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T cellsrecognize antigens and induce specialized gene expression programs
(GEPs), enabling functions like proliferation, cytotoxicity and cytokine
production. Traditionally, different T cell classes are thought to exhibit
mutually exclusive responses, including T,1, T,2 and T,17 programs.
However, single-cell RNA sequencing has revealed a continuum of T cell
states without clearly distinct subsets, necessitating new analytical
frameworks. Here, we introduce T-CellAnnoTator (TCAT), a pipeline that
improves T cell characterization by simultaneously quantifying predefined
GEPs capturing activation states and cellular subsets. Analyzing 1,700,000

T cells from 700 individuals spanning 38 tissues and five disease contexts,
we identify 46 reproducible GEPs reflecting core T cell functions including
proliferation, cytotoxicity, exhaustion and effector states. We experimentally
demonstrate new activation programs and apply TCAT to characterize
activation GEPs that predictimmune checkpoint inhibitor response across
multiple tumor types. Our software package starCAT generalizes this
framework, enabling reproducible annotation in other cell types and tissues.

T cells play critical roles in cancer, infection and autoimmune dis-
ease, driving widespread interest in characterizing their states using
single-cell RNA sequencing (scRNA-seq)' . Clustering, the predominant
analysis approach, has key limitations for interpreting T cell profiles.
Transcriptomesreflect expression of multiple GEPs—co-regulated gene
modules reflecting distinct biologic functions such as defining cell type,
activation states, life cycle processes or external stimuli responses®.
T cell GEPs vary continuously’, combine additively within individual

cells® and exhibit stimulus-dependent plasticity’. However, clustering
discretizes cells, obscuring the coexpressed GEPs. For instance, pro-
liferating T cells from multiple subsets may cluster together, masking
their subsets. This may explain why clustering typically fails to deline-
ate many canonical T cell subsets"®, even with integration of surface
protein markers via CITE-seq™™°.

Component-based models like nonnegative matrix factorization
(NMF), hierarchical Poisson factorization and SPECTRA overcome
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some limitations of clustering®"'*. These methods model GEPs as
gene expression vectors and transcriptomes as weighted mixtures
of GEPs. Unlike principal component analysis (PCA), NMF compo-
nents correspond to biologically interpretable GEPs reflecting cell
types and functional states that additively contribute to a transcrip-
tome'. Component-based approaches yield GEP vectors thatserve asa
fixed coordinate system for comparing GEP activities across datasets.
This is similar to scoring gene-set activities” but with variable gene
weights and simultaneous modeling of multiple GEPs. This prevents
confounding of related signals and enables comparison of relative GEP
activities. Previous analyses of T cells using component-based models
have already recognized GEPs associated with T cell activation® and
exhaustion” but were limited in dataset size and only addressed asmall
number of biological contexts. Furthermore, itis not well established
how well such GEPs generalize across datasets.

Here, we present star-CellAnnoTator (starCAT), a framework
to score cells based on a fixed, multi-dataset catalog of GEPs. ‘star’
is a wildcard placeholder based on the asterisk (*) used in program-
ming, indicating applicability across tissues and cell types. Our spe-
cific instantiation for T cells is thus written T-CellAnnoTator (TCAT).
We derive a comprehensive T cell GEP catalog by applying consen-
sus nonnegative matrix factorization (c(NMF)" to seven scRNA-seq
datasets comprising 1.7 million T cells from 38 human tissues">'%'¢"",
Combining GEPs across datasets yields 46 consensus gene expres-
sion programs (cGEPs) capturing T cell subsets, activation states
and functions (Fig. 1a). We demonstrate TCAT’s utility for inferring
subset and antigen-specific activation (ASA) states and identify-
ing cGEPs predictive of immunotherapy response across multiple
tumor types.

Results

Annotating cells with predefined GEPs

We first augmented the published cNMF algorithm to enhance GEP
discovery (Fig. 1a). cNMF mitigates randomness in NMF by repeating
NMF and combining outputs into robust estimates, generating GEP
spectra (gene weights) and per-cell activities (‘usages’) reflecting the
relative contributions of GEPs to each cell. To improve cross-dataset
GEPreproducibility, we corrected batch effects which can cause cNMF
to learnredundant dataset-specific GEPs. Standard batch-correction
methods are incompatible with cNMF as they introduce negative values
or modify low-dimensional embeddings rather than gene-level data.
Therefore, we adapted Harmony®’ to provide batch-corrected nonnega-
tive gene-level data. Additionally, we modified cNMF to incorporate
surface protein measurements in GEP spectra for CITE-seq datasets
to enhance GEP interpretability (Methods).

Next, we developed starCAT to infer the usages of GEPs learned in
areference datasetin new ‘query’ datasets. Unlike cNMF, which learns
GEP spectra and usages simultaneously, starCAT quantifies the activity
of predefined GEPs within each cell, using nonnegative least squares,
similarly to NMFproject™. starCAT then leverages the GEP usages to
predictadditional cell features, including lineage, T cell antigen recep-
tor (TCR) activation and cell cycle phase (Fig. 1a). This can provide
several advantages over running cNMF or similar approaches de novo:
itensures a consistent cell state representation for comparison across
datasets, can quantify rarely used GEPs that may be hard to identify
de novoinsmall query datasets and markedly reduces run time.

We benchmarked starCAT’s performance through simulations
where the reference and query datasets contained only partially
overlapping GEPs (Methods). Simulations included two 100,000-cell
references and a 20,000-cell query, where each cell expressed one
subset-defining and one or more non-subset GEPs. Cellsin the reference
datasetsincluded additional GEPs or lacked certain GEPs relative to the
query datasets and only shared 90% of genes in common (Extended
Data Fig. 1a). We then learned GEPs from each reference with cNMF
and predicted their usage in the query using starCAT.

starCAT accurately inferred the usage of GEPs overlapping
between the reference and query (Pearson R >0.7) and predicted
low usage of extra GEPs in the reference that were not in the query
(Extended Data Fig. 1b-d). We observed similar prediction accura-
cies when predicting a simulated query dataset with half or fewer
overlapping GEPs between the reference and query (Supplementary
Fig.1).starCAT outperformed direct application of cNMF to the query
for overlapping GEPs, despite having extra or missing GEPs in the
references. We suspected this was due to the larger size of the refer-
ences and confirmed that starCAT maintained its performance across
smaller query datasets while cNMF’s performance declined (Extended
DataFig.1e).

cGEPsfor T cell annotation

Wenextdeveloped acatalog of T cell GEPs to use for TCAT. We analyzed
T cells from seven datasets spanning blood and tissues from healthy
individuals and those with coronavirus disease 2019 (COVID-19), can-
cer, rheumatoid arthritis or osteoarthritis (Supplementary Table 1
and Extended Data Fig. 1f). We chose datasets to reflect phenotypic
breadth, large sample sizes (>70,000 T cells) and, where possible,
inclusion of CITE-seq datato aid GEP interpretation. Weincluded two
COVID-19 peripheral blood mononuclear cell (PBMC) datasets, two
healthy PBMC datasets and two tissue datasets to assess cross-dataset
GEP reproducibility. After quality control, 1.7 million cells remained
from 905 samples from 695 individuals. We applied cNMF to each
batch-corrected dataset independently (Supplementary Fig. 2 and
Methods).

GEPs were reproducible across datasets. To quantify this, we
clustered GEPs found in different datasets and defined a cGEP as the
average of each cluster (Methods). Nine cGEPs were supported by all
seven datasets (mean Pearson R = 0.81, P<1x 107 all pairs) and 49 by
two or more datasets (mean R =0.74, P<1x107° all pairs; Fig. 1b and
Extended DataFig.1g). Across datasets, 68.4-96.8% of GEPs clustered
with atleast one GEP from another dataset, indicating high reproduc-
ibility. Gene expression principal components showed substantially
less concordance across datasets (Extended Data Fig. 1h).

We curated a catalog of 46 T cell cGEPs—27-36 more than prior
analyses™"*"*—including 11 discovered only in blood, 7 only in tissue,
and 28 inboth (Supplementary Table 1and Fig. 1c). We excluded 49 of
52singleton GEPs as likely dataset-specific artifacts but retained three
reflecting biologically justified signals. Specifically, the rheumatoid
arthritis dataset contributed a T peripheral helper (T,,) GEP, previously
identified in inflamed synovium* (markers included PD-1 protein,
LAG3and CXCLI3RNA; Supplementary Table 2), while the pan-cancer
dataset contributed an exhaustion GEP (HAVCR2, ENTPD1, LAG3) and
a T follicular helper (T;,;) GEP (PD-1 protein, CXCRS and CXCL13 RNA)
distinct from a second T, GEP discovered in the non-cancer tissue
datasets. We also identified six cGEPs corresponding to non-T cell
populations, including erythrocytes (HBA2, HBAI) and plasmablasts
(JCHAIN, IGKC), likely reflecting residual doublets. We retained these
inthe catalogto help flag doublets.

We annotated cGEPs by examining their top weighted genes
(Fig. 1d, Extended Data Fig. 2a and Supplementary Fig. 3 and Supple-
mentary Table2). For example, FOXP3and GATA3 marked the regulatory
T(T,.g) and type2helper T (T;2)-resting cGEPs. GATA3, IL4,IL5and ILI7A,
RORCand/L26 marked the T,2-activated and interleukin-17-producing
helper T (T,17)-activated cGEPs, respectively. Some cGEPs were also
annotated based on gene-set enrichment analysis (Supplementary
Note and Supplementary Table 3).

We further labeled cGEPs through association with surface
marker-based gating of canonical T cell subsets in a COVID-19 PBMC
CITE-seq reference (COMBAT)" (Extended Data Fig. 2b,c and Meth-
ods). Multivariate logistic regression revealed strong associations
between specific cGEPs and the T, y8T, mucosal-associated invari-
ant T (MAIT) cell, CD4/CD8 naive, CD8 effector memory (CD8 EM),
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CD4 centralmemory (CD4 CM) and terminally differentiated effector
memory (TEMRA) subsets (Pvalue <1 x1072%, coefficient > 0.35). The
CD4 EM subset was associated with T;17-resting and T,,1-like cGEPs as
expected (P<4.1x107", coefficient > 0.22). In total, we identified 17
subset-associated cGEPs.

We also identified likely technical artifact cGEPs (Supplemen-
tary Table 4). A mitochondria cGEP marked by mitochondrially tran-
scribed genes correlated with per-cell mitochondrial transcript fraction
(average R = 0.81 across datasets), a common quality-control metric
inscRNA-seq?**. Another cGEP, labeled ‘poor-quality’, was marked by
MALATI, along noncoding RNA linked to poor cell viability*. Its usage
correlated with mitochondrial transcript fraction (mean R = 0.25across
datasets), inversely with the fraction of protein-coding transcripts per
cell (mean R =-0.50) and positively with the percentage of intergenic
reads per cell (mean R = 0.74; Extended Data Fig. 2d-f). Thus, it may be
driven by contaminating DNA or nascent RNA. We also flagged immedi-
ate early gene cGEPs as potentially technical in nature (Supplementary
Note and Supplementary Fig. 4).

Benchmarking TCAT on an independent query dataset

Next, we benchmarked TCAT for predicting discrete T cell subsets in
aquery CITE-seq dataset (labeled ‘flu-vaccine’), containing 336,739
T cells from PBMCs of 24 COVID-19-recovered and 17 healthy individu-
als following influenza vaccine®. We defined ten conventional T cell
subsets viamanual surface protein gating to serve as prediction targets
(Extended Data Fig. 3a). While subsets largely separated on a gene
expression uniform manifold approximation and projection (UMAP),
memory populations overlapped substantially, possibly due to shared
functional GEPs (Fig. 2a). We hypothesized that predictions based on
TCAT, which disentangles subset and functional cGEPs, would outper-
form methods unable to distinguish these signals.

Indeed, TCAT enabled more accurate subset prediction than
RNA-based clustering or the discrete reference mapping tools
Azimuth'®, Symphony® and ProjecTILs? (Methods). Subset assignment
by thresholding the most associated cGEP performed comparably to
reference mapping and clustering across nine resolutions for predict-
ing one lineage at a time (Supplementary Fig. 5a). For simultaneous
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multi-label prediction, we trained a multinomial logistic classifier on
the COMBAT reference and measured performance with balanced accu-
racy (which weights classes of different sizes equally) in the flu-vaccine
query (Methods and Fig. 2a). This greatly outperformed all tested
reference mapping methods and clustering (balanced accuracy—TCAT,
0.72; Clustering, 0.61; Symphony, 0.58; Azimuth, 0.52; ProjecTILs, 0.13;
Fig.2b,c and Extended Data Fig. 3b).

We compared the performance of this multi-label classifier when
trained using TCAT’s cGEP catalog versus previously published GEP
catalogs from NMF analyses of T cells in autoimmune diseases" and
tumors™ (Methods). TCAT’s catalog yielded better prediction accuracy
for all lineages (Extended Data Fig. 3¢ and Supplementary Fig. 5b).
These analyses show that TCAT can predict peripheral T cell subsets
without manual annotation and with accuracy surpassing clustering
and leading reference mappers.

We also found that usage of the CellCycle-S, CellCycle-G2M and
mitochondrial cGEPs correlated well with common, gene-set-based
estimates of these programs, including published proliferation gene
sets” (R>0.75; Extended Data Fig. 3d and Methods).

Next, we validated prediction of T cell polarization against canon-
ical marker expression. We discretized cells based on the T,1-like,
Ty2-resting and T,17-resting cGEPs and computed per-sample
pseudobulk profiles of high (usage > 0.1) and low (usage < 0.1) cells.
T,;2-resting-high cells had significantly higher expression of T,;2 mark-
ers (GATA3, CCR4, PTGDR2) and analogously for T, 17-resting-high cells
and T,17 markers (CCR6, RORC, AQP3; P <1x10* all, paired t-test;
Fig. 2d). T,1-like-high cells had increased expression of T,1 markers
(CXCR3, IFNG-AS1, CD195 protein; P<1x107* all), although IFNG and
TBX21 were also expressed in T, 1-like-low cells (Extended Data Fig. 3e),
potentially due to their expression in cytotoxic T cells®**. Excluding
cytotoxic-high cellsillustrated significantly higher /FNG and TBX21 in
T,1-like-highcells (P=8.2x107%,P=9.6 x10™").

cGEPs capture multi-GEP T cell identities

Next, we illustrate how TCAT reveals cellular heterogeneity obscured
by clustering in the COMBAT COVID-19 dataset. First, we examined
cell cycle effects since they often mask subsets®°. Regressing out cell
cycle programs® does not always work well because it may remove
correlated signals like activation.

While the published analysis of CD4 memory cells identified mul-
tiple proliferating subclusters, these did not correspond directly to
subsets, except for one—CD4.TEFF.prolif.MKI67lo—that was enriched
for the myeloid doublet cGEP (Fig. 3a,b) and reflects a likely myeloid
doublet population (Supplementary Fig. 6a). By contrast, TCAT readily
identified distinct proliferating subsets based on coexpression of cell
cycle and subset cGEPs (Fig. 3¢,d).

This enabled us to quantify subset proliferation rates. Most subsets
had increased cell cycle usage in COVID-19 compared to healthy cells
(Extended Data Fig. 4a). Proliferation rates were correlated between
the COVID-19 datasets (R = 0.80, P=0.00021in COVID-19, R=0.56,
P=0.025in healthy). The most proliferative population expressed
the T, cGEP and likely corresponds to T, cells recently identified in
COVID-19 (ref. 32).

Analogous to the cell cycle, we found that poor-quality, cyto-
toxicand interferon-stimulated gene (ISG) cGEPs could also dominate
clusters, obscuring subsets (Fig. 3b—d and Supplementary Fig. 6b).
For example, ISGs drove the CD4.TEM.IFN.resp and CD4.Th.IFN.resp
clusters, which contained cells using multiple subset cGEPs (Extended
DataFig.4b).For example, CD4.Th.IFN.resp contained many cells that
expressed the CD4-naive cGEP and expected naive subset markers,
suggesting they were misclustered with memory cells due to the ISG
signal (Supplementary Note and Supplementary Fig. 6¢c-e).

Clusters with high cytotoxic cGEP usage contained cells with
high usage of many subset cGEPs including CD8 EM, TEMRA and y8T
(Extended Data Fig. 4c). Cells coexpressing cytotoxic and subset

cGEPs coexpressed the expected cytotoxicity and subset marker genes
(Extended DataFig.4d). Thisillustrates how TCAT can reveal cytotoxic
T cell heterogeneity.

TCAT revealed polarization via the T,1-like, T,;2-resting and
T,17-resting cGEPs (Fig. 3c) while the published clustering lacked a
T,2 cluster, and only annotated T,1/T,17 subsets with a high resolu-
tionyielding 243 total subclusters. We observed the expected enrich-
mentbetween T,,1 and T,;17 annotated subclusters and cells expressing
the T,1-like and T17-resting cGEPs, respectively (Fisher’s exact test
P<1x1079),

However, TCAT also identified polarization outside the canonical
CD4 memory subsets (Fig. 3e). Across manually gated populations
(Extended Data Fig. 2b), T,,2-resting was most enriched in CD8 CM
(15.7%) and CD4 CM (12.8%) subsets, while T,,1-like was enriched in CD8
CM (15.7%), CD4 EM (14.7%), CD8 EM (14.4%) and MAIT populations
(12.3%). By contrast, the T, cGEP was most enriched in the expected
T, subset (88.1%) and T, 17-resting in the expected CD4 EM (22.1%) and
CD4 CM (10.7%) populations. Subset polarization proportions across
subsets correlated strongly between the COMBAT and flu-vaccine
datasets (R> 0.9, P< 5.5 x 107 all; Extended Data Fig. 4e). Furthermore,
cells expressed the expected surface markers for their polarization,
irrespective of CD4/CD8 lineage (Extended Data Fig. 4f), illustrating
how TCAT can reveal polarized CD8* T cell populations™®.

cGEPs associated with TCR-dependent activation

Next, we identified cGEPs induced by antigen-specific TCR activation
using an activation-induced marker (AIM) assay followed by scRNA-seq
(AIM-seq; Fig. 4a-d). We stimulated PBMCs from five healthy donors for
24 husingeitherapool of 176 peptide antigens from common pathogens
(CEFX,JPT)* plus anti-CD28/CD49d co-stimulation, or co-stimulation
only (mock). Then, we sorted activated and non-activated T cells from
the peptide stimulation using activation markers (0X40 and PD-L1for
the CD4 population® and CD137 for the CD8 population®®). We labeled
the resulting populations with hashtag antibodies and pooled them for
CITE-seq and TCR-seq, totaling 42,370 cells (12,743 AIM-positive, 15,369
AIM-negative, 14,258 mock; Methods and Supplementary Fig. 7a). As
expected, peptide stimulation substantially increased the percentage
of AIM-positive cells (Fig. 4b and Extended Data Fig. 5a,b).

The data confirmed expected features of AIM-positive cells. First,
they had increased expression of additional activation markers (CD54,
CD25,CD71,CD69, P<1x1072%; Extended Data Fig. 5c-e). They were
also depleted of naive T cells (CD4: P=0.027,CD8: P=8.6 x10™*) and
enrichedfor T, cellsand CD4 CMsand EMs (P=0.00064,0.0044 and
0.054; Extended Data Fig. 5f), consistent with expected preexisting
memory to pathogensin the pool. However, we could still detect some
naive T cell activation (11.8% and 1.4% of AIM-positive cellswere CD4 and
CD8 naive, respectively). Clonal expansion (defined as 2+ cells sharing
aCDR3betasequence) was significantly more commonin AIM-positive
than AIM-negative CD4 memory cells (P=2.1x107CD4,P=0.14CDS;
Supplementary Fig. 7b) and clones were significantly more likely to
share AIM status than expected by chance (77% agreement versus 51%
expected; binomial P<1x1072%).

Next, we identified cGEPs that increased following ASA using
sample-level pseudobulk association tests (Fig. 4e, Extended Data
Fig. 5g and Methods). Twenty-four cGEPs increased in AIM-positive
relative to AIM-negative cells (FDR-adjusted Q < 0.05). Of these, we
labeled the ISG and metallothionein cGEPs as milieu regulated asthey
increased inboth AIM-negative and AIM-positive cells relative to mock
(P<1.5x107all). We suspect these cGEPs are upregulated by interferon
and extracellular ion concentration sensing”, independent of TCR
engagement.

Five subset cGEPs were higher in AIM-positive cells (T,17-resting,
Tegr Ten Tu22, Tgy-2) while three were higher in AIM-negative cells
(CD8-naive, CD4-naive and T,1-like), likely reflecting baseline differ-
ences in the number of peptide-reactive cells in these populations
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Fig. 4 |Identifying cGEPs associated with TCR-dependent activation.

a, Schematic of AIM-seq and UMAP of resulting data colored by donor. b, Flow
cytometry data from an AIM-seq run showing surface activation markersin
CD3'CD4" and CD3'CD4 gated populations with the gates used for AIM-positive
(+), AIM-negative (-) and mock (M) populations. ¢,d, UMAP of AIM-seq dataset
colored by sorting condition (c) or manually gated subset based on CITE-seq (d).
e, cGEP association with AIM positivity. x axis shows the regression coefficient.

yaxis shows the -log,, false discovery rate (FDR)-corrected two-tailed Pvalue
(thatis, Qvalue). cGEPs are labeled by assigned category. f, Average usage of
selected AIM-associated cGEPs in +,— and M cells from different gated subsets,
per sample. Lines show the median. Pvalues are from a per-sample two-tailed
rank-sum test comparing ‘+' with ‘=" and ‘M’ samples, for each lineage. *P < 0.05
and average usagein ‘+ cells > 0.01.

rather than cGEP upregulation (Supplementary Table 5 and Extended
Data Fig. 5f).

The17 remaining AIM-associated cGEPsincluded several with clear
links to TCR stimulation including cell cycle®, actin cytoskeleton®,
heatshock*®*" and major histocompatibility complex class I1**.
Additionally, 11 functional AIM-associated cGEPs may be specific to
T cell activation, including CTLA4/CD38, ICOS/CD38, NME1/FABPS,
0OX40/EBI3, multi-cytokine, exhaustion, TIMD4/TIM3, T,;2-activated,

Tyl17-activated and BCL2/FAM13A (see Supplementary Note and
Supplementary Fig. 7c for more details). Several were most upregulated
in specific subsets, such as multi-cytokine in CD8 memory; TIMD4/
TIM3in CD8 CM and y8T; CTLA4/CD38 in T,.,, CD4 memory and CD8
CM (Fig. 4f); and OX40/EBI3 in tumor-infiltrating T cells (Supplemen-
tary Fig. 7d).

Because proliferation is a core response to TCR activation, we
tested if AIM-associated cGEPs were enriched in proliferating cells
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in vivo. Results were concordant across datasets, with 15 cGEPs
increased in cell cycle-high cells (aggregate usage > 0.1) in at least
four of six datasets (Extended Data Fig. 5h, Supplementary Table 6
and Supplementary Fig. 7e). Of these, 14 were AIM-associated (Fisher
exact test P=2.1x107), further supporting a role for these cGEPs in
TCRactivationin vivo.

Annotating antigen-dependent activation in disease

Next, we developed a per-cell antigen-specific activation (ASA) score
to identify TCR-activated T cells in disease. Using forward stepwise
selection, we identified four AIM-associated cGEPs (TIMD4/TIM3,
ICOS/CD38, CTLA4/CD38 and 0X40/EBI3) that together predict CD71/
CD95 coexpression in the COMBAT and flu-vaccine datasets (Meth-
ods, Extended Data Fig. 6a,b and Supplementary Note). We selected
CD71 and CD95 as activation markers because they are known to be
upregulated within 24 h of TCR activation**¢, were upregulated in
the AIM assay (Extended Data Fig. 5c—-e) and had high quality across
subsets in both datasets.

ASA effectively predicted CD71/CD95 coexpressionin vivo (COM-
BAT: areaunder the curve (AUC) = 0.920, flu-vaccine: AUC = 0.818) and
AIM positivity in the AIM-seq data (AUC = 0.828; Extended Data Fig. 6¢—
e).ltalso correlated withexpression of other surface activation markers
(CD69: R=0.43,CD25:R=0.52, P<1x107°°; Supplementary Fig. 8a).
We chose a discrete ASA threshold of 0.0625 by balancing sensitivity
and specificity (Extended Data Fig. 6¢c-e). This threshold resulted in a
positive callfor76.7% of CD71'CD95"and 5.2% of non-CD71°CD95" T cells
in the COMBAT dataset, and 60.6%, 7.0% and 3.2% of AIM-positive,
AIM-negative and mock-stimulated cells in AIM-seq (Fig. 5a,b).

We benchmarked ASA against literature-derived T cell acti-
vation gene sets for predicting surface activation profiles. ASA
outperformed 9/9 and 7/9 tested gene sets in the flu-vaccine and
AlM-seq datasets, respectively, demonstrating its utility relative to
awidely used approach (Extended Data Fig. 6f,g and Supplementary
Fig.8b,c).

ASA-high cells had several expected features of antigen activated
cellsinvivo. They were enriched in proliferating clusters (Fisher’s exact
oddsratio (OR) 2.8-58.8 across datasets, P <1x 107 all) and ASA cor-
related with cell cycle usage (mean R 0.15; Fig. 5¢c,d and Extended Data
Fig. 6h). However, ASA identified significantly more activated cells
than the cell cycle alone, indicating greater sensitivity for classifying
activation (P=8.8 x107®°, two-tailed paired t-test; Fig. 5e).

ASA-high cells were more likely to be clonally expanded in
both COVID-19 datasets (COMBAT OR =2.50, UK-COVID OR =2.28,
P<1x107"° for both). Furthermore, ASA and cell cycle were inde-
pendently associated with clonal expansion in a multivariate logistic
regression (betavalues: ASA, 0.45and 0.50; cell cycle, 0.66 and 0.52, in
COMBAT and UK-COVID respectively; P<1x 1072%; Methods). The TCR

clone size distribution was also shifted upward in ASA-high relative
to ASA-low cells (P<1x107'%, both datasets; Fig. 5f and Extended
DataFig. 6i).

There were significantly more ASA-high cells in COVID-19
than healthy samples, consistent with viral activation (COMBAT:
P=1.9 %107, UK-COVID: P=1.5x107% Fig. 5g). ASA rates were com-
parable in CD4 and CD8 conventional subsets but higher in T, cells
for both healthy and COVID-19 samples (Fig. 5h and Supplementary
Fig.8d-f).In COVID-19, ASA-high cells were enriched in CD8 CM, CD8
EM and DN subsets (OR =4.8,2.8 and 3.1 respectively, all P<1x107°),
although notinhealthy samples, likely reflecting the antiviral response.
ASA rates were higher in UK-COVID than COMBAT. This correlated with
differencesin sample quality reflected in poor-quality cGEP usage and
library size and may reflect nonspecific activation related to sample
processing (Supplementary Fig. 9a).

To further illustrate analyses enabled by TCAT, we characterized
variation in T cell exhaustion and activation in breast cancer (BC),
esophageal cancer (ESCA), hepatocellular carcinoma (HCC), pancreatic
cancer (PACA), renal cell carcinoma (RC), thyroid carcinoma (THCA) and
endometrial cancer (UCEC) (Fig. 5i). ASA positivity in TCAT-annotated
CD4 cellsranged from 5.4% (breast) to 48.0% (esophageal). This corre-
lated with analogous ratesin CD8 cells for ASA (R=0.70,P=2.6 x10™°)
and exhaustion (R=0.38, P=4.0 x1073; Extended Data Fig. 6j) across
tumortypes. T, cells had significantly higher ASA positivity in thyroid
(P=3.0x107%) and esophageal (P= 0.0045) cancer relative to matched
normal tissues (Extended Data Fig. 6k). As expected, tumor mutation
burden was significantly correlated with the percentage of exhausted
CDS8' T cells per tumor (Spearman p = 0.59, P= 6.9 x107%; Fig. 5j and
Supplementary Fig. 9b).

Many tumorsincluded T cells with low ASA and exhaustion usage
(‘bystanders’). CD8 bystanders varied widely from 35.5% (endometrial)
t0 90.1% (breast) of total CDS8 cells. Bystanders were enriched within
populations marked by usage of the CD4-naive (OR =15.9), T,;2-resting
(OR=10.6), T,1-like (OR =7.3), MAIT (OR =4.42) and CD8-naive
(OR =4.03) cGEPs and were most depleted from T, (OR=0.19),
T,z (OR=0.23) and CD8 Ty, (OR = 0.61) populations (P<1x 10 all;
Fig. 5k). These analysesillustrate how TCAT and ASA scoring can enable
disease exploration.

Identifying disease-associated cGEPs

Next, we associated cGEPs with cancer, COVID-19 and rheumatoid
arthritis phenotypes (Supplementary Table 7, Extended Data Fig. 7a-f
and Supplementary Note). Using pseudobulk sample-level regres-
sion in the pan-cancer dataset (89 tumor, 47 matched normal sam-
ples, 13 cancer types), we identified T.,", exhaustion*® and ISG** as
strongly tumor-associated, consistent with their knownrolein cancer

(FDR-corrected Q=7.4x1072,8.5x10° and 9.3 x 1074, respectively).

Fig. 5| Annotating ASA in vivo. a, Box plot of ASA score for cells stratified as
activated (thatis, CD71'CD95', N=24,341 cells) or not activated (N = 375,258
cells). Boxes represent the interquartile range and whiskers represent 1.5 times
theinterquartile range. The box center line indicates the median. b, Same

as abut for AIM-seq data with cells stratified by sort condition (+: N =13,235
cells; —: N=15,528 cells; M: N = 14,459 cells). c,d, UMAP of the COMBAT

dataset colored by published clustering (c) and ASA score (d). e, Percentage
ofactivated (ASA > 0.065) or proliferating (sum of cell cycle cGEPs > 0.1)

cells per sample across datasets. Boxes represent the interquartile range and
whiskers represent the 95% quantile range. (AMP-RA, N =162 samples; COMBAT,
N=244;HIV-vaccine, 16; pan-cancer, 272; pan-tissue, 24; Sparks, 82; AIM-seq,
10; TBRU, 518; UK-COVID, 242).f, Clonality in manually gated conventional
CD4"and CD8" T cells annotated as activated (ASA > 0.065) or not activated
(ASA <0.065). Clonality is defined as the number of cells in the same sample
with anidentical alphaand beta CDR3 amino acid sequence. g, Percentage of
activated (ASA > 0.065) CD4" and CD8* conventional T cells in COVID-19 and
healthy control samples, by cohort. Boxes represent the interquartile range and
whiskers represent 1.5 times the interquartile range. The box center line indicates

the median. (COMBAT, N =77 COVID-19, 10 healthy; UK-COVID, N = 80 COVID-19,
21 healthy). h, log, OR for 2 x 2 association of ASA positivity and manual gating
subset assignment. An asterisk indicates Bonferroni-adjusted two-tailed Fisher’s
exact test Pvalue < 0.05.1, Percentage of activated (ASA > 0.065), exhausted
(exhaustion cGEP usage > 0.065) or bystander (ASA + exhaustion usage < 0.065)
Tcellsin CD4*and CD8" conventional T cells, per sample stratified by tumor type
and corresponding healthy tissues. Boxes represent the interquartile range and
whiskers represent 1.5 times the interquartile range. The box center line indicates
the median. (BC: n=2tumor, n=2normal; ESCA: n=7 tumor, n =7 normal; HCC:
n=>5tumor, n=>5normal; PACA: n =26 tumor, n =1normal; RC: n=10 tumor,n=11
normal; THCA: n =10 tumor, n=8normal; UCEC: n =9 tumor, n=8normal). BC,
breast cancer; ESCA, esophageal cancer; HCC, hepatocellular carcinoma; PACA,
pancreatic cancer; RC, renal cell carcinoma; THCA, thyroid carcinoma; UCEC,
endometrial cancer.j, Per-individual comparison of percentage of exhausted
CD8"T cells and average number of mutations per mutational burden (MB).

k, log, OR for enrichment of bystander T cells by subset cGEP assignment. Bar
value reflects the estimated OR, while error bars represent the analytical 95%
confidence intervals around the estimate.
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Fig. 6 | cGEPs associated with ICI response. a, UMAPs of the melanoma dataset
showing TCAT predicted lineage; the CD4-naive and exhaustion cGEPs; the ASA
and cell cycle scores; TCF7 expression; and treatment status and response.

b, Associations of cGEP usage with ICI response in CD4" T cells of pretreatment
melanoma. Dots are colored by cGEP type. x axis shows the average difference
inusage between nonresponders and responders. y axis shows the -log,,
two-tailed Pvalue. c-e, Average ASA score, cell cycle score and CD4-naive cGEP
usagein CD4'T cells from pretreatment melanomas and NMSC tumors and
combined pretreatment and post-treatment CRC. The average scores are mean
and variance normalized. Pvalues are one-tailed ¢-tests for melanoma and NMSC

and mixed linear regression Pvalues for CRC. Pvalue in the title is a meta-analysis
ofthe Pvalues across the three cancer types. *P < 0.05. Boxes represent the
interquartile range and whiskers represent 1.5 times interquartile range. The

box center line indicates the median. Sample sizes shownaren=9,n=6and
n=15forrespondersin melanoma, NMSC and CRC, respectively,and n =10,
n=7andn=4innonrespondersin melanoma, NMSCand CRC.f,Sameasbin
pretreatment NMSC. g, Same as bin combined pretreatment and post-treatment
CRC, but showing coefficients and P values from mixed linear regression analysis,
controlling for treatment time point and donor of origin.

Of 21 tumor-enriched cGEPs, 17 were AIM-associated (Fisher exact
testP=7.4x107°).

We separately analyzed individual tumor types with>2 tumor and
normal samples each (Methods). Results were highly concordantacross
cancers (sign test P < 0.05 for 14/15 tumor-type pairs; Extended Data
Fig.7b). T, exhaustion and CTLA4/CD38 cGEPs were upregulated in
allsix tumor typestested (P < 0.05). However, some signals were more
specificincluding T, 17-activated (thyroid: P=5.3 x 107, hepatocellular:
P=0.013) and T,2-activated cGEPs (esophageal, uterine, thyroid and
hepatocellular: P<0.05 all).

Of note, the T,-2 and Ty, cGEPs were both upregulated in cancer
(Q=3.6x10",Q=3.3x10").T,,and T, cells recruit B cells via CXCL13
aidinginantibody production. Ty, cells are found primarily inlymphoid
organs and T, cellsare predominantly ininflamed tissues*’, including
likely within tumors®. T,,, cell cGEP usage was associated with CXCL13
expression and plasma cells abundance across tumors, indicatingarole
in tumor-associated lymphoid aggregates (Supplementary Fig. 9c-e
and Supplementary Note).

cGEP associations with COVID-19 status revealed consistent asso-
ciations between the two reference datasets (R =0.64, P=2.8 x107)
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highlighting T, cells and ASA cGEP involvement (Q < 0.05; Extended
DataFig.7c-eand Supplementary Note). Rheumatoid arthritis similarly
showed increased usage of metallothionein, HLA, ICOS/CD38, T, cells
and other activation-associated cGEPs (Q < 0.05; Extended Data Fig. 7f
and Supplementary Note).

Characterizing ICl response

We next demonstrate TCAT’s utility by identifying cGEPs that pre-
dict tumor response to immune checkpoint inhibitors (ICls). ICIs are
state-of-the-art therapies for treating many types of cancer, yet 5-year
survival remains poor for over half of treated patients®. To investi-
gate T cell states associated with ICl response, we applied TCAT to
melanoma®?, non-melanomaskin cancer (NMSC)** and colorectal can-
cer (CRC)* datasets containing responder and nonresponder tumors
before and after treatment.

We firstexamined melanoma as the largest dataset containing 19
pretreatment and 48 total samples. TCAT revealed populations express-
ing ASA, exhaustion, cell cycle and CD4-naive signatures (Fig. 6a). We
also noted a prominent subset of cells expressing TCF7, which was
previously associated with ICl response in this dataset>>.

Inmelanoma pretreatment tumors, CD4* T cells from nonrespond-
ers had significantly higher activation (for example, TIMD4/TIM3,
OX40/EBI3, HLA) and cell cycle cGEP usage (P < 0.05 two-tailed t-test;
Fig. 6b and Supplementary Table 8). Associations were concordant
in pretreatment NMSC samples (sign test P=0.0016; Extended Data
Fig. 8a), including significant associations for CellCycle-Late-S and
TIMD4/TIM3 (one-tailed P=0.037 and 0.046, respectively; Fig. 6¢-f).
Meta-analysis of associations between pretreatment melanoma and
NMSC tumors was significant for the combined ASA and cell cycle
scores (P=0.0072 and P=0.0036, respectively; Fig. 6c-e) and for
many cGEPs (for example, CellCycle-Late-S, exhaustion, ICOS/CD38;
P<0.05all). Thus, elevated pretreatment TCR activation and prolifera-
tion signatures predict aworse response to ICIs in these tumor types.

Respondersalso exhibited higher usage of the CD4-naive cGEPin
pretreatment melanomaand NSMC tumors (meta-analysis P=0.0063;
Fig. 6e). This aligns with prior evidence linking TCF7 to improved ICI
outcome, as TCF7is atop marker of the CD4-naive cGEP (Supplemen-
tary Table 2). The naive T cells markers TCF7, CCR7 and SELL all had
higher expression in pretreatment responders than nonresponders
(meta-analysis P=0.024,0.0016 and 0.00047, respectively; Extended
Data Fig. 8b-d). Furthermore, the proportion of TCAT-classified
naive CD4"T cells was similarly predictive of response (meta-analysis
P=0.016; Extended Data Fig. 8e), suggesting infiltrating naive CD4
cells may predict positive ICl response.

The CRC dataset only had one pretreatment nonresponder sam-
ple, which precluded association testing in pretreatment tumors.
However, we observed concordant associations between pretreat-
ment and post-treatment samples across the three tumor types
(Extended Data Fig. 8f-h and Supplementary Fig.10a,b). For example,
response-associated cGEPs (P < 0.05) were significantly concordant
between pretreatment and post-treatment melanomasamples (Fisher’s
exacttest P=0.0039).

Assuming pretreatment and post-treatment samples share many
immune states, we repeated associations using combined pretreat-
ment and post-treatment samples, modeling treatment status with a
fixed effect and patient of origin with random effects (Methods). This
yielded consistent results with our prior findings, including increased
activation and cell cycle cGEPs in CRC nonresponders (for example,
P<1x10"*for OX40/EBI3, CellCycle-Late-S and ASA; Fig. 6g and Supple-
mentary Fig.10c¢,d). These distinct analyses support that our findings
arerobust and reproducible in three cancer types.

We obtained similar results in CD8" T cells (Extended Data
Fig. 8i-k). Activation and cell cycle cGEPs were elevated in pretreat-
mentnonresponders of melanoma and NMSC (meta-analysis P < 0.05
for CellCycle-G2M, CellCycle-Late-S, TIMD4/TIM3, exhaustion, ICOS/

CD38,0X40/EBI3 and HLA) and in the combined CRC cohort (P < 0.05
forall). The CD8-naive cGEP was associated with positive ICIresponse in
pretreatment melanomaand NMSC samples (meta-analysis P = 0.032).
These analyses highlight TCAT’s capacity to reveal clinically meaningful
immune patterns across multiple datasets.

Discussion

Here, weintroduced starCAT, atool that leverages the reproducibility
of functionally informative cGEPs across datasets to annotate new
scRNA-seq data. Weillustrated starCAT with the most comprehensive
T cell GEP catalog to date, including 16 subset-associated and 25 func-
tional cGEPs derived from reference datasets spanning many tissues
and diseases. Combining this catalog with starCAT yields TCAT.

TCAT offers key advantages over standard approaches. It simulta-
neously annotates functional and subset GEPs, disentangling conflated
signals and revealing unexpected populationslike abundant T,;2 polar-
ized CDS' T cells®. It outperformed RNA-based clustering and reference
label transfer methods for subset annotation and enabled facile disease
activity comparisons. TCAT is also much faster than de novo matrix
factorization, avoids the need for GEP annotation and improves GEP
inference accuracy for smaller datasets.

We developed the AIM-seq assay to identify cGEPs induced
following TCR-dependent activation. This identified 24 TCR
activation-associated cGEPs including context-specific responses
like multi-cytokine in CD8 memory and CTLA4/CD38 predominantly
in CD4 memory cells. We aggregated several of these cGEPsinto an ASA
scoretoidentify activationin scRNA-seqdata. Thisrevealed numerous
‘bystanders’ within tumors that lacked either activation or exhaustion
signatures and were enriched for naive and unconventional T cell
subsets.

TCAT uncovered features of tumor-infiltrating T cells that predict
ICI response. Surprisingly, nonresponsive tumors were enriched for
activation, cell cycle and exhaustion cGEPs. By contrast ICIresponsive
samples were enriched for the CD4-naive cGEP and were predicted
to contain more naive CD4'T cells. These findings suggest that TCAT
can help predict therapy response and characterize clinically relevant
cell states.

Limitations of this work include that the catalog may be missing
GEPs that are disease or tissue-context specific and were filtered due
tonon-reproducibility across datasets. Our AIM-seq experiment used
only a single co-stimulation signal and set of microbial peptides and
thus may not have identified all possible activation-associated GEPs.
Future workincorporating additional datasets and stimulation condi-
tions can address both limitations.

While demonstratedin T cells, starCAT isapplicable to any cell type
ortissue. We provide open-source software and a growing repository
of GEPs, including human glioma myeloid*® and bone marrow hemat-
opoiesis references”. Similar to the molecular signatures database
(MSigDB)***° but for scRNA-seq annotation, the platform supports
community-contributed GEP catalogs. We hope starCAT will enable
comprehensive identification of GEPs across tissues and diseases.

starCAT algorithm

Whereas cNMF learns both GEPs and their usage in cells, starCAT has
the simpler problem of fitting the usage for a fixed set of GEPs. Specifi-
cally, cNMF runs NMF multiple times, each time solving the following
optimization as given by equation (1):

ArgMing ,|X — UG|¢ o))

where
U>0,G>0

where Xis a NxH matrix of N cells by the top H overdispersed genes, U
is alearned NxK matrix of the usages of K GEPs in each cell,and Gis a
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learned KxH matrix where each row encodes the relative contribution
of each highly variable gene in a GEP. H is usually a parameter set to
~2,000 overdispersed genes. | |-denotes the Frobenius norm. Xincludes
variance-normalized overdispersed genes to ensure biologically
informative genes are included and contribute similar amounts of
information even when they may be expressed on different scales. For
cNMF, the optimization is solved multiple times and the resulting G
matrices are concatenated, filtered and clustered to determine a final
average estimate of G. Ultimately cNMF refits the GEP spectrainto two
separaterepresentations, onereflecting the average expression of the
GEP in units of transcripts per million G*™ and one in z-scored units
used to define marker genes G5¢°'s (see ref. 12 for details).

By contrast, starCAT takes afixed catalog of GEPs as input, denoted
as G*, and a new query dataset X9'¢"Y and solves the optimization as
given by equation (2):

ArgMin, |Xauey — UG | ()

where
Uu=0

The columns of X9'¢"Y and G* correspond to a prespecified set of over-
dispersed genes. Analogous to cNMF, we use gene-wise
standard-deviation-normalized counts for X7¢”_See below for how
G*iscalculated for TCAT. We solve for Uwith nonnegative least squares
using the NMF package in scikit-learn (version1.1.3)*° with G* fixed. We
usethe Frobenius error, the multiplicative update (‘mu’) solver, atoler-
ance of1x10™*and maximumiterations 0f1,000. We then perform row
normalization of the Umatrix so that each cell's aggregate usage across
allK GEPs sumsto 1.

Dataset preprocessing and batch-effect correction

Togenerate theinput matrix for cNMF for each dataset, wefirst filtered
genes detected in fewer than ten cells and cells with fewer than 500
unique molecular identifiers. We also excluded antibody-derived tags
(ADTs) and genes containing a period in their gene name. We subse-
quently subsetted the datato the top 2,000 most overdispersed genes,
identified by the ‘seurat_v3’algorithm asimplemented in Scanpy®. Next,
we scaled each gene to unit variance. To avoid outliers with excessively
high values, we calculated the 99.99th percentile value across all cells
and genes and set this as a ceiling. We denote this matrix as X™",

We used an adapted version of harmonypy to correct batch effects
and other technical variables from X" before cNMF?°, For this, we
computed Harmony’s maximum diversity clustering matrix from
principal components calculated fromanormalized version of X, which
we label X" Specifically, to compute X"°'™ we started from the same
initial gene list described above but first normalized the rows of the
matrix so thateachcell’s counts sumto10,000 (TP10K normalization).
We then subsetted to the top 2,000 overdispersed genes, and scaled
each column (gene) to unit variance, resulting in X"°'™, We then per-
formed PCA on X"°"™and supplied those principal components to the
run_harmony function of harmonypy. We then used the mixture of
experts model correction, implemented in harmonypy with the com-
puted maximum diversity clustering matrix, butinstead of correcting
the principal components using this model, as standard Harmony does,
we corrected X™, This creates asmall amount of variability around O
for the smallest values in X", We therefore set a floor of O, resulting
inthe corrected matrix X¢ used as the count matrix for cNMF.

cNMF

We ran cNMF on the batch-corrected X¢ matrix, which only includes
thetop 2,000 overdispersed RNA genes. Spectrafor the resulting GEPs
were then refit by cNMF including all genes that passed the initial set
of filters, including ADTs. Specifically, RNA counts were normalized
tosumto10,000, and ADT counts were separately normalized to sum

t010,000 and the combined matrix was passed as the --tpm argument
for cNMF. Thus, the GEP spectra output by cNMF incorporates ADTs
and genes notincluded inthe 2,000 overdispersed genes.

cNMF was run for each dataset with the number of components (K)
varying between 15 and 55 and with 20 iterations. The final number of
NMF components used for each dataset, K*, was chosen by visualizing
thetrade-off betweenreconstruction error and stability for these runs
(Supplementary Fig. 2). Once K* was selected, we ran cNMF afinal time
with only this value for Kand with 200 iterations to generate the final
GEP spectra estimates.

Constructing a catalog of cGEPs

Next, we identified consensus GEP spectra—thatis, the average of cor-
related GEP spectraidentified by cNMF in different datasets. Normal-
ized input GEP vectors, denoted as g;, were computed by starting from
the spectra_tpm output from cNMF, renormalizing each vector to sum
to10°, and then dividing each gene by its standard deviation in TP10K
units. Then, we created an undirected graph where the 267 GEPs identi-
fied across all reference datasets were represented asnodes g; ... 8¢,
We drew edges, denoted as £;;connecting a pair of GEPs g;and g;if the
following criteria were met:

1. g;and g;were from different datasets

2. R;>0.5 where R; denotes the Pearson correlation between g;
and g;. For computing R, g; and g; were subset to the union of
the overdispersed genes for each dataset.

3. g;was among the top seven most correlated GEPs with g, and g;
was among the top seven most correlated GEPs with g; with cor-
relation defined asin 2.

Next, we initialized a set for each GEP: x, = {g;} ... X,¢; = {85¢/}. We
theniterated through all edges E; ;in the graph in order of decreasing
R;and merged the sets x;and x;into a new set x; ;= {g;, g}. If either g;or
g; were already members of a merged set from previous merges, we
merged their containing sets only if at least two-thirds of the GEP pairs
intheresulting consensus set were connected by edges. For example,
ifthereisanedge F,,and g, is already mergedinto aset {g;, g,, g,}, then
weonly merged {g,, g,, g,} and {g,} if there were also edges F, o and £, .
This resulted in 49 merged sets and 52 unmerged ‘singleton’ sets. We
filtered 49 of the 52 singletons and retained 3 that had a biological
explanation for being identified inonly one dataset. This resultedina
final catalog of 52 cGEPs, including doublet programs.

Lastly, we subset each GEP to the union of overdispersed genes
across all seven reference datasets that were presentinall datasets and
obtained the final consensus GEPs by taking the element-wise average
GEPsin each merged set. This matrix was used as the reference for TCAT.
For marker gene analyses (for example, Fig. 2b,d and Extended Data
Fig.2), wethenaveraged, element-wise, the z-score representation of
the GEP output by cNMF for GEPs in a consensus set.

Simulation analysis
We adapted the scsim simulation framework described previously™
based on Splatter® into a new version, scsim2. Like with scsim, we
distinguished between subset GEPs, which are mutually exclusive,
and non-subset or ‘activity’ GEPs, which are not. For the original scsim
framework, cells used one of multiple subset GEPs and potentially used
asingle-activity GEP. We adapted scsim to allow cells to use anywhere
from none to all of the activity GEPs in addition to their single subset
GEP. We kept the Splatter parameters used in the original publication
todescribe the distribution of gene expression data: mean_rate = 7.68,
mean_shape = 0.34, libloc =7.64, libscale = 0.78, expoutprob = 0.00286,
expoutloc = 6.15, expoutscale = 0.49, diffexpprob = 0.025, diffexpdown-
prob =0.025, diffexploc = 1.0, diffexpscale =1.0, bcv_dispersion = 0.448
and becv_dof =22.087.

We simulated 10 subset GEPs and 10 activity GEPs based on 10,000
total genes. The extra-GEP reference included all 20, the missing-GEP
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referenceincluded 6 of the subset GEPs and 6 of the non-subset GEPs,
and the query dataset included 8 subset GEPs and 8 non-subset GEPs.
Each dataset consisted of 9,000 genes, randomly sampled from the
total of 10,000. Each cellwas randomly assigned a subset GEP with uni-
form probability, and each cellrandomly selected whether it expressed
eachactivity GEP with a probability of 0.3. The degree of usage of each
activity GEP was sampled uniformly between 0.1and 0.7. If the sum of
the activity GEPs exceeded 0.8 for a cell, they were renormalized to
sum to 0.8. Thus, each cell’s usage of its subset GEP always exceeded
0.2. We simulated 100,000 cells each for the extra-GEP and missing
GEP references. We simulated multiple query datasets containing
100,500,1,000,5,000,10,000,20,000,50,000 0r 100,000 cells. The
same parameters were used for Supplementary Fig. 1but with different
numbers of GEPs in the references and query.

We subsequently ran cNMF using 1,000 overdispersed genes,
20 iterations, local_neighborhood_size = 0.3 and density_thresh-
old=0.15.Weused K =20, K =12and K =16 for the extra-GEP reference,
missing-GEP reference and query datasets, respectively. We then used
starCAT to fit the usage of the reference GEPs on the query dataset.
To evaluate the performance of starCAT and cNMF, we calculated
the Pearson correlation of the inferred GEP usage with the simulated
ground-truth usage.

Gene-set enrichment analysis

We used Fisher’s exact test in Python’s Scipy library to associate
cGEPs with gene sets (Supplementary Note). For the T cell polariza-
tion dataset®®, we defined polarization gene sets as genes that had an
FDR-corrected Pvalue < 0.05and fold change > 2 with the stimulation
condition. We excluded genes with FDR-corrected P value between
0.05 and 0.2 and fold change > 1, as many of these are upregulated
by the stimulation but just did not reach FDR significance. We also
obtained literature gene sets corresponding toimmediate early genes®*
and gene ontologies®>*®. We tested these for enrichments with each
cGEP thresholded with a z score > 0.015, which corresponded to the
99th percentile across all genes and cGEPs, using Fisher’s exact test
asimplemented in scipy.stats in Python.

Manual subset gating analysis

We library size normalized ADT protein measurements to sum to
10* (TP10K) and applied the centered log-ratio transformation.
We then scaled each protein to unit variance, and set a ceiling of
15 to remove excessively high outliers. Next, we performed PCA
and ran batch correction using harmonypy with the same batch
features as for cNMF. We then computed the K-nearest neighbor
graph with K = 5neighbors, using the Harmony-corrected principal
components. We then smoothed the normalized protein estimates
using MAGIC® using the K-nearest neighbor graph and the diffusion
operator powered to t=3.

We gated canonical T cell subsets using the smoothed normalized
ADTs. First, we gated y5 T cells using expression of V62 TCR. Then, we
separated MAIT cells using expression of CD161 and TCR Va 7.2. We
thenused CD4 and CD8to separate CD4 (CD4°CD8"),CD8 (CD4 CDS8"),
double-positive (CD4'CD8") and double-negative (CD4 CD8") T cells.
We thensubset to CD4" T cells and gated T, cells using expression of
CD25 and CD39. Of the remaining CD4" T cells, we used CD62L and
CD45RAto define CD4-naive (CD62L"'CD45RA"), CD4 central memory
(CD62L'CD45RA"), CD4 effector memory (CD62L"CD45RA") and CD4
TEMRA (CD62L CD45RA") populations. For the CD8" T cells, we simi-
larly used CD62L and CD45RA to define CD8 naive (CD62L"'CD45RA"),
CD8 central memory (CD62L*CD45RA"), CD8 effector memory
(CD62L"CD45RA") and CDS8 TEMRA (CD62L"CD45RA") populations.

T cell subset classification benchmarking analyses
We used T cell subsets defined by manual gating of ADTs in the
flu-vaccine dataset as ground truth for prediction. For single cGEP

prediction, we ran TCAT to predict cGEP usage, and identified the cGEP
that best predicted the lineage based on AUC.

We also used all the cGEPs to perform simultaneous multi-label
prediction. We scaled the normalized usages for all cGEPs to zero mean
and unit variance. Using COMBAT as a training dataset, we trained
amultinomial logistic regression using scikit-learn® version 1.0.2
with Ibfgs solver to predict gated subset from usages. Model weights
were adjusted by the inverse of subset size using class_weight = ‘bal-
anced’, allowing subsets with different cell counts to contribute to
the model equally. We excluded CD4 TEMRA, double-negative and
double-positive subsets from this analysis due to low cell counts in
boththe training and testing datasets. We evaluated this model in the
independent flu-vaccine query dataset.

Analogous comparisons were made using GEPs from Yasumizu
etal. fit to the data using the NMFproject software". We also obtained
gene sets derived from NMF analyses of T cellsina pan-cancer dataset™.
Toassess the ability of these gene sets to predict gated subsets, we used
the score_genes functionin Scanpy® on data normalized following the
standard pipeline (library size normalizing to TP10K, log transforma-
tion, scaling each gene to unit variance). We then assigned each subset
tothe gene set that yielded the maximal AUC.

To evaluate clustering, we first normalized the data as above, and
data were subset to highly variable genes using the highly_variable_
genes function in Scanpy with default parameters. We then ran PCA
and Harmony batch correction of the principal components®. We then
computed the K-nearest neighbor graph using 31 harmony-corrected
principal components and 30 nearest neighbors. We then performed
Leiden clustering®® with resolution parameters ranging from 0.25 to
2.25increasing by 0.25. For each clustering resolution, we performed
agreedy search to assign clusters to manually gated subsets based
on maximization of the balanced accuracy (that is, the average recall
across all subsets). In each iteration, we considered all unassigned
clustersand possible gated subset assignments and selected the cluster
and assignment that most increased the overall balanced accuracy.
When no remaining cluster assignments would increase the balanced
accuracy, we assigned the cluster to a subset that least decreased the
balanced accuracy. We continued this process until each cluster was
assigned to asubset.

To evaluate other reference mapping methods, we followed
the normalization methods directed by each method. We supplied
the flu-vaccine raw counts matrix to Azimuth and utilized its human
PBMC reference (the HIV-vaccine dataset). For reference mapping
with Symphony, we built a reference for the HIV-vaccine dataset, per-
forming library size normalization (TP10K normalization) followed
by log transformation. We selected the top 2,000 variable genes per
donor using VST selection, centered and scaled the normalized counts,
and performed PCA (irlba package) and batch correction (on lane
and donor) using Harmony. We built a Symphony reference using the
batch-corrected PCs. We then performed TP10K library size normali-
zation and log transformation on the flu-vaccine query and annotated
cells using Symphony’s reference mapping and annotation transfer
algorithms. For reference mapping with ProjecTILs, we supplied the
flu-vaccine raw count matrix and utilized the default comprehensive
T cellreference provided by ProjecTILs (ref_TILAtlas_mouse_v1). Inter-
nally, ProjecTILs maps human queries to its mouse reference using
gene orthologs.

Forallaccuracy calculations, we utilized sklearn’s balanced_accu-
racy_score, an approach appropriate for cases of class imbalance. In
the binary case, balanced accuracy refers to the mean sensitivity and
specificity of a prediction. In the multi-class case, balanced accuracy
refers to the mean sensitivity across classes.

AlM-seq
Patients were recruited for this study through the Partners Biobank®’.
Informed consent was obtained fromall participants. We have complied
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with all ethical regulations, and the study protocol was approved by
the Mass General Brigham Institutional Review Board. PBMCs were
collected from five genotyped participants with no autoimmune dis-
eases or use ofimmunomodulatory medications. PBMCs were quickly
thawed and placed in prewarmed xVIVO15 cell culture medium (Lonza)
supplemented with 5% heat-inactivated FBS. To reduce cell clumping,
PBMCs were incubated in xVIVO15 containing 50 U ml™ of benzonase
nuclease (Sigma-Aldrich) for 15 minat 37 °C and filtered using a 70-um
cellstrainer. Washed and nuclease-treated cells were seeded ina 96-well
cell culture plate ata concentration of 2.5 x 10° per ml. Peptide stimula-
tions were performed using the CEFX Ultra SuperStim Pool (JPT Pep-
tide Technologies, PM-CEFX-1) at a final concentration of 1.25 pg ml™
per peptide for 22 h at 37 °C and 5% CO,. Recombinant anti-CD28 and
anti-CD49d antibodies (BioLegend) were added at afinal concentration
of 5pugml™and 0.625 pg ml™, respectively, to provide co-stimulation for
peptide-reactive T cells. Separately mock-stimulated cells were treated
withanti-CD28 and anti-CD49d antibodies at the same concentration.

Peptideresponsive T cells were detected by the expression of the
surface activation markers PD-L1, 0X40 and CD137 via flow cytom-
etry. Following the stimulation, peptide-treated and mock-stimulated
cells were washed in cell staining buffer (PBS + 2 mM EDTA + 2% FBS)
to end the stimulation. Fc receptor blocking was performed using
a1:50 dilution of Human TruStain FcX (BioLegend) in cell staining
buffer for 10 min at 4 °C. Cell viability staining was performed using
a1:500 dilution of Zombie Yellow Fixable Viability Dye (BioLegend)
prepared in PBS for 30 min at 4 °C. Surface staining was performed
using 1:100 dilutions of BV421-conjugated anti-CD3, FITC-conjugated
anti-CD4, BV786-conjugated anti-PD-L1, PE-conjugated anti-OX40 and
APC-conjugated anti-CD137 (BioLegend) for 25 minat 4 °Cin cell stain-
ing buffer. Following cell staining, antigen reactive and non-reactive
T cells were identified using a BD FACSAria Il cell sorter and col-
lected in cRPMI medium (100 U mI™ penicillin-streptomycin + 2 mM
L-glutamine + 10 mM HEPES + 0.1 mM non-essentialamino acids + 1 mM
sodium pyruvate + 0.05 mM 2-mercaptoethanol) supplemented with
20% FBS. Sorted T cell populations were then labeled with 75 pl of
TotalSeq oligonucleotide-conjugated hashing antibody mix, incubated
for 30 min at 4 °C with gentle mixing after 15 min, and pooled in equal
quantities. Staining with the TotalSeq-C Human Universal Cocktail
(BioLegend) was then performed according to the manufacturer’s
instructions. The cells were then resuspended in PBS supplemented
with 0.04% FBS at afinal concentration of 500 cells per pl and submit-
ted for single-cell profiling on the Chromium Next GEM instrument.
Library preparation was completed for the hashtag oligonucleotides,
scRNA-seq, CITE-seq and TCR-repertoire sequencing following the
manufacturer’s instructions.

We collected AIM-seq data from two separate 10x runs. In the first
experiment, PBMCs from three donors were processed independently
as described above and were pooled after fluorescence-activated cell
sorting. In the second run, PBMCs from four donors, two of which
overlapped with the first run, were stimulated separately and pooled
before fluorescence-activated cell sorting.

Preprocessing of AIM-seq data

The AIM-seq dataset was processed using Cell Ranger version 6.1.1
with default parameters and alignment to hg38 reference genome. The
donor of origin for each cell was determined using Demuxlet version
1.0 with adoublet-prior of 0.1 (ref. 70). Cells with a null or ambiguous
Demuxletresult, fewer than10 counts of the hashtag oligonucleotides,
or fewer than 50 total RNA counts were filtered. To account for stain-
ing differences between the hashtag oligonucleotides and different
sequencing depths of the two 10x runs, the counts for each hashtag
oligonucleotide in each 10x run were scaled to have the same median
value. Next we added a pseudocount to the hashtag oligonucleotide
countsand log,, transformed these data. Then we ran Gaussian mixture
models separately for each hashtag oligonucleotide with K= 2 clusters.

Each cell was assigned to asingle condition if it was in the high cluster
for one oligonucleotide and the low clusters for all others, a doublet
ifit was in the high cluster for more than one oligonucleotide, or an
emptydropletifit wasinthelow cluster forall oligonucleotides. Empty
droplets or doublets based on the hashtag oligonucleotide clustering
werefiltered, aswere doublets based on Demuxlet. Genes detected in
fewer than ten cells were filtered before running TCAT.

Statistics and reproducibility

We did not perform astatistical analysis for choosing sample size. We
chose to replicate the study across five samples for reproducibility,
as we sequenced thousands of cells per donor and were well powered
to find significant associations between stimulation conditions. We
excluded cells based on unique molecular identifier counts and ability
to be demultiplexed, as above. No blinding was performed.

cGEP associations with AIM positivity, proliferation and
disease

To associate cGEPs with the AIM-seq stimulus, we first ran TCAT to fit
the usages of the cGEPs in the AIM-seq dataset. We then computed the
average usage of each cGEP in cells from each sort condition in each
donor. We created two dummy variables, the first indicating whether
asample was treated with CEFX or mock, and the second indicating
whether asample was both CEFX-treated and AIM-positive or not. We
used ordinary least-squares regression to estimate the effects of these
two variables and anintercept. cGEPs associated with the CEFX or mock
dummy variable were labeled ‘milieu-associated’, while cGEPs positively
associated with the AIM-positive dummy were labeled ‘AIM-associated’.

To associate cGEPs with proliferation, we defined cells as pro-
liferating or non-proliferating in each dataset by setting a threshold
of 0.1 on the sum of the three cell cycle cGEPs—CellCycle-S-phase,
CellCycle-Late-S and CellCycle-G2M. We then computed the mean
usage of each cGEP per sample separately in high cell-cycle (sum
usage > 0.1) and low cell-cycle (sum usage < 0.1) cells. We filtered
samples that did not have at least 10 high cell-cycle cells and 100 low
cell-cycle cells. Then, for each cGEP, we performed a two-tailed paired
t-test (ttest_rel in Scipy, default parameters) between average cGEP
usage for high and low cell-cycle cells. We meta-analyzed P values across
datasets using Fisher’s Method (combine_pvalues in Scipy).

To associate cGEPs with sample-level disease phenotypes, we
calculated the average usage of each cGEP in each sample for a given
dataset. We then used ordinary least-squares regression to find cGEPs
with higher average usage in disease samples than controls, controlling
forsample-level batchvariables as covariates. For all datasets, disease
status was modeled as abinary dummy variable, and anintercept was
included. For UK-COVID, the processing site was included asadummy
variable covariate. For COMBAT, sequencing pool and processing insti-
tute were included as dummy variable covariates. For the pan-cancer
dataset, all cancer types were initially included in the analysis and
dummy variable covariates were included for tissue of origin. In addi-
tion, sequencingtechnology wasincluded asadummy variable. When
there were multiple tumor samples or matched normal samples from
the same donor, we excluded the duplicates with fewer total cells. For
allassociation tests, we performed FDR correction of the Pvalues using
the Benjamini-Hochberg method (fdrcorrection in Statsmodels with
method =‘indep’).

For the ICI response analyses, we used one-tailed or two-tailed
Welch’s t-tests as indicated in the main text for analyses of isolated
pretreatment or post-treatment samples. For analyses of combined
pretreatment and post-treatment samples, we used mixed linear
models with an intercept, treatment status and clinical response as
fixed effects, patient of origin as random intercepts, and average
cGEP usage as the response variable. We used the MixedLM package
in statsmodels with REML = False (that is, using maximum likelihood
estimation) and computed Pvalues for the response fixed effect using
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the likelihood-ratio test. For meta-analyses, we used Fisher’s method
to combine one-tailed Pvalues.

Defining the ASA score

We used CD71°CD95" surface protein coexpression in the COMBAT
and flu-vaccine datasets as an in vivo correlate of TCR activation to
help prioritize AIM-associated cGEPs for predicting TCR-activated
cells. First, we preprocessed the ADT surface proteinsin these datasets
as described in the manual subset gating section. We then subsetted
cells by their manual gating-defined broad cell types (conventional
CD4, CD4" T, conventional CDS8, other) and gated CD71°CD95" cells
separately for each cell type as the response feature to be predicted
by AlM-associated cGEPs.

We then performed forward stepwise selection, evaluating
how well the summation of usages of different combinations of
AlM-associated cGEPs would predict CD71'CD95" gating. At each stage,
the per-cell ASA score was computed as the sum of normalized usages of
cGEPsinthe predictive set. At each forward step, we determined which
cGEPshouldbe added to the predictive set based on which would most
improve the average AUC across the flu-vaccine and COMBAT datasets.
We used areduction in AUC in both datasets as the stopping criterion
for adding cGEPs. We considered all AIM-associated cGEPs identified
as candidates for this but excluded those known to have a broader
function outside T cell activation (for example, cytoskeleton, metal-
lothionein and cell cycle) and those reflecting activation-associated
T cell subsets (T, and T, 17-activated). We also excluded exhaustion
fromthe ASAscoreasitreflectsadistinctinhibitory response to antigen
stimulation that users may wish to annotate separately.

Benchmarking the ASA score

We benchmarked ASA’s prediction of activation with published T cell
activationgene sets, where ground-truth activationis defined by AIM
positivity in the AIM-seq dataset and CD71'CD95" coexpressionin the
flu-vaccine dataset. We utilized all T cell activation gene sets presentin
theimmunologicsignature (C7) collection on MSigDB. We thenscored
each cell’s usage of each of the gene sets using scanpy’s score_genes
functionfollowing data preprocessing (TP10K normalization, log trans-
formation, mean and variance scaling).

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41592-025-02793-1.
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Methods

Materials and reagents

Reagent or resource Source Identifier

XVIVO15 culture media Lonza Catalog no. 02-060Q

RPMI 1640 medium Thermo Fisher  Catalog no. 11875093

Benzonase nuclease Sigma-Aldrich  CAS no. 9025-65-4
Trial grade CEFX peptide pool JPT PM-CEFX-2
Anti-CD28 antibody BioLegend Catalog no. 302933
RRID: AB_11150591
Anti-CD49d antibody BioLegend Catalog no. 304339
RRID: AB_2810443
Human TruStain FcX (Fc receptor BioLegend Catalog no. 422302
blocking solution) RRID: AB_2818986
Zombie yellow fixable viability kit BioLegend Catalog no. 423104
TotalSeqg-C human universal BioLegend Catalog no. 399905
cocktail, V1.0
Human TOTAL-SeqC repertoire (5')  BioLegend Catalog nos. 394661,
hashing antibodies 394663 and 394665
Anti-CD3-BV421(SK7) BioLegend Catalog no. 344833
RRID: AB_2565674
Anti-CD134-PE (Ber-ACT35) BioLegend Catalog no. 350003
RRID: AB_10641708
Anti-CD274-BV785 (29E.2A3) BioLegend Catalog no. 329735
RRID: AB_2629581
Anti-CD137-APC (4-B4-1) BioLegend Catalog no. 309809
RRID: AB_830671
Anti-CD4-FITC (RPA-T4) BioLegend Catalog no. 300505

RRID: AB_314073

Chromium next GEM single-cell 5' 10x Catalog no. 1000263

kit v2, 16 reactions

Dualindex kit TN set A, 96 10x Catalog no. 1000250
reactions
Chromium next GEM chip K 10x Catalog no. 1000286

single-cell kit, 48 reactions

Chromium single-cell human TCR 10x Catalog no. 1000252

amplification kit, 16 reactions

Library construction kit, 16 10x
reactions

Catalog no. 1000190

5' feature barcode kit, 16 reactions ~ 10x Catalog no. 1000256

Data availability

The data used in this study for training and validating TCAT are pub-
licly available, and can be downloaded from the following sources:
https://doi.org/10.7303/syn52297840 (AMP-RA), https://zenodo.
org/records/5461803 (pan-cancer), Gene Expression Omnibus (GEO):
GSE164378 (HIV-Vaccine), https://www.ebi.ac.uk/biostudies/array-
express/studies/E-MTAB-10026 (UK-COVID), https://zenodo.org/
records/6120249 (COMBAT), https://www.tissueimmunecellatlas.
org/ (Pan-Tissue) and the GEO: GSE158769 (TBRU) and GSE206265
(flu-vaccine). The count matrices and metadata for the AIM-seq data
produced in this study are located on Zenodo (https://zenodo.org/

records/15271929)"" and on the GEO (GSE297814). Sequencing data
produced in our AIM-seq study are located on dbGaP (phs004043).
Source data are provided with this paper.

Code availability

The code for starCAT is available at https://github.com/immunog-
enomics/starCAT/. starCAT can also be run on our website (https://
immunogenomics.io/starcat/). The analysis scripts used in this paper
areavailable at https://github.com/immunogenomics/TCAT _analysis/.
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Extended Data Fig. 1| Characterizing starCAT. a, Schematic of simulation with
toy illustrations of gene expression programs (GEPs) and resulting Uniform
Manifold Approximation and Projections (UMAPs). Cells are colored by subset
GEPs. b, Pearson correlation of ground truth simulated usages of each GEP
(columns) vs inferred usages (rows) for starCAT with the 20 GEP reference (top),
starCAT with the 12 GEP reference (bottom) or cNMF of the query with 16 inferred
components (middle). ¢, Pearson correlation between inferred gene expression
programs and the corresponding ground truth usages, extracted from

b.d, starCAT predicted GEP usage for cells with ground-truth usage > 0.2,0-0.2,
or 0 (blue), and GEPs present in the reference but absent in the query (orange).
Boxes represent interquartile range and whiskers represent 1.5 x interquartile
range. The box center line indicates the median. Sample sizes for each category
aren=46,535(Usage >0.2),n = 46,867 (0 <Usage <0.2),n =226,598 (Usage =
0),and n=80,000 (Unused GEP). e, Pearson correlation between ground truth

and GEP usages inferred by starCAT and cNMF for different query dataset sizes.
Simulation parameters described in Methods. Marker represents mean, error
barsrepresent range. f, Summary of reference datasets including number of
individual donors (x-axis), number of cells (y-axis), and tissue source (dot color).
Phenotypes are listed below the dataset names. g, Number of GEPs identified

per dataset, colored by whether they clustered with one or more other dataset
GEPs (purple, red, or green), did not cluster with a GEP from another dataset

but were kept as dataset-specific (orange), or did not cluster with a GEP from
another dataset and were filtered (blue). h, Absolute value of Pearson correlation
of spectralearned by cNMF (top) or PCA (bottom) between different pairs

of datasets. PCs were computed from the same batch-corrected expression
matrices used for cNMF. Mean |R| refers to the average along the matrix diagonal,
which corresponds to pairs of components with highest correlation across the
dataset pair.
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correlations). b, Manual gating of COMBAT dataset using smoothed surface
protein antibody-derived tag (ADTs, Methods). ¢, Multivariate logistic regression
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4| Comparing TCAT with COMBAT dataset clustering.
a, Fraction of proliferating cells (cell cycle usage>0.1) assigned to each subset
based on the most highly used subset-associated GEPs, for cells from Covid-19
or healthy donorsin the two Covid-19 datasets. Bar represents the proportion
of cellsand error bars represent 95% bootstrap confidence intervals around
this proportion. b, Usage of selected cGEPs (columns) in cells (rows) grouped
by maximum subset cGEP. Cells are drawn from subclusters with high usage
ofthe ISG cGEP, indicated in the colorbar. ¢, Same as b, but only showing cells

from subclusters with high cytotoxicity cGEP usage. d, Heatmap of pseudobulk
expression of marker genes in cytotoxic-high and low cells and subset cGEP
highand low cells, per sample. Expression is normalized by library size and
z-scored across rows. e, Average fraction of polarized cells (usage>0.1) per gated
subset, across samples, within COMBAT and Flu-Vaccine datasets. f, Pseudobulk
expression profiles of selected marker genes in polarization-high and low cells,
separately for gated CD4 and CD8s T cells, per sample. Sample expression is
normalized by library size and z-scored across rows, for each polarization.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5|Identifying activation associated cGEPs with AIM-Seq.

a, b, Flow cytometry data of CD3 + CD4+and CD3 + CD4- gated populations
for 3 donor samples for CEFX and mock conditions. c-e, Activation-induced
marker (AIM) surface protein expression based on CITE-Seq for CD4 +,CD8 +,
and Treg subsets, stratified by sort condition. Boxes represent interquartile
range and whiskers represent 1.5x interquartile range. The box center line
indicates the median. Sample sizes are ¢: 23,532 cells, d: 13,284 cells, and e: 932
cells. f, Percentage of each sample assigned to each subset based on manual

gating, colored by stimulation condition. *indicates t-test P <.05 comparing +
and U. Exact P-values are CD4 CM: 3.17x10-3, CD4 EM: 3.48x10 72, Treg: 3.93x10 2,
CD8_CM: 6.49x10-2, CD4_Naive: 4.47x107%, CD8_Naive: 8.60x10™*. g, Average cGEP
usage in each donor and condition, for AIM-associated cGEPs. h, Paired t-test of
pseudobulk cGEP usage in high and low cell cycle usage cells (threshold 0.1) from
each sample. X-axis shows the mean Log, ratio of average usages across datasets.
Y-axis shows the -Log,, P-value. Statistically significant and positively associated
cGEPsareindicatedinred.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Annotating antigen-specific activation in vivo.

a, Definition of activation used for training the antigen-specific activation (ASA)
score in the COMBAT dataset for manually gated subsets. b, AUC estimates for
CD71/CD95 co-expression prediction based on summation of cGEPs sequentially
added to the score from left to right. ¢, d, Receiver operator curve (ROC) for

ASA prediction of CD71/CD95-based activation labels, with various thresholds
denoted as colored points. e, ROC for ASA prediction of AIM-positivity in the
AIM-Seq dataset. f, AUCs for prediction of CD71 + CD95+ co-expression by ASA
ascompared to cell scoring with alternative T cell gene sets in the Flu-Vaccine
dataset. Full gene set names are GOBP_ACTIVATED_T_CELL_PROLIFERATION
(GOBP_ACT), GSE13738_RESTING_VS_TCR_ACTIVATED_CD4 TCELL_DN
(GSE13738_RVT), GSE13738_TCR_VS_BYSTANDER_ACTIVATED_CD4_TCELL_UP
(GSE13738_TVB), GSE15659_CD45RA_NEG_CD4 _TCELL_VS_ACTIVATED_TREG_DN
(GSE15659_CVA), GSE15659 NAIVE_CD4 TCELL_VS_ACTIVATED TREG_ DN
(GSE15659_NAVA), GSE15659_NONSUPPRESSIVE_TCELL_VS_ACTIVATED_TREG_
DN (GSE15659_NSVA), GSE15659_RESTING_VS_ACTIVATED_TREG_DN (GSE15659_
RVA), GSE28726_NAIVE_VS_ACTIVATED_CD4_TCELL_DN (GSE28726_NVA),
WP_TCELL_ACTIVATION_SARSCOV2 (WP_ACTCOV). g, Same as fbut prediction of
AIM-positivity in the AIM-Seq dataset. h, Left - Odds ratio of enrichment between
proliferation (aggregate cell cycle cGEP usage>0.1) and activation (ASA > 0.065)
for each dataset. Estimates reflect odds ratios and error bars denote 95%

confidence intervals around the estimate. Right - Pearson correlation between
ASA and aggregate cell cycle cGEP usage with colors mapping to dataset. Box
represents the interquartile range and whiskers represent 1.5 x interquartile
range. The box center line indicates the median (n = 9 datasets). i, Clonality
inmanually gated conventional CD4 and CD8 T cells annotated as activated
(ASA >0.065) or not activated (ASA < 0.065). Clonality is defined as the number
of cellsin the same sample with anidentical alpha and beta CDR3 amino acid
sequence. j, Percentage of activated conventional CD4 T cells (ASA > 0.065)
versus percentage of activated or exhausted (exhaustion usage>0.065)
conventional CD8T cells across tumor samples. k, Percentage of activated,
exhausted, or bystander (ASA + exhaustion usage<0.065) Tregs in tumors and
match normal samples. Boxes represent the interquartile range and whiskers
represent 1.5 xinterquartile range. The box center line indicates the median.
Sample sizesare BC:n=2Tumor, n=2Normal; BCC:n=11Tumor; BCL:n=2
Tumor; ESCA: n =7 Tumor,n =7 Normal; HCC: n = 5 Tumor, n = 5Normal; LUNG:
n=2Tumor,n=4normal; MM: n =3 Tumor; RC:n=10 Tumor, n=11 Normal;
THCA: n =10 Tumor, n = 8 Normal; UCEC: n =9 Tumor, n =8 Normal. BC - breast
cancer, BCC - basal cell carcinoma, BCL - b-cell ymphoma, ESCA - esophageal
cancer, HCC - hepatocellular carcinoma, MM - multiple myeloma, PACA -
pancreatic cancer, RC - renal carcinoma, THCA - thyroid carcinoma,

UCEC - uterine carcinoma.
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Extended Data Fig. 7 | Identifying cGEPs associated with disease phenotypes.
a, Associations of cGEP usage with tumor versus matched normal tissue. X-axis
shows the regression coefficient. Y-axis shows the -Logl0 FDR-corrected P-value
(L.e.Q-value). b, Regression coefficients for tumor vs. normal samples for each
tissue of origin. *denotes P <.05 for the corresponding coefficient. Cancer type
abbreviations are: breast cancer (BC), esophageal cancer (ESCA), hepatocellular

carcinoma (HCC), renal cell carcinoma (RC), thyroid carcinoma (THCA), and
endometrial cancer (UCEC). ¢, d, Same as abut for association with Covid-19
statusin the UK-Covid and COMBAT datasets. e, Scatter plot of regression
coefficients from cand d. f, Same as abut comparing synovial T cells from
patients with Rheumatoid Arthritis and Osteoarthritis.
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Extended Data Fig. 8| cGEPs associated with immune checkpoint inhibitor
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R denotes Pearson correlation. Dots are colored by cGEP type. b-d, Average
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from one-tailed T-tests and CRC P-values are from a mixed linear regression
likelihood ratio tests. P-value in the title is from a meta-analysis across the three
cancer types. Box represents the interquartile range and whiskers represent 1.5 x
interquartile range. The box center line indicates the median. Sample sizes shown

Mean GEP usage

aren=9,n=6,n=15forrespondersin melanoma, NMSC, CRC respectively and
n=10,n=7,n=4innon-respondersin melanoma, NMSC, CRCe, Same asb but
showing percentage of CD4 Naive T cells out of total CD4 T cells based on TCAT
lineage classification. f, g, T-statistics computed in pre- and post- treatment CD4
T cells for melanoma and non-melanoma skin cancer (NMSC). h, Same as F but
showing mean difference rather than T-statistic due to the presence of only one
pre-treatment non-responder. i-k, Same as Fig. 6b—d but for CD8 T cells.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data used in this study for training and validating TCAT is publicly available, and can be downloaded from the following sources: https://doi.org/10.7303/
syn52297840 (AMP-RA), https://zenodo.org/records/5461803 (Pan-Cancer), GEO: GSE164378 (HIV-Vaccine), https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-10026 (UK-Covid), https://zenodo.org/records/6120249 (COMBAT), https://www.tissueimmunecellatlas.org/ (Pan-Tissue), GEO: GSE158769
(TBRU), GEO: GSE206265 (Flu-Vaccine). The count matrices for the Activation Induced Marker (AIM)-Seq data produced in this study are located on Zenodo (https://
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender All five participants were female. No sex-specific analyses were performed.

Population characteristics Participants were healthy adults between the ages 40 and 50. We excluded individuals with autoimmune diseases or on
immunomodulatory medications.

Recruitment These individuals were recruited from the Partners Biobank. We excluded individuals with autoimmune diseases or on
immunomodulatory medications. Recruitment occurred at clinics associated with MGB and may be biased towards more
complex cases and individuals representative of the Greater Boston area. Self-selection biases may be present as partaking in

Partners Biobank is optional.

Ethics oversight Mass General Brigham Institutional Review Board (IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our primary analysis of public data included 1.7 million T cells from 905 samples from 695 individuals. This allowed us to define a
comprehensive atlas of T cell states in diseases using some of the largest scRNA-seq datasets publicly available for T cells. As we were highly
powered to resolve cell states in this large dataset, we then applied it to annotate cell states in our smaller experimental study, which
included 43,222 cells across five samples from three stimulation conditions (stimulated, unstimulated, mock). We did not perform an analysis
of number of samples necessary prior to performing the experiment. However, this sample size provided us many thousands of cells per
donor, per stimulation condition. We were interested in testing the effects of simulation condition on cell states. This number of cells and
samples allowed us to be powered to detect significant cell state differences between stimulation conditions.

Data exclusions  No data was excluded from analyses.

Replication Data was collected on five participants (five replicates). All replications were successful and included in the data analysis. No further
replication of data was performed.

Randomization  All cells from all samples were randomly sorted into two groups corresponding to peptide treated and mock-stimulated cells.

Blinding Blinding was not relevant to the study as all samples were assigned to both peptide treated and mock-stimulated conditions. Data analysis
was unbiased and tested differences between antigen-stimulation statuses.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies

Antibodies used

Validation

Flow Cytometry

Co-stimulation:
Anti-CD28 antibody, Biolegend, Catalog #: 302933 RRID: AB_11150591
Anti-CD49d antibody, Biolegend, Catalog #: 304339 RRID: AB_281044

Proteogenomics:
TotalSeq™-C Human Universal Cocktail, V1.0, Biolegend, Catalog #: 399905
Human TOTAL-SeqC Repertoire (5') Hashing Antibodies, BioLegend, Catalog #: 394661, 394663, 394665

Flow Cytometry:

Anti-CD3-BV421 (SK7), Biolegend, Catalog #: 344833 RRID: AB_2565674
Anti-CD134-PE (Ber-ACT35), Biolegend, Catalog #: 350003 RRID: AB_10641708
Anti-CD274-BV785 (29E.2A3), Biolegend, Catalog #: 329735 RRID: AB_2629581
Anti-CD137-APC (4-B4-1), Biolegend, Catalog #: 309809 RRID: AB_830671
Anti-CD4-FITC (RPA-T4), Biolegend, Catalog #: 300505 RRID: AB_314073

All antibodies used are publicly available through Biolegend. Biolegend provides the following statements on its website:

Antibodies used for co-stimulation:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. FC - Quality tested
IHC-F, Costim - Reported in the literature, not verified in house

Antibodies used for proteogenomics:

TotalSeq™ Antibodies

Bulk lots are tested by PCR and sequencing to confirm the oligonucleotide barcodes. They are also tested by flow cytometry to
ensure the antibodies recognize the proper cell populations.

Bottled lots are tested by PCR and sequencing to confirm the oligonucleotide barcodes.

Antibodies used for flow cytometry:
Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. FC - Quality tested

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).

|X| All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

PBMCs from 5 healthy donors were quickly thawed and placed in pre-warmed xVIVO15 cell culture medium (Lonza)
supplemented with 5% heat-inactivated FBS. To reduce cell clumping, PBMCs were incubated in xVIVO15 containing 50 U/mL
of benzonase nuclease (Sigma-Aldrich) for 15 minutes at 37 degrees and filtered using a 70 um cell strainer. Washed and
nuclease treated cells were seeded in a 96 well cell culture plate at a concentration of 2.5 x 106/mL. Peptide stimulations
were performed using the CEFX Ultra SuperStim Pool (JPT Peptide Technologies, Product Code: PM-CEFX-1) at a final
concentration of 1.25 ug/mL per peptide for 22 hours at 37 degrees and 5% CO2. Recombinant anti-CD28 and anti-CD49d
antibodies (BioLegend) were added at a final concentration of 5 pg/mL and 0.625 pg/mL, respectively, to provide co-
stimulation for peptide reactive T-cells. Separately mock-stimulated cells were treated with anti-CD28 and anti-CD49d
antibodies at the same concentration. Peptide responsive T-cells were detected by the expression of the surface activation
markers PD-L1, OX40, and CD137 via flow cytometry. Following the stimulation, peptide treated and mock-stimulated cells
were washed in cell staining buffer (PBS + 2mM EDTA + 2% FBS) to end the stimulation. Fc receptor blocking was performed
using a 1:50 dilution of Human TruStain FcX (Biolegend) in cell staining buffer for 10 minutes at 4 degrees. Cell viability
staining was performed using a 1:500 dilution of Zombie Yellow Fixable Viability Dye (BioLegend) prepared in PBS for 30
minutes at 4 degrees. Surface staining was performed using 1:100 dilutions of BV421 conjugated anti-CD3, FITC conjugated
anti-CD4, BV786 conjugated anti-PD-L1, PE conjugated anti-OX40, and APC conjugated anti-CD137 (BioLegend) for 25
minutes at 4 degrees in cell staining buffer. Following cell staining, antigen reactive and non-reactive T-cells were identified
using a BD FACSAria Il cell sorter and collected in cRPMI medium (100 U/mL penicillin-streptomycin + 2 mM L-glutamine + 10
mM HEPES + 0.1 mM non-essential amino acids + 1 mM sodium pyruvate + .05 mM 2-Mercaptoethanol) supplemented with
20% FBS.

BD FACSAria Il

BD FACSDiva 9.4
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Cell population abundance CD4+ and CD3+CD4- cell populations were 58% and 25% of total live gated PBMCs in the peptide stimulated condition.
Within peptide-stimulated CD4 T cells, 4.21% were AlM-positive and 81.7% were AlM-negative. Within peptide-stimulated
CD8 T cells, 2.45% were AIM-positive and 74.9% were AIM-negative.

Gating strategy Gating on CD3+CD4+ PBMCs isolated CD4 T cells. Gating on CD3+CD4- PBMCs isolated CD8 T cells. Gating on PDL1+OX40+
CD4 T cells was then performed to sort Antigen Induced Marker (AlM)-positive from AIM-negative cells. Gating on PDL1
+CD137+ CD8 T cells was performed to sort AIM-positive and AIM-negative cells.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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