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The most ubiquitous form of aberration correction for microscopy is

deconvolution; however, deconvolution relies on the assumption that

the system’s point spread function is the same across the entire field of

view. This assumption is often inadequate, but space-variant deblurring
techniques generally require impractical amounts of calibration and
computation. We present an imaging pipeline that leverages symmetry to
provide simple and fast spatially varying deblurring. Our ring deconvolution
microscopy method utilizes the rotational symmetry of most microscopes
and cameras, and naturally extends to sheet deconvolution in the case of
lateral symmetry. We derive theory and algorithms for ring deconvolution
microscopy and propose a neural network based on Seidel aberration
coefficients as a fast alternative. We demonstrate improvementsin

speed and image quality as compared to standard deconvolution and
existing spatially varying deblurring across a diverse range of microscope
modalities, including miniature microscopy, multicolor fluorescence
microscopy, multimode fiber micro-endoscopy and light-sheet fluorescence
microscopy. Our approach enables near-isotropic, subcellular resolutionin
each of these applications.

Much of optical engineering is focused on reducing aberrations by add-
ing additional corrective optical elements to animaging system; con-
sider amicroscope objective, consisting of numerous lenses stackedin
ahousing. Such designs allow for high-performance imaging, butincur
added cost, weight and complication. Even with large and expensive
lens stacks, it is difficult and, in some cases, impossible to correct all
aberrationsacrossalarge areaand so aberrations are often what limit
the usablefield of view (FoV) of asystem. Furthermore, some systems
cannotaccommodate any aberration-correction optics; forexample,

additional elements may not fit in miniaturized microscopes' and are
prohibitively expensive for large-aperture telescopes®.

Facedwith apoorly correctedimaging system, the modernmicros-
copist instead turns to computational aberration correction, where
the burdenis shifted onto computer algorithms applied post-capture.
The most commonly used correctiontechnique, image deconvolution,
capturesacalibrationimage of asmall point-like source, known as the
point spread function (PSF), to characterize the aberrations. The PSF
canthenbe used tocomputationally deconvolve any image taken with
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the system via simple and fast algorithms, to yield a deblurred result.
A main limitation of this approach is that it assumes that the system’s
PSF does not vary spatially (the system is linear space-invariant; LSI).
This assumption is usually only true near the center of the FoV, and
optical designers often artificially sacrifice part of the system’s FoV
to maintain space-invariance.

Togobeyondspace-invariant limitations, alarge community effort
has gone toward heuristic forms of spatially varying ‘deconvolution’,
wherein one measures PSFs at multiple points within the FoVand uses
them to correct the image. Such heuristics include assuming that
each region of an image is locally LSI®, adaptively splitting the FoV by
first quantifying the degree of space-variance*’, interpolating PSFs®’,
decomposing the PSF into space-invariant orthogonal modes® ™, and
doing the samein Fourier space’®. These heuristics can approach rigor-
ousrecovery as the number of PSFs collected grows, possibly into the
hundreds of thousands; however, the trade-offin terms of the complex-
ity of calibration and computation quickly becomes intractable. For
example, in patch-wise deconvolution, the FoVis divided into patches,
each of whichis deconvolved by aPSF measured at its center. Maximum
accuracy is achieved when the patch size is reduced to a single pixel,
but then amegapixelimage would require amillion PSF measurements
and acomputation time of hundreds of hours to deblur.

Another emerging modality is deep deblurring” %, in which var-
ying amounts of system information are incorporated into a deep
neural network. Networks that are primarily data-driven struggle
with extrapolation beyond the training data, and tend to reproduce
whatever biases existed therein, a particularly relevant point as many
ofthem are trained on simulated data. Meanwhile, networks thatincor-
porate physical information, such as calibrated PSFs, may have better
generalization properties but suffer the same accuracy/efficiency
trade-off as patch-based methods. For these reasons, spatially varying
deblurring has not become commonplace among practitioners, and
thereremains aneed for spatially varying deblurring methods that are
effective, efficient and robust.

Here we propose a spatially varying method that requires only
asingle calibration image and has reasonable compute time, while
offering rigorous deblurring for imaging systems that are symmetric
insome way. We focus onrotationally symmetric systems (systems that
aresymmetric about their optical axis) but also show an example with
the lateral symmetry present in light-sheet microscopy. Rotational
symmetry occurs inmany imaging systems by design, and a consider-
able portion of optical theory is developed under this assumption.
While some existing deblurring techniques have leveraged rotational
symmetry, they are approximate and restricted to a specific subset of
radially varyingblurs: those due to camera zoom***, the specific case
of aparabolic mirror®® and an approximate scheme only for blurs from
asingle lens by applying deconvolution to four concentric regions”>°.
Other work does the same for digital single-lens reflex (DSLR) cameras
and also requires red, green and blue (RGB) image channels from a
color camera®. In contrast, what we propose applies to any rotationally
symmetric imaging system, canincorporate more complex PSFs, even
ifthey cannotbe theoretically derived, makes no approximations (for
example, isoplanatic regions) in the image formation model and can
easily extend to other symmetries.

Our ring deconvolution microscopy (RDM) models image forma-
tion for rotationally symmetric imaging systems rigorously, allowing
foraccurate deblurring while remaining practical, both computation-
ally and in terms of calibration. The first step in RDM is a simple,
single-shot calibration scheme, in which the system’s primary Seidel
aberration coefficients are estimated from animage of randomly dis-
tributed point sources. These coefficients quantify the severity of
spatial variance and provide the necessary system information for the
second step, deblurring. We propose two alternativeimage deblurring
algorithms. The first (our main algorithm) is ring deconvolution, which
uses anew and rigorous theory for rotationally symmetric imaging to

deblur the image at all points in the FoV, with only order N? log(N)
(Nis the image side length) compute time, as compared to N* for full
spatially varying deblurring. For even faster computation (but without
theoretical guarantees), we introduce a neural network-based algo-
rithm called deep ring deconvolution (DeepRD), which constrains
learning with physical knowledge provided by the system’s Seidel
aberration coefficients. If the system is not spatially varying or
minimally so, RDM still offers an improvement over standard decon-
volution by instead deconvolving with a synthetic PSF generated by
the Seidel coefficients.

Although ring deconvolution is specific to systems exhibiting
rotational symmetry, our theory can be easily adapted to exploit other
forms of symmetry. As an example, we derive an analogous form of
deconvolutionforsituations where the blur varies laterally (along one
Cartesian axis), which we term sheet deconvolution. This is the case
in light-sheet microscopy, where the light-sheet illumination causes
space-varyingblurinthedirection perpendicular to theimaging plane.
We show experimental results for sheet deconvolutiononimages from
alight-sheet microscope.

Our proposed algorithms outperform existing methods,
approaching subcellular, isotropic resolution across the FoV. We
demonstrate this on four diverse microscope modalities: miniature
microscopy, multicolor fluorescence microscopy, multimode fiber
micro-endoscopy and light-sheet fluorescence microscopy. Each
of these modalities contains different characteristics and imaging
mechanisms that are representative of a wide range of imaging sys-
tems, thereby forming a comprehensive basis to demonstrate the
wide applicability and practical relevance of our methods. Figure 1
provides asummary of the RDM pipeline along with an example result
onimages of live tardigrades. An open-source implementation of RDM
and its extensions can be found in our codebase (https://github.com/
apski4/rdmpy).

Results

Before we display our experimental results, we briefly outline the RDM
pipeline from calibration to deblurring. More details on the RDM imple-
mentation can be found in Methods.

Ring deconvolution microscopy pipeline

The first step in our RDM pipeline is calibration; we measure the sys-
tem’s response to a point source (its PSF). The PSFs of a space-varying
system will vary across the FoV and many PSF measurements may be
required to fully characterize the system; however, space-varying sys-
tems that are rotationally symmetric require fewer measurements for
system characterization, which we exploit here. Intuitively, PSFsthat are
the same distance from the center of the FoV all have the same shape,
just rotated at different angles because of the symmetry (Fig. 1a). We
call this property of the PSFs linear revolution-invariance (LRI), and
denote it mathematically as

h(p, ¢;r,0) = h(p,¢ — 6:r,0),

where A(p, ; r, ) is the (spatially varying) PSF in polar coordinates
from a point source at location (r, 8). Note that the shape of the PSF
itself is not necessarily rotationally symmetric. LRI greatly improves
complexity of the calibration procedure as we need only measure the
PSF at any one point along the circle for each radius r from the optical
center.

In practice, directly measuring the PSF at every radius r s still
impractical. Instead, under LRI, there is asimple and effective method
for simultaneously estimating these PSFs froma single image, without
any motionstagerequired. It works by estimating the Seidel aberration
coefficients fromanimage of point sources randomly scattered across
theFoV (Fig.1b). Seidel coefficients are a natural choice for LRI systems,
as Seidel polynomials are explicit functions of the field position and
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Fig. 1| Ring deconvolution microscopy. a, Point sources at the sample plane
(left) areimaged (right) to PSFs with a rotationally symmetric imaging system.
The PSFs are LRI; they vary with distance from the center of the FoV (top row),
but maintain the same shape at a fixed radius r, just revolved around the
center (bottom row). b, The RDM pipeline. A one-time calibration procedure
(top) captures asingle image of randomly placed point sources (for example,
fluorescent beads) and uses them to fit primary Seidel coefficients. Next, we
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either use the Seidel coefficients to generate a radial line of synthetic PSFs, if
using ring deconvolution, or we feed the coefficients directly into DeepRD. After
calibration, we can deblur images (bottom) using either ring deconvolution

or DeepRD. ¢, Experimental deblurring of live tardigrade samples imaged with
the UCLA Miniscope'. Left to right: measurement, standard deconvolution,

ring deconvolution and DeepRD. Ring deconvolution and DeepRD consistently
outperform deconvolution.

thus use the same coefficients regardless of the position in the FoV*~.
This makes them a more practical choice than Zernike coefficients,
which are different at each field position.

After calibration, the next step is to use the estimated Seidel
coefficients to deblur the measured image. LRI systems, much like
LSI systems, allow for computationally efficient models. For LSI sys-
tems, we leverage two axes of space-invariance to model the blur asa
two-dimensional (2D) convolution, and for LRI systems we can lever-
age the revolution-invariant angular axis, leading to a blur computa-
tion thatis a sum of one-dimensional (1D) convolutions. We provide a
description of the forward and inverse algorithms: ring convolution
andring deconvolution, in Methods. Thereinisalsoincluded atheoreti-
cal proof of ring convolution’s exactness under rotational symmetry.
We briefly describe ring deconvolution here, along with an alternate
method using deep learning, termed DeepRD. These methods form
the second step inthe RDM pipeline (Fig. 1b).

1. Ring deconvolution. We derive an optimal algorithm for recon-
structing the underlying sample from a blurry image given the
PSF at each radius of the FoV of a rotationally symmetric imag-
ing system. This is our main algorithm.

2. DeepRD. Although ring deconvolution is considerably faster
to compute than a full patch-based spatially varying deblur
technique, it may still be relatively slow (on the order of a
few minutes) for very large image sizes (for example, beyond
1,024 x1,024) or video data. Deep learning enables a faster (but
approximate) version of ring deconvolution called DeepRD. As
input, it takes a blurry image and a list of the five primary Seidel
coefficients. DeepRD is trained on a dataset of natural images
that are synthetically blurred using ring convolution.

Experimental results

Miniature microscopy. The UCLA Miniscope' is a miniature micro-
scope used primarily for neuroimaging in freely behaving animals. Its
gradient-index objective, which is required for implantation, causes

spatially varying aberrations thereby limiting its FoV. We demonstrate
that RDM can alleviate these limitations. To that end, we first cap-
ture a single calibration image of fluorescent beads and fit the five
primary Seidel aberration coefficients. We then image a composite
U.S. Air Force (USAF) resolution target, rabbit liver tissue and live
fluorescence-stained tardigrades. The composite target was made by
placing a standard USAF resolution target at nine separate locations
inthe FoV and then stitching them together, using only the region of
each constituent image that contains the highest resolution group.
Foreach sample, we compare reconstructions fromring deconvo-
lution and DeepRD, as well as standard deconvolution (using the PSF
measured atthe center of the FoV) and abaseline U-Net (see Fig. 2).Ring
deconvolution and DeepRD (having knowledge of the field-varying
aberrations via the Seidel coefficients) give the mostimprovementnear
the edges and corners of the image. Standard deconvolution produces
anoisy, low-contrast result in those regions because of the mismatch
of the center PSF with the edge PSFs. We also note that both learning
methods (U-Net and DeepRD) offer the best denoising performance, a
well-known property of neural networks*’; however, this comes at the
cost ofinconsistent performance; both models performworse onthe
resolution target than on the other samples. Similar performance is
observed for rabbit liver tissue, where our methods reveal features in
the corners of theimage, including the outlines of membranes that are
notclear otherwise. We also capture live videos of tardigrades. We apply
deblurringto eachframe and display one such framein the bottom row
of Fig.2; thefullvideos canbe found at https://berkeley.app.box.com/s/
d101901uv8ehxdf7kzdapyejlc7dt6bi. Ring deconvolutionand DeepRD
better resolve the small, dot-like features within the tardigrade.

High-NA multicolor fluorescence microscopy. Next, we apply RDM
to high magnification, high-numerical aperture (NA) microscopy.
Such devices are critical to observing biological samples at subcel-
lular resolution; however, as the NA increases, so do field-varying
aberrations. RDM offers a pathway to utilize the level of magnification
and NA needed for subcellular imaging while maintaining isotropic
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Fig. 2| RDM for miniature microscopy. After calibrating the Miniscope with
asingle image of fluorescent beads (Fig. 1b), we show results from several
deblurring methods for comparison: standard deconvolution (using asingle
measured PSF), a U-Net trained on our spatially varying blur dataset, ring
deconvolution and DeepRD. Deconvolution assumes space-invariance while
the remaining methods are designed to handle spatially varying aberrations.
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Inthe first row, ring deconvolution and DeepRD clearly resolve resolution
target elements near the edges of the FoV, which are not as well resolved by the
two other methods. Zoom-ins show RDM resolves up to element 6 of group 9
(blueinset) and element 5 of group 8 (greeninset). Similar results along with
correspondinginsets are shown for the other samples.

resolution over the entire FoV. Moreover, RDM does this efficiently over
multiple fluorescence color channels, allowing for multicolor, subcel-
lular resolution imaging over the entire FoV. To demonstrate this, we
image fluorescently labeled actin (green channel) and mitochondria
(red channel) of bovine pulmonary artery endothelial (BPAE) cells with
ax1001.4 NA objective.

We chose to perform a separate calibration for each color chan-
nel, with different bead images corresponding to the different emis-
sion wavelengths; this strategy allows RDM to additionally correct
chromatic aberrations. After calibration, we image BPAE cells and
process them with both RDM and standard deconvolution, for com-
parison. Figure 3 shows that RDM consistently deblurs the raw images
throughout the FoV, including the corners of the image, while standard
deconvolution becomes low-contrast and noisy near the edges. Inboth
examples, RDMi s able to resolve subcellular features in the actin and
mitochondrianear the edges that are not visible in standard deconvo-
lution. Such capability allows for larger FoVs to be used, lessening the
burden of mechanically scanning and stitching together many smaller
FoVimages when the sampleislarge.

Micro-endoscopy through a multimode fiber. Point-scanning
micro-endoscopy through a multimode fiber>** is a powerful tech-
nique for deep in vivo imaging at subcellular resolution, with applica-
tions in the brain and other sensitive organs, where minimal tissue
damageisrequired; however, due to the extreme constraints imposed

inthe design ofthefiber, its resolution capabilities degrade rapidly and
severely away fromthe center of theimage, resulting in asmall usable
FoV (toprow of Fig.4). The spatially varying images from such asystem
have been heuristically deblurredinref. 15, but RDM, withits rigorous
formulation, offers improved performance with far less calibration.

To verify this, we processimages of beads and live rat neurons from
ref.15using RDM, their spatially varying Richardson-Lucy (SVRL) algo-
rithm, and standard deconvolution, for comparison. SVRL is similar to
the modal decomposition work in®**, The SVRL method uses fewer PSFs
than RDM (30 versus 120), sorequires slightly lessmemory, but requires
more calibrationimages than RDM (441images versus 1image). Despite
considerably lighter calibration and similar computational complexity,
RDM provides an improvement in image quality over SVRL (Fig. 4). In
the corners of the bead image, we see that RDM is able to remove the
aberration-induced ellipticity of the underlying circular beads and
resolve clumps of beads, unlike the other methods. The same holds
for the neuronimages, where RDM tightens the spread of thin spines
far better than the other methods. Additional comparisons on these
dataarein Extended DataFig. 2.

In summary, ring deconvolution consistently produces the best
reconstructions among the methods we tested. The improvement
arises due to the lack of approximations and heuristics in the method’s
derivation. Moreover, as compared to deep-learning-based methods,
ring deconvolution undergoes no learning procedure, and thus does
not transmit bias from the training data into future reconstructions.
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Measurement

Calibration image

b Seidel PSFs

Fig. 3| RDM for high-NA, multicolor fluorescence microscopy. a,b, Fluorescent
beadsimaged with ax100 1.4 NA objective (a) and corresponding Seidel-
fitted PSFs demonstrate spatially varying nature of the system (b). ¢, Two
representative examples of BPAE cells processed by standard deconvolution and

Ring deconvolution

Deconvolution

RDM. Deconvolution and RDM perform similarly in the center but RDM is better

inthe corner, revealing submicron features in the actin (orange arrow). RDM
similarly resolves actin filaments and mitochondria where deconvolution does
not. A total of six such samples were prepared and imaged with similar results.

DeepRD performs similarly to ring deconvolution, but is faster and
less consistent. Both perform better than the U-Net and standard
deconvolution.

Simulation results

To quantify the performance of our methods, we conducted a series
of simulations in which we have access to the unblurred ground-truth
image. These simulations are performed with Gaussian noise and are
repeated with Poisson noise (Supplementary Fig. 2).

Our first step is to quantify the forward model: ring convolution.
When asystemis space-invariant, the forward modelis asimple convo-
lution operation. For space-varying systems, however, we must account
forthe changesinthe PSF across the FoV. The brute-force approach for
doing so would superimpose weighted PSFs at each pixel in theimage
to compute the ‘true blur’, at the cost of long compute times; however,
when the system is rotationally symmetric (varies only radially), ring
convolutionisanequivalent operation to the brute-force method, but
runs much quicker (less than asecond) even forimage sizes upward of
512 x 512. To verify, we blur each testimage using spatially varying PSFs
rendered from a randomly chosen set of Seidel coefficients. We treat
the true blur as ground truth and compare the error maps for both
standard convolutionand our ring convolution. As expected, standard
convolution results in errors near the edges of the FoV, whereas ring
convolution produces accurate blur across the entire image (Fig. 5a).In
Fig.Sb wesee that the error for standard convolutionincreases approxi-
mately linearly with this aberration magnitude (the norm of Seidel
coefficients). In contrast, ring convolution continues to produce an
accurateblur, independent of the strength of the aberrations. In Fig. 5c,
we compare compute times for these forward models, showing that
ourring convolution method s nearly four orders of magnitude faster
than the other exact method (true blur) for amegapixel-sized image.

Next, we verify our Seidel fitting method by quantifying the error
inour estimated Seidel coefficients that were fitted from a single noisy
image of randomly scattered point sources. As detailed in Methods, the
Seidel fitting procedure involves searching for the set of five primary
Seidel coefficients that best fit the measured PSFs at their given posi-
tionsinthe calibrationimage. We simulate this process many times by
randomly generating sets of Seidel coefficients, using themto produce
acalibrationimage with additive Gaussian noise, and then estimating
those coefficients only using the noisy calibration image (Fig. 5d). We
plotted the error between the fitted and true coefficients in Fig. Se.
Due to nonconvexity of the fitting problem, we see that not every
case produces errors that converge to 0; however, two things provide
assurance: (1) the median convergence approaches 0, meaning that a
majority of optimizations will produce the optimal solution; and (2)
even the runs that do not converge to the global minimum produce
PSFs, which are close enough to the true ones to provide good qual-
ity ring deconvolution. Finally, as the Seidel fitting procedure acts
as a PSF denoiser, we test the fit with varying amounts of noise (up to
-20 dBsignal-to-noiseratio (SNR)) and find that the fitis stillaccurate
even with severe additive noise (Fig. 5f). Additional simulations for
higher-order Seidel coefficients can be found in Supplementary Fig. 3.

After verifying that our forward model and Seidel fitting methods
perform well, we use them as part of an inverse problem to deblur
images and quantify the performance. We compare our methods (ring
deconvolution and DeepRD) with standard deconvolution and the
baseline U-Net. The learning methods are trained withimages from the
Content-Aware Image Restoration (CARE) and Div2k datasets®, after
synthetically blurring them with space-varying PSFs rendered from
arandom set of Seidel coefficients. It is computationally infeasible
to generate the entire training set using the true blur technique, so
instead we use our ring convolution to generate the blurred images for
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Beads

Neurons

Fig. 4| RDM for point-scanning micro-endoscopy through a multimode fiber.
Comparison of deconvolution, SVRL and RDM on images taken from a point-
scanning multimode fiber micro-endoscope. The raw images and the SVRL
results are obtained directly from ref. 15. Top: sample with 1-um beads;
allmethods resolve the circularly shaped beads in the center (blue inset).

Away from the center, however, deconvolution and SVRL fail to completely

SVRL Ring deconvolution

remove the ellipticity of the bead but RDM does (green inset). Moreover, in the
corner only RDM can resolve bead clusters into their component beads

(yellow inset). Bottom: live Wistar rat neuron; RDM can clearly resolve structures
(blueinset), sharpen the neuron spine (green inset) and reveal a point-like
structure (yellow inset) near the edges, whereas the other methods cannot.

training and use the true blur for the test set. The results of each method
onone representative testimage are shown in Fig. 5g,h, with the peak
SNR (PSNR) (in dB) listed above. Both DeepRD and ring deconvolution
deblur better near the edges and corners of the image, where the PSF
deviates the most from the center PSF. Despite using ring convolution
for the training set and the true blur for the test set, neither of the net-
works (U-Net and DeepRD) show signs of model mismatch.

In Fig. 5i, we plot the average accuracy (PSNR) versus runtime
across the entire test dataset (28 images), with the size of the circle
representing the number of parameters needed (memory footprint)
foreach method. Ring deconvolution provides the best reconstruction,
butitisalsothelargestand slowest of the methods tested, taking about
60 s for afullimage; however, if we were to try to deblur the image rig-
orously without using RDM, it would take hundreds of hours, despite
beingtheoretically equivalent to ring deconvolution. Thus, ring decon-
volution allows for relatively fast, accurate deblurring where it was once
infeasible. DeepRD performs nearly as well as ring deconvolution and
has the fewest parameters needed of all the space-varying techniques,
allowing it to be fast and memory efficient. DeepRD is almost three
orders of magnitude faster than RDM. The baseline U-Net and standard
deconvolution PSNR values are considerably worse.

Sheet deconvolution: extension to lateral symmetry

Revolution-invarianceis not the only form of symmetry found in practi-
cal, spatially varying systems. For example, light-sheet fluorescence
microscopy (LSFM) exhibits lateral symmetry, in which light-sheet
illumination causes spatial variance, but only along one axis (Fig. 6a).
Thethinnestsection, or waist, of the light-sheetis focused inthe center
of the FoV and becomes thicker as a function of the distance from the
center. As the light-sheet is constant along the axis orthogonal to the
focusing direction, this variance only occurs along one dimension.
The resulting PSF grows in axial extent as it moves along one of the
lateral dimensions, but stays constant in the other lateral dimension.

Here we derive sheet convolution, an exact forward model for
LSFM (assuming a space-invariant objective lens), which leverages
symmetry by convolving over the two dimensions that are spatially
invariant, while integrating over the one that does vary. As aresult,
sheet convolution enjoys a similar improvement in computational
performance as ring convolution; instead of the O(N®) scaling of the
general three-dimensional spatially varying forward model, it achieves
a O(N*log(N)) scaling. This improvement enables rigorous, spatially
varying LSFM deconvolution where it once was computationally infea-
sible. All that remains is to obtain the three-dimensional (3D) PSF at
each pointalongthelight-sheet focusing axis. This can be carried outin
multiple ways using only asingle calibration volume; the experimental
PSFsfromthis volume are either interpolated at the missing locations
orare used tofit the parameters of a PSF model. Details along with the
derivation of sheet convolution/deconvolution are in Methods and
simulations are in Supplementary Fig. 1.

To combat the inherent spatial variance of LSFM, practitioners
typically use only the thin lateral slab of the image that lies within the
light-sheet waist, then shift the sample repeatedly to acquire the full
FoV*, The final image is then stitched together from multiple tiled
acquisitions; however, by using our sheet deconvolution approach,
the parts of each acquisition that lie outside of the waist can be recov-
ered computationally, thereby expanding the usable FoV of the LSFM
system and reducing the number of acquisitions needed for an object
with alargelateral extent. While there are techniques, like axially swept
LSFM*, which speed up the process in hardware, a purely computa-
tional solution is desirable for its ease of use, reduced irradiation and
flexibility.

Figure 6 shows ademonstration of sheet deconvolution on LSFM
data. For the experiment, a 3D stack of randomly scattered fluorescent
nanospheres in agarose gel was imaged and used to obtain PSFs at
each position along the spatially varying axis (Methods). Then, using
these PSFs, sheet deconvolution is applied to samples of two types:
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Fig. 5| Simulations to quantify RDM performance. a, Error maps showing the
absolute difference between ring convolution/standard convolution and the
‘true blur’ (produced by manually superimposing every PSF at every pixel).
When off-axis aberrations are small (top row), both forward models are accurate.
When aberrations are large (bottom row), convolution becomes noticeably
worse, yet ring convolution remains accurate. b, Forward model mean-squared
error (MSE) as a function of off-axis aberration magnitude (for the image above).
¢, Runtime of each method as a function of size of the image (in pixels), averaged
over n=>50 trials.d, Seidel coefficients are fit to a noisy image of randomly placed
PSFsand then used to generate PSFs at any location. e, Seidel fit error at every
iteration of the fitting algorithm. Each purple line is one of n = 50 trials, each with
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adifferent, random set of underlying Seidel coefficients. The red dashed line is
the per-iteration median. f, Average MSE of the fitted Seidel coefficients plotted
against the SNR of the calibration image (with standard deviation shown by
error bars) over n =50 random trials. Some example calibration PSFs are shown.
g, Deblurring results on noisy images from the CARE dataset, with PSNR values
above each method. h, Zoom-ins of an off-axis patch in each deblurred image;
ring deconvolution and DeepRD have the highest quality. i, Average accuracy

in PSNR versus runtime of each method over n = 28 true blurred images using
unseen coefficients. The number of model parameters is written below each
circleand determines its size.
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Fig. 6 | Sheet deconvolution exploits lateral symmetry for light-sheet
microscopy. We run sheet deconvolution on samplesimaged by a light-sheet
fluorescence microscope with a detection NA of 1.1and alight-sheet NA of 0.31.
a, The light-sheet microscope illumination spreads along its propagation axis
(orange arrow) such that only a center strip in the FoV (marked ‘usable FoV’) is
optically sectioned and hence well resolved. b, Results comparing standard 3D
deconvolutionand sheet deconvolution on fluorescent beads (top row) and

Deconvolution Sheet deconvolution

SU8686 cells (bottom row), with maximum-intensity projections along each axis.
Unlike standard deconvolution, sheet deconvolution resolves small features
nearly as well at the edges of the FoV as in the center (insets). ¢, Plots of lateral
(top) and axial (bottom) FWHM of reconstructed beads (from b) as a function of
their distance from the center along the spatially varying axis. The plot legends
show the average FWHM plus or minus the s.d.

fluorescent beads and SU8686 cells. Unlike standard deconvolution,
sheet deconvolutionis ableto better resolve features that donotliein
thelight-sheet waist and create amore homogeneous axial resolution
across the entire FoV than standard deconvolution. We quantified the
resolutionimprovement by measuring the lateral and axial full-width
half-maximum (FWHM) of fluorescent beads across the entire FoV
after applying the two deconvolution methods. As expected, the lateral
FWHM does not change substantially as the PSF spatial variance occurs
primarily inz, but the axial FWHM values from sheet deconvolutionare
on average 300 nm smaller than those from standard deconvolution
with 200 nm less s.d. This increase in resolution outside of the beam
waist can reveal subcellular-scale features that were previously only
accessible by shifting the sample. In this experiment, sheet deconvo-
lution ran on a volume size of 512 x 512 x 160 in about 7 min, which is
orders of magnitude faster than solving a spatially varying deblurring
method without leveraging symmetry. With sheet deconvolution, users
of LSFM can speed up the capture of large samples while still getting
high resolution across the entire FoV.

Space-invariant systems

We have demonstrated our methods for rotational and lateral sym-
metry, and expect that the extension to other symmetries would be
analogous. In addition, elements of RDM may find use even when the
systemis not space-varying or when calibration data are not available.
Ifaberrations are not space-variant, the first part of the RDM pipeline
canstill provide value by estimating the spherical aberration coefficient
from a calibration image via Seidel fitting. With this coefficient, we
can generate a synthetic center PSF and perform deconvolution. We
call this procedure Seidel deconvolution, and find that it essentially
denoises the PSF measurement as it finds the closest synthetic PSF to
the measured one. Additionally, this single coefficient can be jointly

estimated with the deconvolved image with no calibration, providing
atechnique for blind deconvolution (details are in Methods).

In the results shown in Extended Data Fig. 1, Seidel deconvolu-
tion resolves smaller features and gives a cleaner reconstructed
image than standard deconvolution with the measured PSF. The blind
deconvolutionresultis similar to that of Seidel deconvolution, though
cannotresolve the smallest features and has overly high contrast due
to noise. Future work extending this idea to blind, spatially varying
deblurring could use DeepRD to iteratively search over the space
of deblurring networks and choose the network with the sharpest
reconstruction.

We note that while existing work has fit a variety of parametric
models to the experimentally measured PSF, including a 2D Gaussian
distribution*’, Gaussian mixture model*, Zernike basis**"*, spherical
aberration diffraction model*® and Seidel ray model***°, fitting Seidel
polynomials in the pupil functionis new.

Discussion

In summary, we developed a pipeline for image deblurring in rota-
tionally symmetric systems, called RDM, which encompasses bothan
analytically derived deblurring technique, ring deconvolution and its
fast alternative, DeepRD. Like standard deconvolution microscopy,
our methods only require a single calibration image; however, they
offer space-varying aberration correction. We support RDM with a
new theory of imaging under rotational symmetry, which we call LRI,
and an implementation of the LRI forward model (ring convolution).
For RDM calibration we also develop a procedure for fitting Seidel
aberration coefficients from a single calibration image of randomly
placed point sources. To show generality of our ideas, we further
derive, implement and test an analogous method that exploits linear
(instead of radial) symmetry, for applications in light-sheet microscopy.
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We verify the accuracy of our deblurring methods in both simulation
and experimentally over four diverse microscope modalities.

We hope that RDM will ultimately replace deconvolution micros-
copy as standard practice in widespread applications from biology
to astronomy. We believe that RDM will find most use in systems that
approach optical extremes such as miniature microscopes or large FoV
systems, but may alsoempower optical designers to simplify hardware
knowing they have the ability to better correct for aberrations digi-
tally. RDMis well suited to dynamic conditions in which the system or
sample is changing, as long as the system calibration can be updated
accordingly. For simpler cases that canbe directly modeled, such as the
time-varying deformation of animaging fiber, it should be possible to
update theinitial calibrated PSFs with a theoretical model**2,

We intend RDM to be a living, breathing tool with constant
improvements to its speed, accuracy and artifacts. Already we have
seena20-fold decreaseinring deconvolution’s runtimein preliminary
experiments by parallelizing it over multiple graphical processing units
(GPUs) using the novel Chromatix optical framework®>. Moreover,
the constant improvement in deep-learning architecture, including
better conditional models®*, can also improve the performance of
DeepRD in future. We plan to continually update our codebase with
these improvements.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02684-5.
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Methods

Ring convolution and ring deconvolution

We begin with a primer on notation. Let g(u, v) describe the object’s
intensity at (u, v) and h(x, y; u, v) describe the space-varying PSF; the
intensity at (x, y) of the PSF generated by a point source at (u, v). We
further use the notation g to denote the transformation of g to polar
coordinates. Then the final image intensity f(x, y) of a linear optical
systemis formed by the superposition integral®:

foey) = / / g(u, v)h(x,y; u,v)dudv. §))

This equation is the system forward model for a linear space-varying
system; it describes the image as a function of the object and PSFs at
differentlocationsin the FoV.

Standard image deconvolution approximates the system as LSI,
which means the PSF is the same at all positionsin the FoV, h(x, y; u, v)
=h(x-u,y-v;0,0).This simplifies the forward model in equation (1)
by reducing it to a convolution with a single PSF. This greatly reduces
the computation for forward and inverse problems, but at the cost of
beinginaccurate for space-varying aberrations.

In this paper, we incorporate radially varying aberrations ana-
lytically into the forward model to provide a middle ground between
purely space-invariant and completely space-varying systems. The
assumptionis that the systemis LRI (its physical configuration is sym-
metricabout the optical axis; Fig. 1a). Thisis true of many typical optical
imaging systems. Our core observation is that all LRI optical systems
satisfy

h(p, ¢;r,0) = h(p, ¢ — 6;r,0). 2)

Under this assumption, the object intensity canbe written as what
we callaring convolution, denoted by f2 g® h. By substituting equation
(2) into equation (1) with x = pcosg and y = psing, we get

r(&xgh) (w [x2 +y2, tan” (y/x);r, O) dr, (3)

where the*,operatorindicates a 1D convolution over the 6 dimension.
The rarisesinthe deconvolution as we are integrating over object space
(u, v) in polar coordinates (r, 8). This ring-wise computation, wherein
points at different radii are filtered heterogeneously, is consistent
with the underlying intuition in LRI: the blur varies radially. Our first
main result allows for an efficient, fast Fourier transform (FFT)-based
version of ring convolution.

Theorem 1. Ring convolution theorem. Under LRI, where 75 is a 1D
Fourier transform over 6,

=3

fxy) = (€ h)x.y) = f

0

fo.p =75 f 196180, 0 561fip. O: e} ().

Proof. As the given system is LRI, equation (3) holds. Substituting
p =+/x2+)2and ¢ = tan"'(y/x), we can rewrite equation (3) as

fo.9) = f H(@roh)(p. g1, O)dr.
0

Applying the Fourier convolution theorem to the 1D convolution on
theright-hand side yields

Fio.)= [ 35" {go1ar, O0s1io. B3} @,

where %, is the 1D Fourier transform over 6. By Fubini’s theorem, we
pulltheinverse Fourier transform outside of the integral, which gives

fo.) =7 f I8, OV otfip. 6: | )

There is an efficient and convex formulation for computing the
inverse of ring convolution, namely ring deconvolution:

&= argmin||f-g® hlj3. “)
z

This problem can be solved via an iterative least squares solver using
Algorithm1as a substep. A Fourier interpretation of ring convolution
isprovidedinSupplementary Fig. 5. While the above results are all rigor-
ous, the discrete timeimplementations of them have small, but nonzero
errors due to discretization. For example, the polar transformation in
Algorithm1requires asmallamount of interpolation. Asis the case with
standard deconvolution, there are conditions for which ring convolu-
tion is not fully invertible and consequently ring deconvolution will not
recover the sample exactly. The diffraction limit, for example, manifests
in PSFs whose frequency spectrum is bandlimited, rendering frequen-
cies in the sample that are past the bandlimit irrecoverable. This can also
happenif certain frequenciesin the system’s transfer function are below
the noise floor. In such cases ring deconvolution, because it is convex,
will return an estimate of the sample thatis closestin/2normto thetrue
sample. Regularization canimprove this resulteven furtherbyleverag-
ing previous knowledge about the sample in question. Visualizations
of these algorithms can be found in the Supplementary Information.

Algorithm 1. Ring convolution

Input: N x N pixel image g; PSFs along one radial line A, j=1,..., K;
corresponding distancesr;,j=1,..., K of each PSF from the center.
Output: LRI blurred image f

1: g < polarTransform(g) > polar dimensions are M x K, angle

by radius
2: f«zeros(MxK) > initialize the output in polar form as an all
zero matrix
3: forj=1,...,Kdo
4:  RY _polarTransform(h?)
5 fori=1,...,Kdo )
6: .o —F ., +iFFT(r FFT{g_JFFT(R7}  >compute polar

output ring by
ring, FFTis1D
7: f<inversePolarTransform( f)

Fitting Seidel coefficients to PSFs

Ring (de)convolution algorithms require A, the collection of PSFs
along oneradial lineinthe FoV. Fortunately, there isa convenient and
compact alternative to measuring these manually. The Seidel aber-
ration coefficients®***° are a polynomial basis that can represent any
rotationally symmetric system. We mathematically describe the form
of these aberrations in the Supplementary Information.

The estimation procedure for estimating the Seidel coefficients
involves fitting them to a single, sparse image of a few randomly scat-
tered point sources (for example fluorophores onamicroscopesslide).
Such an image is usually easier to obtain than an image of an isolated
point source in the center of the FoV. The presence of off-axis PSFsin
the calibrationimage providesinformation about all aberration coef-
ficients. Thoughit may be possible to fit these coefficients fromasingle
off-axis PSF, we find that afew, randomly placed PSFs provide arobust
fit. The locations of the point sources are not known a priori and are
estimated vialocal peak detection. The optical center of the systemis
alsoneededto properlylocalize the PSFs; this can be found heuristically
or by using common optical center finding algorithms such as ref. 57.

Letr,,...,r;betheobject-planeradii of the/pointsin the calibration
image. We then find the primary Seidel coefficients @ whose generated
PSFsbest match the measured PSFs. Once again, this searching proce-
dureis succinctly stated as an optimization problem,

J .
& = argmin )’ ||h() — FP@) )3 (©)
o ja
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where P(@) is the pupil function with Seidel coefficients @ from a
pointsource at distance r;from the center of the FoV.

It has been shown that for LRI systems, the optimal fit w achieves
adiminishing error®>. Furthermore, the five primary Seidel coefficients
index the dominantaberrations presentin practicalimaging systems:
sphere, coma, astigmatism, field curvature and distortion. For more
complex aberrations it is possible to add higher-order Seidel coeffi-
cients to the fit (Supplementary Information); however, our experi-
ments demonstrate that the five primary coefficients suffice to
characterize practical, spatially varying LRI systems. In practice, we fit
these five coefficients viathe ADAM optimizer® and obtain reasonable
local minima even though the problemis nonconvex. We note that this
procedure is optimal in the maximum likelihood sense*’. Armed with
the estimated Seidel coefficients, we can generate synthetic PSFs at
any radius. Note that Seidel coefficients are easier to estimate than
Zernike coefficients in a similar fashion, which are different at each
field position***,

Deep ring deconvolution

DeepRD acceptsatwo-partinput,ablurredimage andits corresponding
primary Seidel coefficients. DeepRD is designed to incorporate these
Seidel coefficients into the deblurring processin a parameter-efficient
and interpretable manner. To that end, we propose a neural network
architecture inspired by the physical LRIimage formation model. The
firstkey design elementis to use amodified Hypernetwork®, anetwork
that predicts the weights of another, task-specific ‘primary’ network.
InDeepRD, anmultilayer perceptron (MLP)-based hypernetwork takes
in Seidel coefficients and produces a deep deblurring network that
specifically works for the given coefficients. Our second key design
element is the use of ring-wise convolution kernels. Specifically, the
hypernetwork produces CNN kernels for each radius which the primary
network applies ring by ring. Thisreplicates the revolution-invariance
assumption central to ring deconvolution and eases the space-invariant
constraint of typical convolutional kernels. Together, this design ena-
blesaneural network thatis afraction the size of aconventional U-Net
with improved performance and generalization.

To produce atraining dataset for DeepRD, we synthetically gener-
ateblurredinputimages from the Div2k and CARE fluorescence micros-
copy datasets using ring convolution with randomly sampled sets of
Seidel coefficients. We must sample coefficients which adequately
cover the attributes of realistic imaging systems. Each coefficient,
which is in units of waves, is drawn from a uniform distribution and
anoise-perturbed grid in the range 0-3 waves (we empirically find
thisrange to cover the aberrations of systems ranging from perfect to
highly aberrated). Note that without ring convolution, such a dataset
would be prohibitively slow to produce. With that in mind, we will
release both an implementation of ring convolution as well as our
dataset. Each model is first pretrained on 80,500 data points from
the Div2k dataset (800 base images blurred with 100 different Seidel
coefficients) and then fine-tuned on a small 8,400 data point subset
ofthe CARE dataset (24 images and 350 different Seidel coefficients).
After training, each method is tested on atest set of 28 unseenimages
from the CARE dataset, which are blurred using the true blur method
and noised with additive Gaussian noise.

Wefind that this physically grounded synthetic dataset generation
is effectivein training models that generalize to real-world evaluation.
Asfurtherevidence of generalization, DeepRD seems to disentangle the
effects of each aberration coefficient. Anexploration of thisinterpret-
ability is found in the Supplementary Information.

Sheet convolution, deconvolution and the LSFM PSF model
Here we derive sheet convolutionand deconvolution mathematically.
The derivations are roughly similar to those for ring convolution, but
with adifferent symmetry. Because of the similarities, our exposition
hereis more terse.

Sheet convolution and deconvolution. LSFMis a 3D imaging modal-
ity and therefore the object and PSF will be a function of three space
variables. Let g(u, v, t) describe the object intensity at location (u, v,
t),and h(x,y,z; u, v, t) describe the space-varying PSF due to Gaussian
light-sheetillumination focused along the u dimension (the choice of
uasthe first spatial dimensionisarbitrary). The superpositionintegral
foralinear optical system can then be written as

fx,y,2) = / / f g(u,v,Hh(x,y,z; u,v, t)dudvdt,

analogously to equation (1). Asbefore, we willincorporate the symme-
try of LSFM to simplify the above display. The symmetry assumption
states that the imaging optics are space-invariant, but the PSF varies
inthe udirection due tothe beam profile. Recall also that the total PSF
is the product of the imaging PSF with the illumination PSF, which is
varying. The following equation encodes these assumptions:

h(x,y,z;u,v,t) = h(x,y — v,z — t;u,0,0).

As before, plugging this into the linear forward model gives us sheet
convolution:

foey.2) = [ [ [ gu,v,0h(x,y—v,z—t,u,0,0)dudvdt
= [(g*,h)(x,y,2;u,0,0)du,

where *,, represents a 2D convolution along the v and t axes. From the
equation we see that the image is the integral of 2D convolutions of
y-zsheets of the object with y — zsheets of the PSFs. To compute this
integral, we only need to know the PSF at all values of u, and the v and
tdimensions do not matter.

With a forward model in hand, sheet deconvolution can be
solved the same way as ring deconvolution: iterative least squares
(equation (4)). The discretization and computational implementa-
tion of these algorithms mimic those of ring convolution and can
be found in our codebase.

LSFM PSF model. The remaining component of LSFM deblurring
strategy is to obtain the necessary set of 3D PSFs along one dimen-
sion. Similar to our earlier strategy for calibrating ring convolution/
deconvolution, we can do so by imaging a single calibration volume
containing randomly located, sparsely distributed point sources (for
example, fluorescent beads embedded inagarose). The resultingimage
stack will contain arandom set of PSFs at different u locations.

The simplest option is to directly estimate the PSFs at the miss-
ing u locations by taking the convex combination of the two closest
measured PSFs from the calibration stack. We use this strategy for the
bead experimentin Fig. 6.

The second optionis more akinto our Seidel fitting procedure; it
involves parametrization of the spatially varying PSFs with a unified,
differentiable model. In this case we develop a modified version of
popular Gibson-Lanni 3D PSF model for LSFM®. We will focus on our
modifications of the model; further details about the Gibson-Lanni
model and its variants are ubiquitous in the literature® . Given a
vector p of system characteristics (for example, sample refractive
index) the Gibson-Lanni model calculates the optical path difference
between the ideal and experimental imaging systems. Integrating
over this optical path difference gives the system’s 3D PSF. Our LSFM
PSF model takes this PSF and truncates its z extent according to
the light-sheet illumination thickness, thereby creating a spatially
varying PSF in u. Formally, let the Gibson-Lanni PSF be h,, then our
LSFM PSF

2
1 e_%(;(;“f)) .

o(u)\/fr

h(x.y.zu,v,6) = hy(x —u,y —v,z— 1)

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02684-5

where

ow) = a1+ (Bu)’.

The above equations arise from modeling the light-sheet asa Gaussian
beam along u; its spread o(u) changes hyperbolically along the focus
direction and its profile at a given u is a Gaussian with variance o(u)*
We have two control knobs for it, a, which controls the zspread of the
PSF at the thinnest section or waist, and 8, which controls the rate that
the spreadincreases as afunction u. Given the calibration stack, we can
optimize a and B such that our PSF model produces PSFs close to the
experimental ones. Since the PSF is a differentiable function of (a, ),
they canbe solved for using gradient-based iterative optimization, just
like forequation (5).Itis also possible toincorporate elements of pinto
this optimization if they are not known a priori. This model is used to
calibrate sheet deconvolution on the cell sample in Fig. 6.

To deploy the above models experimentally, one must ensure
that the point sources are sufficiently sparse such that the PSFs are
mostly nonoverlapping. The exact point source locations are not
importantand canbe estimated. Noisy PSFs are best handled with the
Gibson-Lannifitting method, which uses synthetic PSFs but still fits the
measured PSFs well (Supplementary Fig.1). The interpolation method
is more sensitive to noise but can be denoised effectively with thresh-
oldingand median filtering. The fitting procedures are detailed in our
codebase and follow the same general structure: first take a calibration
stack of randomly scattered point sources, estimate the locations of the
PSFs using local peak finding algorithms, produce generated PSFs at
thoselocations and use the error between the generated and measured
PSF to update the PSF model. In the case of interpolation, the last step
isreplaced by linearly interpolating the two closest measured PSFs to
the desired location to create the generated PSF there.

Blind deblurring
Our version of blind deconvolution also takes advantage of the Seidel
coefficients. Given just a blurry image, we start by randomly picking
avalue for the spherical Seidel coefficient. Then we use this value to
synthetically generate a PSF and use it to deconvolve the blurry image.
We then compute the sum of the spatial gradient of the resulting decon-
volved image (this acts as a surrogate measure of image sharpness)
and use its negative as aloss. We then minimize this loss (maximize the
sharpness) by updating our initial guess of the spherical aberration
coefficient usingits gradient withrespect totheloss function. Running
thisiteratively, we eventually converge to a final spherical aberration
coefficient, generate a final synthetic PSF and deconvolve the blurry
image with this PSF to get the final result.

Note that this procedure generalizes to spatially varying systems.
We would instead jointly estimate all five Seidel coefficients and use
ring deconvolutioninstead deconvolution at each step. This, however,
iscomputationally expensive and requires generating N (the image side
length) PSFs per iterative step. We believe it is possible to do this more
efficiently with DeepRD by replacing the ring deconvolution operation
ateachstep with DeepRD. That is, we search the space of DeepRD net-
works for the one that produces the sharpest reconstruction; however,
this is out of scope for this project and we leave it as future work.

Experimental details
Experimental details for the micro-endoscopy experiment can be
foundinref.15.

Sample preparation. Live tardigrades. Tardigrades were mixed-staged
adults (3-6 weeks old) of the eutardigrade species Hypsibius exemplaris
Z151 (reclassified from Hypsibius dujardini in 2017), purchased from
Sciento. Animals were cultured as described previously®. A mixture
of starved and nonstarved tardigrades were stained overnight with
Invitrogen nucleic acid gel fluorescent stain, whose excitation and

emission maxima are 502 nm and 530 nm, respectively. Individual
stained tardigrades were then isolated onto a glass slide for imaging.
Meanwhile, the nonfluorescent samples (USAF resolution targets and
rabbit liver tissue) were obtained imaging-ready on glass slides.

BPAE cells. BPAE cells were obtained from Thermo Fisher. They are
labeled with MitoTracker Red CMXRos and Alexa Fluor 488 Phalloidin.

Beads.The100-nm fluorescent beads were obtained from Polysciences
(17150-10). For measuring the PSF in the light-sheet fluorescence micro-
scope, we embedded the beadsin 2% agarose withafinal density 5 x10™*
ofthe stock solution.

SU8686 cells.SU8686 cells labeled with F-tractin-mRuby were embed-
ded in soft bovine collagen and then fixed before imaging with
light-sheet fluorescence microscope. They were obtained from ATCC.

Imaging. UCLA Miniscope. We used the UCLA Miniscope v.3 with the
Ximea MU9PM-MBRD 12 bit, 2.2-pm pixel sensor. Optically, the Mini-
scope consists of a gradient-index objective and achromat tube lens;
further details are provided elsewhere'. To obtain the system PSFs, we
imaged 1-um fluorescent beads randomly smeared ona glass slide. We
used theresultingimage to fit Seidel coefficients, obtaining 0.85, 0.56,
0.25, 0.29 and 0 waves of spherical aberration, coma, astigmatism,
field curvature and distortion, respectively. These numbers, while
specific to our particular assembly of the Miniscope, are consistent
with the aberration profile of a radial gradient-index (GRIN) lens®,
which is the objective lens used by the Miniscope. The fact that the
off-axis coefficients (all the primary coefficients except for spherical)
are nonzero confirms that the system is indeed spatially varying. For
comparisonwith standard deconvolution, we also acquired the center
PSF by imaging a single fluorescent bead isolated and centered in the
FoV. The PSF was then denoised before its use in deconvolution. For
deconvolution microscopy calibration, we repeatedly diluted the bead
solution withisopropyl alcohol until we were able to sufficiently isolate
asingle bead, whereas for RDM calibration we used a single dilution
and imaged a slide containing a sparse collection of beads. We used a
custom Prior Scientific 3D motion stage controlled with Micromanager
v.1.4 and Pycromanager®,

Multicolor fluorescence microscope. We used a Nikon Plan Apo VC x100
Oil DIC N2 objective with 1.518 refractive index oil in a Nikon Eclipse
Ti2 controlled with the Nikon NIS Elements Software (v.6.9.0). Images
were taken with a Hamamatsu Orca Flash 4.0 camera with 0.065-pm
pixel pitch. The PSFs were obtained with 0.01-um FluoSpheres
Yellow-Green505/515-nm F8803 and FluoSpheres Red 580/605-nm
F8801beads. First, we diluted beads in water and then further in etha-
nol until sufficient sparsity was achieved. The bead solution was then
smeared onaslide and left to dry. Finally, the beads were mounted with
adrop of glycerol and sealed with nail polish.

Light-sheet fluorescence microscope. We used a previously published
setup for Field Synthesis®® that was operated without a ring mask,
rendering it toamultidirectional selective plane illumination mSPIM®’
system with a Gaussian sheet. The microscope equipped with 488 and
561 nmlaserillumination, aSpecial Optics x28.5/NA 0.67 illumination
objective and aNikon x25/NA 1.1 detection objective, andis controlled
with a custom LabView 2016 program written by Coleman Technolo-
gies and is equipped with temperature control for long-term live-cell
imaging.

Image processing. All experimental images were captured and stored
in a raw, unprocessed format (npy or tif). Miniscope images under-
went hot pixel removal (detailed in the public code) and normaliza-
tion before deblurring. These images were cropped afterward by

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02684-5

10 pixels in each dimension to remove edge artifacts. Multicolor
images were downsampled by a factor of 2, separated into two chan-
nelsand deblurredindependently. After deblurring, the channels were
recombined and globally contrast-stretched for display. Pseudocol-
oring was conducted with ImageJ using the Green/Magenta look-up
table (LUT). These images were also cropped for edge artifacts. The
details of the multimode fiber images can be found elsewhere®”. The
bead images were upsampled by 3x and convolved with a Gaussian
kernel (3/2 pixel width) after deblurring. Neuron images were con-
volved with a Gaussian kernel (1 pixel width) after deblurring. This was
carried out according to ref. 15. LSFM stacks were similarly cropped
and contrast-stretched equally for each method for the purpose of
display. For simulation data, images were normalized before deblur-
ring and cropped after deblurring. All displayed PSFs were globally
contrast-stretched for display.

Computation. PSF generation for the simulation experiments was
conducted by synthetically generating pupil functions with the given
Seidel coefficients®. Computation was conducted using Python
on asingle GPU, either a NVIDIA GeForce RTX 3090 or NVIDIA RTX
A6000. For standard deconvolution the measured PSF was denoised
through background subtraction and pixel-wise thresholding. For
each1,024 x 1,024 image from the Miniscope and high-NA multicolor
systems, ring deconvolution took about 115 s and DeepRD took about
125 ms. For each 512 x 512 image in simulation ring deconvolution took
about 60 sand DeepRD took about 0.1s. For the 360 x 360 images from
the micro-endoscope, ring deconvolutiontook about 20 seconds. Fora
single 512 x 512 x 160 volume from the LSFM system, sheet deconvolu-
tion took about 7 min.

Allnonlearning, iterative methods are solving linear least squares
optimization problems (equation (4)); we additionally add TV regu-
larizationto these and runthemttill convergence using an ADAM opti-
mizer®®. For each method, the hyperparameters (including learning
rate and regularization strength) that provided the smallest loss and
best qualitative results were used. For deconvolution we tried a variety
of algorithms in addition to the iterative scheme, including Wiener
filtering and Richardson-Lucy deconvolution, and used the best recon-
struction, which was either iterative deconvolution or unsupervised
Wiener filtering®®.

Open-source implementations of ring convolution, polar trans-
form, Seidel fitting and ring deconvolution as well as the light-sheet
extension methods can be found in our codebase. Our intent is for
this codebase to function as an easy-to-use library such that any prac-
titioner with any imaging system can utilize RDM with little-to-no
overhead.

The baseline U-Net and DeepRD were both trained on ring-
convolved images from the Div2k dataset. For the simulation results,
both models were additionally fine-tuned on images from the CARE
dataset. Allmodels were trained till convergence of the validation loss
and optimized over hyperparameters. The baseline U-Net architecture
is based on the popular CARE model*.

We used the following Python packages: Python 3.8.1, numpy
1.20.2, pytorch 2.4.1, scipy 1.6.2, scikit-image 0.17.2, pillow 8.2.0, mat-
plotlib 3.2.2, tqdm 4.65.0, kornia 0.5.3 and jupyter 1.0.0. ImageJ 1.53a
was also used for psuedocoloring for display.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thedatausedinall oftheimaging experiments (Miniscope, multicolor
fluorescence, multimode fiber and light-sheet) are publicly available
on Box (https://berkeley.box.com/s/zmsjjgmquwq2roh4d9qthcn-
v3rhwuidn). Additional experimental data from the multimode fiber

system can be requested from ref.15 (https://opg.optica.org/boe/
fulltext.cfm?uri=boe-11-8-4759&id=433935). The datasets used to
train and fine-tune DeepRD and to evaluate the quantitative perfor-
mance of the methods are also hosted on Box (https://berkeley.box.
com/s/vv3g6avhrr9agijmlj3b1153007x9gao). These datasets were
sourced from the CARE dataset” (https://publications.mpi-cbg.de/
publications-sites/7207/) and the Div2k dataset® (https://data.vision.
ee.ethz.ch/cvl/DIV2K/). The high-resolution pretraining dataset, due
toitslarge memory useage, willbe made available upon request.

Code availability

The code for implementing ring convolution, ring deconvolution,
DeepRD (including pretrained model weights) and Seidel PSF fitting
along with tutorials on our experimental dataare publicly available on
GitHub (https://github.com/apsk14/rdmpy).
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Extended Data Fig. 1| RDM for space-invariant systems. Our Seidel and blind resolution from noise-based artifacts. Our blind deconvolution method usually
deconvolution algorithms compared with standard deconvolution on USAF correctly estimates the spherical Seidel coefficient well; however, for certain
test target and live tardigrade images from the Miniscope. The field-of-view images, the blind method can overestimate the coefficient, leading to over

is cropped to ensure space-invariance. Our methods outperform standard sharpening of the image, as in the USAF resolution chart.

deconvolution by using a synthetic PSF, which prevents artifacts and loss of
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Extended Data Fig. 2| Additional comparisons on micro-endoscope data.
Anevenly spaced grid of 13 x 13 point sources are imaged with the micro-
endoscope system. a) Results from each method. Top row (left to right) is the raw
measurement, deconvolution with an experimental PSF and deconvolution with
aGaussian kernel fitted to the PSF. Bottom row (left to right) is deblurring via
modal decomposition, SVRL, and ring deconvolution. As seeninb), the spatially
varying methods (bottom row) are superior to the deconvolution methods
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(top row) due to the substantial spatial variation in the PSF. Among the spatially
varying methods, ring deconvolution produces the smallest, most consistent
beads. The quantitative results in ¢) also show that ring deconvolution has the
smallest average bead radius with the least variation. Moreover, unlike the other
methods, its performance does not degrade on beads far from the center of
theFoV.
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[ ] Adescription of all covariates tested

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

0 XX X OO

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data was collecting using Micromanager v1.4 accompanied by Pycromanager, Nikon NIS Elements Software (version 6.9.0), and LabView 2016.

Data analysis All code can be found in our github repository: https://github.com/apsk14/rdmpy
Python 3.8.1 was used with the following packages:
* numpy 1.20.2
* pytorch 2.4.1
* scipy 1.6.2
* scikit-image 0.17.2
* pillow 8.2.0
* matplotlib 3.2.2
*tqdm 4.65.0
* kornia 0.5.3
* jupyter 1.0.0
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ImageJ 1.53a was also used for psuedocoloring for display

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data used in all of the imaging experiments (Miniscope, multicolor fluorescence, multimode fiber, and light-sheet) is publicly available on Box (https://
berkeley.box.com/s/zmsjjgmaquwaq2roh4d9gthcnv3rhwuidn). Additional experimental data from the multimode fiber system can be requested from Turcotte et al.
(https://opg.optica.org/boe/fulltext.cfm?uri=boe-11-8-4759&id=433935). The datasets used to train and fine-tune DeepRD, and to evaluate the quantitative
performance of the methods are also hosted on Box (https://berkeley.box.com/s/vv3g6avhrragijmlj3b1153007x9gao). These datasets were sourced from the CARE
dataset Weigert et al. (https://publications.mpi-cbg.de/publications-sites/7207/) and the Div2k dataset Agustsson et al. (https://data.vision.ee.ethz.ch/cvl/DIV2K/).
The high resolution pretraining dataset, due to its large memory useage, will be made available upon request.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable

Population characteristics Not applicable
Recruitment Not applicable
Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All samples in this study were individually imaged and processed independently. The methods presented are not statistical in nature and no
statistics over the samples were relevant or reported. Sample sizes were chosen manually by the authors to ensure a sufficient, non-
redundant display of the method.

Data exclusions  No data was excluded from the manuscript

Replication The data acquisition and processing protocol was done by different authors in different locations at different times. In each case, the method
proved to be successful with consistent performance across the different acquisition environments and imaging modalities. Code is provided
to reproduce our main results.

Randomization  Samples/organisms were selected in a psuedorandom fashion by iterating over a large batch of the sample/organism and selecting individual
images that maximized biologically relevant content. Since the method did not report any statistical attributes of the data, there was no

specific criteria for sample/organism selection. All model data was randomly split into training, validation, and test sets.

Blinding Blinding was only relevant in the context of the DeepRD model, which was only tested on unseen experimental data or an unseen synthetic
test set.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research
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Cell line source(s) The cells imaged were from the bovine pulmonary artery endothelial (BPAE) cell line (CVCL_4130) and were sourced from
ThermoFisher (https://www.thermofisher.com/order/catalog/product/F36924). The other cells used were from the SU.86.86
cell line sourced from ATCC: CRL-1837 (https://www.atcc.org/products/crl-1837).

Authentication Cells were authenticated by ThermoFisher. The authors did not authenticate them before imaging.

Mycoplasma contamination To the author's knowledge, the cells were not tested for Mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified lines were used.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mixed-staged adults of the eutardigrade species Hypsibius exemplaris Z151 (reclassified from Hypsibius dujardini in 2017), purchased
from Sciento (Manchester, United Kingdom). Ages ranged from 3 to 6 weeks.

Wild animals The study did not involve wild animals.

Reporting on sex Sex-based analysis is not relevant for this study. The technique presented is about deblurring images taken with aberrated systems
and is agnostic to the sample being imaged.

Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight No ethical approval or guidance is required for tardigrades.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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