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Interpretable representation learning for 
3D multi-piece intracellular structures using 
point clouds
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A key challenge in understanding subcellular organization is quantifying 
interpretable measurements of intracellular structures with complex 
multi-piece morphologies in an objective, robust and generalizable manner. 
Here we introduce a morphology-appropriate representation learning 
framework that uses three-dimensional rotation-invariant autoencoders 
and point clouds. This framework is used to learn representations of 
complex shapes that are independent of orientation, compact and 
interpretable. We apply our framework to intracellular structures 
with punctate morphologies (for example, DNA replication foci) and 
polymorphic morphologies (for example, nucleoli). We explore the 
trade-offs in the performance of this framework compared to image-based 
autoencoders by performing multi-metric benchmarking across efficiency, 
generative capability and representation expressivity metrics. We find that 
the proposed framework, which embraces the underlying morphology 
of multi-piece structures, can facilitate the unsupervised discovery of 
subclusters for each structure. We show how this approach can also 
be applied to phenotypic profiling using a dataset of nucleolar images 
following drug perturbations.

A central goal of cell biology is to understand the spatial and dynamic 
organization of the components within the cell and how their interac-
tions contribute to cell function. Enabled by advances in imaging meth-
ods, we are now at the dawn of the big data era for cellular imaging1–4, 
in which unprecedented amounts of rich image datasets can enable 
quantitative characterization of cellular organization and its connec-
tions with cellular phenotype.

The term cellular organization encompasses multiple aspects of a 
cell’s configuration that must be unpacked before further discussion. 
Here we focus on two of these aspects: spatial protein distributions and 
shape of multi-piece intracellular structures. For example, the spatial 

pattern of fluorescently labeled proliferating cell nuclear antigen 
(PCNA), representing the punctate morphology of DNA replication 
foci, changes throughout the cell cycle, making it difficult to quantify 
due to its dynamic and complex nature. These types of spatial distri
butions are usually analyzed via the texture patterns they represent,  
for example, computing Haralick texture features5. However, the 
biological meaning of some of these features, such as the ‘second 
angular moment of texture’, is difficult to understand. Therefore,  
with spatial protein distributions, we face the challenge of developing 
a robust and generalizable analysis workflow that facilitates biological 
interpretation.
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extract features that do not depend on an object’s orientation. The 
incorporation of geometric information in the form of the object 
orientation into the representation learning process is an example 
of ‘geometric deep learning’10. By using point clouds as a unifying 
way of encoding image data, we are able to overcome the challenges 
described above and take advantage of previous implementations for 
rotation-invariant feature learning11–13 while extending their applica-
tions to quantitative cell biology.

Here, we first develop a rotation-invariant representation  
learning framework that uses point clouds to encode relevant infor-
mation about the underlying biological data. We then use a synthetic 
dataset of punctate structures to confirm that rotation-invariant  
representations are not sensitive to data orientation and are more 
compact when learned from data encoded as point clouds compared  
to when they are learned from microscopy images directly. We show 
how 3D rotation-invariant features learned from point clouds can be 
used to recover unique morphological changes of DNA replication  
foci across the cell cycle without supervision. We also explore the  
localization patterns of several other punctate structures and  
discover new patterns of intracellular organization. Next, by adapt-
ing our framework to handle more complex multi-piece structures, 
we systematically characterize sources of shape variation of other 
major intracellular structures including nucleoli, Golgi and lysosomes. 
Finally, we demonstrate how the learned representations based on this 
framework can be used for detecting morphological alterations in a 
nucleolar drug perturbation dataset, and for visualizing the average 
phenotype for each drug to aid in interpretability of the phenotype.

Results
A framework for morphology-appropriate representation 
learning
The 3D rotation-invariant representation learning framework has two 
main components. The first component addresses a critical issue in 
biological image analysis that is capturing consistent structural infor-
mation regardless of an object’s orientation in the image. We used a 
specialized neural network encoder that can ‘understand’ biological 
shapes consistently, even when they are rotated in 3D space. This neural 
network learns representations in a vector form. This is done in a way 
that multiple rotations of the same object are mapped into distinct 
rotations of the same vector11 (Fig. 1a and ‘Models’ in Methods).

The second component consists of encoding the raw single-cell 
image data into a point cloud that is then fed to the neural network 
for representation learning. This encoding process is done in a 
morphology-appropriate manner, and is thus slightly different for 
punctate structures, such as DNA replication foci, versus polymorphic 
intracellular structures, such as nucleoli. The biological meaning of 
shape differs between these two types of morphologies; we focus on 
encoding only the relative location of individual pieces in punctate 
structures (Fig. 1b and ‘Punctate structures’ in Methods), while both 

On the other hand, major organelles or subcellular structures can 
often be analyzed by segmentation, which separates the foreground 
signal from the background. Intracellular structures composed of a 
single segmented piece, such as the cell itself or the nucleus, can then 
be studied via a range of features including, among other methods, 
shape decomposition using spherical harmonic expansion1,6,7. This 
approach is, however, mainly used for cell and nuclear shapes because 
it is limited to continuous shapes, and does not easily apply to complex, 
multi-piece structures like the Golgi apparatus, which has a discontinu-
ous shape. In fact, most intracellular structures exhibit a polymorphic 
morphology consisting of multiple pieces, which presents another 
challenge for interpretable image analysis pipelines. While each  
individual piece could be segmented and measured, the entirety of  
the multi-piece structure cannot be easily represented as a whole. 
Therefore, we face two key challenges: the need for interpretable 
methods to analyze spatial protein distributions, and the difficulty in 
representing complex, multi-piece intracellular structures.

To overcome these two challenges, we demonstrate the use of 
three-dimensional (3D) point clouds to encode biological data in 
microscopy images, combined with an unsupervised ‘representation 
learning’ framework for single-cell feature extraction. Representation 
learning is a field of machine learning that has become an increasingly 
popular way to extract meaningful features directly from raw data 
without the need for hand-engineered features8,9. These features are in 
the form of latent variables learned by neural networks during training, 
which we refer to as ‘representations’.

An important aspect of the proposed learning framework is that 
it is generative, meaning we can transform learned representations 
back into the original point clouds and vice versa, resulting in highly 
interpretable features and addressing the first challenge described. A 
key contribution of this work is the use of point clouds to incorporate 
intensity information present in large 3D images representing spatial 
protein distribution in a segmentation-free manner. Furthermore, to 
address the challenge of analyzing multi-piece intracellular structures, 
we adapted the point cloud-based approach to handle segmented 
multi-piece shapes. This is achieved using the concept of signed dis-
tance field (SDF), allowing us to generalize our framework to more 
complex intracellular structures.

The representations learned by neural networks normally depend 
on the orientation of an object in the image. Even though the orienta-
tion of the cells is important in many contexts, such as when cells are 
subject to shear stress, during development or directed migration, 
it may not have biological relevance in other contexts. For example, 
the orientation of a cell within a monolayer colony grown on a sub-
strate may merely reflect the orientation of that colony relative to the 
microscope stage and not anything biological. Therefore, it would be 
desirable to design analysis workflows where the image orientation 
can be factored out of the learned representations if appropriate. We 
achieved this by leveraging the notion of ‘3D rotation invariance’ to 

Fig. 1 | Application-appropriate representation learning framework for 
complex intracellular structure morphologies. a, 3D rotation-invariant 
representation learning framework using rotation-equivariant encoders. 
Rotations of the same shape are projected into vector representations using 
a 3D rotation-equivariant encoder. The norm of the vector representation is 
used to compute the rotation-invariant representation. The orientation of the 
vector representation is used to compute the rotation matrix. b, Point cloud 
learning framework for punctate structures like DNA replication foci. Top 
row, point cloud preprocessing for punctate structures. Shown are single-cell 
segmentations for the nucleus and cell membrane, and raw intensities for DNA 
replication foci (via PCNA). Four-dimensional (4D; XYZ + intensity) point clouds 
are sampled from the intensity images by converting intensities to probabilities. 
The intensity coordinate is scaled to ensure that the range of intensity values is 
like the range of XYZ coordinate values. Bottom row, rotation-invariant point 
cloud representation learning model. The 4D point cloud is used as input to the 

rotation-equivariant encoder. The decoder reconstructs the rotation- 
invariant representation to obtain a rotation-invariant reconstruction. The 
reconstruction is reoriented using the learned rotation matrix. c, Point cloud 
learning framework for polymorphic structures like the GC of nucleoli (via 
nucleophosmin). Top row, point cloud SDF preprocessing for polymorphic 
structures. Shown are single-cell segmentations for the nucleus, the cell 
membrane and nucleoli (GC). Nucleoli segmentation from single-cell data is 
used to generate a 3D mesh. A surface point cloud is sampled from the nucleolar 
mesh. Another point cloud is sampled from the 3D bounding box volume and its 
points are assigned local SDF values relative to the surface of the nucleolar mesh. 
Bottom row, rotation-invariant point cloud SDF representation learning model. 
The surface point cloud is used as input to the rotation-equivariant encoder. The 
decoder reconstructs the vector representations to obtain the SDF point cloud. 
The rotation-invariant representation and the rotation matrix are computed 
from the vector representation.
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the relative location and the shape of individual pieces are considered 
important for polymorphic structures (Fig. 1c and ‘Polymorphic struc-
ture datasets’ in Methods).

We use these morphology-appropriate encodings as the input to 
our rotation-invariant representation learning framework designed 
as an ‘autoencoder’14: First, the 3D rotation-equivariant ‘encoder  
network’ compresses the generated point clouds into vector latent 
representations. Next, the latent representations are used by a ‘decoder 
network’ to reconstruct the input data. In the case of punctate struc-
tures, the decoder network reconstructs the input point cloud using 
a combination of the learned rotation-invariant representations and 

rotation matrices to reorient the reconstructed shape into the cor-
rect input orientation (Fig. 1b). In the case of polymorphic structures, 
the decoder network reconstructs the SDF point cloud (Fig. 1c and 
‘Polymorphic structure datasets’ in Methods) from the vector latent 
representations, which are converted into rotation-invariant repre-
sentations after training by taking their norms (‘Models’ in Methods).

To evaluate the utility of the 3D point cloud encoding, we per-
formed benchmarking against traditional methods using neural 
network models trained on 3D images directly. We trained clas-
sical (rotation dependent) and rotation-invariant versions of both 
image-based and point cloud-based models to evaluate the impact of 
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adding the geometric constraint of rotation invariance. We expected 
point cloud-based models to outperform image-based models for 
two reasons. First, point clouds are a less redundant way of encoding 
sparse multi-piece intracellular structures compared to image-based 
models. This is because a sparse intracellular structure occupies only a 
few voxels in 3D space (for example, ~8% of voxels in a 3D image of DNA 
replication foci correspond to the relevant signal of PCNA in late S–G2 
cell-cycle stages), and consequently, most of the 3D space contains 
empty and redundant information. Sampling point clouds from the 
region occupied by the structure can help remove this redundancy. Sec-
ond, image-based autoencoders often generate blurry reconstructions 
that can be particularly problematic for small objects15,16. More details 
about all models used herein can be found in ‘Models’ in Methods.

We used a multi-metric approach to evaluate our models and 
the representations learned by them. Our goal is to increase the 

transparency of the reasons for the performance of these models, 
and to explore trade-offs. Importantly, we hope to identify models 
that are quantitatively useful across a broad set of tasks to make gain-
ing biological insight from the learned representations more likely, 
not necessarily the model that is best for any one metric. The models 
were evaluated with respect to their efficiency, generative capabilities 
and representation expressivity as detailed in Extended Data Fig. 1 
(Supplementary Note 1). Considering all these metrics together, we 
quantified the holistic utility of each model and the advantages and 
disadvantages of using each approach.

Synthetic data evaluation reveals holistic representations
We started by evaluating the effectiveness of 3D rotation invariance 
and the choice of using point clouds to encode punctate structures 
using synthetic data. We used cellPACK to create a synthetic dataset 
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Fig. 2 | 3D rotation-invariant point cloud models are efficient, produce low 
rotation invariance errors and generate good reconstructions in a synthetic 
dataset of punctate structures. a, Dataset of synthetic punctate structures 
generated using cellPACK. A 3D nuclear shape is packed with six different rules: 
planar 0, planar 45, planar 90, radial, random and surface. The surface rule  
packs spheres close to the nuclear boundary. The random rule packs spheres 
randomly across the 3D nuclear volume. The radial rule packs spheres close to 
the centroid. The planar rules pack spheres with a gradient away from a plane 
indicated in red. Each rule is used to pack 254 different nuclear shapes. The black 
arrows for planar 0 versus planar 45 highlight the symmetric versus asymmetric 
nature of these two packings in nuclei with high aspect ratios. b, Benchmarking 
unsupervised representations across different models and metrics. Left, polar 
plot showing the performance of classical and rotation-invariant image and 
point cloud models across efficiency metrics (model size (n = 1), inference time 
(n = 40) and emissions (n = 40)), generative metrics (reconstruction (n = 234) 

and evolution energy (n = 1,053)) and representation expressivity metrics 
(compactness (n = 5), classification of rules (n = 5), rotation invariance error 
(n = 936) and average interpolate distance (n = 1,053)). Metrics are z-scored 
and scaled such that larger is better. Right, bar plots showing raw metric values 
across models for each metric. Error bars are the s.d. The best model for each 
metric is indicated. c, PC1 for each rule using the rotation-invariant point cloud 
model trained with jitter augmentations. PCA is fit to representations of each 
rule separately. Shown are normalized PCs (s.d./σ) sampled at three map points 
(−2σ to 2σ in steps of σ). Black arrows for planar 0 versus planar 45 indicate the 
symmetric versus asymmetric reconstructions for these two packings at 2σ.  
d, Six archetypes computed from the rotation-invariant point cloud represen
tations. Each archetype corresponds to one of the six rules. All reconstructions 
shown are cut at the midplane. Color associated with each point is the distance 
from the midplane in Z.
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of punctate structures with known rules of organization. cellPACK 
generates 3D models of complex biological environments using novel 
packing algorithms17. To create the synthetic dataset, we used six spatial 
rules for packing spheres in real 3D nuclear shapes based on gradient 
algorithms (‘cellPACK synthetic single-cell dataset’ in Methods and 
Fig. 2a). Importantly, the stochastic nature of the packing algorithm 
generates heterogeneity in the distribution of spheres across the  
simulated nuclei that makes the recovery of rules via unsupervised 
learning difficult.

Since 3D rotation is an important variable associated with the 
planar rules, we expected 3D rotation-invariant models to give us 
the most compact representations by factoring out this variable. We 
additionally hypothesized that point cloud models (Fig. 1a) would 
provide better representations than image models because they  
better describe the punctate nature of the synthetic data represented 
by the centroid of the packed spheres (Fig. 2a). To test this hypothesis,  
we trained two classical and two 3D rotation-invariant models using 
images and point clouds as input data, respectively, resulting in  
four models for evaluation (‘Punctate structures’ and ‘Models’ in  
Methods and Supplementary Notes 2 and 3).

We found that point clouds displayed superior performance  
across all efficiency metrics (model size, inference time and emissions 
in Fig. 2b). In addition, point clouds also produced better reconstruc-
tions (‘reconstruction error’) and had low evolution energy scores, 
meaning that the interpolations between two shapes are smooth.  
We also confirmed that the implementations of the rotation-invariant 
models were indeed generating representations that were not sen-
sitive to the orientation of the input data (Supplementary Fig. 1).  
Specifically, we evaluated that the model reconstructions given dif-
ferent orientations of the same input shapes were indistinguishable 
(Supplementary Note 4).

We found that rotation-invariant representations from point 
clouds were more compact using the Levina–Bickel intrinsic dimen-
sionality metric (‘compactness’)18 and had much lower rotation invari-
ance errors compared to their image-based counterpart (Fig. 2b). All 
four models were able to reconstruct the unique morphologies associ-
ated with each packing rule (Supplementary Fig. 2). However, we found 
that representations from both rotation-invariant models were slightly 
worse than their classical counterparts at classifying the six rules (‘rule 
classification’ in Fig. 2b). This was an expected outcome because rota-
tion is an important distinguishing feature of the planar rules and 
rotation-invariant representations are insensitive to this feature. 
Overall, the 3D rotation-invariant point cloud model was an efficient 
generative model that learned compact and orientation-independent 
representations for synthetic punctate structures.

Having established the holistic utility of the rotation-invariant 
point cloud model on synthetic data, we next performed principal 
component analysis (PCA; Supplementary Note 5.1) on the learned 
representations using this model to interpret their meaning. We per-
formed PCA on representations for each rule to assess their internal 
variability. By applying jitter augmentations (Supplementary Fig. 2g; 
see jitter details in Methods) during model training, we observed 

slightly improved reconstruction quality, especially for radial and 
planar rules (compare the reconstructions in Supplementary Fig. 2g  
to the reconstructions in Supplementary Fig. 2f). Consequently, we 
conducted subsequent PCA analyses using the jitter-augmented 
model. By visualizing the first principal component (PC1) of the recon-
structions for each rule via a latent walk, we found that PC1 recovers 
how nuclear size affects each rule’s packing (Fig. 2c). Notably, the 
rotation-invariant reconstructions for all planar rules are aligned in the 
same direction, allowing us, for example, to focus on the subtle differ-
ences in spatial distribution between 0 and 45 degrees of orientation 
(Supplementary Note 4).

Next, we performed an archetype analysis19 to find extreme  
points in the representations of the synthetic dataset (Supplemen-
tary Note 5.2). Contrary to the PCA analysis, the archetype analysis 
was performed on the representations of all samples in the synthetic 
dataset regardless of its packing rule. Archetypes are determined so 
that observations can be approximated by convex combinations of  
the archetypes. By setting the number of archetypes to six, we found 
each archetype represented one of the six rules used in cellPACK to  
generate the synthetic dataset. These results show that the obtained 
point cloud rotation-invariant representations can enable unsuper-
vised rule discovery for a synthetic dataset of punctate structures.

Representations recover cell-cycle patterns of DNA  
replication foci
After establishing its applicability to synthetic data, we tested the rep-
resentation learning framework on a real single-cell image dataset of 
punctate structures for biological discovery and hypothesis generation. 
The dataset contains single-cell images of DNA replication foci in human 
induced pluripotent stem (hiPS) cells expressing fluorescently tagged 
PCNA (N = 2,420; ‘DNA replication foci dataset’ in Methods). DNA repli-
cation foci are punctate and display a continuous change in their overall 
localization pattern and intensity throughout cell cycle20 (Fig. 3a). 
Due to tagged PCNA fluorescence intensity being an important source  
of variation for DNA replication foci patterns, we adapted the point 
cloud sampling strategy so that the raw image intensity is treated as a 
fourth coordinate, in addition to the XYZ spatial coordinates (Extended 
Data Fig. 2a,b and ‘DNA replication foci dataset’ in Methods). This  
additional coordinate ensures that intensity information is captured  
in the learned representations (‘Point cloud models’ in Methods).

To test whether the representations learned with these data  
capture biologically relevant features about DNA replication foci 
localization, we manually classified each single-cell image in this data-
set into one of eight cell-cycle stages based on the spatial pattern of 
PCNA (‘DNA replication foci dataset’ in Methods). We also manually 
labeled cells as outliers if they were dead, dying or did not express 
PCNA. Next, we used the representations learned by each of the four 
models to benchmark their performance on various tasks, including 
the application-appropriate task of classifying cell-cycle stages and 
detecting outliers from the DNA replication foci dataset.

We found that point cloud models were more efficient but, in this 
case, not as compact as the rotation-invariant image model (Fig. 3b). 

Fig. 3 | Rotation-invariant point cloud representations recover the cell-
cycle-dependent spatial pattern of DNA replication foci. a, Dataset of DNA 
replication foci in hIPS cells expressing monomeric enhanced green fluorescent 
protein (mEGFP)-tagged PCNA. DNA replication foci have a stereotypical cell-
cycle-dependent localization pattern. Shown are examples of image and  
sampled point cloud center slices with adjusted contrast for eight expert-
annotated cell-cycle stages. b, Benchmarking unsupervised representations 
across different models and metrics. Left, polar plot showing performance of 
classical and rotation-invariant image and point cloud models across efficiency  
metrics (model size (n = 1), inference time (n = 40) and emissions (n = 40)), 
generative metrics (reconstruction (n = 122) and evolution energy (n = 180)) 
and representation expressivity metrics (compactness (n = 5), classification 

of cell cycle via top-2 classification accuracy (n = 5), rotation invariance error 
(n = 488) and average interpolate distance (n = 180)). Metrics are z-scored and 
scaled such that larger is better. Right, bar plots showing raw metric values across 
models for each metric. Error bars are standard deviations. The best model for 
each metric is indicated. c, Eight archetypes identified using rotation-invariant 
point cloud representations. Each archetype corresponds to one of the eight 
expert-annotated cell-cycle stages. d, PC1 for each cell-cycle stage using rotation-
invariant point cloud model. PCA is fit to representations of each cell-cycle  
stage separately. Shown are normalized PCs (s.d./σ) sampled at three map  
points (−2σ to 2σ in steps of σ). e, Average canonical reconstructions across five 
bins of nuclear volume (Supplementary Note 5.3). All reconstructions shown  
are center slices.
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Point cloud models also provided better overall reconstructions com-
pared to image models (compare reconstructions in Supplementary 
Fig. 3f–h to Supplementary Fig. 3b,c). Despite the poor reconstruction 
of both image models (Supplementary Fig. 3b,c), we found that the 

rotation-invariant image model was the best at classifying cell-cycle 
stages (‘Cell-cycle classification’ in Fig. 3b; 81% accuracy versus 80% 
accuracy for the best point cloud model). This result demonstrates the 
limits of evaluating models using a single metric alone. We confirmed 
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that poor reconstructions of image models were not due to dataset size 
or image normalization issues using an alternative approach (Supple-
mentary Fig. 3d and ‘Masked autoencoders using vision transformers’ 
of Methods). We also found that point cloud models had slightly better 
performance detecting outliers compared to image-based models 
(‘Outlier classification’ in Fig. 3b; ~100% accuracy versus 98% accuracy 
for the best image model). Finally, we found that the rotation-invariant 
point cloud model had lower rotation invariance error scores com-
pared to its image counterpart. Overall, the results elucidate the chal-
lenge of reconstructing sparse intracellular structures using classical 
image autoencoders15, and highlight the good performance of the 
rotation-invariant point cloud representations across many metrics 
evaluated for the DNA replication foci dataset.

To interpret the representations learned by the rotation-invariant 
point cloud model for each cell-cycle stage, we performed PCA on the 
dataset, stratifying the analysis by manual cell-cycle stage annotations 
and fitting the PCA separately for each stage. As before, the PCA analysis 
is followed by a latent walk and data reconstruction that can be visually 
evaluated. A latent walk along PC1 for each cell-cycle stage revealed 
some overlap in the morphology and intensity of DNA replication foci 
between neighboring cell-cycle stages (early S σ = 2 and early S-mid S 
σ = −2, for example). This highlights the inherent uncertainty that is 
present in the task of manual annotation of a continuous process like 
cell cycle into discrete classes.

We found that an archetype analysis with eight archetypes on the 
representations of all cell-cycle stages was able to recover expected 
cell-cycle patterns of DNA replication foci (order of archetypes in 
Fig. 3d resembles examples in Fig. 3c for σ = 0). The archetypes capture 
three main sources of variation in the dataset as expected. The first is 
overall nuclear shape, which is mainly represented by archetypes dis-
playing different nuclear sizes and elongations. In addition to nuclear 
shape, the intensity and localization of DNA replication foci are differ-
ent between archetypes. These two sources of variation seemed con-
sistent with what we observed in real PCNA images. Lastly, the spatial 
pattern of PCNA changes from a dim signal uniformly distributed in  
the nucleus at G1 to compact, well-localized bright spots in late S.

Next, we investigated whether the learned representations could 
capture known changes in the spatial patterns of DNA replication 
foci across the cell cycle in an unsupervised manner. Instead of using 
expert-generated labels, we derived pseudo labels based on nuclear vol-
ume. This was done by dividing the nuclear volume into five bins, each 
corresponding to a different portion of the cell cycle (Supplementary 
Note 5.3). For each bin, we computed the average representation of the 
DNA replication foci patterns by averaging the rotation-invariant point 
cloud representations of all cells in that bin (Fig. 3e). We visualized the 
average representations across the bins (Fig. 3e), and we observed that 
the size of the DNA replication foci point cloud increased with increas-
ing nuclear size. We also observed a transition in the DNA replication 
foci pattern from a uniformly distributed dim set of puncta into a 
coalesced set of bright dots. This is reminiscent of the transition from 

G1 to late S. This pattern was then followed by signal sparsification into 
uniform dim punctate structures again, which is indicative of the transi-
tion from late S to G2. However, we observed that some subtle patterns 
from cell-cycle stages with small numbers like mid S–late S (N = 75) and 
late S (N = 144) were missing. Overall, these results demonstrate that the 
learned point cloud rotation-invariant representations can recover the 
overall biological behavior of DNA replication foci of well-represented 
cell-cycle stages in an unsupervised manner.

Interpreting spatial patterns of other punctate structures
To assess whether our approach would generalize to other intracellular 
structures with punctate morphology, we analyzed a larger dataset 
of punctate structures from the WTC-11 hiPS cell single-cell image 
dataset v1 (Methods). This dataset comprises centrioles (N = 7,575), 
peroxisomes (N = 1,997), endosomes (N = 2,601), nuclear pores 
(N = 17,703), nuclear speckles (N = 2,980), cohesins (N = 2,380) and 
histones (N = 15,875). Examples of these structures are shown in Fig. 4a. 
Once again, we trained classical and rotation-invariant image-based 
and point cloud-based models on this larger dataset (Extended Data 
Fig. 2c; ‘Punctate structures’ in Methods). In addition to the usual set of  
evaluation metrics, we tested the applicability of the learned repre
sentations for two classification tasks. The first task focused on iden-
tifying the specific intracellular structures from the seven options 
available in the dataset. The second task involved classifying cell- 
cycle stages (interphase or mitosis) based on the annotations provided 
within the dataset (Supplementary Note 1.2).

Overall, we found that classical image-based models provide bet-
ter reconstructions when trained with the combination of these seven 
different punctate structures relative to what we observed for the same 
models trained on the DNA replication foci dataset alone (Supplemen-
tary Fig. 4a,b). Despite this improvement in reconstruction, we noticed 
that the classical image-based model poorly reconstructs some of these 
structures including centrioles, peroxisomes and endosomes (see 
blurry reconstructions in Supplementary Fig. 6b). In addition, we found 
that imposing rotation invariance further deteriorates reconstruction 
of image models across all structures (Supplementary Fig. 4c). Once 
again, an alternative approach confirmed that poor reconstruction 
was not due to dataset issues (Supplementary Fig. 4d and ‘Masked 
autoencoders using vision transformers’ in Methods).

Both classical and rotation-invariant point cloud models pro-
duced more accurate and comparable reconstructions, but with spa-
tial distribution artifacts for structures with fewer training samples, 
like endosomes and peroxisomes, like the classical image model (as 
shown by arrows in Supplementary Fig. 4f,g). In addition to providing 
improved reconstructions compared to image models, we found that 
the rotation-invariant point cloud representations performed well at 
both structure classification (~95% accuracy versus 90% accuracy for 
best image model) and cell-stage classification (~58% accuracy versus 
57% accuracy for best image model), while being more compact and 
orientation independent (Fig. 4b).

Fig. 4 | Representation learning framework reveals interpretable spatial 
patterns for other punctate structures from the WTC-11 hiPS cell single-
cell image dataset v1. a, Dataset of punctate structures in hiPS cells from the 
WTC-11 hiPS cell single-cell image dataset v1 including nuclear pores, nuclear 
speckles, cohesins, histones, centrioles, peroxisomes and endosomes1. 
Shown are examples of images and sampled point cloud center slices of the 
mEGFP-tagged protein. b, Benchmarking unsupervised representations across 
classical and rotation-invariant image and point cloud models across efficiency 
metrics (model size (n = 1), inference time (n = 40) and emissions (n = 40)), 
generative metrics (reconstruction (n = 7,620) and evolution energy (n = 180)) 
and representation expressivity metrics (compactness (n = 5), classification 
(n = 5), rotation invariance error (n = 16,004) and average interpolate distance 
(n = 180)). Classification tasks included classifying seven different structures, 
and six different interphase/mitotic stages (Supplementary Note 1.2). Left, polar 

plot showing the performance across models where metrics are z-scored and 
scaled such that larger is better. Right, bar plots showing raw metric values across 
models for each metric. Error bars are the s.d. The best model for each metric is 
indicated. c, Real examples for each map point of PC1 computed using PCA fit to 
representations of each structure separately using the rotation-invariant point 
cloud model. Only cells in interphase were included. Shown are XY and XZ views. 
The structure channel is shown as center slices across the nuclear centroid for 
nuclear pores, cohesins and histones, or as maximum projections for nuclear 
speckles, centrioles, endosomes and peroxisomes. d, Latent walk for PC1. Shown 
are normalized PCs (s.d./σ) sampled at three map points (−2σ to 2σ in steps of σ).  
Reconstructions shown are cut at the midplane. Membrane centroids are  
marked for centrioles. Only cells in interphase were considered for this analysis. 
Centriole reconstructions were rotated to be aligned to the x axis.
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We then fit PCA to the dataset of each structure independently to 
interpret the rotation-invariant point cloud representations. First, we 
sampled real single-cell images of each structure along PC1 as shown 
by the top and side views in Fig. 4c. From these images we were able to 
draw some observations. Figure 4c suggests the major source of vari-
ation across all seven intracellular structures in this dataset appears 
to be aspects of cell and nuclear shape like height and elongation. 
Next, we noticed that centrioles are localized near the nucleus at one 
extreme of PC1 and gradually migrate toward the cell membrane at the 
other extreme (see the column ‘Centrioles’ in Fig. 4c). Additionally, we 
observed nuclear speckles to be more uniformly distributed within 
the nucleus at one extreme of PC1 and more concentrated near the 
nuclear shell forming a ring-like pattern at the other extreme of PC1. 
Surprisingly, latent walks along PC1 revealed similar patterns of sources 
of variation for both centrioles and nuclear speckles compared to the 
original images (Fig. 4d). We found that centrioles polarize by mov-
ing away from the cell center (represented by a dark cross in Fig. 4d), 
and nuclear speckles concentrate in a ring-like pattern (last row of 
column ‘Nuclear speckles’ in Fig. 4d). To explore clustering in the rep-
resentation space, we visualized all representations using a PaCMAP 
projection, coloring them by intracellular structure (Extended Data 
Fig. 3a). Nearly all structures formed distinct clusters, with some over-
lap observed between the clusters for nuclear speckles and histones. 
Next, we conducted an archetype analysis using seven archetypes and 
projected these into the PaCMAP space. Each archetype corresponded 
to one of the clusters. Using generative reconstructions, we visualized 
the archetypes and found that each captured the distinctive morphol-
ogy of its associated structure (Extended Data Fig. 3b). Notably, this 
result was not guaranteed, as archetypes are mathematical points in 
the representation space and could theoretically capture any variable 
aspect of intracellular structure morphology. Overall, these results 
highlight the ability of our rotation-invariant point cloud representa-
tions to capture meaningful and biologically relevant variations in  
the spatial pattern of multiple intracellular structures.

Generalizing the framework to polymorphic multi-piece 
structures
We next asked if we could adapt our approach to learn 3D rotation- 
invariant representations for non-punctate intracellular structures, 
such as nucleoli and the Golgi apparatus. These organelles are poly-
morphic structures where the shape of individual pieces, in addition 
to the location of these pieces, may be important for the underlying 
biological process and, therefore, should be captured by the learned 
representations21,22. We combined the point cloud approach with an 
SDF11,23,24 computed from segmented images to incorporate the shape 
information of individual pieces into the representation learning frame-
work (Fig. 1c, Extended Data Fig. 4, ‘Polymorphic structure datasets’ 
in Methods and Supplementary Note 6).

We applied the adapted framework to images of the granular 
component (GC) of nucleoli via fluorescently tagged nucleophosmin 
(NPM1, N = 11,814; Fig. 5 and ‘WTC-11 hiPS cell single-cell image dataset 
v1’ in Methods), which are part of the WTC-11 hiPS cell single-cell images 
dataset (v1)1. Nucleoli are multi-compartment condensates that exhibit 
a broad distribution in both the number of pieces and size25 and can 
exhibit rapid rotation in 3D26,27. Given these properties, we expected 
that 3D rotation-invariant representations learned using an implicit 
definition of the nucleolar surface via an SDF would be more interpret-
able than representations learned by classical models directly from 
segmented images. To evaluate this, we trained two classical image 
models using segmentations and SDFs, two 3D rotation-invariant image 
models using segmentations and SDFs and one 3D rotation-invariant 
point cloud model using SDFs (see ‘Polymorphic structures’, ‘Polymor-
phic structure datasets’ and ‘Models’ in Methods). Examples of inputs 
and outputs of each of these models can be seen in Supplementary 
Fig. 5. All models were trained on downsampled images by scaling the 

meshes down to a resolution of 32 × 32 × 32 (Extended Data Fig. 4a). This 
rescaling process retained much of the relevant nucleolar information 
based on visualization (compare voxelized rescaled mesh and original 
segmentation in Extended Data Fig. 4b).

We found that the two classical image models based on segmenta-
tions and SDFs, and the 3D rotation-invariant point cloud model gener-
ate similar quality reconstructions (‘Reconstruction error’ in Fig. 5b). 
However, the point cloud model was less efficient in terms of emissions 
and inference time (Fig. 5b). We also found that 3D rotation-invariant 
image models produce lower quality reconstructions compared to 
classical image models, as we had observed for models trained on 
punctate structures (see Supplementary Note 1.1 for details on how 
reconstruction error was computed for each model). The results also 
indicate rotation-invariant representations from point clouds are more 
orientation independent compared to representations learned from 
both segmentations and SDFs (‘Rotation invariance error’ in Fig. 5b). 
Next, we asked which representations would capture more relevant 
morphological attributes of nucleoli. To answer this question, we 
used the learned representation to classify the number of nucleolar 
pieces in the segmented images and to predict the size, surface area 
and relative distance between pieces (Supplementary Note 1.2). We 
found that rotation-invariant image SDF and point cloud representa-
tions performed best on all these tasks (‘Classification of number of 
pieces’, ‘Average feature regression’ and ‘Average distance regression’ 
in Fig. 5b), suggesting that these representations contain relevant 
biological information. We also downscaled the meshes to a resolution 
of 64 × 64 × 64 to test the effect of downsampling the data to a resolu-
tion higher than the 32 × 32 × 32 resolution used before (Supplemen-
tary Fig. 6a). We found that the quality of the learned representations 
was similar, at the cost of higher emission scores (Supplementary 
Fig. 6b). Overall, we observed that no single model performs well across  
all metrics, thus requiring application-appropriate model selection. 
We observed similar results with a larger dataset of other polymorphic 
structures (Supplementary Note 7 and Extended Data Fig. 6). In both 
cases, we prioritized rotation invariance error as a representation 
expressivity metric, and reconstruction loss as a generative metric for 
downstream analysis (Supplementary Note 1).

Next, we used PCA on data grouped by number of nucleolar pieces 
per cell to interpret the rotation-invariant point cloud representa-
tions, with PCA fit separately for each group. Since we had to relax the 
generative capabilities of this model to achieve rotation invariance, 
we retrieved the closest real cells while performing a latent walk of 
PC1 and PC2 (Fig. 5c). We found elongation to be the major source of 
variation for single-piece nucleoli (~30% of the examples in the dataset; 
N = 3,499, explained variance of PC1 was 16% and PC2 was 7%). This was 
confirmed by computing the Pearson correlation with structure elonga-
tion (r = 0.56 for PC1). In the remaining 70% of the dataset (N = 8,315), 
where nucleoli consist of multiple pieces, the predominant source of 
variation appears to be the distance between pieces and the relative size 
of these pieces. For example, when considering nucleoli composed of 
two pieces, we observe PC1 (explained variance was 19%) to represent 
the height of the larger piece and the size of the small piece (Fig. 5c). In 
addition, we found PC1 to correlate with the average distance between 
pieces (r = 0.42 for PC1). By performing an archetype analysis with 
five archetypes on nucleoli representations from the entire dataset, 
we found that three archetypes represent nucleoli with a single piece 
but different elongations (archetypes 1–3 in Fig. 5d). Archetype four 
represents nucleoli with one large piece and one small piece, which is 
a common configuration in the dataset, and archetype five represents 
nucleoli fragmented in many small pieces.

Motivated by previous observations of cell-cycle-dependent 
nucleolar morphology28, we asked whether rotation-invariant repre-
sentations could capture nucleolar changes as a function of the cell 
cycle. To do this, we again used nuclear volume bins to create a pseudo 
cell-cycle axis. Next, we computed an average nucleolar representation 
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Fig. 5 | Rotation-invariant representation learning framework generalizes 
to polymorphic multi-piece structures. a, Dataset of nucleoli (GC) from the 
WTC-11 hiPS cell single-cell image dataset (v1)1, stratified by number of pieces. 
Shown are example maximum intensity projections and corresponding 3D 
meshes. b, Benchmarking unsupervised representations across different models 
and metrics. Left, Polar plot showing the performance of all models across 
efficiency metrics (model size (n = 1), inference time (n = 40) and emissions 
(n = 40)), generative metrics (reconstruction (n = 1,773) and evolution energy 
(n = 180)) and representation expressivity metrics (compactness (n = 5), 
classification of number of pieces (n = 5), shape features regression (n = 100), 
distance features regression (n = 100), rotation invariance error (n = 7,092) and 

average interpolation distance (n = 180)). Metrics are z-scored and scaled such 
that larger is better. Right, bar plots showing raw metric values across models for 
each metric. Error bars are the s.d. The best model for each metric is indicated. 
c, PC1 and PC2 for 1 piece, 2 pieces, 3 pieces, 4 pieces and >4 pieces as examples 
using the rotation-invariant point cloud model. PCA is fit to representations of 
different numbers of pieces separately. Shown are the closest real examples to 
normalized PCs (s.d./σ) sampled at three map points (−2σ to 2σ in steps of σ).  
d, Closest real example to five archetypes identified using the rotation-invariant 
point cloud representations. e, Closest real example to average representations 
of five equally sized bins of nuclear volume (Supplementary Note 5.4).
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for increasing nuclear sizes and then visualized the closest real exam-
ple to the average representation within each bin (Supplementary  
Note 5.3). Consistent with previous observations, we found that cells 
exiting division (small nuclear volume) have nucleoli that are frag-
mented into multiple pieces that coalesce into fewer larger pieces as the 
cells grow and progress toward mitosis (Fig. 5e). As a baseline for com-
parison, we also calculated the mean nucleolar volumes and surface 
areas for each nuclear volume bin and retrieved the closest real exam-
ple for each group based on this feature set (Extended Data Fig. 5a). 
As a result of this analysis, we no longer observed a clear transition 
from fragmented nucleoli to single-piece nucleoli. We also quantified  
classification accuracy for the number of nucleolar pieces using  
mean nucleolar volumes and surface areas. We observed that this fea-
ture set performs worse than the learned representations (Extended 
Data Fig. 5b and Supplementary Note 5.4). Altogether, the results 
show that this representation learning framework can be successfully 
adapted using SDFs to polymorphic structures and that it provides 
representations that capture relevant aspects of the nucleolar biology.

Evaluating drug effects on nucleolar morphology
We proceeded to test the applicability of the representation learning 
approach to a perturbation detection task using a drug screening data-
set. We imaged WTC-11 hiPS cells expressing an endogenously, fluores-
cently tagged nucleophosmin, representing the GC of nucleoli. Cells 
were treated with 16 different drugs at relatively low concentrations 
to induce subtle phenotypic alterations (‘Drug dataset’ in Methods). 
Analysis was conducted on cells imaged 2 h after treatment.

We used the representation learning framework to extract 
unsupervised representations for cells in the dataset (N = 1,025). To 
do so, we fine-tuned the models trained on the dataset of nucleolar (GC) 
single-cell images described in the previous section. We followed the 
methods described by Chandrasekaran et al.2 to evaluate the perfor-
mance of these fine-tuned models. This evaluation involved computing 
the mean average precision to measure how distinguishable different 
single cells of a drug-treated set are from untreated cells (dimethylsul-
foxide (DMSO); N = 140), and a q-value statistic based on permutation 
testing. We included two baseline models to obtain a set of reference 
q values. To validate our morphological profiling approach, we first 
benchmarked performance using 3D CellProfiler features on nucleolar 
(GC) single-cell segmentations (Supplementary Note 8). Second, we 
assessed the generalizability of our SDF point cloud model by evalu-
ating its performance on the nucleolar perturbation dataset without 
fine-tuning, treating it as an external validation set.

The results are summarized in Fig. 6a, where we plot the q value per 
drug for each model. Drugs with q value under the significance thresh-
old of 0.05 (or 1/q value > 20) are considered by that model as causing 
alterations in nucleolar morphology. Aside from the first two drugs, we 
found a difference in the behavior of CellProfiler, segmentation-based 
and SDF-based models. Therefore, we sorted the x axis from low to high 
q-values averaged over all SDF models. Consequently, drugs on the 
left side of the plot induce a stronger phenotypic change compared to 
drugs on the right side. Extended Data Table 1 describes details about 
each drug, such as name, concentration, molecular target or mecha-
nism of action, effect based on literature review and effect observed on 
nucleoli based on visual inspection of this drug dataset. Representative 
examples of the range of phenotypes of each drug are shown in Fig. 6b.

The first drug to appear on the x axis of Fig. 6a is actinomycin D, 
indicating that this drug is the one with the strongest effect on nucleo-
lar morphology. This drug works as a control in this analysis because 
it is the only well-characterized drug in this study that is known to 
target DNA and cause an alteration in nucleolar size (Extended Data 
Table 1 and Fig. 6b). Next, we found staurosporine to have the second 
strongest effect. A visual inspection of images of cells treated with 
this drug revealed the presence of many dead cells where nucleoli 
display very abnormal morphology (Fig. 6b). Both actinomycin D and 

staurosporine were identified as being distinguishable from the con-
trol (below q = 0.05 threshold) by all representation learning models. 
Interestingly, the CellProfiler features did not identify staurosporine, 
indicating that the representation learning models provide an improve-
ment compared to this ‘classic’ baseline.

No other drug was identified by either the classical or rotation- 
invariant image-based segmentation models. On the other hand, 
the SDF-based models identified several other drugs that could be 
associated with off-target effects. Starting from the left side of the 
plot in Fig. 6a, these models next identified paclitaxel and nocoda-
zole, which were associated with cell death 24 h after treatment, 
while also locking cells in mitosis (Extended Data Table 1 and Fig. 6b). 
SDF-based models also detected jasplakinolide, which is known to 
promote actin polymerization and is associated with higher nuclear 
volumes29. Visual inspection of the image data did not reveal any appar-
ent nucleolar alteration (Fig. 6b) or change in cell health within 24 h 
after treatment, suggesting that the effect of this drug is subtle. Next, 
torin-2 was detected by all SDF models, which was observed by visual 
inspection to induce cell death, like staurosporine. Lastly, roscovitine 
at 10 µM was detected only by the SDF rotation-invariant models. 
While there was no visible alteration of nucleoli morphology in this 
dataset at this concentration, roscovitine at 10 µM is known to cause 
nucleolar segregation30,31 at higher concentrations. These results 
suggest that our representation learning framework captures subtle 
concentration-dependent phenotypes that are not visible by eye. 
Interestingly, the SDF rotation-invariant model trained on the nucleo-
lar (GC) images from the WTC-11 hIPS cell single-cell image dataset v1 
was also able to identify these drugs as being distinguishable from the 
control, despite never having seen any of the images in the perturba-
tion set, suggesting that this model is able to generalize well to different 
conditions. Overall, we observed three different categories of drugs 
that were retrieved using different models: ‘sledgehammer’ pheno-
types that were detected by all models, subtle off-target effects that 
were detected by SDF models, and subtle concentration-dependent 
phenotypes that were detected only by the rotation-invariant SDF 
models. The remaining nine drugs in the dataset did not induce visible 
alterations to nucleolar morphology, although four of them induced 
cell death at later time points, including H89, chloroquine, rotenone 
and brefeldin.

To further interpret the retrieved hits, we performed linear dis-
criminant analysis (LDA)1 using the learned rotation-invariant point 
cloud representations (Fig. 6c, Extended Data Fig. 6 and Supplementary  
Note 5.5) to identify examples along this ‘axis of phenotypic difference’. 
Specifically, we sampled real cells along the principal LDA direction for 
each control–drug pair. We found the retrieved cells to be interpretable 
for most drug treatments. In the case of sledgehammer phenotypes 
like actinomycin D, staurosporine and torin, we observed a transition 
that recapitulated visual observations (Fig. 6c and Extended Data 
Fig. 6). For other drugs that were potentially associated with off-target 
effects, we observed changes in the number of pieces of nucleoli (pacli-
taxel and nocodazole), the size of nuclei and nucleoli ( jasplakinolide) 
and both the size and number of pieces of nucleoli (roscovitine at 
10 µM; Extended Data Fig. 6). As a baseline, we observed no phenotypic 
differences between random subsets of the control dataset using  
the same analysis (Fig. 6d and Supplementary Note 5.5). Overall, these 
results illustrate that our 3D representation learning approach can 
enable perturbation detection and phenotype profiling and indicate 
the need for follow-up experiments to confirm the impact of some  
of these drugs, like jasplakinolide, on nucleolar morphology.

Discussion
In this paper, we developed a morphology-appropriate 3D rotation- 
invariant representation learning framework for multi-piece intracel-
lular structures using point clouds. We benchmarked this framework 
against classical and rotation-invariant image-based models using a 
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Fig. 6 | Learned representations allow for morphological profiling of nucleoli 
under different perturbations. a, q-value statistics per drug (‘Drug dataset’ of 
Methods) and per model indicating the confidence of each model distinguishing 
a given drug from control. Bar plots show 1/q for each model and drug. The 
y-limit is set to 100 to highlight the range of values around the 0.05 confidence 

threshold (dashed line at 1/q = 20). b, Three representative examples of nucleoli 
(GC) for the control (DMSO) and each of the 16 drugs used in this study. c,d, LDA 
analysis for the rotation-invariant point cloud representations of nucleoli for 
actinomycin D (left; n = 210) and a baseline using two random subsets of plates 
from the DMSO control (right; n = 140; Supplementary Note 5.5).
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new multi-metric evaluation criterion that focuses not only on tradi-
tional reconstruction quality but also on measurements that can be 
important for downstream analysis and biological discovery. We found 
that application-appropriate model selection can be key to achieving 
optimal results, and that a morphology-appropriate approach can lead 
to more compact and expressive representations across a range of tasks 
when compared to classical image models. We applied this framework 
to synthetic and real single-cell image datasets for punctate structures, 
like DNA replication foci, and polymorphic structures, such as nucle-
oli. Our results reveal that geometry-aware choices of encodings and 
neural network architectures can enable unsupervised discovery and 
interpretation of variability in the morphology of several multi-piece 
intracellular structures. For example, the learned representations for 
the centriole capture its repositioning from the cell center toward the 
periphery, a behavior that is known to be mediated by the microtubule 
network32,33. The learned representations also recapitulate a known 
axis of morphological change of nuclear speckles, which goes from 
many, small, irregularly shaped speckles to larger, rounder shaped 
speckles. This is known to occur when transcription is inhibited in 
cells and is also the primary axis of variability between cell types34. We 
further evaluated the utility of our approach on phenotypic profiling 
of a nucleoli-perturbed image dataset and demonstrated the inter-
pretability of the learned representations. In general, we noticed that 
segmentation-based models were not able to detect drugs like torin-2 
that caused clear alterations on nucleolar morphology because of cell 
death. This result suggests that SDF encodes information relevant  
for perturbation detection. Additional discussion is available in  
Supplementary Note 9.

A key result from our analysis on polymorphic structures is that 
no single model performs well across all metrics. This is related to the 
sparsity–reconstruction trade-off where a model that perfectly recon-
structs the input can learn a complex and entangled set of features, 
whereas a model that learns a sparse and disentangled set of features 
can reconstruct poorly35. In the cases where there is a trade-off, the 
choice of the best metrics to represent the best model can be appli-
cation dependent. In this study, we prioritized rotation invariance  
error as a representation expressivity metric, and reconstruction  
loss as a generative metric. More generally, for tasks like production- 
scale drug screening, a scalable and efficient model that is predictive 
of different drug signatures may be more relevant. For tasks like bio-
logical discovery in small datasets, a model that learns compact and 
rotation-invariant features may be more interpretable. Finally, for tasks 
like generating virtual cell images of intracellular structures, a model 
that reconstructs the data well may be crucial.

Our framework can be further improved in multiple ways. For 
example, our results indicate cell and nuclear shape are major sources 
of variation because that information was not factored out of our 
learning framework and, therefore, become confounding variables. 
While this reflects a true coupling between cell and nuclear shape 
and structure localization, alternative approaches may offer a way to 
decouple these confounding variables from learned representations. 
For instance, one could incorporate reference information about other 
intracellular structures for answering questions about intracellular 
structure colocalization35,36. Another possibility for improving the 
proposed framework could be via incorporating multichannel informa-
tion for multiple structures that have been simultaneously tagged37,38. 
By calculating the SDF based on the presence of multiple structures, 
one could compute a single composite field that contains information 
about all structures. This would implicitly encode mutual exclusivity 
rules, thus helping to further constrain the models and move toward 
a better understanding of compartmentalization15. We could also use 
multichannel information to extend the framework to predict spatial 
patterns of a set of structures given the representation from another 
set, thereby synthetically combining the reconstructions of different 
structures into one. For example, we can learn a shared representation 

across DNA replication foci and nucleoli images and leverage this 
shared representation to predict nucleolar morphology in a dataset of 
DNA replication foci. Such approaches could be used to build a holistic 
description of intracellular organization. Finally, to further improve 
interpretability and move toward mathematical descriptions of the 
learned representations, we can use symbolic regression methods like 
PySR39 to extract equations and summarize the quantitative model. It 
would also be particularly exciting to leverage time-series datasets to 
learn dynamical systems and extract biophysical measurements like 
rigidity. In all cases, incorporating additional information during the 
learning process can potentially make the models more robust and 
interpretable. In this work, we have focused on benchmarking unsu-
pervised methods for datasets where a user has limited prior knowl-
edge to establish a baseline. However, the morphology-appropriate 
representation learning using point clouds and SDFs that we have 
described here is flexible and can be modified to incorporate several 
such improvements.

In summary, we have begun to develop a computational analysis  
pipeline for interpretable representation learning of complex multi- 
piece intracellular structures. An important goal of this work is to make 
the data, models and analysis tools freely available to the community, 
so that it can serve as a benchmark for further development of methods 
for 3D analysis (‘Code availability’). We hope that this work can spur the 
interest of the cell biology community into new ways of analyzing and 
interpreting complex intracellular organization.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02729-9.
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Methods
Single-cell image datasets
DNA replication foci dataset. Spinning-disk confocal 3D images 
taken of a fluorescently tagged cell line that targets PCNA labeling DNA 
replication foci with mEGFP were processed to create the DNA replica-
tion foci dataset40. Fluorescent cell membrane and DNA dyes tagged 
the cell boundary and nucleus, respectively. Nuclear segmentations 
were obtained using the protocol described by Viana et al.1, with the 
only difference being that nucBlue dye was replaced with nucViolet 
dye. Segmentations of DNA replication foci were generated for each 
field of view (FOV), using three different segmentation workflows  
created using the ‘Allen Cell & Structure Segmenter’41 to segment spe-
cific DNA replication foci morphologies. Next, we visually identified 
which segmentation workflow was best for each cell and saved the 
result in an empty FOV at that cell’s correct location. More details 
about the dataset and images are available here https://open.quiltdata.
com/b/allencell/packages/aics/nuclear_project_dataset_4/.

Cells in interphase were labeled by an expert as belonging to one 
of nine classes—G1, early S, early–mid S, mid S, mid S–late S, late S, late 
S–G2, G2 and unclear. Unclear labels were dropped during analysis. 
About 3% of cells were labeled as outliers based on bad segmentations 
of DNA replication foci, cells appearing dead or dying, no EGFP fluo-
rescence and bad segmentations of cells and nuclei. Dead cells and no 
fluorescence were used for the outlier detection task, accounting for 
16 cells of a total of 2,420 cells.

WTC-11 hiPS cell single-cell image dataset v1. Spinning-disk confo-
cal 3D images taken from 25 endogenously tagged hIPS cell lines were 
processed to create the WTC-11 hiPS cell single-cell image dataset (v1)1. 
Fluorescent cell membrane and DNA dyes tagged the cell boundary  
and nucleus, respectively. Cell, nuclear and structure segmentations  
were used as provided in the dataset release available at https://open. 
quiltdata.com/ b/allencell/packages/aics/hipsc_single_cell_ 
image_dataset/.

We performed analysis on histones via H2B (N = 15,875), nuclear 
pores via Nup153 (N = 17,703), peroxisomes via PMP34 (N = 1,997), 
endosomes via Rab-5A (N = 2,601), centrioles via centrin-2 (N = 7,575), 
cohesins via SMC1A (N = 2,380) and nuclear speckles via SON (N = 2,980) 
as selected punctate structures from this dataset. We selected nucle-
oli (DFC) via fibrillarin (N = 9,923), nucleoli (GC) via nucleophosmin 
(N = 11,814), lysosomes via LAMP-1 (N = 10,114) and Golgi via sialyl-
transferase (N = 6,175) as polymorphic structures. While we used all 
single-cell images for training our models, we limited our analysis to 
interphase cells.

cellPACK synthetic single-cell dataset. We used cellPACK to create 
synthetic point clouds within real nuclear shapes17. cellPACK pro-
vides an algorithm to create high-resolution 3D representations of the 
biological mesoscale based on specified rules. Segmentation of 254 
randomly chosen nuclei from the DNA replication foci dataset were 
converted into a triangulated mesh and used as input to cellPACK. Here, 
the nuclei were pre-aligned to their longest axis. cellPACK then packed 
256 spheres with a radius of 1 voxel within these meshes based on four 
distinct rules: (1) Random: points were generated uniformly at random 
inside the nucleus; (2) Planar gradient rule: points were generated 
inside the nucleus with a bias away from a plane. The plane contains 
the centroid of the nucleus, and its orientation is specified by a normal 
vector. We used normal vectors with three different orientations:  
(i) θ = 0, the normal vector points along the z axis (0x + 0 y + 1z) where 
the longest axis of the nucleus is the y axis. (ii) θ = 45°, the normal  
vector is (0x + 1/√2 y + 1/√2z). (iii) θ = 90°, the normal vector points 
along the y axis; (3) Surface gradient rule: points were generated with a  
strong bias toward the nuclear surface; (4) Radial gradient: points  
were generated with a bias toward the centroid of the nucleus. 
For each rule, cellPACK generated a point cloud with 256 points 

for each nucleus shape. This dataset is available for download at  
https://open.quiltdata.com/b/allencell/tree/aics/morphology_ 
appropriate_representation_learning /cellPACK_single_cell_ 
punctate_structure/.

Drug dataset. A collection of well-characterized drugs was used to 
perturb the Allen Institute for Cell Science cell line AICS-50 (WTC-11 
hiPS cell endogenously tagged for mEGFP-NPM1, tagging nucleoli 
(GC)). Drugs and concentrations were selected because cell treat-
ment with each of them induced a well-characterized effect on one 
major cellular structure morphology that could be visually observed 
within 24 h of treatment (Supplementary Table 1) and was not associ-
ated with massive cell death within the first 2 h of treatment, except 
for jasplakinolide. Cells were seeded on a 96-well glass-bottom plate 
using the protocol described by Gregor et al.42. Four days after seeding 
two-dimensional (2D) bright-field low-magnification well overviews 
were acquired and used for position selection following the same 
criteria as described by Viana et al.1. Following position selection, cells 
were washed once with pre-warmed phenol red-free mTeSR, and then 
medium was replaced with drug-containing phenol red-free mTeSR 
medium at the indicated concentration (Supplementary Table 2). 
The cells were then placed back on the spinning-disk confocal micro-
scope stage where they were maintained at 37 °C with 5% CO2 for 2 h 
before the start of imaging at high magnification (×120). Images were 
acquired with three identical Zeiss spinning-disk confocal micro-
scopes with a ×10/0.45 NA Plan-Apochromat (for well overview and 
position selection) and a ×100/0.8 NA Plan-Apochromat (Zeiss; for 
high-resolution imaging) and ZEN 2.3 software (blue edition; Zeiss). 
The spinning-disk confocal microscopes were equipped with a ×1.2 
tube lens adapter for a final magnification of ×12 or ×120, respec-
tively, a CSU-X1 spinning-disk scan head (Yokogawa) and two Orca 
Flash 4.0 cameras (Hamamatsu). 3D FOV image stack acquisition was 
performed with two cameras allowing for simultaneous acquisitions 
of a bright-field and an mEGFP (excited with 4.6 mW of a 488-nm laser) 
channel. The exposure time was 100 ms. The resulting images were 
of 16 bits and 924 × 624 pixels in the xy dimension after 2 × 2 binning. 
FOVs had a final xy pixel size of 0.108 μm and z-stacks composed of 
100 z-slices (to encompass the full height of the cells within an FOV) 
acquired at a z-interval of 0.29 μm. Transmitted light (bright-field) 
images were acquired using a red LED light source with a narrow range 
peak emission of 740 nm and a BP filter of 706/95 nm for bright-field 
light collection. A Prior NanoScan Z 100-mm piezo z-stage (Zeiss) was 
used for fast acquisition. Optical control images of the field of ring 
(Argolight) and dark current were acquired daily at the start of each 
data acquisition to monitor microscope performance. Laser power was 
measured monthly, and the corresponding percentage was adjusted to 
consistently expose the sample to the same laser power. This dataset 
is available for download at https://open.quiltdata.com/b/allencell/
tree/aics/NPM1_single_cell_drug_perturbations/.

Cell health assessment. We assessed cell health at 4 h and 24 h after 
drug treatment using for each drug both the AICS-57 (WTC-11 hiPS 
cell endogenously tagged for mEGFP-NMP1) and AICS-61 (WTC-11 hiPS 
cell endogenously tagged for mEGFP-HIST1H2BJ) cell lines. FOVs of  
this cell line were visually inspected to determine the extent of cell 
death induced by each drug. If cell death at either 4 h or 24 h was 
approximately 50% more prevalent than compared to the control, 
then cells were classified as unhealthy after 2 h. Otherwise, cells were 
classified as healthy. Results from this assessment are summarized  
in the last column of the table shown in Fig. 6b.

Input data preprocessing for image models
Punctate structures. cellPACK synthetic dataset. Packing results were 
voxelized into images of 238 × 472 × 472 voxels in size. The z-coordinate 
of these images was padded with zeros to be the same size as X and Y, 
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and the resulting images were downsampled to 118 × 118 × 118 voxels 
via block reduce operation with a block size of 4 × 4 × 4 voxels and then 
used as input for image-based models.

DNA replication foci dataset. 3D raw fluorescence intensity single-cell 
images of DNA replication foci were masked, centered and aligned by 
the corresponding nuclear segmentation dilated by 8 × 8 × 8 voxels.  
Images were cropped and then padded to the largest nuclear bound-
ing box in the dataset. Images were then padded and resized to 
118 × 118 × 118 voxels. Images were globally contrast adjusted to be 
within the intensity range of 0 to 6,000, which was empirically deter-
mined to remove dead pixels present in a few images and scaled per 
image using min–max normalization via ‘monai.transforms.ScaleIn-
tensity’43 to be in the range of (0, 1).

Expanded dataset of punctate structures. Similar preprocessing  
was applied to a subset of punctate structures from the WTC-11 hiPS  
cell single-cell image dataset (v1)1, including DNA replication foci, 
histones, nuclear pores, nuclear speckles, cohesins, peroxisomes, 
endosomes and centrioles. However, the images of cytoplasmic 
structures (peroxisomes, endosomes and centrioles) were masked 
by the cell membrane segmentation, instead of nuclear segmenta-
tion. Images were contrast adjusted using structure-specific intensity  
ranges reported in ref. 1. Images were finally scaled per image using 
min–max normalization via ‘monai.transforms.ScaleIntensity’43 to 
be in the range of (0, 1). The preprocessing code used to generate  
this dataset is available at https://github.com/AllenCell/benchmark-
ing_representations/tree/main/br/data/preprocessing/image_ 
preprocessing/.

Polymorphic structures. Nucleoli (GC) dataset. Segmentations of 
nucleoli (GC) available in the WTC-11 hiPS cell single-cell image dataset 
v1 were masked by corresponding nuclear segmentations. We used a 
hole-filling algorithm to fill in holes in the segmented images that were 
then converted into 3D meshes for subsequent preprocessing. Meshes 
were downscaled to fit within a cube of size 32 × 32 × 32 voxels using a 
global scaling factor to preserve the relative scale of nucleoli in learned 
representations. For segmentation models, the downscaled meshes 
were voxelized to create binary images. For SDF models, the down-
scaled meshes were used to compute SDF images that were clipped to 
be in the range of (−2, 2).

Expanded dataset of polymorphic structures. Segmentation of the 
nucleolar GC, nucleolar DFC, Golgi and lysosomes (available in 
the WTC-11 hiPS cell single-cell image dataset v1) were masked by  
either nucleus or cell mask if the structure localizes to nucleus (nucle-
oli) or cytoplasm (Golgi and lysosomes). Subsequent preprocessing 
followed the expanded dataset of polymorphic structures, except 
that 3D meshes were downscaled on a per-cell basis based on the  
cell’s intracellular structure bounding box. This downscaling  
avoids losing small nuclear structures given the large bounding box  
of cytoplasmic structures. While this scaling strategy prevents  
us from comparing sizes across different intracellular structures, 
it helps preserve the resolution of structures occupying only a  
few voxels.

Perturbed nucleoli (GC) dataset. We used the Allen Cell & Structure 
Segmenter to segment raw fluorescence intensity FOVs of perturbed 
nucleoli (GC; ‘Drug dataset’). Nuclear segmentations for each FOV were 
produced by applying a UNet model trained on the WTC-11 hiPS cell 
single-cell image dataset v1 to predict 3D nuclear segmentations from 
bright-field images. We manually selected nuclear segmentations in 
each FOV that covered the corresponding entirety of the nucleoli signal. 
The selected masks were used to generate single-cell images, and they 
were processed as described in ‘Nucleoli (GC) dataset’.

Input data preprocessing for point cloud models
Punctate structures. cellPACK synthetic dataset. The list of N = 256 cen-
troids of spheres packed by cellPACK was extended to 2,048 points by 
adding a small jitter to each input point cloud eight times. This jitter was 
clipped at a value of 0.2, and the typical range of XYZ coordinates was 
−10 to 10. This was then used as the 3D point cloud input. To improve 
reconstruction quality, this augmentation process was repeated ten 
times for each input. Details regarding the jitter augmentation are 
described in Supplementary Note 3.

DNA replication foci dataset. We started by applying the same preproc-
essing used in the DNA replication foci dataset described above for 
image-based models, except for the last linear scaling step. We then 
sampled 4D point clouds from the raw intensity images in two stages. 
In the first stage, we converted the raw intensity values into probabili-
ties. We did this by using an exponential function eλ(skewness∗intensity)  to 
scale the intensities. Here, the skewness is a statistic that indicates 
deviation of a distribution from a normal distribution, and the coef-
ficient λ is an intracellular-specific scale factor that was empirically 
determined based on the visualization of sampled points from random 
images for each intracellular structure. For nuclear structures, we used 
λ = 100, and for cytoplasmic structures we used λ = 500. The goal of 
this function was to exponentially increase the probability of sampling 
points from higher intensity values, to prevent sampling from the 
background. The scaled intensities were then converted into probabili-
ties using normalization via dividing by the sum. The full probability 
of sampling a point cloud from the intensity image was defined as

P = eλ(skewness∗intensity)

∑ eλ(skewness∗intensity)
.

We used these probabilities to sample a dense point cloud with 
20,480 points (with intensity as a fourth coordinate) as shown in 
Supplementary Fig. 4. These points were centered using the nuclear 
centroid for nuclear structures, and the membrane centroid for cyto-
plasmic structures. In the second stage, we sampled a sparse point 
cloud with 2,048 points from the dense point cloud randomly during 
training while keeping the intensity as a fourth coordinate. The inten-
sity coordinate was scaled using a factor of 0.1 to match the magnitude 
of the spatial coordinates. This sparse point cloud was then scaled using 
a global scale factor of 0.1 to reduce the range of the loss values and was 
passed as an input to the encoder (Fig. 1b).

Expanded dataset of punctate structures. We started by applying the 
same preprocessing used in the expanded dataset of punctate struc-
tures described above for image-based models, except for the last linear 
scaling step. We again used an exponential function eλ(skewness∗intensity), 
with λ = 100 for nuclear structures, and λ = 500 for cytoplasmic punc-
tate structures. The scaled images were then normalized to obtain a 
probability density. We followed the same procedure described  
above for DNA replication foci to sample point clouds for each of these 
punctate structures. The intensity coordinate was then normalized 
using structure-specific contrast ranges.

Polymorphic structure datasets. Nucleoli (GC) dataset. Two sets of 
point clouds were sampled from segmented images of polymorphic 
structures. To do this, the segmented images were first converted 
into meshes and rescaled to a resolution of 32 × 32 × 32 (Extended Data 
Fig. 4). The first point cloud was generated by sampling 32 × 32 × 32 
points randomly from the surface of the mesh. Then, the second point 
cloud was generated by calculating SDF values for a random list of 
32 × 32 × 32 query points sampled within a 32 × 32 × 32-unit grid. Here, 
the SDF is a function that represents the signed distance of a position 
to the nearest part of a shape. During training, the first point cloud 
was subsampled randomly to 8,192 points and passed as an input to 
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the encoder. The second point with the SDF values was subsampled 
randomly to 20,000 points and was then used as input query points 
to the decoder to generate SDF predictions (Fig. 1c).

Expanded dataset of polymorphic structures. Each single polymorphic 
structure image underwent a similar process. First, a point cloud of 
8,192 points was sampled from the corresponding 3D mesh. During 
training, an additional 20,000 points were sampled from the SDF 
volume, producing a 4D point cloud (SDF value + XYZ coordinates).

Perturbed nucleoli (GC) dataset. The perturbed nucleoli (GC) dataset 
followed the same sampling strategy. For each single-cell nucleoli (GC) 
image, an initial 8,192 point cloud was sampled from the 3D mesh gener-
ated as described in ‘Perturbed nucleoli (GC) dataset’. During training, 
another point cloud containing 20,000 points was drawn from the 
SDF volume, yielding a 4D point cloud (SDF value + XYZ coordinates).

Models
Image models. To implement 3D rotation-invariant image autoencoders, 
we used image encoders equivariant to the group of 3D rotations (SO3 
group) using R3 steerable kernels as described in Weiler et al.44 and imple-
mented in the ‘escnn’ library45. Compared to conventional convolutions, 
R3 steerable kernels are equivariant under rotations in R3. We used scalar 
fields to learn invariant scalar features in R3, and vector fields to learn 
equivariant vector features in R3. We used vector features to reconstruct 
the 3D rotation matrix as described by Deng et al.11 and Winter et al.46.

We used seven layers of steerable kernels with an equal number of 
hidden scalar fields using trivial representations and vector fields using 
irreducible representations. Using a (filter, stride, kernel size) conven-
tion, the convolutions were (8, 1, 3), (16, 1, 3), (32, 2, 3), (64, 2, 3), (128, 2, 
3), (512, 2, 3) and (N, 1, 1), where N was the size of the latent dimension. 
In the final layer we used N scalar fields and two vector fields. Each 
convolutional block also included a batchnorm and ReLU activation. 
We used average pooling in the last five layers and checked that this 
did not break equivariance (Supplementary Fig. 1). We spatially pooled 
the scalar embedding in the final layer to get the final N dimensional 
rotation-invariant latent embedding. We used a bottleneck size of  
512 for polymorphic structures and 256 for punctate structures.

The decoding function was a conventional neural network (CNN) 
decoder with six layers of convolutions. We used upsampling blocks 
with a scale factor of 2 in between convolutions. Using a (filter, stride, 
kernel size) convention, the convolutions were (512, 1, 3), (256, 1, 3), 
(128, 1, 3), (64, 1, 3), (32, 1, 3) and (16, 1, 3). We rotated the canonical 
reconstruction with the rotation matrix computed from the vector 
representation. We used a cylinder mask using ‘escnn.nn.modules.
masking_module.build_mask’ to mask reconstructions and reduce 
interpolation artifacts. We set the background value to 0 for segmen-
tations, and 2 for clipped SDF images where the maximum value was 2 
and positive values were located outside the object. We used the same 
settings with classical autoencoders by swapping out equivariant con-
volutions with regular convolutions and keeping other details the same.

Masked autoencoders using vision transformers. We also trained masked 
autoencoders using vision transformers47 in two stages as an alternative 
to the ‘vanilla’ autoencoders described above. We performed this train-
ing in two stages. First, we pretrained a masked autoencoder48 using a 
ZYX patch size of (2, 2, 2), a mask ratio of 0.75 and learnable positional 
embeddings. The encoder was made up of eight identical transformer 
blocks, each with four heads and an embedding dimension of 256. The 
decoder had two layers with eight heads and an embedding dimension 
of 192. We then used a second phase of training with a mask ratio of 0 
(that is, all image patches are visible to the encoder) where we froze the 
masked autoencoder-trained encoder and trained a freshly initialized 
decoder to reconstruct the input image. We trained all models with a 
mean squared error loss.

Point cloud models. To implement 3D rotation-invariant point cloud 
autoencoders, we used a 3D rotation-equivariant point cloud encoder 
using vector neurons (VNs11), which lifts classical neurons to 3D vec-
tors resulting in 3D vector representations. VN layers are equivariant 
to rotations by construction and have been shown to outperform 
other equivariant architectures for tasks like classification, segmen-
tation and reconstruction. We incorporate VN layers into a dynamic 
graph conventional neural network (DGCNN)49 backbone for point 
cloud encoding. DGCNN uses network modules called EdgeConvs to 
perform CNN-like local neighborhood feature extraction. These Edge-
Convs can be stacked to extract global features49. Dynamic graphs 
are computed by constructing k-nearest neighbor graphs on points. 
We used k = 20 based on previous works as a balance between com-
putational complexity and local structure information50. We concat-
enated the cross-product of the neighbor features and input points 
as well as the input points themselves to the hidden representation. 
As described in ‘Input data preprocessing for point cloud models’, we 
included raw image intensity in addition to XYZ coordinates in some 
cases to generate 4D point clouds. This coordinate was included with 
the same vector orientation as the XYZ coordinates and thus remains 
equivariant under rotations in R3. For the cellPACK dataset, we used 
a 3D point cloud as input. We used six convolutional blocks where 
each block comprises a VN linear layer and a VN leaky ReLU layer. 
We collated intermediate outputs before a final one-dimensional 
convolution. We took the norm of the final vector embedding to get 
a rotation-invariant representation. We also trained classical point 
cloud autoencoders with DGCNN encoders as described by Vries 
et al.50, where VN linear and VN leaky ReLU layers are replaced with 
edge convolutions and ReLU layers.

Decoder for punctate structures. We reconstructed the rotation-invariant 
representation for punctate structures using a folding net decoder51. 
This decoder concatenates the latent embedding with source points 
sampled from a template shape and then applies two folding opera-
tions with ReLU activations interleaved in between to reconstruct a 
point cloud. We used a 2D plane as a template in all cases except for 
the cellPACK synthetic dataset, where a sphere was used as a template. 
Next, we used the learned rotation matrix from the vector embedding 
to reorient the canonical reconstruction. We optimized the model using 
an earth mover’s distance52.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The WTC-11 hiPS cell single-cell image dataset v1 analyzed in this study 
is available at https://open.quiltdata.com/b/allencell/packages/aics/
hipsc_single_cell_image_dataset/. The DNA replication foci dataset 
analyzed in this study is available at https://open.quiltdata.com/b/
allencell/packages/aics/nuclear_project_dataset_4/. The WTC-11 hiPS 
cell nucleoli (NPM1) perturbation single-cell image dataset analyzed in 
this study is available at https://open.quiltdata.com/b/allencell/tree/
aics/NPM1_single_cell_drug_perturbations/. The synthetic dataset of 
punctate structures generated using cellPACK and analyzed in this 
study is available at https://open.quiltdata.com/b/allencell/tree/aics/
morphology_appropriate_representation_learning/cellPACK_single_
cell_punctate_structure/. The landing page of the GitHub repository asso-
ciated with this paper (https://github.com/AllenCell/benchmarking_ 
representations/) has additional information for accessing and  
processing these datasets. Source data are provided with this paper.

Code availability
To aid reproducibility and empower researchers with the ability to inde-
pendently test and apply these models to their own data, we provide 
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all the representation learning models used in this study via CytoDL, 
a Python package for configurable 2D and 3D image-to-image deep 
learning transformations and representation learning, available at 
https://github.com/AllenCellModeling/cyto-dl/. CytoDL is designed 
consistent with FAIR53 practices, and is built to work for diverse use 
cases, thus making it robust, modular and flexible to the evolving 
nature of research.

Code to reproduce the representation learning models in this paper 
is available at https://github.com/AllenCellModeling/cyto-dl/blob/
br_release/.

Config files associated with our models, training scripts, and code 
for multi-metric benchmarking are available at https://github.com/
AllenCell/benchmarking_representations/. Our code was fully devel-
oped in Python. A list of dependencies is available at https://github.
com/AllenCellModeling/cyto-dl/tree/br_release/requirements/ and 
https://github.com/AllenCell/benchmarking_representations/blob/
main/pyproject.toml/. We have released the code with the Allen Insti-
tute Software License.
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Extended Data Fig. 1 | Evaluation metrics for representation learning.  
a) Overview of different evaluation metrics for quantifying the utility of each 
representation learning framework. Efficiency metrics include model size, 
inference time, and carbon emissions. Generative ability metrics include 
reconstruction error and evolution energy. Representation expressivity metrics 
include rotation invariance error, interpolation distance, feature regression, 
classification accuracy, and compactness. b) Workflow for interpolation distance 
and evolution energy calculation. Two samples are drawn from the population 
randomly, and a linear interpolation is performed on the representations of the 
two samples. The Euclidean distance between an interpolation and the nearest 
real representation is the interpolation distance. The interpolation distance 
is averaged across many interpolations to compute the average interpolation 

distance. Each interpolation is reconstructed using the decoder to obtain a 
reconstruction. The sum of the reconstruction error between the interpolated 
reconstruction and the reconstructions of the initial and final shapes normalized 
by the reconstruction error between the initial and final shape is the energy of 
deformation7. The energy of deformation is averaged across many interpolations 
to compute the evolution energy. Both evolution energy and average 
interpolation distance are averaged across many random pairs of samples from 
the test set. c) Holistic evaluation of metrics. Metrics are z-scored across models 
per metric. Z-scored metrics are visualized using a polar plot. We flip the sign for 
metrics where lower is better. Therefore, for all metrics, larger/outer values in the 
polar plot are better.
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Extended Data Fig. 2 | 3D image preprocessing into application appropriate 
inputs for punctate structures. Workflow for generating 4D point clouds from 
3D intensity images. a) single-cell intensity images are obtained by masking 
via a dilated nuclear mask (for nuclear structures), followed by alignment 
to the longest axis of the nuclear mask. Intensities were then scaled using an 
exponential function and then converted to probabilities. These probabilities 
were then used to sample a dense 4D point cloud with 20480 points and XYZ + 
intensity coordinates. During training, a sparse point cloud with 2048 points  
was sampled from this dense point cloud using the intensities as probabilities. 

The intensity coordinate was scaled using a scale factor of 0.1 to ensure that 
intensity values were in the same range as XYZ coordinate values. b) Examples 
of dense sample and sparse sample for each cell cycle stage for PCNA dataset. 
Shown are center-slice of raw intensity image, center-slice of raw intensity image 
overlaid with dense sample, and center-slice of raw intensity image overlaid with 
sparse training sample. c) Examples of dense sample and sparse sample for  
each punctate structure from the WTC-11 hiPSC Single-Cell Image Dataset v1.  
Structures include histones, nuclear envelope, cohesins, nuclear speckles, 
endosomes, peroxisomes, and centrioles.
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Extended Data Fig. 3 | Archetype analysis for punctate structures from the WTC-11 hiPS Single-Cell Image Dataset v1. a) PaCMAP projection of the representations 
and archetypes colored by intracellular structure labels. b) 7 archetypes computed from the rotation invariant point cloud representations. Each archetype 
corresponds to one of the intracellular structures.
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Extended Data Fig. 4 | 3D image preprocessing into application appropriate 
inputs for polymorphic structures. a) Workflow for computing signed distance 
function (SDF) images from segmentations. single-cell structure segmentations 
are masked by nuclear segmentation (for nuclear structures), followed by 
meshing, centering, and hole filling. The mesh is then rescaled to 32*3 cube 
resolution and then processed to get a signed distance function. Alternatively, 
the rescaled mesh is voxelized to get a segmentation. SDF is clipped to (-2, 2) 
range for training image models to focus models on the zero level set. Example 

shown is for nucleoli (GC). b). Visualization of rescaled segmentation and SDF 
for examples with different numbers of pieces of granular component (GC) of 
nucleoli. Shown are center-slices of raw intensity images, max projection of the 
structure segmentation, max projection of the voxelized rescaled segmentation, 
and center slice of the rescaled mesh SDF. c) Visualization of rescaled 
segmentation and SDF for other polymorphic structures from the WTC-11 hiPSC 
Single-Cell Image Dataset v1 including lysosomes, Golgi, GC nucleoli, and dense 
fibrillar component (DFC) nucleoli.
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Extended Data Fig. 5 | Comparison of rotation invariant point cloud 
representations of nucleoli (GC) to mean nucleolar volume and surface area. 
a) Closest real example to mean nucleolar volume and surface area within five 
equal sized bins of nuclear volume (Section 7.3 of Methods). b) Classification 

of number of nucleolar pieces across bins of nuclear volume using rotation 
invariant point cloud representations and mean nucleolar volume and  
surface area.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Learned representations enable shape variation 
profiling on multiple polymorphic structures. a) Dataset of nucleoli GC, 
nucleoli DFC, lysosomes, and Golgi from the WTC-11 hiPSC Single-Cell Image 
Dataset v1 (Viana 2023). Shown are example max intensity projections and 
corresponding 3D meshes. b) Benchmarking unsupervised representations 
across different models and metrics. (Left) Polar plot showing performance for 
all models across efficiency metrics (model size (n = 1), inference time (n = 40), 
emissions (n = 40), generative metrics (reconstruction (n = 5,706), evolution 
energy (n = 180)), representation expressivity metrics (compactness (n = 5), 
classification of number of pieces (n = 5), shape features regression (n = 100), 
distance features regression (n = 100), rotation invariance error (n = 16,005), 
average interpolation distance (n = 180)). Metrics are z-scored and scaled such 

that larger is better (Right) Bar plots showing raw metric values across models 
for each metric. Error bars are standard deviations. Best model for each metric is 
indicated. c) 1st principal component for each structure using rotation invariant 
point cloud model. PCA is fit to representations of each structure separately. 
Shown are closest real examples to normalized PCs (standard deviation (s.d.), 
σ, units) sampled at 3 map points (-2σ to 2σ in steps of σ). d) 2nd principal 
component for each structure using rotation invariant point cloud model. Shown 
are closest real examples to normalized PCs (standard deviation (s.d.), σ, units) 
sampled at 3 map points (-2σ to 2σ in steps of σ). e) PaCMAP projection of four 
archetypes and all representations for the rotation invariant point cloud model. 
f ) 5 closest real instances to each archetype using the rotation invariant point 
cloud model.
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Extended Data Fig. 7 | LDA analysis for rotation invariant point cloud 
representations of nucleolar drug perturbation dataset. Learned 
representations are reduced to 20 principal components (PCs) using PCA. 
Each drug is analyzed separately (a - f), together with the control (DMSO). For 
each drug, the left plot shows first two PCs with an arrow indicating the main 

discriminant axis that separates the control and the drug (left). Markers indicate 
the closest real cell along the LDA line computed in 20 dimensions. The right plot 
shows the density of the control and the drug along LDA coordinates. The bottom 
plot shows a max projection of the closest real cell sampled along the LDA line 
(Section 7.5 of Methods).

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02729-9

Extended Data Fig. 8 | PCA score plots for all datasets. PCA fits using the 
representations of the rotation invariant point cloud models for the a) cellPACK 
dataset, b) DNA replication foci dataset, c) Other punctate structures from the 
WTC-11 hiPSC Single-Cell Image Dataset v1, d) Nucleoli (GC) from the WTC-11 

hiPSC Single-Cell Image Dataset v1, and e) Other polymorphic structures from 
the WTC-11 hiPSC Single-Cell Image Dataset v1. Shown are PC1 and PC2 for all 
classes combined, and the points are color-coded according to the class they 
belong to.
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Extended Data Table 1 | Drug descriptions

Name, concentration, molecular target or mechanism of action, effect based on literature review and effect observed on nucleoli of each drug based on visual inspection.
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