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Akey challenge in understanding subcellular organization is quantifying
interpretable measurements of intracellular structures with complex
multi-piece morphologies in an objective, robust and generalizable manner.
Here we introduce a morphology-appropriate representation learning
framework that uses three-dimensional rotation-invariant autoencoders
and point clouds. This framework is used to learn representations of
complex shapes that are independent of orientation, compact and
interpretable. We apply our framework to intracellular structures

with punctate morphologies (for example, DNA replication foci) and
polymorphic morphologies (for example, nucleoli). We explore the
trade-offsin the performance of this framework compared to image-based
autoencoders by performing multi-metric benchmarking across efficiency,
generative capability and representation expressivity metrics. We find that

the proposed framework, which embraces the underlying morphology
of multi-piece structures, can facilitate the unsupervised discovery of
subclusters for each structure. We show how this approach can also

be applied to phenotypic profiling using a dataset of nucleolar images
following drug perturbations.

A central goal of cell biology is to understand the spatial and dynamic
organization of the components within the celland how their interac-
tions contribute to cell function. Enabled by advances inimaging meth-
ods, we are now at the dawn of the big data era for cellular imaging'™,
in which unprecedented amounts of rich image datasets can enable
quantitative characterization of cellular organization and its connec-
tions with cellular phenotype.

The term cellular organizationencompasses multiple aspects of a
cell’s configuration that must be unpacked before further discussion.
Here we focus ontwo of these aspects: spatial protein distributions and
shape of multi-piece intracellular structures. For example, the spatial

pattern of fluorescently labeled proliferating cell nuclear antigen
(PCNA), representing the punctate morphology of DNA replication
foci, changes throughout the cell cycle, making it difficult to quantify
due to its dynamic and complex nature. These types of spatial distri-
butions are usually analyzed via the texture patterns they represent,
for example, computing Haralick texture features’. However, the
biological meaning of some of these features, such as the ‘second
angular moment of texture’, is difficult to understand. Therefore,
with spatial protein distributions, we face the challenge of developing
arobust and generalizable analysis workflow that facilitates biological
interpretation.
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Onthe other hand, major organelles or subcellular structures can
often be analyzed by segmentation, which separates the foreground
signal from the background. Intracellular structures composed of a
single segmented piece, such as the cellitself or the nucleus, can then
be studied via a range of features including, among other methods,
shape decomposition using spherical harmonic expansion*®’. This
approachis, however, mainly used for cell and nuclear shapes because
itis limited to continuous shapes, and does not easily apply to complex,
multi-piece structures like the Golgi apparatus, which has adiscontinu-
ousshape. Infact, mostintracellular structures exhibit apolymorphic
morphology consisting of multiple pieces, which presents another
challenge for interpretable image analysis pipelines. While each
individual piece could be segmented and measured, the entirety of
the multi-piece structure cannot be easily represented as a whole.
Therefore, we face two key challenges: the need for interpretable
methods to analyze spatial protein distributions, and the difficulty in
representing complex, multi-piece intracellular structures.

To overcome these two challenges, we demonstrate the use of
three-dimensional (3D) point clouds to encode biological data in
microscopy images, combined with an unsupervised ‘representation
learning’ framework for single-cell feature extraction. Representation
learningis afield of machine learning that has become anincreasingly
popular way to extract meaningful features directly from raw data
without the need for hand-engineered features®’. These features arein
theformoflatent variableslearned by neural networks during training,
which we refer to as ‘representations’.

Animportant aspect of the proposed learning framework is that
it is generative, meaning we can transform learned representations
back into the original point clouds and vice versa, resulting in highly
interpretable features and addressing the first challenge described. A
key contribution of this work is the use of point clouds to incorporate
intensity information present in large 3D images representing spatial
protein distribution in a segmentation-free manner. Furthermore, to
address the challenge of analyzing multi-piece intracellular structures,
we adapted the point cloud-based approach to handle segmented
multi-piece shapes. This is achieved using the concept of signed dis-
tance field (SDF), allowing us to generalize our framework to more
complexintracellular structures.

Therepresentations learned by neural networks normally depend
onthe orientation of an object in the image. Even though the orienta-
tion of the cells is important in many contexts, such as when cells are
subject to shear stress, during development or directed migration,
it may not have biological relevance in other contexts. For example,
the orientation of a cell within a monolayer colony grown on a sub-
strate may merely reflect the orientation of that colony relative to the
microscope stage and not anything biological. Therefore, it would be
desirable to design analysis workflows where the image orientation
canbe factored out of the learned representations if appropriate. We
achieved this by leveraging the notion of ‘3D rotation invariance’ to

extract features that do not depend on an object’s orientation. The
incorporation of geometric information in the form of the object
orientation into the representation learning process is an example
of ‘geometric deep learning”’°. By using point clouds as a unifying
way of encoding image data, we are able to overcome the challenges
described above and take advantage of previous implementations for
rotation-invariant feature learning" " while extending their applica-
tions to quantitative cell biology.

Here, we first develop a rotation-invariant representation
learning framework that uses point clouds to encode relevant infor-
mation about the underlying biological data. We then use a synthetic
dataset of punctate structures to confirm that rotation-invariant
representations are not sensitive to data orientation and are more
compact when learned from data encoded as point clouds compared
to when they are learned from microscopy images directly. We show
how 3D rotation-invariant features learned from point clouds can be
used to recover unique morphological changes of DNA replication
foci across the cell cycle without supervision. We also explore the
localization patterns of several other punctate structures and
discover new patterns of intracellular organization. Next, by adapt-
ing our framework to handle more complex multi-piece structures,
we systematically characterize sources of shape variation of other
major intracellular structuresincluding nucleoli, Golgi and lysosomes.
Finally, we demonstrate how the learned representations based on this
framework can be used for detecting morphological alterations in a
nucleolar drug perturbation dataset, and for visualizing the average
phenotype for each drugto aidininterpretability of the phenotype.

Results

A framework for morphology-appropriate representation
learning

The3Drotation-invariant representation learning framework has two
main components. The first component addresses a critical issue in
biologicalimage analysis that is capturing consistent structural infor-
mation regardless of an object’s orientation in the image. We used a
specialized neural network encoder that can ‘understand’ biological
shapes consistently, even when they are rotated in 3D space. This neural
network learns representations in a vector form. This is done in a way
that multiple rotations of the same object are mapped into distinct
rotations of the same vector” (Fig. 1a and ‘Models’ in Methods).

The second component consists of encoding the raw single-cell
image data into a point cloud that is then fed to the neural network
for representation learning. This encoding process is done in a
morphology-appropriate manner, and is thus slightly different for
punctatestructures, such as DNA replication foci, versus polymorphic
intracellular structures, such as nucleoli. The biological meaning of
shape differs between these two types of morphologies; we focus on
encoding only the relative location of individual pieces in punctate
structures (Fig. 1b and ‘Punctate structures’ in Methods), while both

Fig.1| Application-appropriate representation learning framework for
complexintracellular structure morphologies. a, 3D rotation-invariant
representation learning framework using rotation-equivariant encoders.
Rotations of the same shape are projected into vector representations using
a3Drotation-equivariant encoder. The norm of the vector representation is
used to compute the rotation-invariant representation. The orientation of the
vector representation is used to compute the rotation matrix. b, Point cloud
learning framework for punctate structures like DNA replication foci. Top

row, point cloud preprocessing for punctate structures. Shown are single-cell
segmentations for the nucleus and cell membrane, and raw intensities for DNA
replication foci (via PCNA). Four-dimensional (4D; XYZ + intensity) point clouds
are sampled from the intensity images by converting intensities to probabilities.
Theintensity coordinate is scaled to ensure that the range of intensity valuesis
like the range of XYZ coordinate values. Bottom row, rotation-invariant point
cloud representation learning model. The 4D point cloud is used as input to the

rotation-equivariantencoder. The decoder reconstructs the rotation-

invariant representation to obtain a rotation-invariant reconstruction. The
reconstruction is reoriented using the learned rotation matrix. ¢, Point cloud
learning framework for polymorphic structures like the GC of nucleoli (via
nucleophosmin). Top row, point cloud SDF preprocessing for polymorphic
structures. Shown are single-cell segmentations for the nucleus, the cell
membrane and nucleoli (GC). Nucleoli segmentation from single-cell datais
used to generate a 3D mesh. A surface point cloud is sampled from the nucleolar
mesh. Another point cloud is sampled from the 3D bounding box volume and its
points are assigned local SDF values relative to the surface of the nucleolar mesh.
Bottom row, rotation-invariant point cloud SDF representation learning model.
The surface point cloud is used as input to the rotation-equivariant encoder. The
decoder reconstructs the vector representations to obtain the SDF point cloud.
Therotation-invariant representation and the rotation matrix are computed
from the vector representation.
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therelative location and the shape of individual pieces are considered
important for polymorphic structures (Fig. 1cand ‘Polymorphicstruc-
ture datasets’ in Methods).

We use these morphology-appropriate encodings as the input to
our rotation-invariant representation learning framework designed
as an ‘autoencoder’™: First, the 3D rotation-equivariant ‘encoder
network’ compresses the generated point clouds into vector latent
representations. Next, the latent representations are used by a‘decoder
network’ to reconstruct the input data. In the case of punctate struc-
tures, the decoder network reconstructs the input point cloud using
acombination of the learned rotation-invariant representations and

Rotations of the same shape
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rotation matrices to reorient the reconstructed shape into the cor-
rectinputorientation (Fig. 1b). In the case of polymorphicstructures,
the decoder network reconstructs the SDF point cloud (Fig. 1c and
‘Polymorphic structure datasets’ in Methods) from the vector latent
representations, which are converted into rotation-invariant repre-
sentations after training by taking their norms (‘Models’ in Methods).

To evaluate the utility of the 3D point cloud encoding, we per-
formed benchmarking against traditional methods using neural
network models trained on 3D images directly. We trained clas-
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Fig. 2 |3Drotation-invariant point cloud models are efficient, produce low
rotation invariance errors and generate good reconstructions in a synthetic
dataset of punctate structures. a, Dataset of synthetic punctate structures
generated using cellPACK. A 3D nuclear shape is packed with six different rules:
planar O, planar 45, planar 90, radial, random and surface. The surface rule
packs spheres close to the nuclear boundary. The random rule packs spheres
randomly across the 3D nuclear volume. The radial rule packs spheres close to
the centroid. The planar rules pack spheres with a gradient away froma plane
indicated in red. Each rule is used to pack 254 different nuclear shapes. The black
arrows for planar O versus planar 45 highlight the symmetric versus asymmetric
nature of these two packings in nuclei with high aspect ratios. b, Benchmarking
unsupervised representations across different models and metrics. Left, polar
plot showing the performance of classical and rotation-invariant image and
point cloud models across efficiency metrics (model size (n =1), inference time
(n=40)and emissions (n =40)), generative metrics (reconstruction (n =234)

z location
O 7

and evolution energy (n =1,053)) and representation expressivity metrics
(compactness (n=5), classification of rules (n = 5), rotation invariance error
(n=936) and average interpolate distance (n =1,053)). Metrics are z-scored
andscaled such that larger is better. Right, bar plots showing raw metric values
across models for each metric. Error bars are the s.d. The best model for each
metricisindicated. ¢, PCl for each rule using the rotation-invariant point cloud
model trained with jitter augmentations. PCA s fit to representations of each
rule separately. Shown are normalized PCs (s.d./o) sampled at three map points
(-20to20insteps of o). Black arrows for planar O versus planar 45 indicate the
symmetric versus asymmetric reconstructions for these two packings at 2¢.

d, Six archetypes computed from the rotation-invariant point cloud represen-
tations. Each archetype corresponds to one of the six rules. All reconstructions
shown are cut at the midplane. Color associated with each point is the distance
from the midplanein Z.

adding the geometric constraint of rotation invariance. We expected
point cloud-based models to outperform image-based models for
two reasons. First, point clouds are a less redundant way of encoding
sparse multi-piece intracellular structures compared to image-based
models. Thisisbecause asparseintracellular structure occupies only a
fewvoxelsin 3D space (for example, ~8% of voxelsin a3Dimage of DNA
replication focicorrespondto therelevant signal of PCNA in late S-G2
cell-cycle stages), and consequently, most of the 3D space contains
empty and redundant information. Sampling point clouds from the
regionoccupied by the structure can help remove this redundancy. Sec-
ond, image-based autoencoders often generate blurry reconstructions
that canbe particularly problematic for small objects"*. More details
aboutallmodels used herein can be found in ‘Models’in Methods.
We used a multi-metric approach to evaluate our models and
the representations learned by them. Our goal is to increase the

transparency of the reasons for the performance of these models,
and to explore trade-offs. Importantly, we hope to identify models
that are quantitatively useful across abroad set of tasks to make gain-
ing biological insight from the learned representations more likely,
not necessarily the model that is best for any one metric. The models
were evaluated withrespect to their efficiency, generative capabilities
and representation expressivity as detailed in Extended Data Fig. 1
(Supplementary Note 1). Considering all these metrics together, we
quantified the holistic utility of each model and the advantages and
disadvantages of using each approach.

Synthetic data evaluation reveals holistic representations

We started by evaluating the effectiveness of 3D rotation invariance
and the choice of using point clouds to encode punctate structures
using synthetic data. We used cellPACK to create a synthetic dataset
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of punctate structures with known rules of organization. cellIPACK
generates 3D models of complex biological environments using novel
packing algorithms". To create the synthetic dataset, we used six spatial
rules for packing spheres inreal 3D nuclear shapes based on gradient
algorithms (‘cellPACK synthetic single-cell dataset’ in Methods and
Fig. 2a). Importantly, the stochastic nature of the packing algorithm
generates heterogeneity in the distribution of spheres across the
simulated nuclei that makes the recovery of rules via unsupervised
learning difficult.

Since 3D rotation is an important variable associated with the
planar rules, we expected 3D rotation-invariant models to give us
the most compact representations by factoring out this variable. We
additionally hypothesized that point cloud models (Fig. 1a) would
provide better representations than image models because they
better describe the punctate nature of the synthetic datarepresented
by the centroid of the packed spheres (Fig. 2a). To test this hypothesis,
we trained two classical and two 3D rotation-invariant models using
images and point clouds as input data, respectively, resulting in
four models for evaluation (‘Punctate structures’ and ‘Models’ in
Methods and Supplementary Notes 2 and 3).

We found that point clouds displayed superior performance
across all efficiency metrics (model size, inference time and emissions
inFig. 2b).In addition, point clouds also produced better reconstruc-
tions (‘reconstruction error’) and had low evolution energy scores,
meaning that the interpolations between two shapes are smooth.
We also confirmed that the implementations of the rotation-invariant
models were indeed generating representations that were not sen-
sitive to the orientation of the input data (Supplementary Fig. 1).
Specifically, we evaluated that the model reconstructions given dif-
ferent orientations of the same input shapes were indistinguishable
(Supplementary Note 4).

We found that rotation-invariant representations from point
clouds were more compact using the Levina-Bickel intrinsic dimen-
sionality metric (‘compactness’)® and had much lower rotation invari-
ance errors compared to their image-based counterpart (Fig. 2b). All
four models were able to reconstruct the unique morphologies associ-
ated witheach packing rule (Supplementary Fig. 2). However, we found
that representations frombothrotation-invariant models were slightly
worse than their classical counterparts at classifying the six rules (‘rule
classification’in Fig. 2b). This was an expected outcome because rota-
tion is an important distinguishing feature of the planar rules and
rotation-invariant representations are insensitive to this feature.
Overall, the 3D rotation-invariant point cloud model was an efficient
generative model thatlearned compact and orientation-independent
representations for synthetic punctate structures.

Having established the holistic utility of the rotation-invariant
point cloud model on synthetic data, we next performed principal
component analysis (PCA; Supplementary Note 5.1) on the learned
representations using this model to interpret their meaning. We per-
formed PCA on representations for each rule to assess their internal
variability. By applyingjitter augmentations (Supplementary Fig. 2g;
see jitter details in Methods) during model training, we observed

slightly improved reconstruction quality, especially for radial and
planar rules (compare the reconstructions in Supplementary Fig. 2g
to the reconstructions in Supplementary Fig. 2f). Consequently, we
conducted subsequent PCA analyses using the jitter-augmented
model. By visualizing the first principal component (PC1) of the recon-
structions for each rule via a latent walk, we found that PC1 recovers
how nuclear size affects each rule’s packing (Fig. 2c). Notably, the
rotation-invariant reconstructions for all planar rules are alignedin the
samedirection, allowing us, for example, to focus on the subtle differ-
ences in spatial distribution between 0 and 45 degrees of orientation
(Supplementary Note 4).

Next, we performed an archetype analysis" to find extreme
points in the representations of the synthetic dataset (Supplemen-
tary Note 5.2). Contrary to the PCA analysis, the archetype analysis
was performed on the representations of all samples in the synthetic
dataset regardless of its packing rule. Archetypes are determined so
that observations can be approximated by convex combinations of
the archetypes. By setting the number of archetypes to six, we found
each archetype represented one of the six rules used in cellPACK to
generate the synthetic dataset. These results show that the obtained
point cloud rotation-invariant representations can enable unsuper-
vised rule discovery for a synthetic dataset of punctate structures.

Representations recover cell-cycle patterns of DNA

replication foci

After establishingits applicability to synthetic data, we tested the rep-
resentation learning framework on a real single-cell image dataset of
punctatestructures for biological discovery and hypothesis generation.
Thedataset contains single-cellimages of DNA replication fociinhuman
induced pluripotent stem (hiPS) cells expressing fluorescently tagged
PCNA (N=2,420; ‘DNA replication foci dataset’in Methods). DNA repli-
cation fociare punctate and display a continuous change in their overall
localization pattern and intensity throughout cell cycle® (Fig. 3a).
Due to tagged PCNA fluorescence intensity being animportant source
of variation for DNA replication foci patterns, we adapted the point
cloud sampling strategy so that the raw image intensity is treated as a
fourth coordinate, inaddition to the XYZspatial coordinates (Extended
Data Fig. 2a,b and ‘DNA replication foci dataset’ in Methods). This
additional coordinate ensures that intensity information is captured
inthe learned representations (‘Point cloud models’ in Methods).

To test whether the representations learned with these data
capture biologically relevant features about DNA replication foci
localization, we manually classified each single-cellimage in this data-
set into one of eight cell-cycle stages based on the spatial pattern of
PCNA (‘DNA replication foci dataset’ in Methods). We also manually
labeled cells as outliers if they were dead, dying or did not express
PCNA. Next, we used the representations learned by each of the four
models to benchmark their performance on various tasks, including
the application-appropriate task of classifying cell-cycle stages and
detecting outliers from the DNA replication foci dataset.

We found that point cloud models were more efficient but, in this
case, not as compact as the rotation-invariant image model (Fig. 3b).

Fig. 3| Rotation-invariant point cloud representations recover the cell-
cycle-dependent spatial pattern of DNA replication foci. a, Dataset of DNA
replication fociin hIPS cells expressing monomeric enhanced green fluorescent
protein (MEGFP)-tagged PCNA. DNA replication foci have a stereotypical cell-
cycle-dependent localization pattern. Shown are examples of image and
sampled point cloud center slices with adjusted contrast for eight expert-
annotated cell-cycle stages. b, Benchmarking unsupervised representations
across different models and metrics. Left, polar plot showing performance of
classical and rotation-invariantimage and point cloud models across efficiency
metrics (modelsize (n=1), inference time (n =40) and emissions (n =40)),
generative metrics (reconstruction (n = 122) and evolution energy (n = 180))
and representation expressivity metrics (compactness (n = 5), classification

of cell cycle via top-2 classification accuracy (n = 5), rotation invariance error
(n=488) and average interpolate distance (n =180)). Metrics are z-scored and
scaled such that larger is better. Right, bar plots showing raw metric values across
models for each metric. Error bars are standard deviations. The best model for
each metricisindicated. ¢, Eight archetypes identified using rotation-invariant
point cloud representations. Each archetype corresponds to one of the eight
expert-annotated cell-cycle stages. d, PC1 for each cell-cycle stage using rotation-
invariant point cloud model. PCA s fit to representations of each cell-cycle

stage separately. Shown are normalized PCs (s.d./o) sampled at three map

points (—20 to 20 in steps of 0). e, Average canonical reconstructions across five
bins of nuclear volume (Supplementary Note 5.3). All reconstructions shown

are center slices.
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Point cloud models also provided better overall reconstructions com-
pared to image models (compare reconstructions in Supplementary
Fig.3f-hto Supplementary Fig. 3b,c). Despite the poor reconstruction
of both image models (Supplementary Fig. 3b,c), we found that the

rotation-invariant image model was the best at classifying cell-cycle
stages (‘Cell-cycle classification’ in Fig. 3b; 81% accuracy versus 80%
accuracy for the best point cloud model). Thisresult demonstrates the
limits of evaluating models using a single metric alone. We confirmed
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that poor reconstructions ofimage models were not due to dataset size
orimage normalizationissues using an alternative approach (Supple-
mentary Fig. 3d and ‘Masked autoencoders using vision transformers’
of Methods). We also found that point cloud models had slightly better
performance detecting outliers compared to image-based models
(‘Outlier classification’in Fig. 3b; ~100% accuracy versus 98% accuracy
for the bestimage model). Finally, we found that the rotation-invariant
point cloud model had lower rotation invariance error scores com-
pared toitsimage counterpart. Overall, the results elucidate the chal-
lenge of reconstructing sparse intracellular structures using classical
image autoencoders®, and highlight the good performance of the
rotation-invariant point cloud representations across many metrics
evaluated for the DNA replication foci dataset.

Tointerpret therepresentationslearned by the rotation-invariant
point cloud modelfor each cell-cycle stage, we performed PCA on the
dataset, stratifying the analysis by manual cell-cycle stage annotations
andfittingthe PCA separately for each stage. As before, the PCA analysis
isfollowed by alatent walk and datareconstruction that can be visually
evaluated. A latent walk along PC1 for each cell-cycle stage revealed
some overlap inthe morphology and intensity of DNA replication foci
between neighboring cell-cycle stages (early S 0 =2 and early S-mid S
o=-2,for example). This highlights the inherent uncertainty that is
present in the task of manual annotation of a continuous process like
cell cycleinto discrete classes.

We found that anarchetype analysis with eight archetypesonthe
representations of all cell-cycle stages was able to recover expected
cell-cycle patterns of DNA replication foci (order of archetypes in
Fig.3d resembles examplesinFig.3cforo=0). The archetypes capture
three main sources of variation in the dataset as expected. The first is
overall nuclear shape, which is mainly represented by archetypes dis-
playing different nuclear sizes and elongations. Inaddition to nuclear
shape, theintensity and localization of DNA replication foci are differ-
ent between archetypes. These two sources of variation seemed con-
sistent with what we observed in real PCNA images. Lastly, the spatial
pattern of PCNA changes from a dim signal uniformly distributed in
the nucleus at G1to compact, well-localized bright spotsin lateS.

Next, weinvestigated whether the learned representations could
capture known changes in the spatial patterns of DNA replication
foci across the cell cycle in an unsupervised manner. Instead of using
expert-generated labels, we derived pseudo labels based on nuclear vol-
ume. This was done by dividing the nuclear volume into five bins, each
correspondingto adifferent portion of the cell cycle (Supplementary
Note 5.3). For each bin, we computed the average representation of the
DNA replicationfocipatterns by averaging the rotation-invariant point
cloudrepresentations of all cellsin that bin (Fig. 3e). We visualized the
average representations across the bins (Fig. 3e), and we observed that
the size of the DNA replication foci point cloud increased withiincreas-
ing nuclear size. We also observed a transition in the DNA replication
foci pattern from a uniformly distributed dim set of puncta into a
coalesced set of bright dots. Thisis reminiscent of the transition from

GltolateS. This pattern was then followed by signal sparsificationinto
uniform dim punctate structures again, whichisindicative of the transi-
tionfrom late Sto G2. However, we observed that some subtle patterns
from cell-cycle stages with small numbers like mid S-late S (V= 75) and
late S (N=144) were missing. Overall, these results demonstrate that the
learned point cloud rotation-invariant representations can recover the
overallbiological behavior of DNA replication foci of well-represented
cell-cycle stages in an unsupervised manner.

Interpreting spatial patterns of other punctate structures

To assess whether our approach would generalize to other intracellular
structures with punctate morphology, we analyzed a larger dataset
of punctate structures from the WTC-11 hiPS cell single-cell image
dataset vl (Methods). This dataset comprises centrioles (N =7,575),
peroxisomes (N=1,997), endosomes (N =2,601), nuclear pores
(N=17,703), nuclear speckles (N=2,980), cohesins (N=2,380) and
histones (V=15,875). Examples of these structures are shownin Fig. 4a.
Once again, we trained classical and rotation-invariant image-based
and point cloud-based models on this larger dataset (Extended Data
Fig.2c; ‘Punctate structures’in Methods). Inaddition to the usual set of
evaluation metrics, we tested the applicability of the learned repre-
sentations for two classification tasks. The first task focused on iden-
tifying the specific intracellular structures from the seven options
available in the dataset. The second task involved classifying cell-
cyclestages (interphase or mitosis) based on the annotations provided
within the dataset (Supplementary Note 1.2).

Overall, we found that classicalimage-based models provide bet-
terreconstructions when trained with the combination of these seven
different punctate structuresrelative to what we observed for the same
modelstrained onthe DNA replication foci dataset alone (Supplemen-
taryFig.4a,b). Despite thisimprovementin reconstruction, we noticed
thatthe classicalimage-based model poorly reconstructs some of these
structures including centrioles, peroxisomes and endosomes (see
blurry reconstructionsin Supplementary Fig. 6b). In addition, we found
thatimposingrotationinvariance further deteriorates reconstruction
of image models across all structures (Supplementary Fig. 4c). Once
again, an alternative approach confirmed that poor reconstruction
was not due to dataset issues (Supplementary Fig. 4d and ‘Masked
autoencoders using vision transformers’ in Methods).

Both classical and rotation-invariant point cloud models pro-
duced more accurate and comparable reconstructions, but with spa-
tial distribution artifacts for structures with fewer training samples,
like endosomes and peroxisomes, like the classical image model (as
shownby arrows in Supplementary Fig. 4f,g). In addition to providing
improved reconstructions compared toimage models, we found that
the rotation-invariant point cloud representations performed well at
both structure classification (-95% accuracy versus 90% accuracy for
bestimage model) and cell-stage classification (-58% accuracy versus
57% accuracy for best image model), while being more compact and
orientation independent (Fig. 4b).

Fig. 4| Representation learning framework reveals interpretable spatial
patterns for other punctate structures from the WTC-11 hiPS cell single-
cellimage dataset v1. a, Dataset of punctate structures in hiPS cells from the
WTC-11 hiPS cell single-cell image dataset vlincluding nuclear pores, nuclear
speckles, cohesins, histones, centrioles, peroxisomes and endosomes’.

Shown are examples of images and sampled point cloud center slices of the
mEGFP-tagged protein. b, Benchmarking unsupervised representations across
classical and rotation-invariantimage and point cloud models across efficiency
metrics (modelsize (n =1), inference time (n =40) and emissions (n =40)),
generative metrics (reconstruction (n = 7,620) and evolution energy (n = 180))
and representation expressivity metrics (compactness (n = 5), classification
(n=5), rotationinvariance error (n = 16,004) and average interpolate distance
(n=180)). Classification tasks included classifying seven different structures,
andsix different interphase/mitotic stages (Supplementary Note 1.2). Left, polar

plot showing the performance across models where metrics are z-scored and
scaled such that larger is better. Right, bar plots showing raw metric values across
models for each metric. Error bars are the s.d. The best model for each metric is
indicated. ¢, Real examples for each map point of PC1 computed using PCA fit to
representations of each structure separately using the rotation-invariant point
cloud model. Only cells ininterphase were included. Shown are XY and XZ views.
The structure channel is shown as center slices across the nuclear centroid for
nuclear pores, cohesins and histones, or as maximum projections for nuclear
speckles, centrioles, endosomes and peroxisomes. d, Latent walk for PC1. Shown
are normalized PCs (s.d./o) sampled at three map points (20 to 20 in steps of 0).
Reconstructions shown are cut at the midplane. Membrane centroids are
marked for centrioles. Only cells ininterphase were considered for this analysis.
Centriole reconstructions were rotated to be aligned to the x axis.

Nature Methods | Volume 22 | July 2025 | 1531-1544

1537


http://www.nature.com/naturemethods

Article https://doi.org/10.1038/s41592-025-02729-9

a Punctate structures from WTC-11 hIP stem cell single-cell image dataset v1
Nuclear pores  Cohesins Nuclear speckles  Histones Centrioles Endosomes Peroxisomes 5 um
— Cell — Nucleus | ;
Yy
L,
Intensity Intensity Intensity Intensity Intensity
420 o 600 450 o 630 420 o 1,500 450 o 2,885 440 o 800

X

Y

Intensity Intensity Intensity Intensity Intensity N Intensity Intensity”
600 450 o 630 420 o 1,500 450 2,885 C—mmm 800 420 = 600 400 o
. . . Modelsize  Inference time Carbon emissions
b Benchmarking results across different models and metrics . -
Inference b .
time Carbon emissions L« e »
Model Evolution Ca—— ] 107 . -
—-— - size energy * Best model 10 10 10 0 02 04 10 107 10
o| Classical Evolution energy Reconstruction  Interpolation
1 | error distance
E| Rotation Interphase/ = - e—
invariant B Reconstruction
mitosis ok
e . 2 error
LT classification * -
§ Classical *
o —— - 2 -2 o 2 -4 el
2 Rotation Structure Interpolation rotat 10 10 0% 10 100 10 10
=1 ificati i otation Interphase/mitosis ~ Structure
&l invariant classification 2 distance invariance error clgssiﬂc/ation classification ~ ComPactness
st Compactness Rotation J - .
invariance error *
- » -
3 * *
10° 10" 04 05 0608 09 10 O 10 20
Analysis for rotation-invariant point cloud model
c Real cell instances per intracellular structure sampled along PC1
P P! g
Nuclear pores Cohesins Nuclear speckles Histones Centrioles Endosomes Peroxisomes
Top
view
-20
n oo
view
Top
view
0]
view
Top
view
20
g Side
Caw wmy @ O\ Soom\ SN e
Intensity Intensity Intensity Intensity Intensity Intensity Intensity
420 o 600 450 o 630 420 o 1,500 450 o 2,885 440 Cmm 800 420 o 650 400 o 515
d PC1 per intracellular structure for interphase cells (generative reconstructions)
Nuclear pores Cohesins Nuclear speckles Histones Centrioles Endosomes Peroxisomes

(16,819 cells) (2,275 cells) (2,837 cells) (15,091 cells) (7,123 cells) (2,41 cells) (1,853 cells)

- -

PR
£

20

d

Intensity Intensity Intensity Intensity Intensity.
420 C—mmm 600 450 o 630 420 C——mmm 1500 450 = 2,885 440 8

Intensity
= 6

Intensity
420 ="

00 400 15

Nature Methods | Volume 22 | July 2025 | 1531-1544 1538


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02729-9

We then fit PCA to the dataset of each structure independently to
interpret the rotation-invariant point cloud representations. First, we
sampled real single-cell images of each structure along PC1 as shown
bythetop andsideviewsinFig.4c. Fromtheseimages we were able to
draw some observations. Figure 4c suggests the major source of vari-
ation across all seven intracellular structures in this dataset appears
to be aspects of cell and nuclear shape like height and elongation.
Next, we noticed that centrioles are localized near the nucleus at one
extreme of PCland gradually migrate toward the cellmembrane at the
other extreme (see the column ‘Centrioles’ in Fig. 4c). Additionally, we
observed nuclear speckles to be more uniformly distributed within
the nucleus at one extreme of PC1 and more concentrated near the
nuclear shell forming a ring-like pattern at the other extreme of PC1.
Surprisingly, latent walks along PC1 revealed similar patterns of sources
of variation for both centrioles and nuclear speckles compared to the
original images (Fig. 4d). We found that centrioles polarize by mov-
ing away from the cell center (represented by a dark cross in Fig. 4d),
and nuclear speckles concentrate in a ring-like pattern (last row of
column‘Nuclear speckles’in Fig. 4d). To explore clusteringin the rep-
resentation space, we visualized all representations using a PACMAP
projection, coloring them by intracellular structure (Extended Data
Fig.3a).Nearly all structures formed distinct clusters, with some over-
lap observed between the clusters for nuclear speckles and histones.
Next, we conducted anarchetype analysis using seven archetypes and
projected these into the PACMAP space. Each archetype corresponded
tooneof theclusters. Using generative reconstructions, we visualized
the archetypes and found that each captured the distinctive morphol-
ogy of its associated structure (Extended Data Fig. 3b). Notably, this
result was not guaranteed, as archetypes are mathematical points in
therepresentationspace and could theoretically capture any variable
aspect of intracellular structure morphology. Overall, these results
highlight the ability of our rotation-invariant point cloud representa-
tions to capture meaningful and biologically relevant variations in
the spatial pattern of multiple intracellular structures.

Generalizing the framework to polymorphic multi-piece
structures

We next asked if we could adapt our approach to learn 3D rotation-
invariant representations for non-punctate intracellular structures,
such as nucleoli and the Golgi apparatus. These organelles are poly-
morphic structures where the shape of individual pieces, in addition
to the location of these pieces, may be important for the underlying
biological process and, therefore, should be captured by the learned
representations”*2.. We combined the point cloud approach with an
SDF"*** computed from segmented images to incorporate the shape
information of individual pieces into the representation learning frame-
work (Fig. 1c, Extended Data Fig. 4, ‘Polymorphic structure datasets’
in Methods and Supplementary Note 6).

We applied the adapted framework to images of the granular
component (GC) of nucleoli via fluorescently tagged nucleophosmin
(NPM1, N =11,814; Fig.5and ‘WTC-11 hiPS cell single-cell image dataset
vl’inMethods), which are part of the WTC-11 hiPS cell single-cell images
dataset (v1)'. Nucleoli are multi-compartment condensates that exhibit
abroad distribution in both the number of pieces and size” and can
exhibit rapid rotation in 3D*%. Given these properties, we expected
that 3D rotation-invariant representations learned using an implicit
definition of the nucleolar surface viaan SDF would be moreinterpret-
able than representations learned by classical models directly from
segmented images. To evaluate this, we trained two classical image
models using segmentations and SDFs, two 3D rotation-invariantimage
models using segmentations and SDFs and one 3D rotation-invariant
point cloud model using SDFs (see ‘Polymorphic structures’, ‘Polymor-
phicstructure datasets’ and ‘Models’in Methods). Examples of inputs
and outputs of each of these models can be seen in Supplementary
Fig.5. Allmodels were trained on downsampled images by scaling the

meshes downtoaresolution of 32 x 32 x 32 (Extended Data Fig. 4a). This
rescaling process retained much of the relevant nucleolar information
based onvisualization (compare voxelized rescaled mesh and original
segmentation in Extended Data Fig. 4b).

We found that the two classicalimage models based on segmenta-
tions and SDFs, and the 3D rotation-invariant point cloud model gener-
ate similar quality reconstructions (‘Reconstruction error’ in Fig. 5b).
However, the point cloud model was less efficient in terms of emissions
and inference time (Fig. 5b). We also found that 3D rotation-invariant
image models produce lower quality reconstructions compared to
classical image models, as we had observed for models trained on
punctate structures (see Supplementary Note 1.1 for details on how
reconstruction error was computed for each model). The results also
indicaterotation-invariant representations from point clouds are more
orientation independent compared to representations learned from
both segmentations and SDFs (‘Rotation invariance error’ in Fig. 5b).
Next, we asked which representations would capture more relevant
morphological attributes of nucleoli. To answer this question, we
used the learned representation to classify the number of nucleolar
pieces in the segmented images and to predict the size, surface area
and relative distance between pieces (Supplementary Note 1.2). We
found that rotation-invariant image SDF and point cloud representa-
tions performed best on all these tasks (‘Classification of number of
pieces’,‘Average feature regression’ and ‘Average distance regression’
in Fig. 5b), suggesting that these representations contain relevant
biological information. We also downscaled the meshes toaresolution
of 64 x 64 x 64 to test the effect of downsampling the datatoaresolu-
tion higher than the 32 x 32 x 32 resolution used before (Supplemen-
tary Fig. 6a). We found that the quality of the learned representations
was similar, at the cost of higher emission scores (Supplementary
Fig. 6b). Overall, we observed that no single model performs well across
all metrics, thus requiring application-appropriate model selection.
We observed similar results with alarger dataset of other polymorphic
structures (Supplementary Note 7 and Extended Data Fig. 6). In both
cases, we prioritized rotation invariance error as a representation
expressivity metric, and reconstruction loss as agenerative metric for
downstream analysis (Supplementary Note 1).

Next, we used PCA on datagrouped by number of nucleolar pieces
per cell to interpret the rotation-invariant point cloud representa-
tions, with PCA fit separately for each group. Since we had torelax the
generative capabilities of this model to achieve rotation invariance,
we retrieved the closest real cells while performing a latent walk of
PC1and PC2 (Fig. 5c). We found elongation to be the major source of
variation for single-piece nucleoli (-30% of the examples in the dataset;
N=3,499, explained variance of PC1was 16% and PC2 was 7%). This was
confirmed by computing the Pearson correlation with structure elonga-
tion (r=0.56 for PC1). In the remaining 70% of the dataset (N = 8,315),
where nucleoli consist of multiple pieces, the predominant source of
variation appears tobe the distance between pieces and therelative size
ofthese pieces. For example, when considering nucleoli composed of
two pieces, we observe PC1 (explained variance was 19%) to represent
the height of the larger piece and the size of the small piece (Fig. 5¢).In
addition, we found PC1to correlate with the average distance between
pieces (r=0.42 for PC1). By performing an archetype analysis with
five archetypes on nucleoli representations from the entire dataset,
we found that three archetypes represent nucleoli with a single piece
but different elongations (archetypes 1-3 in Fig. 5d). Archetype four
represents nucleoli with one large piece and one small piece, whichis
acommon configurationin the dataset, and archetype five represents
nucleoli fragmented in many small pieces.

Motivated by previous observations of cell-cycle-dependent
nucleolar morphology®, we asked whether rotation-invariant repre-
sentations could capture nucleolar changes as a function of the cell
cycle. Todo this, we again used nuclear volume bins to create a pseudo
cell-cycle axis. Next, we computed an average nucleolar representation
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forincreasing nuclear sizes and then visualized the closest real exam-
ple to the average representation within each bin (Supplementary
Note 5.3). Consistent with previous observations, we found that cells
exiting division (small nuclear volume) have nucleoli that are frag-
mented into multiple pieces that coalesce into fewer larger pieces asthe
cellsgrow and progress toward mitosis (Fig. Se). As abaseline for com-
parison, we also calculated the mean nucleolar volumes and surface
areasfor each nuclear volume bin and retrieved the closest real exam-
ple for each group based on this feature set (Extended Data Fig. 5a).
As a result of this analysis, we no longer observed a clear transition
from fragmented nucleoli to single-piece nucleoli. We also quantified
classification accuracy for the number of nucleolar pieces using
mean nucleolar volumes and surface areas. We observed that this fea-
ture set performs worse than the learned representations (Extended
Data Fig. 5b and Supplementary Note 5.4). Altogether, the results
show that this representation learning framework can be successfully
adapted using SDFs to polymorphic structures and that it provides
representations that capture relevant aspects of the nucleolar biology.

Evaluating drug effects on nucleolar morphology

We proceeded to test the applicability of the representation learning
approachtoaperturbation detection task usingadrugscreening data-
set. Weimaged WTC-11 hiPS cells expressing an endogenously, fluores-
cently tagged nucleophosmin, representing the GC of nucleoli. Cells
were treated with 16 different drugs at relatively low concentrations
to induce subtle phenotypic alterations (‘Drug dataset’ in Methods).
Analysis was conducted on cellsimaged 2 h after treatment.

We used the representation learning framework to extract
unsupervised representations for cells in the dataset (V=1,025). To
doso, wefine-tuned the models trained on the dataset of nucleolar (GC)
single-cell images described in the previous section. We followed the
methods described by Chandrasekaran et al.” to evaluate the perfor-
mance of these fine-tuned models. This evaluationinvolved computing
the meanaverage precision to measure how distinguishable different
single cells of adrug-treated set are from untreated cells (dimethylsul-
foxide (DMSO); N=140), and ag-value statistic based on permutation
testing. We included two baseline models to obtain a set of reference
g values. To validate our morphological profiling approach, we first
benchmarked performance using 3D CellProfiler features on nucleolar
(GC) single-cell segmentations (Supplementary Note 8). Second, we
assessed the generalizability of our SDF point cloud model by evalu-
ating its performance on the nucleolar perturbation dataset without
fine-tuning, treating it as an external validation set.

Theresults are summarized in Fig. 6a, where we plot the g value per
drug foreachmodel. Drugs with g value under the significance thresh-
old of 0.05 (or 1/g value > 20) are considered by that model as causing
alterations innucleolar morphology. Aside from the first two drugs, we
found adifferencein the behavior of CellProfiler, segmentation-based
and SDF-based models. Therefore, we sorted thex axis from low to high
g-values averaged over all SDF models. Consequently, drugs on the
left side of the plotinduce astronger phenotypic change compared to
drugsontherightside. Extended Data Table1describes details about
each drug, such as name, concentration, molecular target or mecha-
nism of action, effect based on literature review and effect observed on
nucleolibased onvisualinspection of this drug dataset. Representative
examples of the range of phenotypes of each drug are shownin Fig. 6b.

The first drug to appear on the x axis of Fig. 6a is actinomycin D,
indicating that this drugis the one with the strongest effect on nucleo-
lar morphology. This drug works as a control in this analysis because
itis the only well-characterized drug in this study that is known to
target DNA and cause an alteration in nucleolar size (Extended Data
Table1land Fig. 6b). Next, we found staurosporine to have the second
strongest effect. A visual inspection of images of cells treated with
this drug revealed the presence of many dead cells where nucleoli
display very abnormal morphology (Fig. 6b). Both actinomycin D and

staurosporine were identified as being distinguishable from the con-
trol (below g = 0.05 threshold) by all representation learning models.
Interestingly, the CellProfiler features did not identify staurosporine,
indicating that the representation learning models provide animprove-
ment compared to this ‘classic’ baseline.

No other drug was identified by either the classical or rotation-
invariant image-based segmentation models. On the other hand,
the SDF-based models identified several other drugs that could be
associated with off-target effects. Starting from the left side of the
plotin Fig. 6a, these models next identified paclitaxel and nocoda-
zole, which were associated with cell death 24 h after treatment,
while also locking cells in mitosis (Extended Data Table 1and Fig. 6b).
SDF-based models also detected jasplakinolide, which is known to
promote actin polymerization and is associated with higher nuclear
volumes®. Visual inspection of the image data did not reveal any appar-
ent nucleolar alteration (Fig. 6b) or change in cell health within 24 h
after treatment, suggesting that the effect of this drugis subtle. Next,
torin-2 was detected by all SDF models, which was observed by visual
inspectiontoinduce cell death, like staurosporine. Lastly, roscovitine
at 10 pM was detected only by the SDF rotation-invariant models.
While there was no visible alteration of nucleoli morphology in this
dataset at this concentration, roscovitine at 10 M is known to cause
nucleolar segregation®** at higher concentrations. These results
suggest that our representation learning framework captures subtle
concentration-dependent phenotypes that are not visible by eye.
Interestingly, the SDF rotation-invariant model trained on the nucleo-
lar (GC) images from the WTC-11 hIPS cell single-cell image dataset v1
wasalso abletoidentify these drugs as being distinguishable from the
control, despite never having seen any of the images in the perturba-
tion set, suggesting that this model is able to generalize well to different
conditions. Overall, we observed three different categories of drugs
that were retrieved using different models: ‘sledgehammer’ pheno-
types that were detected by all models, subtle off-target effects that
were detected by SDF models, and subtle concentration-dependent
phenotypes that were detected only by the rotation-invariant SDF
models. The remaining nine drugs in the dataset did notinduce visible
alterations to nucleolar morphology, although four of theminduced
cell death at later time points, including H89, chloroquine, rotenone
and brefeldin.

To further interpret the retrieved hits, we performed linear dis-
criminant analysis (LDA)' using the learned rotation-invariant point
cloudrepresentations (Fig. 6¢, Extended Data Fig. 6 and Supplementary
Note 5.5) to identify examples along this ‘axis of phenotypic difference’.
Specifically, we sampled real cells along the principal LDA direction for
each control-drug pair. We found the retrieved cells to be interpretable
for most drug treatments. In the case of sledgehammer phenotypes
like actinomycin D, staurosporine and torin, we observed a transition
that recapitulated visual observations (Fig. 6¢c and Extended Data
Fig. 6). For other drugs that were potentially associated with off-target
effects, we observed changesin the number of pieces of nucleoli (pacli-
taxel and nocodazole), the size of nuclei and nucleoli (jasplakinolide)
and both the size and number of pieces of nucleoli (roscovitine at
10 pM; Extended DataFig. 6). As abaseline, we observed no phenotypic
differences between random subsets of the control dataset using
the same analysis (Fig. 6d and Supplementary Note 5.5). Overall, these
results illustrate that our 3D representation learning approach can
enable perturbation detection and phenotype profiling and indicate
the need for follow-up experiments to confirm the impact of some
ofthese drugs, like jasplakinolide, on nucleolar morphology.

Discussion

In this paper, we developed a morphology-appropriate 3D rotation-
invariantrepresentation learning framework for multi-piece intracel-
lular structures using point clouds. We benchmarked this framework
against classical and rotation-invariant image-based models using a
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new multi-metric evaluation criterion that focuses not only on tradi-
tional reconstruction quality but also on measurements that can be
important for downstream analysis and biological discovery. We found
that application-appropriate model selection can be key to achieving
optimal results, and thata morphology-appropriate approach canlead
tomore compact and expressive representations across arange of tasks
when compared to classicalimage models. We applied this framework
tosynthetic and real single-cellimage datasets for punctate structures,
like DNA replication foci, and polymorphic structures, such as nucle-
oli. Our results reveal that geometry-aware choices of encodings and
neural network architectures can enable unsupervised discovery and
interpretation of variability in the morphology of several multi-piece
intracellular structures. For example, the learned representations for
the centriole captureits repositioning from the cell center toward the
periphery, abehavior thatis known tobe mediated by the microtubule
network®*, The learned representations also recapitulate a known
axis of morphological change of nuclear speckles, which goes from
many, small, irregularly shaped speckles to larger, rounder shaped
speckles. This is known to occur when transcription is inhibited in
cellsand is also the primary axis of variability between cell types*. We
further evaluated the utility of our approach on phenotypic profiling
of anucleoli-perturbed image dataset and demonstrated the inter-
pretability of the learned representations. In general, we noticed that
segmentation-based models were not able to detect drugs like torin-2
that caused clear alterations on nucleolar morphology because of cell
death. This result suggests that SDF encodes information relevant
for perturbation detection. Additional discussion is available in
Supplementary Note 9.

A key result from our analysis on polymorphic structures is that
no single model performs well across all metrics. Thisis related to the
sparsity-reconstruction trade-off where amodel that perfectly recon-
structs the input can learn a complex and entangled set of features,
whereas amodel that learns a sparse and disentangled set of features
can reconstruct poorly®. In the cases where there is a trade-off, the
choice of the best metrics to represent the best model can be appli-
cation dependent. In this study, we prioritized rotation invariance
error as a representation expressivity metric, and reconstruction
loss as a generative metric. More generally, for tasks like production-
scale drug screening, a scalable and efficient model that is predictive
of different drug signatures may be more relevant. For tasks like bio-
logical discovery in small datasets, a model that learns compact and
rotation-invariant features may be more interpretable. Finally, for tasks
like generating virtual cellimages of intracellular structures, amodel
thatreconstructs the data well may be crucial.

Our framework can be further improved in multiple ways. For
example, our resultsindicate cell and nuclear shape are major sources
of variation because that information was not factored out of our
learning framework and, therefore, become confounding variables.
While this reflects a true coupling between cell and nuclear shape
and structure localization, alternative approaches may offer away to
decouplethese confounding variables fromlearned representations.
Forinstance, one couldincorporate referenceinformation about other
intracellular structures for answering questions about intracellular
structure colocalization®®, Another possibility for improving the
proposed framework could be viaincorporating multichannel informa-
tion for multiple structures that have been simultaneously tagged**®.
By calculating the SDF based on the presence of multiple structures,
one could compute asingle composite field that contains information
about all structures. This would implicitly encode mutual exclusivity
rules, thus helping to further constrain the models and move toward
abetter understanding of compartmentalization®. We could also use
multichannelinformation to extend the framework to predict spatial
patterns of a set of structures given the representation from another
set, thereby synthetically combining the reconstructions of different
structuresintoone. For example, we canlearnashared representation

across DNA replication foci and nucleoli images and leverage this
shared representation to predict nucleolar morphology in a dataset of
DNA replication foci. Such approaches could be used to build a holistic
description of intracellular organization. Finally, to further improve
interpretability and move toward mathematical descriptions of the
learned representations, we can use symbolic regression methods like
PySR* to extract equations and summarize the quantitative model. It
would also be particularly exciting to leverage time-series datasets to
learn dynamical systems and extract biophysical measurements like
rigidity. In all cases, incorporating additional information during the
learning process can potentially make the models more robust and
interpretable. In this work, we have focused on benchmarking unsu-
pervised methods for datasets where a user has limited prior knowl-
edge to establish a baseline. However, the morphology-appropriate
representation learning using point clouds and SDFs that we have
described here is flexible and can be modified to incorporate several
suchimprovements.

In summary, we have begun to develop a computational analysis
pipeline for interpretable representation learning of complex multi-
pieceintracellular structures. Animportant goal of this work is to make
the data, models and analysis tools freely available to the community,
sothatit canserve asabenchmark for further development of methods
for3D analysis (‘Code availability’). We hope that thiswork can spur the
interest of the cell biology community into new ways of analyzing and
interpreting complex intracellular organization.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02729-9.
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Methods
Single-cell image datasets
DNA replication foci dataset. Spinning-disk confocal 3D images
taken of afluorescently tagged cell line that targets PCNA labeling DNA
replication foci with mEGFP were processed to create the DNA replica-
tion foci dataset*’. Fluorescent cell membrane and DNA dyes tagged
the cell boundary and nucleus, respectively. Nuclear segmentations
were obtained using the protocol described by Viana et al.!, with the
only difference being that nucBlue dye was replaced with nucViolet
dye. Segmentations of DNA replication foci were generated for each
field of view (FOV), using three different segmentation workflows
created using the ‘Allen Cell & Structure Segmenter™' to segment spe-
cific DNA replication foci morphologies. Next, we visually identified
which segmentation workflow was best for each cell and saved the
resultin an empty FOV at that cell’s correct location. More details
about the dataset and images are available here https://open.quiltdata.
com/b/allencell/packages/aics/nuclear_project_dataset_4/.
Cellsininterphase were labeled by an expert as belonging to one
ofnineclasses—Gl, early S, early-mid S, mid S, mid S-late S, late S, late
S$-G2, G2 and unclear. Unclear labels were dropped during analysis.
About 3% of cells were labeled as outliers based on bad segmentations
of DNA replication foci, cells appearing dead or dying, no EGFP fluo-
rescence and bad segmentations of cells and nuclei. Dead cellsand no
fluorescence were used for the outlier detection task, accounting for
16 cells of atotal of 2,420 cells.

WTC-11 hiPS cell single-cellimage dataset v1. Spinning-disk confo-
cal3Dimages taken from 25 endogenously tagged hIPS cell lines were
processed to create the WTC-11hiPS cell single-cellimage dataset (v1)".
Fluorescent cell membrane and DNA dyes tagged the cell boundary
and nucleus, respectively. Cell, nuclear and structure segmentations
were used as provided in the dataset release available at https://open.

quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_

image_dataset/.

We performed analysis on histones via H2B (V=15,875), nuclear
pores via Nup153 (N=17,703), peroxisomes via PMP34 (N=1,997),
endosomes via Rab-5A (N =2,601), centrioles via centrin-2 (N=7,575),
cohesinsviaSMCIA (V=2,380) and nuclear speckles viaSON (N =2,980)
as selected punctate structures from this dataset. We selected nucle-
oli (DFC) via fibrillarin (N =9,923), nucleoli (GC) via nucleophosmin
(N=11,814), lysosomes via LAMP-1 (N=10,114) and Golgi via sialyl-
transferase (N = 6,175) as polymorphic structures. While we used all
single-cell images for training our models, we limited our analysis to
interphase cells.

cellPACK synthetic single-cell dataset. We used cellPACK to create
synthetic point clouds within real nuclear shapes”. cellPACK pro-
vides analgorithmto create high-resolution 3D representations of the
biological mesoscale based on specified rules. Segmentation of 254
randomly chosen nuclei from the DNA replication foci dataset were
convertedintoatriangulated meshand used as input to cellPACK. Here,
the nucleiwere pre-aligned to their longest axis. celIPACK then packed
256 spheres with aradius of 1 voxel within these meshes based on four
distinctrules: (1) Random: points were generated uniformly at random
inside the nucleus; (2) Planar gradient rule: points were generated
inside the nucleus with a bias away from a plane. The plane contains
the centroid of the nucleus, and its orientationis specified by anormal
vector. We used normal vectors with three different orientations:
(i) 6 =0, the normal vector points along the zaxis (Ox + 0 y + 1z) where
the longest axis of the nucleus is the y axis. (ii) 6 = 45°, the normal
vector is (Ox +1/v2y +1/v2z2). (iii) 8 = 90°, the normal vector points
alongthe yaxis; (3) Surface gradient rule: points were generated with a
strong bias toward the nuclear surface; (4) Radial gradient: points
were generated with a bias toward the centroid of the nucleus.
For each rule, cellPACK generated a point cloud with 256 points

for each nucleus shape. This dataset is available for download at
https://open.quiltdata.com/b/allencell/tree/aics/morphology_
appropriate_representation_learning/cellPACK_single_cell_
punctate_structure/.

Drug dataset. A collection of well-characterized drugs was used to
perturb the Allen Institute for Cell Science cell line AICS-50 (WTC-11
hiPS cell endogenously tagged for mEGFP-NPM]1, tagging nucleoli
(GQ)). Drugs and concentrations were selected because cell treat-
ment with each of them induced a well-characterized effect on one
major cellular structure morphology that could be visually observed
within 24 h of treatment (Supplementary Table 1) and was not associ-
ated with massive cell death within the first 2 h of treatment, except
for jasplakinolide. Cells were seeded on a 96-well glass-bottom plate
using the protocol described by Gregor et al.*>. Four days after seeding
two-dimensional (2D) bright-field low-magnification well overviews
were acquired and used for position selection following the same
criteriaas described by Viana etal.'. Following position selection, cells
were washed once with pre-warmed phenol red-free mTeSR, and then
medium was replaced with drug-containing phenol red-free mTeSR
medium at the indicated concentration (Supplementary Table 2).
The cells were then placed back on the spinning-disk confocal micro-
scope stage where they were maintained at 37 °C with 5% CO, for 2 h
before the start ofimaging at high magnification (x120). Images were
acquired with three identical Zeiss spinning-disk confocal micro-
scopes with a x10/0.45 NA Plan-Apochromat (for well overview and
position selection) and a x100/0.8 NA Plan-Apochromat (Zeiss; for
high-resolution imaging) and ZEN 2.3 software (blue edition; Zeiss).
The spinning-disk confocal microscopes were equipped with a x1.2
tube lens adapter for a final magnification of x12 or x120, respec-
tively, a CSU-X1 spinning-disk scan head (Yokogawa) and two Orca
Flash 4.0 cameras (Hamamatsu). 3D FOV image stack acquisition was
performed with two cameras allowing for simultaneous acquisitions
ofabright-fieldand an mEGFP (excited with 4.6 mW of a488-nm laser)
channel. The exposure time was 100 ms. The resulting images were
of 16 bits and 924 x 624 pixels in the xy dimension after 2 x 2 binning.
FOVs had a final xy pixel size of 0.108 pm and z-stacks composed of
100 z-slices (to encompass the full height of the cells within an FOV)
acquired at a z-interval of 0.29 um. Transmitted light (bright-field)
images were acquired usingared LED light source with anarrow range
peak emission of 740 nm and a BP filter of 706/95 nm for bright-field
light collection. A Prior NanoScan Z 100-mm piezo z-stage (Zeiss) was
used for fast acquisition. Optical control images of the field of ring
(Argolight) and dark current were acquired daily at the start of each
dataacquisition to monitor microscope performance. Laser power was
measured monthly, and the corresponding percentage was adjusted to
consistently expose the sample to the same laser power. This dataset
is available for download at https://open.quiltdata.com/b/allencell/
tree/aics/NPML_single_cell_drug_perturbations/.

Cell health assessment. We assessed cell health at 4 h and 24 h after
drug treatment using for each drug both the AICS-57 (WTC-11 hiPS
cellendogenously tagged for mEGFP-NMP1) and AICS-61 (WTC-11 hiPS
cell endogenously tagged for mEGFP-HIST1H2BJ) cell lines. FOVs of
this cell line were visually inspected to determine the extent of cell
death induced by each drug. If cell death at either 4 h or 24 h was
approximately 50% more prevalent than compared to the control,
then cells were classified as unhealthy after 2 h. Otherwise, cells were
classified as healthy. Results from this assessment are summarized
inthe last column of the table shownin Fig. 6b.

Input data preprocessing for image models

Punctate structures. cellPACK synthetic dataset.Packing results were
voxelized intoimages of 238 x 472 x 472 voxelsin size. The z-coordinate
of these images was padded with zeros to be the same size as Xand Y,
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and the resulting images were downsampled to 118 x 118 x 118 voxels
viablock reduce operation with ablock size of 4 x 4 x 4 voxels and then
used as input for image-based models.

DNA replication focidataset.3D raw fluorescence intensity single-cell
images of DNA replication foci were masked, centered and aligned by
the corresponding nuclear segmentation dilated by 8 x 8 x 8 voxels.
Images were cropped and then padded to the largest nuclear bound-
ing box in the dataset. Images were then padded and resized to
118 x 118 x 118 voxels. Images were globally contrast adjusted to be
within the intensity range of 0 to 6,000, which was empirically deter-
mined to remove dead pixels present in a few images and scaled per
image using min-max normalization via ‘monai.transforms.Scaleln-
tensity™ tobein the range of (0, 1).

Expanded dataset of punctate structures. Similar preprocessing
was applied to a subset of punctate structures from the WTC-11 hiPS
cell single-cell image dataset (v1)}, including DNA replication foci,
histones, nuclear pores, nuclear speckles, cohesins, peroxisomes,
endosomes and centrioles. However, the images of cytoplasmic
structures (peroxisomes, endosomes and centrioles) were masked
by the cell membrane segmentation, instead of nuclear segmenta-
tion. Images were contrast adjusted using structure-specificintensity
ranges reported in ref. 1. Images were finally scaled per image using
min-max normalization via ‘monai.transforms.Scalelntensity” to
bein the range of (0, 1). The preprocessing code used to generate
this dataset is available at https://github.com/AllenCell/benchmark-
ing_representations/tree/main/br/data/preprocessing/image_
preprocessing/.

Polymorphic structures. Nucleoli (GC) dataset. Segmentations of
nucleoli (GC) available in the WTC-11 hiPS cell single-cellimage dataset
vl were masked by corresponding nuclear segmentations. We used a
hole-filling algorithmto fillin holes in the segmented images that were
then converted into 3D meshes for subsequent preprocessing. Meshes
were downscaled to fit within a cube of size 32 x 32 x 32 voxels using a
global scaling factor to preserve the relative scale of nucleoliinlearned
representations. For segmentation models, the downscaled meshes
were voxelized to create binary images. For SDF models, the down-
scaled meshes were used to compute SDF images that were clipped to
beintherange of (-2, 2).

Expanded dataset of polymorphic structures. Segmentation of the
nucleolar GC, nucleolar DFC, Golgi and lysosomes (available in
the WTC-11 hiPS cell single-cell image dataset v1) were masked by
either nucleus or cell mask if the structure localizes to nucleus (nucle-
oli) or cytoplasm (Golgi and lysosomes). Subsequent preprocessing
followed the expanded dataset of polymorphic structures, except
that 3D meshes were downscaled on a per-cell basis based on the
cell’s intracellular structure bounding box. This downscaling
avoids losing small nuclear structures given the large bounding box
of cytoplasmic structures. While this scaling strategy prevents
us from comparing sizes across different intracellular structures,
it helps preserve the resolution of structures occupying only a
few voxels.

Perturbed nucleoli (GC) dataset. We used the Allen Cell & Structure
Segmenter to segment raw fluorescence intensity FOVs of perturbed
nucleoli (GC; ‘Drug dataset’). Nuclear segmentations for each FOV were
produced by applying a UNet model trained on the WTC-11 hiPS cell
single-cellimage dataset vlto predict 3D nuclear segmentations from
bright-field images. We manually selected nuclear segmentations in
eachFOVthat covered the corresponding entirety of the nucleolisignal.
The selected masks were used to generate single-cellimages, and they
were processed as described in ‘Nucleoli (GC) dataset’.

Input data preprocessing for point cloud models

Punctate structures. cellPACK synthetic dataset. The list of N =256 cen-
troids of spheres packed by cellPACK was extended to 2,048 points by
addingasmalljitter toeachinput point cloud eight times. Thisjitter was
clipped atavalue of 0.2, and the typical range of XYZ coordinates was
-10to 10. This was then used as the 3D point cloud input. To improve
reconstruction quality, this augmentation process was repeated ten
times for each input. Details regarding the jitter augmentation are
described in Supplementary Note 3.

DNA replicationfocidataset. We started by applying the same preproc-
essing used in the DNA replication foci dataset described above for
image-based models, except for the last linear scaling step. We then
sampled 4D point clouds from the raw intensity images in two stages.
Inthefirst stage, we converted the raw intensity values into probabili-
ties. We did this by using an exponential function efskewnesstintensivy) ¢
scale the intensities. Here, the skewness is a statistic that indicates
deviation of a distribution from a normal distribution, and the coef-
ficient Ais an intracellular-specific scale factor that was empirically
determined based on the visualization of sampled points fromrandom
images for eachintracellular structure. For nuclear structures, we used
1=100, and for cytoplasmic structures we used 1=500. The goal of
this function was to exponentially increase the probability of sampling
points from higher intensity values, to prevent sampling from the
background. The scaled intensities were then converted into probabili-
ties using normalization via dividing by the sum. The full probability
of sampling a point cloud from the intensity image was defined as

e A(skewnesssintensity)

= 2 e/l(skewness*in[ensity) !

We used these probabilities to sample a dense point cloud with
20,480 points (with intensity as a fourth coordinate) as shown in
Supplementary Fig. 4. These points were centered using the nuclear
centroid for nuclear structures, and the membrane centroid for cyto-
plasmic structures. In the second stage, we sampled a sparse point
cloud with 2,048 points from the dense point cloud randomly during
training while keeping the intensity as a fourth coordinate. The inten-
sity coordinate was scaled using a factor of 0.1to match the magnitude
ofthespatial coordinates. This sparse point cloud was then scaled using
aglobalscalefactor of 0.1toreducethe range of the loss values and was
passed as an input to the encoder (Fig. 1b).

Expanded dataset of punctate structures. We started by applying the
same preprocessing used in the expanded dataset of punctate struc-
tures described above forimage-based models, except for thelast linear
scaling step. We again used an exponential function e(skewnesssintensity)
with 1=100 for nuclear structures, and A= 500 for cytoplasmic punc-
tate structures. The scaled images were then normalized to obtain a
probability density. We followed the same procedure described
above for DNAreplication focito sample point clouds for each of these
punctate structures. The intensity coordinate was then normalized
using structure-specific contrast ranges.

Polymorphic structure datasets. Nucleoli (GC) dataset. Two sets of
point clouds were sampled from segmented images of polymorphic
structures. To do this, the segmented images were first converted
intomeshesandrescaled toaresolution of 32 x 32 x 32 (Extended Data
Fig. 4). The first point cloud was generated by sampling 32 x 32 x 32
points randomly from the surface of the mesh. Then, the second point
cloud was generated by calculating SDF values for a random list of
32 x 32 x 32 query points sampled withina32 x 32 x 32-unit grid. Here,
the SDF is a function that represents the signed distance of a position
to the nearest part of a shape. During training, the first point cloud
was subsampled randomly to 8,192 points and passed as an input to
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the encoder. The second point with the SDF values was subsampled
randomly to 20,000 points and was then used as input query points
tothe decoder to generate SDF predictions (Fig. 1c).

Expanded dataset of polymorphicstructures. Each single polymorphic
structure image underwent a similar process. First, a point cloud of
8,192 points was sampled from the corresponding 3D mesh. During
training, an additional 20,000 points were sampled from the SDF
volume, producing a 4D point cloud (SDF value + XYZ coordinates).

Perturbed nucleoli (GC) dataset. The perturbed nucleoli (GC) dataset
followed the same sampling strategy. For each single-cell nucleoli (GC)
image, aninitial 8,192 point cloud was sampled from the 3D mesh gener-
ated asdescribed in ‘Perturbed nucleoli (GC) dataset’. During training,
another point cloud containing 20,000 points was drawn from the
SDF volume, yielding a4D point cloud (SDF value + XYZ coordinates).

Models

Image models. Toimplement 3D rotation-invariantimage autoencoders,
we used image encoders equivariant to the group of 3D rotations (SO3
group) using R®steerable kernels as described in Weiler etal.** andimple-
mentedinthe ‘escnn’ library*. Compared to conventional convolutions,
R’steerable kernels are equivariant under rotationsin R, We used scalar
fields to learn invariant scalar features in R?, and vector fields to learn
equivariant vector featuresin R®, We used vector features to reconstruct
the 3D rotation matrix as described by Deng et al." and Winter et al.*.

We used seven layers of steerable kernels with an equal number of
hiddenscalar fields using trivial representations and vector fields using
irreduciblerepresentations. Using a (filter, stride, kernel size) conven-
tion, the convolutionswere (8,1,3), (16,1,3), (32,2, 3),(64,2,3),(128, 2,
3),(512,2,3)and (N, 1,1), where Nwas the size of the latent dimension.
In the final layer we used N scalar fields and two vector fields. Each
convolutional block also included a batchnorm and ReLU activation.
We used average pooling in the last five layers and checked that this
did not break equivariance (Supplementary Fig.1). We spatially pooled
the scalar embedding in the final layer to get the final N dimensional
rotation-invariant latent embedding. We used a bottleneck size of
512 for polymorphic structures and 256 for punctate structures.

The decoding function was a conventional neural network (CNN)
decoder with six layers of convolutions. We used upsampling blocks
with ascale factor of 2in between convolutions. Using a (filter, stride,
kernel size) convention, the convolutions were (512, 1, 3), (256, 1, 3),
(128,1,3),(64,1,3),(32,1,3) and (16, 1, 3). We rotated the canonical
reconstruction with the rotation matrix computed from the vector
representation. We used a cylinder mask using ‘escnn.nn.modules.
masking_module.build_mask’ to mask reconstructions and reduce
interpolation artifacts. We set the background value to O for segmen-
tations, and 2 for clipped SDF images where the maximum value was 2
and positive values were located outside the object. We used the same
settings with classical autoencoders by swapping out equivariant con-
volutions with regular convolutions and keeping other details the same.

Masked autoencoders usingvision transformers. We also trained masked
autoencoders using vision transformers* in two stages as an alternative
tothe‘vanilla’autoencoders described above. We performed this train-
ingintwo stages. First, we pretrained amasked autoencoder*® using a
ZYXpatchsizeof (2,2,2),amaskratio of 0.75 and learnable positional
embeddings. The encoder was made up of eightidentical transformer
blocks, each with four heads and anembedding dimension of256. The
decoder had two layers with eight heads and an embedding dimension
of 192. We then used a second phase of training with a mask ratio of O
(thatis, allimage patches are visible to the encoder) where we froze the
masked autoencoder-trained encoder and trained a freshly initialized
decoder to reconstruct the input image. We trained all models with a
meansquared error loss.

Point cloud models. Toimplement 3D rotation-invariant point cloud
autoencoders, we used a3D rotation-equivariant point cloud encoder
using vector neurons (VNs"), which lifts classical neurons to 3D vec-
torsresultingin 3D vector representations. VN layers are equivariant
to rotations by construction and have been shown to outperform
otherequivariantarchitectures for tasks like classification, segmen-
tation and reconstruction. We incorporate VN layers into a dynamic
graph conventional neural network (DGCNN)* backbone for point
cloud encoding. DGCNN uses network modules called EdgeConvs to
perform CNN-like local neighborhood feature extraction. These Edge-
Convs can be stacked to extract global features*. Dynamic graphs
are computed by constructing k-nearest neighbor graphs on points.
We used k =20 based on previous works as a balance between com-
putational complexity and local structure information®’. We concat-
enated the cross-product of the neighbor features and input points
aswell as the input points themselves to the hidden representation.
As described in‘Input data preprocessing for point cloud models’, we
included raw image intensity in addition to XYZ coordinates in some
cases togenerate 4D point clouds. This coordinate was included with
the same vector orientation as the XYZcoordinates and thus remains
equivariant under rotations in R3. For the cellPACK dataset, we used
a 3D point cloud as input. We used six convolutional blocks where
each block comprises a VN linear layer and a VN leaky ReLU layer.
We collated intermediate outputs before a final one-dimensional
convolution. We took the norm of the final vector embedding to get
arotation-invariant representation. We also trained classical point
cloud autoencoders with DGCNN encoders as described by Vries
et al.’®, where VN linear and VN leaky ReLU layers are replaced with
edge convolutions and ReLU layers.

Decoderforpunctatestructures. We reconstructed the rotation-invariant
representation for punctate structures using a folding net decoder.
This decoder concatenates the latent embedding with source points
sampled from a template shape and then applies two folding opera-
tions with ReLU activations interleaved in between to reconstruct a
point cloud. We used a 2D plane as a template in all cases except for
the cellPACK synthetic dataset, where asphere was used as atemplate.
Next, we used the learned rotation matrix from the vector embedding
toreorient the canonical reconstruction. We optimized the model using
an earthmover’s distance®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The WTC-11 hiPS cell single-cellimage dataset vl analyzed in this study
isavailable at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_cell_image_dataset/. The DNA replication foci dataset
analyzed in this study is available at https://open.quiltdata.com/b/
allencell/packages/aics/nuclear_project_dataset_4/.The WTC-11 hiPS
cellnucleoli (NPM1) perturbation single-cellimage dataset analyzedin
this study isavailable at https://open.quiltdata.com/b/allencell/tree/
aics/NPM1_single_cell_drug_perturbations/. The synthetic dataset of
punctate structures generated using cellPACK and analyzed in this
studyisavailable at https://open.quiltdata.com/b/allencell/tree/aics/
morphology_appropriate_representation_learning/cellPACK_single_
cell_punctate_structure/. Thelandingpage of the GitHubrepository asso-
ciated with this paper (https://github.com/AllenCell/benchmarking_
representations/) has additional information for accessing and
processing these datasets. Source data are provided with this paper.

Code availability
Toaid reproducibility and empower researchers with the ability to inde-
pendently test and apply these models to their own data, we provide
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all the representation learning models used in this study via CytoDL,
a Python package for configurable 2D and 3D image-to-image deep
learning transformations and representation learning, available at
https://github.com/AllenCellModeling/cyto-dl/. CytoDL is designed
consistent with FAIR® practices, and is built to work for diverse use
cases, thus making it robust, modular and flexible to the evolving
nature of research.

Codetoreproduce the representation learning models in this paper
is available at https://github.com/AllenCellModeling/cyto-dl/blob/
br release/.

Config files associated with our models, training scripts, and code
for multi-metric benchmarking are available at https://github.com/
AllenCell/benchmarking_representations/. Our code was fully devel-
oped in Python. Alist of dependencies is available at https://github.
com/AllenCellModeling/cyto-dl/tree/br_release/requirements/ and
https://github.com/AllenCell/benchmarking_representations/blob/
main/pyproject.toml/. We have released the code with the Allen Insti-
tute Software License.
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Evaluation metrics
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Efficiency of the learning framework

C) Holistic evaluation of metrics

== Example model

o Model size: number of model parameters. Inference time (-)
o Inference time: time to run GPU inference on a single batch. Carbon emissions (-)
o Carbon emissions: estimate of hardware electricity power consumption (GPU+CPU+RAM) in kWh.
Generative ability ModelsSize (-) Evolution energy (-)
o Reconstruction: Chamfer loss for punctate structures or Jaccard similarity score for polymorphic structures.
o Evolution energy: average normalized energy of deformation from one shape to another (see panel (b)).
input output e - ) ) . Reconstruction error (-)
o Rotation invariance: how sensitive are representations to rotations of input data. 2
o Interpolation distance: average distance between interpolated representation and nearest real instance
representation (see panel (c)).
o Feature regression: cross validated coefficient of determination.
o Classification accuracy: cross validated classification accuracy.
latent representation o Compactness: Levina-Bickel instrinsic dimensionality of representation.
b) Workflow for interpolation distance and evolution energy calculation
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Extended Data Fig. 1| Evaluation metrics for representation learning.

a) Overview of different evaluation metrics for quantifying the utility of each
representation learning framework. Efficiency metrics include model size,
inference time, and carbon emissions. Generative ability metrics include
reconstruction error and evolution energy. Representation expressivity metrics
include rotation invariance error, interpolation distance, feature regression,
classification accuracy, and compactness. b) Workflow for interpolation distance
and evolution energy calculation. Two samples are drawn from the population
randomly, and alinear interpolation is performed on the representations of the
two samples. The Euclidean distance between an interpolation and the nearest
real representation is the interpolation distance. The interpolation distance
isaveraged across many interpolations to compute the average interpolation

distance. Eachinterpolation is reconstructed using the decoder to obtaina
reconstruction. The sum of the reconstruction error between the interpolated
reconstruction and the reconstructions of the initial and final shapes normalized
by the reconstruction error between the initial and final shape is the energy of
deformation’. The energy of deformation is averaged across many interpolations
to compute the evolution energy. Both evolution energy and average
interpolation distance are averaged across many random pairs of samples from
the test set. ¢) Holistic evaluation of metrics. Metrics are z-scored across models
per metric. Z-scored metrics are visualized using a polar plot. We flip the sign for
metrics where lower is better. Therefore, for all metrics, larger/outer values in the
polar plotare better.
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Extended Data Fig. 2| 3D image preprocessing into application appropriate
inputs for punctate structures. Workflow for generating 4D point clouds from
3D intensity images. a) single-cell intensity images are obtained by masking
viaadilated nuclear mask (for nuclear structures), followed by alignment

to the longest axis of the nuclear mask. Intensities were then scaled using an
exponential function and then converted to probabilities. These probabilities
were then used to sample a dense 4D point cloud with 20480 points and XYZ +
intensity coordinates. During training, a sparse point cloud with 2048 points
was sampled from this dense point cloud using the intensities as probabilities.

Theintensity coordinate was scaled using a scale factor of 0.1to ensure that
intensity values were in the same range as XYZ coordinate values. b) Examples
of dense sample and sparse sample for each cell cycle stage for PCNA dataset.
Shown are center-slice of raw intensity image, center-slice of raw intensity image
overlaid with dense sample, and center-slice of raw intensity image overlaid with
sparse training sample. ¢) Examples of dense sample and sparse sample for

each punctate structure from the WTC-11 hiPSC Single-Cell Image Dataset v1.
Structures include histones, nuclear envelope, cohesins, nuclear speckles,
endosomes, peroxisomes, and centrioles.
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Extended Data Fig. 3 | Archetype analysis for punctate structures from the WTC-11 hiPS Single-Cell Image Dataset v1. a) PACMAP projection of the representations
and archetypes colored by intracellular structure labels. b) 7 archetypes computed from the rotation invariant point cloud representations. Each archetype
corresponds to one of the intracellular structures.
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Extended Data Fig. 4| 3D image preprocessing into application appropriate
inputs for polymorphic structures. a) Workflow for computing signed distance
function (SDF) images from segmentations. single-cell structure segmentations
are masked by nuclear segmentation (for nuclear structures), followed by
meshing, centering, and hole filling. The mesh s then rescaled to 32** cube
resolution and then processed to get asigned distance function. Alternatively,
therescaled meshis voxelized to get asegmentation. SDF is clipped to (-2, 2)
range for training image models to focus models on the zero level set. Example

SDF value

[ ]
2 0 2

shown s for nucleoli (GC). b). Visualization of rescaled segmentation and SDF
for examples with different numbers of pieces of granular component (GC) of
nucleoli. Shown are center-slices of raw intensity images, max projection of the
structure segmentation, max projection of the voxelized rescaled segmentation,
and center slice of the rescaled mesh SDF. ¢) Visualization of rescaled
segmentation and SDF for other polymorphic structures from the WTC-11 hiPSC
Single-Cell Image Dataset vl including lysosomes, Golgi, GC nucleoli, and dense
fibrillar component (DFC) nucleoli.
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a) b) I Rotation invariant point cloud representation
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Extended Data Fig. 5| Comparison of rotation invariant point cloud of number of nucleolar pieces across bins of nuclear volume using rotation
representations of nucleoli (GC) to mean nucleolar volume and surface area. invariant point cloud representations and mean nucleolar volume and
a) Closest real example to mean nucleolar volume and surface area within five surfacearea.

equal sized bins of nuclear volume (Section 7.3 of Methods). b) Classification
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a) Polymorphic structures from the WTC-11 b) Benchmarking results across different models and metrics
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Learned representations enable shape variation
profiling on multiple polymorphic structures. a) Dataset of nucleoli GC,
nucleoli DFC, lysosomes, and Golgi from the WTC-11 hiPSC Single-Cell Image
Dataset vl (Viana 2023). Shown are example max intensity projections and
corresponding 3D meshes. b) Benchmarking unsupervised representations
across different models and metrics. (Left) Polar plot showing performance for
allmodels across efficiency metrics (model size (n =1), inference time (n = 40),
emissions (n = 40), generative metrics (reconstruction (n = 5,706), evolution
energy (n =180)), representation expressivity metrics (compactness (n = 5),
classification of number of pieces (n = 5), shape features regression (n = 100),
distance features regression (n =100), rotation invariance error (n = 16,005),
average interpolation distance (n =180)). Metrics are z-scored and scaled such

thatlarger is better (Right) Bar plots showing raw metric values across models
for each metric. Error bars are standard deviations. Best model for each metric is
indicated. ) 1st principal component for each structure using rotation invariant
point cloud model. PCA s fit to representations of each structure separately.
Shown are closest real examples to normalized PCs (standard deviation (s.d.),

o, units) sampled at 3 map points (20 to 2o in steps of 6). d) 2nd principal
component for each structure using rotation invariant point cloud model. Shown
are closest real examples to normalized PCs (standard deviation (s.d.), o, units)
sampled at 3 map points (20 to 2o in steps of ). €) PACMAP projection of four
archetypes and all representations for the rotation invariant point cloud model.
f) 5 closest real instances to each archetype using the rotation invariant point
cloud model.
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discriminant axis that separates the control and the drug (left). Markers indicate
the closest real cell along the LDA line computed in 20 dimensions. The right plot
shows the density of the control and the drug along LDA coordinates. The bottom
plot shows amax projection of the closest real cell sampled along the LDA line
(Section 7.5 of Methods).
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Extended Data Fig. 7| LDA analysis for rotation invariant point cloud
representations of nucleolar drug perturbation dataset. Learned
representations are reduced to 20 principal components (PCs) using PCA.
Each drugis analyzed separately (a-f), together with the control (DMSO). For
each drug, the left plot shows first two PCs with an arrow indicating the main

Nature Methods


http://www.nature.com/naturemethods

Article https://doi.org/10.1038/s41592-025-02729-9

a) b A - c Other punctate
CellPACK dataset ) DNA replication foci dataset ) structures dataset
L Cell cycle 25
R 10 Rule Q15 . 1 = . Structures
N M 20 - .
™ Planar 0 o * earlyS g : Centrioles
T «  Planar 45 10 earlyS-midS & 15 *  Nuclear Pores
o Planar 90 % midS E Histones
b * Surface > 5 ¢ midS-lateS g 10 e Nuclear speckles
s Random 3 . lateS s . Peroxisomes
é * Radial i’ lateS-G2 Ex_u/ 5 . En(ri\os_omes
ohesins
g g° Coe g o
a a
-5
-1 0 1 2 -10 0 10 20 0 10 20
PC1 (Exp. Var. = 41.4%) PC1 (Exp. Var. = 55.5%) PC1 (Exp. Var. = 40.4%)
d) Nucleoli (GC) dataset e) Other polymorphic
structures dataset
Number
3 of pieces 9
& P ) Structures
~ 1.0 ©
Il ! I Lysosomes
= c 20 L *  Nucleoli DFC
8 3.0 > Nucleoli GC
f>:<5- 40 4 . Golgi
w >=5 w
N O
O a
o
-0.2 0.0 0.2
-0.2 00 02 04 _ o
PC1 (Exp. Var. = 18.5%) PC1 (Exp. Var. = 15.8%)
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Name, concentration, molecular target or mechanism of action, effect based on literature review and effect observed on nucleoli of each drug based on visual inspection.
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Data collection  cellPACK 1.0.8 for generating synthetic dataset and ZEN 2.3 software (blue edition; ZEISS) for imaging PCNA and drug perturbation dataset.

Data analysis The versions of all Python packages used in this work are listed in the Github repositories (https://github.com/AllenCell/
benchmarking_representations and https://github.com/AllenCellModeling/cyto-dl/tree/br_release). A full list is also provided here:

numpy==1.25.2
pdm-backend==2.4.3
pdm-pep517==1.1.4
setuptools==73.0.1
-find-links https://data.pyg.org/whl/torch-2.0.1+cu117.html
aicscytoparam==0.1.9
aicsimageio==4.11.0
aicsshparam==0.1.10
aiobotocore==2.4.2
aiohttp==3.9.3
aioitertools==0.11.0
aiosignal==1.3.1
alembic==1.13.1
anndata==0.9.2
annotated-types==0.6.0
annoy==1.17.3




ansicon==1.89.0; platform_system == "Windows"
antlr4-python3-runtime==4.9.3

anyio==4.3.0

appnope==0.1.4; platform_system == "Darwin"
arrow==1.3.0

asciitree==0.3.3

astropy==5.2.2

asttokens==2.4.1

async-timeout==4.0.3; python_version < "3.11"
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autograd==1.6.2

autopage==0.5.2
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cmd2==2.4.3

codecarbon==2.6.0
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colorlog==6.8.2

comm==0.2.2

contourpy==1.1.1

copairs @ git+https://github.com/cytomining/copairs.git@880f22a551bd897896d148a0b07baa99d981c6a9
croniter==1.4.1

cycler==0.12.1
cyto-dl[equiv,pcloud,s3,spharm,torchserve] @ git+https://github.com/AllenCellModeling/cyto-
dl.git@a4a061d1808e0f94f906933642920142b581ba38
dask[array]==2023.5.0

dateutils==0.6.12

debugpy==1.8.7

decorator==5.1.1

deepdiff==6.7.1

deprecated==1.2.14
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drjit==0.4.6

e3nn==0.5.1

edt==2.4.1

einops==0.7.0

elementpath==4.3.0
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escnn==1.0.11
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fastapi==0.109.2
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filelock==3.13.1

fire==0.5.0

flask==3.0.2

fonttools==4.49.0

freetype-py==2.5.1
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greenlet==3.0.3; (platform_machine == "win32" or platform_machine == "WIN32" or platform_machine == "AMD64" or platform_machine ==
"amd64" or platform_machine == "x86_64" or platform_machine == "ppc64le" or platform_machine == "aarch64") and python_version >="3"
gunicorn==21.2.0; platform_system !="Windows"
h11==0.14.0

h5py==3.10.0
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humanize==4.9.0

hydra-colorlog==1.2.0

hydra-core==1.3.2
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idna==3.6
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kiwisolver==1.4.5
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lie-learn==0.0.1.post1
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lightning-utilities==0.10.1

lit==17.0.6; platform_system == "Linux" and platform_machine == "x86_64"

llvmlite==0.43.0

locket==1.0.0

Ixml==4.9.4

mako==1.3.2
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markupsafe==2.1.5

matplotlib==3.7.5
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mpmath==1.3.0

msgpack==1.0.7
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nvidia-cuda-runtime-cul1==11.7.99; platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cudnn-cu11==8.5.0.96; platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cufft-cu11==10.9.0.58; platform_system == "Linux" and platform_machine == "x86_64"
nvidia-curand-cu11==10.2.10.91; platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusolver-cul1==11.4.0.1; platform_system == "Linux" and platform_machine == "x86_64"
nvidia-cusparse-cul1==11.7.4.91; platform_system == "Linux" and platform_machine == "x86_64"
nvidia-nccl-cul1==2.14.3; platform_system == "Linux" and platform_machine == "x86_64"
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ome-types==0.5.0

ome-zarr==0.8.3
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partd==1.4.1

patsy==0.5.6

pbr==6.0.0
pexpect==4.9.0; sys_platform I="win32" and sys_platform !="emscripten"
pillow==10.2.0
pip==24.3.1
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plotly==5.24.1
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pyarrow==10.0.1
pycparser==2.22; implementation_name == "pypy"
pycytominer==1.2.0
pydantic==2.1.1
pydantic-compat==0.1.2
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scikit-image==0.21.0
scikit-learn==1.3.2
scipy==1.9.3
scooby==0.10.0
seaborn==0.13.2
setuptools==73.0.1
shellingham==1.5.4
simpleitk==2.3.1
six==1.16.0

smmap==5.0.1
sniffio==1.3.0
sortedcontainers==2.4.0
soupsieve==2.5
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sglalchemy==1.4.54
sqlparse==0.4.4
stack-data==0.6.3
starlette==0.36.3
starsessions==1.3.0
statsmodels==0.14.3
stevedore==5.2.0
sympy==1.12
tblib==3.0.0
tenacity==9.0.0
termcolor==2.4.0
threadpoolctl==3.3.0
tifffile==2023.7.10

timm==0.9.16

tomli==2.1.0; python_version < "3.11"
toolz==0.12.1

torch==2.0.1

torch-geometric==2.5.0
torch-scatter==2.1.2

torchio==0.19.6

torchmetrics==1.3.1

torchserve==0.9.0

torchvision==0.15.2

tornado==6.4

tqdm==4.66.2

traitlets==5.14.1

trimesh==4.4.9

triton==2.0.0; platform_system == "Linux" and platform_machine == "x86_64"
typer|[all]==0.9.0
types-python-dateutil==2.8.19.20240106
typing-extensions==4.9.0
universal-pathlib==0.2.1
urllib3==1.26.18

uvicorn==0.27.1

vn-transformer==0.1.0

vtk==9.3.0

waitress==2.1.2; platform_system == "Windows"
wewidth==0.2.13
websocket-client==1.7.0
websockets==12.0

werkzeug==3.0.1

wheel==0.44.0

wrapt==1.16.0

xarray==2023.1.0

xmlschema==3.0.2

xsdata==24.2.1

yarl==1.9.4

zarr==2.16.1

zict==3.0.0

zipp==3.17.0

-find-links https://data.pyg.org/whl/torch-2.0.1+cul17.html

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The WTC-11 hiPSC single cell image dataset v1 analyzed in this study is available online at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_cell_image_dataset. The DNA replication foci dataset analyzed in this study is available online at https://open.quiltdata.com/b/allencell/packages/aics/
nuclear_project_dataset_4. The WTC-11 hiPSC nucleoli (NPM1) perturbation single cell image dataset analyzed in this study is available online at https://
open.quiltdata.com/b/allencell/tree/aics/NPM1_single_cell_drug_perturbations/. The synthetic dataset of punctate structures generated using cellPACK and
analyzed in this study is available online at https://open.quiltdata.com/b/allencell/tree/aics/morphology_appropriate_representation_learning/
cellPACK_single_cell_punctate_structure/. The landing page of the GitHub repository associated with this manuscript (https://github.com/AllenCell/
benchmarking_representations) has additional information for accessing and processing these datasets.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant

groupings

Population characteristics N/A
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Ethics oversight N/A
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For all single cell analysis, the sample size was based on the number of single cells available in each dataset.

Data exclusions  No data has been excluded.

Replication We used random seeds for model training to ensure that the models can be reproduced. We used 5 fold cross validation to compute
classification scores for the applicable datasets. We used 5 fold cross validation with 20 repeats to compute regression scores for the
applicable datasets. All attempts at replication were successful.

Randomization  We used random train/validation/test splits during training. We evaluated the best models based on performance on the validation dataset.

Blinding Does not apply. The measurements in this dataset did not involve human subjects.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq

Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

https://www.allencell.org/cell-catalog.html

PCNA (AICS0088-83, https://hpscreg.eu/cell-line/UCSFi001-A-56)

Mycoplasma contamination Stereility testing results can be found in the certificate of analysis for the cell line on https://www.allencell.org/cell-

catalog.html. All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  No misidentified cell lines were used in this study.

(See ICLAC register)

Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o
Describe-any-atithentication-proceduresfor-each-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-tsed-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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