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An LLM chatbot to facilitate  
primary-to-specialist care transitions:  
a randomized controlled trial
 

Patient-facing large language models (LLMs) hold potential to streamline 
inefficient transitions from primary to specialist care. We developed the 
preassessment (PreA), an LLM chatbot co-designed with local stakeholders, 
to perform the general medical consultations for history-taking, preliminary 
diagnoses, and test ordering that would normally be performed by primary 
care providers and to generate referral reports for specialists. PreA was 
tested in a randomized controlled trial involving 111 specialists from  
24 medical disciplines across two health centers, where 2,069 patients 
(1,141 women; 928 men) were randomly assigned to use PreA independently 
(PreA-only), use it with staff support (PreA-human), or not use it (No-PreA) 
before specialist consultation. The trial met its primary end points with 
the PreA-only group showing significantly reduced physician consultation 
duration (28.7% reduction; 3.14 ± 2.25 min) compared to the No-PreA 
group (4.41 ± 2.77 min; P < 0.001), alongside significant improvements 
in physician-perceived care coordination (mean scores 113.1% increase; 
3.69 ± 0.90 versus 1.73 ± 0.95; P < 0.001) and patient-reported 
communication ease (mean scores 16.0% increase; 3.99 ± 0.62 versus 
3.44 ± 0.97; P < 0.001). Equivalent outcomes between the PreA-only and 
PreA-human groups confirmed the autonomous operation capability. 
Co-designed PreA outperformed the same model with additional fine-tuning 
on local dialogues across clinical decision-making domains. Co-design with 
local stakeholders, compared to passive local data collecting, represents 
a more effective strategy for deploying LLMs to strengthen health systems 
and enhance patient-centered care in resource-limited settings.  
Chinese Clinical Trial Registry identifier: ChiCTR2400094159.

The growing burden of multimorbidity and aging populations has 
exposed vulnerabilities in healthcare delivery worldwide1–3. Health 
systems face increasing strain from fragmented infrastructure, 
under-resourced primary care and inefficient triage mechanisms4,5, 
challenges that are particularly acute in regions where self-referral 
practices bypass primary care for direct tertiary hospital access6–10. 
China’s health system exemplifies this crisis: according to the 2023 
Statistical Bulletin on China’s Health Sector Development, hospital 

visits reached 4.26 billion in 2023 (11.5% annual increase), while only 
59.2% of public hospitals offered appointment systems, driving inef-
ficient care-seeking pathways that overwhelm outpatient services. This 
imposes a dual burden: specialists face patient consultations without 
referrals11, leading to prolonged diagnostic timelines12,13, compromised 
emotional support14,15 and elevated professional burnout16; concur-
rently, patients endure protracted waiting times and fragmented 
care17,18. Although interim solutions like nurse-led triage exist, they 
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(Pre-Assessment), an LLM chatbot (OpenAI; GPT-4.0 mini) for 
primary-to-specialist care transitions, using a multistakeholder partici-
patory co-design approach36. We engaged diverse community and clini-
cal stakeholders, including patients, care partners, community health 
workers, physicians, nurses and hospital administrators, to shape a 
tool that addresses real-world clinical and accessibility needs. The 
final PreA chatbot integrated a patient-facing chatbot with low-literacy 
accessibility features and a clinical interface that generates specialist 
referrals and supports evidence-based decision-making under time 
constraints (Extended Data Fig. 1).

The decision to deploy this co-designed version of PreA was 
empirically grounded, informed by a previous simulated experiment 
that directly compared the co-design approach with additionally 
fine-tuning the same model with local dialogues. We then evaluated the 
co-designed PreA in a multicenter, pragmatic, randomized controlled 
trial (RCT) to assess its effectiveness in facilitating primary-to-specialist 
care transitions.

Results
Patient flow and baseline data
The trial was conducted across 24 medical disciplines at two academic 
tertiary medical centers in western China (The First Affiliated Hospital 
of Guilin Medical University and the Affiliated Hospital of Gansu Medi-
cal University). A total of 2,332 patients and their care partners were 
evaluated for eligibility, with 194 either opting out or being excluded 
for various reasons (Fig. 1). This left 2,138 patients who were randomly 
assigned in 1:1:1 ratio to use PreA independently (PreA-only, n  = 712), 
use it with staff support (PreA-human, n = 713) or not use it (No-PreA, 
n  = 713). Subsequently, 69 patients opted out or were removed for 
various reasons.

Our final analysis included 2,069 participants (PreA-only, n = 691, 
PreA-human: n = 689, No-PreA, n = 689). Participants had a mean age of 
47.6 ± 14.6 years and included 1,141 women (55.1%) and 928 men (44.9%).  
Most participants (1,620, 78.3%) were patients themselves, with  

often lack the training for comprehensive patient assessment and 
chronic disease management19. Addressing these systemic inefficien-
cies in resource-limited settings requires scalable solutions that can 
transform strained clinical workflows.

Large language models (LLMs) possess transformative potential to 
re-engineer hospital workflows and address the systemic inefficiencies 
amplified by escalating demand. However, current applications remain 
largely confined to support healthcare professionals in controlled 
settings, for example, responding to patient portal messages20,21, aid-
ing clinical reasoning in experimental environments22,23 or improving 
medical directions in online pharmacies24, with limited integration 
into real-time clinical decision-making. Critically, evidence is lacking 
for LLM chatbots that directly interact with socioeconomically diverse 
patient populations while supporting both curative and caring aspects 
of medicine in high-volume clinical environments25.

Bridging this gap requires overcoming two critical barriers: miti-
gating the systematic biases that arise when training patient-facing 
LLMs on local medical dialogues from resource-limited settings26,27, 
and establishing real-world evidence of their clinical utility within 
time-pressured hospital workflows28–31. While localized dialogues 
have enabled specialized applications, from patient-nurse interac-
tions32 and mental health support33 to telemedicine service34, their 
direct use in resource-limited clinical environments risks replicat-
ing existing care deficits. Consequently, a shift toward simulated 
dialogues curated from standardized medical corpora is underway, 
moving beyond a reliance on raw local data23,35. Yet, the relative utility 
of co-design versus passive data collecting for meeting clinical needs 
remains unknown. This omission begs a central question: should LLMs 
reflect local practices or help reform them? The answer is critical 
for global health equity, as passively collected local dialogues may 
codify and even scale systemic inequities, from diagnostic shortcuts 
to sociocultural biases26,27.

To bridge the gap between the potential of LLMs and their 
practical impact in resource-limited settings, we developed PreA 

2,332 participants assessed for eligibility
1,614 from The First A�iliated Hospital

of Guilin Medical University
718 from A�iliated Hospital of Gansu

Medical College

194 excluded
154 refused to participate
40 failed to sign informed consent

712 assigned to PreA-only group
712 received intervention

713 assigned to PreA-human group
713 received intervention

713 assigned to No-PreA group
713 received intervention

691 included in final analysis 689 included in final analysis 689 included in final analysis

21 failed to complete
7 lack physician consultation
14 discontinued due to

personal reasons

2,138 participants recruited for 1:1:1 randomization

24 failed to complete
11 lack physician consultation
13 discontinued due to

personal reasons

24 failed to complete
10 lack physician consultation
14 discontinued due to

personal reasons

Fig. 1 | CONSORT flow diagram for the randomized controlled trial. Flow diagram depicting the participant enrolment, intervention allocation, follow-up and  
data analysis.
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the remainder being care partners. Demographically, fewer than half 
(881, 42.6%) were unemployed or retired, and 770 (37.2%) reported a 
monthly income below 2,000 RMB. Educational attainment among 
them was distributed as follows: below primary school (313, 15.1%), 
high school (1,073, 51.9%) and college or higher (683, 33.0%). 1,186 
(57.3%) participants consulted a medical specialty, 558 (27.0%) a sur-
gical specialty, 194 (9.4%) a combined medical-surgical specialty and 
the remainder consulted pediatrics (Extended Data Table 1). These 
baseline covariates were well balanced across the three trial arms, with 
no significant differences in distribution (Table 1).

Patients and their care partners in the PreA-only group spent 
approximately 3.51 ±1.50 min interacting with PreA, with no significant 
differences from those in the PreA-human group (3.48 ± 1.49 min; 
P = 0.72). They conducted, on average, no more than ten conversation 
turns, again with no significant differences between the two groups 
(PreA-only, 9.10 ± 1.37 versus PreA-human, 9.05 ± 1.26; P = 0.51).

In their live clinical workflows, 111 specialist physicians reviewed 
PreA-generated and control (with age and sex only) referral reports 

immediately before patient consultations. These physicians spent 
an average of 0.25 ± 0.08 min reviewing PreA-generated reports 
(PreA-only and PreA-human), compared to 0.07 ± 0.06 min on control 
reports from the No-PreA group.

Outpatient workflow
We blindly assessed the effectiveness of the PreA consultation on 
outpatient workflows across three trial groups using data from 
the PreA platform and electronic hospital records. The primary 
outcome was the duration of the medical consultation between 
patients and physicians, defined as the time elapsed from when 
patients started conversing with physicians to the end of the con-
sultation. The PreA-only group had a significantly shorter consulta-
tion duration compared to the No-PreA group (PreA-only 3.14 ± 2.25 
versus No-PreA 4.41 ± 2.77 min; P < 0.001; Fig. 2a), corresponding 
to a 28.7% (95% CI 22.7–34.8) relative reduction. No significant dif-
ference was observed between PreA-only and PreA-human groups 
(3.17 ± 2.87 min; P = 0.17).

Table 1 | Distribution of baseline covariates across three trial groups

Characteristic Total PreA-only Pre-human No-PreA P valuea

No. of participants 2,069 691 689 689

Age, years, mean ± s.d. 47.6 ± 14.6 47.2 ± 14.4 47.7 ± 14.9 47.8 ± 14.6 0.717

Sex, n (%) 0.134

  Female 1,141 (55.1) 382 (55.3) 361 (52.4) 398 (57.8)

  Male 928 (44.9) 309 (44.7) 328 (47.6) 291 (42.2)

Ethnicity, n (%) 0.857

  Han 1,929 (93.2) 647 (93.6) 640 (92.9) 642 (93.2)

  Other racesb 140 (6.8) 44 (6.4) 49 (7.1) 47 (6.8)

Participant type, n (%) 0.375

  Patients 1,620 (78.3) 529 (76.6) 543 (78.8) 548 (79.5)

  Care partners 449 (21.7) 162 (23.4) 146 (21.2) 141 (20.5)

Education, n (%) 0.956

  Primary school or below 313 (15.1) 100 (14.5) 108 (15.7) 105 (15.2)

  High school 1,073 (51.9) 363 (52.5) 358 (52.0) 352 (51.1)

  College or above 683 (33.0) 228 (33.0) 223 (32.4) 232 (33.7)

Work status, n (%) 0.526

  Employed 1,188 (57.4) 400 (57.9) 390 (56.6) 398 (57.8)

  Retired 346 (16.7) 115 (16.6) 107 (15.5) 124 (18.0)

  Unemployed 535 (25.9) 176 (25.5) 192 (27.9) 167 (24.2)

Incomec, RMB/month, n (%) 0.148

  <2,000 770 (37.2) 250 (36.2) 257 (37.3) 263 (38.2)

  2,000–5,000 845 (40.8) 296 (42.8) 292 (42.4) 257 (37.3)

  >5,000 454 (21.9) 145 (21.0) 140 (20.3) 169 (24.5)

Medical discipline, n (%) 0.951

  Medical 1,186 (57.3) 401 (58.0) 394 (57.2) 391 (56.7)

  Surgical 558 (27.0) 178 (25.8) 186 (27.0) 194 (28.2)

  Med-surgd 194 (9.4) 65 (9.4) 64 (9.3) 65 (9.4)

  Pediatric 131 (6.3) 47 (6.8) 45 (6.5) 39 (5.7)

Study setting, n (%)e 0.737

  Guilin 1,457 (70.4) 488 (70.6) 478 (69.4) 491 (71.3)

  Gansu 612 (29.6) 203 (29.4) 211 (30.6) 198 (28.7)
aP value for statistical significance was calculated among the three interventional groups, using a two-tailed one-way analysis of variance (ANOVA) for continuous variables and a chi-squared 
test for categorical variables. bOther races include Zhuang, Yao and Hui. cincluded income from an office, employment on a full-time, part-time or casual basis, or a pension from former 
employment. dMed-Surg represents the department that provides both medical and surgical interventions for patients. eThe First Affiliated Hospital of Guilin Medical University, Affiliated 
Hospital of Gansu Medical College.
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Fig. 2 | Effects of PreA interventions on outpatient workflow, patient-
centeredness and care coordination. a, Histograms and box plots show the 
distribution consultation duration across the PreA-only (n = 691 participants), 
PreA-human (n = 689 participants), and No-PreA (n = 689 participants) 
groups. The center of the box plot represents the median, with the boundaries 
representing the first and third quartiles. The whiskers represent the furthest 
data points from the edge of the box within 1.5 × IQR. b, Box plots show patient 
throughput per shift for participating physicians and nonparticipating 
physicians based on 80 matched physician pairs. The center of the box plot 
represents the median, with the boundaries representing the first and third 
quartiles. The whiskers represent the furthest data points from the edge of the 
box within 1.5 × IQR. c, Radar plots show the patient-centeredness and care 
coordination metrics across the PreA-only (n = 691 participants), PreA-human 

(n = 689 participants) and No-PreA (n = 689 participants) groups, with five 
patient-reported metrics (ease of communication, physician attentiveness, 
interpersonal regard, patient satisfaction, and future acceptability) and one 
specialist-rated metric (care coordination). d, Bar charts show physician 
feedback at the end-of-shift questionnaires (n = 111 specialists). The left panel 
presents ratings of clinical decision support, workload reduction and facilitation 
of patient–physician communication. The right panel details the most valued 
features among physicians who rated its usefulness in decision-making as 
favorable or very favorable. The features include Interpretation (diagnostic 
report interpretation), Recording (efficient medical history elicitation and 
documentation), Across-discipline (simultaneous access to multiple specialties),  
Suggestion (preliminary diagnostic suggestions) and Communication  
(enhanced patient–physician communication skills).
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The secondary outcome is the number of patients per clini-
cal shift and the exploratory outcome is patients’ waiting time.  
To evaluate the impact of PreA on the physician workload, we employed 
a matched-pairs analysis, comparing patients of participating physi-
cians with those of nonparticipating physicians, matched on medical 
specialty, physician work shift timing and professional title. Patients 
of participating physicians cared for significantly more patients 
(28.54 ± 9.58) per shift compared to matched nonparticipating physi-
cians (24.76 ± 9.42, P = 0.005; relative increase 15.3% (3.4–27.2); Fig. 2b). 
Given that participating physicians were exposed to PreA-only or 
PreA-human patients at a maximum frequency of two-thirds, this 
increase might represent a conservative estimate; on the other hand, 
physician could strategically control their workflow, thereby the 
actual impact of PreA on physician workload could be either more pro-
nounced or less pronounced with universal PreA adoption. Despite car-
ing for more patients, patients of participating physicians experienced 
similar waiting times compared to those of matched nonparticipating 
physicians (participating 33.54 ± 38.83 min versus nonparticipating 
34.65 ± 36.92 min; P = 0.37).

Patient-centeredness and care coordination
Outcomes here were self-reported by unmasked participants in 
the RCT (except for physicians masked between PreA-only and 
PreA-human arms) and measured using the prespecific survey ques-
tionnaire based on five-point Likert scales (Supplementary Tables 1 
and 2). Patients and care partners in the PreA-only group reported 
significantly improved consultation experiences compared to the 
No-PreA group across the primary outcome, ease of communica-
tion: 3.99 ± 0.62 versus 3.44 ± 0.97; P < 0.001; relative increase 16.0%, 
95% CI 13.5–18.5) and the four secondary outcomes: perceived physi-
cian attentiveness: 3.87 ± 0.85 versus 3.36 ± 1.04; P < 0.001; relative 
increase 15.1%, 95% CI 12.1–18.1), interpersonal regard (4.02 ± 0.73 
versus 3.43 ± 1.05; P < 0.001; relative increase 17.2%, 95% CI 14.4–
20.0), patient satisfaction (3.99 ± 0.69 versus 3.41 ± 0.98; P < 0.001; 
relative increase 17.0%, 95% CI 14.3–19.6) and future acceptability 
(3.79 ± 1.06 versus 2.81 ± 1.26; P < 0.001; relative increase 34.7%, 95% 
CI 30.4–39.1; Fig. 3a). No significant differences were found between 
the masked PreA-only and PreA-human groups across these dimen-
sions (Extended Data Table 2).
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Fig. 3 | Comparison of PreA-generated referral reports and specialist clinical 
notes. a, Agreement analysis between PreA reports and specialist notes. Cases 
were categorized by level of concordance: agreement (exact match, near-
identical content or inclusion of accepted differentials), disagreement or blank 
(missing physician notes). PreA-assisted group (n = 576) combines PreA-only 

(n = 291) and PreA-human (n = 285) cases. b, Quality assessment of PreA reports 
versus specialist notes. The data represent the distribution of expert-evaluated 
quality across all available cases, including those with blank physician notes. 
PreA-assisted group (n = 1,152 samples) combines PreA-only (n = 582) and PreA-
human (n = 570) samples.
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For the primary outcome of referrals in facilitating specialist 
care, physicians reported a significantly higher value for PreA refer-
ral reports compared to the usual one (Care coordination: PreA-only 
3.69 ± 0.90 versus No-PreA 1.73 ± 0.95; P < 0.001; Fig. 3b), correspond-
ing to a 113.1% (95% CI 107.4–118.7) relative increase. No significant dif-
ference in perceived value was observed between the masked PreA-only 
and PreA-human groups (P = 0.45). At the end of each working shift, 
physicians provided feedback on the secondary outcomes, including 
the usefulness of PreA in their clinical decision-making (Fig. 3c). A 
majority reported PreA to be useful or very useful (64.9%, 72 of 111); 
among them, preliminary diagnostic suggestions (87.5%, 63 of 72) and 
efficient medical history acquisition (77.8%, 56 of 72) were identified 
as the most valuable features. Furthermore, 77.5% (86 of 111) believed 
it enhanced patient–physician communication (favorable or very 
favorable), while 54.1% (60 of 111) of physicians perceived PreA as a 
tool for reducing workload.

Demographic and socioeconomic differences
Prespecified subgroup analyses, stratified by demographic and clinical 
characteristics, demonstrated consistent reductions in consultation 
duration. Notably, these reductions were observed across age groups, 
sex, educational attainment, work status, income levels, medical dis-
ciplines (medical medicine, surgery, mix of medical medicine and 
surgery, pediatrics), study sites (Guilin/Gansu) and participant type 
(patients/care partners), with PreA-only showing significant reduc-
tions compared to No-PreA, and no significant differences compared 
to PreA-human (Extended Data Figs. 2–5).

However, patient experience outcomes exhibited some variabil-
ity across subgroups. While the PreA-only group generally reported 
superior consultation experiences compared to No-PreA, this effect 
was not uniformly observed. Specifically, high-income participants 
and those attending pediatric departments did not report significant 
differences in perceived physician attentiveness between the PreA-only 
and No-PreA groups (Extended Data Figs. 3c and 4).

Physician clinical decision-making
Concerns regarding automation bias and anchoring, as in experimental 
contexts21, suggest clinicians may directly adopt LLM-generated assess-
ments, potentially bypassing their clinical reasoning. To investigate this 
in our real-world trial, we examined whether physicians’ clinical notes 
from the PreA-assisted groups exhibited distinct characteristics from 
those in the No-PreA group, as per the prespecified analysis.

Classification analysis yielded near-random discriminability (F1 
score 0.57; P = 0.81; ΔF1 < 0.02). This absence of systematic separabil-
ity in the feature space of clinical notes provides compelling evidence 
against the direct adoption of LLM-generated content in this real-world 
clinical context. We further investigated this finding across five clini-
cal domains of history-taking, physical examination, diagnosis, test 
ordering and treatment plans. Consistent with the overall findings, no 
significant difference was observed between the PreA-only and No-PreA 
groups (or PreA-only and PreA-human groups) in the five domains 
(P = 0.10–0.90; Extended Data Table 3). These findings collectively 
suggest that PreA-assisted medical consultation did not introduce 
detectable, systematic alterations in physician decision-making, either 
overall or within specific clinical domains.

Quality of referral
We performed a blind post hoc analysis comparing PreA referral reports 
to the subsequent physician clinical notes among the PreA-assisted 
groups. PreA-generated reports exhibited substantial agreement (exact 
match, near-identical content or inclusion of accepted differentials) 
with physician notes in 65.8% (95% CI 61.8–69.6) of history-taking, 66.7% 
(95% CI 62.7–70.4) of diagnoses, and 70.7% (95% CI 66.8–74.2) of test 
ordering recommendations (Fig. 3a). PreA reports show disagreement 
in only 2.8% to 5.7% of cases, while the remaining physician notes were 

absent that precluded direct comparison. Among cases exhibiting 
agreement or where physician notes were blank, PreA reports were 
rated significantly higher quality than physician notes in terms of com-
pleteness, appropriateness and clinical relevance across history-taking 
(PreA 4.73 ± 0.50 versus physician notes 2.93 ± 1.49), diagnosis (PreA 
4.49 ± 0.82 versus physician notes 2.49 ± 1.25), and test ordering (PreA 
4.55 ± 0.63 versus physician notes 3.28 ± 1.57; Fig. 3b). Intergroup 
analysis (PreA-only versus PreA-human) revealed no statistically sig-
nificant differences in agreement rates and quality scores across all 
assessed domains.

Comparative performance of development strategies
The choice of a co-designed chatbot for the RCT was informed by a 
previous simulated experiment that directly compared this approach 
against fine-tuning with local dialogues. For this experiment, we com-
piled a de-identified audio corpus of 515 patient–physician scenarios 
(199,145 Chinese words) collected across rural clinics and urban com-
munity health centers within the same 11 provinces as the co-design 
process. This dataset comprised general medical consultation inter-
actions in geographically and socioeconomically diverse settings, 
with 51.7% (266 of 515) from rural areas and 77.9% (401 of 515) from the 
low-income regions. Mean consultation durations ranged from 1.55 to 
3.98 min, and interaction lengths spanned 226.90 to 546.00 Chinese 
words per scenario (Fig. 4a).

The co-designed model achieved significantly higher-quality 
rating scores than the data-tuned counterpart (the co-designed 
model further fine-tuned on the primary care dialogues) group 
across all domains: history-taking (without data-tuned 4.56 ± 0.65 
versus data-tuned 3.86 ± 0.81; P < 0.001; Fig. 4b), diagnosis (without 
data-tuned 4.67 ± 0.55 versus data-tuned 2.47 ± 1.44; P < 0.001) and test-
ing order (without data-tuned 4.23 ± 1.09 versus data-tuned 2.21 ± 1.12; 
P < 0.001). Notably, the data-tuned model replicated systemic inef-
ficiencies observed in real-world primary care, including omitting 
guideline-recommended history elements and demographic elements 
(for example, patient age and sex), and failing to provide appropriate 
tests and diagnoses (Supplementary Table 3). Mirroring real-world 
clinician patterns, the data-tuned model exhibited suboptimal adher-
ence to diagnostic guidelines, failing to provide diagnoses (30.0%, 90 of 
300) or suggest testing (39.3%, 118 of 300) when needed. Additionally, 
the data-tuned model mimicked an unfriendly tone similar to that of 
human clinicians.

Discussion
We developed and evaluated PreA, a co-designed LLM-based chatbot 
that streamlines primary-to-specialist care transitions by preparing 
patients for consultations and generating preconsultation referrals to 
specialists. In a pragmatic, multicenter RCT in China, PreA improved 
both operational efficiency and patient-centered care delivery in 
high-volume hospital settings compared to usual practice. The findings 
provide preliminary evidence for the clinical utility of co-designed LLMs 
within time-constrained clinical workflows, suggesting that co-design 
with local stakeholders is an effective strategy for deploying LLMs into 
clinical practice.

The trial demonstrated that PreA enhanced both efficiency and 
patient-centeredness (a dual benefit rarely achieved in previous LLM 
deployments)20–22. Specialist physicians who received PreA-generated 
referral reports reduced their average consultation time by 28.7%, 
indicating that the tool enabled faster synthesis of clinical narratives 
and supported time-intensive decision-making. Indeed, the majority of 
specialists endorsed PreA’s utility for rapid clinical synthesis, particu-
larly valuing its preliminary diagnostic suggestions and medical history 
acquisition, which aligns with a recent qualitative investigation on phy-
sician views37. This efficiency gain, which could expand patient access 
or improve care quality, is particularly transformative in overloaded 
health systems where consultation lengths rank among the shortest 
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worldwide38. Notably, this efficiency gain did not compromise (instead 
enhanced) both the cure-oriented and care-oriented medicine39,40, 
with physicians reporting improved care coordination and patients 
perceiving a more patient-centered experience. These efficiency cas-
cades help to address core health system constraints identified in our 
co-design process, suggesting PreA’s potential applicability in other 
health systems facing similar inefficiencies.

The operational autonomy demonstrated by PreA, as evidenced by 
the equivalent performance of the PreA-only and PreA-human groups, 
carries important implications for scalability and cost-effectiveness 
for resource-constrained health systems41. Our matched-pair analysis 
revealed increased patient throughput per clinical shift even under 
partial PreA adoption, suggesting multiplicative system-level benefits 
when LLMs streamline preconsultation workflows. In resource-limited 
settings, such efficiency gains may substantially improve healthcare 
access, enhancing care equity. Additionally, the higher-quality scores 
of PreA reports position them as patient-specific templates that could 
alleviate the burden of clinical documentation. Future large-scale 
studies are needed to validate these potential benefits across diverse 
health systems.

Our pre-trial ablation studies highlight an essential pathway 
toward equitable clinical AI: passively training LLMs on simply curated 
local dialogues risks perpetuating systemic care deficits, whereas par-
ticipatory co-design could mitigate these risks and better align models 
with high-quality care objectives. The data-tuned model replication of 
suboptimal practices mirrors broader concerns that AI models trained 

on structurally biased clinical data exacerbate inequities in marginal-
ized populations42,43. The co-designed PreA model, refined through 
input from local stakeholders, including patients, care partners, com-
munity health workers, primary care physicians and specialist physi-
cians, outperformed the data-tuned model across all clinical domains. 
These findings underscore the architectural prioritization of local 
stakeholder agency through co-design over the passive assimilation of 
potentially biased natural dialogue data, advancing methodological 
approaches for equitable AI deployment in healthcare.

Our study, alongside a concurrent trial demonstrating the 
efficacy of a co-designed chatbot for primary care in low-resource 
communities36, establishes participatory co-design as a versatile 
methodology for developing context-specific healthcare chatbots. 
While both RCTs employed similar co-design approaches, they target 
distinct clinical needs: while the primary care chatbot prioritized 
AI health literacy and accessibility for community home use, PreA 
was optimized for structured referral generation and time-efficient 
operation within high-volume specialist workflows. The resulting 
technical architectures and clinical applications consequently 
diverged, reflecting their distinct co-design processes and stake-
holder priorities. These complementary findings demonstrate how 
co-design principles can be adapted to develop tailored LLM solutions 
for diverse healthcare contexts, serving various patient populations 
and clinical objectives.

In contrast to previous research that has often framed LLMs as 
physician-interaction diagnostic entities22,27,44–46, our findings show that 
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Fig. 4 | Local dialogue characteristics and model performance comparison. 
a, Geographic distribution and characteristics of the de-identified audio corpus 
comprising 515 patient–physician scenarios collected from the 11 provinces 
where local stakeholders participated in the co-design process. Provinces are 
categorized by income levels (high/low). Bar height represents the mean value, 

dots indicate individual data points, and error bars show 95% CIs. b, Quality 
score distributions for comparing co-designed PreA (n = 300 samples) with 
its local data-tuned counterpart (n = 300 samples), the same co-designed 
base model further fine-tuned on the primary care dialogues, across clinical 
evaluation domains.
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a co-design approach, involving the iterative alignment of LLMs with 
the prioritized needs of local stakeholders, represents the necessary 
next step, moving beyond technical promise to clinically integrated, 
equity-focused AI tools28. The streamlined integration of PreA’s outputs 
with specialist cognitive workflows resulted in significant reductions 
in consultation time and enhanced patient experience across demo-
graphic and socioeconomic strata. Critically, these findings challenge 
the prevailing narrative that medical AI tools inherently depersonalize 
medicine47, instead positing that co-designed LLM deployments could 
empower clinicians to prioritize patient-centered care when freed from 
cognitive burdens. Furthermore, while previous LLM models may have 
achieved success within narrow, siloed domains22, PreA’s demonstrated 
cross-disciplinary effectiveness, spanning both surgical and medical 
specialties, underscores its potential to unify currently fragmented 
care pathways across medical disciplines28.

Several limitations warrant consideration when interpreting our 
findings. The generalizability of our time-reduction findings may 
be context-dependent, as our study was conducted in high-volume, 
resource-limited hospital settings. The effectiveness of PreA is intrinsi-
cally tied to this environment of high clinical demand and standardized 
workflows, and validation in diverse healthcare systems is warranted. 
Furthermore, the single-blinded, pragmatic trial design, while reflect-
ing real-world conditions where patients would naturally know their 
preconsultation experience, introduces potential performance bias 
as patients were aware of their group assignment; however, several 
factors mitigate this concern: the concordance of findings across 
objective and subjective outcome assessments, the absence of sig-
nificant differences in clinical documentation across trial arms and 
the alignment of control group consultation times with established 
practice patterns.

Although co-design demonstrated advantages over local 
data fine-tuning for mitigating biases in LLM development, this 
approach remains constrained by data quality limitations in health 
resource-limited settings. Future comparative studies should evaluate 
co-design versus emerging high-quality primary care dialogue datasets 
to better understand their relative strengths and applications.

The systemic documentation gaps48, evidenced by missing physi-
cian notes, represent both a limitation and an important finding. While 
our analytical methods account for this missingness, future implemen-
tations could leverage PreA reports as documentation aids to address 
this widespread challenge in high-volume settings. Moreover, while 
PreA demonstrated potential as a primary-to-specialist care transition 
aid, its transition into home-based use would represent an optimal 
future direction that requires addressing systemic barriers, including 
AI health literacy, connectivity limitations and cross-institutional data 
sharing, as indicated by other work on co-designing LLMs for primary 
care settings36.

This study provides preliminary evidence for integrating 
patient-facing LLMs into hospital workflows. While larger multicenter 
trials with longer follow-up are needed to establish sustained benefits, 
cost-effectiveness and generalizability, our findings mark a signifi-
cant step forward. The demonstrated improvements in workflow effi-
ciency and patient–physician experience indicate that co-designed 
chatbots can reallocate clinician effort from routine data processing 
toward more nuanced and meaningful patient interactions. This work 
underscores co-design with local stakeholders as an effective strat-
egy for deploying LLMs to strengthen health systems and enhance 
patient-centered care in resource-limited settings.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Ethics approval
The Chinese Academy of Medical Sciences and Peking Union Medical 
College and the local medical ethics committee of the First Affiliated 
Hospital of Guilin Medical University approved the study. The institu-
tional review boards of the Affiliated Hospital of Gansu Medical College 
approved the study protocol based on their review and the approval 
from the medical ethics committee of the First Affiliated Hospital of 
Guilin Medical University. The trial followed the Declaration of Helsinki 
and the International Conference of Harmonization Guidelines for 
Good Clinical Practice. We obtained informed consent from all par-
ticipants in this study. All participants were informed that this was an 
exploratory experiment, and the results should not be interpreted as 
direct guidance for clinical interventions at this stage. This study imple-
mented stringent data protection measures, ensuring that all data were 
anonymized and encrypted to protect privacy. This trial is registered 
at the Chinese Clinical Trial Registry (identifier ChiCTR2400094159).

Co-designed architecture and clinical integration
PreA’s architecture, derived from the co-design with local stake-
holders, integrates a patient-facing chatbot and a clinician interface 
(Extended Data Fig. 1a). The patient interface collects medical his-
tory via voice or text, while the clinical interface generates structured 
referral reports. Within the consultation workflow, patients or their 
designated caregivers interacted with PreA first; it then generated a 
referral (Supplementary Table 4) for specialists to review before their 
standard consultation.

Co-design workshops revealed that standard clinical docu-
mentation for common conditions often lacks the granularity for 
personalized care and omits critical patient-specific details like 
pre-existing comorbidities. As such, PreA referral reports were inten-
tionally designed to bridge this gap by synthesizing comprehensive, 
patient-specific information to facilitate rapid documentation and 
diagnostic decision-making. The architecture was also engineered to 
support both multidisciplinary consultation (prioritized by primary 
care physicians) and evidence-based diagnostic reasoning (emphasized 
by specialist physicians).

PreA’s consultation logic underwent a two-cycle co-refinement 
process to achieve broader utility across diverse socioeconomic patient 
populations and adherence to World Health Organization (WHO) 
guidelines for equitable AI deployment (Extended Data Fig. 1b). The 
first cycle involved adversarial testing with 120 patients and caregiv-
ers, 36 community health workers, 15 physicians and 38 nurses from 
urban and rural areas across 11 provinces (Beijing, Chongqing, Gansu, 
Hubei, Shaanxi, Shandong, Shanxi, Sichuan, Guangxi, Inner Mongolia 
and Xinjiang). This participatory refinement enhanced real-world con-
textualization and mitigated potential disparities in health literacy and 
workflow integration49. The second cycle employed a virtual patient 
simulation, specifically modeling low-health-literacy interactions to 
further optimize the model against co-designed evaluation metrics. 
Subsequent sections provide further methodological details.

Model development
Patient-facing chatbot. The patient-facing chatbot employs a 
two-stage clinical reasoning model: inquiry and conclusion. During 
the inquiry stage, the model was trained to conduct active, multiturn 
dialogues to gather comprehensive health-related information, adher-
ing to standard guidelines on general medical consultation. In the con-
clusion stage, the model generated 1–3 differential relevant diagnostic 
possibilities, each with supporting and refuting evidence to enhance 
diagnostic transparency and mitigate cognitive anchoring risks50,51.

Specialist physician interface. PreA was configured to generate a 
referral report for primary-to-care transitions. The report included 
patient demographics, medical history, chief complaints, symptoms, 

family history, suggested investigations, preliminary diagnoses, treat-
ment recommendations and a brief summary aligned with clinical 
reasoning documentation assessment tools (Supplementary Table 4).

Accessibility and clinical utility. To ensure accessibility, the plat-
form supports shared access for patients and their caregivers52. An 
LLM-driven agent performs real-time intention analysis to facilitate 
empathetic communication and simplify language for low-literacy 
users, with outputs formatted as JSON for streamlined processing.

To improve clinical utility under time constraints, the model was 
optimized to balance comprehensive data gathering with clinical 
time constraints, targeting 8–10 conversational turns based on local 
stakeholder feedback. Primary care physician input drove the incorpo-
ration of high-yield inquiry strategies, which in pilot testing reduced 
consultation times by approximately half (within 4 min).

Human interaction refinement. In the adversarial stakeholder test-
ing cycle, we employed prompt augmentation and agent techniques 
to refine the model, aligning the chatbot with WHO guidelines for 
ethical AI in primary care while preserving clinical validity53. An evalu-
ation panel consisting of community and clinical stakeholders and 
one AI-ethics-trained graduate student, conducted iterative feedback 
cycles, focusing on mitigating harmful, biased or noncompliant out-
puts via adversarial testing.

Virtual patient interaction refinement. In the simulation-based refine-
ment cycle, we used bidirectional exchanges between PreA and a syn-
thetic patient agent to enhance consultation quality. We synthesized 
600 virtual patient profiles using LLMs grounded in real-world cases; 
50% (n = 300) required interdisciplinary consultation to reflect com-
plex care needs. Five board-certified clinicians validated all profiles for 
medical plausibility and completeness (achieving 5 of 5 consensus).

The patient agent was built on a knowledge graph architecture54, 
formalizing patient attributes (demographics, medical history and dis-
ease states) as interconnected nodes. The agent was further instructed 
to emulate common consultation challenges identified by community 
stakeholders in the first cycle. Interactions concluded automatically 
upon patient acknowledgment or after ten unresolved inquiry cycles. 
We randomly chose 300 profiles for refinement and reserved the 
remainder for comparative simulation studies.

Evaluation metrics. The co-design process identified five consulta-
tion quality domains for refinement: efficiency (meeting the patient’s 
demanding time lengths), needs identification (accurate recognition of 
patient concerns), clarity (concise and clear inquiries and responses), 
comprehensiveness (thoroughness of information) and friendliness (a 
respectful and empathetic tone).

PreA’s performance was rated across these metrics by a panel 
of five experts (two primary care physicians, two specialists (one 
in internal medicine and the other in surgical medicine) and one 
AI-ethics-trained graduate student). Separately, two primary care 
physicians assessed referral reports for completeness, appropri-
ateness and clinical relevance using a co-designed, five-point Lik-
ert scale (Supplementary Table 5). Scores below 3 triggered further 
iterative refinement.

Comparative simulation study with virtual patients
We collected audio recordings of primary care consultations from 
rural clinics and urban community health centers across the 11 Chinese 
provinces. Provinces were categorized as low-income and high-income 
based on whether per capita disposable income was below or above 
the national average (National Bureau of Statistics of China). Local 
co-design team members who live in these areas manually calibrated 
the transcripts to ensure validity, as the raw data contained noisy, 
ambiguous language, interruptions, ungrammatical utterances, 
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nonclinical discourse and implicit references to physical examina-
tions. All conversational data collected was rigorously de-identified 
in compliance with relevant regulatory standards (HIPAA) before 
data analysis.

We conducted a comparative simulation study to evaluate the 
incremental utility of integrating these localized dialogues. Two 
model variants were compared: the co-designed PreA model and a 
local data-tuned counterpart, created by fine-tuning the PreA model 
(OpenAI; ChatGPT-4.0 mini) on the processed primary care dialogues. 
Notably, the data fine-tuning, applied directly to the base LLM, inher-
ently exerted a higher behavioral priority than the agent techniques 
and prompting strategies co-designed to instruct the model. Conse-
quently, when behavioral cues conflicted, the model would preferen-
tially adhere to patterns learned from the fine-tuning data.

The virtual patient experiment utilized 300 unused patient pro-
files to evaluate clinical decision impacts (history-taking, diagnosis 
and test ordering). Referral reports from both variants were blindly 
evaluated by the same expert panels as in the PreA development, using 
validated five-point Likert scales for completeness, appropriateness, 
and clinical relevance (Supplementary Table 5). Inter-rater reliability 
for these assessments was high (κ > 0.80), and group comparisons were 
conducted using the two-tailed nonparametric Mann–Whitney U-tests.

Randomized controlled trial
In this pragmatic, multicenter RCT, patients were randomized to use 
PreA independently (PreA-only), with staff support (PreA-human) or 
not use it (No-PreA) before specialist consultation. The PreA-human 
arm was included to assess PreA’s autonomous capacity. The primary 
comparison was between the PreA-only and No-PreA arms, with a sec-
ondary comparison between PreA-only and PreA-human arms. The tri-
al’s primary end points were to evaluate the effectiveness of the PreA in 
enhancing operational efficiency and patient-centered care delivery in 
high-volume hospital settings, as measured by consultation duration, 
care coordination, and ease of communication. The PreA chatbot used 
in the RCT was frozen before patient enrolment. Examples of patient 
interaction with PreA are provided in Supplementary Tables 6–8.

Participants. Participants must demonstrate a need for health consul-
tation or express a willingness to engage in PreA health consultations. 
Other inclusion criteria were (1) aged between 20 years and 80 years; 
(2) visit the participating physicians at the study medical centers; (3) 
eligible for communicative interaction via mobile phone; (4) eligible 
to complete the post-consultation questionnaires; and (5) have signed 
informed consent. Exclusion criteria were (1) the presence of psycho-
logical disorders; (2) any other medical events that are determined 
ineligible for LLM-based conversation; and (3) refusal to sign informed 
consent. No co-design stakeholders participated in the RCT.

Intervention and comparators. Participants were randomly assigned 
to one of three study arms: (1) the PreA-only group, independently 
interacting with the PreA via mobile phone before their physician con-
sultation; (2) the PreA-human group, interacting with the PreA under 
the guidance of a medical assistant; and (3) the control group, receiv-
ing standard physician-only care (No-PreA). In the PreA-human group, 
participants were informed that PreA’s interface was similar to WeChat, 
which has been used by hospitals for patient portal registries and hos-
pital visit payments, and were offered technical support. Participants 
in the PreA-only arm used the tool independently without assistance.

For both PreA-assisted arms, a PreA-generated referral report was 
provided to specialist physicians for review via the patient’s mobile 
phone before any face-to-face interaction. This design was imple-
mented to prevent direct copying of content into clinical notes. Physi-
cians were requested to rate the report’s value for facilitating care. In 
the No-PreA control arm, physicians reviewed routine reports contain-
ing only patient sex and age.

Following consultations, patient and care partner experiences 
were captured via a post-consultation questionnaire (Supplementary  
Table 1). Physicians provided feedback at the end of their shifts 
(Supplementary Table 2).

Outcomes. The primary outcomes were consultation duration, 
physician-rated care coordination, and patient-rated ease of commu-
nication. These metrics were selected based on co-design feedback, 
which identified time efficiency and care coordination as critical for 
adoption in high-workload settings, and are established proxies for 
clinical effectiveness and patient-centered care38.

Secondary outcomes included physician workload (measured 
as patients seen per shift and compared between participating and 
matched nonparticipating physicians); patient-reported experiences 
of physician attentiveness, satisfaction, interpersonal regard and future 
acceptability; physician-reported assessments of PreA’s utility, ease of 
communication, and workload relief; and clinical decision-making pat-
terns, derived from a quantitative analysis of clinical notes.

Consultation duration, patient volume and clinical notes were 
extracted from the PreA platform and hospital electronic records. 
Physician-perceived care coordination was measured via a five-point 
Likert scale rating the helpfulness of the PreA report in facilitating 
care. Patient-reported and other physician-reported outcomes were 
collected using prespecified, five-point Likert scale questionnaires 
(Supplementary Tables 1 and 2). These instruments demonstrated 
robust internal consistency (Cronbach’s α > 0.80 for all domains) and 
face validity, established through iterative feedback from 20 laypersons 
and five clinicians to ensure relevance to outpatient contexts. Clinical 
notes were extracted from all three trial arms and included five core 
clinical reasoning domains: history-taking (chief complaint, history 
of present illness and past medical history), physical examination, 
diagnosis, test ordering and treatment plans.

Sample size. The sample size was calculated for the primary com-
parison between the PreA-only and No-PreA arms. The target minimum 
sample size of 2,010 participants (670 per study arm) was prespecified 
based on a power analysis using preliminary data from the pilot study 
of 90 patients. This minimum target sample size ensured sufficient 
power (>80%) for the primary outcome at a significance level of 0.05.

Recruitment. The clinical research team approached adult patients 
from waiting rooms who were scheduled to see the participating phy-
sicians. For pediatric patients or adults without a mobile device, their 
caregivers were contacted. Interested individuals received a compre-
hensive study description, which emphasized the exploratory nature 
of the research and clarified that any advice rendered by PreA serves 
solely as a reference and should not be utilized as a definitive basis for 
disease therapy. After providing informed consent and having their 
questions addressed, eligible individuals who met the inclusion and 
exclusion criteria were formally enrolled. Recruitment was conducted 
from 8 Feb to 30 April 2025.

Randomization and blinding. Participants were allocated to one of the 
three groups using an individual-level, computer-generated randomi-
zation sequence without stratification. Allocation was concealed to 
prevent selection bias. This trial was single-blinded: while the patients 
knew their group assignments (PreA-only, PreA-human, or No-PreA), 
the physicians were uninformed about the PreA-intervention groups 
(PreA-only or PreA-human). Furthermore, research staff involved in 
data analysis remained blinded to group assignments throughout 
the study.

Statistical analysis. Analysis of healthcare delivery. We assessed base-
line covariate balance across the three groups using an ANOVA for 
continuous variables and a chi-squared test for categorical variables. 
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For intergroup comparisons, we evaluated the distribution of scale 
values; two-sample Student’s t-tests with unequal variances were used 
for approximately normal data, while a nonparametric Mann–Whitney 
U-test was applied to skewed distributions. All tests were two-tailed 
with a significance threshold of P < 0.05. The Benjamini–Hochberg 
procedure was applied to correct for multiple comparisons. The rela-
tive treatment effect for the primary comparison (PreA-only versus 
No-PreA) was calculated as the difference in means divided by the mean 
of the No-PreA group. Secondary analyses evaluated the consistency of 
findings across demographic and socioeconomic subgroups. Python 
v.3.7 and R v.4.3.0 were used to perform the statistical analyses and 
present the results.

We conducted a matched-pairs analysis to assess the impact of 
PreA on physician workload. Matching criteria included medical spe-
cialty, working shift, age group (≤45 years and >45 years), sex, and 
professional title (chief, associate chief and attending). The outcome is 
the number of patients seen per clinical shift. A second matched-pairs 
analysis was conducted to assess the effect on patient waiting times. 
For this analysis, we matched participating physicians to a distinct 
control group on the same covariates (replacing working shift with 
working week to accommodate the matching on patient volume) and 
the number of patients seen per shift. For both analyses, statistical sig-
nificance between participating physicians and their matched controls 
was assessed using two-sided Wilcoxon signed-rank tests to account 
for matched data.

Analysis of clinical notes. We performed a prespecified classifica-
tion analysis to detect systematic differences between clinical notes 
from PreA-assisted arms (PreA-only and PreA-human groups) and the 
No-PreA arm. A randomly selected subset of notes (PreA-only, n = 291; 
PreA-human, n = 285; No-PreA, n = 300) was retrieved in compliance 
with hospital data privacy rules. Notes were partitioned into training 
and test sets (2:1 ratio). A binary classifier was trained to distinguish 
PreA-assisted from No-PreA notes, with classification performance 
evaluated using the F1 score, defined as the harmonic mean of preci-
sion and recall F1 Score=TP/(2TP + FP + FN), where TP, FP and FN denote 
true positives, false positives and false negatives, respectively. Under 
the null hypothesis of no intergroup differences, classifier perfor-
mance would be random. A statistically significant F1 score exceed-
ing this baseline (ΔF1 > 0.02) would indicate distinguishable clinical 
decision-making patterns attributable to PreA-assisted notes.

The classifier was trained in two stages. First, a Med-BERT encoder 
generated contextualized embeddings of the clinical notes55. Second, 
a binary classification layer was trained on these embeddings using 
supervised SimCSE56, a contrastive learning approach that minimized 
embedding distance within the PreA-assisted group while maximizing 
the distance to the No-PreA group. Statistical significance was assessed 
with one-sided bootstrap tests (1,000 samples).

A prespecified domain-specific analysis further compared 
clinical decision-making across five domains. For unstructured text 
(history-taking and physical examination), Med-BERT embeddings 
were generated and projected into a two-dimensional latent space 
(UMAP1 and UMAP2) via Uniform Manifold Approximation and Projec-
tion for comparative distribution analysis. For structured non-normal 
count data (number of diagnoses, number of tests ordered and number 
of treatments), documented counts were compared between groups 
using nonparametric Mann–Whitney U-tests.

Comparison of referral report with clinical notes. A post hoc analysis eval-
uated the concordance and quality of PreA-generated referral reports 
versus physician-authored clinical notes. Agreement was defined as 
substantial alignment (exact match, near-identical content or inclusion 
of accepted differential diagnoses). The same expert panel from the 
comparative simulation studies (two board-certified primary care phy-
sicians and two senior residents) performed blinded ratings of report 

and note quality on a five-point Likert scale for completeness, appropri-
ateness and clinical relevance (Supplementary Table 3). They assessed 
three domains relevant to primary care referrals: history-taking, diag-
nosis and test ordering; physical examination and treatment plans were 
excluded. Each case was evaluated by two experts. The analysis used the 
same subset of patient cases as the classification analysis. Inter-rater 
reliability was high (κ > 0.80). Group comparisons were performed 
using a nonparametric Mann–Whitney U-test.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The study protocol is provided in the Supplementary Information. 
Source data are provided in Tables and Extended Data Tables and can 
be accessed via the code repository (https://github.com/ShashaHan-
collab/PreA-OutpatientRCT)57. Raw conversation data are not publicly 
available due to the need to protect participant privacy, in accordance 
with the ethical approval for this study. Anonymized, nondialogue 
individual-level data underlying the results can be requested by quali-
fied researchers for academic use. Requests should include a research 
proposal, statistical analysis plan and justification for data use, and can 
be submitted via email to S.H. (hanshasha@pumc.edu.cn). All requests 
will be reviewed by the Chinese Academy of Medical Sciences & Peking 
Union Medical College and the ethics committee of the First Affiliated 
Hospital of Guilin Medical University. Review of the proposals may 
take up to 2 months, and approved requests will be granted access via 
a secure platform after execution of a data access agreement.

Code availability
Comparative statistical analyses were detailed in the paper. Code for 
classification analysis and data visualization can be found at https://
github.com/ShashaHan-collab/PreA-OutpatientRCT (ref. 57). The 
PreA chatbot is not publicly available as it is the subject of ongoing 
commercial licensing discussions and is protected intellectual prop-
erty held by the Chinese Academy of Medical Sciences & Peking Union 
Medical College, intended for development as a regulated medical 
device. To preserve commercial viability and prevent the unregulated 
use of a patient-facing clinical tool, public release is not permitted at 
this time. To support validation and collaborative academic research, 
the core PreA model can be made available to qualified researchers 
upon a formal request to S.H. (hanshasha@pumc.edu.cn), subject 
to a data-sharing agreement, ethical approvals and a commitment to 
appropriate safety protocols.
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Extended Data Fig. 1 | Study design and workflow. a, The co-designed 
architecture and clinical integration of PreA. The system comprises a patient-
facing chatbot and a clinician interface. Patients first interact with the chatbot, 
which generates a structured referral report for the specialist to review via the 
clinician interface prior to standard consultation. b, The two-cycle co-refinement 
process. The first cycle involved adversarial testing with community and 
clinical stakeholders. The second cycle used GPT-4-powered virtual patient 

simulations to optimize the model against co-designed evaluation metrics. 
c, Experimental comparison of the co-designed PreA model against a local 
data-tuned counterpart, created by fine-tuning the base PreA model on local 
primary care dialogs. d, Multicenter randomized controlled trial design. Patients 
were randomized to one of three arms before specialist consultation: PreA-only 
(independent use of PreA), PreA-human (staff-supported use of PreA), or a No-
PreA control (usual care).
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Extended Data Fig. 2 | Consultation duration and experience stratified by 
age and sex. a, By age group. b, By sex. Box plots depict patient consultation 
time across the three trial arms (PreA-only, PreA-human, No-PreA). The center 
line indicates the median, the box boundaries the first and third quartiles, and 
the whiskers extend to the most extreme data points within 1.5 × IQR. Dot plots 
show patient-reported experience metrics (ease of communication, perceived 
physician attentiveness, interpersonal regard, patient satisfaction, and future 

acceptability) and physician-reported perceived value on care coordination, 
with error bars representing standard deviation. Sample sizes for each subgroup 
are provided in Table 1. We assessed the normality of value distributions and 
used two-sample t-tests with unequal variances for intergroup comparisons. For 
significantly skewed dimensions, we employed non-parametric Mann-Whitney 
U-tests. All tests were two-tailed. The Benjamini-Hochberg adjustment was 
applied for multiple testing corrections based on the total number of tests.
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Extended Data Fig. 3 | Consultation duration and experience stratified by 
socioeconomic status. a, By education. b, By work status. c, By income level. 
Box plots depict patient consultation time across the three trial arms (PreA-only, 
PreA-human, No-PreA). The center line indicates the median, the box boundaries 
the first and third quartiles, and the whiskers extend to the most extreme data 
points within 1.5 × IQR. Dot plots show patient-reported experience metrics 
(ease of communication, perceived physician attentiveness, interpersonal 
regard, patient satisfaction, and future acceptability) and physician-reported 

perceived value on care coordination, with error bars representing standard 
deviation. Sample sizes for each subgroup are provided in Table 1. We assessed 
the normality of value distributions and used two-sample t-tests with unequal 
variances for intergroup comparisons. For significantly skewed dimensions, we 
employed non-parametric Mann-Whitney U-tests. All tests were two-tailed. The 
Benjamini-Hochberg adjustment was applied for multiple testing corrections 
based on the total number of tests.
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Extended Data Fig. 4 | Consultation duration and experience stratified by 
medical disciplines. Box plots depict patient consultation time across the 
three trial arms (PreA-only, PreA-human, No-PreA). The center line indicates the 
median, the box boundaries the first and third quartiles, and the whiskers extend 
to the most extreme data points within 1.5 × IQR. Dot plots show patient-reported 
experience metrics (ease of communication, perceived physician attentiveness, 
interpersonal regard, patient satisfaction, and future acceptability) and 

physician-reported perceived value on care coordination, with error bars 
representing standard deviation. Sample sizes for each subgroup are provided 
in Table 1. We assessed the normality of value distributions and used two-sample 
t-tests with unequal variances for intergroup comparisons. For significantly 
skewed dimensions, we employed non-parametric Mann-Whitney U-tests. All 
tests were two-tailed. The Benjamini-Hochberg adjustment was applied for 
multiple testing corrections based on the total number of tests.
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Extended Data Fig. 5 | Consultation duration and experience stratified by 
participant types and study settings. a, By participant types. b, study settings. 
Box plots depict patient consultation time across the three trial arms (PreA-only, 
PreA-human, No-PreA). The center line indicates the median, the box boundaries 
the first and third quartiles, and the whiskers extend to the most extreme data 
points within 1.5 × IQR. Dot plots show patient-reported experience metrics 
(ease of communication, perceived physician attentiveness, interpersonal 
regard, patient satisfaction, and future acceptability) and physician-reported 

perceived value on care coordination, with error bars representing standard 
deviation. Sample sizes for each subgroup are provided in Table 1. We assessed 
the normality of value distributions and used two-sample t-tests with unequal 
variances for intergroup comparisons. For significantly skewed dimensions,  
we employed non-parametric Mann-Whitney U-tests. All tests were two-
tailed. The Benjamini-Hochberg adjustment was applied for multiple testing 
corrections based on the total number of tests.
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Extended Data Table 1 | Distributions of medical departments across three trial groups
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Extended Data Table 2 | Consultation workflow, physician ratings, and patient experience in the RCT
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Extended Data Table 3 | P values of statistical comparisons on domain-specific clinical notes between groups
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