
Nature Medicine | Volume 31 | October 2025 | 3283–3289 3283

nature medicine

https://doi.org/10.1038/s41591-025-03953-8Consensus Statement

The STARD-AI reporting guideline for 
diagnostic accuracy studies using  
artificial intelligence
 

Viknesh Sounderajah1,2,41, Ahmad Guni1,2,41, Xiaoxuan Liu    3,4, Gary S. Collins    5, 
Alan Karthikesalingam    6, Sheraz R. Markar2,7, Robert M. Golub    8, 
Alastair K. Denniston    3,4, Shravya Shetty    9, David Moher    10, 
Patrick M. Bossuyt11, Ara Darzi    1,2,42, Hutan Ashrafian    1,2,42   &   
STARD-AI Steering Committee*

The Standards for Reporting Diagnostic Accuracy (STARD) 2015 statement 
facilitates transparent and complete reporting of diagnostic test accuracy 
studies. However, there are unique considerations associated with artificial 
intelligence (AI)-centered diagnostic test studies. The STARD-AI statement, 
which was developed through a multistage, multistakeholder process, 
provides a minimum set of criteria that allows for comprehensive reporting 
of AI-centered diagnostic test accuracy studies. The process involved a 
literature review, a scoping survey of international experts, and a patient and 
public involvement and engagement initiative, culminating in a modified 
Delphi consensus process involving over 240 international stakeholders 
and a consensus meeting. The checklist was subsequently finalized by the 
Steering Committee and includes 18 new or modified items in addition to the 
STARD 2015 checklist items. Authors are encouraged to provide descriptions 
of dataset practices, the AI index test and how it was evaluated, as well as 
considerations of algorithmic bias and fairness. The STARD-AI statement 
supports comprehensive and transparent reporting in all AI-centered 
diagnostic accuracy studies, and it can help key stakeholders to evaluate the 
biases, applicability and generalizability of study findings.

Diagnosis is fundamental to delivering effective healthcare. Clinical 
information within electronic health records (EHRs), imaging, labora-
tory tests and pathology can facilitate the timely and accurate detection 
of diseases1–3. For patients, this can provide an explanation for their 
health condition and guide clinicians to choose appropriate treatments, 
potentially improving patient outcomes4,5. Public and global health 
measures are also principally guided by effective diagnostic workflows6.

Diagnostic research is often at risk of producing biased results, 
due to flaws in methodological design and lack of transparency7. It 
has also long been a concern that reporting of diagnostic test research 
is inadequate and inconsistent, leading to substantial research 

misrepresentation and waste8–10. Furthermore, it is often incorrectly 
assumed that the diagnostic accuracy of a test is a fixed characteristic; 
it is now well understood that common diagnostic accuracy measures 
(for example, sensitivity and specificity) can vary across clinical con-
texts, target populations, disease severity and different definitions of a 
reference standard11,12. Key information about the study design, setting, 
participants, index tests, reference standards, analysis and outcomes 
should be reported in all diagnostic test accuracy studies. Missing or 
unclear information hampers safe translation into clinical practice as 
key stakeholders, such as healthcare professionals, regulators and poli-
cymakers, are unable to evaluate the evidence base of a diagnostic test.
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results (items 24–32), discussion (items 33–35) and other important 
information (items 36–40). Subsections are included within methods 
and results to make the checklist clearer to follow and interpret. The 
methods section is subdivided into study design, ethics, participants, 
dataset, test methods and analysis subsections, and the results section 
contains subitems relating to the participants, dataset and test results. 
In line with STARD 2015, a diagram illustrating the flow of participants 
is expected in reports (item 24); a template diagram is available in the 
STARD 2015 publication14. The rationale for new or modified items is 
outlined in Supplementary Table 3. For convenience, the STARD for 
Abstracts checklist is reproduced in Table 3 (ref. 16).

AI poses several considerations in various domains that are often 
not encountered in traditional diagnostic test accuracy studies. In 
particular, STARD-AI introduces several items that focus on data han-
dling practices. These include detailing the eligibility criteria at both 
a dataset level and a participant level (item 7); source of the data and 
how they have been collected (item 11); dataset annotation (item 12); 
data capture devices and software versions (item 13); data acquisition 
protocols and preprocessing (item 14); partitioning of datasets into 
training, validation and test set purposes (item 15b); characteristics 
of the test set (item 25); and whether the test set represents the target 
condition (item 28). These items can substantially affect the diagnos-
tic accuracy outcomes of a study and influence the risk of bias and 
applicability. As well as aiding evaluation of study findings, sufficient 
reporting of these items, in addition to clear explanations of the index 
test and reference standard, may facilitate reproducibility and aid in 
replicating studies. In line with collaborative open science practices, 
STARD-AI encourages disclosure of commercial interests (item 39), 
public availability of datasets and code (item 40a) and the external 
audit or evaluation of outputs (item 40b).

Use of STARD-AI can aid the comprehensive reporting of research 
that assesses AI diagnostic accuracy using either single or combined 
test data and can be applied across a broad range of diagnostic modali-
ties. Examples include imaging, such as X-rays or computed tomog-
raphy scans32; pathology through digital whole-slide images33; and 
clinical information in the form of EHRs34. In addition, studies may use 
other ways besides test accuracy to express diagnostic performance, 
including incremental accuracy gains within diagnostic pathways or 
clinical utility measures35,36. STARD-AI also supports the evaluation 
of multimodal diagnostic tools and can be used in studies that assess 
the diagnostic accuracy of large language models (LLMs), where the 
output consists of a diagnostic classification of differential diagnosis. 
By contrast, if the study focuses on the development or evaluation of a 
multivariable prediction model using regression, machine learning or 
LLM-based approaches to predict diagnostic or prognostic outcomes, 

In response to this, the STARD statement was developed in 2003, 
and was subsequently updated in 2015 (STARD 2015), to standardize the 
reporting of diagnostic accuracy research13,14. By outlining a list of 30 
minimum essential items that should be reported for every diagnostic 
test accuracy study, STARD can improve the quality of study reporting, 
help stakeholders judge the risk of bias and applicability of the findings 
and enhance research reproducibility. The accompanying explanation 
and elaboration document provides the rationale for each item with 
examples of good reporting15. STARD has since been extended to pro-
vide guidance for reporting studies in conference abstracts (STARD for 
Abstracts)16. Evidence suggests that adherence to STARD improves the 
reporting of key information in diagnostic test accuracy studies17,18.

The landscape of clinical diagnostics has shifted considerably since 
the release of STARD 2015. Advances in understanding diseases at both 
population and molecular levels19–22, as well as technological break-
throughs such as AI23,24, could enhance diagnostic capacity and efficacy. 
As a technology, AI may have the unique potential to both improve 
the performance of diagnostic systems and streamline workflows to 
alleviate healthcare resources25. Moreover, diagnostics constitutes a 
substantial proportion of clinical AI focus, with most AI devices achiev-
ing regulatory approval thus far belonging to the diagnostic field26. 
However, research in this field has thus far been conducted without a 
suitable reporting guideline that accounts for the unique properties of 
AI-driven diagnostic systems and the associated challenges.

For the purposes of this guideline, AI refers to computer systems 
that can perform tasks that typically require human intelligence, such 
as classification, prediction or pattern recognition. This includes, but 
is not limited to, machine learning and deep learning models, natural 
language processing tools or foundation models that generate or 
support diagnostic outputs. Systems that include static or manually 
programmed rules without adaptive learning, such as simple decision 
trees, were not included in the scope. AI introduces several additional 
potential sources of bias that are currently not always reported by 
study authors or accounted for by existing guidelines27. These may be 
related to study design, patient selection, dataset handling, ethical 
considerations, index test and reference standard conduct, statistical 
methods, reporting of results and discussion and interpretation of 
findings. Therefore, an accurate evaluation of the clinical applicability 
of AI-centered diagnostic systems is not always possible.

To strengthen the reporting of AI-centered diagnostic accuracy 
studies, the STARD-AI statement was developed. STARD-AI provides 
a checklist of minimum criteria that should be reported in every diag-
nostic test accuracy study evaluating an AI system. It joins several 
complementary EQUATOR Network initiatives that outline reporting 
guidelines for clinical AI studies, including CONSORT-AI for clinical 
trials of AI interventions28, SPIRIT-AI for trial protocols29, TRIPOD+AI 
for prediction and prognostic models30 and CLAIM for medical imag-
ing studies31. Relevant reporting guidelines and their scopes can be 
viewed in Table 1. The aim of STARD-AI is to improve completeness and 
transparency in study reporting, supporting stakeholders to evaluate 
the robustness of study methodology, assess the risk of bias and inform 
applicability and generalizability of study findings. This article outlines 
STARD-AI and describes the process of its development.

The STARD-AI statement
The final STARD-AI statement consists of 40 items that are consid-
ered essential in reporting of AI-centered diagnostic accuracy stud-
ies (Table 2). The development process can be visualized in Fig. 1. A 
downloadable, user-friendly version of the checklist can be found in 
Supplementary Table 2. Four items were modified from the STARD 2015 
statement (items 1, 3, 7 and 25), and 14 new items were introduced to 
account for AI-specific considerations (items 6, 11, 12, 13, 14, 15b, 15d, 
23, 28, 29, 35, 39, 40a and 40b). In a structure similar to STARD 2015, 
the checklist contains items relating to the title or abstract (item 1), 
abstract (item 2), introduction (items 3 and 4), methods (items 5–23), 

Table 1 | Reporting guidelines for AI-based medical devices 
and their scope

Reporting guideline Scope and intended use

STARD-AI Studies evaluating the diagnostic accuracy of an 
AI-based test

TRIPOD+AI Studies developing and validating a prediction 
model using regression or AI-based methods

TRIPOD-LLM Studies developing and validating a prediction 
model using LLMs

CLAIM Studies developing and validating a medical 
imaging AI model

DECIDE-AI Studies reporting the early-stage clinical evaluation 
of an AI-based decision support system

SPIRIT-AI Clinical trial protocols for AI-based interventions

CONSORT-AI Clinical trials evaluating AI-based interventions

CHEERS-AI Studies evaluating the health economics of AI-based 
interventions
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Table 2 | The STARD-AI checklist

Section and topic No. STARD-AI item

Title or abstract

1† Identification as a study reporting AI-centered diagnostic accuracy and reporting at least one measure of accuracy within title or 
abstract

Abstract

2 Structured summary of study design, methods, results and conclusions (for specific guidance, see STARD for Abstracts)

Introduction

3† Scientific and clinical background, including the intended use of the index test, whether it is novel or an established index test and its 
integration into an existing or new workflow, if applicable

4 Study objectives and hypotheses

Methods

Study design 5 Whether data collection was planned before the index test and reference standard were performed (prospective study) or after 
(retrospective study)

Ethics 6* Formal approval from an ethics committee. If not required, justify why.

Participants 7† Eligibility criteria: listing separate inclusion and exclusion criteria in the order that they are applied at both participant level and data 
level

8 On what basis potentially eligible participants were identified (such as symptoms, results from previous tests and inclusion in registry)

9 Where and when potentially eligible participants were identified (setting, location and dates)

10 Whether participants formed a consecutive, random or convenience series

Dataset 11* Source of the data and whether they have been routinely collected, specifically collected for the purpose of the study or acquired 
from an open-source repository

12* Who undertook the annotations for the dataset (including experience levels and background) and how (within the same clinical 
context or in a post hoc fashion), if applicable

13* Devices (manufacturer and model) that were used to capture data; software (with version number) used to engineer the index test, 
highlighting the intended use

14* Data acquisition protocols (for example, contrast protocol or reconstruction method for medical images) and details of data 
preprocessing, in sufficient detail to allow replication

Test methods 15a Index test, in sufficient detail to allow replication

15b* How the index test was developed, including any training, validation, testing and external evaluation, detailing sample sizes, when 
applicable

15c Definition of and rationale for test positivity cutoffs or result categories of the index test, distinguishing prespecified from exploratory

15d* The specified end-user of the index test and the level of expertise required of users

16a Reference standard, in sufficient detail to allow replication

16b Rationale for choosing the reference standard (if alternatives exist)

16c Definition of and rationale for test positivity cutoffs or result categories of the reference standard, distinguishing prespecified from 
exploratory

17a Whether clinical information and reference standard results were available to the performers or readers of the index test

17b Whether clinical information and index test results were available to the assessors of the reference standard

Analysis 18 Methods for estimating or comparing measures of diagnostic accuracy

19 How indeterminate index test or reference standard results were handled

20 How missing data on the index test and reference standard were handled

21 Any analyses of variability in diagnostic accuracy, distinguishing prespecified from exploratory

22 Intended sample size and how it was determined

23* Details of any performance error analysis and algorithmic bias and fairness assessments, if undertaken

Results

Participants and 
dataset

24 Flow of participants, using a diagram

25† Baseline demographic, clinical and technical characteristics of training, validation and test sets, if applicable

26a Distribution of severity of disease in those with the target condition

26b Distribution of alternative diagnoses in those without the target condition

27 Time interval and any clinical interventions between index test and reference standard

28* Whether the datasets represent the distribution of the target condition that one would expect from the intended use population

29* For external evaluation on an independent dataset, an assessment of how this differs from the training, validation and test sets
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use of TRIPOD+AI or TRIPOD-LLM is more appropriate30,37. CLAIM may 
be considered for the development or validation of a medical imag-
ing AI model31, whereas STARD is more applicable where diagnostic 
accuracy of a model is the primary focus. Where relevant, authors can 
consider referring to multiple checklists but may select the guideline 
most aligned with the study’s primary aim and evaluation framework 
for pragmatic reasons.

Discussion
STARD-AI is a new reporting guideline that can support the report-
ing of AI-centered diagnostic test accuracy studies. It was developed 
through a multistage process consisting of a comprehensive item gen-
eration phase followed by an international multistakeholder consensus. 

STARD-AI addresses considerations unique to AI technology, predomi-
nantly related to algorithmic and data practices, that are not accounted 
by its predecessor, STARD 2015. Although it proposes a set of items 
that should be reported in every study, many studies may benefit from 
reporting additional information related to individual study methodol-
ogy and outcomes. STARD-AI should, therefore, be seen as a minimum 
set of essential items and not as an exhaustive list.

Research into clinical diagnostics using AI tools has thus far 
mostly focused on establishing the diagnostic accuracy of models. 
However, there are many challenges to successfully translating AI mod-
els to a clinical setting, including the limited number of well-conducted 
external evaluation studies to date; the lack of comparative and pro-
spective trials; the use of study metrics that may not reflect clinical 
efficacy; and difficulties in achieving generalizability to new popu-
lations38. The deployment of these models into clinical scenarios 
outside research settings has raised concerns that intrinsic biases 
could propagate or entrench population health inequalities or even 
cause patient harm39. Therefore, it is crucial for potential users of 
diagnostic AI tools to focus not only on model performance but also 
on the robustness of the underlying evidence base, primarily through 
identifying flaws in study design or conduct that could lead to biases 
and poor applicability. STARD-AI can help on this front by guiding 
authors to include the important information needed for readers to 
evaluate a study.

Specific AI diagnostic elements to consider include transparency 
in AI models, bias, generalizability, algorithm explainability, clinical 
pathway integration, data provenance and quality, validation and 
robustness and ethical and regulatory considerations. As diagnostic 
tools currently dominate the landscape of regulatory-approved AI 
devices26, guidelines such as STARD-AI may help to enhance the qual-
ity and transparency of studies reported for these devices. Ultimately, 
this may aid the development and deployment of AI models that leads 
to healthcare outcomes that are fair, appropriate, valid, effective and 
safe40. It may also support the deployment of AI models that align with 
Coalition for Health AI principles for trustworthy AI, namely algorithms 
that are reliable, testable, usable and beneficial41,42.

STARD-AI provides many new criteria that outline appropriate 
dataset and algorithmic practices, stresses the need to identify and 
mitigate algorithmic biases and requires authors to consider fair-
ness in both the methods (item 23) and the discussion (item 35) sec-
tions. In this context, fairness refers to the equitable treatment of 
individuals or groups across key attributes, including demographic 

Project Team

Project Team Steering 
Committee

Project Team Steering 
Committee

Project Team Steering 
Committee

Consensus Group

Delphi participants

Delphi participants

Literature
review

55 items
• 45 candidate checklist items
• 10 terminology items 

Delphi round 1
• 209 participants
• n = 45 items

Delphi round 2
• 143 participants
• n = 26 items

Pre-consensus survey
• 37 participants
• n = 45 items

Consensus meeting
• 22 participants
• n = 35 items

STARD-AI checklist
• Finalized

Expert
survey PPIE

Fig. 1 | STARD-AI checklist development process. The checklist was developed 
through a multistage process, including a literature review, expert and public 
input (PPIE), Delphi surveys and a final consensus meeting. The number of 
participants and items assessed at each stage are shown.

Section and topic No. STARD-AI item

Test results 30 Cross-tabulation of the index test results (or their distribution) by the results of the reference standard

31 Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)

32 Any adverse events from performing the index test or the reference standard

Discussion

33 Study limitations, including sources of potential bias, statistical uncertainty and generalizability

34 Implications for practice, including the intended use and clinical role of the index test

35* Ethical considerations and adherence to ethical standards associated with the use of the index test and issues of fairness

Other information

36 Registration number and name of registry

37 Where the full study protocol can be accessed

38 Sources of funding and other support; role of funders

39* Commercial interests, if applicable

40a* Availability of datasets and code, detailing any restrictions on their reuse and repurposing

40b* Whether outputs are stored, auditable and available for evaluation, if necessary

* New items † Modified items

Table 2 (continued) | The STARD-AI checklist
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factors or socioeconomic status. This includes the expectation that 
an AI-based system should not systematically underperform or mis-
classify subgroups of patients in a manner that may reinforce existing 
health disparities. Ensuring model fairness is especially imperative in 
the context of diagnostic AI technology as these may eventually be 
deployed to assist clinical decision-making in population-wide diag-
nostic or screening strategies. If fairness is not considered sufficiently, 
equitable healthcare delivery may be hampered on a population level, 
and disparities between demographic groups may be exacerbated43. 
Datasets used to train, validate and test should ideally be diverse and 
represent the intended target population of the index test evaluated. 
Additional algorithmic practices can further reduce fairness gaps while 
maintaining performance39.

The addition of 10 main items, and 14 subitems in total, increases 
the length of the checklist compared to STARD 2015. Although this 
may be seen as a barrier to implementation, it was deemed necessary 
to address AI-specific considerations that may substantially impact the 
quality of study reporting. Notably, other checklists, such as TRIPOD+AI 
and CLAIM, contain a similar number of total items and subitems30,31. We 
intend to release an explanation and elaboration document to provide 
examples and rationale for each new or modified item in STARD-AI, 
which we briefly outline in Supplementary Table 3. However, many 
of the items remain unchanged from STARD 2015, reflecting that the 
general principles of reporting diagnostic accuracy studies are still 
essential for AI tools. In the meantime, the STARD 2015 explanation and 
elaboration document provides rationale and examples of appropriate 
reporting for the unchanged items15.

STARD-AI is designed to support the reporting of studies that 
evaluate the diagnostic accuracy of an AI tool. However, the increasing 
integration of AI system into clinical workflows highlights the growing 
importance of AI–human collaboration. In many real-world scenarios, 
AI tools are intended not to replace clinical decision-making but, rather, 
to inform or enhance it. Therefore, future studies should also assess 
the impact of AI assistance on end-user performance, in addition to 
reporting the standalone accuracy of the AI system. This should ide-
ally include a comparison to a baseline in which clinical decisions are 
made without AI, which will aid in evaluating the clinical utility of AI on 
decision-making and workflows44. The experience and expertise of end 

users will also be important in determining performance outcomes. 
Addressing these elements moving forward may require the develop-
ment of a separate consensus.

Although STARD-AI was developed prior to the wider introduction 
of generative AI and LLMs, many of these items nevertheless remain 
applicable to generative AI models that report diagnostic accuracy. 
Unlike classical AI models, which are typically trained on labeled data-
sets for specific tasks, LLMs and transformer-based architectures are 
generally pretrained on large-scale, unstructured datasets and can 
be subsequently finetuned for specific diagnostic tasks. Although 
STARD-AI can be applied to studies that investigate generative AI and 
future advances in AI platforms, it is likely that STARD-AI and other com-
plementary guidelines will need to be regularly updated in response 
to the rapidly shifting nature of this field. Next-generation generative 
AI technology may consist of multimodal and generalist models that 
input medical and biomedical data to improve predictions45–47. Further 
advances in fields such as reinforcement learning48,49, graph neural 
networks50,51 and explainable AI (XAI) solutions52 may also substantially 
change the landscape of health AI and require new considerations in 
the next iteration of reporting guidelines.

The rapid pace of technological advancement may also present 
inherent limitations to reporting guidelines. Although many of the 
STARD-AI items remain applicable to newer forms of AI, including 
foundation models and multiagent systems, the increasing complex-
ity and versatility of these tools may challenge traditional concepts 
of diagnostic evaluation. Emerging systems may provide differential 
diagnoses ranked on probability or even interact dynamically with 
users via natural language and adapt outputs based on population 
characteristics or user expertise. These capabilities extend beyond 
conventional frameworks and may not be fully captured by traditional 
diagnostic accuracy metrics alone. Although STARD-AI offers a strong 
foundation for transparent reporting, complementary frameworks 
such as CRAFT-MD may be better suited for evaluating different forms 
of AI-driven clinical support53.

We are confident that STARD-AI will prove useful to many stake-
holders. STARD-AI provides study authors with a set of minimum cri-
teria to improve the quality of reporting, although it does not aim to 
provide prescriptive step-by-step instructions to authors. If adopted 
as a reporting standard before or during manuscript submission to 
journals, editors and reviewers may be able to more effectively appraise 
submissions; its use by journals may also help to ensure that all infor-
mation essential for readers is included in the published article. In the 
future, it may be possible that AI-based tools, such as LLMs, may assist in 
prescreening manuscripts for STARD-AI adherence, offering a scalable 
means to support checklist compliance during peer review and edito-
rial assessment. Beyond the academic field, policymakers, regulators 
and industry partners are recommended to incorporate STARD-AI 
where the requirement for transparency of evidence is universally 
recognized, as well as complementary reporting guidelines within 
the EQUATOR Network54, in clinical AI product and policy assessments 
to better guide downstream decisions and recommendations. End 
users such as clinicians may be able to more effectively evaluate the 
clinical utility of AI systems to their patient populations prior to use, 
and patients may benefit from the eventual outcome of higher-quality 
research.

Conclusion
Diagnostic pathways stand to benefit substantially from the use 
of AI. For this to happen, researchers should report their findings 
in sufficient detail to facilitate transparency and reproducibility. 
Similarly, readers and other decisionmakers should have the neces-
sary information to judge the risk of bias, diagnostic accuracy test 
determinants, clinical context and applicability of study findings. 
STARD-AI is a consensus-based reporting guideline that clarifies these 
requirements.

Table 3 | STARD for Abstracts16

Section and topic No. Item

1 Identification as a study of diagnostic accuracy 
using at least one measure of accuracy (such as 
sensitivity, specificity, predictive values or area 
under the curve)

Background and 
objectives

2 Study objectives

Methods 3 Data collection: whether this was a prospective 
or retrospective study

4 Eligibility criteria for participants and settings 
where the data were collected

5 Whether participants formed a consecutive, 
random or convenience series

6 Description of the index test and reference 
standard

Results 7 Number of participants with and without the 
target condition included in the analysis

8 Estimates of diagnostic accuracy and their 
precision (such as 95% confidence intervals)

Discussion 9 General interpretation of the results

10 Implications for practice, including the intended 
use of the index test

Registration 11 Registration number and name of registry
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Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41591-025-03953-8.
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Methods
STARD-AI is an international initiative that seeks to provide a multi-
stakeholder consensus on a reporting guideline for AI-centered diag-
nostic test accuracy studies. A Project Team comprising experts in 
this field (V.S., X.L., G.S.C., A.K., S.R.M., R.M.G., A.K.D., S. Shetty, D.M., 
P.M.B., A.D. and H.A.) coordinated the development process, made 
key methodological decisions and managed day-to-day operations. 
In addition, a Steering Committee was selected by the Project Team 
to oversee the guideline development process and provide strategic 
oversight, consisting of a diverse panel of international stakeholders 
with expertise in healthcare, computer science, academia, journal edit-
ing, epidemiology, statistics, industry, medical regulation and health 
policymaking. The Consensus Group, distinct from the Project Team 
and Steering Committee, included invited stakeholders who partici-
pated in the Delphi process and consensus meeting. Additional Delphi 
participants, who were not part of the Consensus Group or committees, 
contributed to the online survey rounds. The development process is 
visualized in Fig. 1. A full list of members of the Steering Committee 
and Consensus Group is provided in a footnote at the end of the article.

STARD-AI was announced in 2020 after the publication of a cor-
respondence highlighting the need for an AI-specific guideline in this 
field55. The initiative to develop the reporting guideline was registered 
with the EQUATOR Network in June 2020, and its development adhered 
to the EQUATOR Network toolkit for reporting guidelines54. A protocol 
that outlined the process for developing STARD-AI was subsequently 
published56.

Ethical approval was granted by the Imperial College London Joint 
Research Compliance Office (SETREC reference number: 19IC5679). 
Written informed consent was obtained from all participants in the 
online scoping survey, the patient focus group and the Delphi con-
sensus study.

Candidate item generation
A three-stage approach was employed to generate candidate items, 
consisting of a systematic review, an online survey of experts and a 
patient and public involvement and engagement (PPIE) exercise. Details 
of this stage can be found in the study protocol56. First, a systematic 
review was conducted to identify relevant articles. A member of the pro-
ject team (V.S.) performed a systematic search of MEDLINE and Embase 
databases through the Ovid platform, as well as a non-systematic 
exploration of Google Scholar, social networking platforms and articles 
personally recommended by Project Team members. Two authors (V.S. 
and H.A.) independently screened abstracts and full texts to identify 
eligible studies, with any disagreements mediated by discussion. This 
review built upon the findings of a prior systematic review conducted 
by members of the STARD-AI team, which evaluated the diagnostic 
accuracy of deep learning in medical imaging and highlighted wide-
spread variability in study design, methodological quality and report-
ing practices32. Themes and material extracted from included articles 
were used to establish considerations unique to AI-based diagnostic 
accuracy studies and to highlight possible additions, removals or 
amendments to STARD 2015 items. These considerations were subse-
quently framed as potential candidate items.

Second, an online survey of 80 international experts was carried 
out. This generated over 2,500 responses, relating to existing STARD 
2015 items and potential new items or considerations. Experts were 
selected to reflect the full diagnostic AI continuum, including those 
with expertise in conventional diagnostic modalities, AI develop-
ment and statistical methods, for diagnostic accuracy. This breadth of 
expertise was intended to ensure that candidate items reflected both 
the technical and clinical aspects of AI-centered diagnostic evaluation. 
Responses were grouped thematically to generate candidate items. 
Patients and members of the public were then invited to an online focus 
group through Zoom (Zoom Video Communications) in order to pro-
vide input as part of a PPIE exercise. This provided a patient perspective 

on issues that were not uncovered during the literature review or expert 
survey. Although no new domains were introduced from the PPIE 
exercise, participants placed increased emphasis on the importance 
of ethics and fairness, particularly in relation to how AI may impact dif-
ferent patient subgroups or exacerbate existing health disparities. As 
these elements were not a major focus of the original STARD guideline, 
their prioritization during the consensus process helped to refine the 
framing and inclusion of items in the final checklist. A list of 55 items, 
including 10 terminology-related items and 45 candidate checklist 
items, was finalized by the Project Team and Steering Committee and 
entered the modified Delphi consensus process.

Modified Delphi consensus process
Experts were invited to join the STARD-AI Consensus Group and partici-
pate in the online Delphi surveys as well as the consensus meeting. The 
Project Team and Steering Committee identified participants on the 
basis of being a key stakeholder, ensuring to account for a diversity in 
geographics and demographics to maintain a representative panel. All 
invited participants were provided with written information about the 
study and given 3 weeks to respond to the initial invitation. The Delphi 
process included more than 240 international participants, including 
healthcare professionals, clinician scientists, academics, computer 
scientists, machine learning engineers, statisticians, epidemiologists, 
journal editors, industry leaders, health regulators, funders, patients, 
ethicists and health policymakers.

The first two rounds of the Delphi process were online surveys 
conducted on DelphiManager software (version 4.0), which is main-
tained by the Core Outcome Measures in Effectiveness Trials (COMET) 
initiative. Participants were asked to rate each item on a five-point 
Likert scale (1, very important; 2, important; 3, moderately important; 
4, slightly important; 5, not at all important). Items receiving 75% or 
higher ratings of ‘very important’ or ‘important’ were immediately put 
forward for discussion in the final round. Items achieving 75% or more 
responses of ‘slightly important’ or ‘not at all important’ were excluded. 
Items that did not achieve either threshold were entered into the next 
round of the Delphi process. The 75% threshold was pre-set before the 
beginning of the process. Participants were also given the opportunity 
to provide free-text comments on any of the items considered or to 
suggest new items. These were used by the Project Team to rephrase, 
merge or generate new items for subsequent rounds. The stakeholder 
groups represented in the Delphi rounds are outlined in Supplementary 
Table 1. A full list of participants in the online survey and Delphi rounds 
is provided in the Supplementary Note.

The first round was conducted between 6 January and 20 Febru-
ary 2021. Invitations were extended to 528 participants in total, of 
whom 240 responded (response rate of 45%). Of the participants who 
responded, 209 fully completed the survey (completion rate of 87%). 
Forty-five candidate checklist items were rated after the multistage 
evidence generation process. Free-text comments were collected for 
these items and also for the 10 terminology items. Twenty-three can-
didate items achieved consensus for ‘very important’ or ‘important’ 
and were formally moved into the consensus meeting. Fifteen items 
were removed or replaced by an amended item based on participant 
feedback. Seven items did not achieve consensus, and 19 additional 
items were constructed after feedback from participants, resulting 
in 26 total items put forward to the second round. The second round 
was conducted between 21 April and 4 June 2021. Invitations were sent 
to 235 participants, of whom 203 responded (response rate of 86%), 
and 143 completed the survey (completion rate of 70%). Users were 
again asked to rate each item and add free-text comments. A majority 
consensus was achieved for 22 items.

Forty-five items reached consensus over the first two rounds. As 
this was deemed too many to include in an instrument, a pre-consensus 
survey consisting of 37 members of the Project Team, Steering Com-
mittee and other key external stakeholders was conducted to agree on 
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a final list of items for discussion in the consensus meeting, receiving a 
100% response rate. Participants were asked to rate whether each item 
should be included in the instrument as a standalone item, included in 
the accompanying explanation and elaboration document or excluded 
from the process. Twenty-two items received a majority consensus for 
inclusion in the final checklist; 13 items did not reach the 75% predefined 
threshold; and 10 items were excluded from the process. In total, 35 
items were finalized for discussion at the consensus meeting.

The virtual consensus meeting took place on 1 November 2021 
and was chaired by D.M. An information sheet was pre-circulated to all 
participants, and individual consent was obtained. In total, 22 delegates 
representing all of the key stakeholder groups attended the meeting. 
Items were discussed in turn to gain insight into content that warrants 
inclusion in the checklist, particularly focusing on the 13 items that 
did not reach consensus from the Delphi process. Voting on each item 
was anonymized using the Mentimeter software platform. After this, a 
meeting among key members of the Steering Committee finalized the 
checklist based on the outcome of the consensus meeting.
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