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Teravoxel-scale, cellular-resolution images of cleared rodent brains
acquired with light-sheet fluorescence microscopy have transformed the
way we study the brain. Realizing the potential of this technology requires
computational pipelines that generalize across experimental protocols
and map neuronal activity at the laminar and subpopulation-specific levels,
beyond atlas-defined regions. Here, we present artficial intelligence-based
cartography of ensembles (ACE), an end-to-end pipeline that employs
three-dimensional deep learning segmentation models and advanced
cluster-wise statistical algorithms, to enable unbiased mapping of local
neuronal activity and connectivity. Validation against state-of-the-art
segmentation and detection methods on unseen datasets demonstrated
ACE’s high generalizability and performance. Applying ACE in two distinct
neurobiological contexts, we discovered subregional effects missed by
existing atlas-based analyses and showcase ACE’s ability to reveal localized
or laminar neuronal activity brain-wide. Our open-source pipeline enables

whole-brain mapping of neuronal ensembles at a high level of precision
across a wide range of neuroscientific applications.

Mapping neuronal activity and morphology s critical for understand-
ing brain network dynamics underlying behavior and cognition'.
Advancesin microscopy, such aslight-sheet fluorescence microscopy
(LSFM)**, and tissue-clearing techniques, such as CLARITY?, CUBIC®,
iDISCO” and SHIELD®*’, have enabled high-fidelity imaging of cellular
structures inintact tissue, providing insights into brain structure and
function. However, these state-of-the-artimaging and molecular meth-
ods produce exceedingly large (teravoxel scale with trillions of voxels),
complex, multichannel and three-dimensional (3D) datasets. Such

teravoxel-scale datasets require automated algorithms for analyses
and identification of focal brain-wide changes in neuroanatomy or
neurophysiology>'°",

To enable automated brain-wide activity mapping in large
microscopy datasets, current pipelines (such as ClearMap' and multi-
modal image registration and connectivity analysis (MIRACL)™) rely
on registration to standardized brain atlases or common reference
spaces for statistical analyses, via a region-of-interest (ROI)-based
approach®? Thisanalysis requires a priori knowledge or data-specific
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expertise in choosing regions of interest according to the designed
experiments and comparison of cell counts across groups"* (due
to the large number of brain regions). Notwithstanding, emerging
single-cell and spatial-omics dataindicate far greater diversity within
conventionally defined atlas regions, with neuronal subpopulations
having unique cytoarchitecture, connectivity and function®. Moreo-
ver, definitions of atlas regions are commonly structure-centric and
limited in regard to delineation of neuronal subtypes. Reliance on a
traditional, region-based grouping of voxels can thus fail to detect
subtle focal contrasts or neuronal subpopulation-specific effects in
an unbiased fashion. Further, aggregating results on a regional basis
obscuresthe heterogeneity of changes within brain regions; neverthe-
less, many pathologies are thought to exert salient laminar or columnar
effects' %, Inaddition to regional analyses, existing pipelines for LSFM
dataenable voxel-wise statistical analyses to assess neuronal changes
indifferent brain regions. However, in vivo neuroimaging studies have
demonstrated that voxel-wise statistical tests with leniently corrected
Pvalues can result in an inflated rate of false positives (FP)", and this
issueis amplified with teravoxel-scale LSFM images. Conversely, con-
servative corrections such as Benjamini and Hochberg® reduce the
power of these voxel-wise methods to detect salient changes in such
teravoxel datasets.

Pipelines commonly employed for cellular segmentation using
fluorescent microscopy images, such as ClearMap', WholeBrain* and
llastik?, rely on traditional image-processing techniques in which
parameter tuning or expert intervention is often required to extract
meaningful features for segmentation®. This limits their ability to
produce robust results on unseen datasets, with varying signal and
noise distribution across different experimental set-ups and brain
regions. Deep learning (DL) models can automatically learn effective
representations of data with multiple levels of abstraction, resulting
in accurate and robust segmentation of imaging data®*, Although
several pipelines have beenintroducedto leverage DL for mapping of
cellsin microscopy data, none of the available DL pipelines are specifi-
cally tailored for 3D mapping of neuronal activity in whole-brain LSFM
data. Current DL pipelines are confounded by any the following: (1) reli-
ance on two-dimensional (2D)-based models, such as Cellpose?”* and
STARDIST?, whichimpedes the unbiased assessment of 3D volumetric
changes; (2) training and testing on restricted datasets consisting
of a small sample from specific brain regions and cell types, such as
CDeep3M*° and DeLTA?, limiting their ability to generalize or segment
alarge variety of cell sizes, shapes and densities®’; and (3) combining
conventionalimage-processing techniques with a DL-based classifier,
suchas Cellfinder®, limiting their functionality to detection. Further-
more, current segmentation pipelines do not provide uncertainty
estimates of model predictions, whichare invaluable for evaluating the
reliability of segmentation models, and for guiding the improvement
of segmentation results™.

To address these critical opportunities and enable robust
brain-wide mapping of neural subpopulation-specific effectsin LSFM
data, we developed the ACE pipeline. This end-to-end, automated pipe-
line utilizes cutting-edge DL segmentation models and advanced sta-
tistical algorithms, enabling unbiased 3D mapping of neuronal activity
and morphometrical changesin teravoxel-scale LSFM data. Unlike exist-
ingmethods, ACE, via integration with our MIRAC'’ open-source plat-
form, provides a quantitative mapping of neuronal subtype-specific
effectsin an atlas-agnostic manner thatisindependent of predefined
atlas regions. Our threshold-free, cluster-wise permutation analysis
(optimized for LSFM data) enables cluster-based statistical analysis
and improves the sensitivity of voxel-wise analysis. Leveraging DL
segmentation maps and atlas registration, clusters detected at the
atlasspaceare further validated at the native space of each subject. We
trained ACE segmentation models on large LSFM datasets and validated
them against the most commonly used state-of-the-art pipelines for
cellular mapping in microscopy, Cellfinder® and llastik**. We further

validated our DL models on several unseen (out-of-distribution) test
datasets from different centers, demonstrating that ACE accurately seg-
ments awide range of neuronal cell bodies of disparate size, shape and
density across differentimaging protocols. We apply ACE to chart local
neuronal ensembles across the whole brain during (1) cold-induced
food seeking and (2) movement, highlighting its generalizability across
neuroscience applications.

Results

ACE algorithm, workflow and validation

Artficial intelligence-based cartography of ensembles combines
DL algorithms, registration techniques and cluster-wise statistical
analysis to map neuronal subtype-specific changes in whole-brain
teravoxel LSFM data. Considering the importance and inherent techni-
cal complexities in segmenting neuronal somas across samples from
differentimaging protocols, we employed state-of-the-art DL architec-
tures and trained them on large datasets of LSFM data from different
centers. Key advances in ACE include the use of (an ensemble of) a
cutting-edge vision transformer (ViT) model as its segmentation core,
providing a quantitative estimate of model confidence (uncertainty)
and performing cluster-wise statistical analyses via a nonparametric
permutation-based algorithm.

We employed an optimized ViT as the backbone architecture for
our model, which is a deep neural network designed for computer
vision tasks that relies on self-attention, operating on one-dimensional
(1D) flattened vectors from 3D image patches to model long-range rela-
tionshipsintheinputdata, akinto language transformers. The output
ofthemodel was obtained by ensembling the predictions of 50 models
using the Monte Carlo dropout technique® ¥, to estimate model uncer-
tainty (viacomputing variance across models) and enhance robustness
(via averaging predictions generated from stochastically different
models; Fig. 1 and Extended Data Fig. 1). For training and evaluation
of ACE models, we used LSFM data acquired from 18 Tg TRAP2-Ai9
mice with the c-fos promoter (Extended Data Fig. 2). We divided each
training dataset into smaller 3D image cubes or patches (96° voxels cor-
responding to 0.35 mm?®). To generate ground truth (GT) data for each
patch, we developed a semiautomatic pipeline that relies on Ilastik®,
MIRACL' and FIJI/ImageJ°®. Because the generated GT data were not
obtained purely through expert manual annotation, we henceforth
labelthesesilver standard GT. We thus used 15,200 randomly selected
unique input patches for training, not accounting for data augmenta-
tion (n=30,400 with augmentation; Supplementary Fig. 1), to our
knowledge providing greater than fivefold more data for training
compared with DL models typically used for LSFM in the literature®.
We tested an optimized 3D U-Net architecture (convolutional neural
network, CNN) with residual blocks and dropout layers, based on our
previous work***°, as abaseline model for comparison to our ViT model.
Both architectures (ViT and U-Net) were trained and evaluated on the
same image patches (Extended Data Fig. 1). We illustrate the robust-
ness of the segmentation models on the test set and on two unseen
datasets, consisting of four LSFM whole-brain datasets acquired from
different centers (Extended Data Fig. 2). We highlight the differences
in characteristics and distributions between the training and unseen
datasets, including signal-to-noise ratio and contrast-to-noise ratio
characteristics, and intensity histograms (Extended Data Fig. 2).

Artficial intelligence-based cartography of ensembles utilizes our
MIRACL'**"*? platform to automatically register LSFM whole-brain or
hemisphere datato acommon coordinate system vialinear and nonlin-
ear transformations—here, ARA*. The segmentation maps generated
at the native space of each subject are voxelized and then warped to
Allen atlas resolution (Fig. 1b) using deformation fields obtained via
registration. The accuracy of registration and warping can be evalu-
ated using quality control checkpoints. Subsequently, the voxelized
and warped segmentation maps are passed to the cluster-wise analysis
modaule for statistical analysis.
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Fig.1|Methodological workflow of ACE. a-c, Intact whole brains
immunolabeled, cleared and imaged with LSFM were used as input to the ACE
pipeline.a, Whole-brain LSFM data are passed to ACE’s segmentation module,
consisting of ViT-and CNN-based DL models, to generate binary segmentation
maps inaddition to a voxel-wise uncertainty map for estimation of model
confidence. b, The autofluorescence channel of datais passed to the registration
module, consisting of MIRACL registration algorithms, to register to atemplate
brain such asthe Allen Mouse Brain Reference Atlas (ARA). High-resolution
segmentation maps are then voxelized using a convolution filter and warped to
the ARA (10 pm) using deformations obtained from registration. ¢, Voxelized and
warped segmentation maps are passed to ACE’s statistics module. Group-wise
heatmaps of neuronal density are obtained by subtracting the average of warped
and voxelized segmentation maps in each group to identify neural activity
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hotspots. To identify significant localized group-wise differences in neuronal
activity in an atlas-agnostic manner, a cluster-wise, threshold-free cluster
enhancement permutation analysis (using group-wise ANOVA) is conducted.
Theresulting P value map represents clusters showing significant differences
between groups. Correspondingly, ACE outputs a table summarizing these
clusters, including their volumes and the portion of each brain region included in
each cluster. Significant clusters are then passed to the ACE native space cluster
validation module, where clusters are warped to the native space of each subject.
Utilizing warped clusters and ACE segmentation maps, the number of neurons
within each cluster is calculated and a post hoc nonparametric test is applied
between counts within each cluster across two groups. The top left panel of the
figure was created using BioRender.com.

Artficialintelligence-based cartography of ensembles comprises
a cluster-wise permutation statistics module, providing a unique
capability missing in current pipelines. In an initial step, a voxel-wise
statistical test (here, two-way analysis of variance (ANOVA) is applied
between groups using warped segmentation maps). Next, rather than
focusing on individual voxels, we consider a null hypothesis regard-
ing the sizes of clusters in the data by incorporating the correlation
structure of the data. A key advance in ACE is discovering clusters in
athreshold-free approach using the threshold-free cluster enhance-
ment (TFCE**) method, which enables the detection of changes in
regions and subregions with higher sensitivity (Fig. 1c). Using this
methodology, ACE summarizes the volume, strength (effect size)
and ARA regions spanned by each cluster (Fig. 1c). Moreover, ACE
extracts associations among clusters (neuronal ensembles), poten-
tially revealing both within-region and long-range connectivity or
functional coherence. Furthermore, we incorporated a native space
cluster validation algorithm. This algorithm uses the cluster-wise
Pvalues map in atlas space, along with registration transformations,

towarp clusters fromatlas spaceinto the native space of each subject
for further statistical validation.

We explore the generalizability and impact of ACE by applyingitin
two unique neurobiological contexts. First, we identify local clusters of
activations underlying food seeking following cold stress by profiling
c-Fos expressionin whole-brain LSFM data. Second, we identify several
subregional and laminar neuronal ensembles that are differentially
activated duringlocomotion.

Segmentation of neuronal somas in teravoxel LSFM data
Wefirst evaluated the performance of our ViT ensemble model (using
Monte Carlodropoutand n =50 models) on our test dataset (comprising
12,160 unique patches of 96° voxels ~ 0.35 mm? from five animals). The
high fidelity of predictions is visualized in Figs. 2a and 3a on arepre-
sentative dataset, along with the corresponding GT. To quantitatively
assess the performance of the models, we used a series of overlap and
surface-based metrics, including recall, precision, Dice similarity coef-
ficient (DSC) and 95% Hausdorff distance (HD,s).
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Fig.2|Performance of ACE in brain-wide segmentation of neuronal cell bodies.
a, Maximume-intensity projection rendering of whole-brain c-Fos expression, with
anenlarged view of a cortical patch. Segmentation maps (blue) predicted by the
ViT ensemble for the enlarged subregion are shown and compared with GT (red).

b, Rawimage, GT and segmentation maps for two example image patches, along
with voxel-wise uncertainty maps. Regions of high uncertainty are localized around
the boundary of sparsely mislabeled processes such as axons (left-hand column)
and neuronal somas (right-hand column). Arrows indicate mis-segmented regions
froma. ¢, Qualitative evaluation of segmentation accuracy of ACE versus llastik in
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terms of detection of neurons with low signal intensity or slight blurriness (top),
and their shape (bottom). Arrows indicate the boundary of two neurons close

to each other.d,e, Quantitative evaluation of the segmentation accuracy of ACE
versus llastik (d), and detection accuracy of ACE versus Cellfinder (e), in terms of
average DSC, precision, recall, HDos and F1score on test datasets (n =12,160 unique
patches with 96° ~ 0.35 mm?®) and unseen datasets (n =1,824 unique patches of
96°~0.27 x 0.27 x 0.48 mm?>). In box plots: box limits, upper and lower quartiles;
center line, median; whiskers, 1.5x interquartile range; points, outliers. Mann-
Whitney U-test (two-sided), **P < 0.0001.

To provide afair comparison against the state-of-the-art segmen-
tationmethod, llastik?, we trained anllastik (random forest classifier)
model using patches from all training subjects. On our test set, ACE
models outperformed llastik?” across all experiments. ACE achieved

anaverage improvementin DSC of 0.17 compared with the optimized
llastik model (P < 0.0001, Mann-Whitney U-test, two-sided; Fig. 2c).
ACE showed superior performancein detecting both the boundary and
shape of neurons and discriminating neurons that were close to each
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other, resulting in alower HD,; (ACE (mean £s.d.), 4.76 + 3.47; llastik,
9.60 £ 6.78; P <0.0001, Mann-Whitney U-test, two-sided; Fig. 2c,d).
Furthermore, ACE exhibited increased robustness in segmenting
neurons with low signal intensity or out-of-focus blurriness (Fig. 2c),
whilellastik struggled to segment these effectively. ACE demonstrated
robust segmentation accuracy across different brain regions, and
consistently superior segmentation performance (on all evaluation
metrics) compared with Ilastik across the whole brain (Fig. 3b and
Extended Data Fig. 3). Moreover, ACE achieved higher robustness
metricsinsimulated distribution shifts (Gaussian noise, smoothing and
sharpening) at varying severity levels compared with Ilastik (Extended
DataFig.4).

To further validate our segmentation model, we comparedits per-
formance against the state-of-the-art detection algorithm, Cellfinder™.
To this end, we transformed segmentation maps into detection maps
by finding the center of mass of each segmented neuron. ACE exhibited
superior detection performance, resultinginan Flscore of 0.75 + 0.08
(mean £ s.d.) versus 0.55 = 0.15 for Cellfinder (P < 0.0001, Mann-Whit-
ney U-test, two-sided; Fig. 2e). Toimprove the accuracy of the Cellfinder
pipeline on our dataset, weretrained (fine-tuned) the Cellfinder model
onour training dataand repeated the evaluation experiment. Although
retrainingelicited anincrease of 8.64% in precision compared with the
Cellfinder pretrained model, it did not improve overall performance,
yielding an overall decrease in F1score (t0 0.28 + 0.12).

Employing an ensemble of 50 ViTs using the Monte Carlo dropout
algorithm improved our baseline model performance, resulting in
an average improvement of 2.1% in precision. ACE ensemble models
showed high confidence (low uncertainty) in correctly segmented
regions, whereas mis-segmented regions demonstrated low confidence
(high uncertainty; Fig. 2b). Areas with high uncertainty were typically
observed around the boundary of neuronal somas and sparsely misla-
beled processes. Voxel-wise uncertainty maps estimate segmentation
confidence and can be used in postprocessing to remove potentially
FP voxels.

Tovalidate the models’ generalizability, we obtained two unseen
(out-of-distribution) datasets with different cell-labeling strategies
(transgenic animal for training data versus routine antibody immu-
nostaining for unseen datasets), image resolution, scanning param-
eters, microscope and image characteristics fromthosein the training
dataset (Extended Data Fig. 2). From unseen dataset 1, we randomly
selected 1,820 patches of 96° voxels each (0.27 x 0.27 x 0.48 mm?®) and
generated silver standard GT data for eachimage patch. We employed
thetrained ViT ensemble model and deployed it on the unseen dataset
without any fine-tuning or postprocessing (Supplementary Fig. 2).
The DSC achieved by our model was 0.73 + 0.02 (mean +s.d.) versus
0.45 + 0.12 for llastik (P < 0.0001, Mann-Whitney U-test, two-sided;
Fig.2d).llastik segmentations resulted in a substantial number of false
negatives (FN) (recall (mean = s.d.), 0.35+ 0.15 versus 0.78 + 0.09 for
ACE, P<0.0001, Mann-Whitney U-test, two-sided; Fig. 2d). Further-
more, ACE outperformed Cellfinder on this unseen dataset (with both
the pretrained and fine-tuned model). To ensure afair comparison, we
further conducted Cellfinder runs using various parameters for its
detection step, then selected the best model based on a visual com-
parison (following the authors’ recommendations). This approach
allowed us to account for differences in neuronal size distribution
and choose the most suitable Cellfinder model for these datasets.

Notwithstanding, ACE outperformed the tuned Cellfinder model on
all evaluation metrics (P < 0.0001, Mann-Whitney U-test, two-sided;
Fig. 2e). Similarly, for unseen dataset 2, the qualitative and quantita-
tiveresults highlight ACE’s superior performance (P < 0.0001, Mann-
Whitney U-test, two-sided; Extended Data Fig. 5) compared with Ilastik
and Cellfinder, underscoring the generalizability of our DL models to
diverseimaging conditions.

Tofurtherincrease ACE’'srobustness onunseen data, we employed
an additional layer of ensembling by combining our optimized ViT
and U-Net ensemble models, generating an ‘ensemble of ensembles’
(Supplementary Table 1 shows inference time comparison between
ACE and existing algorithms). Our segmentation module thereby takes
advantage of a CNN-based architecture that extracts local features
within the image patch and a ViT architecture to learn long-range
dependencies across the patch. The ensemble of ensembles strat-
egy increased generalizability when dealing with the unseen dataset,
improving DSCby an average of 2.1%, precision by 5.2% and decreasing
average HDy; by 15.4%. Indetection mode, ACE’s ensemble of ensembles
increased F1score by anaverage of 5.1% and precision by 11.1%. Through
fine-tuning of scripts, ACE is generalizable to LSFM data from other
cellular markers with different morphological features compared
with c-Fos (Extended Data Fig. 6a). To demonstrate the validity of this
adaptation, we utilized another dataset of in situ fluorescence imag-
ing of the targets of a covalent drug (pargyline) in intact brain tissue
atthe subcellularlevel. We randomly cropped 300 image patches with
96° voxels each (0.17 x 0.17 x 0.19 mm?®) from this dataset and gener-
ated silver GT data for them. We fine-tuned the ViT model on half of
these patches and used the other half for evaluation. The fine-tuned
ensemble model achieved aDSC of 0.74 + 0.14 (mean = s.d.; Extended
DataFig. 6), indicating robust performance even with different cellular
markers and morphologies.

Mapping ensembles orchestrating cold-induced food seeking
Understanding the neural mechanisms governing cold-induced
food seeking is crucial for unraveling the intricate interplay between
environmental stimuli, energy expenditure and feeding behavior in
mammals*~*. Our group has recently employed whole-brain c-Fos
screening (via SHIELD and LSFM) of mice following prolonged (6-h)
exposureto atemperature of either 4 or 30 °C (n =4 per group), to map
the neuronal ensembles that drive cold-induced food seeking*®. Our
findings highlight selective activation during prolonged cold exposure
of the xiphoid nucleus (Xi), a small midline thalamic subregion lack-
ing predefined ARA boundaries, suggesting that Xi plays akey rolein
mediation of food seeking in response to cold stress*®. However, in
this previous work, we manually identified the activation of Xi within
the ventral midline thalamus based on our initial assumptions and
apriorihypotheses. Notably, in this screen, we had relied on ROI-based
metrics (including regions encompassing or surrounding Xi) rather
than on localized statistics, due to the lack of tools able to generate
cluster-wise statistical maps. Here, to validate our pipeline’s ability to
automatically detect selective activation of specific neuronal popula-
tions at the subregional level in an unbiased manner, we analyzed this
whole-brain c-Fos LSFM dataset using ACE.

We first utilized ACE’s models to generate whole-brain segmenta-
tionmaps (Fig. 4a). To maintain data fidelity and preventinformation
loss during warpinginto acommonreference with lower resolution, we

Fig.3|ROI-wise evaluation of ACE segmentation module in segmentation

of neuronal cell bodies across the whole brain. a, Qualitative evaluation of
ACE’s segmentation module in different cortical regions in an example subject
from the test dataset. Each panel from left to right demonstrates a 3D maximum-
intensity projection of araw (input) image patch, GT (red), model output (blue)
andanoverlaid version of all three.b-d, On the test set (in total, n = 1,600 unique
patches 96° ~ 0.35 mm? minimum n =10 and maximum n = 155 unique patches
perregion), weregistered each LSFM dataset to the ARA using our MIRACL

platform’s registration algorithms. ARA labels were then warped to each subject’s
native space, with these warped labels then used to determine the location

of eachimage patchin the brain. Average DSC (b) and HD,s (c) were obtained
between ACE outputs and GT per ARA label (d) and compared against Ilastik.

Box plots: box limits, upper and lower quartiles; center line, median; whiskers,
1.5x interquartile range; points, outliers. Mann-Whitney U-test (two-sided),
***P<0.001,*P<0.01,*P< 0.05.CB, cerebellum; CNU, cerebral nuclei; CTX,
cerebral cortex; IB, interbrain; MB, midbrain.
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applied aconvolution-based voxelization procedure to the maps based
on our previous work'. Following voxelization, segmentation maps
were aligned with ARA at 10-pum resolution using deformation fields
obtained via our MIRACL platform’s registration module (Fig. 4b,c
and Supplementary Fig. 3). To identify neural activity hotspots, we
generated group-wise heatmaps of neuronal density by subtracting
the average of the voxelized and warped segmentation maps in each
group (Fig. 4d). These heatmaps revealed that cold stress elicited
increased neuronal activity within the hypothalamus, consistent
withits role in thermoregulation*, and attenuated neuronal activity
across the cortex, probably due to reduced physical activity during
cold exposure*®°,

For assessment of between-group differences, we first conducted
ROI-wise analysis between the two groups within each atlas region
(Fig. 4e). This whole-brain analysis highlighted several brain regions
that exhibited significant differential activation (P < 0.05, Student’s
paired ¢-test, two-sided), notably the paraventricular hypothalamic
nucleus and the nucleus of reuniens (Fig. 4d). Some areas showed
diverging group trends but did not reach significance, including the
cuneiform, a region involved in locomotion®, and primary auditory
cortex. Multiple comparison corrections were not performed, follow-
ing common practices of whole-brain, ROI-based analysis, due to the
very large number (>1,100) of ARA regions, highlighting another key
limitation of such analysis. A visual inspection of the group-difference
heatmap revealed that the ROI-based analysis on predefined atlas
regions failed to detect several highly localized areas with substantial
increases in c-Fos activation in the cold group—most notably within
the large nucleus of reuniens (Fig. 4d).

For testing of whether ACE could map localized group-wise
differences in neuronal activity in an atlas-agnostic manner, we
employed ACE’s cluster-wise TFCE permutation test using group-wise
ANOVA. ACE extracted clusters of activation across the whole brain
(Fig. 4f) and summarized and ranked each cluster by its strength of
activation, total volume and percentage volume within each overlap-
pingbrainregion (Supplementary Table 2). Our statistical and visuali-
zation tools not only highlighted expected areas of c-Fos activation,
but also identified numerous previously undetected subregional
changes in the cold-induced dataset: for instance, clusters located
only withinthe dorsal subregion of the paraventricular nucleus of the
thalamus (PVT, Fig. 5), which were missed in the ROI-based analysis
using the (whole) PVT region (ARA label; Fig. 4f and Supplementary
Table 2). Utilizing ACE’s native space cluster validation algorithm
(Fig. 5 and Supplementary Table 2), we warped the clusters found
in the paraventricular nucleusinto the native space of each subject.
We found that the number of c-Fos* cells was significantly higher
(P< 0.05, Mann-Whitney U-test, two-sided; Supplementary Table 2)
in the cold-induced group compared with the control group (for
example, for one cluster the neuronal count in the cold-induced
groupwas 23 + 8 (mean + s.d.) versus 6 + 2 for the control). In contrast

to the ROI-based analysis, our cluster-wise test revealed a signifi-
cant (P<0.01, group-wise two-way ANOVA; Supplementary Table 2)
localized increase in c-Fos activation in the ventral midline of the
nucleus of reuniens and above the third ventricle, corresponding
to the Xi, and confirming its recently established role in the neural
orchestration of cold-induced food-seeking behavior and energy
homeostasis. We also performed connectivity analysis between sig-
nificant clusters, assessing the correlation of their activations (using
Pearson correlation analysis with permutation and bootstrapping;
Fig. 4f). We observed significant associations (P < 0.01, correlation
test with permutation) between clusters in the midline group of the
dorsal thalamus (including paraventricular nucleus and Xi) and the
nucleus accumbens—that is, putative regional connectivity, which
was validated by anterograde viral tracing*® using the Allen con-
nectivity atlas (Fig. 4f).

Mapping of brain-wide local neuronal activation

Locomotive behavior is acomplex process that involves coordinated
neuronal activity in different areas of the brain®%. Identification of
laminar neuronal ensembles that underlie locomotion represents an
ongoing challenge in neuroscience'. We deployed ACE to map local
neuronal activation during walking versus homecage using c-Fos (n =3
per group). Segmentation maps obtained from ACE (Extended Data
Fig. 7a,b) were voxelized and warped to 10-pum ARA (Extended Data
Fig. 7c). Group-wise heatmap intensity analysis (Extended Data Fig. 7d)
and whole-brain ROI-based comparison showed an increase in c-Fos*
density inthe primary motor areas (MOp) and secondary motor areas
inthe walking versus homecage group (P < 0.05, Student’s paired ¢-test,
two-sided; Extended Data Fig. 7d). We repeated ROI-based analysis at
depth 6 by merging ARAregions using the atlas’s hierarchical structure
(Extended Data Fig. 8a,b), a strategy used to enhance sensitivity or
address lower-resolution data®>, We identified major areas with elevated
c-Fos" density, including somatomotor areas (secondary motor areas;
P <0.05,Student’s paired t-test, two-sided). To test whether ACE could
detect subregional changes, we used our cluster-wise TFCE algorithm,
demonstratinglayer-specific areas of c-Fos activationinboth MOp and
secondary motor areas (Extended Data Figs. 7e, 8c and 9 and Supple-
mentary Table 3). We identified clusters confined to a single layer in
somatomotor areas, including (1) MOp layer 6a, where thalamocortical
projections from the motor thalamus were observed using anterograde
viral tracing® and (2) clusters spanning multiple layers within the MOp
and retrosplenial areas (Extended Data Figs. 8c and 9b). Notably, our
algorithm (Extended Data Fig. 10) detected localized clusters in the
lateral hypothalamicarea (LHA) and midbrain reticular nucleus that the
whole-brain and depth 6 ROI-based analyses failed to detect (Extended
DataFig.8a,b). Using our validate clusters algorithm, we found higher
LHA c-Fos® cell densities in the walking group versus homecage in the
detectedregionsidentified by ACE (Extended Data Fig. 7fand Supple-
mentary Fig. 4), highlighting its potential role in movement.

Fig. 4 | Mapping neuronal activity underlying food seeking following cold
stress. a, Experimental design (n =4 per group). b, LSFM data were registered
to the ARA using MIRACL. Left and right panels show autofluorescence data
overlaid on labels for two subjects in each group. ¢, Segmentation maps from
ACE were voxelized to ARA 10-um resolution; voxelized maps were then warped
to ARA. Top, one subject per group overlaid on labels; bottom, 3D rendering of
segmentation maps color coded based on six regions: cerebral cortex (CTX),
cerebral nuclei (CNU), midbrain (MB), hindbrain (HB), interbrain (IB) and
cerebellum (CB). d, Segmentation maps were averaged and then subtracted to
obtain group-wise heatmaps. e, Anindependent ¢-test (two-sided) was applied
between c-Fos* density per label for ROI-wise analysis (n = 4 per group). Top left,
trending ROIs (P < 0.1); top right, significant regions (***P> 0.001, **P< 0.01,
*P < 0.05); bottom, corresponding P values per label. Box plots: box limits, upper
and lower quartiles; center line, median; whiskers, 1.5x interquartile range. Data
are presented as mean + s.d. f, ACE cluster-wise analysis (two-way ANOVA). Top,

significant clusters within the midline group of the dorsal thalamus (MTN),
including one cluster close to the Xiregion between the paraventricular nucleus
of the hypothalamus (PVH) and above the third ventricle (left); and multiple
clusters in the dorsal subregion of the paraventricular nucleus of the thalamus
(PVT, right). Middle, Pearson correlation (significant correlations only, P < 0.01,
bottom left triangle) and Euclidean distance (top right triangle) between the

22 significant clusters, ranked according to activation strength. Arrow indicates
correlation between one cluster located in the nucleus of reuniens (RE) and
another in the nucleus accumbens (ACB). Bottom, 3D connectivity maps derived
from anterograde viral vector (AAV) tracing from an experiment (ID 184158290)
inthe ARA, demonstrating structural connectivity between the REin MTN and
ACB. Panels, from left to right, show (1) MTN and ACB, (2) fibers originating from
RE and projecting into ACB, (3) maximum-intensity projection and (4) a sagittal
view of the atlas. a was created using BioRender.com.
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@ Overview of experiments and analysis
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@ Overview of ACE validate clusters strategy
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Fig. 5| ACE native space cluster validation algorithm. a, Overview of the
validation algorithm. Significant clusters identified through ACE’s cluster-wise
TFCE permutation-based statistical algorithm were binarized and underwent
aconnected component analysis to differentiate each cluster. The processed
significant clusters were then warped to the native space of each subject using
registration deformation fields. Using ACE segmentation maps, the number of
neurons within each cluster was computed. A Mann-Whitney U-test (two-sided)
was used to compare the number of neurons within each cluster between the
two groups. The number of neurons per subject for each cluster—in addition to
their volume, effect size, atlas space P value (obtained via ACE cluster-wise TFCE
permutation), brain regions they spanned and native space P value (obtained
via post hoc Mann-Whitney U-test)—are summarized. b, Validation of neuronal
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ensembles detected by ACE cluster-wise analysis in the food-seeking behavior
experiment. From left to right, axial view of the cluster-wise P value map, overlaid
on ARA label boundaries at a resolution of 10 um; zoomed view of significant
clusters in PVT. The P value map was warped back into the native space of
randomly selected subjects of the 4 and 30 ° groups using the deformation
matrices obtained by registration; corresponding axial views from subjects in
the 4 and 30 °C groups, respectively, and zoomed versions of cluster boundaries
in PVT, showing higher c-Fos™ activity in the 4 versus 30 °C condition in the
clusters detected in atlas space. Cluster colors in native space (columns 2 and 3)
correspond to the manually drawn boundary in atlas space (column 1), for visual
comparison. NS, not significant.

Discussion

Thisworkintroduces ACE, an automated end-to-end pipeline for map-
ping of neuronal ensembles at the subregional level in teravoxel-scale
LSFM data.

Our large training dataset and cutting-edge architectures enabled
ACEmodelstolearnvariationsinimage characteristics of labeled cells
and imaging artifacts across different regions and subjects, surpass-
ing traditional techniques**>*° that require parameter tuning. Due
to the modular nature of the pipeline, ACE is extendable to different
imaging modalities, including multiphoton microscopy data and 3D
histology stacks, via fine-tuning modules available within the pipeline.
Notably, ACE could be used to study connectivity via quantification of
neuronalsomain upstreamregions using retrograde adeno-associated
virus viruses.

Our cluster-wise methodology, optimized for whole-brain
LSFM data, comprehensively characterizes activity ‘hotspots’ while
enhancing sensitivity and statistical power. Although increased FP
in voxel-wise tests may be addressed through multiple correction
methods"'**® or manual cluster definition and subsequent post hoc
analyses for validation®®, these approaches limit algorithm sensitiv-
ity. Our cluster-wise permutation analysis distinguishes itself for its
automatic, data-driven cluster definition by leveraging neighborhood

information, mitigating the need for data-specific expertise and mini-
mizing biasin statistical analysis. Other key advantages to our statisti-
cal pipeline are an advanced native space cluster validation algorithm
and the ability to account for covariates or perform mixed-effects
modeling at the cluster level, which has not been implemented in
existing tools.

When studying food seeking following cold stress, our results
align with ROI-based semiautomated studies of c-Fos activation*®**5,
However, we uncovered localized changes in neural activity that may
have gone unnoticed in ROI-based analyses*®*®, ROI-based analyses may
overlook subtle changes because effects, and hence significance, are
estimated by averaging over the entire region. Voxel-wise methodolo-
giesare overlyreliant on the intensity of individual voxels. In contrast,
our approach provides amore granular understanding of neural activ-
ity patterns, offering enhanced specificity to detect nuanced changes
inbrain activity over small areas.

Gaining circuit-level insights based on specific neuronal popula-
tions is key to unraveling the organizational principles of the motor
system®>”, Our findings on locomotion-elicited neuronal activity align
with other studies®, wherein c-Fos density increased in areas such as
MOp and cuneiform nucleus (CUN). Our previous work, using manual
parameter tuning and postprocessing of c-Fos* data, virus tracing
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and photostimulation, identified a subpopulation of neurons in the
LHA that may play a role in walking recovery following chronic lat-
eral hemisection spinal cord injuries. Here, we have shown increased
activity restricted to a subregion localized within the LHA that prob-
ably contributed to the failure of ROI-based analysis to detect LHA
activation, or remained un-noticed in studies utilizing a more limited
approach of narrowing down c-Fos analysis to afew key ROIs associated
with locomotion or combining ROIs into larger areas. This distinctive
capability enables our pipeline to surpass the limitations of ROI-based
methods, and facilitates a comprehensive and unbiased exploration
of the intricate organization of brain networks.

Artficial intelligence-based cartography of ensembles provides
a quantitative approach to mapping of locally activated regions in an
atlas-agnostic fashion, whichis particularly beneficial in experiments
exploring brain areas thatlack standard or high-resolution digital atlas
parcellations. The resulting maps can serve as a basis for creating and
refining high-fidelity functional atlases. Leveraging the statistical
module and correlation analysis, ACE facilitates the extraction of asso-
ciations among clusters of activations, potentially revealing long-range
connectivity or functional coherence.

While this study primarily focused on the development and vali-
dation of a pipeline for mapping neuronal activity in LSFM data using
immediate early genes, our fine-tuning functions allow ACE to adapt
to other fluorescent reporters. However, in multilabeled datasets in
which different fluorescent labels represent distinct genotypes (as
seen in mosaic markers**°®), our fine-tuning algorithms may not pro-
duce optimal results. Although our models were trained on teravoxel
LSFM, segmentation errors may still occur, biasing statistical results,
particularly around sparsely mislabeled processes. This phenomenon
might be, in part, attributed to the use of silver GT data; however,
manual annotaton of tens of thousands of patches is impractical and
unscalable. We developed the ensemble of ensembles model to deal
with potential FP on unseen datasets, increasing segmentation per-
formance. While our statistical approach using TFCE does not require
predefined, cluster-forming thresholds, it utilizes free parameters.
Consistent with other studies***’, fixing these TFCE parameters yields
robust outcomes for LSFM analyses, because the same parameters
were applicable to both food-seeking and walking experiments. Nev-
ertheless, the use of suboptimal parameters may lead to anincreased
number of FP or FN*+°,

In summary, ACE offers a streamlined approach for achieving
high-fidelity, unbiased, 3D mapping of local and laminar neuronal
ensembles across the entire brain, independent of predefined atlas
regions. ACE’s DL models are notable for their ability to provide gen-
eralizable segmentation of neuronal somas in teravoxel LSFM data.
Integration with the MIRACL registration workflow, coupled with
ACFE’s statisticalmodule, establishes aframework foridentifying and
discovering differentially activated localized clusters of ensembles
in response to experimental manipulations, which has not proved
feasible to date. This comprehensive tool has the potential to empower
researchers to study neural activity patterns at an unprecedented
level, providing valuable insights that might be obscured using tra-
ditional ROI-based or voxel-wise analysis. ACE is applicable across
a wide range of LSFM datasets and neuroscience paradigms, and is
made freely available through our MIRACL platform, thus boosting
our understanding of neural ensembles orchestrating behavior and
cognition.

Online content
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maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Datasets and experiments

Training dataset. Our training data consisted of two LSFM cohorts of
TRAP2-Ai9 mice (total n=18): (1) ten animals aged 3-4 months with
whole-brain data acquired and (2) eight animals aged 2 months with
data acquired from the left hemisphere. All animal procedures fol-
lowed animal care guidelines approved by the Institutional Animal Care
and Use Committee at the Scripps Research Institute. These animals
had an immediate early gene (c-fos) promoter, contributing to the
activity-dependent expression of inducible recombinase Cre-ERT2.
The expression of fluorescent protein tdTomato was activated fol-
lowing the injection of 20 mg kg™ 4-hydroxytamoxifen. We used the
following splits for training and evaluation: the training set consisted
oftenanimals, with three and five used for the validation and test sets,
respectively.

Unseen dataset 1. We used whole-brain LSFM data from a model of
spinal cordinjury (n =3 mice) to validate our DL segmentation models.
Briefly, mice wereinduced under anesthesia with a mixture of isoflurane
and O,. Mice were then placed on a heating pad set to 37 °C and main-
tained on1-3%isoflurane and O,. A midline skin incision was made and
the T10 laminaidentified. A T10 laminectomy was performed, followed
by left lateral hemisection using either microscissors or a microscal-
pel®. Muscle closure was performed with 6-0 Vicryl followed by skin
closure with 6-0 Ethilon. Postoperatively, mice were placed on a heat-
ing pad and givensubcutaneous fluids as needed. Pain control for48 h
postoperatively was also provided via subcutaneous daily administra-
tion of Rimadyl (5 mg/kg™). Bladders were expressed twice daily until
spontaneous recovery of bladder function. Allhemisection lesions were
histologically confirmed as adequate. All three mice were adult female
C57BL/6 mice (=8 weeks of age at the start of the experiment,15-30 g
body weight). All procedures were performed in compliance with the
Swiss Veterinary Law guidelines and were approved by the Veterinary
Office of the Canton of Geneva, Switzerland (license no. GE/112/20).

Unseen dataset 2. We used whole-brain LSFM data obtained from
amale C57BL/6 ) mouse (Jackson Laboratory, strain 000664), aged
18 months. Allanimal procedures followed protocols approved by the
Stanford University Institutional Animal Care and Use Committee, and
met the guidelines of the National Institutes of Health Guide for the
Care and Use of Laboratory Animals.

Cold dataset. We analyzed the cold and thermoneutral c-Fos dataset
from our previous publication*®, Briefly, single-housed male wild-type
(WT) C57BL/J6 mice were exposed to either 4 °C (cold) or 30 °C (ther-
moneutral) for 6 h, with free access to food and water, before perfusion.
Mouse brains were harvested and fixed in 4% paraformaldehyde (PFA)
following perfusion.

Walking dataset. We used two groups of adult female C57BL/6 mice
(=8 weeks of age at the start of the experiment, 15-30 g body weight,
n=3pergroup). Briefly, mice were trained to run quadrupedally on a
treadmill (Robomedica, Inc.) 5 days per week for 2 weeks before per-
fusion. To elicit c-Fos expression, mice ran on the treadmill for 45 min
ataspeed of 9 cm s™ and were then perfused for 1 h (walking group).
Miceintheir home cages were perfused for homecage group analysis.

Fine-tuning dataset. We used LSFM data from ahemisphere of amouse
brain. The clearing-assisted tissue click chemistry method was used for
in situ fluorescence imaging of drug molecules that bind to specific
targets. In this method, the covalent monoamine oxidase inhibitor
pargyline-yne was administered to the mouse at a dose of 10 mg kg™
for 1h by intraperitoneal injection. The drug was labeled with AF647
dye using a click reaction, allowing us to visualize drug molecules
within brain tissue.

Tissue clearing and immunolabeling

Training dataset. Two weeks following injection of 4-hydroxy
tamoxifen, mice were perfused; their brains were collected and under-
went overnight fixation in 4% PFA solution. Fixed brain specimens
were treated using the SHIELD® protocol to maintain the integrity of
proteinantigenicity. Thereafter, anactive clearing procedure was used
for tissue CLARITY’. Samples were index matched by adding them to
EasyIndex medium before imaging with a light-sheet microscope.

Unseen dataset 1 and walking dataset. Adult mice were anesthe-
tized with intraperitoneal pentobarbital (150 mg kg™), followed by
intracardiac perfusion of 1x PBS then 4% PFA in PBS. The brain was
dissected and the sample postfixed in 4% PFA overnight at 4 °C. Brains
then underwent processing with iDISCO+ (ref. 1). Briefly, samples
underwent methanol pretreatment by dehydration with amethanol/
H,O series, each for1h, as follows: 20, 40, 60, 80 and 100%. Samples
were then washed with 100% methanol for1 hand chilled at 4 °C, fol-
lowed by overnightincubationin 66% dichloromethane/33% metha-
nol at room temperature. This was followed by two washes in 100%
methanol at room temperature, then bleaching in chilled fresh 5%
H,0,in methanol overnight at 4 °C. Samples were rehydrated with a
methanol/H,O0 series as follows: 80, 60, 40 and 20% then PBS, each
for1h at room temperature. Samples underwent washing for 2x1h
at room temperature in PTx.2 buffer, and were then incubated in
permeabilization solution for 2 days at 37 °C. Samples were then
incubated in blocking solution (42 ml of PTx.2, 3 ml of normal donkey
serumand 5 ml of DMSO, for a total stock volume of 50 ml) for 2 days
at 37 °C with shaking. This was followed by incubation in a primary
antibody solution consisting of PBS/0.2% Tween-20 with 10 pg/ml
heparin (PTwH), 5% DMSO, 3% normal donkey serum and c-Fos (rabbit
anti-c-Fos, 1:2,000, Synaptic Systems, catalog no.226003) for 7 days
at 37 °C with shaking. Next, samples were washed in PTwH for 24 h,
followed by incubation in a secondary antibody solution consisting
of PTwH, 3% normal donkey serum and donkey anti-rabbit Alexa
Fluor 647 (1:500, Thermo Fisher Scientific) for 7 days at 37 °C with
shaking. Samples were then washed in PTwH for 24 h, followed by
tissue clearing; final clearing was performed using iDISCO+ (ref. 1).
Briefly, samples were dehydrated in a methanol/H,O series as follows:
20, 40, 60, 80 and 100%, each 2x 1 h at room temperature. This was
followed by a3-hincubationin 66% dichloromethane/33% methanol
atroomtemperature, thenincubationin100% dichloromethane for
2x 15 min. Samples were thenincubated in dibenzyl ether for at least
24 hbeforeimaging.

Cold dataset. Whole-brain clearing was performed by LifeCanvas Tech-
nologies through a contracted service. To preserve samples’ protein
architecture, they were fixed with proprietary SHIELD® solutions from
LifeCanvas Technologies. Samples were then placed in the SmartBatch+
system to carry out active clearing and immunolabeling with rabbit
anti-c-Fos primary antibody (CST, catalog no. 2250S). Samples were
index matched by placing them in Easylndex medium.

Unseen dataset 2. The animal was anesthetized with isoflurane and
transcardially perfused with PBS, followed by 4% PFA. The whole
mouse brain was extracted carefully and fixed in 4% PFA for 24 h; the
PFA-fixed sample was then processed using the SHIELD® protocol
(LifeCanvas Technologies). Active clearing of samples was carried
out using the Smartbatch+ device. Samples were then immunola-
beled using eFLASH®* technology, incorporating the electrotransport
and SWITCH® methods. Samples were labeled with a recombinant
anti-c-Fos antibody (abcam, catalog no. ab214672) and then fluores-
cently conjugated with Alexa Fluor 647 (Invitrogen, catalog no. A-31573)
ataprimary:secondary molar ratio of1.0:1.5. Following labeling, sam-
pleswereindex matched (n =1.52) by incubation in Easylndex medium
(LifeCanvas Technologies).
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LSFMimaging

Training dataset. Samples were index matched with Easylndex medium
andimaged onalight-sheet microscope (SmartSPIM) with a x4 objec-
tive lens. For eight subjects, data were acquired from a hemisphere
while, for the remainder, data were acquired from the whole brain.
Nominal lateral spatial resolution was 3.5 pm, and step size was set to
4 um in the z-direction, with 561-nm excitation and an emission filter
of 600/52 nm.

Unseen dataset 1and walking dataset. Imaging of whole brains was
performed using a CLARITY-optimized light-sheet microscope, as
previously described®*, with a pixel resolution of 1.4 x 1.4 pm?in the x
and ydimensions and az-step of 5 um, respectively, using the x4/0.28
(numerical aperture) objective, which is suitable for resolving cell
nucleilabeled by c-Fos. Using a custom-made quartz cuvette filled with
dibenzyl ether, whole brains were imaged. Two channels were imaged:
one with autofluorescence (auto channel, 488 nm) to demonstrate
anatomy, and a second demonstrating c-Fos labeling (cell channel,
647 nm). All raw images were acquired as 16-bit TIFF files and were
stitched together using TeraStitcher®.

Cold dataset. Whole-brain imaging and automated analysis were
performed by LifeCanvas Technologies through a contracted service.
Samples were index matched by placing them in Easylndex medium,
andimaged onalight-sheet microscope (SmartSPIM) with a x4 objec-
tive lens. Nominal lateral spatial resolution was 1.75 um, and step size
was set to 4 pminthe z-direction.

Unseen dataset 2. The index-matched (n =1.52) whole-brain sample
wasimaged using a SmartSPIM light-sheet microscope. The sample was
imaged with a x4 objective lens. Samples were imaged with a 642-nm
laser. Nominal lateral spatial resolution was 1.8 um, and step size was
setto4 puminthez-direction

GT label generation

Our annotation strategy for generating silver standard GT labels of
neuronal somas comprised three stages: MIRACL'® segmentation,
llastik pixel classification and postprocessing.

MIRACL segmentation. To create GT labels, we first used the MIRACL'™®
segmentation workflow that incorporates image-processing tools
implemented as FIJI/Image) macros®. The workflow includes a 3D
watershed marker-controlled algorithm and a postprocessing 3D
shapefilter to omit FP. Thisresulted inbinary GT labels across the entire
dataset with alow FP rate and relatively higher FN rate.

Ilastik pixel classification. To improve MIRACL-generated GT labels
we used llastik*, which performs pixel classification using image filters
(asinput features) and arandom forest (RF) algorithm (as a classifier)
through auser-friendly interface. Filters include pixel color and inten-
sity descriptors, edginess and texture in 3D and at different scales.
The RF combines hundreds of decision trees and trains each oneon a
slightly different set of features. The final predictions of RF are made by
averaging the predictions of each tree. We used 37 three-dimensional
filters and an RF classifier with 100 trees. To train the RF classifier, we
imported MIRACL’s segmentation outputs as silver input annotations
(initialization) to Ilastik (that is, in lieu of manual annotations). To
address the prohibitive speed and memory requirements of the RF
algorithm, we trained it on image patches (512° voxels). For eachbrain,
three 512% patches from different depths were randomly selected. The
RF model was trained several times by providing feedback (that is, by
correcting the results withexpert annotation and modifying the labels
to achieve optimal results). llastik output did not correctly detect the
boundaries of neuronal soma, and frequently overestimated their
spatial extent.

Postprocessing. To further reduce the number of FP voxels in GT
labels, we applied a3D shape filter using the ImageJ shape filter plugin®
on llastik-generated labels. To solve the problem of volume overesti-
mation, we applied a3D erosion filter with asphere-like kernel (radius
of one voxel) to the GT labels. The final whole-brain GT labels were
visually quality checked in three 512° patches per brain, by two raters;
specifically, the raters were asked torandomly select and validate one
5123 patchin the cerebrum, brain stem and cerebellum.

Deep neural network architectures
ACE’s segmentation module consisted of 3D ViT-based and CNN-based
(U-Net) architectures (Extended Data Fig.1).

UNETR. The popular U-Net architecture has powerful representation
learning capabilities, and generates more accurate dense-segmentation
masks than do other CNN architectures (such as Mask R-CNN), thanks
to the preservation of spatial information®**”. However, fully convolu-
tional models are limited in their ability to learn long-range dependen-
cies, resulting in potentially suboptimal segmentation of objects in
large volumes, including neuronal cell bodies of varying shape and size
(forexample, indifferent regions of the brain). Toaddress thisissue, a
ViT architecture (UNETR) has been proposed in whichthe encoder path
ofaU-Netisreplaced by atransformertolearn contextualinformation
from the embedded input patches®. This motivated us to develop and
deploy optimized UNETR-based segmentation models with residual
blocks and dropout layers toimprove the robustness and generalizabil-
ity of previous pipelines. Specifically, in UNETR® the encoder was
replaced with a stack of 12 transformer blocks, operating on a 1D
sequence (16*>=4,096) embedding of the input (one channel 3D image
patch, 96° ~ 0.27 x 0.27 x 0.48 mm?). Subsequently, alinear layer pro-
jectedthevectorsinto alower dimensional embedding space (embed-
ding size K=768), which remained constant throughout the
transformer layers. A 1D learnable positional embedding was added
tothe projected patch sequence to preserve spatial information. This
embedded patch sequence, with the dimension of N x K (N is the
sequence length and N=H/16 x W/16 x D/16 x Kand H, W and D are the
3D input's height, width and depth), was passed as input to the stack
of transformer blocks. Each transformer block consisted of multihead
attention and multilayer perceptron layers. All multihead attention
modules consisted of multiple self-attention heads, where each
self-attention block learned mappinginthe patch sequencein parallel.
Weextracted learned sequencerepresentations at four different depths
of the transformer stack and reshaped each back to Zx2x2xx. The
embedded sequence vectors then underwent five different encoder
blocks with consecutive convolutional layers to achieve supervision
atdifferent depths (Extended Data Fig.1).

The encoder was connected to a decoder via skip connections at
multipleresolutions, to predict segmentation outputs. We developed
an optimized UNETR®® architecture with some modifications, includ-
ing the addition of dropout layers in all blocks and residual units® in
convolutionblocksintheencoder, asaregularization strategy to avoid
overfitting and vanishing gradient problems. For agiven 3D input cube,
the segmentation models generated a 3D volume containing voxel-wise
probabilities of neuronal cell bodies (0 < P<1). Prediction maps were
binarized using either adefault (0.5) or user-fed threshold to generate
amap representing whether a voxel belongs to a neuron.

U-Net. We similarlyimplemented an optimized version of the seminal
U-Net’®"?architecture, with some modifications, based on our previ-
ous work*®, The U-Net architecture consists of contracting (encoder)
and expanding (decoder) paths. The encoder is based on 3D convo-
lution and pooling operators; it takes an image patch as input and
generates feature maps at various scales, creating a multilevel, mul-
tiresolution feature representation. Meanwhile, the decoder with
up-convolution operators leverages these feature representations to
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classify all pixels at the original image resolution. The decoder assem-
bles the segmentation, starting with low-resolution feature maps
that capture large-scale structures, and gradually refines the output
to include fine-scale details. In our U-Net architecture, the standard
building blocks have been replaced witharesidual block®. In addition,
parametric rectifying linear units”* have been deployed to provide dif-
ferent parameterized nonlinearity for different layers. We converted
all2D operations, including convolution and max-pooling layers, into
3D and used batch normalization rather than instance normaliza-
tion to achieve a stable distribution of activation values throughout
the training, and to accelerate training”. A dropout layer was added
between all convolution blocks in the architecture as a regularizer,
to avoid overfitting®®”. Except for the first residual units, all convolu-
tions and transpose convolutions had a stride of 2 for downsampling
and upsampling, respectively. The first residual unitused astride of 1,
which has been shown to increase performance by not immediately
downsampling the input image patch”.

All brain light-sheet data are first divided into smaller image
patches. Deploying ACE segmentation models, binary and uncertainty
maps are obtained per image patch; the pipeline then automatically
stitches all the maps to create whole-brain segmentation and uncer-
tainty maps that match the input data.

Loss function
The DSCisawidely used metric that measures similarity between two
labels. The class average of the DSC can be computed as

N YK GTinP,
D(GT,P) _ 3 Zk=1 kont k,n

K 2 K ’
N oo 3 GTi+ S, P

where Nisthe number of classes, K'is the number of voxels and GT, ,and
P, ,denote GT and output prediction, respectively, for class nat voxel k.

Cross-entropy (CE) measures the difference between two prob-
ability distributions over the same sets of underlying events, and was
computed as

K N
CE(GT,P) = 2 37 ) GTyn 10g(Py. ).
k=1

n=1

Xl

In regard to ACE DL architecture, we used an equally weighted
Dice-cross-entropy loss, which is a combination of Dice loss and
cross-entropy loss functions; this was computed in a voxel-wise man-
neras

L(GT,P) = D(GT,P) + CE(GT,P).

Model training
To train our DL models, we used atotal of 36,480 unique input patches
(96 voxels), not accounting for data augmentation. To address the
issue of class imbalance in our dataset (the majority of voxels repre-
senting background), patches containing only background—orasmall
number of foreground voxels (<100,000)—were filtered out from the
512%image patches generated by the annotation strategy. Hence, for
the UNETR model with an input size of 96%, we used 15,200, 9,120 and
12,160 unique input patches (not accounting for data augmentation)
for training, validation and testing, respectively (n=30,400 patches
with augmentation for training alone); for the U-Net model with an
inputsize 0f128%, we used 7,600, 3,840 and 5,120 patches, respectively.
For hyperparameter tuning, we used a Bayesian optimization
approachviathe Adaptive Experimentation Platform (https://ax.dev/).
Thefollowing hyperparameters were optimized during training: input
image size, encoder and decoder depth, kernel size, learning rate,
batch size, kernel size and loss function. For the UNETR architecture,
which in total had 92.8 million parameters, the best model based on
DSC performance on the validation set had the following parameters:

12 attention heads, feature size of 16, input patch size of 96° voxels and
batch size of 24. The U-Net architecture, which in total had 4.8 million
parameters, had the following parameters: a five-layer encoder with
aninitial channel size of 16 and kernel size of 3 x 3 x 3, input patch size
of 128 voxels and batch size of 27.

The UNETR and U-Net models were trained for 700 and 580 epochs,
respectively. To avoid overfitting, early stopping was set to 50 epochs
where performance (DSC) on the validation dataset did not improve.
The Adam optimizer” was used with aninitial learning rate of 0.0001.

Implementation

AlIDL models wereimplemented in Python using the Medical Open Net-
work for Artificial Intelligence framework (MONAI’’), and the PyTorch
machine learning framework’®. All training was performed on the
Cedar and Narval cluster provided by the Digital Research Alliance
of Canada (www.alliancecan.ca), using NVIDIA V100 Volta graphic
processing units with32 GB of memory, and A100 graphic processing
units with 40 GB of memory. Registration of our data to ARA was per-
formed with our in-house, open-source MIRACL' software. MIRACL is
fully containerized and available as Docker and Singularity/Apptainer
images (https://miracl.readthedocs.io/). For results visualization,
we used a variety of open-source software applications and Python
libraries, including matplotlib, seaborn, Brainrender’®, Fiji/lmage)*®,
itk-SNAP®® and Freeview (http://surfer.nmr.mgh.harvard.edu/). We
also used BioRender for figure creation in this manuscript (https://
www.biorender.com/).

Data augmentation

Toincrease the generalizability of the DL model and model distribution
shiftsin LSFM data, the training setimages were randomly augmented
inrealtime at every epoch. Supplementary Fig. 3 shows all the dataaug-
mentation transforms used, namely: affine transformations, contrast
adjustment, histogram shift, random axis flipping and different noise
distributions suchassaltand pepper, and Gaussian. These transforms
were selected because they are representative of distortions that occur
during LSFM imaging. Briefly, a range (0, 1) of scaling was applied to
each512*-image patch, based on the intensity distribution of that patch.
Theintensity of each 512*image patch was scaled from the [0.05, 99.5]
percentileto[0,1], where 0.05and 99.95 are theintensity values at the
corresponding percentiles of theimage patch. Subsequently, each data
augmentation transform was randomly applied (with a probability of
P=0.5)to the 512%*image patch at each epoch. The parameters of each
data augmentation were also randomly selected at each epoch from
the predetermined range of values.

Voxel-wise uncertainty map

Epistemic uncertainty, as described previously®, is rooted in a lack of
knowledge about model parameters andstructure, rather thanstemming
frominherent variability in the observed data; this type of uncertainty is
oftenreferred to as model uncertainty®. To estimate the models’ uncer-
tainty and confidence in predictions, we used the Monte Carlo dropout
approach. During training, dropout layers (with a probability of P=0.2)
were utilized asaregularizationtechnique. Ithasbeenshownthat turning
ondropout layers (randomly switching neurons off) in inference mode
canbeinterpreted as a Bayesian approximation of the Gaussian process™.
At test time, when the dropout layers are turned on, each forward pass
yieldsastochastically different predictionas asample from the approxi-
mate parametric posterior distribution (P(y|X))”. This technique has
been shown to provide useful insights into the model’s uncertainty, by
computing the variance of numerous predictions (Y = {y1,¥,, ....yy })-
Voxel-wise uncertainty (variance) can thus be defined’:

18 LR
Voxel-wise uncertainty ~ = > y2 —( = >y,
N n=1 N n=1
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The resulting voxel-wise uncertainty map provides a measure
of variation in predictions of slightly different models for the same
data, which can be particularly useful in identifying regions of high
uncertainty.

Ensemble of ensembles

Each model’s output was obtained by averaging the probability maps
of 50 models (Y = {y1,¥,,...,¥s50}) using the Monte Carlo dropout
technique:

R 50
YEnsembles = % zyi
i=1

Subsequently, to combine the prediction maps of both models,
afinal mapping of neurons was generated using an ensemble of both
models (ensemble of ensembles):

. 1. 5 N
yEnsembIe of ensembles = E (YEnsemblesU_Ne[ + yEnsembIesUNEm)~

Model evaluation

Evaluation metrics. To evaluate the performance of the segmentation
models, several volume-and shape-based metrics were used, including
DSC, recall, precision, F1score and HDy. We used the metrics derived
from the resulting confusion matrix and associated true-positive (TP),
FPand FN values. Each neuronal soma was defined as a 3D connected
component. Given this definition, TP was defined as the number of
correctly detected neurons following comparison of GT with predic-
tion P. Sensitivity or recall measures the proportion of TP relative to
the number of individual neurons delineated in GT, and was defined as

TP

Recall = TP-I——FN

Precision measures the proportion of TP against all positive pre-
dictions, and was defined as

TP

Precision = TP P

While recallis useful to gauge the number of FN pixelsin animage,
precisionis useful to evaluate the number of FP pixelsin a prediction.

The F1 score combines precision and recall, and is often used to
measure the overall performance of a model. The F1 score measures
the number of wrongly detected neuronsin P:

2 x Precision x Recall

Flscore = —
Precision + Recall

DSC measures the number of elements commonto GT and Pdata-
sets, divided by the sum of the elements in each dataset, and is defined
as

IGT N P|

DSC(GT,P) =2 X ———.
TP =2 (T

Hausdorff distance isamathematical measurement of the ‘close-
ness’ of two sets of points that are subsets of a metric space; it is the
greatest of all distances from a point in one set to the closest pointin
the other. We used the 95th percentile of Hausdorff distance rather
thanthe maximum results, to provide amore robust and representative
measure of the segmentation’s performance in image analysis tasks.
Given two sets of points, X and Y, Hausdorff distance between these
two sets was defined as

HD (X, Y) = max{sup,,inf,eyd (x,y), supyeyinfxexd [E )]

Simulation distribution shift. We deployed our recently published
ROOD-MR platform (https://github.com/AICONSlab/roodmri) on
our test data, which includes methods for simulating distribution
shifts in datasets at varying severity levels using imaging transforms
and generating benchmarking segmentation algorithms based on
robustness to distribution shifts and corruptions. We employed three
commonly used transforms that disrupt low-level spatial information
(Gaussian noise, smoothing and sharpening). We added Gaussian noise
to the image with zero mean and 0 < o < 1. For sharpening, we used a
Gaussian blur filter with azero mean and 0.05 < 0 < 2. We also applied
aGaussiansmooth filter to the input databased on the specified sigma
(o) parameter (0.05<0<2).

Comparison against Ilastik. We used the pixel classification mod-
ule in llastik and trained a RF classifier using all training subjects
(18 whole-brain LSFM images). We used 37 three-dimensional filters
and an RF classifier with 100 trees. To train the RF model, we randomly
selected three 5123-voxel image patches from each subjectand applied
the same scale-intensity transform (Supplementary Fig. 3) used in the
DL training approach, to provide afair comparison. Next, we dedicated
around 2 h per image patch on a personal computer (with 24 central
processing unit cores and 512 GB memory) for annotating neurons
and providing feedback to the RF algorithm, to achieve optimal results.
Finally, the trained RF classifier was used to generate segmentation
maps for all test and unseen datasets. For quantitativel evaluation of
ACErobustness across different regions of the brain, we registered the
testsetto ARA10 pm, warped ARA labels back to their native space and
integrated warped labels with segmentation maps.

Comparison against Cellfinder. We used Cellfinder to generate
whole-brain detection maps of neuronal cell bodies. We first used
their pretrained Resnet model to generate detection maps on both
test and unseen datasets. We deployed the Cellfinder command with
-no-registration flag to detect and classify cells to either background
or neuron. For retraining Cellfinder, we randomly selected two sub-
jects from the test set and generated ~6,100 (-3,200 cells and ~2,900
non-cells) annotated cell candidates for the first subject and ~9,000
(-4,300 cells and ~4,700 non-cells) for the second subject, using their
Napari-cellfinder plugin. The training data were then used to retrain
the Resnet model by incorporating the function cellfinder_train and
the flag —continue-training, keeping other options as default. Lastly,
thebest retrained model based onvalidation error was used to gener-
ate whole-brain detection maps. For quantitative comparison against
Cellfinder, we transformed ACE segmentation maps into detection
maps by finding the center of mass of each neuronin 3D.

Voxelization, registration and heatmap generation
Voxelization. To synthesize and correlate our segmentation results
within the ARA space, a voxelization process was used. Voxeliza-
tion entailed the transformation of high-resolution segmentation
outcomes into a 10-um resolution space while minimizing loss of
information. Segmentation volumes underwent convolution with a
spherical kernel featuring a radius of ~5 pm—a dimension that aligns
with the downsampling factor and ARA space. Subsequently, within
each convolved sphere, the average count of labels (cells or nuclei)
was computed, resulting ina voxelized map. This 3D voxelized repre-
sentation, which was generated using Python’s skimage library with
parallel computation facilitated by the joblib and multiprocessing
libraries, allowed for efficient feature extraction summarized by ARA
regions/labels.

Registration. To bring whole-brain tissue-cleared microscopy images,
segmentation maps and a reference atlas (ARA) into spatial corre-
spondence, we used our open-source MIRACL" platform. MIRACL
contains specialized workflows that are optimized for multimodal
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registration of cleared data, based on tools from ANTs®* (http://
stnava.github.io/ANTs/). Registration workflows include a cascade
of image-preprocessing techniques, such as denoising and intensity
correction, as well as an intensity-based alignment*’. The alignment
process consists of two main steps. In the first of these, aninitial align-
ment is carried out using the antsAffinelnitializer tool from ANTs®;
the second step consists of an intensity-based, multistage, b-spline
registration algorithm encompassing a rigid six degrees of freedom,
anaffine (12 degrees of freedom) and a nonrigid (deformable) b-spline
symmetric normalization stage. The rigid and affine stages are based on
maximization of the mutualinformation similarity metricbetween ARA
and microscopy data, while the deformable stage uses cross-correlation
as the similarity metric. The resulting transformations perform bidi-
rectional warping of images to and from tissue-cleared microscopy
native space and ARA space.

Heatmap generation. Voxelized segmentation maps were warped to
the ARA space (10-pmresolution) using a deformation field obtained
through registration. Subsequently, a smoothing Gaussian filter was
applied with a sigma of four pixels. Difference heatmaps were then
computed by subtracting the average of voxelized and warped seg-
mentation mapsineach group.

ROI-based analysis

We passed the voxelized and warped segmentation map at a resolu-
tion of 10 pm, in addition to the registered labels for each subject, to
MIRACL’s function seg feat_extract, to extract the density of cells per
ARA region for both the whole brain and labels grouped to a maxi-
mum atlas ontology depth of 6. The ARA labels are structured into
descending depth, from coarse- to fine-grained groupings of brain
regions, with MIRACL’s function combining labels at a higher depth
by their parent labels. The resulting density results were then passed
to MIRACL’s function group_unpaired_ttest, which applied Student’s
paired ¢-test (two-sided) per label with an alpha value of 0.05 for both
whole-brainregions and depth 6 regions, and both applications. This
function creates bar plots that compare the density of cells per ARA
label, including both significant ROIs and trending regions (P < 0.1).
Lastly, MIRACL’s function proj_stats_on_atlas was used to project the
resulting P values on the atlas regions.

Cluster-wise, permutation-based statistical algorithm and
analysis

We developed acluster-wise, permutation-based statistical algorithm
with TFCE. The statistical pipeline consisted of three main steps, and
isbased ontheimplementation of the function spatio_temporal_clus-
ter_test from MNE (https://mne.tools/stable/index.html). In the first
step, avoxel-wise statistical test using two-way ANOVA was performed
between two groups of study. Toincorporate the correlation structure
of the data and correct for multiple comparisons, we considered a
null hypothesis regarding the sizes of clusters in our data rather than
focusing on individual voxels. Thus, in the second step, clusters were
defined using adjacency structure in our data (connecting each voxel
toits neighborsin3D) and the TFCE technique**, which addresses the
challenge of selecting athreshold for both cluster-forming and smooth-
ing problems. We optimized the adjacency structure of the data using
aprioriknowledge from group-wise heatmaps to boost the sensitivity
ofthestatistical resultsin teravoxel LSFM data, due to the exceedingly
large number of voxels (and hence the number of statistical tests).
Specifically, the adjacency matrix was masked using a thresholded
(90% percentile) and then dilated version of the group-difference
heatmap, allowing the algorithm to focus only on putative clusters.
TFCE transforms a raw statistical image into a map that reflects the
strength of local spatial clustering. The new value assigned to each
voxelis determined by aggregating the scores of all supporting sections
belowit. The score of each section is computed by taking the height of

thesection (raised to a power H) and multiplying it by the extent of the
section (raised to a power E):

h,
e(h) rtdh,
h=h,

TFCE(v) =f
where h,istypically around zero and h, is a statistic value correspond-
ing to voxel v. In practice, this integral is estimated as a sum, using
finite step sizes (dh). The exponents of the powers (E and H) are free
parameters, but fixing these values has been shown to yield robust
outcomes justified by theory and empirical results***’. Increasing H
gives more weight to clusters with higher effect size, while increasing
E gives more weight to larger clusters**. In our analysis we chose E=2,
H=0.5,h,=0andastepsize of 5to mitigate the potentialimpact of FP
in LSFM data, and fixed the values for both applications, walking and
food-seeking datasets. The application of TFCE transforms results in
aweighted sum of local cluster-like signals, eliminating the need for a
fixed threshold to define clusters while keeping the local minima and
maxima at the same spot. The size of each cluster was measured by the
sum of voxels’ F-values within the cluster. In the final step, a nonpara-
metric permutationtest (N=1,000) was applied and new cluster-wise
F-statistics were obtained. In each permutation, the same procedure
was applied to define clusters and compute their statistics, with the
largest cluster size being retained. We also used the stepdown P value
procedure to boost sensitivity while controlling for family-wise error
rate®. To test the significance of clusters in our actual data, a null dis-
tribution was obtained via permutations. Cluster sizes observedinthe
actual dataare compared withthosein the null distribution to calculate
Pvalues, which canthen be compared with a predetermined threshold
(suchasalpha<0.05 or false-detection rate-corrected P values) to test
for significance. Next, we applied connected component analysis on
the resulting P value image to summarize significant clusters. Finally,
by integration of connected component analysis results, ARA labels
and density heatmaps, we extracted the center, mean effect size and
volume of each cluster, along with the percentage volume within each
brain region spanned.

Cluster-wise connectivity analysis

The significant clusters identified through ACE’s cluster-wise,
permutation-based statistical algorithm were systematically ranked
based on their statistical effect size and volume. To streamline the
subsequent connectivity analysis, we selected the top 20 clusters from
this ordered list. Integrating each cluster’s location with voxelized and
warped segmentation maps, we calculated the meanintensity of each
cluster per subjectin both treated and control groups. Subsequently
we employed a Pearson correlation test, utilizing the function pearsonr
fromthe scipy library, between the mean intensity values of each pair
of clusters. For each correlation coefficient, we established an 80%
confidence interval using the bias-corrected and accelerated boot-
strap method with 10,000 iterations, and selected the lower bound.
Finally, the Pvalue associated with each correlation test was deter-
mined through permutation testing, involving 10,000 permutations.
For visualization, significant correlation coefficients (P < 0.01) were
plotted alongside a heatmap illustrating Euclidean distance between
each pair of cluster centroids.

Native space cluster validation

The significant clusters identified through ACE’s cluster-wise TFCE
permutation-based statistical algorithm were binarized using o = 0.05
(orauser-fed threshold). Next, binarized clusters underwent adilation
(one iteration, using binary_dilation from the scipy.ndimage pack-
age) and a connected component analysis (using label function from
the scipy.ndimage package) to differentiate each cluster. Processed
significant clusters were then warped to the native space of each sub-
ject using registration transformations and the function miracl Ibls
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warp_clar. Utilizing ACE segmentation maps, the number of neurons
within each cluster was computed by identifying the coordinates of
each neuron. A two-sided Mann-Whitney U-test (from the scipy.stats
package) was deployed to compare the number of neurons withineach
clusteracross two groups. The numbers of neurons per subject for each
cluster—inaddition to their volume, atlas space P value and cluster-wise
statistics (obtained by ACE cluster-wise TFCE permutation), percentage
volume within each overlappingbrainregion and native space P value
(obtained by post hoc Mann-Whitney U-test)—are summarizedin a
comma-separated valuesfile.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

A subset of the datasets (whole-brain LSFM data and voxelized and
warped segmentation maps) generated and analyzed during the cur-
rentstudy areavailable at https://miracl.readthedocs.io/, within an ACE
workflow tutorial (https://miracl.readthedocs.io/en/latest/tutorials/
workflows/ace_flow/ace_flow.html), asexamples with the pipeline. All
required files, including the ARA, labels and datasets, are included in
the MIRACL containers with documentation and tutorials.

Code availability

We have made our ACE pipeline publicly available to the research
community as an end-to-end module within our open-source MIRACL
platform (under license no. GPL-3.0) at https://miracl.readthedocs.
io/, along with documentation, tutorials, example data, graphical
user interfaces and visualization functions. ACE is implemented in a
modular fashion with many well-documented core modules (func-
tions) that can be executed as command-line tools or accessed through
MIRACL graphical user interfaces (Supplementary Fig. 5), including
segmentation (trained DL models with easy-to-use, fine-tuning scripts),
voxelization, registration and statistical analysis.
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Extended Data Fig.1| ACE’s segmentation module. A 3D vision transformer each model is passed to aMonte-Carlo dropout block to estimate model
(UNETR) with multi-head attention was used as our backbone architecture. Our confidence and generate an ensemble of 50 models, improving the accuracy of
optimized UNETR model receives an 96° image patch and generates a probability ~ the overall prediction. To increase the generalizability of the ACE segmentation
map of the same size. ACE also consists of a convolutional neural network-based module, the user can deploy another layer of ensembling by combining both

3D U-Net architecture, operating on 128° image patches. The probability map of UNETR and U-Net outputs. Created in BioRender.com.
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Extended DataFig. 2| Light-sheet fluorescence microscopy (LSFM) datasets group. Panel bshows the intensity histogram of arandomly selected image patch
used to develop and evaluate ACE’s deep learning models. Our training data for each subject shown in panel a. c. Image characteristics of each dataset. Our
consists of 18 animals with 10 acquired from the whole brain and eight animals unseen datasets were obtained using a different experimental setup including a
with dataacquired from the left hemisphere. We used whole-brain LSFM datasets different microscope, rodent model, fluorescence proteins, and tissue-clearing
(see Methods-Datasets and Experiments) from different studies to evaluate ACE technique. See Method-Datasets and Experiments for more details.

deep learning models. Panel a shows axial views of an example subject from each
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of eachtransformon the inputimage. a. Adding Gaussian noise to the image with
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accuracy of ACE vs. Cellfinder (e) in terms of average Dice coefficient, precision,
recall, 95% Hausdorff distance, and F1score on (N: 152 unique patches of
963~0.17x0.17x0.38 mm?>). Box plots: box limits, upper and lower quartiles;
center line, median; whiskers, 1.5x interquartile range; points, outliers.
Mann-Whitney U test (two-sided), ***p < 0.0001.

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02583-1

Algorithm
1 ACE
[ ACE Fine-tuned

Extended Data Fig. 6 | Fine-tuning ACE segmentation models to segment
other cellular markers with different morphological features compared
to c-Fos. Panel a shows arandomly selected image patch from training data
vs.anew unseen dataset with an enlarged view of several cells to highlight the
different morphological appearance. b. An axial view from arandom depth of
the whole brain of the new dataset. c. two randomly selected image patches
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(with the size of 512x512x512 voxels); patch number 1 was used to fine-tune

the ACE UNETR model while patch number 2 was used to evaluate the model
performance. d. Qualitative ACE performance before and after fine-tuning. e.
Quantitative performance of ACE deep learning models on N: 152 unique patches
0f963~0.17x0.17x0.19 mm3. Box plots: box limits, upper and lower quartiles;
center line, median; whiskers, 1.5x interquartile range; points, outliers. Mann-
Whitney U test (two-sided), ***p < 0.0001.
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a. Overview of experiments and analysis
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b. Whole-brain segmentation
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c. Voxelization and Registration
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Brain-wide identification of local neuronal activity
changes underlying walking. a. The overview of experimental design to analyze
c-Fos+ cell distribution in whole-brain LSFM data during walking (n = 3/group).
b. Automated segmentation of c-Fos+ cell distribution using ACE’s segmentation
module. Panels show a 3D rendering of a maximum intensity projection of raw
data from the walking group, ACE output (blue), and raw data overlaid on ACE’s
output. c. Segmentation maps were voxelized to the ARA10um resolution.
Subsequently, the voxelized segmentation maps were warped to ARA space. Left
panels show an example of adownsampled subject overlaid on ARA labels after
registration from each group. Right panels show a 3D rendering of voxelized and
warped segmentation maps color-coded based on 6 ARA regions: CTX, Cerebral
Cortex; CNU, Cerebral Nuclei; MB, Midbrain; HB, Hindbrain; IB, Interbrain; and
CB, Cerebellum. d. Toidentify neural activity hotspots, group-wise heatmaps

of neuronal density were obtained by subtracting the average of the voxelized

and warped segmentation maps in each group. Panels show two different
coronal views as an example. e. Result of ACE cluster-wise threshold-free cluster
enhancement permutation analysis, using a group-wise two-way ANOVA. The
panels demonstrate the resulting p-value map representing the clusters showing
significant differences between groups and corresponding to the coronal
sectionsin d. Zoomed views show two significant clusters in MOp (left panel) and
Retrosplenial area (right panel). See Supplementary Table 3 for strength (effect
size), volume, and brain regions each cluster spanned. f. Lateral Hypothalamic
Area (LHA) label was warped back into native space using the deformation matrix
obtained by registration. Left and right panels show two example subjects from
the walking and homecage groups respectively with azoomed version of LHA,
showcasing higher c-Fos+ activity in the walking vs. homecage condition. Section
aiscreatedin BioRender.com.
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a. ARA labels c. ROI-based Statistics
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d. Cluster-wise Analysis

Brain regions

Cluster  Volume  Strength  P-value’

1. Primary motor area, Layer 6a (38%)
1 005mm’ 582 268 2. Primary motor area, Layer 6b (33%)
3. Secondary motor area, Layer 6a (22%)

1. Primary motor area, Layer 5 (77%)
2 002mm’ 640 | 270 2. Primary somatosensory area, lower limb layer 2/3 (10%)
3. Primary somatosensory area, upper limb, layer 4 (3%)

Extended Data Fig. 8 | ACE statistical analysis for unraveling neuronal
ensembles controlling walking. a. ARA labels at the level of whole brain vs.
depth 6 based on the ARA ontology (hierarchy). b. Group-wise heatmaps of
neuronal density were obtained by subtracting the average of the voxelized
and warped segmentation maps in each group. Panels show different coronal,
sagittal, and axial views as an example. c. Using voxelized and warped
segmentation maps and ARA labels at 10 pm, we obtained neuronal density per
brainregion at both whole-brain and depth 6 levels. Anindependent student
t-test (two-sided) was then applied between c-Fos+ cell density per ARA label to
performawhole-brain and depth 6 level ROI-wise statistical test (N: 3/group)
Data are presented as mean values + standard deviation. The upper panel shows
the results of the whole-brain analysis with azoomed version on the right,

J
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demonstrating the most significant ROls. The lower panel shows the results of
the depth 6 analysis. The ARA labels are sorted based on p value (***p < 0.001,
**p <0.01,and *p < 0.05). d. ACE cluster-wise analysis with group-wise two-
way ANOVA documented several sub-regional and laminar neuronal clusters
differentially activated during walking. Left panel shows a coronal view of a
cluster-wise p-value map with two zoomed views of significant clusters spanning
inthe primary and secondary motor arealayers 6, 6aand 6b and the primary
somatosensory arealayers 2/3 and 4. The table summarizes the information
of each cluster. Using ACE cluster-wise analysis, the volume (um3 x1,000?),
maximum strength (Cluster-wise TFCE F-statistic x1,000), brain regions each
cluster spanned out on, and centroid of each significant cluster on Allen 10 pm
atlas was computed.
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Extended Data Fig. 9 | ACE cluster-wise statistical analysis for unraveling adensity heatmap, demonstrating neuronal hotspots differentially activated
neuronal ensembles controlling walking. a. Voxelized and warped in the walking group. b. Statistical whole-brain p-value map obtained by ACE
segmentation maps, obtained by integrating ACE’s segmentation module and cluster-wise analysis with a group-wise two-way ANOVA, demonstrating several
MIRACL registration algorithms, were averaged per group. The average of the sub-regional and laminar neuronal clusters differentially activated during

homecage (non-walking) group was subtracted from the walking group toobtain ~ walking.
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a. ACE cluster wise analysis. b. Effects of Adjacency Threshold
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Extended Data Fig.10 | The effects of different user-fed parameters to adjacency matrix (b), Step-down p-value (c), TFCE step size, and TFCE E (d) on the
control the rigor of ACE cluster-wise statistics. a. An axial view of the group results of ACE cluster-wise TFCE permutation algorithm. See Methods - Cluster-
density heatmap next toits corresponding ACE cluster-wise p-value map for the wise permutation-based statistical algorithm and analysis for more details.

cold-induced experiment. b-d. The effects of the threshold used to define the
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contracted service. Imaging of tissue in 3D was performed on a CLARITY-optimized light sheet microscope for the unseen and walking
experiment datasets and LifeCanvas Technologies SmartSPIM microscope.

Data analysis The ACE code uses Python 3.7.3, Pytorch v1.13.1, MONAI v0.9.dev2202, Numpy v1.18.5, Scipy v1.7.3, and mne package v1.3.1 in addition to
Imagel/Fiji macros (https://imagej.net/ software/fiji/). For registration and ROI-based analysis we used MIRACL (https://
miracl.readthedocs.io/). The ACE performance was compared against llastik-1.4.0rc8 (https://www.ilastik.org/) and Cellfinder v0.4.21 (https://
github.com/brainglobe/cellfinder). The figures in the paper were made using matplotlib v3.4.3, seaborn v0.12.2, ITK-SNAP v3.8.0 (http://
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

A subset of the datasets (a whole-brain LSFM data and the voxelized and warped segmentation maps) generated and analyzed during the current study is available
at www.miracl.readthedocs.io/ under ACE workflow tutorial as examples with the pipeline. All the required files such as Allen atlas and labels and datasets are
included in the Docker container of MIRACL with documentation and tutorials.
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nucleus of the midline thalamus controls cold-induced food seeking. Nature 621, 138145 (2023).)

Data exclusions | No data was excluded from the study.

Replication We successfully tested against state-of-the-art algorithms using five whole brain LSFM data and four completely out-of-distribution whole
brain LSFM data.

Randomization  For the walking and cold experiments, animals of the same age, sex, and weight were randomly into treatment or control groups.

Blinding All annotators worked in isolation and were blind to specific groups.
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Antibodies used Primary antibodies:
For cold and unseen dataset 2; c-Fos (9F6) Rabbit mAb (Cell Signaling, #2250S); for more details refer to https://doi.org/10.1038/
s41586-023-06430-9
For unseen dataset 1 and walking datasets; c-Fos (rabbit anti-cFos, 1:2000, Synaptic Systems, #226 003)

Secondary antibodies:

For cold and unseen dataset 2; Alexa Fluor® 488 Anti-Rabbit IgG (Jackson ImmunoResearch, #711-546-152); for more details refer to
https:// doi.org/10.1038/s41586-023-06430-9

For unseen dataset 1 and walking datasets; Alexa Fluor® 647 donkey anti-rabbit IgG ( Thermo Fisher Scientific, #A-31573 )

Validation The use and validation of these antibodies have been established in previous studies that can be referred on the manufactures
websites below:

Primary antibody:
Cold and unseen dataset 1: https://www.cellsignal.com/products/primary-antibodies/c-fos-9f6-rabbit-mab/2250
Unseen dataset 2and walking datasets: https://sysy.com/product/226003

Secondary antibody:

Cold and unseen dataset 2: https://www.jacksonimmuno.com/catalog/products/711-546-152

Unseen dataset 1 and walking datasets: https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-lgG-H-L-Highly-Cross-
Adsorbed- Secondary-Antibody-Polyclonal/A-31573

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For the training dataset, TRAP2-Ai9 mice (Mus Musculus) strain was used (n=10, 3-4 months old, n=8, 2 months old). All were
obtained from the Scripps Research Department of Animal Resources rodent breeding colony.
For the unseen dataset 1, C57BL/6 mice strain was used (n=3, female, ~8 weeks old).
For the cold dataset, C57BL/6 mice strain was used (n=4 / group, and male), were obtained from the Scripps Research Department of
Animal Resources rodent breeding colony; more details refer to https://doi.org/10.1038/s41586-023-06430-9
For the walking dataset, C57BL/6 mice strain was used. These mice, n=6 (~8 weeks age, female).
For unseen dataset 2, a male C57BL/6J mouse (Jackson Laboratory, strain 000664), aged 18 months old.

Wild animals The study did not involve wild animals.

Reporting on sex Training dataset was contained both male and female mice.
Cold experiment was done using only male mice; for more details refer to https://doi.org/10.1038/s41586-023-06430-9 Walking
experiment was done using only female mice.

Field-collected samples  Study did not involve sample collected from the field.

Ethics oversight Training dataset experiments: All animal procedures followed animal care guidelines
approved by the Institution Animal Care and Use Committee at the Scripps Research Institute.
Unseen dataset 1 experiments: All procedures were performed in compliance with the Swiss Veterinary Law guidelines and approved
by the Veterinary Office of the Canton of Geneva (Switzerland; license GE/112/20).
Cold dataset experiments: Experiments were approved by the Scripps Research Institute’s or BIDMC's Institutional Animal Care and
Use Committee (IACUC), respectively. All experiments were under the guidelines of the NIH; for more details refer to https://
doi.org/10.1038/s41586-023-06430-9
Walking dataset experiment: All procedures were performed in compliance with the Swiss Veterinary Law guidelines and approved
by the Veterinary Office of the Canton of Geneva (Switzerland; license GE/112/20).




Unseen dataset 2 experiments: All animal procedures followed protocols approved by the Stanford University Institutional Animal
Care and Use Committee, and met the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory
Animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.
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