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light-sheet microscopy
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Teravoxel-scale, cellular-resolution images of cleared rodent brains 
acquired with light-sheet fluorescence microscopy have transformed the 
way we study the brain. Realizing the potential of this technology requires 
computational pipelines that generalize across experimental protocols 
and map neuronal activity at the laminar and subpopulation-specific levels, 
beyond atlas-defined regions. Here, we present artficial intelligence-based 
cartography of ensembles (ACE), an end-to-end pipeline that employs 
three-dimensional deep learning segmentation models and advanced 
cluster-wise statistical algorithms, to enable unbiased mapping of local 
neuronal activity and connectivity. Validation against state-of-the-art 
segmentation and detection methods on unseen datasets demonstrated 
ACE’s high generalizability and performance. Applying ACE in two distinct 
neurobiological contexts, we discovered subregional effects missed by 
existing atlas-based analyses and showcase ACE’s ability to reveal localized 
or laminar neuronal activity brain-wide. Our open-source pipeline enables 
whole-brain mapping of neuronal ensembles at a high level of precision 
across a wide range of neuroscientific applications.

Mapping neuronal activity and morphology is critical for understand-
ing brain network dynamics underlying behavior and cognition1,2. 
Advances in microscopy, such as light-sheet fluorescence microscopy 
(LSFM)3,4, and tissue-clearing techniques, such as CLARITY5, CUBIC6, 
iDISCO7 and SHIELD8,9, have enabled high-fidelity imaging of cellular 
structures in intact tissue, providing insights into brain structure and 
function. However, these state-of-the-art imaging and molecular meth-
ods produce exceedingly large (teravoxel scale with trillions of voxels), 
complex, multichannel and three-dimensional (3D) datasets. Such 

teravoxel-scale datasets require automated algorithms for analyses 
and identification of focal brain-wide changes in neuroanatomy or 
neurophysiology2,10,11.

To enable automated brain-wide activity mapping in large 
microscopy datasets, current pipelines (such as ClearMap1 and multi-
modal image registration and connectivity analysis (MIRACL)10) rely 
on registration to standardized brain atlases or common reference 
spaces for statistical analyses, via a region-of-interest (ROI)-based 
approach2,12. This analysis requires a priori knowledge or data-specific 
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validated our DL models on several unseen (out-of-distribution) test 
datasets from different centers, demonstrating that ACE accurately seg-
ments a wide range of neuronal cell bodies of disparate size, shape and 
density across different imaging protocols. We apply ACE to chart local 
neuronal ensembles across the whole brain during (1) cold-induced 
food seeking and (2) movement, highlighting its generalizability across 
neuroscience applications.

Results
ACE algorithm, workflow and validation
Artficial intelligence-based cartography of ensembles combines 
DL algorithms, registration techniques and cluster-wise statistical 
analysis to map neuronal subtype-specific changes in whole-brain 
teravoxel LSFM data. Considering the importance and inherent techni-
cal complexities in segmenting neuronal somas across samples from 
different imaging protocols, we employed state-of-the-art DL architec-
tures and trained them on large datasets of LSFM data from different 
centers. Key advances in ACE include the use of (an ensemble of) a 
cutting-edge vision transformer (ViT) model as its segmentation core, 
providing a quantitative estimate of model confidence (uncertainty) 
and performing cluster-wise statistical analyses via a nonparametric 
permutation-based algorithm.

We employed an optimized ViT as the backbone architecture for 
our model, which is a deep neural network designed for computer 
vision tasks that relies on self-attention, operating on one-dimensional 
(1D) flattened vectors from 3D image patches to model long-range rela-
tionships in the input data, akin to language transformers. The output 
of the model was obtained by ensembling the predictions of 50 models 
using the Monte Carlo dropout technique35–37, to estimate model uncer-
tainty (via computing variance across models) and enhance robustness 
(via averaging predictions generated from stochastically different 
models; Fig. 1 and Extended Data Fig. 1). For training and evaluation 
of ACE models, we used LSFM data acquired from 18 Tg TRAP2-Ai9 
mice with the c-fos promoter (Extended Data Fig. 2). We divided each 
training dataset into smaller 3D image cubes or patches (963 voxels cor-
responding to 0.35 mm3). To generate ground truth (GT) data for each 
patch, we developed a semiautomatic pipeline that relies on Ilastik22, 
MIRACL10 and FIJI/ImageJ38. Because the generated GT data were not 
obtained purely through expert manual annotation, we henceforth 
label these silver standard GT. We thus used 15,200 randomly selected 
unique input patches for training, not accounting for data augmenta-
tion (n = 30,400 with augmentation; Supplementary Fig. 1), to our 
knowledge providing greater than fivefold more data for training 
compared with DL models typically used for LSFM in the literature39. 
We tested an optimized 3D U-Net architecture (convolutional neural 
network, CNN) with residual blocks and dropout layers, based on our 
previous work34,40, as a baseline model for comparison to our ViT model. 
Both architectures (ViT and U-Net) were trained and evaluated on the 
same image patches (Extended Data Fig. 1). We illustrate the robust-
ness of the segmentation models on the test set and on two unseen 
datasets, consisting of four LSFM whole-brain datasets acquired from 
different centers (Extended Data Fig. 2). We highlight the differences 
in characteristics and distributions between the training and unseen 
datasets, including signal-to-noise ratio and contrast-to-noise ratio 
characteristics, and intensity histograms (Extended Data Fig. 2).

Artficial intelligence-based cartography of ensembles utilizes our 
MIRACL10,41,42 platform to automatically register LSFM whole-brain or 
hemisphere data to a common coordinate system via linear and nonlin-
ear transformations—here, ARA43. The segmentation maps generated 
at the native space of each subject are voxelized and then warped to 
Allen atlas resolution (Fig. 1b) using deformation fields obtained via 
registration. The accuracy of registration and warping can be evalu-
ated using quality control checkpoints. Subsequently, the voxelized 
and warped segmentation maps are passed to the cluster-wise analysis 
module for statistical analysis.

expertise in choosing regions of interest according to the designed 
experiments and comparison of cell counts across groups1,2 (due 
to the large number of brain regions). Notwithstanding, emerging 
single-cell and spatial-omics data indicate far greater diversity within 
conventionally defined atlas regions, with neuronal subpopulations 
having unique cytoarchitecture, connectivity and function13. Moreo-
ver, definitions of atlas regions are commonly structure-centric and 
limited in regard to delineation of neuronal subtypes. Reliance on a 
traditional, region-based grouping of voxels can thus fail to detect 
subtle focal contrasts or neuronal subpopulation-specific effects in 
an unbiased fashion. Further, aggregating results on a regional basis 
obscures the heterogeneity of changes within brain regions; neverthe-
less, many pathologies are thought to exert salient laminar or columnar 
effects14–18. In addition to regional analyses, existing pipelines for LSFM 
data enable voxel-wise statistical analyses to assess neuronal changes 
in different brain regions. However, in vivo neuroimaging studies have 
demonstrated that voxel-wise statistical tests with leniently corrected 
P values can result in an inflated rate of false positives (FP)19, and this 
issue is amplified with teravoxel-scale LSFM images. Conversely, con-
servative corrections such as Benjamini and Hochberg20 reduce the 
power of these voxel-wise methods to detect salient changes in such 
teravoxel datasets.

Pipelines commonly employed for cellular segmentation using 
fluorescent microscopy images, such as ClearMap1, WholeBrain21 and 
Ilastik22, rely on traditional image-processing techniques in which 
parameter tuning or expert intervention is often required to extract 
meaningful features for segmentation23. This limits their ability to 
produce robust results on unseen datasets, with varying signal and 
noise distribution across different experimental set-ups and brain 
regions24. Deep learning (DL) models can automatically learn effective 
representations of data with multiple levels of abstraction, resulting 
in accurate and robust segmentation of imaging data25,26. Although 
several pipelines have been introduced to leverage DL for mapping of 
cells in microscopy data, none of the available DL pipelines are specifi-
cally tailored for 3D mapping of neuronal activity in whole-brain LSFM 
data. Current DL pipelines are confounded by any the following: (1) reli-
ance on two-dimensional (2D)-based models, such as Cellpose27,28 and 
STARDIST29, which impedes the unbiased assessment of 3D volumetric 
changes; (2) training and testing on restricted datasets consisting 
of a small sample from specific brain regions and cell types, such as 
CDeep3M30 and DeLTA31, limiting their ability to generalize or segment 
a large variety of cell sizes, shapes and densities32; and (3) combining 
conventional image-processing techniques with a DL-based classifier, 
such as Cellfinder33, limiting their functionality to detection. Further-
more, current segmentation pipelines do not provide uncertainty 
estimates of model predictions, which are invaluable for evaluating the 
reliability of segmentation models, and for guiding the improvement 
of segmentation results34.

To address these critical opportunities and enable robust 
brain-wide mapping of neural subpopulation-specific effects in LSFM 
data, we developed the ACE pipeline. This end-to-end, automated pipe-
line utilizes cutting-edge DL segmentation models and advanced sta-
tistical algorithms, enabling unbiased 3D mapping of neuronal activity 
and morphometrical changes in teravoxel-scale LSFM data. Unlike exist-
ing methods, ACE, via integration with our MIRAC10 open-source plat-
form, provides a quantitative mapping of neuronal subtype-specific 
effects in an atlas-agnostic manner that is independent of predefined 
atlas regions. Our threshold-free, cluster-wise permutation analysis 
(optimized for LSFM data) enables cluster-based statistical analysis 
and improves the sensitivity of voxel-wise analysis. Leveraging DL 
segmentation maps and atlas registration, clusters detected at the 
atlas space are further validated at the native space of each subject. We 
trained ACE segmentation models on large LSFM datasets and validated 
them against the most commonly used state-of-the-art pipelines for 
cellular mapping in microscopy, Cellfinder33 and Ilastik22. We further 
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Artficial intelligence-based cartography of ensembles comprises 
a cluster-wise permutation statistics module, providing a unique 
capability missing in current pipelines. In an initial step, a voxel-wise 
statistical test (here, two-way analysis of variance (ANOVA) is applied 
between groups using warped segmentation maps). Next, rather than 
focusing on individual voxels, we consider a null hypothesis regard-
ing the sizes of clusters in the data by incorporating the correlation 
structure of the data. A key advance in ACE is discovering clusters in 
a threshold-free approach using the threshold-free cluster enhance-
ment (TFCE44) method, which enables the detection of changes in 
regions and subregions with higher sensitivity (Fig. 1c). Using this 
methodology, ACE summarizes the volume, strength (effect size) 
and ARA regions spanned by each cluster (Fig. 1c). Moreover, ACE 
extracts associations among clusters (neuronal ensembles), poten-
tially revealing both within-region and long-range connectivity or 
functional coherence. Furthermore, we incorporated a native space 
cluster validation algorithm. This algorithm uses the cluster-wise 
P values map in atlas space, along with registration transformations, 

to warp clusters from atlas space into the native space of each subject 
for further statistical validation.

We explore the generalizability and impact of ACE by applying it in 
two unique neurobiological contexts. First, we identify local clusters of 
activations underlying food seeking following cold stress by profiling 
c-Fos expression in whole-brain LSFM data. Second, we identify several 
subregional and laminar neuronal ensembles that are differentially 
activated during locomotion.

Segmentation of neuronal somas in teravoxel LSFM data
We first evaluated the performance of our ViT ensemble model (using 
Monte Carlo dropout and n =50 models) on our test dataset (comprising 
12,160 unique patches of 963 voxels ≃ 0.35 mm3 from five animals). The 
high fidelity of predictions is visualized in Figs. 2a and 3a on a repre-
sentative dataset, along with the corresponding GT. To quantitatively 
assess the performance of the models, we used a series of overlap and 
surface-based metrics, including recall, precision, Dice similarity coef-
ficient (DSC) and 95% Hausdorff distance (HD95).
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Fig. 1 | Methodological workflow of ACE. a–c, Intact whole brains 
immunolabeled, cleared and imaged with LSFM were used as input to the ACE 
pipeline. a, Whole-brain LSFM data are passed to ACE’s segmentation module, 
consisting of ViT- and CNN-based DL models, to generate binary segmentation 
maps in addition to a voxel-wise uncertainty map for estimation of model 
confidence. b, The autofluorescence channel of data is passed to the registration 
module, consisting of MIRACL registration algorithms, to register to a template 
brain such as the Allen Mouse Brain Reference Atlas (ARA). High-resolution 
segmentation maps are then voxelized using a convolution filter and warped to 
the ARA (10 µm) using deformations obtained from registration. c, Voxelized and 
warped segmentation maps are passed to ACE’s statistics module. Group-wise 
heatmaps of neuronal density are obtained by subtracting the average of warped 
and voxelized segmentation maps in each group to identify neural activity 

hotspots. To identify significant localized group-wise differences in neuronal 
activity in an atlas-agnostic manner, a cluster-wise, threshold-free cluster 
enhancement permutation analysis (using group-wise ANOVA) is conducted. 
The resulting P value map represents clusters showing significant differences 
between groups. Correspondingly, ACE outputs a table summarizing these 
clusters, including their volumes and the portion of each brain region included in 
each cluster. Significant clusters are then passed to the ACE native space cluster 
validation module, where clusters are warped to the native space of each subject. 
Utilizing warped clusters and ACE segmentation maps, the number of neurons 
within each cluster is calculated and a post hoc nonparametric test is applied 
between counts within each cluster across two groups. The top left panel of the 
figure was created using BioRender.com.
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To provide a fair comparison against the state-of-the-art segmen-
tation method, Ilastik22, we trained an Ilastik (random forest classifier) 
model using patches from all training subjects. On our test set, ACE 
models outperformed Ilastik22 across all experiments. ACE achieved 

an average improvement in DSC of 0.17 compared with the optimized 
Ilastik model (P < 0.0001, Mann–Whitney U-test, two-sided; Fig. 2c). 
ACE showed superior performance in detecting both the boundary and 
shape of neurons and discriminating neurons that were close to each 
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Fig. 2 | Performance of ACE in brain-wide segmentation of neuronal cell bodies. 
a, Maximum-intensity projection rendering of whole-brain c-Fos expression, with 
an enlarged view of a cortical patch. Segmentation maps (blue) predicted by the 
ViT ensemble for the enlarged subregion are shown and compared with GT (red). 
b, Raw image, GT and segmentation maps for two example image patches, along 
with voxel-wise uncertainty maps. Regions of high uncertainty are localized around 
the boundary of sparsely mislabeled processes such as axons (left-hand column) 
and neuronal somas (right-hand column). Arrows indicate mis-segmented regions 
from a. c, Qualitative evaluation of segmentation accuracy of ACE versus Ilastik in 

terms of detection of neurons with low signal intensity or slight blurriness (top), 
and their shape (bottom). Arrows indicate the boundary of two neurons close 
to each other. d,e, Quantitative evaluation of the segmentation accuracy of ACE 
versus Ilastik (d), and detection accuracy of ACE versus Cellfinder (e), in terms of 
average DSC, precision, recall, HD95 and F1 score on test datasets (n = 12,160 unique 
patches with 963 ≃ 0.35 mm3) and unseen datasets (n = 1,824 unique patches of 
963 ≃ 0.27 × 0.27 × 0.48 mm3). In box plots: box limits, upper and lower quartiles; 
center line, median; whiskers, 1.5× interquartile range; points, outliers. Mann–
Whitney U-test (two-sided), ***P < 0.0001.
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other, resulting in a lower HD95 (ACE (mean ± s.d.), 4.76 ± 3.47; Ilastik, 
9.60 ± 6.78; P  < 0.0001, Mann–Whitney U-test, two-sided; Fig. 2c,d). 
Furthermore, ACE exhibited increased robustness in segmenting 
neurons with low signal intensity or out-of-focus blurriness (Fig. 2c), 
while Ilastik struggled to segment these effectively. ACE demonstrated 
robust segmentation accuracy across different brain regions, and 
consistently superior segmentation performance (on all evaluation 
metrics) compared with Ilastik across the whole brain (Fig. 3b and 
Extended Data Fig. 3). Moreover, ACE achieved higher robustness 
metrics in simulated distribution shifts (Gaussian noise, smoothing and 
sharpening) at varying severity levels compared with Ilastik (Extended 
Data Fig. 4).

To further validate our segmentation model, we compared its per-
formance against the state-of-the-art detection algorithm, Cellfinder33. 
To this end, we transformed segmentation maps into detection maps 
by finding the center of mass of each segmented neuron. ACE exhibited 
superior detection performance, resulting in an F1 score of 0.75 ± 0.08 
(mean ± s.d.) versus 0.55 ± 0.15 for Cellfinder (P < 0.0001, Mann–Whit-
ney U-test, two-sided; Fig. 2e). To improve the accuracy of the Cellfinder 
pipeline on our dataset, we retrained (fine-tuned) the Cellfinder model 
on our training data and repeated the evaluation experiment. Although 
retraining elicited an increase of 8.64% in precision compared with the 
Cellfinder pretrained model, it did not improve overall performance, 
yielding an overall decrease in F1 score (to 0.28 ± 0.12).

Employing an ensemble of 50 ViTs using the Monte Carlo dropout 
algorithm improved our baseline model performance, resulting in 
an average improvement of 2.1% in precision. ACE ensemble models 
showed high confidence (low uncertainty) in correctly segmented 
regions, whereas mis-segmented regions demonstrated low confidence 
(high uncertainty; Fig. 2b). Areas with high uncertainty were typically 
observed around the boundary of neuronal somas and sparsely misla-
beled processes. Voxel-wise uncertainty maps estimate segmentation 
confidence and can be used in postprocessing to remove potentially 
FP voxels.

To validate the models’ generalizability, we obtained two unseen 
(out-of-distribution) datasets with different cell-labeling strategies 
(transgenic animal for training data versus routine antibody immu-
nostaining for unseen datasets), image resolution, scanning param-
eters, microscope and image characteristics from those in the training 
dataset (Extended Data Fig. 2). From unseen dataset 1, we randomly 
selected 1,820 patches of 963 voxels each (0.27 × 0.27 × 0.48 mm3) and 
generated silver standard GT data for each image patch. We employed 
the trained ViT ensemble model and deployed it on the unseen dataset 
without any fine-tuning or postprocessing (Supplementary Fig. 2). 
The DSC achieved by our model was 0.73 ± 0.02 (mean ± s.d.) versus 
0.45 ± 0.12 for Ilastik (P < 0.0001, Mann–Whitney U-test, two-sided; 
Fig. 2d). Ilastik segmentations resulted in a substantial number of false 
negatives (FN) (recall (mean ± s.d.), 0.35 ± 0.15 versus 0.78 ± 0.09 for 
ACE, P < 0.0001, Mann–Whitney U-test, two-sided; Fig. 2d). Further-
more, ACE outperformed Cellfinder on this unseen dataset (with both 
the pretrained and fine-tuned model). To ensure a fair comparison, we 
further conducted Cellfinder runs using various parameters for its 
detection step, then selected the best model based on a visual com-
parison (following the authors’ recommendations). This approach 
allowed us to account for differences in neuronal size distribution 
and choose the most suitable Cellfinder model for these datasets. 

Notwithstanding, ACE outperformed the tuned Cellfinder model on 
all evaluation metrics (P < 0.0001, Mann–Whitney U-test, two-sided; 
Fig. 2e). Similarly, for unseen dataset 2, the qualitative and quantita-
tive results highlight ACE’s superior performance (P < 0.0001, Mann–
Whitney U-test, two-sided; Extended Data Fig. 5) compared with Ilastik 
and Cellfinder, underscoring the generalizability of our DL models to 
diverse imaging conditions.

To further increase ACE’s robustness on unseen data, we employed 
an additional layer of ensembling by combining our optimized ViT 
and U-Net ensemble models, generating an ‘ensemble of ensembles’ 
(Supplementary Table 1 shows inference time comparison between 
ACE and existing algorithms). Our segmentation module thereby takes 
advantage of a CNN-based architecture that extracts local features 
within the image patch and a ViT architecture to learn long-range 
dependencies across the patch. The ensemble of ensembles strat-
egy increased generalizability when dealing with the unseen dataset, 
improving DSC by an average of 2.1%, precision by 5.2% and decreasing 
average HD95 by 15.4%. In detection mode, ACE’s ensemble of ensembles 
increased F1 score by an average of 5.1% and precision by 11.1%. Through 
fine-tuning of scripts, ACE is generalizable to LSFM data from other 
cellular markers with different morphological features compared 
with c-Fos (Extended Data Fig. 6a). To demonstrate the validity of this 
adaptation, we utilized another dataset of in situ fluorescence imag-
ing of the targets of a covalent drug (pargyline) in intact brain tissue 
at the subcellular level. We randomly cropped 300 image patches with 
963 voxels each (0.17 × 0.17 × 0.19 mm3) from this dataset and gener-
ated silver GT data for them. We fine-tuned the ViT model on half of 
these patches and used the other half for evaluation. The fine-tuned 
ensemble model achieved a DSC of 0.74 ± 0.14 (mean ± s.d.; Extended 
Data Fig. 6), indicating robust performance even with different cellular 
markers and morphologies.

Mapping ensembles orchestrating cold-induced food seeking
Understanding the neural mechanisms governing cold-induced 
food seeking is crucial for unraveling the intricate interplay between 
environmental stimuli, energy expenditure and feeding behavior in 
mammals45–47. Our group has recently employed whole-brain c-Fos 
screening (via SHIELD and LSFM) of mice following prolonged (6-h) 
exposure to a temperature of either 4 or 30 °C (n = 4 per group), to map 
the neuronal ensembles that drive cold-induced food seeking48. Our 
findings highlight selective activation during prolonged cold exposure 
of the xiphoid nucleus (Xi), a small midline thalamic subregion lack-
ing predefined ARA boundaries, suggesting that Xi plays a key role in 
mediation of food seeking in response to cold stress48. However, in 
this previous work, we manually identified the activation of Xi within 
the ventral midline thalamus based on our initial assumptions and 
a priori hypotheses. Notably, in this screen, we had relied on ROI-based 
metrics (including regions encompassing or surrounding Xi) rather 
than on localized statistics, due to the lack of tools able to generate 
cluster-wise statistical maps. Here, to validate our pipeline’s ability to 
automatically detect selective activation of specific neuronal popula-
tions at the subregional level in an unbiased manner, we analyzed this 
whole-brain c-Fos LSFM dataset using ACE.

We first utilized ACE’s models to generate whole-brain segmenta-
tion maps (Fig. 4a). To maintain data fidelity and prevent information 
loss during warping into a common reference with lower resolution, we 

Fig. 3 | ROI-wise evaluation of ACE segmentation module in segmentation 
of neuronal cell bodies across the whole brain. a, Qualitative evaluation of 
ACE’s segmentation module in different cortical regions in an example subject 
from the test dataset. Each panel from left to right demonstrates a 3D maximum-
intensity projection of a raw (input) image patch, GT (red), model output (blue) 
and an overlaid version of all three. b–d, On the test set (in total, n = 1,600 unique 
patches 963 ≃ 0.35 mm3; minimum n = 10 and maximum n = 155 unique patches 
per region), we registered each LSFM dataset to the ARA using our MIRACL 

platform’s registration algorithms. ARA labels were then warped to each subject’s 
native space, with these warped labels then used to determine the location 
of each image patch in the brain. Average DSC (b) and HD95 (c) were obtained 
between ACE outputs and GT per ARA label (d) and compared against Ilastik. 
Box plots: box limits, upper and lower quartiles; center line, median; whiskers, 
1.5× interquartile range; points, outliers. Mann–Whitney U-test (two-sided), 
***P < 0.001, **P < 0.01, *P < 0.05. CB, cerebellum; CNU, cerebral nuclei; CTX, 
cerebral cortex; IB, interbrain; MB, midbrain.
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applied a convolution-based voxelization procedure to the maps based 
on our previous work10. Following voxelization, segmentation maps 
were aligned with ARA at 10-µm resolution using deformation fields 
obtained via our MIRACL platform’s registration module (Fig. 4b,c 
and Supplementary Fig. 3). To identify neural activity hotspots, we 
generated group-wise heatmaps of neuronal density by subtracting 
the average of the voxelized and warped segmentation maps in each 
group (Fig. 4d). These heatmaps revealed that cold stress elicited 
increased neuronal activity within the hypothalamus, consistent 
with its role in thermoregulation49, and attenuated neuronal activity 
across the cortex, probably due to reduced physical activity during 
cold exposure48,50.

For assessment of between-group differences, we first conducted 
ROI-wise analysis between the two groups within each atlas region 
(Fig. 4e). This whole-brain analysis highlighted several brain regions 
that exhibited significant differential activation (P < 0.05, Student’s 
paired t-test, two-sided), notably the paraventricular hypothalamic 
nucleus and the nucleus of reuniens (Fig. 4d). Some areas showed 
diverging group trends but did not reach significance, including the 
cuneiform, a region involved in locomotion51, and primary auditory 
cortex. Multiple comparison corrections were not performed, follow-
ing common practices of whole-brain, ROI-based analysis, due to the 
very large number (>1,100) of ARA regions, highlighting another key 
limitation of such analysis. A visual inspection of the group-difference 
heatmap revealed that the ROI-based analysis on predefined atlas 
regions failed to detect several highly localized areas with substantial 
increases in c-Fos activation in the cold group—most notably within 
the large nucleus of reuniens (Fig. 4d).

For testing of whether ACE could map localized group-wise 
differences in neuronal activity in an atlas-agnostic manner, we 
employed ACE’s cluster-wise TFCE permutation test using group-wise 
ANOVA. ACE extracted clusters of activation across the whole brain 
(Fig. 4f) and summarized and ranked each cluster by its strength of 
activation, total volume and percentage volume within each overlap-
ping brain region (Supplementary Table 2). Our statistical and visuali-
zation tools not only highlighted expected areas of c-Fos activation, 
but also identified numerous previously undetected subregional 
changes in the cold-induced dataset: for instance, clusters located 
only within the dorsal subregion of the paraventricular nucleus of the 
thalamus (PVT, Fig. 5), which were missed in the ROI-based analysis 
using the (whole) PVT region (ARA label; Fig. 4f and Supplementary 
Table 2). Utilizing ACE’s native space cluster validation algorithm 
(Fig. 5 and Supplementary Table 2), we warped the clusters found 
in the paraventricular nucleus into the native space of each subject. 
We found that the number of c-Fos+ cells was significantly higher 
(P< 0.05, Mann–Whitney U-test, two-sided; Supplementary Table 2) 
in the cold-induced group compared with the control group (for 
example, for one cluster the neuronal count in the cold-induced 
group was 23 ± 8 (mean ± s.d.) versus 6 ± 2 for the control). In contrast 

to the ROI-based analysis, our cluster-wise test revealed a signifi-
cant (P < 0.01, group-wise two-way ANOVA; Supplementary Table 2) 
localized increase in c-Fos activation in the ventral midline of the 
nucleus of reuniens and above the third ventricle, corresponding 
to the Xi, and confirming its recently established role in the neural 
orchestration of cold-induced food-seeking behavior and energy 
homeostasis. We also performed connectivity analysis between sig-
nificant clusters, assessing the correlation of their activations (using 
Pearson correlation analysis with permutation and bootstrapping; 
Fig. 4f). We observed significant associations (P < 0.01, correlation 
test with permutation) between clusters in the midline group of the 
dorsal thalamus (including paraventricular nucleus and Xi) and the 
nucleus accumbens—that is, putative regional connectivity, which 
was validated by anterograde viral tracing48 using the Allen con-
nectivity atlas (Fig. 4f).

Mapping of brain-wide local neuronal activation
Locomotive behavior is a complex process that involves coordinated 
neuronal activity in different areas of the brain52. Identification of 
laminar neuronal ensembles that underlie locomotion represents an 
ongoing challenge in neuroscience1. We deployed ACE to map local 
neuronal activation during walking versus homecage using c-Fos (n = 3 
per group). Segmentation maps obtained from ACE (Extended Data 
Fig. 7a,b) were voxelized and warped to 10-µm ARA (Extended Data 
Fig. 7c). Group-wise heatmap intensity analysis (Extended Data Fig. 7d) 
and whole-brain ROI-based comparison showed an increase in c-Fos+ 
density in the primary motor areas (MOp) and secondary motor areas 
in the walking versus homecage group (P < 0.05, Student’s paired t-test, 
two-sided; Extended Data Fig. 7d). We repeated ROI-based analysis at 
depth 6 by merging ARA regions using the atlas’s hierarchical structure 
(Extended Data Fig. 8a,b), a strategy used to enhance sensitivity or 
address lower-resolution data53. We identified major areas with elevated 
c-Fos+ density, including somatomotor areas (secondary motor areas; 
P < 0.05, Student’s paired t-test, two-sided). To test whether ACE could 
detect subregional changes, we used our cluster-wise TFCE algorithm, 
demonstrating layer-specific areas of c-Fos activation in both MOp and 
secondary motor areas (Extended Data Figs. 7e, 8c and 9 and Supple-
mentary Table 3). We identified clusters confined to a single layer in 
somatomotor areas, including (1) MOp layer 6a, where thalamocortical 
projections from the motor thalamus were observed using anterograde 
viral tracing54 and (2) clusters spanning multiple layers within the MOp 
and retrosplenial areas (Extended Data Figs. 8c and 9b). Notably, our 
algorithm (Extended Data Fig. 10) detected localized clusters in the 
lateral hypothalamic area (LHA) and midbrain reticular nucleus that the 
whole-brain and depth 6 ROI-based analyses failed to detect (Extended 
Data Fig. 8a,b). Using our validate clusters algorithm, we found higher 
LHA c-Fos+ cell densities in the walking group versus homecage in the 
detected regions identified by ACE (Extended Data Fig. 7f and Supple-
mentary Fig. 4), highlighting its potential role in movement.

Fig. 4 | Mapping neuronal activity underlying food seeking following cold 
stress. a, Experimental design (n = 4 per group). b, LSFM data were registered 
to the ARA using MIRACL. Left and right panels show autofluorescence data 
overlaid on labels for two subjects in each group. c, Segmentation maps from 
ACE were voxelized to ARA 10-µm resolution; voxelized maps were then warped 
to ARA. Top, one subject per group overlaid on labels; bottom, 3D rendering of 
segmentation maps color coded based on six regions: cerebral cortex (CTX), 
cerebral nuclei (CNU), midbrain (MB), hindbrain (HB), interbrain (IB) and 
cerebellum (CB). d, Segmentation maps were averaged and then subtracted to 
obtain group-wise heatmaps. e, An independent t-test (two-sided) was applied 
between c-Fos+ density per label for ROI-wise analysis (n = 4 per group). Top left, 
trending ROIs (P < 0.1); top right, significant regions (***P > 0.001, **P < 0.01, 
*P < 0.05); bottom, corresponding P values per label. Box plots: box limits, upper 
and lower quartiles; center line, median; whiskers, 1.5× interquartile range. Data 
are presented as mean ± s.d. f, ACE cluster-wise analysis (two-way ANOVA). Top, 

significant clusters within the midline group of the dorsal thalamus (MTN), 
including one cluster close to the Xi region between the paraventricular nucleus 
of the hypothalamus (PVH) and above the third ventricle (left); and multiple 
clusters in the dorsal subregion of the paraventricular nucleus of the thalamus 
(PVT, right). Middle, Pearson correlation (significant correlations only, P < 0.01, 
bottom left triangle) and Euclidean distance (top right triangle) between the 
22 significant clusters, ranked according to activation strength. Arrow indicates 
correlation between one cluster located in the nucleus of reuniens (RE) and 
another in the nucleus accumbens (ACB). Bottom, 3D connectivity maps derived 
from anterograde viral vector (AAV) tracing from an experiment (ID 184158290) 
in the ARA, demonstrating structural connectivity between the RE in MTN and 
ACB. Panels, from left to right, show (1) MTN and ACB, (2) fibers originating from 
RE and projecting into ACB, (3) maximum-intensity projection and (4) a sagittal 
view of the atlas. a was created using BioRender.com.
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Discussion
This work introduces ACE, an automated end-to-end pipeline for map-
ping of neuronal ensembles at the subregional level in teravoxel-scale 
LSFM data.

Our large training dataset and cutting-edge architectures enabled 
ACE models to learn variations in image characteristics of labeled cells 
and imaging artifacts across different regions and subjects, surpass-
ing traditional techniques1,21,55,56 that require parameter tuning. Due 
to the modular nature of the pipeline, ACE is extendable to different 
imaging modalities, including multiphoton microscopy data and 3D 
histology stacks, via fine-tuning modules available within the pipeline. 
Notably, ACE could be used to study connectivity via quantification of 
neuronal soma in upstream regions using retrograde adeno-associated 
virus viruses.

Our cluster-wise methodology, optimized for whole-brain 
LSFM data, comprehensively characterizes activity ‘hotspots’ while 
enhancing sensitivity and statistical power. Although increased FP 
in voxel-wise tests may be addressed through multiple correction 
methods1,10,56 or manual cluster definition and subsequent post hoc 
analyses for validation56, these approaches limit algorithm sensitiv-
ity. Our cluster-wise permutation analysis distinguishes itself for its 
automatic, data-driven cluster definition by leveraging neighborhood 

information, mitigating the need for data-specific expertise and mini-
mizing bias in statistical analysis. Other key advantages to our statisti-
cal pipeline are an advanced native space cluster validation algorithm 
and the ability to account for covariates or perform mixed-effects 
modeling at the cluster level, which has not been implemented in 
existing tools.

When studying food seeking following cold stress, our results 
align with ROI-based semiautomated studies of c-Fos activation46,48. 
However, we uncovered localized changes in neural activity that may 
have gone unnoticed in ROI-based analyses46,48. ROI-based analyses may 
overlook subtle changes because effects, and hence significance, are 
estimated by averaging over the entire region. Voxel-wise methodolo-
gies are overly reliant on the intensity of individual voxels. In contrast, 
our approach provides a more granular understanding of neural activ-
ity patterns, offering enhanced specificity to detect nuanced changes 
in brain activity over small areas.

Gaining circuit-level insights based on specific neuronal popula-
tions is key to unraveling the organizational principles of the motor 
system52,57. Our findings on locomotion-elicited neuronal activity align 
with other studies52, wherein c-Fos density increased in areas such as 
MOp and cuneiform nucleus (CUN). Our previous work, using manual 
parameter tuning and postprocessing of c-Fos+ data, virus tracing 

a    Overview of ACE validate clusters strategy
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Fig. 5 | ACE native space cluster validation algorithm. a, Overview of the 
validation algorithm. Significant clusters identified through ACE’s cluster-wise 
TFCE permutation-based statistical algorithm were binarized and underwent 
a connected component analysis to differentiate each cluster. The processed 
significant clusters were then warped to the native space of each subject using 
registration deformation fields. Using ACE segmentation maps, the number of 
neurons within each cluster was computed. A Mann–Whitney U-test (two-sided) 
was used to compare the number of neurons within each cluster between the 
two groups. The number of neurons per subject for each cluster—in addition to 
their volume, effect size, atlas space P value (obtained via ACE cluster-wise TFCE 
permutation), brain regions they spanned and native space P value (obtained 
via post hoc Mann–Whitney U-test)—are summarized. b, Validation of neuronal 

ensembles detected by ACE cluster-wise analysis in the food-seeking behavior 
experiment. From left to right, axial view of the cluster-wise P value map, overlaid 
on ARA label boundaries at a resolution of 10 µm; zoomed view of significant 
clusters in PVT. The P value map was warped back into the native space of 
randomly selected subjects of the 4 and 30 ° groups using the deformation 
matrices obtained by registration; corresponding axial views from subjects in 
the 4 and 30 °C groups, respectively, and zoomed versions of cluster boundaries 
in PVT, showing higher c-Fos+ activity in the 4 versus 30 °C condition in the 
clusters detected in atlas space. Cluster colors in native space (columns 2 and 3) 
correspond to the manually drawn boundary in atlas space (column 1), for visual 
comparison. NS, not significant.
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and photostimulation, identified a subpopulation of neurons in the 
LHA that may play a role in walking recovery following chronic lat-
eral hemisection spinal cord injuries. Here, we have shown increased 
activity restricted to a subregion localized within the LHA that prob-
ably contributed to the failure of ROI-based analysis to detect LHA 
activation, or remained un-noticed in studies utilizing a more limited 
approach of narrowing down c-Fos analysis to a few key ROIs associated 
with locomotion or combining ROIs into larger areas. This distinctive 
capability enables our pipeline to surpass the limitations of ROI-based 
methods, and facilitates a comprehensive and unbiased exploration 
of the intricate organization of brain networks.

Artficial intelligence-based cartography of ensembles provides 
a quantitative approach to mapping of locally activated regions in an 
atlas-agnostic fashion, which is particularly beneficial in experiments 
exploring brain areas that lack standard or high-resolution digital atlas 
parcellations. The resulting maps can serve as a basis for creating and 
refining high-fidelity functional atlases. Leveraging the statistical 
module and correlation analysis, ACE facilitates the extraction of asso-
ciations among clusters of activations, potentially revealing long-range 
connectivity or functional coherence.

While this study primarily focused on the development and vali-
dation of a pipeline for mapping neuronal activity in LSFM data using 
immediate early genes, our fine-tuning functions allow ACE to adapt 
to other fluorescent reporters. However, in multilabeled datasets in 
which different fluorescent labels represent distinct genotypes (as 
seen in mosaic markers54,58), our fine-tuning algorithms may not pro-
duce optimal results. Although our models were trained on teravoxel 
LSFM, segmentation errors may still occur, biasing statistical results, 
particularly around sparsely mislabeled processes. This phenomenon 
might be, in part, attributed to the use of silver GT data; however, 
manual annotaton of tens of thousands of patches is impractical and 
unscalable. We developed the ensemble of ensembles model to deal 
with potential FP on unseen datasets, increasing segmentation per-
formance. While our statistical approach using TFCE does not require 
predefined, cluster-forming thresholds, it utilizes free parameters. 
Consistent with other studies44,59, fixing these TFCE parameters yields 
robust outcomes for LSFM analyses, because the same parameters 
were applicable to both food-seeking and walking experiments. Nev-
ertheless, the use of suboptimal parameters may lead to an increased 
number of FP or FN44,60.

In summary, ACE offers a streamlined approach for achieving 
high-fidelity, unbiased, 3D mapping of local and laminar neuronal 
ensembles across the entire brain, independent of predefined atlas 
regions. ACE’s DL models are notable for their ability to provide gen-
eralizable segmentation of neuronal somas in teravoxel LSFM data. 
Integration with the MIRACL registration workflow, coupled with 
ACE’s statistical module, establishes a framework for identifying and 
discovering differentially activated localized clusters of ensembles 
in response to experimental manipulations, which has not proved 
feasible to date. This comprehensive tool has the potential to empower 
researchers to study neural activity patterns at an unprecedented 
level, providing valuable insights that might be obscured using tra-
ditional ROI-based or voxel-wise analysis. ACE is applicable across 
a wide range of LSFM datasets and neuroscience paradigms, and is 
made freely available through our MIRACL platform, thus boosting 
our understanding of neural ensembles orchestrating behavior and 
cognition.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
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Methods
Datasets and experiments
Training dataset. Our training data consisted of two LSFM cohorts of 
TRAP2-Ai9 mice (total n = 18): (1) ten animals aged 3–4 months with 
whole-brain data acquired and (2) eight animals aged 2 months with 
data acquired from the left hemisphere. All animal procedures fol-
lowed animal care guidelines approved by the Institutional Animal Care 
and Use Committee at the Scripps Research Institute. These animals 
had an immediate early gene (c-fos) promoter, contributing to the 
activity-dependent expression of inducible recombinase Cre-ERT2. 
The expression of fluorescent protein tdTomato was activated fol-
lowing the injection of 20 mg kg−1 4-hydroxytamoxifen. We used the 
following splits for training and evaluation: the training set consisted 
of ten animals, with three and five used for the validation and test sets, 
respectively.

Unseen dataset 1. We used whole-brain LSFM data from a model of 
spinal cord injury (n = 3 mice) to validate our DL segmentation models. 
Briefly, mice were induced under anesthesia with a mixture of isoflurane 
and O2. Mice were then placed on a heating pad set to 37 °C and main-
tained on 1–3% isoflurane and O2. A midline skin incision was made and 
the T10 lamina identified. A T10 laminectomy was performed, followed 
by left lateral hemisection using either microscissors or a microscal-
pel61. Muscle closure was performed with 6-0 Vicryl followed by skin 
closure with 6-0 Ethilon. Postoperatively, mice were placed on a heat-
ing pad and given subcutaneous fluids as needed. Pain control for 48 h 
postoperatively was also provided via subcutaneous daily administra-
tion of Rimadyl (5 mg/kg−1). Bladders were expressed twice daily until 
spontaneous recovery of bladder function. All hemisection lesions were 
histologically confirmed as adequate. All three mice were adult female 
C57BL/6 mice (≥8 weeks of age at the start of the experiment, 15–30 g 
body weight). All procedures were performed in compliance with the 
Swiss Veterinary Law guidelines and were approved by the Veterinary 
Office of the Canton of Geneva, Switzerland (license no. GE/112/20).

Unseen dataset 2. We used whole-brain LSFM data obtained from 
a male C57BL/6 J mouse ( Jackson Laboratory, strain 000664), aged 
18 months. All animal procedures followed protocols approved by the 
Stanford University Institutional Animal Care and Use Committee, and 
met the guidelines of the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals.

Cold dataset. We analyzed the cold and thermoneutral c-Fos dataset 
from our previous publication48. Briefly, single-housed male wild-type 
(WT) C57BL/J6 mice were exposed to either 4 °C (cold) or 30 °C (ther-
moneutral) for 6 h, with free access to food and water, before perfusion. 
Mouse brains were harvested and fixed in 4% paraformaldehyde (PFA) 
following perfusion.

Walking dataset. We used two groups of adult female C57BL/6 mice 
(≥8 weeks of age at the start of the experiment, 15–30 g body weight, 
n = 3 per group). Briefly, mice were trained to run quadrupedally on a 
treadmill (Robomedica, Inc.) 5 days per week for 2 weeks before per-
fusion. To elicit c-Fos expression, mice ran on the treadmill for 45 min 
at a speed of 9 cm s−1 and were then perfused for 1 h (walking group). 
Mice in their home cages were perfused for homecage group analysis.

Fine-tuning dataset. We used LSFM data from a hemisphere of a mouse 
brain. The clearing-assisted tissue click chemistry method was used for 
in situ fluorescence imaging of drug molecules that bind to specific 
targets. In this method, the covalent monoamine oxidase inhibitor 
pargyline-yne was administered to the mouse at a dose of 10 mg kg−1 
for 1 h by intraperitoneal injection. The drug was labeled with AF647 
dye using a click reaction, allowing us to visualize drug molecules 
within brain tissue.

Tissue clearing and immunolabeling
Training dataset. Two weeks following injection of 4-hydroxy 
tamoxifen, mice were perfused; their brains were collected and under-
went overnight fixation in 4% PFA solution. Fixed brain specimens 
were treated using the SHIELD8 protocol to maintain the integrity of 
protein antigenicity. Thereafter, an active clearing procedure was used 
for tissue CLARITY5. Samples were index matched by adding them to 
EasyIndex medium before imaging with a light-sheet microscope.

Unseen dataset 1 and walking dataset. Adult mice were anesthe-
tized with intraperitoneal pentobarbital (150 mg kg−1), followed by 
intracardiac perfusion of 1× PBS then 4% PFA in PBS. The brain was 
dissected and the sample postfixed in 4% PFA overnight at 4 °C. Brains 
then underwent processing with iDISCO+ (ref. 1). Briefly, samples 
underwent methanol pretreatment by dehydration with a methanol/
H2O series, each for 1 h, as follows: 20, 40, 60, 80 and 100%. Samples 
were then washed with 100% methanol for 1 h and chilled at 4 °C, fol-
lowed by overnight incubation in 66% dichloromethane/33% metha-
nol at room temperature. This was followed by two washes in 100% 
methanol at room temperature, then bleaching in chilled fresh 5% 
H2O2 in methanol overnight at 4 °C. Samples were rehydrated with a 
methanol/H2O series as follows: 80, 60, 40 and 20% then PBS, each 
for 1 h at room temperature. Samples underwent washing for 2× 1 h 
at room temperature in PTx.2 buffer, and were then incubated in 
permeabilization solution for 2 days at 37 °C. Samples were then 
incubated in blocking solution (42 ml of PTx.2, 3 ml of normal donkey 
serum and 5 ml of DMSO, for a total stock volume of 50 ml) for 2 days 
at 37 °C with shaking. This was followed by incubation in a primary 
antibody solution consisting of PBS/0.2% Tween-20 with 10 μg/ml 
heparin (PTwH), 5% DMSO, 3% normal donkey serum and c-Fos (rabbit 
anti-c-Fos, 1:2,000, Synaptic Systems, catalog no. 226003) for 7 days 
at 37 °C with shaking. Next, samples were washed in PTwH for 24 h, 
followed by incubation in a secondary antibody solution consisting 
of PTwH, 3% normal donkey serum and donkey anti-rabbit Alexa 
Fluor 647 (1:500, Thermo Fisher Scientific) for 7 days at 37 °C with 
shaking. Samples were then washed in PTwH for 24 h, followed by 
tissue clearing; final clearing was performed using iDISCO+ (ref. 1). 
Briefly, samples were dehydrated in a methanol/H2O series as follows: 
20, 40, 60, 80 and 100%, each 2× 1 h at room temperature. This was 
followed by a 3-h incubation in 66% dichloromethane/33% methanol 
at room temperature, then incubation in 100% dichloromethane for 
2× 15 min. Samples were then incubated in dibenzyl ether for at least 
24 h before imaging.

Cold dataset. Whole-brain clearing was performed by LifeCanvas Tech-
nologies through a contracted service. To preserve samples’ protein 
architecture, they were fixed with proprietary SHIELD8 solutions from 
LifeCanvas Technologies. Samples were then placed in the SmartBatch+ 
system to carry out active clearing and immunolabeling with rabbit 
anti-c-Fos primary antibody (CST, catalog no. 2250S). Samples were 
index matched by placing them in EasyIndex medium.

Unseen dataset 2. The animal was anesthetized with isoflurane and 
transcardially perfused with PBS, followed by 4% PFA. The whole 
mouse brain was extracted carefully and fixed in 4% PFA for 24 h; the 
PFA-fixed sample was then processed using the SHIELD8 protocol 
(LifeCanvas Technologies). Active clearing of samples was carried 
out using the Smartbatch+ device. Samples were then immunola-
beled using eFLASH62 technology, incorporating the electrotransport 
and SWITCH63 methods. Samples were labeled with a recombinant 
anti-c-Fos antibody (abcam, catalog no. ab214672) and then fluores-
cently conjugated with Alexa Fluor 647 (Invitrogen, catalog no. A-31573) 
at a primary:secondary molar ratio of 1.0:1.5. Following labeling, sam-
ples were index matched (n = 1.52) by incubation in EasyIndex medium 
(LifeCanvas Technologies).
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LSFM imaging
Training dataset. Samples were index matched with EasyIndex medium 
and imaged on a light-sheet microscope (SmartSPIM) with a ×4 objec-
tive lens. For eight subjects, data were acquired from a hemisphere 
while, for the remainder, data were acquired from the whole brain. 
Nominal lateral spatial resolution was 3.5 µm, and step size was set to 
4 µm in the z-direction, with 561-nm excitation and an emission filter 
of 600/52 nm.

Unseen dataset 1 and walking dataset. Imaging of whole brains was 
performed using a CLARITY-optimized light-sheet microscope, as 
previously described64, with a pixel resolution of 1.4 × 1.4 µm2 in the x 
and y dimensions and a z-step of 5 µm, respectively, using the ×4/0.28 
(numerical aperture) objective, which is suitable for resolving cell 
nuclei labeled by c-Fos. Using a custom-made quartz cuvette filled with 
dibenzyl ether, whole brains were imaged. Two channels were imaged: 
one with autofluorescence (auto channel, 488 nm) to demonstrate 
anatomy, and a second demonstrating c-Fos labeling (cell channel, 
647 nm). All raw images were acquired as 16-bit TIFF files and were 
stitched together using TeraStitcher65.

Cold dataset. Whole-brain imaging and automated analysis were 
performed by LifeCanvas Technologies through a contracted service. 
Samples were index matched by placing them in EasyIndex medium, 
and imaged on a light-sheet microscope (SmartSPIM) with a ×4 objec-
tive lens. Nominal lateral spatial resolution was 1.75 µm, and step size 
was set to 4 µm in the z-direction.

Unseen dataset 2. The index-matched (n = 1.52) whole-brain sample 
was imaged using a SmartSPIM light-sheet microscope. The sample was 
imaged with a ×4 objective lens. Samples were imaged with a 642-nm 
laser. Nominal lateral spatial resolution was 1.8 µm, and step size was 
set to 4 µm in the z-direction

GT label generation
Our annotation strategy for generating silver standard GT labels of 
neuronal somas comprised three stages: MIRACL10 segmentation, 
Ilastik pixel classification and postprocessing.

MIRACL segmentation. To create GT labels, we first used the MIRACL10 
segmentation workflow that incorporates image-processing tools 
implemented as FIJI/ImageJ macros38. The workflow includes a 3D 
watershed marker-controlled algorithm and a postprocessing 3D 
shape filter to omit FP. This resulted in binary GT labels across the entire 
dataset with a low FP rate and relatively higher FN rate.

Ilastik pixel classification. To improve MIRACL-generated GT labels 
we used Ilastik22, which performs pixel classification using image filters 
(as input features) and a random forest (RF) algorithm (as a classifier) 
through a user-friendly interface. Filters include pixel color and inten-
sity descriptors, edginess and texture in 3D and at different scales. 
The RF combines hundreds of decision trees and trains each one on a 
slightly different set of features. The final predictions of RF are made by 
averaging the predictions of each tree. We used 37 three-dimensional 
filters and an RF classifier with 100 trees. To train the RF classifier, we 
imported MIRACL’s segmentation outputs as silver input annotations 
(initialization) to Ilastik (that is, in lieu of manual annotations). To 
address the prohibitive speed and memory requirements of the RF 
algorithm, we trained it on image patches (5123 voxels). For each brain, 
three 5123 patches from different depths were randomly selected. The 
RF model was trained several times by providing feedback (that is, by 
correcting the results with expert annotation and modifying the labels 
to achieve optimal results). Ilastik output did not correctly detect the 
boundaries of neuronal soma, and frequently overestimated their 
spatial extent.

Postprocessing. To further reduce the number of FP voxels in GT 
labels, we applied a 3D shape filter using the ImageJ shape filter plugin66 
on Ilastik-generated labels. To solve the problem of volume overesti-
mation, we applied a 3D erosion filter with a sphere-like kernel (radius 
of one voxel) to the GT labels. The final whole-brain GT labels were 
visually quality checked in three 5123 patches per brain, by two raters; 
specifically, the raters were asked to randomly select and validate one 
5123 patch in the cerebrum, brain stem and cerebellum.

Deep neural network architectures
ACE’s segmentation module consisted of 3D ViT-based and CNN-based 
(U-Net) architectures (Extended Data Fig. 1).

UNETR. The popular U-Net architecture has powerful representation 
learning capabilities, and generates more accurate dense-segmentation 
masks than do other CNN architectures (such as Mask R-CNN), thanks 
to the preservation of spatial information26,67. However, fully convolu-
tional models are limited in their ability to learn long-range dependen-
cies, resulting in potentially suboptimal segmentation of objects in 
large volumes, including neuronal cell bodies of varying shape and size 
(for example, in different regions of the brain). To address this issue, a 
ViT architecture (UNETR) has been proposed in which the encoder path 
of a U-Net is replaced by a transformer to learn contextual information 
from the embedded input patches68. This motivated us to develop and 
deploy optimized UNETR-based segmentation models with residual 
blocks and dropout layers to improve the robustness and generalizabil-
ity of previous pipelines. Specifically, in UNETR68 the encoder was 
replaced with a stack of 12 transformer blocks, operating on a 1D 
sequence (163 = 4,096) embedding of the input (one channel 3D image 
patch, 963 ≃ 0.27 × 0.27 × 0.48 mm3). Subsequently, a linear layer pro-
jected the vectors into a lower dimensional embedding space (embed-
ding size K = 768), which remained constant throughout the 
transformer layers. A 1D learnable positional embedding was added 
to the projected patch sequence to preserve spatial information. This 
embedded patch sequence, with the dimension of N × K (N is the 
sequence length and N = H/16 × W/16 × D/16 × K and H, W and D are the 
3D input's height, width and depth), was passed as input to the stack 
of transformer blocks. Each transformer block consisted of multihead 
attention and multilayer perceptron layers. All multihead attention 
modules consisted of multiple self-attention heads, where each 
self-attention block learned mapping in the patch sequence in parallel. 
We extracted learned sequence representations at four different depths 
of the transformer stack and reshaped each back to H

16
× W
16
× D
16
×K . The 

embedded sequence vectors then underwent five different encoder 
blocks with consecutive convolutional layers to achieve supervision 
at different depths (Extended Data Fig. 1).

The encoder was connected to a decoder via skip connections at 
multiple resolutions, to predict segmentation outputs. We developed 
an optimized UNETR68 architecture with some modifications, includ-
ing the addition of dropout layers in all blocks and residual units69 in 
convolution blocks in the encoder, as a regularization strategy to avoid 
overfitting and vanishing gradient problems. For a given 3D input cube, 
the segmentation models generated a 3D volume containing voxel-wise 
probabilities of neuronal cell bodies (0 < P < 1). Prediction maps were 
binarized using either a default (0.5) or user-fed threshold to generate 
a map representing whether a voxel belongs to a neuron.

U-Net. We similarly implemented an optimized version of the seminal 
U-Net70–72 architecture, with some modifications, based on our previ-
ous work40. The U-Net architecture consists of contracting (encoder) 
and expanding (decoder) paths. The encoder is based on 3D convo-
lution and pooling operators; it takes an image patch as input and 
generates feature maps at various scales, creating a multilevel, mul-
tiresolution feature representation. Meanwhile, the decoder with 
up-convolution operators leverages these feature representations to 
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classify all pixels at the original image resolution. The decoder assem-
bles the segmentation, starting with low-resolution feature maps 
that capture large-scale structures, and gradually refines the output 
to include fine-scale details. In our U-Net architecture, the standard 
building blocks have been replaced with a residual block69. In addition, 
parametric rectifying linear units73 have been deployed to provide dif-
ferent parameterized nonlinearity for different layers. We converted 
all 2D operations, including convolution and max-pooling layers, into 
3D and used batch normalization rather than instance normaliza-
tion to achieve a stable distribution of activation values throughout 
the training, and to accelerate training74. A dropout layer was added 
between all convolution blocks in the architecture as a regularizer, 
to avoid overfitting36,75. Except for the first residual units, all convolu-
tions and transpose convolutions had a stride of 2 for downsampling 
and upsampling, respectively. The first residual unit used a stride of 1, 
which has been shown to increase performance by not immediately 
downsampling the input image patch70.

All brain light-sheet data are first divided into smaller image 
patches. Deploying ACE segmentation models, binary and uncertainty 
maps are obtained per image patch; the pipeline then automatically 
stitches all the maps to create whole-brain segmentation and uncer-
tainty maps that match the input data.

Loss function
The DSC is a widely used metric that measures similarity between two 
labels. The class average of the DSC can be computed as

D(GT,P) = 2
N

N
∑
n=1

∑K
k=1 GTk,nPk,n

∑K
k=1 GT

2
k +∑K

k=1 P
2
k

,

where N is the number of classes, K is the number of voxels and GTk,n and 
Pk,n denote GT and output prediction, respectively, for class n at voxel k.

Cross-entropy (CE) measures the difference between two prob-
ability distributions over the same sets of underlying events, and was 
computed as

CE(GT,P) = 1
K

K
∑
k=1

N
∑
n=1
GTk,n log(Pk,n).

In regard to ACE DL architecture, we used an equally weighted 
Dice–cross-entropy loss, which is a combination of Dice loss and 
cross-entropy loss functions; this was computed in a voxel-wise man-
ner as

L(GT,P) = D(GT,P) + CE(GT,P).

Model training
To train our DL models, we used a total of 36,480 unique input patches 
(963 voxels), not accounting for data augmentation. To address the 
issue of class imbalance in our dataset (the majority of voxels repre-
senting background), patches containing only background—or a small 
number of foreground voxels (<100,000)—were filtered out from the 
5123 image patches generated by the annotation strategy. Hence, for 
the UNETR model with an input size of 963, we used 15,200, 9,120 and 
12,160 unique input patches (not accounting for data augmentation) 
for training, validation and testing, respectively (n = 30,400 patches 
with augmentation for training alone); for the U-Net model with an 
input size of 1283, we used 7,600, 3,840 and 5,120 patches, respectively.

For hyperparameter tuning, we used a Bayesian optimization 
approach via the Adaptive Experimentation Platform (https://ax.dev/). 
The following hyperparameters were optimized during training: input 
image size, encoder and decoder depth, kernel size, learning rate, 
batch size, kernel size and loss function. For the UNETR architecture, 
which in total had 92.8 million parameters, the best model based on 
DSC performance on the validation set had the following parameters: 

12 attention heads, feature size of 16, input patch size of 963 voxels and 
batch size of 24. The U-Net architecture, which in total had 4.8 million 
parameters, had the following parameters: a five-layer encoder with 
an initial channel size of 16 and kernel size of 3 × 3 × 3, input patch size 
of 1283 voxels and batch size of 27.

The UNETR and U-Net models were trained for 700 and 580 epochs, 
respectively. To avoid overfitting, early stopping was set to 50 epochs 
where performance (DSC) on the validation dataset did not improve. 
The Adam optimizer76 was used with an initial learning rate of 0.0001.

Implementation
All DL models were implemented in Python using the Medical Open Net-
work for Artificial Intelligence framework (MONAI77), and the PyTorch 
machine learning framework78. All training was performed on the 
Cedar and Narval cluster provided by the Digital Research Alliance 
of Canada (www.alliancecan.ca), using NVIDIA V100 Volta graphic 
processing units with 32 GB of memory, and A100 graphic processing 
units with 40 GB of memory. Registration of our data to ARA was per-
formed with our in-house, open-source MIRACL10 software. MIRACL is 
fully containerized and available as Docker and Singularity/Apptainer 
images (https://miracl.readthedocs.io/). For results visualization, 
we used a variety of open-source software applications and Python 
libraries, including matplotlib, seaborn, Brainrender79, Fiji/ImageJ38, 
itk-SNAP80 and Freeview (http://surfer.nmr.mgh.harvard.edu/). We 
also used BioRender for figure creation in this manuscript (https://
www.biorender.com/).

Data augmentation
To increase the generalizability of the DL model and model distribution 
shifts in LSFM data, the training set images were randomly augmented 
in real time at every epoch. Supplementary Fig. 3 shows all the data aug-
mentation transforms used, namely: affine transformations, contrast 
adjustment, histogram shift, random axis flipping and different noise 
distributions such as salt and pepper, and Gaussian. These transforms 
were selected because they are representative of distortions that occur 
during LSFM imaging. Briefly, a range (0, 1) of scaling was applied to 
each 5123-image patch, based on the intensity distribution of that patch. 
The intensity of each 5123-image patch was scaled from the [0.05, 99.5] 
percentile to [0, 1], where 0.05 and 99.95 are the intensity values at the 
corresponding percentiles of the image patch. Subsequently, each data 
augmentation transform was randomly applied (with a probability of 
P = 0.5) to the 5123-image patch at each epoch. The parameters of each 
data augmentation were also randomly selected at each epoch from 
the predetermined range of values.

Voxel-wise uncertainty map
Epistemic uncertainty, as described previously35, is rooted in a lack of 
knowledge about model parameters and structure, rather than stemming 
from inherent variability in the observed data; this type of uncertainty is 
often referred to as model uncertainty35. To estimate the models’ uncer-
tainty and confidence in predictions, we used the Monte Carlo dropout 
approach. During training, dropout layers (with a probability of P = 0.2) 
were utilized as a regularization technique. It has been shown that turning 
on dropout layers (randomly switching neurons off) in inference mode 
can be interpreted as a Bayesian approximation of the Gaussian process36. 
At test time, when the dropout layers are turned on, each forward pass 
yields a stochastically different prediction as a sample from the approxi-
mate parametric posterior distribution (P( y|X ))37. This technique has 
been shown to provide useful insights into the model’s uncertainty, by 
computing the variance of numerous predictions (Y = { y1, y2,… , yN } ). 
Voxel-wise uncertainty (variance) can thus be defined7:

Voxel-wise uncertainty ≃ 1
N

N
∑
n=1

y2n − ( 1N

N
∑
n=1

yn)
2
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The resulting voxel-wise uncertainty map provides a measure 
of variation in predictions of slightly different models for the same 
data, which can be particularly useful in identifying regions of high 
uncertainty.

Ensemble of ensembles
Each model’s output was obtained by averaging the probability maps 
of 50 models (Y = { y1, y2,… , y50} ) using the Monte Carlo dropout 
technique:

̂YEnsembles =
1
50

50
∑
i=1
yi

Subsequently, to combine the prediction maps of both models, 
a final mapping of neurons was generated using an ensemble of both 
models (ensemble of ensembles):

̂YEnsemble of ensembles =
1
2 (

̂YEnsemblesU−Net + ̂YEnsemblesUNETR ) .

Model evaluation
Evaluation metrics. To evaluate the performance of the segmentation 
models, several volume- and shape-based metrics were used, including 
DSC, recall, precision, F1 score and HD95. We used the metrics derived 
from the resulting confusion matrix and associated true-positive (TP), 
FP and FN values. Each neuronal soma was defined as a 3D connected 
component. Given this definition, TP was defined as the number of 
correctly detected neurons following comparison of GT with predic-
tion P. Sensitivity or recall measures the proportion of TP relative to 
the number of individual neurons delineated in GT, and was defined as

Recall = TP
TP + FN .

Precision measures the proportion of TP against all positive pre-
dictions, and was defined as

Precision = TP
TP + FP .

While recall is useful to gauge the number of FN pixels in an image, 
precision is useful to evaluate the number of FP pixels in a prediction.

The F1 score combines precision and recall, and is often used to 
measure the overall performance of a model. The F1 score measures 
the number of wrongly detected neurons in P:

F 1 score = 2 × Precision × Recall
Precision + Recall

.

DSC measures the number of elements common to GT and P data-
sets, divided by the sum of the elements in each dataset, and is defined 
as

DSC(GT,P) = 2 × |GT ∩ P|
|GT| + |P| .

Hausdorff distance is a mathematical measurement of the ‘close-
ness’ of two sets of points that are subsets of a metric space; it is the 
greatest of all distances from a point in one set to the closest point in 
the other. We used the 95th percentile of Hausdorff distance rather 
than the maximum results, to provide a more robust and representative 
measure of the segmentation’s performance in image analysis tasks. 
Given two sets of points, X and Y, Hausdorff distance between these 
two sets was defined as

HD (X,Y ) = max{supx∈Xinfy∈Yd (x, y) , supy∈Yinfx∈Xd (x, y)}.

Simulation distribution shift. We deployed our recently published 
ROOD-MR platform (https://github.com/AICONSlab/roodmri) on 
our test data, which includes methods for simulating distribution 
shifts in datasets at varying severity levels using imaging transforms 
and generating benchmarking segmentation algorithms based on 
robustness to distribution shifts and corruptions. We employed three 
commonly used transforms that disrupt low-level spatial information 
(Gaussian noise, smoothing and sharpening). We added Gaussian noise 
to the image with zero mean and 0 < σ < 1. For sharpening, we used a 
Gaussian blur filter with a zero mean and 0.05 < σ < 2. We also applied 
a Gaussian smooth filter to the input data based on the specified sigma 
(σ) parameter (0.05 < σ < 2).

Comparison against Ilastik. We used the pixel classification mod-
ule in Ilastik and trained a RF classifier using all training subjects 
(18 whole-brain LSFM images). We used 37 three-dimensional filters 
and an RF classifier with 100 trees. To train the RF model, we randomly 
selected three 5123-voxel image patches from each subject and applied 
the same scale-intensity transform (Supplementary Fig. 3) used in the 
DL training approach, to provide a fair comparison. Next, we dedicated 
around 2 h per image patch on a personal computer (with 24 central 
processing unit cores and 512 GB memory) for annotating neurons 
and providing feedback to the RF algorithm, to achieve optimal results. 
Finally, the trained RF classifier was used to generate segmentation 
maps for all test and unseen datasets. For quantitativel evaluation of 
ACE robustness across different regions of the brain, we registered the 
test set to ARA 10 µm, warped ARA labels back to their native space and 
integrated warped labels with segmentation maps.

Comparison against Cellfinder. We used Cellfinder to generate 
whole-brain detection maps of neuronal cell bodies. We first used 
their pretrained Resnet model to generate detection maps on both 
test and unseen datasets. We deployed the Cellfinder command with 
–no-registration flag to detect and classify cells to either background 
or neuron. For retraining Cellfinder, we randomly selected two sub-
jects from the test set and generated ~6,100 (~3,200 cells and ~2,900 
non-cells) annotated cell candidates for the first subject and ~9,000 
(~4,300 cells and ~4,700 non-cells) for the second subject, using their 
Napari-cellfinder plugin. The training data were then used to retrain 
the Resnet model by incorporating the function cellfinder_train and 
the flag –continue-training, keeping other options as default. Lastly, 
the best retrained model based on validation error was used to gener-
ate whole-brain detection maps. For quantitative comparison against 
Cellfinder, we transformed ACE segmentation maps into detection 
maps by finding the center of mass of each neuron in 3D.

Voxelization, registration and heatmap generation
Voxelization. To synthesize and correlate our segmentation results 
within the ARA space, a voxelization process was used. Voxeliza-
tion entailed the transformation of high-resolution segmentation 
outcomes into a 10-μm resolution space while minimizing loss of 
information. Segmentation volumes underwent convolution with a 
spherical kernel featuring a radius of ~5 μm—a dimension that aligns 
with the downsampling factor and ARA space. Subsequently, within 
each convolved sphere, the average count of labels (cells or nuclei) 
was computed, resulting in a voxelized map. This 3D voxelized repre-
sentation, which was generated using Python’s skimage library with 
parallel computation facilitated by the joblib and multiprocessing 
libraries, allowed for efficient feature extraction summarized by ARA 
regions/labels.

Registration. To bring whole-brain tissue-cleared microscopy images, 
segmentation maps and a reference atlas (ARA) into spatial corre-
spondence, we used our open-source MIRACL10 platform. MIRACL 
contains specialized workflows that are optimized for multimodal 
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registration of cleared data, based on tools from ANTs81 (http://
stnava.github.io/ANTs/). Registration workflows include a cascade 
of image-preprocessing techniques, such as denoising and intensity 
correction, as well as an intensity-based alignment40. The alignment 
process consists of two main steps. In the first of these, an initial align-
ment is carried out using the antsAffineInitializer tool from ANTs81; 
the second step consists of an intensity-based, multistage, b-spline 
registration algorithm encompassing a rigid six degrees of freedom, 
an affine (12 degrees of freedom) and a nonrigid (deformable) b-spline 
symmetric normalization stage. The rigid and affine stages are based on 
maximization of the mutual information similarity metric between ARA 
and microscopy data, while the deformable stage uses cross-correlation 
as the similarity metric. The resulting transformations perform bidi-
rectional warping of images to and from tissue-cleared microscopy 
native space and ARA space.

Heatmap generation. Voxelized segmentation maps were warped to 
the ARA space (10-μm resolution) using a deformation field obtained 
through registration. Subsequently, a smoothing Gaussian filter was 
applied with a sigma of four pixels. Difference heatmaps were then 
computed by subtracting the average of voxelized and warped seg-
mentation maps in each group.

ROI-based analysis
We passed the voxelized and warped segmentation map at a resolu-
tion of 10 μm, in addition to the registered labels for each subject, to 
MIRACL’s function seg feat_extract, to extract the density of cells per 
ARA region for both the whole brain and labels grouped to a maxi-
mum atlas ontology depth of 6. The ARA labels are structured into 
descending depth, from coarse- to fine-grained groupings of brain 
regions, with MIRACL’s function combining labels at a higher depth 
by their parent labels. The resulting density results were then passed 
to MIRACL’s function group_unpaired_ttest, which applied Student’s 
paired t-test (two-sided) per label with an alpha value of 0.05 for both 
whole-brain regions and depth 6 regions, and both applications. This 
function creates bar plots that compare the density of cells per ARA 
label, including both significant ROIs and trending regions (P < 0.1). 
Lastly, MIRACL’s function proj_stats_on_atlas was used to project the 
resulting P values on the atlas regions.

Cluster-wise, permutation-based statistical algorithm and 
analysis
We developed a cluster-wise, permutation-based statistical algorithm 
with TFCE. The statistical pipeline consisted of three main steps, and 
is based on the implementation of the function spatio_temporal_clus-
ter_test from MNE (https://mne.tools/stable/index.html). In the first 
step, a voxel-wise statistical test using two-way ANOVA was performed 
between two groups of study. To incorporate the correlation structure 
of the data and correct for multiple comparisons, we considered a 
null hypothesis regarding the sizes of clusters in our data rather than 
focusing on individual voxels. Thus, in the second step, clusters were 
defined using adjacency structure in our data (connecting each voxel 
to its neighbors in 3D) and the TFCE technique44, which addresses the 
challenge of selecting a threshold for both cluster-forming and smooth-
ing problems. We optimized the adjacency structure of the data using 
a priori knowledge from group-wise heatmaps to boost the sensitivity 
of the statistical results in teravoxel LSFM data, due to the exceedingly 
large number of voxels (and hence the number of statistical tests). 
Specifically, the adjacency matrix was masked using a thresholded 
(90% percentile) and then dilated version of the group-difference 
heatmap, allowing the algorithm to focus only on putative clusters. 
TFCE transforms a raw statistical image into a map that reflects the 
strength of local spatial clustering. The new value assigned to each 
voxel is determined by aggregating the scores of all supporting sections 
below it. The score of each section is computed by taking the height of 

the section (raised to a power H) and multiplying it by the extent of the 
section (raised to a power E):

TFCE(v) = ∫
hv

h=h0
e(h)EhHdh,

where h0 is typically around zero and hv is a statistic value correspond-
ing to voxel v. In practice, this integral is estimated as a sum, using 
finite step sizes (dh). The exponents of the powers (E and H) are free 
parameters, but fixing these values has been shown to yield robust 
outcomes justified by theory and empirical results44,59. Increasing H 
gives more weight to clusters with higher effect size, while increasing 
E gives more weight to larger clusters44. In our analysis we chose E = 2, 
H = 0.5, h0 = 0 and a step size of 5 to mitigate the potential impact of FP 
in LSFM data, and fixed the values for both applications, walking and 
food-seeking datasets. The application of TFCE transforms results in 
a weighted sum of local cluster-like signals, eliminating the need for a 
fixed threshold to define clusters while keeping the local minima and 
maxima at the same spot. The size of each cluster was measured by the 
sum of voxels’ F-values within the cluster. In the final step, a nonpara-
metric permutation test (N = 1,000) was applied and new cluster-wise 
F-statistics were obtained. In each permutation, the same procedure 
was applied to define clusters and compute their statistics, with the 
largest cluster size being retained. We also used the stepdown P value 
procedure to boost sensitivity while controlling for family-wise error 
rate82. To test the significance of clusters in our actual data, a null dis-
tribution was obtained via permutations. Cluster sizes observed in the 
actual data are compared with those in the null distribution to calculate 
P values, which can then be compared with a predetermined threshold 
(such as alpha <0.05 or false-detection rate-corrected P values) to test 
for significance. Next, we applied connected component analysis on 
the resulting P value image to summarize significant clusters. Finally, 
by integration of connected component analysis results, ARA labels 
and density heatmaps, we extracted the center, mean effect size and 
volume of each cluster, along with the percentage volume within each 
brain region spanned.

Cluster-wise connectivity analysis
The significant clusters identified through ACE’s cluster-wise, 
permutation-based statistical algorithm were systematically ranked 
based on their statistical effect size and volume. To streamline the 
subsequent connectivity analysis, we selected the top 20 clusters from 
this ordered list. Integrating each cluster’s location with voxelized and 
warped segmentation maps, we calculated the mean intensity of each 
cluster per subject in both treated and control groups. Subsequently 
we employed a Pearson correlation test, utilizing the function pearsonr 
from the scipy library, between the mean intensity values of each pair 
of clusters. For each correlation coefficient, we established an 80% 
confidence interval using the bias-corrected and accelerated boot-
strap method with 10,000 iterations, and selected the lower bound. 
Finally, the P value associated with each correlation test was deter-
mined through permutation testing, involving 10,000 permutations. 
For visualization, significant correlation coefficients (P < 0.01) were 
plotted alongside a heatmap illustrating Euclidean distance between 
each pair of cluster centroids.

Native space cluster validation
The significant clusters identified through ACE’s cluster-wise TFCE 
permutation-based statistical algorithm were binarized using σ = 0.05 
(or a user-fed threshold). Next, binarized clusters underwent a dilation 
(one iteration, using binary_dilation from the scipy.ndimage pack-
age) and a connected component analysis (using label function from 
the scipy.ndimage package) to differentiate each cluster. Processed 
significant clusters were then warped to the native space of each sub-
ject using registration transformations and the function miracl lbls 
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warp_clar. Utilizing ACE segmentation maps, the number of neurons 
within each cluster was computed by identifying the coordinates of 
each neuron. A two-sided Mann–Whitney U-test (from the scipy.stats 
package) was deployed to compare the number of neurons within each 
cluster across two groups. The numbers of neurons per subject for each 
cluster—in addition to their volume, atlas space P value and cluster-wise 
statistics (obtained by ACE cluster-wise TFCE permutation), percentage 
volume within each overlapping brain region and native space P value 
(obtained by post hoc Mann–Whitney U-test)—are summarized in a 
comma-separated values file.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
A subset of the datasets (whole-brain LSFM data and voxelized and 
warped segmentation maps) generated and analyzed during the cur-
rent study are available at https://miracl.readthedocs.io/, within an ACE 
workflow tutorial (https://miracl.readthedocs.io/en/latest/tutorials/
workflows/ace_flow/ace_flow.html), as examples with the pipeline. All 
required files, including the ARA, labels and datasets, are included in 
the MIRACL containers with documentation and tutorials.

Code availability
We have made our ACE pipeline publicly available to the research 
community as an end-to-end module within our open-source MIRACL 
platform (under license no. GPL-3.0) at https://miracl.readthedocs.
io/, along with documentation, tutorials, example data, graphical 
user interfaces and visualization functions. ACE is implemented in a 
modular fashion with many well-documented core modules (func-
tions) that can be executed as command-line tools or accessed through 
MIRACL graphical user interfaces (Supplementary Fig. 5), including 
segmentation (trained DL models with easy-to-use, fine-tuning scripts), 
voxelization, registration and statistical analysis.
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Extended Data Fig. 1 | ACE’s segmentation module. A 3D vision transformer 
(UNETR) with multi-head attention was used as our backbone architecture. Our 
optimized UNETR model receives an 963 image patch and generates a probability 
map of the same size. ACE also consists of a convolutional neural network-based 
3D U-Net architecture, operating on 1283 image patches. The probability map of 

each model is passed to a Monte-Carlo dropout block to estimate model 
confidence and generate an ensemble of 50 models, improving the accuracy of 
the overall prediction. To increase the generalizability of the ACE segmentation 
module, the user can deploy another layer of ensembling by combining both 
UNETR and U-Net outputs. Created in BioRender.com.

http://www.nature.com/naturemethods
http://BioRender.com


Nature Methods

Article https://doi.org/10.1038/s41592-024-02583-1

Extended Data Fig. 2 | Light-sheet fluorescence microscopy (LSFM) datasets 
used to develop and evaluate ACE’s deep learning models. Our training data 
consists of 18 animals with 10 acquired from the whole brain and eight animals 
with data acquired from the left hemisphere. We used whole-brain LSFM datasets 
(see Methods-Datasets and Experiments) from different studies to evaluate ACE 
deep learning models. Panel a shows axial views of an example subject from each 

group. Panel b shows the intensity histogram of a randomly selected image patch 
for each subject shown in panel a. c. Image characteristics of each dataset. Our 
unseen datasets were obtained using a different experimental setup including a 
different microscope, rodent model, fluorescence proteins, and tissue-clearing 
technique. See Method–Datasets and Experiments for more details.
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Extended Data Fig. 3 | ROI-wise evaluation of ACE segmentation module in 
segmenting neuronal cell bodies across the whole brain. Average precision (a) 
and recall (b) obtained between ACE outputs and ground truth per ARA label (c) 
and compared against Ilastik. In total N: 1600 unique patches with 963≃0.35 mm3

; minimum 10 and maximum 155 unique patches/region. Box plots: box limits, 
upper and lower quartiles; center line, median; whiskers, 1.5× interquartile range; 
points, outliers. Mann-Whitney U test (two-sided), ***P < 0.001, **P < 0.01, and 
***P < 0.05.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | Evaluation of ACE segmentation models’ robustness to 
simulating distribution shifts. The x-axis of the first row in panels a-c shows the 
severity of each transform. The second row in each panel demonstrates the effect 
of each transform on the input image. a. Adding Gaussian noise to the image with 

zero mean and 0 < σ<1. b. Sharpening the image using the Gaussian Blur filter 
with zero mean and 0.05 <σ  < 2. c. Apply Gaussian smooth to the input data based 
on the specified parameter (0.05 <σ  < 2).

http://www.nature.com/naturemethods
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Extended Data Fig. 5 | Performance of ACE in brain-wide segmentation of 
neuronal cell bodies in unseen dataset 2. a. An axial view from a random depth 
of whole-brain c-Fos expression with an enlarged view of a cortical patch plus its 
associated ground truth data in red (b). c. The segmentation maps (blue) 
predicted by the ACE UNETR ensemble for the enlarged subregion are shown and 
compared with the Ilastik output for the same patch (blue). d and e. Quantitative 

evaluation of the segmentation accuracy of ACE vs. Ilastik (d) and detection 
accuracy of ACE vs. Cellfinder (e) in terms of average Dice coefficient, precision, 
recall, 95% Hausdorff distance, and F1 score on (N: 152 unique patches of 
963≃0.17×0.17×0.38 mm3). Box plots: box limits, upper and lower quartiles; 
center line, median; whiskers, 1.5× interquartile range; points, outliers. 
Mann-Whitney U test (two-sided), ***p < 0.0001.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | Fine-tuning ACE segmentation models to segment 
other cellular markers with different morphological features compared 
to c-Fos. Panel a shows a randomly selected image patch from training data 
vs. a new unseen dataset with an enlarged view of several cells to highlight the 
different morphological appearance. b. An axial view from a random depth of 
the whole brain of the new dataset. c. two randomly selected image patches 
(with the size of 512x512x512 voxels); patch number 1 was used to fine-tune 

the ACE UNETR model while patch number 2 was used to evaluate the model 
performance. d. Qualitative ACE performance before and after fine-tuning. e. 
Quantitative performance of ACE deep learning models on N: 152 unique patches 
of 963≃0.17×0.17×0.19 mm3. Box plots: box limits, upper and lower quartiles; 
center line, median; whiskers, 1.5× interquartile range; points, outliers. Mann-
Whitney U test (two-sided), ***p < 0.0001.

http://www.nature.com/naturemethods
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Brain-wide identification of local neuronal activity 
changes underlying walking. a. The overview of experimental design to analyze 
c-Fos+ cell distribution in whole-brain LSFM data during walking (n = 3/group). 
b. Automated segmentation of c-Fos+ cell distribution using ACE’s segmentation 
module. Panels show a 3D rendering of a maximum intensity projection of raw 
data from the walking group, ACE output (blue), and raw data overlaid on ACE’s 
output. c. Segmentation maps were voxelized to the ARA 10um resolution. 
Subsequently, the voxelized segmentation maps were warped to ARA space. Left 
panels show an example of a downsampled subject overlaid on ARA labels after 
registration from each group. Right panels show a 3D rendering of voxelized and 
warped segmentation maps color-coded based on 6 ARA regions: CTX, Cerebral 
Cortex; CNU, Cerebral Nuclei; MB, Midbrain; HB, Hindbrain; IB, Interbrain; and 
CB, Cerebellum. d. To identify neural activity hotspots, group-wise heatmaps 
of neuronal density were obtained by subtracting the average of the voxelized 

and warped segmentation maps in each group. Panels show two different 
coronal views as an example. e. Result of ACE cluster-wise threshold-free cluster 
enhancement permutation analysis, using a group-wise two-way ANOVA. The 
panels demonstrate the resulting p-value map representing the clusters showing 
significant differences between groups and corresponding to the coronal 
sections in d. Zoomed views show two significant clusters in MOp (left panel) and 
Retrosplenial area (right panel). See Supplementary Table 3 for strength (effect 
size), volume, and brain regions each cluster spanned. f. Lateral Hypothalamic 
Area (LHA) label was warped back into native space using the deformation matrix 
obtained by registration. Left and right panels show two example subjects from 
the walking and homecage groups respectively with a zoomed version of LHA, 
showcasing higher c-Fos+ activity in the walking vs. homecage condition. Section 
a is created in BioRender.com.

http://www.nature.com/naturemethods
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Extended Data Fig. 8 | ACE statistical analysis for unraveling neuronal 
ensembles controlling walking. a. ARA labels at the level of whole brain vs. 
depth 6 based on the ARA ontology (hierarchy). b. Group-wise heatmaps of 
neuronal density were obtained by subtracting the average of the voxelized 
and warped segmentation maps in each group. Panels show different coronal, 
sagittal, and axial views as an example. c. Using voxelized and warped 
segmentation maps and ARA labels at 10 µm, we obtained neuronal density per 
brain region at both whole-brain and depth 6 levels. An independent student 
t-test (two-sided) was then applied between c-Fos+ cell density per ARA label to 
perform a whole-brain and depth 6 level ROI-wise statistical test (N: 3/group) 
Data are presented as mean values ± standard deviation. The upper panel shows 
the results of the whole-brain analysis with a zoomed version on the right, 

demonstrating the most significant ROIs. The lower panel shows the results of 
the depth 6 analysis. The ARA labels are sorted based on p value (***p < 0.001, 
**p < 0.01, and *p < 0.05). d. ACE cluster-wise analysis with group-wise two-
way ANOVA documented several sub-regional and laminar neuronal clusters 
differentially activated during walking. Left panel shows a coronal view of a 
cluster-wise p-value map with two zoomed views of significant clusters spanning 
in the primary and secondary motor area layers 6, 6a and 6b and the primary 
somatosensory area layers 2/3 and 4. The table summarizes the information 
of each cluster. Using ACE cluster-wise analysis, the volume (µm3 x1,0002), 
maximum strength (Cluster-wise TFCE F-statistic x1,000), brain regions each 
cluster spanned out on, and centroid of each significant cluster on Allen 10 µm 
atlas was computed.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02583-1

Extended Data Fig. 9 | ACE cluster-wise statistical analysis for unraveling 
neuronal ensembles controlling walking. a. Voxelized and warped 
segmentation maps, obtained by integrating ACE’s segmentation module and 
MIRACL registration algorithms, were averaged per group. The average of the 
homecage (non-walking) group was subtracted from the walking group to obtain 

a density heatmap, demonstrating neuronal hotspots differentially activated 
in the walking group. b. Statistical whole-brain p-value map obtained by ACE 
cluster-wise analysis with a group-wise two-way ANOVA, demonstrating several 
sub-regional and laminar neuronal clusters differentially activated during 
walking.

http://www.nature.com/naturemethods
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Extended Data Fig. 10 | The effects of different user-fed parameters to 
control the rigor of ACE cluster-wise statistics. a. An axial view of the group 
density heatmap next to its corresponding ACE cluster-wise p-value map for the 
cold-induced experiment. b-d. The effects of the threshold used to define the 

adjacency matrix (b), Step-down p-value (c), TFCE step size, and TFCE E (d) on the 
results of ACE cluster-wise TFCE permutation algorithm. See Methods - Cluster-
wise permutation-based statistical algorithm and analysis for more details.

http://www.nature.com/naturemethods
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