphological correlates of outcome risk

	Genomic alterations, immune and transcriptional signatures

	Adjuvant chemotherapy response prediction by HECTOR


	Discussion

	Online content

	Fig. 1 Overview of HECTOR.
	Fig. 2 Performance of HECTOR.
	Fig. 3 HECTOR explainability by analysis of HECTOR risk score with prognostic factors and analysis of input contribution.
	Fig. 4 Morphological features contributing to HECTOR risk scores.
	Fig. 5 Genomic and transcriptomic correlations of HECTOR risk groups using TCGA-UCEC (n = 381).
	Fig. 6 Impact of the addition of adjuvant chemotherapy to external beam radiotherapy on distant recurrence in the PORTEC-3 randomized trial by HECTOR risk group.
	Extended Data Fig. 1 Overview of the data split and downstream analyses performed in this study.
	Extended Data Fig. 2 Shifts of attention scores from unimodal to multimodal model.
	Extended Data Fig. 3 Morphological features increasing risk score in HECTOR high versus low risk group and quantitative spatial analysis.
	Extended Data Fig. 4 Overview of the PORTEC-3 randomized trial and analysis of treatment response prediction by HECTOR.




