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Modeling flexible macromolecules is one of the foremost challenges in
single-particle cryogenic-electron microscopy (cryo-EM), with the potential
toilluminate fundamental questions in structural biology. We introduce

Three-Dimensional Flexible Refinement (3DFlex), amotion-based neural
network model for continuous molecular heterogeneity for cryo-EM data.
3DFlex exploits knowledge that conformational variability of a proteinis
often the result of physical processes that transport density over space and
tend to preserve local geometry. From two-dimensional image data, 3DFlex
enables the determination of high-resolution 3D density, and provides

an explicit model of a flexible protein’s motion over its conformational
landscape. Experimentally, for large molecular machines (tri-snRNP
spliceosome complex, translocating ribosome) and small flexible proteins
(TRPV1ionchannel, aVf8 integrin, SARS-CoV-2 spike), 3DFlex learns
nonrigid molecular motions while resolving details of moving secondary
structure elements. 3DFlex canimprove 3D density resolution beyond the
limits of existing methods because particle images contribute coherent
signal over the conformational landscape.

Proteins form the molecular machinery of the cell. They areinherently
dynamic, often exhibiting a continuous landscape of conformations,
with motion tightly linked to function. Methods that uncover protein
motion and the conformational landscape have the potential to illumi-
nate fundamental questionsin structural biology, and to enhance the
ability to design therapeutic molecules that elicit specific functional
changesin a target protein.

Single-particle cryo-EM collects thousands of static two-
dimensional (2D) particle images that, in aggregate, may span the
target protein’s 3D conformational space. Cryo-EM therefore holds
great promise for uncovering both the atomic-resolution structure
and motion of biologically functional moving parts'. This highlights
the need for methods for resolving continuous motion and structure
from static 2D images. Local reconstruction via multi-body refine-
ment?? is effective for macromolecules with sufficiently large, rigid
subunits, given masks to isolate the subunits. Principal component
analysis* and linear subspace methods, such as 3D variability analysis
(3DVA)’ approximate a particle’s space of conformations as aweighted

sum of basis density maps. Nonlinear manifold embedding methods®’,
including deep-learning models such as CryoDRGN?, offer even more
expressive power. Such density-based methods are widely applicable,
handling compositional and conformational heterogeneity; they pro-
vide encouraging evidence that one can estimate structural variation
from asingle heterogeneous dataset. However, the existing methods
have limitations. Local and multi-body refinements are not readily
applicable to highly flexible motion or the motion of small subunits
(SSUs). Linear subspace models are limited to relatively simple, small
motions. Density-based models do not explicitly estimate motion, and
as a consequence are not able to aggregate signal across a particle’s
conformational landscape to improve the resolution of 3D density in
flexible regions.

The development of a computational method that can uncover
both finestructural detail and nonrigid protein motioninthe presence
of continuous flexibility must overcome multiple challenges. It entails
joint optimization of many unknowns, including the 3D structure of
the density map and a representation of the position of each particle
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image on the conformational landscape of the protein. Itis also unclear
how to aggregate signal across all particles, attenuating noise and
improving map quality with sufficient regularization to avoid overfit-
ting. Recent methods that do estimate motion, such ase2gmm (ref. 9)
and hypermolecules™, address some but not all of these challenges.

We introduce 3D Flexible Refinement (3DFlex), a deep neural
network model of continuously flexible protein molecules. 3DFlex is
amotion-based heterogeneity model that directly exploits the knowl-
edge that most conformational variability of a protein is a result of
physical processes that tend to transport density, preserving local
geometry (for example, the relative positions and/or orientations
of side chains). We formulate 3DFlex as a generative deep-learning
architecture that captures conformational variability in terms of a
single high-resolution ‘canonical’ 3D density map of the molecule, and
aparameterized latent space of deformation fields encoding flexible
(nonrigid) motion. The motion model is used to deform the canoni-
cal density via convection, yielding all conformations captured by
the model. In 3DFlex, the latent coordinates of each particle image,
the deformation field generator and the canonical density are jointly
learned from image data using a specialized training algorithm, with
minimal previous knowledge about the flexibility of the molecule.

Results onexperimental cryo-EM datashow that 3DFlex addresses
the challenges of uncovering structure and motion of flexible proteins.
Onadataset of tri-snRNP spliceosome particles”, 3DFlex learns awide
range of nonrigid motions, including subunits bending across a span
of more than 20 A. In doing so, the algorithm aggregates structural
information from all conformations into a single, optimized density
map thatresolves high-resolution details in a-helices and 3-sheets even
in the flexible domains. It estimates motion with sufficient precision
to improve the resolution of small flexible parts that are otherwise
poorly resolved in conventional and local, focused refinements. We
demonstrate this ability with a dataset of TRPV1ion-channel particles',
where 3DFlex improves the resolution of peripheral a-helices in the
flexible soluble domains. Additional experiments on a SARS-CoV-2
spike protein, an aV8 integrin' and a translocating ribosome"” dem-
onstrate that 3DFlex canreveal structures not resolved by conventional
refinement, and can map out conformational variations. With such
capabilities, 3DFlex opens up new avenues of inquiry into the study of
biological mechanisms and function involving motion.

Results
3DFlex
3DFlex is a generative neural network method that determines the
structure and motion of flexible biomolecules from cryo-EM images.
Central to 3DFlex is the assumption that conformations of a dynamic
protein are related to each other through deformation of a single 3D
structure. Specifically, a flexible molecule isrepresentedin terms of (1)
acanonical 3D map, (2) latent coordinate vectors that specify positions
over the protein’s conformational landscape and (3) a flow generator
that converts a latent coordinate vector into a deformation field that
convectsthe canonical map into the corresponding conformation. The
canonical 3D map, the flow generator, and a latent coordinate vector
for each particleimage are jointly learned from experimental data.
Under the 3DFlex model (Fig. 1), a single-particle 2D image /; is
generated as follows. First, a K-dimensional latent coordinate vector,
z, isinput to aflow generator, f,(z;), with parameters 6. The generator
produces a3D deformation field thatis used to convect the canonical
3D density map, V. The convected density, denoted D(fy(z,), V), is then
projected to 2D, contrast transfer function (CTF) modulated and cor-
rupted by additive noise n; that s,

I; = G P(@) D(fy(z), V) + n, (1

where C;is the CTF operator and P(¢,) is the projection operator for
pose @, (therigid coordinate transform between the microscope and the

canonicalmap). Fitting 3DFlex to experimental images entails optimiz-
ing the flow generator parameters 6, the canonical map Vand the latent
coordinates z, to minimize the dataloglikelihood under the probabil-
istic model (equation (1)). For the current development of 3DFlex, we
use a white noise model and assume poses ¢;and CTF parameters are
known, for example, from a standard cryo-EM refinement algorithm,
although these parameters could also be reoptimized by 3DFlex.

Computationally determining structure and motion from noisy
cryo-EM datais challenging. Hence, there are severalimportant design
choices that define an effective model architecture and optimization
procedure. Briefly (see Methods for details), we represent and opti-
mize the canonical density Vas a real-space occupancy grid. The flow
generator network is a multi-layer perceptron (MLP) that outputs a
flow vector at each vertex of a tetrahedral mesh. Interpolation within
mesh elements, using finite-element methods, yields a flow field that
maps density from canonical coordinates to the observed coordinate
frame of agiven particleimage. Thus, 3DFlex conserves density, as do
conventional, rigid reconstruction methods. Further, central to the
optimizationis aregularizer that encourages locally smooth and rigid
motioninregions of the canonical map with high density.

After specifying the resolution and topology of the tetrahedral
mesh, and the number of layers and hidden units of the MLP, the latent
coordinates for each particleimage can beinitialized randomly or set
to coordinates provided by another method such as 3DVA (ref. 5). Dur-
inglearning, one can optimize the canonical map, the MLP weights and
the per-particle latent coordinates simultaneously, orinan alternating
form ofblock coordinate descent. To help encourage a smooth latent
representation, we also regularize the latent coordinates by inject-
ing uncertainty into the latent positions at each iteration of network
weight updates. Learning is performed using low-resolution particle
images to reduce computational cost, and also to enable half-set
Fourier shell correlation (FSC) validation of final reconstructions at
full resolution (Methods).

Once the parameters of the flow generator and the latent
coordinates of the particle images have been learned, we perform
high-resolution refinement of the canonical map. The goalis to exploit
the improved nonrigid alignment provided by the flow generator to
resolve fine-grained detail in the canonical map. Tothat end, given the
fixed flow generator and latent coordinates, we use L-BFGS'® to optimize
the canonical map against particle data, now at full resolution, using a
conventional least-squares objective. Further details of model archi-
tecture, design choices and optimization are provided in the Methods.

Datasets and experimental details

We apply 3DFlex to five experimental cryo-EM datasets: a tri-snRNP
spliceosome', a TRPV1ion channel?,a SARS-CoV-2 spike protein®, an
aVpB8integrin'* and a translocating ribosome®. (Quantitative analyses
with synthetic data are reported in Supplementary Material.) For
each dataset, we first compute arigid consensus refinement using
all particle images. Nonuniform refinement" is used to provide good
(rigid) alignments despite conformational heterogeneity in the data.
Theresulting poses ¢;are fixed, and particle images are downsampled
to a limited resolution during training of the 3DFlex model. 3DFlex
is run with a real-space mask that excludes solvent in the canonical
density V.Inthe case of membrane proteins, a separate mask is used
to enforce zero deformation in the region of detergent micelle or
lipid nanodisc.

Unless otherwise stated, model parameters are set to default
values (Methods). The default architecture for the flow generatorisa
six-layer MLP with 64 hidden units per layer. Its weights are initialized to
randomvalues. Aregular tetrahedral meshis automatically generated
to cover the spatial extent of the consensus refinement. Optionally, the
user may adjust the mesh topology (Methods). Beyond the structure
and topology of the mesh, no previous information is provided about
the specific form of heterogeneity in each dataset. Once 3DFlex is
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Fig.1| The 3DFlex model represents the flexible 3D structure of a protein
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network fyconverts the latent coordinates into the flow field uand a convection
operator then deforms the canonical density to generate a convected map W.
This map can then be projected along the particle viewing direction determined
by the pose ¢, CTF corrupted and compared against the experimental image.

trained, the final high-resolution refinement step yields two half-maps
fromwhich FSC can be used to measure improvements in global or local
resolution. Each experiment is run on a NVIDIA Tesla V100 GPU with
32 GB of video RAM, typically requiring 10 to 20 h.

For visualization of the canonical density, the half-maps from
3DFlex are combined, filtered by their FSC curve and B-factor sharp-
ened. Where noted, resulting maps are locally filtered to aid in visuali-
zation. To display conformational changes in figures, we select points
in the 3DFlex latent space, for example, z,1.,, and then generate the
corresponding convected densities, Wyispiay = D(fg(Zgispiay)» V). These
densities are rendered overlaid in multiple colors, and with reference
position guide markers to help visualize the motion. Supplementary
Videos depict structure and motion with greater clarity.

snRNP spliceosome: large nonrigid deformations of a
molecular machine
The U4/U6.U5 tri-snRNP complex represents a large part of the spli-
ceosome, with several moving parts, linkages and flexible domains®.
The dataset comprises 138,899 particleimages (EMPIAR-10073), with
box size of 380 pixels of width 1.4 A. They are first processed through
heterogeneous refinement in cryoSPARC (ref. 18) to remove parti-
cles missing the ‘head’ region, yielding 102,500 final particles. These
are downsampled to a box size of 180 pixels (2.95 A wide) for train-
ing 3DFlex. For the snRNP complex we use a five-dimensional latent
space; a larger latent space enables 3DFlex to discover more distinct,
intricate motions. A regular tetrahedral mesh with 1,601 vertices and
5,859 cells (approximately 18 A wide) is automatically generated to
cover the input (consensus) map. Given the latent coordinates and
flow generator learned by 3DFlex, the full-resolution particle images
are used to reconstruct the canonical density (in separate half-maps)
using L-BFGS. Total training time is 18 hours.

3DFlex recovers five dimensions of motion (Fig. 2 and Supple-
mentary Video 1), each of which captures a different type of bending
ortwistinginthe molecule. There are two large moving parts, the head
andfoot, attached to the morerigid central body. In the learned defor-
mation fields, the foot region largely moves as arigid subpart, with a
hinge-like linkage to the body. The head region exhibits large motion

and substantial internal flexibility, aspects of which are encoded in
eachof the latent directions.

While recovering 3D motion, 3DFlex also determines
high-resolution detail in the canonical map. This occurs through
the aggregation of signal across the conformational landscape, with
nonrigid alignment between particle images and the canonical map.
Individual a-helices can be seen translating several Angstroms while
retaining side-chain features. Likewise, a -sheet in the flexible head
region is resolved with separated [3-strands, despite the nonrigid
motion present. Because the flow generator was trained on downsam-
pled images (pixel size 2.95 A, and hence a Nyquist limit of 5.9 A), these
structural features represent additional signal that is resolved from the
original dataas a consequence of the accuracy of the recovered motion
(thatis, vianonrigid alignment).

In regions of substantial motion and flexibility, differences
between a static conventional refinement and 3DFlex are dramatic
(Fig.2e); for example, local resolutionin the center of the head region
isimproved from 5.7 to 3.8 A. For acomplex as large as the snRNP, it is
worth noting that one could create manual masks around regions that
are expected toberigid, and then performlocal or multi-body refine-
ment’. Such refinement techniques can improve resolution and map
quality indomains such as the foot, which remains rigid despite motion
relative to the remainder of the molecule. In contrast, 3DFlex does not
require manual masking or previous knowledge about the motion of
the molecule. It can detect and then correct for nonrigid flexibility
across the entire molecule, including the head, which is considerably
less rigid than the foot.

TRPV1ion channel: capturing flexible motion improves
resolution

The TRPV1ion channel is a 380 kDa tetrameric membrane protein
that acts as a heat- and capsaicin-activated sensory cation channel.
We process 200,000 particles of TRPV1in nanodisc (EMPIAR-10059),
downsampled to a box size of 128 pixels of width 1.21 A for training
3DFlex. A tetrahedral mesh with 1,054 vertices and 3,892 cells (about
14 A wide) is generated to cover the density. Based on 3DVA (ref. 5),
itisevident that TRPV1exhibits smooth, relatively small deformations.
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Fig.2|3DFlex with a 5D latent space applied to particleimages of an snRNP
Spliceosome complex, demonstrating the capacity for 3DFlex to resolve
multiple modes of nonrigid deformation simultaneously, while also
capturing high-resolution structural detail. See Supplementary Video 1.

a, Colored series of convected densities learned by 3DFlex, at five positions
along the first latent dimension, ranging from minus one to plus one standard
deviation. b, Same as abut focused on key structural details in the head region
of'the protein. The top row shows an a-helix that translates several Angstroms.
The bottom row shows a 3-sheet, which translates and deforms. ¢, Convected

coordinate 3

el e

Latent coordinate 3
o
|

-0.5

-1.0 1

-1.5 T ——
Latent /\{0 /,\9 /0@ SIS

Latent coordinate 1 Latent coordinate 2

Latent coordinate 4
Latent coordinate 5

Qo Q
RECICIC R N0 P O 08

Latent coordinate 3 Latent coordinate 4

3DFlex refinement

(%)
o
[e]
(y) uonnjosal 1007

densities from 3DFlex at minus one (red) and plus one (blue) standard deviations
inthe latent space, along each of the remaining four latent dimensions. Each
dimension resolves a different type of motion within the same model. d, Scatter
plots showing the final distribution of learned particle latent coordinates across
the dataset. e, The left shows a density map from conventional nonuniform rigid
refinement colored by local resolution. The right shows a canonical density map
from 3DFlex, colored on the same local resolution color scale. The two maps are
filtered by local resolution to aid in visualizing weak density in low-resolution
areas in the conventional refinement.
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As such, asmaller architecture is sufficient, and helps to mitigate the
risk of overfitting; we use a three-layer MLP with 32 units per layer for the
flow generator anda2D latent space. We initialize the latent coordinates
to those from 3DVA, which helps avoid poor local minima that can be
problematic with small proteins. Once 3DFlex is trained, the original
particles (pixelsize 1.21 A) are used to reconstruct the canonical density
(in separate half-maps) to high resolution. Symmetry is not enforced
during training but the half-maps are symmetrized post hoc to C4 to
enable comparisonwith therigid refinement baseline (Methods). Dur-
ing training, the micelle region is set to have zero deformation.

Theresulting 3DFlex model captures two types of flexible, coor-
dinated motion among the four peripheral soluble domains of the
ion channel (Fig. 3 and Supplementary Video 2). Along the first latent
dimension, each pair of opposing subunits bends toward each other
while the other pair bends apart. The second involves all four subu-
nits twisting concentrically around the channel’s pore axis. In both
cases, the peripheral-most helices move by approximately 6 A. Both
motions are nonrigid and involve flexure of substantial regions of the
protein density.

In a conventional refinement, these motions are detrimental to
reconstruction quality and resolution (Fig. 3c and Supplementary
Video 3).Several a-helicesin the soluble region are so poorly resolved
that helical pitchis barely visible. Local resolution reaches 2.8 Ain the
rigid core of the channel, but only 4 A at the periphery. 3DFlex, on the
other hand, estimates the motion of these domains, improving local
alignment, which yields better resolution and map quality. During
training of the flow generator, 3DFlex only makes use of downsampled
images with a pixel size of 2.15 A (a maximum Nyquist wavelength of
4.3 A).Butwithimproved alignment at full resolution (pixel size 1.21 A),
gold-standard FSC and local resolution measurements using the two
half-set reconstruction in 3DFlex show that it recovers consistent
structural information well beyond 4.3 A. Local resolutionsin periph-
eral helices improve to 3.2 A revealing helical pitch and side-chain
details. The separate half-set reconstructions from 3DFlex allow us to
use established validation procedures to measure the improvement
derived fromnonrigid motion estimation. The FSC curve for the entire
density (Fig. 3f) improves slightly in 3DFlex compared to conventional
refinement. Thisindicates thatintherigid core of the molecule, 3DFlex
has not lost structural information. To investigate the effect in the
peripheral domains, we construct a soft-edged mask around one of the
flexible domains (Fig. 3h) and test the mask for tightness using noise
substitution'. FSC curves within this mask (Fig. 3g) show that 3DFlex
improves the average resolution from 3.4 to 3.2 Aas well as increasing
the signal-to-noiseratio atlow and mediumresolutions. Thisimprove-
ment means that 3DFlex has resolved more structural information
than conventional refinement, and confirms that the nonrigid motion
learned by 3DFlex is abetter model of the particle than the rigid model.

3DFleximproves the reconstruction of TRPV1by explicitly mode-
ling nonrigid deformation. As abaseline, we also performalocal focused
refinement using symmetry-expanded particles and the same mask
(Fig.3h) toisolate asoluble domain. Local refinement does notimprove
the density or resolution of the domainbeyond conventional refinement
(Fig. 3g), as expected since each soluble domain is less than 50 kDa
and deforms flexibly. We believe that this comparison illustrates an
additional advantage of 3DFlex. Unlike local and multi-body refinement
methods that assume rigidity and attempt to fit separate pose param-
eters for each masked region, 3DFlex exploits correlations between
moving parts, making it possible to infer the position of all parts, even
though individually each is too small to align reliably. In the case of
TRPV], the four soluble domains deform in different directions by dif-
ferentamounts, but 3DFlexinfers their positionsinagivenimagejointly.

SARS-CoV-2 spike proteinin prefusion state
The SARS-CoV-2 spike protein® is a natural candidate for 3DFlex as it
exhibits continuous flexibility that cannot be resolved by standard

classification techniques, especially in the neighborhoods of the
receptor binding domain (RBD) and N-terminal domain (NTD). We
process 2,139 raw cryo-EM movies (EMPIAR-10516) in cryoSPARC to
obtain 113,511 particle images (box size 256; pixel size 1.396 A). After
downsampling (box size 140; pixel size 2.55 A), we train 3DFlex with a
3D latent space.

By default, 3DFlex uses aregular tetrahedral mesh, but the method
works with any mesh geometry. As discussed in Methods, the mesh
topology canbe adjusted tointroduce additional inductive bias. This is
useful for resolving motion of adjacent domains that move differently
from each other. For the spike protein we obtained good results with
amesh constructed using a submesh for each RBD and NTD domain,
fused to a submesh for the central trimer of S2 domains (Extended
Data Fig. 1). We provided coarse boundaries between adjacent RBD
and NTD domains from which the submeshes and complete mesh
were automatically constructed (Methods). The mesh element size
is 14 A. A custom mesh topology provides helpful inductive bias but
does not provide 3DFlex with information about the direction nor
types of molecular motion present in the data. Rather, 3DFlex must
still learn nonrigid deformations from scratch across all mesh nodes
jointly during training.

Theresulting 3DFlex model captures multiple coordinated bend-
ing motions of the RBDs and NTDs in the S1region of the spike protein
(Fig. 4c-e and Supplementary Video 4). The up-RBD shows the larg-
est motions, as expected. In conventional refinement, the up-RBD is
essentially unresolved and appears as broken and/or blurred density,
while with 3DFlex refinement, the up-RBD is intact and resolved at
aresolution around 5 A (Fig. 4ab). This is notable as the up-RBD is
the functionally active part of the spike in prefusion state. There also
appears to be structure in the latent landscape (Fig. 4f) suggesting
that certain positions of the RBDs and NTDs are more energetically
favorable than others, although we do not analyze this landscape in
detail here.

aVp8 Integrin with two Fabs
The aVf8 integrinis a highly flexible protein involved in cell differen-
tiation during development, and in fibroinflammatory processes and
antitumor immunity™. We process 84,266 particles (EMPIAR-10345)
of aV8integrin with two Fabs bound. 3DFlex s trained on downsam-
pled images (pixel size 3.15 versus 1.345 A), with a 2D latent space and
aregular tetrahedralmesh with 477 vertices and 1452 cells (22 A wide).
3DFlex resolves large motions of the flexible arm of the integrin
(Fig. 5b,c and Supplementary Video 5). In doing so, 3DFlex enables
improved reconstruction of the highly flexible region that is barely
resolved by conventional refinement; local resolution improves from
8+ to 6.5 A (Fig. 5a). Continuous motion of this magnitude (larger
than the width of the arm) is not well modeled by simpler continuous
heterogeneity techniques such as 3DVA (ref. 5). 3DFlex uncovers joint
bending and motion of the flexible arm as well as the core region of the
proteinand the two Fabs. Thelocal resolutionin the core regionis also
slightlyimproved by 3DFlex, from3.6t03.5 A, and local resolutionsin
otherregions (red markersin Fig. 5a) also improve.

Translocating ribosome with elongation factor G

Ribosomal translocation involves coordinated motion of multiple
subunits of the ribosome with participation of elongation factor G
(EF-G), atranslational GTPase”. To demonstrate the capacity of 3DFlex
to model complex, nonrigid motions of amolecular machine undergo-
ingareaction, we process adataset of 58,433 particle images (box size
288; pixel size 1.16 A) of the Ribosome-EF-G complex in the presence
of GDP (EMPIAR-10792). The original study® separated major confor-
mational states using 3D Classification. We combine particles classi-
fied into Hybrid(GDP+Pi), Hybrid(GDP) and Chimeric(GDP) states”
into a single-particle set, discarding the original labels. These images
are downsampled (pixel size 2.38 A), and used to train 3DFlex with a
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3DFlex to resolve motion of smaller, membrane proteins. See Supplementary
Videos 2 and 3. a, Scatter plots showing the distribution of learned particle latent
coordinates. b, Convected densities from 3DFlex at minus one (red) and plus
one (blue) standard deviations along each of the two dimensions in the latent
space. The first reveals a motion where opposite soluble domains move together
orapart. The second reveals motion of all four soluble domains twisting around
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onthesamescale. Both are filtered and sharpened identically, and displayed at
the same threshold level. d,e, Detailed views from top (d) and side (e) showing
helical density in the flexible soluble domains. f,g, FSC curves are measured
between half-map reconstructions from disjoint half-sets of particles and during
training experimental data only up to 4.3 A resolution is used (DC denotes
constant signal). f, FSC of the entire map. g,h, FSC of the flexible peripheral
domain (mask showninh) including FSC curve (red) for local rigid refinement
using the same mask (g).

2D latent space. We use a custom mesh topology, specified by coarse
boundaries between the large subunit, SSU, EF-G and transfer RNAs
subunits, from which submeshes and acomplete fused mesh are auto-
matically generated (Methods). The finalmesh, with element size 14 A,
covers the entire Ribosome-EF-G complex.

3DFlex learns highly coordinated, intricate motion of multiple
parts (Fig. 6¢ and Supplementary Video 6). In the learned model,
the ribosome undergoes a transition between two major conforma-
tions with the EF-G causing a swiveling of the SSU and head region
and displacement of the tRNAs, as well as smaller conformational
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by local resolution, sharpened identically and displayed at the same threshold
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level to simplify visual comparison of map quality. b, Enlarged region of the map
to show the detailed structure of the up-RBD that is resolved by 3DFlex but not
by the conventional refinement. c-f, Convected densities from 3DFlex at minus
one (red) and plus one (blue) standard deviations in the latent space (f) along
coordinate axes for dimensions1(c),2 (d),and 3 (e).

changes within each of the major states. The flow generator captures
the simultaneous motion of the SSU, head region, EF-G, tRNAs and
peripheral RNA helices. The distribution of latent coordinates (Fig. 6a)
shows aseparation of particles between the two major conformations,
which correspond to the Hybrid(GDP+Pi) and Chimeric(GDP) states
that were originally separated by 3D classification® (Fig. 6b). We also
find that 3DFlex delineates the conformational change between the
major Hybrid(GDP+Pi) state and the less-populated intermediate
Hybrid(GDP) state, although we do not analyze the distribution in
detail here. These results demonstrate the use of 3DFlex for mapping
functional motion of complex cellular machinery, in cases where the
dataset contains particles that span multiple states along the reaction.

Despite the large motions present, 3DFlex refinement recovers
high-resolution detail even in regions that are blurred or missing in
conventional refinement (Fig. 6d). This includes RNA helices in the

SSU (resolved at local resolution of 3 A), a-helices in the head region
and tRNA density (Fig. 6e).

Discussion
3DFlex complements existing reconstruction methods for heteroge-
neous data. 3D Classification?*"* can approximate continuous het-
erogeneity by partitioning the input particles and computing a rigid
reconstruction on individual clusters. Recent methods enable larger
numbers of classes’, mitigating potential problems caused by confor-
mational diversity within each class, but they also require increasingly
large datasets. 3DFlex is data efficient, as every particle contributes to
the canonical density, regardless of its conformational state.

Local, focused refinement?*?? and multi-body refinement” meth-
odsallow high-resolution refinement of flexible molecules by assuming
the molecules are composed of a small number of rigid parts. Masks
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Fig.5|3DFlex onthe aVf8integrin. See Supplementary Video 5. a, The left
shows a density map from conventional nonuniform refinement colored by local
resolution. The right shows a canonical density map from 3DFlex with the same
local resolution color scale. Both maps are locally filtered, sharpened identically
and displayed at the same threshold level to simplify visual comparison of map
quality. 3DFlex exhibits clear improvement in map structure in regions indicated
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coordinate 2

Latent coordinate 2
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inthe vicinity of the flexible arm of the protein (dashed outline) and in flexible
Fabs (red markers) b-d, Convected densities from 3DFlex at minus one (red) and
plus one (blue) standard deviations in the latent space (d) along coordinate axes
for dimensions1(b) and 2 (c). The motion of the arm is captured mainly by the
second latent dimension.

are needed to separate the parts, and each part must have sufficient
molecular weight (typically 150 kDa or more) for accurate rigid align-
ment®. 3DFlex recovers motionand structure of nonrigidly deformable
parts across an entire molecule, with control over the complexity of
motion via mesh granularity and smoothness regularizers. Default
mesh generation is automatic, but one also has the option to adjust
mesh connectivity by separating subunits and domains to better
resolve boundaries.

Techniques such as normal-modes analysis®* make assumptions
about the local energy landscape of a protein around a base state of a
moleculeto predict flexibility. Methods have been proposed to exploit
suchmodelsto recoverimproved density maps from cryo-EM data of
flexible molecules®. 3DFlex does not presuppose knowledge of the
energy landscape or dynamics of the molecule, but rather learns this
from the image data.

Density-based methods have recently emerged to learn continu-
ous heterogeneity. Eigen-methods model the space of 3D conforma-
tions as a linear subspace*?*?; notably, 3DVA (ref. 5) computes and
visualizes subspace models at high resolution. More advanced tech-
niques use nonlinear manifold embedding®**™ or deep generative
models”® to construct anonlinear manifoldin the space of 3D density.

Density-based methods, such as 3DVA and cryoDRGN, capture con-
formational and compositional heterogeneity, but they do not model
proteinmotion or the preservation of local geometry. As such, they do
not enable (nonrigid) alignment and the aggregation of signal across
the conformational landscape.

Methods for continuous heterogeneity with models of motion
have begun to emerge. Hypermolecules® represent heterogeneous
proteindensity in a higher-dimensional space, which have the potential
to capture nonrigid motion and structure but this has yet to be dem-
onstrated on experimental data. e2gmm (ref. 9) represents a density
using a Gaussian mixture model. Changes in 3D density are inferred
by a neural network that adjusts the positions and amplitudes of the
Gaussian components. Motionis estimated only at the Gaussian cent-
ers, in contrast to a dense deformation field with which one can align
the entire density map for different conformations. These design
choicesand other limitations mentioned by Chen and Ludtke’ constrain
modelresolution, and amethod to improve reconstruction quality of
the aggregate density beyond the initial rigid consensus reconstruc-
tionis not proposed.

3DFlex recovers nonrigid motion from single-particle cryo-EM
data of large complexes and smaller membrane proteins. The learned
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Fig. 6 | 3DFlex applied to a translocating ribosome. See Supplementary Video
6.a, The latent distribution of particles modeled by 3DFlex, with the orange

line traversing the two major conformations. b, The same distribution colored
by labels from discrete classification results of ref. 15 showing three identified
states. ¢, Front, side and bottom views of convected densities from 3DFlex at
minus one (red) and plus one (blue) standard deviations along the orange line

in (a).d, The left shows the side, front and bottom views of density map from
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conventional nonuniform refinement colored by local resolution. The right
shows a canonical density map from 3DFlex with the same local resolution color
scale. Both maps are locally filtered, sharpened identically and displayed at

the same threshold level to simplify visual comparison of map quality. 3DFlex
exhibitsimprovement in map structure, with comparison aided by red markers.
e, The same as (a) but enlarged views of (top to bottom) EF-G, head region,
back of SSU and tRNA.

motionallows 3DFlex toimprove resolution and map quality of flexible
regionsinthe canonical density map by aggregating structural informa-
tion across a protein’s conformational landscape. While these capabili-
ties can help shed light on biological function, the current method has
limitations which highlightinteresting directions for future research.

Onelimitationis that 3DFlex was not designed to handle composi-
tional heterogeneity, where density appears and disappears between
discrete states. In these cases, 3DFlex may use its model capacity to
approximate disappearance as spatial diffusion of density rather
than capturing flexibility. Currently, we recommend 3DFlex be run
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on particle subsets withlittle compositional heterogeneity. The defor-
mation model of 3DFlex is, however, expected to find deformations
between discrete conformational states, aligning themto the canonical
map. Note thatin the absence of particle datain intermediate confor-
mations, 3DFlexis guided only by itsinductive bias and rigidity priors
inmodeling these transitions.

Inourresults onthetranslocating ribosome, 3DFlex found large,
functionally relevant motions. Molecular machines such as the ribo-
some do undergo these motions during areaction, but their function
alsoreliesonsmall, intricate changes, such as the motion of asingle side
chainorloop”.Some such changes remain beyond the reach of 3DFlex.
Similarly, while 3DFlex improved the resolution of large regions of the
ribosome compared to rigid refinement with all particles, similar or
better resolution of smaller moving parts can be achieved by repeated
application of focused 3D classification and masking®. One potential
use of 3DFlex is to provide an interpretable latent representation of
the conformational landscape, facilitating particle selection for con-
ventional processing. Focused application of 3DFlex with masks may
also be beneficial.

With the ability of methods such as 3DFlex to resolve motion, there
is aneed for methods to validate that the deformation fields are well
supported by the image data. These may be statistical methods, such
as FSC*, or perhaps fitting atomic models across the latent space to
enable further validation.

Beyond the current architectural and optimization choices used
in 3DFlex, alternatives may provide gains, one example being the use
of neural fields***° instead of real-space voxel grids and the tetrahedral
mesh encoding of motion. They can be optimized with gradient-based
algorithms, but are not limited to spatially uniform resolution. Regu-
larization of 3DFlex, both for the flow generator and the canonical
density, can make use of structurally aware priors. For example, back-
bone models can be used to influence mesh construction and allow
fine-grained structuresto be resolved. The flow generator canalso be
expanded to allow for certain motions (for example, rotary) to be more
naturally encoded, and the architecture can be expanded to handle
compositional variability.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-023-01853-8.
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Methods

3DFlex is a generative neural network method for determining, from
cryo-EM particle images, the structure and motion of flexible protein
molecules at atomic resolutions. In what follows, we outline the for-
mulation of the model and the essential design choices of the model
architecture andlearning procedure. We also discuss hyper-parameter
selection for effective use.

Central to 3DFlex is the overarching assumption that conforma-
tions of a dynamic protein are related to each other through defor-
mation of a single 3D structure. Specifically, a flexible molecule is
represented in terms of (1) acanonical 3D density map, (2) latent coor-
dinate vectorsthat specify positions over the protein’s conformational
landscape and (3) a flow generator that converts a latent coordinate
vector into a deformation field that convects the canonical map into
the corresponding protein conformation. The canonical 3D map,
the parameters of the flow generator and a latent coordinate vector
for each particle image are the model parameters that are initially
unknown. They are jointly learned from experimental data.

Under the 3DFlex model (Fig.1), asingle-particle 2D image /;is gen-
erated as follows. First, the K-dimensional latent coordinates z; of the
particle are input to the flow generator f,(z;). The generator provides
a 3D deformation field, denoted u,(x), where x is a 3D position and 6
denotes the parameters of the generator. The deformation vector field
and the canonical 3D density map Vare input to a convection opera-
tor, denoted D(u,, V), which outputs a convected density, denoted W,.
The 2D particleimage /;is then a CTF-corrupted projection of W, plus
additive noise n; that is,

I =GP@)W; +n
= G P(¢) D(fe(z), V) + n.

2

Here, C;denotes the CTF operator and P(¢,) is the projection operator
for pose ¢,, specifying the rigid transformation between the micro-
scope coordinate frame and the coordinate frame of the canonical map.

Fitting 3DFlex to experimental data entails optimizing the
flow generator parameters 6, the canonical density map Vand the
per-particle latent coordinates z,.,,, to maximize the likelihood of the
experimental data under the probabilistic model (equation (2)). This
isequivalent to minimizing the negative log likelihood,

M 2
EanaV.0.200) = 5 3. [li = GP@OD (o2, V)] €)
i=1

where M is the number of particle images. Our current model
assumes additive white noise, however extensions to colored noise
are straightforward. We also assume that poses ¢;and CTF estimates
are known, for example, from a standard cryo-EM refinement algo-
rithm, although these parameters could also be reoptimized in the
3DFlex model.

The 3DFlex framework entails several important design choices
that define the architecture of the 3DFlex model. Computationally
determining structure and motion from noisy cryo-EM data is a chal-
lenging problem. As such, discussion of the design choices below
provides insight into the working model, reflecting our exploration
of different designs and hyper-parameter settings during the develop-
ment of 3DFlex.

Flow generator

We use afully connected deep neural network (often called amulti-layer
perceptron or MLP) with rectified linear activation functions for the
flow generator. The input z is the low-dimensional latent coordinate
vector for a given image, and the output is a 3D flow field u(x). The
number of hidden units per layer (typically 32-128) and the number of
layers (typically 2-8) are adjustable hyperparameters. The final layer
is linear (without biases or nonlinear activation). The default 3DFlex

architecture is a six-layer MLP with 64 units per hidden layer, which
works well on a wide range of experimental datasets we have used.
Larger models are more expressive but may also be more prone to
overfitting. Accordingly, smaller networks are often useful for proteins
withsmooth motions, suchas TRPV1inthesection TRPV1ionchannel:
capturing flexible motion improves resolution.

Latent coordinates

The latent space in 3DFlex represents the conformational landscape.
Different latent positions correspond to different deformations of the
canonical map.3DFlex defaults to a 2D latent space but allows the user
to explore other options. For more complex motions, a large latent
space allows for discovery of multiple dimensions or types of motion.
Typically, we use latent dimensions between 2 and 6; in our experi-
enceitis useful to start with two dimensions, and then incrementally
increase the latent dimension to explore more complex models.

Auto-decoder

Akeystepintraining the 3DFlex modelis toinfer thelatent coordinates
(alsoknown as the embedding) for eachinput particleimage. In proba-
bilistic terms, given animage/and the current estimate of the 3D map,
one wants to infer the posterior distribution over latent coordinates
z, where high probability coordinates are those for which the flow
generator and canonical map explain the image well. Equivalently,
these are the latent coordinates that yield low values of the negative
log likelihood (equation (3)).

Determining the exact posterior distribution is, however, intrac-
table for problems such as 3DFlex. So, instead, we turn to approxi-
mate inference. One approach, commonly used in variational
auto-encoders (VAE)”, is amortized variational inference, in which a
single feed-forward neural network (the encoder) is used to approxi-
mate the posterior for any image. Given an input image, the encoder
outputs the mean and covariance over latent coordinates, essentially
‘inverting’ the generative model to predict the most likely latent coor-
dinates for thatimage. This approach has been used by deep-learning
based heterogeneity methods’’. In the context of 3DFlex, the encoder
wouldbe trainedjointly with the flow generator and the canonical map,
to maximize the likelihood of the particle images.

VAEs are usually stable to train and inference is fast, requiring just
a single pass through the encoder network. They also incorporate a
prior over latent coordinates that helps to regularize the latent space,
encouraging smoothness. Nevertheless, amortized inference can be
problematic. Primarily, it can be difficult for the encoder network
to accurately approximate the posterior defined by the generative
model*. In the context of 3DFlex, an effective encoder network must be
abletoinvert CTF corruption, 3D-to-2D projection, and 3D deformation
toinferalatentstate given anoisy 2D image. Motion must be learnedin
tandem with the generative model, so when the flow generator shifts
a particular subunit up or down, the encoder must simultaneously
learn the same motion and how it appears from 2D viewing directions
to infer the position of the subunit in an image. This learning task is
difficult, especially given the high noise levelsin experimental images.
Indeed, we did not find amortized inference effective for resolving
high-resolution structure and motion.

In 3DFlex, we instead adopt an auto-decoder model, where we
performinference by optimizing a point estimate of the latent coordi-
natesindependently for eachimage, taking advantage of the structure
of the generative model directly. Although more computationally
expensive than amortized inference with an encoder network, this
directinferenceis more precise. This allows 3DFlex to capture structure
and motion with sufficient detail to resolve flexible protein regions to
higher resolution thanis possible with previous methods.

The generative model for 3DFlex is end-to-end differentiable,
and so one can compute gradients of the datalikelihood with respect
tothelatent coordinates for eachimage, and then use gradient-based
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optimization to perform inference. When the dimensionality K of
the latent space is small enough, it is also possible to use coordinate
descent. We found the latter approach to be simpler and equally effec-
tive in our experiments.

Noise injection and prior on latents

Instead of computing a point estimate for zgiven/, one could explicitly
approximate the posterior p(z | /). In doing so, one captures uncer-
tainty inzthat canbe used to help regularize the model and encourage
smoothness of the latent space; that is, ensuring that nearby latent
coordinates yield similar deformation fields, and hence similar con-
formations. In 3DFlex, we find that directly adding noise to the point
estimate during training produces asimilar positive effect. Thismethod
can be likened to variational inference with a Gaussian variational
family with a fixed covariance, and has been used to regularize deter-
ministic auto-encoders®. Finally, in addition to noise injection, we use
aGaussianprior onlatent coordinates with unit variance to help control
the spread of the latent embeddings for different particles within a
given dataset, and to center the distribution of latent embeddings at
the originin the latent space.

Real versus Fourier space

Algorithms for single-particle reconstruction commonly repre-
sent 3D maps and 2D images in the Fourier domain. Working in the
Fourier domain reduces the computational cost of CTF modula-
tion and image projection (via the Fourier-slice theorem). It also
allows maximum-likelihood 3D reconstruction with known poses in
closed-form (for example, seerefs. 40,41). Onthe other hand, the con-
vection of density between conformationsis more naturally expressed
in real space, where structures in the canonical density map V need
to be shifted, rotated and potentially deformed to produce densities
consistent with the observed particles.

In 3DFlex, we represent the canonical density Vinreal space, as a
voxel array of size N°. Convection and projection are performedin real
space, and in practice are combined into a single operator that does
notstore W, explicitly. Once the projected image of the convected map
isformed, itis transformed to Fourier space and CTF modulated, and
transformed back to real space to be used with the observed image for
likelihood computation. Computationally, real-space convection and
projection are far more expensive than Fourier-space slicing, and the
fast Fourier transform for CTF modulation must be applied for every
image in the forward pass, and also in the backward pass for comput-
ing gradients. Nevertheless, we find that in 3DFlex, high-resolution
3D reconstruction of the canonical map is possible in real space when
using suitable optimization techniques (below).

Convection operator

Convection of density is an essential element of 3DFlex, modeling the
physical nature of protein motion, thereby allowing high-resolution
structural detail from experimental data to backpropagate through
themodel. There are several ways to construct a convection operator.
One is to express the flow field as a mapping from convected coordi-
nates (thatis, voxelsin W;) to canonical coordinates. Convection then
requires interpolating the canonical density V at positions specified
by the flow field. For density conservation, the interpolated density
must be modulated by the determinant of the Jacobian of the mapping,
which is challenging to compute and differentiate. Instead, the flow
in3DFlex, u,, is aforward mapping from canonical coordinatesin Vto
the deformed coordinates in W, This approach naturally conserves
density, as every voxel in V has a destination in W, where its contribu-
tion is accumulated through an interpolant function. The convected
density atlocation x can be written as

Wix) = D k(x —ui(y) Uy) @)
y

whereu;=fy(z)), kisaninterpolation kernel with finite supportand the
summation is over 3D spatial positions y of the canonical map. Here,
divergence and convergence of the flow field must be treated carefully
toavoid undesirableartifacts such as holes, Moiré patterns and discon-
tinuities. We found high-order (for example, tricubic) interpolation and
strong regularization (below) useful to ensure accurate interpolation
and artifact-free gradients.

Regularization via tetrahedral mesh

Asone adds capacity toamodel such as 3DFlex, the propensity for over-
fitting becomes problematic without well-designed regularization.
In early formulations of 3DFlex, overfitting resulted in the formation
of localized, high-density points (‘blips’) in the canonical map, along
with flow fields that translated these aberrations by large distances to
explainnoise in the experimental images. This problem was especially
pronounced with smaller proteins, higher levels of image noise and
membrane proteins containing disordered micelle or nanodiscregions
(thatis, structured noise). Overfitting also occurs when the regulariza-
tionis notstrong enough to force the model to separate structure from
motion. For example, rather than improve the canonical density with
structure common to all conformations, the model sometimes learned
to deformalow-resolution canonical density to create high-resolution
structure (with highly variable local deformations).

To address these issues, 3DFlex exploits previous knowledge of
smoothness and local rigidity in the deformation field. In particular, it
is unlikely that natural deformations would involve large discontinui-
ties in regions of high density; for example, an a-helix should not be
shearedinto disjoint pieces. Itis also unlikely that deformations willbe
highly nonrigid at fine scalesin regions of high density; at the extreme,
bond lengths should not stretch or compress substantially. With these
intuitions, we tried simple regularizers acting on flow fields defined at
each voxel, such as limiting the frequency content of the flow field or
penalizingits curvature. However, these regularizers were difficult to
tune and did not prevent overfitting reliably.

3DFlexinstead models flow generation using finite-element meth-
ods. Atetrahedral mesh covering regions of high density is generated
inthe canonical frame, based on a preliminary consensus refinement
orinput by the user (Mesh generation and customization below). The
deformation field is parameterized by a 3D flow vector at each vertex
of the tetrahedral mesh. The deformation field is then interpolated
using linear finite-element method shape functions withineach mesh
element. Smoothness is a function of the size of mesh elements (an
adjustable parameter) andis enforced implicitly throughinterpolation
and the fact that adjacent elements can share vertices.

We also encouragelocalrigidity of the flow in each mesh element.
The deformation field within the jth tetrahedral element for image i,
denoted u,(x) can be written as alinear mapping:

ll,-j(X) = A,‘jX + b,j (5)

where matrix A and vector b are uniquely determined from 3D flow
vectors at the element vertices. We quantify local nonrigidity in terms
ofthe distance between A and the nearest orthogonal matrix (inamean
squared-error sense*>*). In particular, we measure the squared devia-
tion of the singular values of A from unity. Letting s; bethe fthsingular

value of A;, we express the local rigidity regularization loss as

3
Eagia = 2,20 2 (55 —1)° ©
i j ¢=1
where w; are weights defining the strength of the prior within each
mesh element, based on the density present within the jth mesh ele-
ment. The densest elements have weight 1.0 and empty elements have
alower weight, by default 0.5. This weighting ensures that deformation
fields are encouraged to compress and expand empty space around
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the protein. Weight customization is possible but not necessary; the
default weights were sufficient for all of our experiments.

Mesh generation and customization

3DFlex can take as input any mesh construction and topology. The
size and connectedness of the mesh become hyperparameters of
the model and provide inductive bias in estimating deformations. By
default, 3DFlex automatically generates aregular mesh of tetrahedral
elements of a fixed size and spacing made to cover the density of the
input consensus refinement, where all elements share vertices with
their direct neighbors.

One canalso create an customized mesh by modifying an automat-
ically generated mesh, for example with variable sized mesh elements,
overlapping elements or where it is not necessary that neighboring
elementsshare vertices. Thelast case canbe thought of asintroducing
‘cuts’ into the mesh at the faces where neighboring elements do not
share vertices. At these faces, the deformation model has the freedom
to move adjacent mesh elements in opposite or shearing directions.

Extended Data Fig.1shows an example of cutting amesh to allow
nearby domains of the SARS-CoV-2 spike protein to move indepen-
dently under the 3DFlex model. Aregular mesh (Extended Data Fig. 1a)
may contain mesh elements that overlap adjacent domains of the pro-
tein, making the model unable to move one domain without affecting
the motion of the other. Instead, if the subdomains can be separated
(for example, as in Extended Data Fig. 1b) then each subdomain can
be covered with a submesh. The submeshes can be fused together
only at the interfaces where the density is continuous. In the example
of the spike protein (Extended Data Fig. 1c), these fusions could be
made between the lower S2 trimer (orange) and each of the NTD and
RBD domainsin S1 (purple, blue, pink, yellow, orange, green). 3DFlex
includes amesh utility to help simplify the construction of such fused
meshes. A user can start with a consensus reconstruction map, and
segment this at a coarse resolution into subdomains that are to be
separated, using commonly available 3D segmentation tools (for exam-
ple, ref. 44). These segments and the consensus map areinputinto the
3DFlex mesh utility. The utility generates a base regular tetrahedral
mesh over the extent of the consensus map (Extended Data Fig. 1a). It
alsoautomatically expands each segment toinclude all voxels that are
nearest to that segment, thereby defining coarse boundaries between
subdomains (Extended Data Fig. 1b). A submesh is created for each
subdomain using vertices from the base mesh that cover the bounda-
ries (Extended Data Fig. 1c). The utility then fuses the submeshes at
continuous interfaces indicated by the user. Providing 3DFlex with a
custom mesh topology provides additional inductive bias, allowing it
to better represent physically plausible deformations, but it does not
introduce additional information about the directions or magnitudes
of motionatany of the meshnodes, as all deformations are still learned
from the data during training.

Whether using a regular or custom mesh, there is substantial
latitude in specifying the mesh. Where motions are smooth, the size
and shape of mesh elements and their precise locations are not critical
since they only serve to ensure the deformationis smooth, and the flow
generator is able to displace the mesh elements (including changing
their size or shape) during deformation. Likewise for custom meshes,
the separation of subdomains does not need to be ‘exact’ as the canoni-
cal voxel density values and structure within each region of the mesh
arestill learned from the data by 3DFlex.

Optimization of flow and structure

3DFlex is end-to-end differentiable, allowing gradient-based optimi-
zation to be used to train the flow generator and learn the canonical
density that best explains the data. We use either Adam* or stochastic
gradient descent with Nesterov acceleration*® with minibatches of
at least 500 images, due to the high levels of image noise. Inference
of the latent coordinates for each image in a minibatch is performed

before computing gradients with respect to the canonical density and
flow parameters. The loss function (equation (7)) is a weighted sum
of the data log likelihood (equation (3)) and the nonrigidity penalty
(equation (6)):

L= Edata +AErigid- (7)

The regularization hyper-parameter Ais set to 2.0 by default. We find
that with small adjustments, often in the range 0.5 and 5.0, one can
modify the degree of nonrigidity in the regularizer, often yielding
improved models.

During optimization, we use frequency marching, learning the
model in a coarse-to-fine manner. The canonical density Vis con-
strained to be low-pass, with an upper frequency band-limit that
increases over iterations. The frequency and learning rate schedule,
and A4, can be tuned for each dataset in our current implementa-
tion, but default values work well in most cases. Optimizationis done
with abox size, N=N,, thatis typically smaller than the raw size of the
particleimages N,,. In this way, 3DFlex optimization only has access to
relatively low frequencies from the observed images (thatis, below the
Nyquist frequency for the smaller box size). This is useful as it makes
optimization faster, it allows one to use the resulting alignment of
higher frequencies as away to validate the quality of the deformation
and makes it easier to rule out overfitting.

Toinitialize training, we set the canonical density Vtobe alow-pass
filtered version of a consensus nonuniform refinement map in cry-
0SPARCY, given the same particle images. The parameters of the flow
generator are randomly initialized. The latent coordinates are initial-
ized to zero by default. Optionally, one can also use different initial
values. With smaller, low signal-to-noise particles, such as TRPV1 for
example, we find that initializing with latent coordinates from 3DVA
(ref.5) in cryoSPARC™ improves results.

We find that simultaneously training the canonical density VVand
flow generator parameters fleads to overfitting after thousands of gra-
dient iterations, despite strong regularization. However, we find that
aform of block coordinate descent provides a stable way to optimize
3DFlex. By default, wheninitializing from zero for latent coordinates,
we first perform five epochs of optimizing @ and latent coordinates with
Vfixed. Wheninitializing frominputlatent coordinates, we performthe
first five epochs with the latent coordinates fixed. Then, we proceed
to epochs alternating between optimization of Vand optimization of
6and latent coordinates, repeating until convergence.

High-resolution refinement and validation
With the ability of 3DFlex to capture motion and latent coordinates of
each particleimage, it becomes possible in principle to attempt recov-
ery of high-resolution detail in flexible parts of protein molecules that
would otherwise be blurred using conventional refinement methods.

3DFlexis optimized atasmallboxsize, N= N,. Once optimization
hasconverged, we freeze the flow generator parameters fand the latent
coordinates z;.,, and then transfer them to anew model at full resolu-
tion, with N=N,,. We partition the particles using the same split that
was used in the consensus refinement (from which we obtained the
poses {¢}). For each half-set we initialize the canonical density Vto
zero, and re-optimize it at full box size N,;, with the other parts of the
modelfixed. Inthe same way as established reconstruction validation
methods®**, the two resulting half-maps can be compared via FSC.
Correlation beyond the training-time Nyquist resolution limitindicates
that consistent signal was recovered from both separate particle sets,
as opposed to spurious correlation or overfitting of the model. This
correlation serves to validate the improvement in reconstruction of
flexible regions with the learned deformation model.

To thisend, we need to optimize Vat high resolution under the full
3DFlex model for each half-set. We initially experimented with local-
ized reconstructions (in Fourier space) but encountered issues with
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nonrigidity and curvature. We also found that minibatch stochastic
gradient descent methods for directly optimizing Vdid not yield high
quality results, potentially because noise in minibatch gradient esti-
mates is problematic for this task. Instead, we were able to solve the
problem using full-batch L-BFGS (ref. 16) in real space. This approach
is substantially more expensive than Fourier-space reconstruction,
and requires many iterative passes over the whole dataset. However,
itisnotableinthatitallows 3DFlex to solve high-resolution detail in all
flexible parts of the protein simultaneously, without making explicit
assumptions of local rigidity or smoothness.

Symmetry

Symmetric particles will not necessarily maintain symmetry during
conformational changes, since the motion of individual subunits or
the overall structure can break symmetry. In the current method,
we do not enforce symmetry during training of 3DFlex. However, in
processing of TRPV1we do assume C4 symmetryintheinitial rigid con-
sensus refinement. To facilitate comparison with rigid reconstruction
baselines where symmetry was enforced, we can apply symmetrization
to the reconstructed half-maps after high-resolution reconstruction
under 3DFlex. This makes the assumption that the canonical density
ofthe moleculeisindeed symmetric, anditis only the conformational
changes that break symmetry. The symmetrized half-maps canthenbe
compared using gold-standard FSC with half-maps from rigid recon-
struction where symmetry was enforced, as we showed for the TRPV1
dataset in Fig. 3. Likewise for TRPV1, we are able to compare the sym-
metrized 3DFlex reconstructions with rigid local refinement by first
applying C4 symmetry expansion to the particle images, and then
performinglocal refinement withinamask thatonlyincludes theregion
ofinterestin one asymmetric unit of the molecule (Fig. 3h). In this way,
we can ensure that the same number of asymmetric units were seenin
rigid, local and 3DFlex refinements.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Publicly available datasets EMPIAR-10073 (tri-snRNP spliceosome com-
plex), EMPIAR-10059 (TRPV1ion channel), EMPIAR-10516 (SARS-CoV-2
spike protein), EMPIAR-10345 (aV38 integrin), EMPIAR-10792 (trans-
locating ribosome) and EMPIAR-10025 (T20S Proteasome) were used
inthis study.

Code availability

3DFlexisimplemented within the CryoSPARC software package. Cry-
oSPARC is available in executable form free of charge for nonprofit
academic research use at www.cryosparc.com.
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Extended Data Fig. 1| Mesh Topologies. Examples of mesh topology that can b: coarse separation of domains. ¢: an irregular mesh constructed by fusing

provided to 3DFlex for the SARS-CoV-2 spike protein (see Fig. 4). a:aregular sub-meshes for each domain at the interfaces where density is to be continuous.
mesh, with all mesh elements connected to their neighbors. This does not allow 3DFlex still learns motion at all mesh nodes jointly and from scratch, but is now
adjacent protein domains to easily separate or move in different directions. able to model adjacent domains that move in different directions easily.
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