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Soluble MAdCAM-1 as a biomarker in 
metastatic renal cell carcinoma
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Patients with metastatic renal cell carcinoma treated with immune 
checkpoint inhibitors or antiangiogenic tyrosine kinase inhibitors  
may develop resistance driven by gut dysbiosis, which disrupts the  
MAdCAM-1–α4β7 axis and promotes the recruitment of immunosuppressive  
IL-17-producing T regulatory (Tr17) cells into tumors. We evaluated soluble 
MAdCAM-1 (sMAdCAM-1) as a prognostic biomarker in 1,051 patients 
from three cohorts: JAVELIN Renal 101 (avelumab plus axitinib versus 
sunitinib), SURF (sunitinib) and NIVOREN (nivolumab after tyrosine kinase 
inhibitors). In the JAVELIN cohort, baseline sMAdCAM-1 levels >180 ng ml−1 
were associated with significantly improved progression-free survival 
(13.9 versus 8.4 months, P < 0.01) and overall survival (18 months: 84.2% 
versus 68.1%, P < 0.01), independent of IMDC risk groups. We validated 
the prognostic value of sMAdCAM-1 for overall survival in the SURF and 
NIVOREN cohorts. Notably, low sMAdCAM-1 levels were associated with 
an immunosuppressive gut microbiota profile dominated by Enterocloster 
species. Therefore, sMAdCAM-1 deserves further investigations as a 
biomarker-guided tool for microbiota-targeted interventions.
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While cancer immunotherapy revolutionized the clinical manage-
ment of patients with cancer, resistance remains a major challenge1. 
The study of biomarkers offers a pathway to decipher immunotherapy 
resistance, tailoring treatment to each patient’s unique profile and 
tumor biology2. Over the past decade, gut microbiota has emerged 
as a key modulator of the efficacy of immunotherapy3–5 and tyrosine 
kinase inhibitors (TKIs)6,7 across cancer types. Studies heralded the 
deleterious effects of broad-spectrum antibiotics taken around the 
first administration of the immunostimulatory immune checkpoint 
inhibitors anti-PD-1, anti-PD-L1 and anti-CTLA-4 monoclonal anti-
bodies on response rates and survival of patients across various 

cancer types and immune checkpoint inhibitors (ICIs) regimens 
(alone or combined with chemotherapy or TKI)4,8. Several factors, 
including certain comedications (such as antimicrobials), chronic 
inflammatory diseases and cancer itself, may cause a deviation of 
the microbial repertoire from healthy intestinal commensalism, a 
phenomenon known as gut dysbiosis9,10. Notably, prior exposure 
to TKIs before initiating nivolumab has also been shown to alter 
the gut microbiota composition, potentially affecting subsequent 
immunotherapy efficacy11. Gut dysbiosis has been linked to altered 
gut and blood metabolomes, systemic inflammation and circulating 
CD8+ T cell exhaustion12.
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Causal links between gut dysbiosis and resistance to cancer 
immunotherapy have been demonstrated in preclinical models and 
proof-of-concept clinical trials. Interventions aimed at restoring a 
favorable microbiota, such as fecal microbial transplantation from 
patients who benefited from ICI or from healthy volunteers, in indi-
viduals with metastatic melanoma13–16, lung cancer17 and renal cell car-
cinoma (RCC)11,18,19, or oral administration of the probiotic Clostridium 
butyricum strain CBM 588 in patients with metastatic RCC (mRCC)7,20,21 
have yielded encouraging results. These findings have spurred efforts 
to refine the diagnosis of gut dysbiosis, with the prospect of identify-
ing participants who need to restore intestinal integrity to enhance 
responses to ICI.

The most comprehensive methodology to assess baseline gut 
dysbiosis relies on metagenomic shotgun sequencing (MGS) of fecal 
material11,22. Large MGS datasets have enabled the development of 
microbiota-based biomarkers based on machine learning23 or custom 
scoring based on quantitative polymerase chain reaction24. Unmasking 
mechanisms by which antibiotics mediate their immunosuppressive 
effects has led to the discovery of a circulating biomarker, sMAdCAM-1, 
linked to a specific compositional shift of the intestinal microbiota 
and clinical outcomes in patients with lung cancer and genitourinary 
cancers25. Indeed, the relative overdominance of the genus Entero-
closter induces the downregulation of MAdCAM-1 in high endothelial 
venules of the ileal lamina propria and mesenteric lymph nodes, lead-
ing to migration and tumor homing of enterotropic interleukin-17 
(IL-17)-producing immunosuppressive T cells, which express the α4β7 
heterodimeric MAdCAM-1 receptor25. Notably, MAdCAM-1 is shed into 
the blood with sMAdCAM-1 levels reflecting the ileal expression of 
MAdCAM-1 (ref. 25). Remarkably, low sMAdCAM-1 levels were associ-
ated with poorer prognosis in three independent cohorts of patients 
with cancer treated with ICI-based regimens after first line of therapy25.

In the current work, we asked whether sMAdCAM-1 levels could 
serve as a biomarker of an immunosuppressive microbiota linked 
to resistance to ICI and/or TKI regimens, specifically in patients with 
mRCC. We investigated the distribution and biological significance of 
baseline and on-treatment sMAdCAM-1 levels in the following three 
independent cohorts of patients with mRCC: the JAVELIN Renal 101 
trial (NCT02684006)26,27, the SURF trial (NCT02689167)28 and the 
GETUG-AFU26-NIVOREN trial (NCT03013335)29.

Results
Distribution of sMAdCAM-1 in individuals with mRCC 
compared with controls
We measured sMAdCAM-1 levels using a Luminex assay in two inde-
pendent cohorts of healthy volunteers. The first was the Weill Cornell 
Medicine Employees (WELCOME) cohort, comprising 75 healthcare 
workers from Weill Cornell Medicine in the USA (median age = 42 years, 
range = 26–75; predominantly female (76%))30. The second was the 
Belgian Flemish study on Environment, Genes and Health Outcomes 
(FLEMENGHO) cohort, including 49 healthy individuals (median 
age = 63 years, range = 59–66; predominantly male (56%))31. The train-
ing cohort consisted of patients included in the phase 3 randomized 
JAVELIN Renal 101 trial (NCT02684006) with available plasma samples 
(68% of the intent-to-treat population). Overall, patients were mostly 
male (74%), with a median age of 61 (27–85) years and of intermediate 
International Metastatic RCC Database Consortium (IMDC) risk (62%; 
Table 1 and Extended Data Fig. 1a). All patients had an Eastern Coopera-
tive Oncology Group (ECOG 0–1) and clear-cell histology. The median 
follow-up was 18.9 months. The validation cohorts comprised the fol-
lowing two prospective phase 2 trials: SURF (NCT02689167), a prospec-
tive trial that evaluated two different sunitinib schedule modifications 
in patients with mRCC experiencing sunitinib-related toxicity; NIVOREN 
(NCT03013335), a prospective real-world setting study of nivolumab 
after antiangiogenic TKI. In the NIVOREN cohort, patients were mostly 
male (80%), with a median age of 65 years (range = 22–87) and ECOG 

0–1 (86%). In the SURF cohort, patients were mostly male (80%), with 
a median age of 64 years (range = 29–84) and ECOG 0–1 (96%).

The median sMAdCAM-1 concentrations were 196 and 178 ng ml−1 
in the WELCOME and FLEMENGHO cohorts, respectively, with no sig-
nificant difference between the two (P = 0.3173; Fig. 1a). The median 
value of sMAdCAM-1 was 187 ng ml−1 for all healthy volunteers (both 
WELCOME and FLEMENGHO cohorts merged). In patients with mRCC 
enrolled in the JAVELIN Renal 101 trial (Extended Data Fig. 1a), the 
median values of sMAdCAM-1 at baseline were 234 and 238 ng ml−1 
for the avelumab + axitinib and for the sunitinib arms, respectively 
(Fig. 1b). In patients with mRCC enrolled in the SURF and NIVOREN 
trials (Extended Data Fig. 1b,c), the median values of sMAdCAM-1 were 
169 and 139 ng ml−1, respectively (Fig. 1c). Patients with refractory 
mRCC had lower sMAdCAM-1 levels at baseline compared with patients 
treated in the first-line setting and healthy volunteers (Fig. 1d). Addi-
tionally, we observed increased proportions of patients presenting low 
sMAdCAM-1 levels (<180 ng ml−1) in the poor IMDC risk factor group 
compared with patients in the favorable or intermediate IMDC risk 
groups (Fig. 1e; P = 0.0003 for avelumab + axitinib arm and P < 0.0001 
for sunitinib arm). In line with this finding, sMAdCAM-1 levels also 
correlated with the main circulating inflammatory cytokines, IL-6 and 
IL-8 (P < 0.001 and P = 0.010, respectively; Fig. 1f,g). A weak correlation 
between age and baseline sMAdCAM-1 levels was also observed (Spear-
man’s ρ = 0.15, P = 0.09) in the training cohort, while no correlation was 
observed in the NIVOREN (Spearman’s ρ = −0.06867 and P = 0.2538) or 
SURF (Spearman’s ρ = 0.00144, P = 0.9847) validation cohorts, using 
single-agent nivolumab and single-agent sunitinib, respectively. More-
over, sMAdCAM-1 and the estimated glomerular filtration rates were 
positively and very weakly correlated (Spearman’s ρ = 0.16, P = 0.03).

These findings suggest that lower sMAdCAM-1 levels may be asso-
ciated with advanced mRCC and dismal prognosis.

Low levels of sMAdCAM-1 are associated with reduced survival in 
the training cohort. The optimal cut-off was 180 ng ml−1 (25% percen-
tile) based on the overall survival (OS) outcome in the whole population. 
Restricted cubic spline and residual plots further confirmed a nonlin-
ear relationship of sMAdCAM-1 levels with OS (Extended Data Fig. 2). 
Notably, the population included in the sMAdCAM-1 analysis was com-
parable to the intent-to-treat population in terms of survival outcomes 
(Extended Data Fig. 3a).

Overall, patients who had higher sMAdCAM-1 levels (>180 ng ml−1) 
experienced improved progression-free survival (PFS; median = 13.9 
(11.3, 16.6) versus 8.4 (6.0, 9.9) months, P < 0.01) and OS (median = not 
reached (NR) (30.0, NR) versus 24.6 (22.2, NR) months; 18-month OS 
rates were 84.2% (80.2%, 87.4%) versus 68.1% (59.2%, 76.5%), P < 0.01; 
Extended Data Fig. 3a,b). These associations remained significant 
after adjusting for IMDC risk groups (Extended Data Table 1). The sur-
vival advantage of high sMAdCAM-1 levels was independent of study 
arm—median PFS was 18.0 (13.4, 21.0) versus 8.7 (6.0, 13.8) months 
and 18-month OS rates were 85.2% (79.6%, 89.3%) versus 75.6% (64.0%, 
84.0%) for the avelumab + axitinib arm (Fig. 2a,b); median PFS was 
11.1 (8.6, 13.9) versus 6.9 (5.6, 11.1) months and 18-month OS rates were 
83.2% (77.1%, 87.8%) versus 58.6% (44.3%, 70.5%) for the sunitinib arm 
(Fig. 2c,d; Pinteraction = 0.798 and 0.370 for PFS and OS, respectively). 
The prognostic model incorporating IMDC + sMAdCAM-1 demon-
strated a significant improvement in the area under the curve (AUC) 
at 18 months compared to the IMDC model alone (0.72 versus 0.68; 
P = 0.01; Extended Data Table 1).

We conclude that sMAdCAM-1 <180 ng ml−1 is a negative prognos-
tic biomarker in patients with mRCC treated with first-line therapy, 
irrespective of the systemic treatment.

Low levels of sMAdCAM-1 are associated with reduced OS in the 
validation cohorts. The percentage of patients with mRCC presenting 
with sMAdCAM-1 <180 ng ml−1 was 59% and 76% in the validation SURF 
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Fig. 1 | Distribution of sMAdCAM-1 levels in patients with mRCC cohorts 
compared to healthy volunteers. a–c, Violin plots with overlaid boxplots 
showing the distribution of sMAdCAM-1 concentrations across cohorts of 
healthy volunteers (HVs) from the USA (n = 75) and Belgium (n = 49; a), in 
the training cohort of patients treated with first-line sunitinib (n = 284) or 
first-line axitinib plus avelumab (n = 319; b) and in the validation cohorts of 
patients treated with first-line sunitinib (n = 170) or second-line or later-line 
nivolumab (n = 278; c). The box bounds are the Q1, median and Q3; the whiskers 
show Q1 − 1.5× the interquartile range (IQR) and Q3 + 1.5× the IQR. Statistical 
comparisons between groups were performed using a two-sided Wilcoxon 
rank-sum test without adjustments for multiple comparisons; exact P values 
are shown. d, Violin plots with overlaid boxplots showing the distribution of 
sMAdCAM-1 concentrations across healthy volunteers (n = 124) and patients 

treated with first-line (1L) or second-line (2L) therapies (n = 1,051). The box 
bounds are the Q1, median, and Q3; the whiskers show Q1 − 1.5× the IQR and 
Q3 + 1.5× the IQR. Statistical comparisons between groups were performed 
using a two-sided Wilcoxon rank-sum test without adjustments for multiple 
comparisons; exact P values are shown. e, Bar plots show the number and 
percentage (in parentheses) of individuals with low sMAdCAM-1 concentrations 
(≤180 ng ml−1) by IMDC risk group in the training cohort. f,g, Scatterplots 
showing the relationship between MAdCAM-1 concentrations and IL-6 (f) 
and IL-8 (g) in plasma samples. Each point represents an individual sample 
measurement. The solid line represents the linear regression fit, with the shaded 
area representing the 95% CI of the fitted regression line. Statistical comparisons 
between groups were performed using a two-sided Spearman test without 
adjustments for multiple comparisons; exact P values are shown.
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and NIVOREN cohorts, respectively. The SURF cohort included two 
patients with nonclear cell histology, both of whom were in the low 
sMAdCAM-1 group. The low sMAdCAM-1 group had a higher propor-
tion of patients with ECOG >2 (P = 0.04) and a poor-risk IMDC group 
(P < 0.01). In the NIVOREN cohort, these patients also had more bone 
metastatic sites at study inclusion (P = 0.002). The median follow-up 
was 34 (1.0, 70.0) and 21.8 (20.2, 22.7) months in the SURF and NIVOREN 
cohorts, respectively. Patients with higher sMAdCAM-1 levels had a 
numerical OS advantage—NR (1.0, 59.0) versus 50 (2.0, 70.0) months 
(P = 0.0565, log rank) in the SURF cohort and NR (23.7, NR) versus 
18.8 (14.6, 24.1) months (P = 0.0004, log rank) in the NIVOREN cohort 
(Fig. 3a,b). However, sMAdCAM-1 levels did not significantly impact 
PFS in either cohort (Extended Data Fig. 4a,b).

The multivariable Cox regression analysis in the NIVOREN cohort 
(n = 263) revealed that low baseline sMAdCAM-1 levels (<180) were 
independently associated with worse OS in nivolumab-treated patients, 
demonstrating a significant hazard ratio (HR) of 2.11 (95% confidence 
interval (CI) = 1.27–3.49; Extended Data Table 2). Hence, patients with 

sMAdCAM-1 below this threshold doubled their risk of death compared 
to those with higher levels, even after adjusting for other relevant clini-
cal variables such as antibiotic intake or IMDC. Interestingly, while prior 
antibiotic use showed a nonsignificant trend toward poorer outcomes 
(HR = 1.44; 95% CI = 0.90–2.31), it did not reach statistical significance in 
this model. Furthermore, the interaction analysis between sMAdCAM-1 
and antibiotic use was nonsignificant (P = 0.1005), indicating that the 
prognostic value of sMAdCAM-1 was consistent regardless of patients’ 
antibiotic exposure history. The potential links between toxicity events 
and sMAdCAM-1 could not be studied, either due to data unavailability 
( JAVELIN Renal 101) or low frequencies (SURF, NIVOREN).

Hence, we validated the sMAdCAM-1 (using the 180 ng ml−1 cut-off 
value defined in the training cohort) as a prognostic biomarker for OS in 
patients with mRCC receiving first-line or subsequent therapy, across 
both ICI and TKI monotherapy regimens.

Immunotherapy increases sMAdCAM-1 levels. We next analyzed 
longitudinally the evolution of sMAdCAM-1 as a dynamic biomarker 
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Fig. 2 | Low levels of sMAdCAM-1 are associated with reduced survival in the 
Javelin Renal 101 trial (training cohort). a–d, Kaplan–Meier survival estimates 
of PFS (a,c) and OS (b,d) in patients treated with avelumab plus axitinib (a,b) 
or with sunitinib (c,d), stratified by sMAdCAM-1 concentrations in the training 

cohort. Patients were dichotomized using a threshold of 180 ng ml−1 into low 
(≤180 ng ml−1) and high (>180 ng ml−1) sMAdCAM-1 groups. Survival differences 
were assessed using the log-rank test; P values are shown. Risk tables indicate the 
number of patients at risk at each time point.
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while on TKI alone (sunitinib arm) or TKI combined with ICI (ave-
lumab plus axitinib arm) in the JAVELIN Renal 101 trial and during ICI 
alone (nivolumab) in the NIVOREN trial. After 12 weeks of therapy (C3 
visit), the circulating levels of sMAdCAM-1 decreased from a median of 
234 down to 213 ng ml−1 in the sunitinib arm (Fig. 4a, left; P = 0.0021), 
while they increased from 238 to 270 ng ml−1 in the avelumab plus 
axitinib arm (Fig. 4a, right; P < 0.0001). The latter finding was corrobo-
rated in the NIVOREN validation cohort after 24 weeks of therapy (C7 
visit; Fig. 4b; P < 0.001). We also noted that sMAdCAM-1 levels decrease 
at progression (Fig. 4b; P = 0.035).

Furthermore, we observed different sMAdCAM-1 dynamics in the 
two arms of the JAVELIN Renal 101 trial (P < 0.001; Fig. 4c). sMAdCAM-1 
levels remained below our defined threshold after the first two cycles 
of treatment (C1 ≤ 180 and C3 ≤ 180) in 17.6% of patients in the sunitinib 
arm compared to 7.5% of those treated with the ICI-based combina-
tion (low–low; Fig. 4c). Indeed, up to 16.9% of patients with mRCC 
treated with avelumab + axitinib normalized their sMAdCAM-1 lev-
els after initiation of therapy (C1 ≤ 180 and C3 > 180), versus 4.9% in 
the sunitinib arm (low–high; Fig. 4c). Moreover, 14.4% of the patients 
treated in the sunitinib arm experienced a decrease in their sMAdCAM-1 
versus 5.3% in the avelumab + axitinib arm (high–low; Fig. 4c). The 
persistent low sMAdCAM-1 level translated into worse survival in the 
Javelin Renal 101 trial regardless of treatment arm, for both PFS and OS 
(Fig. 4d,e and Extended Data Table 3; Pinteraction = 0.88 and 0.16 for PFS 
and OS, respectively).

We conclude that low sMAdCAM-1 at baseline and after two cycles 
of therapy are negative prognostic biomarkers in patients with mRCC 
regardless of treatment regimen.

The gut microbiota composition is dynamically influenced by  
cancer therapies. To investigate potential links between low 
sMAdCAM-1 levels and gut dysbiosis, we performed MGS of stool 
samples from individuals living with RCC in the prospective ONCOBI-
OTICS study at baseline and following TKI or ICI therapies.

In 37 TKI-treated patients, we observed a trend toward reduced 
microbial diversity (richness and species abundances), reflected in 
decreased Shannon index values post-treatment (Fig. 5a; P = 0.08). 
TKI therapy induced relative overgrowth of immunosuppressive 

Enterocloster species (Enterocloster aldensis, Enterocloster citroniae 
and Enterocloster bolteae), prototypical of gut dysbiosis caused by 
antibiotics9,11, cancer progression24,32 or ileal MAdCAM-1 downregula-
tion25. This shift coincided with depletion of immunogenic taxa, includ-
ing Lachnospiraceae family members (Dorea longicatena), Candidatus 
Cibiobacter qucibialis24, Oscillospiraceae (Faecalibacterium praus-
nitzii33 and Ruminococcaceae unclass.) family members associated 
with favorable immunogenic properties24,32,34, Bifidobacterium longum 
and B. adolescentis associated with response to immunotherapy35 or 
Christensenellaceae bacterium NSJ64 associated with the abscopal 
effects of radiotherapy36 (Fig. 5a,b). Conversely, ICI-treated patients 
(n = 78) showed progressive loss of E. citroniae, Clostridium leptum and 
Ruminococcus torques in responders9,11 (Fig. 5c, top), whereas nonre-
sponders lost immunogenic commensals (Lachnospiraceae bacterium 
and F. prausnitzii; Fig. 5c, bottom).

Building upon prior findings in 72 patients with non-small cell 
lung cancer (NSCLC)25, we confirmed that low sMAdCAM-1 correlates 
with reduced microbial diversity (richness, P = 0.04; Shannon index, 
P = 0.05; Fig. 5d) in a larger cohort of 188 patients with NSCLC. Linear dis-
criminant analysis (LDA) effect size analysis further highlighted tolero-
genic Enterocloster spp.9,25 enrichment in patients with low sMAdCAM-1 
(Fig. 5e; Enterocloster SGB14313, P = 0.005; Extended Data Table 4). 
To validate the Enterocloster genus as a cancer-associated dysbiosis 
marker, we analyzed the ONCOBIOME meta-cohort32,37 (n = 457 patients 
with NSCLC, RCC, bladder32, colorectal32,38 and hematological malig-
nancies39) with MGS in stool samples paired with sMAdCAM-1 in the 
plasma samples. Using a previously defined ratio (S score) between 
species-interacting groups (‘SIG’; 37 SIG1 taxa linked to poor outcome 
(OS < 12 months); 45 SIG2 taxa associated with OS >12 months))24, we 
found that distinct Enterocloster species best discriminated ≥9 SIG1 
counts from <9 SIG1 counts individuals (Fig. 5f). In the mRCC cohort 
(n = 174), patients with high SIG1 commensals counts (≥9, threshold 
defined as the median SIG1 count in the ONCOBIOME metacohort) 
showed worse OS than those with low SIG1 counts (n = 174; Fig. 5g, 
top; P = 0.030). In fact, we observed a weak but significant inverse 
correlation between sMAdCAM-1 and SIG1 abundance (Fig. 5g, bot-
tom; P = 0.02). Consistently, sMAdCAM-1 inversely correlated with 
Enterocloster SGB14313 abundance across cohorts (n = 55 patients 
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Fig. 3 | The prognostic impact of sMAdCAM-1 is validated in the SURF and 
NIVOREN trials (validation cohorts). a,b, Kaplan–Meier survival estimates of 
OS stratified by sMAdCAM-1 concentrations in the SURF (a) and NIVOREN (b) 
validation cohorts. Patients were dichotomized using a threshold of 180 ng ml−1 

into low (≤180 ng ml−1) and high (>180 ng ml−1) sMAdCAM-1 groups. Survival 
differences were assessed using the log-rank test; P values are shown. Risk tables 
indicate the number of patients at risk at each time point.
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with mRCC, ρ = −0.28, P = 0.052; n = 61 patients with bladder cancer, 
ρ = −0.21, P = 0.099; n = 188 patients with NSCLC, ρ = −0.15, P = 0.049; 
Extended Data Fig. 5a–c).

In summary, these findings suggest that sMAdCAM-1 may serve 
as a surrogate marker for distinct gut microbial profiles relevant to 
ICI response, particularly reflecting the immunosuppressive Entero-
closter genus dominance. Further investigation of its utility for guiding 
microbiota-modulating therapies is warranted.

Discussion
Functional biomarkers to guide meaningful changes in the clinical 
management of patients with mRCC are needed to predict and or cir-
cumvent resistance to current ICI-based therapeutic regimens. Here we 
show that a gut immune checkpoint, the MAdCAM-1, known to regulate 

the gut homing and exodus of immune cells to the tumor microenvi-
ronment, may inform an individualized approach to therapy. In the 
large multicenter randomized JAVELIN Renal 101 trial of 603 patients 
with mRCC and available biomarker data, as well as in two additional 
prospective phase 2 validation cohorts (NIVOREN, n = 278; and SURF, 
n = 170), baseline sMAdCAM-1 levels below 180 ng ml−1 were associ-
ated with reduced OS. Interestingly, the optimal cut-off defined in 
the training cohort was comparable to the median values in the two 
healthy volunteer cohorts. Moreover, persistence of sMAdCAM-1 levels 
below 180 ng ml−1 after two treatment cycles was associated with poor 
prognosis. In a multivariable analysis comprising antibiotic uptake, 
sMAdCAM-1 remained an independent prognostic biomarker for ICI 
treatment, beyond the IMDC risk score. This finding corroborates pre-
vious reports linking sMAdCAM-1 levels below each cohort’s median 
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n = 23). The box bounds are the Q1, median and Q3; the whiskers show Q1 − 1.5× 
the IQR and Q3 + 1.5× the IQR. ‘X’ represents the mean, and the small ‘x’ denotes 
extreme values. Statistical comparisons between groups were performed 
using a two-sided Wilcoxon rank-sum test. P values are shown. c, Horizontal bar 

plot showing the distribution of patients across four longitudinal sMAdCAM-1 
categories, defined by dichotomized values at baseline (C1) and on-treatment 
(C3) using a threshold of 180 ng ml−1: low–low, low–high, high–low and high–
high. Categories reflect changes in sMAdCAM-1 status over time. Bars represent 
the proportion of patients in each category relative to the total patients in each 
arm. d,e, Kaplan–Meier survival estimates of PFS (d) and OS (e) across four 
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time. Risk tables indicate the number of patients at risk at each time point.
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values with reduced OS in patients with lung, RCC and urothelial cancer 
treated after first-line therapy25.

MAdCAM-1 is constitutively expressed in high endothelial ven-
ules of the lamina propria, mesenteric lymph nodes and Peyer patches 
(as well as in the hepatic endothelium of inflamed livers)40, can be 
upregulated during inflammation and shed into the plasma in condi-
tions that remain unclear. Loss of the MAdCAM-1 protein parallels the 
loss of FOXP3 regulatory T (Treg) cells and IL-17-producing RORγt CD4+ 
T cells in the lamina propria25. In experimental models, we showed a 
cause-and-effect relationship between high expression (and shed-
ding) of MAdCAM-1 in the liver and the interception of the migration 
of enterotropic Treg cells to tumor lesions25. Other reports highlighted 
the relevance of the MAdCAM-1–α4β7 tropism during chronic 
inflammatory processes within or outside the intestines41–43. Ileal 
endothelial MAdCAM-1 is downregulated during gut dysbiosis fol-
lowing broad-spectrum antibiotics or tumor progression in mice and 
patients25. However, fecal microbial transplantation using a healthy 
microbiota or specific commensal strains can restore MAdCAM-1 
expression on the surface of ileal endothelial cells. Indeed, Akker-
mansia species (in particular Akkermansia massiliensis SGB9228) 
markedly upregulated MAdCAM-1 expression levels after an oral 
gavage performed postantibiotic therapy25. Moreover, our group 
recently showed that the combination of low sMAdCAM-1 levels and 
the absence of fecal Akkermansia species identified a subgroup of 
patients with metastatic colorectal cancer resistant to immunochem-
otherapy32. Notably, here we show that TKI therapy was associated 
with an overgrowth in the population of immunosuppressive genus 
Enterocloster, a finding also seen in individuals who do not respond 
to ICI24,44,45 or are diagnosed with chronic inflammatory disorders10,46. 
These findings suggest that patients with mRCC and low sMAdCAM-1 
levels may benefit from microbiota-centered interventions. In certain 
RCC cohorts, this can represent up to 76% of patients. Two pioneer-
ing randomized studies7,20,47 provided the proof-of-concept that a 
Japanese probiotic Clostridium butyricum MIYAIRI 588 (CBM588) 
can enhance the efficacy of ICIs or TKI + ICI combinations. The first 
clinical study randomizing TKI + ICI with or without FMT met its pri-
mary endpoint to improve PFS in patients with IMDC intermediate or 
poor when transferring an exogenous microbiota from a patient with 
mRCC and achieved durable benefit on ICI among treatment-naive 
patients18. A phase 1 clinical trial (NCT05865730) is currently under-
way, evaluating the impact of daily administration of Oncobax AK—a 
capsule containing live A. massiliensis (strain p2261, SGB9228), which 

shares overlapping health-related functions with Akkermansia mucin-
iphila—in patients with mRCC who are Akkermansia-deficient at the 
initiation of the first-line therapy48.

This study has several limitations. First, conclusions are derived 
from clinical trials with strict eligibility criteria, potentially limiting gen-
eralizability to real-world populations. Second, we could not account 
for comorbidities that may influence microbiome composition, includ-
ing inflammatory bowel disease (Crohn’s disease and ulcerative colitis), 
prior bowel resections or use of over-the-counter probiotics. Third, 
while adding sMAdCAM-1 to prognostic models significantly improved 
survival prediction (AUC = 0.72 versus 0.68), its absolute incremental 
value remains modest. Although mechanistically linked to IMDC and 
IL-6 pathways, the biomarker’s clinical utility may be greatest within 
microbiota-directed therapeutic strategies rather than as a standalone 
prognostic tool. Finally, the cohorts included therapies that have 
become less relevant to contemporary management of patients with 
mRCC (avelumab, nivolumab monotherapy), further limiting their 
current clinical applicability.

Altogether, these findings support a paradigm shift in the manage-
ment of mRCC, highlighting the need for biomarker-guided clinical tri-
als investigating microbiota-targeted interventions aimed at enhancing 
the efficacy of standard ICI-based therapies.
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Methods
Study participant details
Participant data were obtained from the following four prospective 
clinical trials in RCC: JAVELIN Renal 101 (ClinicalTrials.gov registra-
tion: NCT02684006), GETUG-AFU26 NIVOREN (ClinicalTrials.gov 
registration: NCT03013335), SURF (ClinicalTrials.gov registration: 
NCT02689167) and ONCOBIOTICS (ClinicalTrials.gov registration: 
NCT04567446).

Clinical trials
JAVELIN Renal 101 is a multicenter, randomized, open-label, phase 3 
clinical trial evaluating the efficacy and safety of avelumab plus axitinib 
versus sunitinib monotherapy in patients with previously untreated 
advanced RCC with a clear-cell component. A total of 886 adults were 
enrolled and randomized 1:1 to receive either avelumab (10 mg kg−1 
intravenously every 2 weeks) plus axitinib (5 mg orally twice daily) or 
sunitinib (50 mg orally once daily for 4 weeks in a 6-week cycle). For 
alignment within the study, a single cycle consisted of 6 weeks for both 
treatment arms. The trial design has been previously described, and 
results are reported per CONSORT guidelines26,49. The coprimary end-
points were PFS and OS in patients with PD-L1–positive tumors27,49. A key 
secondary endpoint was PFS in the overall population; other endpoints 
included objective response rate (ORR). Efficacy data reported here 
reflect the second interim analysis of the JAVELIN Renal 101 trial, with a 
data cut-off of January 2019. Blood samples were collected at screening 
and on multiple days within cycles 1, 2 and 3, before treatment. Available 
baseline and cycle 3 samples were used in this analysis. The collection 
included whole blood in dipotassium ethylenediaminetetraacetic acid 
and silica-coated tubes for plasma and serum separation, respectively. 
Sample availability varied based on patient consent, local regulations, 
sample pairing, volume constraints and site-level data reporting. The 
protocol has been previously published49.

GETUG-AFU26 NIVOREN trial is a French, multicenter, prospective, 
phase 2 clinical trial evaluating the activity and safety of nivolumab in 
patients with metastatic ccRCC who had previously failed on or after 
an antiangiogenic regimen, as previously published29,50,51. Participants 
received nivolumab at 3 mg kg−1 every 2 weeks and underwent radio-
logical assessment every 8–12 weeks. Treatment was continued until 
disease progression, unacceptable toxicity, withdrawal of consent or 
death. The primary endpoint was to assess the incidence of high-grade 
adverse events (grades 3–4 and 5, as per CTCAE v4.0)29. Secondary 
endpoints included ORR, PFS, OS and exploration of candidate blood 
biomarkers associated with response and/or prognosis to treatment. 
Blood samples were collected before and on different visits after 
Nivolumab start. Available baseline, cycle 3, cycle 7 and progression 
visit samples were used in this analysis.

SURF trial is a French prospective, randomized, open-label phase 2b 
study that included patients with metastatic ccRCC treated with sunitinib 
at a standard 50 mg daily for 4 weeks, followed by a 2-week rest period 
(4/2)28. Patients requiring a dose adjustment due to toxicity were rand-
omized between the standard 4/2 schedule at a reduced dose of 37.5 mg 
daily and the experimental 2/1 schedule at 50 mg daily. The primary 
objective was to assess the median duration of sunitinib treatment in each 
group. Key secondary objectives included PFS, OS, time to randomiza-
tion, ORR, safety, sunitinib dose intensity, health-related quality of life and 
the description of main drivers triggering randomization. An exploratory 
endpoint included the identification of blood biomarkers related to the 
activity and/or toxicity of sunitinib. Available baseline blood samples 
were used in this report. The protocol has been previously published52.

RCC ONCOBIOTICS is a multicentric study evaluating gut 
microbiota-related biomarkers associated with outcome in advanced 
RCC treated with ICI alone or in combination with TKI at Gustave Roussy, in 
France. The study followed standard care until disease progression, unac-
ceptable toxicity or completion of 2 years of ICI treatment. Eligibility crite-
ria and baseline data, including recent medications, are in the trial protocol 

and recorded in electronic case report forms. Blood and stool samples 
were collected before and on different visits after treatment started.

The ONCOBIOME network dataset32,37 includes data from different 
cancer cohorts. Data from patients with lung cancer were obtained 
from the Lung ONCOBIOTICS study (ClinicalTrials.gov registration: 
NCT04567446), a multicenter trial conducted across 14 centers in 
France and Canada. This study assessed the effect of the microbiome 
on treatment outcomes in patients with advanced NSCLC receiving 
anti-PD-(L)1 therapies, either alone or with chemotherapy. Patients 
were followed under standard care until disease progression, unac-
ceptable toxicity or completion of 2 years of ICI therapy. Eligibility 
criteria and baseline data, including recent medications, were recorded 
in trial protocols and electronic case report forms. Baseline stool and 
paired blood samples for sMAdCAM-1 analysis were included in the 
pooled analysis. Data from patients with colorectal cancer were from 
the AtezoTRIBE study (ClinicalTrials.gov registration: NCT03721653)53, 
a phase 2 trial enrolling 218 patients with unresectable stage IV colo-
rectal cancer. Participants were randomized 2:1 to receive FOLFOXIRI 
plus bevacizumab with or without atezolizumab (anti-PD-L1). All 
patients were treatment-naive at the time of initial stool collection. 
Paired baseline stool and blood samples for sMAdCAM-1 analysis were 
included in the pooled analysis. Data from patients with bladder cancer 
were sourced from the French cohort of the STRONG phase 3b trial 
(ClinicalTrials.gov registration: NCT03084471)54, in which patients 
who had progressed on chemotherapy received durvalumab (150 mg 
every 4 weeks until progression). Paired stool and blood samples for 
sMAdCAM-1 analysis were included in the pooled analysis.

The WELCOME (protocol IRB 20-04021831) trial was conducted 
at Weill Cornell Medicine and New York Presbyterian Hospital. The 
protocol is available at https://research.weill.cornell.edu/NYPWel-
comeStudy (ref. 30).

FLEMENGHO received ethical approval from the Ethics Com-
mittee of the University of Leuven (S67011). The FLEMENGHO cohort 
represents a random population sample stratified by sex and age from 
a geographically defined area in northern Belgium31.

The reported clinical trials comply with all relevant ethical regula-
tions on research involving human participants.

Ethical approval and consent to participate. The study design and 
conduct complied with all relevant regulations regarding the use of 
human study participants and were conducted in accordance with 
the Declaration of Helsinki and Good Clinical Practice guidelines. All 
participants provided written informed consent. Data were reported 
disaggregated for sex and gender. Consent has been obtained for 
reporting and sharing individual-level data. Data and sample collec-
tion adhered to regulatory, ethical requirements and ICH E6(R2) Good 
Clinical Practice guidelines.

Monitoring of circulating sMAdCAM-1 levels. sMAdCAM-1 was quanti-
fied in patients’ plasma samples with Bio-Plex 200 Systems (Bio-Rad) 
and sMAdCAM-1 kit from R&D Systems (Human Luminex Discovery 
Assay LXSAHM) at Gustave Roussy or Dana–Farber Cancer Institute 
laboratory units.

Monitoring of cytokine levels. Cytokine and chemokine concentrations 
in patient serum were determined using two multiplexed panels that 
assayed 32 total analytes (Rules-Based Medicine), including brain-derived 
neurotrophic factor (BDNF), eotaxin-1, factor VII, granulocyte– 
macrophage colony-stimulating factor (GM-CSF), intercellular adhe-
sion molecule-1 (ICAM-1), interferon-γ (IFNγ), IL-1α, IL-1β, IL-1 receptor 
antagonist (IL-1RA), IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 p40, 
IL-12 p70, IL-15, IL-17, IL-18, IL-23, macrophage inflammatory protein 1-α 
(MIP-1α), MIP-1β, matrix metalloproteinase 3 (MMP3), MMP9, MCP-1, 
stem cell factor (SCF), tumor necrosis factor (TNF), lymphotoxin-α (LTα, 
formerly known as TNFβ) and VEGF, as previously described55.
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Stool samples collection. Stool samples were self-collected by the 
participants at home according to the International Human Micro-
biome Standards (IHMS)_SOP 004 (https://human-microbiome.org/
index.php?id=Sop&num=004) within the ONCOBIOTICS, AtezoTRIBE 
and French cohort of the STRONG phase 3b trial study protocols. 
Immediately after the collection, samples were stored in a refrigerator  
(0–4 °C) until transportation. Upon arrival at the biobank of the recruit-
ment center (within 24 h), samples were stored at −80 °C in plastic 
tubes. All samples were processed following the International Human 
Microbiome Standards (IHMS) guidelines (SOP 03 V1).

Statistical methods. Quantitative data are described by the number 
of patients with available data, the number of missing values, the 
mean, s.d., median, minimum and maximum values and the first and 
third quartile values (Q1–Q3). sMAdCAM-1 values were compared 
between groups using the Mann–Whitney or Kruskal–Wallis test. 
Spearman rank correlation analyses between MAdCAM-1 and each 
of IL-6 and IL-8 were performed to evaluate the relationship between 
MAdCAM-1 and these inflammatory cytokines. Categorical groups 
(sMAdCAM-1 high versus low, or the dynamic groups from cycle 1 to 
cycle 3) were compared between treatments using the chi-squared 
test. The dynamic values from cycle 1 to cycle 3 (Fig. 4a) were com-
pared using the Wilcoxon signed-rank test. OS was defined as the time, 
expressed in months, from treatment initiation to the date of death 
or the last known follow-up. Patients alive at the last follow-up date 
were censored. PFS was defined as the time, expressed in months, 
from treatment initiation to the date of the first event (progression or 
death). Patients were censored at the last disease/tumor assessment. 
The optimal cut-off value was determined by Contal and O’Quigley’s 
approach for the OS outcome based on sMAdCAM-1 values at cycle 1 in 
the training cohort56. The assumption of linearity was visually checked 
by the Martingale residual plots as well as the Restricted Cubic Spline 
plots (with five knots). The discrimination of the fitted model was 
assessed by time-dependent AUC at 18 months and integrated AUC 
index across all follow-up times (ranging 0–1, with higher numbers 
indicating better discrimination performance)57. The 18-month time 
point was chosen based on the median follow-up of 18.9 months in this 
cohort. Kaplan–Meier curves and Cox proportional hazards models 
were used to compare PFS and OS across the sMAdCAM groups (high 
versus low at cycle 1, or the dynamic groups from cycle 1 to cycle 3). 
The analysis at cycle 3 was based on a landmark approach calculated 
from cycle 3 (3 months) for OS and PFS. Analyses were performed 
using SAS (v9.4; SAS Institute), R packages (‘rms’ for restricted cubic 
spline plot; ‘timeROC’ for time-dependent ROC) and SAS Macro for 
determining the optimal cut-off (https://support.sas.com/resources/
papers/proceedings/proceedings/sugi28/261-28.pdf).

Metagenomics analysis. DNA was extracted from aliquots of the same 
stool samples used for metaproteomic analysis using the IHMS SOP 07 
V2 H and sequenced on an Ion Proton sequencer (Thermo Fisher Scien-
tific). The sequencing was performed at a single site (MetaGenoPolis). 
Reads were cleaned using Alien Trimmer (v.0.4.0) to (1) remove resilient 
sequencing adapters and (2) trim low-quality nucleotides at the 3′ 
side using a quality cut-off of 20 and a length cut-off of 45 bp. Cleaned 
reads were subsequently filtered from human and other possible food 
contaminant DNA using the human genome (GRCh38-p13), with an 
identity score threshold of 95%. For each metagenome, we profiled 
the taxonomic composition with MetaPhlAn-4 (ref. 58). For α diversity, 
we computed the per-sample Richness and Shannon indexes59 using 
the vegan R package60. Differences between groups were assessed 
using the Wilcoxon–Mann–Whitney test. For β-diversity, we computed 
between-samples Bray–Curtis dissimilarities using the vegan R pack-
age60. Differential abundance analysis on taxonomic profiles between 
groups was performed using the LDA effect size (LefSE) software. The 
longitudinal analysis was performed with a Wilcoxon signed-rank 

test (testing only features present in at least ten samples in one of the 
groups). None of the associations presented adjusted P values with 
Benjamini–Hochberg correction lower than 0.2. In Fig. 5, microbial 
features have been subset as the ones presenting 50% prevalence in 
both tested groups and a raw P value <0.05.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
MetaPhlAn4 profiles and Luminex data for the cohorts included 
in this study are available via Figshare (https://doi.org/10.6084/
m9.figshare.30336373). The remaining data will be available within 
the article, Supplementary Information or source data file. Source 
data are provided with this paper.
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Extended Data Fig. 1 | Study participant flowcharts. Flowchart of study participants with renal cell carcinoma (RCC) in the JAVELIN Renal 101 (a), SURF (b) and 
NIVOREN (c) trials. Patients with unavailable plasma samples, outlier values, or who were not treated were excluded. ITT, intention-to-treat.
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Extended Data Fig. 2 | Prognostic analysis of sMAdCAM-1. a, Restricted cubic 
spline plot showing the predicted risk score (log relative hazard, solid line) 
and 95% confidence interval (shaded area) for overall survival (OS) based on 

the continuous sMAdCAM-1 values (ng/mL). Lower sMAdCAM-1 values were 
associated with a higher risk of death, and the curve tended to be flattened after 
values >180 ng/mL. b, Martingale residual plot.
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Extended Data Fig. 3 | Soluble MAdCAM-1 linear distribution. a,b, Kaplan–
Meier survival estimates of progression-free survival (PFS; a) and overall survival 
(OS; b) in patients from the JAVELIN Renal 101 trial showing both superposing 
curves for the intention-to-treat population and in the subset of patients 
analyzed in the biomarker ancillary study cohort from the trial, across both 
treatment arms. Risk tables indicate the number of patients at risk at each time 

point. c,d, Kaplan–Meier survival estimates of PFS (c) and OS (d) stratified 
by sMAdCAM-1 concentrations in the JAVELIN Renal 101 trial. Patients were 
dichotomized using a threshold of 180 ng/mL into low (≤180 ng/mL) and high 
(>180 nng/mL) sMAdCAM-1 groups. Survival differences were assessed using the 
log-rank test; P values are shown. Risk tables indicate the number of patients at 
risk at each time point.
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Extended Data Fig. 4 | Levels of sMAdCAM-1 do not impact progression-free 
survival (PFS) in the SURF and NIVOREN trials (validation cohorts).  
a,b, Kaplan–Meier survival estimates of PFS stratified by sMAdCAM-1 
concentrations in the SURF (a) and NIVOREN (b) trials. Patients were 

dichotomized using a threshold of 180 ng/mL into low (≤180 ng/mL) and high 
(>180 ng/mL) sMAdCAM-1 groups. Survival differences were assessed using the 
log-rank test; P values are shown. Risk tables indicate the number of patients at 
risk at each time point.
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Extended Data Fig. 5 | Levels of sMAdCAM-1 anticorrelate with Enterocloster 
SGB14313. a–c, Scatterplots showing the relationship between mucosal 
addressin cell adhesion molecule-1 (MAdCAM-1) concentrations in plasma 
samples and Enterocloster SGB14313 relative abundance in paired stool  
samples of patients with renal cell carcinoma (RCC, N = 55 paired samples;  

a), urothelial cancer (UC, N = 61 paired samples; b) and non-small cell lung cancer 
(NSCLC, N = 188 paired samples; c). Each point represents an individual sample 
measurement. The dotted line represents the linear regression fit. Statistical 
comparisons between groups were performed using a two-sided Spearman test 
without adjustments for multiple comparisons; exact P values are shown.
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Extended Data Table 1 | Multivariable analysis and model discrimination
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Extended Data Table 2 | Multivariable Cox model for overall survival (OS) in the NIVOREN cohort (N = 263)
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Extended Data Table 3 | Cox proportional hazards models for longitudinal sMAdCAM-1 categories

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-04067-x

Extended Data Table 4 | Linear discriminant analysis (LDA) effect size analysis by soluble MAdCAM-1 categories
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