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Reproducible single-cell annotation 
of programs underlying T cell subsets, 
activation states and functions
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T cells recognize antigens and induce specialized gene expression programs 
(GEPs), enabling functions like proliferation, cytotoxicity and cytokine 
production. Traditionally, different T cell classes are thought to exhibit 
mutually exclusive responses, including TH1, TH2 and TH17 programs. 
However, single-cell RNA sequencing has revealed a continuum of T cell 
states without clearly distinct subsets, necessitating new analytical 
frameworks. Here, we introduce T-CellAnnoTator (TCAT), a pipeline that 
improves T cell characterization by simultaneously quantifying predefined 
GEPs capturing activation states and cellular subsets. Analyzing 1,700,000 
T cells from 700 individuals spanning 38 tissues and five disease contexts, 
we identify 46 reproducible GEPs reflecting core T cell functions including 
proliferation, cytotoxicity, exhaustion and effector states. We experimentally 
demonstrate new activation programs and apply TCAT to characterize 
activation GEPs that predict immune checkpoint inhibitor response across 
multiple tumor types. Our software package starCAT generalizes this 
framework, enabling reproducible annotation in other cell types and tissues.

T cells play critical roles in cancer, infection and autoimmune dis-
ease, driving widespread interest in characterizing their states using 
single-cell RNA sequencing (scRNA-seq)1–3. Clustering, the predominant 
analysis approach, has key limitations for interpreting T cell profiles. 
Transcriptomes reflect expression of multiple GEPs—co-regulated gene 
modules reflecting distinct biologic functions such as defining cell type, 
activation states, life cycle processes or external stimuli responses4. 
T cell GEPs vary continuously5, combine additively within individual 

cells6 and exhibit stimulus-dependent plasticity7. However, clustering 
discretizes cells, obscuring the coexpressed GEPs. For instance, pro-
liferating T cells from multiple subsets may cluster together, masking 
their subsets. This may explain why clustering typically fails to deline-
ate many canonical T cell subsets1,8, even with integration of surface 
protein markers via CITE-seq9,10.

Component-based models like nonnegative matrix factorization 
(NMF), hierarchical Poisson factorization and SPECTRA overcome 
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starCAT accurately inferred the usage of GEPs overlapping 
between the reference and query (Pearson R > 0.7) and predicted 
low usage of extra GEPs in the reference that were not in the query 
(Extended Data Fig. 1b–d). We observed similar prediction accura-
cies when predicting a simulated query dataset with half or fewer 
overlapping GEPs between the reference and query (Supplementary 
Fig. 1). starCAT outperformed direct application of cNMF to the query 
for overlapping GEPs, despite having extra or missing GEPs in the 
references. We suspected this was due to the larger size of the refer-
ences and confirmed that starCAT maintained its performance across 
smaller query datasets while cNMF’s performance declined (Extended  
Data Fig. 1e).

cGEPs for T cell annotation
We next developed a catalog of T cell GEPs to use for TCAT. We analyzed 
T cells from seven datasets spanning blood and tissues from healthy 
individuals and those with coronavirus disease 2019 (COVID-19), can-
cer, rheumatoid arthritis or osteoarthritis (Supplementary Table 1 
and Extended Data Fig. 1f). We chose datasets to reflect phenotypic 
breadth, large sample sizes (>70,000 T cells) and, where possible, 
inclusion of CITE-seq data to aid GEP interpretation. We included two 
COVID-19 peripheral blood mononuclear cell (PBMC) datasets, two 
healthy PBMC datasets and two tissue datasets to assess cross-dataset 
GEP reproducibility. After quality control, 1.7 million cells remained 
from 905 samples from 695 individuals. We applied cNMF to each 
batch-corrected dataset independently (Supplementary Fig. 2 and 
Methods).

GEPs were reproducible across datasets. To quantify this, we 
clustered GEPs found in different datasets and defined a cGEP as the 
average of each cluster (Methods). Nine cGEPs were supported by all 
seven datasets (mean Pearson R = 0.81, P < 1 × 10−50 all pairs) and 49 by 
two or more datasets (mean R = 0.74, P < 1 × 10−50 all pairs; Fig. 1b and 
Extended Data Fig. 1g). Across datasets, 68.4–96.8% of GEPs clustered 
with at least one GEP from another dataset, indicating high reproduc-
ibility. Gene expression principal components showed substantially 
less concordance across datasets (Extended Data Fig. 1h).

We curated a catalog of 46 T cell cGEPs—27–36 more than prior 
analyses11,13,14—including 11 discovered only in blood, 7 only in tissue, 
and 28 in both (Supplementary Table 1 and Fig. 1c). We excluded 49 of 
52 singleton GEPs as likely dataset-specific artifacts but retained three 
reflecting biologically justified signals. Specifically, the rheumatoid 
arthritis dataset contributed a T peripheral helper (TPH) GEP, previously 
identified in inflamed synovium21 (markers included PD-1 protein, 
LAG3 and CXCL13 RNA; Supplementary Table 2), while the pan-cancer 
dataset contributed an exhaustion GEP (HAVCR2, ENTPD1, LAG3) and 
a T follicular helper (TFH) GEP (PD-1 protein, CXCR5 and CXCL13 RNA) 
distinct from a second TFH GEP discovered in the non-cancer tissue 
datasets. We also identified six cGEPs corresponding to non-T cell 
populations, including erythrocytes (HBA2, HBA1) and plasmablasts 
(JCHAIN, IGKC), likely reflecting residual doublets. We retained these 
in the catalog to help flag doublets.

We annotated cGEPs by examining their top weighted genes 
(Fig. 1d, Extended Data Fig. 2a and Supplementary Fig. 3 and Supple-
mentary Table 2). For example, FOXP3 and GATA3 marked the regulatory 
T (Treg) and type 2 helper T (TH2)-resting cGEPs. GATA3, IL4, IL5 and IL17A, 
RORC and IL26 marked the TH2-activated and interleukin-17-producing 
helper T (TH17)-activated cGEPs, respectively. Some cGEPs were also 
annotated based on gene-set enrichment analysis (Supplementary 
Note and Supplementary Table 3).

We further labeled cGEPs through association with surface 
marker-based gating of canonical T cell subsets in a COVID-19 PBMC 
CITE-seq reference (COMBAT)17 (Extended Data Fig. 2b,c and Meth-
ods). Multivariate logistic regression revealed strong associations 
between specific cGEPs and the Treg, γδT, mucosal-associated invari-
ant T (MAIT) cell, CD4/CD8 naive, CD8 effector memory (CD8 EM), 

some limitations of clustering8,11–14. These methods model GEPs as 
gene expression vectors and transcriptomes as weighted mixtures 
of GEPs. Unlike principal component analysis (PCA), NMF compo
nents correspond to biologically interpretable GEPs reflecting cell 
types and functional states that additively contribute to a transcrip-
tome12. Component-based approaches yield GEP vectors that serve as a 
fixed coordinate system for comparing GEP activities across datasets. 
This is similar to scoring gene-set activities15 but with variable gene 
weights and simultaneous modeling of multiple GEPs. This prevents 
confounding of related signals and enables comparison of relative GEP 
activities. Previous analyses of T cells using component-based models 
have already recognized GEPs associated with T cell activation8 and 
exhaustion13 but were limited in dataset size and only addressed a small 
number of biological contexts. Furthermore, it is not well established 
how well such GEPs generalize across datasets.

Here, we present star-CellAnnoTator (starCAT), a framework 
to score cells based on a fixed, multi-dataset catalog of GEPs. ‘star’ 
is a wildcard placeholder based on the asterisk (*) used in program-
ming, indicating applicability across tissues and cell types. Our spe-
cific instantiation for T cells is thus written T-CellAnnoTator (TCAT). 
We derive a comprehensive T cell GEP catalog by applying consen-
sus nonnegative matrix factorization (cNMF)12 to seven scRNA-seq 
datasets comprising 1.7 million T cells from 38 human tissues1,2,10,16–19. 
Combining GEPs across datasets yields 46 consensus gene expres-
sion programs (cGEPs) capturing T cell subsets, activation states 
and functions (Fig. 1a). We demonstrate TCAT’s utility for inferring 
subset and antigen-specific activation (ASA) states and identify-
ing cGEPs predictive of immunotherapy response across multiple  
tumor types.

Results
Annotating cells with predefined GEPs
We first augmented the published cNMF algorithm to enhance GEP 
discovery (Fig. 1a). cNMF mitigates randomness in NMF by repeating 
NMF and combining outputs into robust estimates, generating GEP 
spectra (gene weights) and per-cell activities (‘usages’) reflecting the 
relative contributions of GEPs to each cell. To improve cross-dataset 
GEP reproducibility, we corrected batch effects which can cause cNMF 
to learn redundant dataset-specific GEPs. Standard batch-correction 
methods are incompatible with cNMF as they introduce negative values 
or modify low-dimensional embeddings rather than gene-level data. 
Therefore, we adapted Harmony20 to provide batch-corrected nonnega-
tive gene-level data. Additionally, we modified cNMF to incorporate 
surface protein measurements in GEP spectra for CITE-seq datasets 
to enhance GEP interpretability (Methods).

Next, we developed starCAT to infer the usages of GEPs learned in 
a reference dataset in new ‘query’ datasets. Unlike cNMF, which learns 
GEP spectra and usages simultaneously, starCAT quantifies the activity 
of predefined GEPs within each cell, using nonnegative least squares, 
similarly to NMFproject11. starCAT then leverages the GEP usages to 
predict additional cell features, including lineage, T cell antigen recep-
tor (TCR) activation and cell cycle phase (Fig. 1a). This can provide 
several advantages over running cNMF or similar approaches de novo: 
it ensures a consistent cell state representation for comparison across 
datasets, can quantify rarely used GEPs that may be hard to identify 
de novo in small query datasets and markedly reduces run time.

We benchmarked starCAT’s performance through simulations 
where the reference and query datasets contained only partially 
overlapping GEPs (Methods). Simulations included two 100,000-cell 
references and a 20,000-cell query, where each cell expressed one 
subset-defining and one or more non-subset GEPs. Cells in the reference 
datasets included additional GEPs or lacked certain GEPs relative to the 
query datasets and only shared 90% of genes in common (Extended 
Data Fig. 1a). We then learned GEPs from each reference with cNMF 
and predicted their usage in the query using starCAT.

http://www.nature.com/naturemethods
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Fig. 1 | Overview of starCAT. a, starCAT first identifies GEPs in multiple datasets 
and aggregates them into cGEPs. It then uses the cGEPs to annotate new query 
datasets and compute additional scores and classifiers. b, Pairwise correlations 
of GEPs discovered across reference datasets with insets for cGEPs derived from 
all seven references. Inset row and column orders are the same for all cGEPs.  

c, Heat map of cGEPs (rows) and which datasets the comprising GEPs were found 
in (columns). Green boxes indicate a GEP was found in a dataset. Colored bar 
indicates the cGEP’s assigned class. cGEPs corresponding to non-T cell lineages 
are excluded. d, Marker genes for selected example cGEPs in z-score units with 
the minimum value fixed at 0. The AB_ prefix indicates a surface protein.
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CD4 central memory (CD4 CM) and terminally differentiated effector 
memory (TEMRA) subsets (P value < 1 × 10−200, coefficient > 0.35). The 
CD4 EM subset was associated with TH17-resting and TH1-like cGEPs as 
expected (P < 4.1 × 10−189, coefficient > 0.22). In total, we identified 17 
subset-associated cGEPs.

We also identified likely technical artifact cGEPs (Supplemen-
tary Table 4). A mitochondria cGEP marked by mitochondrially tran-
scribed genes correlated with per-cell mitochondrial transcript fraction  
(average R = 0.81 across datasets), a common quality-control metric 
in scRNA-seq22,23. Another cGEP, labeled ‘poor-quality’, was marked by 
MALAT1, a long noncoding RNA linked to poor cell viability24. Its usage 
correlated with mitochondrial transcript fraction (mean R = 0.25 across 
datasets), inversely with the fraction of protein-coding transcripts per 
cell (mean R = −0.50) and positively with the percentage of intergenic 
reads per cell (mean R = 0.74; Extended Data Fig. 2d–f). Thus, it may be 
driven by contaminating DNA or nascent RNA. We also flagged immedi-
ate early gene cGEPs as potentially technical in nature (Supplementary 
Note and Supplementary Fig. 4).

Benchmarking TCAT on an independent query dataset
Next, we benchmarked TCAT for predicting discrete T cell subsets in 
a query CITE-seq dataset (labeled ‘flu-vaccine’), containing 336,739 
T cells from PBMCs of 24 COVID-19-recovered and 17 healthy individu-
als following influenza vaccine25. We defined ten conventional T cell 
subsets via manual surface protein gating to serve as prediction targets 
(Extended Data Fig. 3a). While subsets largely separated on a gene 
expression uniform manifold approximation and projection (UMAP), 
memory populations overlapped substantially, possibly due to shared 
functional GEPs (Fig. 2a). We hypothesized that predictions based on 
TCAT, which disentangles subset and functional cGEPs, would outper-
form methods unable to distinguish these signals.

Indeed, TCAT enabled more accurate subset prediction than 
RNA-based clustering or the discrete reference mapping tools 
Azimuth10, Symphony26 and ProjecTILs3 (Methods). Subset assignment 
by thresholding the most associated cGEP performed comparably to 
reference mapping and clustering across nine resolutions for predict-
ing one lineage at a time (Supplementary Fig. 5a). For simultaneous 
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Fig. 2 | Benchmarking TCAT on a query dataset. a, UMAP of the flu-vaccine 
dataset colored by manual gating (Extended Data Fig. 3a) and TCAT multinomial 
label prediction. b, Cross-method comparison of balanced accuracy for manually 
gated subset prediction. c, Same UMAP as a but demonstrating prediction of 
manually gated Treg and CD8 EM populations with the most associated individual 

cGEP (usage > 0.025), the multi-label classifier based on multiple cGEPs, Leiden 
clustering with a resolution of 1.0 and three reference mapping algorithms.  
d, Heat map of pseudobulk expression in cGEP-high (usage > 0.1) and cGEP-low 
(usage < 0.1) cells, per sample. Pseudobulk profiles were normalized by library 
size and rows were z-scored.
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multi-label prediction, we trained a multinomial logistic classifier on 
the COMBAT reference and measured performance with balanced accu-
racy (which weights classes of different sizes equally) in the flu-vaccine 
query (Methods and Fig. 2a). This greatly outperformed all tested 
reference mapping methods and clustering (balanced accuracy—TCAT, 
0.72; Clustering, 0.61; Symphony, 0.58; Azimuth, 0.52; ProjecTILs, 0.13; 
Fig. 2b,c and Extended Data Fig. 3b).

We compared the performance of this multi-label classifier when 
trained using TCAT’s cGEP catalog versus previously published GEP 
catalogs from NMF analyses of T cells in autoimmune diseases11 and 
tumors14 (Methods). TCAT’s catalog yielded better prediction accuracy 
for all lineages (Extended Data Fig. 3c and Supplementary Fig. 5b). 
These analyses show that TCAT can predict peripheral T cell subsets 
without manual annotation and with accuracy surpassing clustering 
and leading reference mappers.

We also found that usage of the CellCycle-S, CellCycle-G2M and 
mitochondrial cGEPs correlated well with common, gene-set-based 
estimates of these programs, including published proliferation gene 
sets27 (R > 0.75; Extended Data Fig. 3d and Methods).

Next, we validated prediction of T cell polarization against canon-
ical marker expression. We discretized cells based on the TH1-like, 
TH2-resting and TH17-resting cGEPs and computed per-sample 
pseudobulk profiles of high (usage > 0.1) and low (usage < 0.1) cells. 
TH2-resting-high cells had significantly higher expression of TH2 mark-
ers (GATA3, CCR4, PTGDR2) and analogously for TH17-resting-high cells 
and TH17 markers (CCR6, RORC, AQP3; P < 1 × 10−35 all, paired t-test; 
Fig. 2d). TH1-like-high cells had increased expression of TH1 markers 
(CXCR3, IFNG-AS1, CD195 protein; P < 1 × 10−35 all), although IFNG and 
TBX21 were also expressed in TH1-like-low cells (Extended Data Fig. 3e), 
potentially due to their expression in cytotoxic T cells28,29. Excluding 
cytotoxic-high cells illustrated significantly higher IFNG and TBX21 in 
TH1-like-high cells (P = 8.2 × 10−13, P = 9.6 × 10−47).

cGEPs capture multi-GEP T cell identities
Next, we illustrate how TCAT reveals cellular heterogeneity obscured 
by clustering in the COMBAT COVID-19 dataset. First, we examined 
cell cycle effects since they often mask subsets30. Regressing out cell 
cycle programs31 does not always work well because it may remove 
correlated signals like activation.

While the published analysis of CD4 memory cells identified mul-
tiple proliferating subclusters, these did not correspond directly to 
subsets, except for one—CD4.TEFF.prolif.MKI67lo—that was enriched 
for the myeloid doublet cGEP (Fig. 3a,b) and reflects a likely myeloid 
doublet population (Supplementary Fig. 6a). By contrast, TCAT readily 
identified distinct proliferating subsets based on coexpression of cell 
cycle and subset cGEPs (Fig. 3c,d).

This enabled us to quantify subset proliferation rates. Most subsets 
had increased cell cycle usage in COVID-19 compared to healthy cells 
(Extended Data Fig. 4a). Proliferation rates were correlated between 
the COVID-19 datasets (R = 0.80, P = 0.00021 in COVID-19, R = 0.56, 
P = 0.025 in healthy). The most proliferative population expressed 
the TPH cGEP and likely corresponds to TPH cells recently identified in 
COVID-19 (ref. 32).

Analogous to the cell cycle, we found that poor-quality, cyto-
toxic and interferon-stimulated gene (ISG) cGEPs could also dominate 
clusters, obscuring subsets (Fig. 3b–d and Supplementary Fig. 6b). 
For example, ISGs drove the CD4.TEM.IFN.resp and CD4.Th.IFN.resp 
clusters, which contained cells using multiple subset cGEPs (Extended 
Data Fig. 4b). For example, CD4.Th.IFN.resp contained many cells that 
expressed the CD4-naive cGEP and expected naive subset markers, 
suggesting they were misclustered with memory cells due to the ISG 
signal (Supplementary Note and Supplementary Fig. 6c–e).

Clusters with high cytotoxic cGEP usage contained cells with 
high usage of many subset cGEPs including CD8 EM, TEMRA and γδT 
(Extended Data Fig. 4c). Cells coexpressing cytotoxic and subset 

cGEPs coexpressed the expected cytotoxicity and subset marker genes 
(Extended Data Fig. 4d). This illustrates how TCAT can reveal cytotoxic 
T cell heterogeneity.

TCAT revealed polarization via the TH1-like, TH2-resting and 
TH17-resting cGEPs (Fig. 3c) while the published clustering lacked a 
TH2 cluster, and only annotated TH1/TH17 subsets with a high resolu-
tion yielding 243 total subclusters. We observed the expected enrich-
ment between TH1 and TH17 annotated subclusters and cells expressing 
the TH1-like and TH17-resting cGEPs, respectively (Fisher’s exact test 
P < 1 × 10−100).

However, TCAT also identified polarization outside the canonical 
CD4 memory subsets (Fig. 3e). Across manually gated populations 
(Extended Data Fig. 2b), TH2-resting was most enriched in CD8 CM 
(15.7%) and CD4 CM (12.8%) subsets, while TH1-like was enriched in CD8 
CM (15.7%), CD4 EM (14.7%), CD8 EM (14.4%) and MAIT populations 
(12.3%). By contrast, the Treg cGEP was most enriched in the expected 
Treg subset (88.1%) and TH17-resting in the expected CD4 EM (22.1%) and 
CD4 CM (10.7%) populations. Subset polarization proportions across 
subsets correlated strongly between the COMBAT and flu-vaccine 
datasets (R > 0.9, P < 5.5 × 10−5 all; Extended Data Fig. 4e). Furthermore, 
cells expressed the expected surface markers for their polarization, 
irrespective of CD4/CD8 lineage (Extended Data Fig. 4f), illustrating 
how TCAT can reveal polarized CD8+ T cell populations33.

cGEPs associated with TCR-dependent activation
Next, we identified cGEPs induced by antigen-specific TCR activation 
using an activation-induced marker (AIM) assay followed by scRNA-seq 
(AIM-seq; Fig. 4a–d). We stimulated PBMCs from five healthy donors for 
24 h using either a pool of 176 peptide antigens from common pathogens 
(CEFX, JPT)34 plus anti-CD28/CD49d co-stimulation, or co-stimulation 
only (mock). Then, we sorted activated and non-activated T cells from 
the peptide stimulation using activation markers (OX40 and PD-L1 for 
the CD4 population35 and CD137 for the CD8 population36). We labeled 
the resulting populations with hashtag antibodies and pooled them for 
CITE-seq and TCR-seq, totaling 42,370 cells (12,743 AIM-positive, 15,369 
AIM-negative, 14,258 mock; Methods and Supplementary Fig. 7a). As 
expected, peptide stimulation substantially increased the percentage 
of AIM-positive cells (Fig. 4b and Extended Data Fig. 5a,b).

The data confirmed expected features of AIM-positive cells. First, 
they had increased expression of additional activation markers (CD54, 
CD25, CD71, CD69, P < 1 × 10−200; Extended Data Fig. 5c–e). They were 
also depleted of naive T cells (CD4: P = 0.027, CD8: P = 8.6 × 10−4) and 
enriched for Treg cells and CD4 CMs and EMs (P = 0.00064, 0.0044 and 
0.054; Extended Data Fig. 5f), consistent with expected preexisting 
memory to pathogens in the pool. However, we could still detect some 
naive T cell activation (11.8% and 1.4% of AIM-positive cells were CD4 and 
CD8 naive, respectively). Clonal expansion (defined as 2+ cells sharing 
a CDR3 beta sequence) was significantly more common in AIM-positive 
than AIM-negative CD4 memory cells (P = 2.1 × 10−7 CD4, P = 0.14 CD8; 
Supplementary Fig. 7b) and clones were significantly more likely to 
share AIM status than expected by chance (77% agreement versus 51% 
expected; binomial P < 1 × 10−200).

Next, we identified cGEPs that increased following ASA using 
sample-level pseudobulk association tests (Fig. 4e, Extended Data 
Fig. 5g and Methods). Twenty-four cGEPs increased in AIM-positive 
relative to AIM-negative cells (FDR-adjusted Q < 0.05). Of these, we 
labeled the ISG and metallothionein cGEPs as milieu regulated as they 
increased in both AIM-negative and AIM-positive cells relative to mock 
(P < 1.5 × 10−3 all). We suspect these cGEPs are upregulated by interferon 
and extracellular ion concentration sensing37, independent of TCR 
engagement.

Five subset cGEPs were higher in AIM-positive cells (TH17-resting, 
Treg, TPH, TH22, TFH-2) while three were higher in AIM-negative cells 
(CD8-naive, CD4-naive and TH1-like), likely reflecting baseline differ-
ences in the number of peptide-reactive cells in these populations 
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rather than cGEP upregulation (Supplementary Table 5 and Extended 
Data Fig. 5f).

The 17 remaining AIM-associated cGEPs included several with clear 
links to TCR stimulation including cell cycle38, actin cytoskeleton39, 
heatshock40,41 and major histocompatibility complex class II42. 
Additionally, 11 functional AIM-associated cGEPs may be specific to 
T cell activation, including CTLA4/CD38, ICOS/CD38, NME1/FABP5, 
OX40/EBI3, multi-cytokine, exhaustion, TIMD4/TIM3, TH2-activated, 

TH17-activated and BCL2/FAM13A (see Supplementary Note and  
Supplementary Fig. 7c for more details). Several were most upregulated 
in specific subsets, such as multi-cytokine in CD8 memory; TIMD4/
TIM3 in CD8 CM and γδT; CTLA4/CD38 in Treg, CD4 memory and CD8 
CM (Fig. 4f); and OX40/EBI3 in tumor-infiltrating T cells (Supplemen-
tary Fig. 7d).

Because proliferation is a core response to TCR activation, we 
tested if AIM-associated cGEPs were enriched in proliferating cells 
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in vivo. Results were concordant across datasets, with 15 cGEPs 
increased in cell cycle-high cells (aggregate usage > 0.1) in at least 
four of six datasets (Extended Data Fig. 5h, Supplementary Table 6 
and Supplementary Fig. 7e). Of these, 14 were AIM-associated (Fisher 
exact test P = 2.1 × 10−5), further supporting a role for these cGEPs in 
TCR activation in vivo.

Annotating antigen-dependent activation in disease
Next, we developed a per-cell antigen-specific activation (ASA) score 
to identify TCR-activated T cells in disease. Using forward stepwise 
selection, we identified four AIM-associated cGEPs (TIMD4/TIM3, 
ICOS/CD38, CTLA4/CD38 and OX40/EBI3) that together predict CD71/
CD95 coexpression in the COMBAT and flu-vaccine datasets (Meth-
ods, Extended Data Fig. 6a,b and Supplementary Note). We selected 
CD71 and CD95 as activation markers because they are known to be 
upregulated within 24 h of TCR activation43–46, were upregulated in 
the AIM assay (Extended Data Fig. 5c–e) and had high quality across 
subsets in both datasets.

ASA effectively predicted CD71/CD95 coexpression in vivo (COM-
BAT: area under the curve (AUC) = 0.920, flu-vaccine: AUC = 0.818) and 
AIM positivity in the AIM-seq data (AUC = 0.828; Extended Data Fig. 6c–
e). It also correlated with expression of other surface activation markers 
(CD69: R = 0.43, CD25: R = 0.52, P < 1 × 10−100; Supplementary Fig. 8a). 
We chose a discrete ASA threshold of 0.0625 by balancing sensitivity 
and specificity (Extended Data Fig. 6c–e). This threshold resulted in a 
positive call for 76.7% of CD71+CD95+ and 5.2% of non-CD71+CD95+ T cells 
in the COMBAT dataset, and 60.6%, 7.0% and 3.2% of AIM-positive, 
AIM-negative and mock-stimulated cells in AIM-seq (Fig. 5a,b).

We benchmarked ASA against literature-derived T cell acti-
vation gene sets for predicting surface activation profiles. ASA 
outperformed 9/9 and 7/9 tested gene sets in the flu-vaccine and 
AIM-seq datasets, respectively, demonstrating its utility relative to 
a widely used approach (Extended Data Fig. 6f,g and Supplementary  
Fig. 8b,c).

ASA-high cells had several expected features of antigen activated 
cells in vivo. They were enriched in proliferating clusters (Fisher’s exact 
odds ratio (OR) 2.8–58.8 across datasets, P < 1 × 10−100 all) and ASA cor-
related with cell cycle usage (mean R 0.15; Fig. 5c,d and Extended Data 
Fig. 6h). However, ASA identified significantly more activated cells 
than the cell cycle alone, indicating greater sensitivity for classifying 
activation (P = 8.8 × 10−189, two-tailed paired t-test; Fig. 5e).

ASA-high cells were more likely to be clonally expanded in 
both COVID-19 datasets (COMBAT OR = 2.50, UK-COVID OR = 2.28, 
P < 1 × 10−100 for both). Furthermore, ASA and cell cycle were inde-
pendently associated with clonal expansion in a multivariate logistic 
regression (beta values: ASA, 0.45 and 0.50; cell cycle, 0.66 and 0.52, in 
COMBAT and UK-COVID respectively; P < 1 × 10−22; Methods). The TCR 

clone size distribution was also shifted upward in ASA-high relative  
to ASA-low cells (P < 1 × 10−100, both datasets; Fig. 5f and Extended  
Data Fig. 6i).

There were significantly more ASA-high cells in COVID-19 
than healthy samples, consistent with viral activation (COMBAT: 
P = 1.9 × 10−7, UK-COVID: P = 1.5 × 10−6; Fig. 5g). ASA rates were com-
parable in CD4 and CD8 conventional subsets but higher in Treg cells 
for both healthy and COVID-19 samples (Fig. 5h and Supplementary 
Fig. 8d–f). In COVID-19, ASA-high cells were enriched in CD8 CM, CD8 
EM and DN subsets (OR = 4.8, 2.8 and 3.1 respectively, all P < 1 × 10−10), 
although not in healthy samples, likely reflecting the antiviral response. 
ASA rates were higher in UK-COVID than COMBAT. This correlated with 
differences in sample quality reflected in poor-quality cGEP usage and 
library size and may reflect nonspecific activation related to sample 
processing (Supplementary Fig. 9a).

To further illustrate analyses enabled by TCAT, we characterized 
variation in T cell exhaustion and activation in breast cancer (BC), 
esophageal cancer (ESCA), hepatocellular carcinoma (HCC), pancreatic 
cancer (PACA), renal cell carcinoma (RC), thyroid carcinoma (THCA) and 
endometrial cancer (UCEC) (Fig. 5i). ASA positivity in TCAT-annotated 
CD4 cells ranged from 5.4% (breast) to 48.0% (esophageal). This corre-
lated with analogous rates in CD8 cells for ASA (R = 0.70, P = 2.6 × 10−9) 
and exhaustion (R = 0.38, P = 4.0 × 10−3; Extended Data Fig. 6j) across 
tumor types. Treg cells had significantly higher ASA positivity in thyroid 
(P = 3.0 × 10−6) and esophageal (P = 0.0045) cancer relative to matched 
normal tissues (Extended Data Fig. 6k). As expected, tumor mutation 
burden was significantly correlated with the percentage of exhausted 
CD8+ T cells per tumor (Spearman ρ = 0.59, P = 6.9 × 10−8; Fig. 5j and 
Supplementary Fig. 9b).

Many tumors included T cells with low ASA and exhaustion usage 
(‘bystanders’). CD8 bystanders varied widely from 35.5% (endometrial) 
to 90.1% (breast) of total CD8 cells. Bystanders were enriched within 
populations marked by usage of the CD4-naive (OR = 15.9), TH2-resting 
(OR = 10.6), TH1-like (OR = 7.3), MAIT (OR = 4.42) and CD8-naive 
(OR = 4.03) cGEPs and were most depleted from TPH (OR = 0.19),  
Treg (OR = 0.23) and CD8 TRM (OR = 0.61) populations (P < 1 × 10−21 all; 
Fig. 5k). These analyses illustrate how TCAT and ASA scoring can enable 
disease exploration.

Identifying disease-associated cGEPs
Next, we associated cGEPs with cancer, COVID-19 and rheumatoid 
arthritis phenotypes (Supplementary Table 7, Extended Data Fig. 7a–f 
and Supplementary Note). Using pseudobulk sample-level regres-
sion in the pan-cancer dataset (89 tumor, 47 matched normal sam-
ples, 13 cancer types), we identified Treg

47, exhaustion48 and ISG49 as 
strongly tumor-associated, consistent with their known role in cancer 
(FDR-corrected Q = 7.4 × 10−12, 8.5 × 10−6 and 9.3 × 10−6, respectively). 

Fig. 5 | Annotating ASA in vivo. a, Box plot of ASA score for cells stratified as 
activated (that is, CD71+CD95+, N = 24,341 cells) or not activated (N = 375,258 
cells). Boxes represent the interquartile range and whiskers represent 1.5 times 
the interquartile range. The box center line indicates the median. b, Same 
as a but for AIM-seq data with cells stratified by sort condition (+: N = 13,235 
cells; −: N = 15,528 cells; M: N = 14,459 cells). c,d, UMAP of the COMBAT 
dataset colored by published clustering (c) and ASA score (d). e, Percentage 
of activated (ASA > 0.065) or proliferating (sum of cell cycle cGEPs > 0.1) 
cells per sample across datasets. Boxes represent the interquartile range and 
whiskers represent the 95% quantile range. (AMP-RA, N = 162 samples; COMBAT, 
N = 244; HIV-vaccine, 16; pan-cancer, 272; pan-tissue, 24; Sparks, 82; AIM-seq, 
10; TBRU, 518; UK-COVID, 242). f, Clonality in manually gated conventional 
CD4+ and CD8+ T cells annotated as activated (ASA > 0.065) or not activated 
(ASA < 0.065). Clonality is defined as the number of cells in the same sample 
with an identical alpha and beta CDR3 amino acid sequence. g, Percentage of 
activated (ASA > 0.065) CD4+ and CD8+ conventional T cells in COVID-19 and 
healthy control samples, by cohort. Boxes represent the interquartile range and 
whiskers represent 1.5 times the interquartile range. The box center line indicates 

the median. (COMBAT, N = 77 COVID-19, 10 healthy; UK-COVID, N = 80 COVID-19, 
21 healthy). h, log2 OR for 2 × 2 association of ASA positivity and manual gating 
subset assignment. An asterisk indicates Bonferroni-adjusted two-tailed Fisher’s 
exact test P value < 0.05. i, Percentage of activated (ASA > 0.065), exhausted 
(exhaustion cGEP usage > 0.065) or bystander (ASA + exhaustion usage < 0.065) 
T cells in CD4+ and CD8+ conventional T cells, per sample stratified by tumor type 
and corresponding healthy tissues. Boxes represent the interquartile range and 
whiskers represent 1.5 times the interquartile range. The box center line indicates 
the median. (BC: n = 2 tumor, n = 2 normal; ESCA: n = 7 tumor, n = 7 normal; HCC: 
n = 5 tumor, n = 5 normal; PACA: n = 26 tumor, n = 1 normal; RC: n = 10 tumor, n = 11 
normal; THCA: n = 10 tumor, n = 8 normal; UCEC: n = 9 tumor, n = 8 normal). BC, 
breast cancer; ESCA, esophageal cancer; HCC, hepatocellular carcinoma; PACA, 
pancreatic cancer; RC, renal cell carcinoma; THCA, thyroid carcinoma; UCEC, 
endometrial cancer. j, Per-individual comparison of percentage of exhausted 
CD8+ T cells and average number of mutations per mutational burden (MB). 
k, log2 OR for enrichment of bystander T cells by subset cGEP assignment. Bar 
value reflects the estimated OR, while error bars represent the analytical 95% 
confidence intervals around the estimate.
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Of 21 tumor-enriched cGEPs, 17 were AIM-associated (Fisher exact 
test P = 7.4 × 10−6).

We separately analyzed individual tumor types with ≥2 tumor and 
normal samples each (Methods). Results were highly concordant across 
cancers (sign test P < 0.05 for 14/15 tumor-type pairs; Extended Data 
Fig. 7b). Treg, exhaustion and CTLA4/CD38 cGEPs were upregulated in 
all six tumor types tested (P < 0.05). However, some signals were more 
specific including TH17-activated (thyroid: P = 5.3 × 10−6, hepatocellular: 
P = 0.013) and TH2-activated cGEPs (esophageal, uterine, thyroid and 
hepatocellular: P < 0.05 all).

Of note, the TFH-2 and TPH cGEPs were both upregulated in cancer 
(Q = 3.6 × 10−4, Q = 3.3 × 10−10). TFH and TPH cells recruit B cells via CXCL13 
aiding in antibody production. TFH cells are found primarily in lymphoid 
organs and TPH cells are predominantly in inflamed tissues50, including 
likely within tumors51. TPH cell cGEP usage was associated with CXCL13 
expression and plasma cells abundance across tumors, indicating a role 
in tumor-associated lymphoid aggregates (Supplementary Fig. 9c–e 
and Supplementary Note).

cGEP associations with COVID-19 status revealed consistent asso-
ciations between the two reference datasets (R = 0.64, P = 2.8 × 10−7) 
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Fig. 6 | cGEPs associated with ICI response. a, UMAPs of the melanoma dataset 
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b, Associations of cGEP usage with ICI response in CD4+ T cells of pretreatment 
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two-tailed P value. c–e, Average ASA score, cell cycle score and CD4-naive cGEP 
usage in CD4+ T cells from pretreatment melanomas and NMSC tumors and 
combined pretreatment and post-treatment CRC. The average scores are mean 
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and mixed linear regression P values for CRC. P value in the title is a meta-analysis 
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highlighting TPH cells and ASA cGEP involvement (Q < 0.05; Extended 
Data Fig. 7c–e and Supplementary Note). Rheumatoid arthritis similarly 
showed increased usage of metallothionein, HLA, ICOS/CD38, TPH cells 
and other activation-associated cGEPs (Q < 0.05; Extended Data Fig. 7f 
and Supplementary Note).

Characterizing ICI response
We next demonstrate TCAT’s utility by identifying cGEPs that pre-
dict tumor response to immune checkpoint inhibitors (ICIs). ICIs are 
state-of-the-art therapies for treating many types of cancer, yet 5-year 
survival remains poor for over half of treated patients52. To investi-
gate T cell states associated with ICI response, we applied TCAT to 
melanoma53, non-melanoma skin cancer (NMSC)54 and colorectal can-
cer (CRC)55 datasets containing responder and nonresponder tumors 
before and after treatment.

We first examined melanoma as the largest dataset containing 19 
pretreatment and 48 total samples. TCAT revealed populations express-
ing ASA, exhaustion, cell cycle and CD4-naive signatures (Fig. 6a). We 
also noted a prominent subset of cells expressing TCF7, which was 
previously associated with ICI response in this dataset53.

In melanoma pretreatment tumors, CD4+ T cells from nonrespond-
ers had significantly higher activation (for example, TIMD4/TIM3, 
OX40/EBI3, HLA) and cell cycle cGEP usage (P < 0.05 two-tailed t-test; 
Fig. 6b and Supplementary Table 8). Associations were concordant 
in pretreatment NMSC samples (sign test P = 0.0016; Extended Data 
Fig. 8a), including significant associations for CellCycle-Late-S and 
TIMD4/TIM3 (one-tailed P = 0.037 and 0.046, respectively; Fig. 6c–f). 
Meta-analysis of associations between pretreatment melanoma and 
NMSC tumors was significant for the combined ASA and cell cycle 
scores (P = 0.0072 and P = 0.0036, respectively; Fig. 6c–e) and for 
many cGEPs (for example, CellCycle-Late-S, exhaustion, ICOS/CD38; 
P < 0.05 all). Thus, elevated pretreatment TCR activation and prolifera-
tion signatures predict a worse response to ICIs in these tumor types.

Responders also exhibited higher usage of the CD4-naive cGEP in 
pretreatment melanoma and NSMC tumors (meta-analysis P = 0.0063; 
Fig. 6e). This aligns with prior evidence linking TCF7 to improved ICI 
outcome, as TCF7 is a top marker of the CD4-naive cGEP (Supplemen-
tary Table 2). The naive T cells markers TCF7, CCR7 and SELL all had 
higher expression in pretreatment responders than nonresponders 
(meta-analysis P = 0.024, 0.0016 and 0.00047, respectively; Extended 
Data Fig. 8b–d). Furthermore, the proportion of TCAT-classified 
naive CD4+ T cells was similarly predictive of response (meta-analysis 
P = 0.016; Extended Data Fig. 8e), suggesting infiltrating naive CD4 
cells may predict positive ICI response.

The CRC dataset only had one pretreatment nonresponder sam-
ple, which precluded association testing in pretreatment tumors. 
However, we observed concordant associations between pretreat-
ment and post-treatment samples across the three tumor types 
(Extended Data Fig. 8f–h and Supplementary Fig. 10a,b). For example, 
response-associated cGEPs (P < 0.05) were significantly concordant 
between pretreatment and post-treatment melanoma samples (Fisher’s 
exact test P = 0.0039).

Assuming pretreatment and post-treatment samples share many 
immune states, we repeated associations using combined pretreat-
ment and post-treatment samples, modeling treatment status with a 
fixed effect and patient of origin with random effects (Methods). This 
yielded consistent results with our prior findings, including increased 
activation and cell cycle cGEPs in CRC nonresponders (for example, 
P < 1 × 10−6 for OX40/EBI3, CellCycle-Late-S and ASA; Fig. 6g and Supple-
mentary Fig. 10c,d). These distinct analyses support that our findings 
are robust and reproducible in three cancer types.

We obtained similar results in CD8+ T cells (Extended Data 
Fig. 8i–k). Activation and cell cycle cGEPs were elevated in pretreat-
ment nonresponders of melanoma and NMSC (meta-analysis P < 0.05 
for CellCycle-G2M, CellCycle-Late-S, TIMD4/TIM3, exhaustion, ICOS/

CD38, OX40/EBI3 and HLA) and in the combined CRC cohort (P < 0.05 
for all). The CD8-naive cGEP was associated with positive ICI response in 
pretreatment melanoma and NMSC samples (meta-analysis P = 0.032). 
These analyses highlight TCAT’s capacity to reveal clinically meaningful 
immune patterns across multiple datasets.

Discussion
Here, we introduced starCAT, a tool that leverages the reproducibility 
of functionally informative cGEPs across datasets to annotate new 
scRNA-seq data. We illustrated starCAT with the most comprehensive 
T cell GEP catalog to date, including 16 subset-associated and 25 func-
tional cGEPs derived from reference datasets spanning many tissues 
and diseases. Combining this catalog with starCAT yields TCAT.

TCAT offers key advantages over standard approaches. It simulta-
neously annotates functional and subset GEPs, disentangling conflated 
signals and revealing unexpected populations like abundant TH2 polar-
ized CD8+ T cells33. It outperformed RNA-based clustering and reference 
label transfer methods for subset annotation and enabled facile disease 
activity comparisons. TCAT is also much faster than de novo matrix 
factorization, avoids the need for GEP annotation and improves GEP 
inference accuracy for smaller datasets.

We developed the AIM-seq assay to identify cGEPs induced 
following TCR-dependent activation. This identified 24 TCR 
activation-associated cGEPs including context-specific responses 
like multi-cytokine in CD8 memory and CTLA4/CD38 predominantly 
in CD4 memory cells. We aggregated several of these cGEPs into an ASA 
score to identify activation in scRNA-seq data. This revealed numerous 
‘bystanders’ within tumors that lacked either activation or exhaustion 
signatures and were enriched for naive and unconventional T cell 
subsets.

TCAT uncovered features of tumor-infiltrating T cells that predict 
ICI response. Surprisingly, nonresponsive tumors were enriched for 
activation, cell cycle and exhaustion cGEPs. By contrast ICI responsive 
samples were enriched for the CD4-naive cGEP and were predicted 
to contain more naive CD4+ T cells. These findings suggest that TCAT 
can help predict therapy response and characterize clinically relevant 
cell states.

Limitations of this work include that the catalog may be missing 
GEPs that are disease or tissue-context specific and were filtered due 
to non-reproducibility across datasets. Our AIM-seq experiment used 
only a single co-stimulation signal and set of microbial peptides and 
thus may not have identified all possible activation-associated GEPs. 
Future work incorporating additional datasets and stimulation condi-
tions can address both limitations.

While demonstrated in T cells, starCAT is applicable to any cell type 
or tissue. We provide open-source software and a growing repository 
of GEPs, including human glioma myeloid56 and bone marrow hemat-
opoiesis references57. Similar to the molecular signatures database 
(MSigDB)58,59 but for scRNA-seq annotation, the platform supports 
community-contributed GEP catalogs. We hope starCAT will enable 
comprehensive identification of GEPs across tissues and diseases.

starCAT algorithm
Whereas cNMF learns both GEPs and their usage in cells, starCAT has 
the simpler problem of fitting the usage for a fixed set of GEPs. Specifi-
cally, cNMF runs NMF multiple times, each time solving the following 
optimization as given by equation (1):

ArgMinG,U|X − UG|F (1)

where

U ≥ 0,G ≥ 0

where X is a NxH matrix of N cells by the top H overdispersed genes, U 
is a learned NxK matrix of the usages of K GEPs in each cell, and G is a 

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | September 2025 | 1964–1980 1975

Resource https://doi.org/10.1038/s41592-025-02793-1

learned KxH matrix where each row encodes the relative contribution 
of each highly variable gene in a GEP. H is usually a parameter set to 
~2,000 overdispersed genes. | |F denotes the Frobenius norm. X includes 
variance-normalized overdispersed genes to ensure biologically 
informative genes are included and contribute similar amounts of 
information even when they may be expressed on different scales. For 
cNMF, the optimization is solved multiple times and the resulting G 
matrices are concatenated, filtered and clustered to determine a final 
average estimate of G. Ultimately cNMF refits the GEP spectra into two 
separate representations, one reflecting the average expression of the 
GEP in units of transcripts per million Gtpm and one in z-scored units 
used to define marker genes Gscores (see ref. 12 for details).

By contrast, starCAT takes a fixed catalog of GEPs as input, denoted 
as G∗, and a new query dataset Xquery and solves the optimization as 
given by equation (2):

ArgMinU|Xquery − UG∗|F (2)

where

U ≥ 0

The columns of Xquery and G∗ correspond to a prespecified set of over-
dispersed genes. Analogous to cNMF, we use gene-wise 
standard-deviation-normalized counts for Xquery. See below for how 
G∗ is calculated for TCAT. We solve for U with nonnegative least squares 
using the NMF package in scikit-learn (version 1.1.3)60 with G∗ fixed. We 
use the Frobenius error, the multiplicative update (‘mu’) solver, a toler-
ance of 1 × 10−4 and maximum iterations of 1,000. We then perform row 
normalization of the U matrix so that each cell’s aggregate usage across 
all K GEPs sums to 1.

Dataset preprocessing and batch-effect correction
To generate the input matrix for cNMF for each dataset, we first filtered 
genes detected in fewer than ten cells and cells with fewer than 500 
unique molecular identifiers. We also excluded antibody-derived tags 
(ADTs) and genes containing a period in their gene name. We subse-
quently subsetted the data to the top 2,000 most overdispersed genes, 
identified by the ‘seurat_v3’ algorithm as implemented in Scanpy61. Next, 
we scaled each gene to unit variance. To avoid outliers with excessively 
high values, we calculated the 99.99th percentile value across all cells 
and genes and set this as a ceiling. We denote this matrix as Xraw.

We used an adapted version of harmonypy to correct batch effects 
and other technical variables from Xraw before cNMF20. For this, we 
computed Harmony’s maximum diversity clustering matrix from 
principal components calculated from a normalized version of X, which 
we label Xnorm. Specifically, to compute Xnorm, we started from the same 
initial gene list described above but first normalized the rows of the 
matrix so that each cell’s counts sum to 10,000 (TP10K normalization). 
We then subsetted to the top 2,000 overdispersed genes, and scaled 
each column (gene) to unit variance, resulting in Xnorm. We then per-
formed PCA on Xnorm and supplied those principal components to the 
run_harmony function of harmonypy. We then used the mixture of 
experts model correction, implemented in harmonypy with the com-
puted maximum diversity clustering matrix, but instead of correcting 
the principal components using this model, as standard Harmony does, 
we corrected Xraw. This creates a small amount of variability around 0 
for the smallest values in Xraw. We therefore set a floor of 0, resulting 
in the corrected matrix Xc used as the count matrix for cNMF.

cNMF
We ran cNMF on the batch-corrected Xc matrix, which only includes 
the top 2,000 overdispersed RNA genes. Spectra for the resulting GEPs 
were then refit by cNMF including all genes that passed the initial set 
of filters, including ADTs. Specifically, RNA counts were normalized 
to sum to 10,000, and ADT counts were separately normalized to sum 

to 10,000 and the combined matrix was passed as the --tpm argument 
for cNMF. Thus, the GEP spectra output by cNMF incorporates ADTs 
and genes not included in the 2,000 overdispersed genes.

cNMF was run for each dataset with the number of components (K) 
varying between 15 and 55 and with 20 iterations. The final number of 
NMF components used for each dataset, K*, was chosen by visualizing 
the trade-off between reconstruction error and stability for these runs 
(Supplementary Fig. 2). Once K* was selected, we ran cNMF a final time 
with only this value for K and with 200 iterations to generate the final 
GEP spectra estimates.

Constructing a catalog of cGEPs
Next, we identified consensus GEP spectra—that is, the average of cor-
related GEP spectra identified by cNMF in different datasets. Normal-
ized input GEP vectors, denoted as gi, were computed by starting from 
the spectra_tpm output from cNMF, renormalizing each vector to sum 
to 106, and then dividing each gene by its standard deviation in TP10K 
units. Then, we created an undirected graph where the 267 GEPs identi-
fied across all reference datasets were represented as nodes g1 … g267. 
We drew edges, denoted as Ei,j connecting a pair of GEPs gi and gj if the 
following criteria were met:

	1.	 gi and gj were from different datasets
	2.	 Rij > 0.5 where Rij denotes the Pearson correlation between gi 

and gj. For computing Rij, gi and gj were subset to the union of 
the overdispersed genes for each dataset.

	3.	 gi was among the top seven most correlated GEPs with gj, and gj 
was among the top seven most correlated GEPs with gi with cor-
relation defined as in 2.

Next, we initialized a set for each GEP: x1 = {g1} … x267 = {g267}. We 
then iterated through all edges Ei,j in the graph in order of decreasing 
Rij and merged the sets xi and xj into a new set xi,j = {gi, gj}. If either gi or 
gj were already members of a merged set from previous merges, we 
merged their containing sets only if at least two-thirds of the GEP pairs 
in the resulting consensus set were connected by edges. For example, 
if there is an edge E4,9 and g4 is already merged into a set {g1, g2, g4}, then 
we only merged {g1, g2, g4} and {g9} if there were also edges E1,9 and E2,9. 
This resulted in 49 merged sets and 52 unmerged ‘singleton’ sets. We 
filtered 49 of the 52 singletons and retained 3 that had a biological 
explanation for being identified in only one dataset. This resulted in a 
final catalog of 52 cGEPs, including doublet programs.

Lastly, we subset each GEP to the union of overdispersed genes 
across all seven reference datasets that were present in all datasets and 
obtained the final consensus GEPs by taking the element-wise average 
GEPs in each merged set. This matrix was used as the reference for TCAT. 
For marker gene analyses (for example, Fig. 2b,d and Extended Data 
Fig. 2), we then averaged, element-wise, the z-score representation of 
the GEP output by cNMF for GEPs in a consensus set.

Simulation analysis
We adapted the scsim simulation framework described previously12 
based on Splatter62 into a new version, scsim2. Like with scsim, we 
distinguished between subset GEPs, which are mutually exclusive, 
and non-subset or ‘activity’ GEPs, which are not. For the original scsim 
framework, cells used one of multiple subset GEPs and potentially used 
a single-activity GEP. We adapted scsim to allow cells to use anywhere 
from none to all of the activity GEPs in addition to their single subset 
GEP. We kept the Splatter parameters used in the original publication 
to describe the distribution of gene expression data: mean_rate = 7.68, 
mean_shape = 0.34, libloc = 7.64, libscale = 0.78, expoutprob = 0.00286, 
expoutloc = 6.15, expoutscale = 0.49, diffexpprob = 0.025, diffexpdown-
prob = 0.025, diffexploc = 1.0, diffexpscale = 1.0, bcv_dispersion = 0.448 
and bcv_dof = 22.087.

We simulated 10 subset GEPs and 10 activity GEPs based on 10,000 
total genes. The extra-GEP reference included all 20, the missing-GEP 
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reference included 6 of the subset GEPs and 6 of the non-subset GEPs, 
and the query dataset included 8 subset GEPs and 8 non-subset GEPs. 
Each dataset consisted of 9,000 genes, randomly sampled from the 
total of 10,000. Each cell was randomly assigned a subset GEP with uni-
form probability, and each cell randomly selected whether it expressed 
each activity GEP with a probability of 0.3. The degree of usage of each 
activity GEP was sampled uniformly between 0.1 and 0.7. If the sum of 
the activity GEPs exceeded 0.8 for a cell, they were renormalized to 
sum to 0.8. Thus, each cell’s usage of its subset GEP always exceeded 
0.2. We simulated 100,000 cells each for the extra-GEP and missing 
GEP references. We simulated multiple query datasets containing 
100, 500, 1,000, 5,000, 10,000, 20,000, 50,000 or 100,000 cells. The 
same parameters were used for Supplementary Fig. 1 but with different 
numbers of GEPs in the references and query.

We subsequently ran cNMF using 1,000 overdispersed genes, 
20 iterations, local_neighborhood_size = 0.3 and density_thresh-
old = 0.15. We used K = 20, K = 12 and K = 16 for the extra-GEP reference, 
missing-GEP reference and query datasets, respectively. We then used 
starCAT to fit the usage of the reference GEPs on the query dataset. 
To evaluate the performance of starCAT and cNMF, we calculated 
the Pearson correlation of the inferred GEP usage with the simulated 
ground-truth usage.

Gene-set enrichment analysis
We used Fisher’s exact test in Python’s Scipy library to associate 
cGEPs with gene sets (Supplementary Note). For the T cell polariza-
tion dataset63, we defined polarization gene sets as genes that had an 
FDR-corrected P value < 0.05 and fold change > 2 with the stimulation 
condition. We excluded genes with FDR-corrected P value between 
0.05 and 0.2 and fold change > 1, as many of these are upregulated 
by the stimulation but just did not reach FDR significance. We also 
obtained literature gene sets corresponding to immediate early genes64 
and gene ontologies65,66. We tested these for enrichments with each 
cGEP thresholded with a z score > 0.015, which corresponded to the 
99th percentile across all genes and cGEPs, using Fisher’s exact test 
as implemented in scipy.stats in Python.

Manual subset gating analysis
We library size normalized ADT protein measurements to sum to 
104 (TP10K) and applied the centered log-ratio transformation. 
We then scaled each protein to unit variance, and set a ceiling of 
15 to remove excessively high outliers. Next, we performed PCA 
and ran batch correction using harmonypy with the same batch 
features as for cNMF. We then computed the K-nearest neighbor 
graph with K = 5 neighbors, using the Harmony-corrected principal 
components. We then smoothed the normalized protein estimates 
using MAGIC67 using the K-nearest neighbor graph and the diffusion 
operator powered to t = 3.

We gated canonical T cell subsets using the smoothed normalized 
ADTs. First, we gated γδ T cells using expression of Vδ2 TCR. Then, we 
separated MAIT cells using expression of CD161 and TCR Vα 7.2. We 
then used CD4 and CD8 to separate CD4 (CD4+CD8−), CD8 (CD4−CD8+), 
double-positive (CD4+CD8−) and double-negative (CD4−CD8−) T cells. 
We then subset to CD4+ T cells and gated Treg cells using expression of 
CD25 and CD39. Of the remaining CD4+ T cells, we used CD62L and 
CD45RA to define CD4-naive (CD62L+CD45RA+), CD4 central memory 
(CD62L+CD45RA−), CD4 effector memory (CD62L−CD45RA−) and CD4 
TEMRA (CD62L−CD45RA+) populations. For the CD8+ T cells, we simi-
larly used CD62L and CD45RA to define CD8 naive (CD62L+CD45RA+), 
CD8 central memory (CD62L+CD45RA−), CD8 effector memory 
(CD62L−CD45RA−) and CD8 TEMRA (CD62L−CD45RA+) populations.

T cell subset classification benchmarking analyses
We used T cell subsets defined by manual gating of ADTs in the 
flu-vaccine dataset as ground truth for prediction. For single cGEP 

prediction, we ran TCAT to predict cGEP usage, and identified the cGEP 
that best predicted the lineage based on AUC.

We also used all the cGEPs to perform simultaneous multi-label 
prediction. We scaled the normalized usages for all cGEPs to zero mean 
and unit variance. Using COMBAT as a training dataset, we trained 
a multinomial logistic regression using scikit-learn60 version 1.0.2 
with lbfgs solver to predict gated subset from usages. Model weights 
were adjusted by the inverse of subset size using class_weight = ‘bal-
anced’, allowing subsets with different cell counts to contribute to 
the model equally. We excluded CD4 TEMRA, double-negative and 
double-positive subsets from this analysis due to low cell counts in 
both the training and testing datasets. We evaluated this model in the 
independent flu-vaccine query dataset.

Analogous comparisons were made using GEPs from Yasumizu 
et al. fit to the data using the NMFproject software11. We also obtained 
gene sets derived from NMF analyses of T cells in a pan-cancer dataset14. 
To assess the ability of these gene sets to predict gated subsets, we used 
the score_genes function in Scanpy61 on data normalized following the 
standard pipeline (library size normalizing to TP10K, log transforma-
tion, scaling each gene to unit variance). We then assigned each subset 
to the gene set that yielded the maximal AUC.

To evaluate clustering, we first normalized the data as above, and 
data were subset to highly variable genes using the highly_variable_
genes function in Scanpy with default parameters. We then ran PCA 
and Harmony batch correction of the principal components20. We then 
computed the K-nearest neighbor graph using 31 harmony-corrected 
principal components and 30 nearest neighbors. We then performed 
Leiden clustering68 with resolution parameters ranging from 0.25 to 
2.25 increasing by 0.25. For each clustering resolution, we performed 
a greedy search to assign clusters to manually gated subsets based 
on maximization of the balanced accuracy (that is, the average recall 
across all subsets). In each iteration, we considered all unassigned 
clusters and possible gated subset assignments and selected the cluster 
and assignment that most increased the overall balanced accuracy. 
When no remaining cluster assignments would increase the balanced 
accuracy, we assigned the cluster to a subset that least decreased the 
balanced accuracy. We continued this process until each cluster was 
assigned to a subset.

To evaluate other reference mapping methods, we followed 
the normalization methods directed by each method. We supplied 
the flu-vaccine raw counts matrix to Azimuth and utilized its human 
PBMC reference (the HIV-vaccine dataset). For reference mapping 
with Symphony, we built a reference for the HIV-vaccine dataset, per-
forming library size normalization (TP10K normalization) followed 
by log transformation. We selected the top 2,000 variable genes per 
donor using VST selection, centered and scaled the normalized counts, 
and performed PCA (irlba package) and batch correction (on lane 
and donor) using Harmony. We built a Symphony reference using the 
batch-corrected PCs. We then performed TP10K library size normali-
zation and log transformation on the flu-vaccine query and annotated 
cells using Symphony’s reference mapping and annotation transfer 
algorithms. For reference mapping with ProjecTILs, we supplied the 
flu-vaccine raw count matrix and utilized the default comprehensive 
T cell reference provided by ProjecTILs (ref_TILAtlas_mouse_v1). Inter-
nally, ProjecTILs maps human queries to its mouse reference using 
gene orthologs.

For all accuracy calculations, we utilized sklearn’s balanced_accu-
racy_score, an approach appropriate for cases of class imbalance. In 
the binary case, balanced accuracy refers to the mean sensitivity and 
specificity of a prediction. In the multi-class case, balanced accuracy 
refers to the mean sensitivity across classes.

AIM-seq
Patients were recruited for this study through the Partners Biobank69. 
Informed consent was obtained from all participants. We have complied 
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with all ethical regulations, and the study protocol was approved by 
the Mass General Brigham Institutional Review Board. PBMCs were 
collected from five genotyped participants with no autoimmune dis-
eases or use of immunomodulatory medications. PBMCs were quickly 
thawed and placed in prewarmed xVIVO15 cell culture medium (Lonza) 
supplemented with 5% heat-inactivated FBS. To reduce cell clumping, 
PBMCs were incubated in xVIVO15 containing 50 U ml−1 of benzonase 
nuclease (Sigma-Aldrich) for 15 min at 37 °C and filtered using a 70-µm 
cell strainer. Washed and nuclease-treated cells were seeded in a 96-well 
cell culture plate at a concentration of 2.5 × 106 per ml. Peptide stimula-
tions were performed using the CEFX Ultra SuperStim Pool ( JPT Pep-
tide Technologies, PM-CEFX-1) at a final concentration of 1.25 µg ml−1 
per peptide for 22 h at 37 °C and 5% CO2. Recombinant anti-CD28 and 
anti-CD49d antibodies (BioLegend) were added at a final concentration 
of 5 µg ml−1 and 0.625 µg ml−1, respectively, to provide co-stimulation for 
peptide-reactive T cells. Separately mock-stimulated cells were treated 
with anti-CD28 and anti-CD49d antibodies at the same concentration.

Peptide responsive T cells were detected by the expression of the 
surface activation markers PD-L1, OX40 and CD137 via flow cytom-
etry. Following the stimulation, peptide-treated and mock-stimulated 
cells were washed in cell staining buffer (PBS + 2 mM EDTA + 2% FBS) 
to end the stimulation. Fc receptor blocking was performed using 
a 1:50 dilution of Human TruStain FcX (BioLegend) in cell staining 
buffer for 10 min at 4 °C. Cell viability staining was performed using 
a 1:500 dilution of Zombie Yellow Fixable Viability Dye (BioLegend) 
prepared in PBS for 30 min at 4 °C. Surface staining was performed 
using 1:100 dilutions of BV421-conjugated anti-CD3, FITC-conjugated 
anti-CD4, BV786-conjugated anti-PD-L1, PE-conjugated anti-OX40 and 
APC-conjugated anti-CD137 (BioLegend) for 25 min at 4 °C in cell stain-
ing buffer. Following cell staining, antigen reactive and non-reactive 
T cells were identified using a BD FACSAria II cell sorter and col-
lected in cRPMI medium (100 U ml−1 penicillin–streptomycin + 2 mM 
l-glutamine + 10 mM HEPES + 0.1 mM non-essential amino acids + 1 mM 
sodium pyruvate + 0.05 mM 2-mercaptoethanol) supplemented with 
20% FBS. Sorted T cell populations were then labeled with 75 μl of 
TotalSeq oligonucleotide-conjugated hashing antibody mix, incubated 
for 30 min at 4 °C with gentle mixing after 15 min, and pooled in equal 
quantities. Staining with the TotalSeq-C Human Universal Cocktail 
(BioLegend) was then performed according to the manufacturer’s 
instructions. The cells were then resuspended in PBS supplemented 
with 0.04% FBS at a final concentration of 500 cells per µl and submit-
ted for single-cell profiling on the Chromium Next GEM instrument. 
Library preparation was completed for the hashtag oligonucleotides, 
scRNA-seq, CITE-seq and TCR-repertoire sequencing following the 
manufacturer’s instructions.

We collected AIM-seq data from two separate 10x runs. In the first 
experiment, PBMCs from three donors were processed independently 
as described above and were pooled after fluorescence-activated cell 
sorting. In the second run, PBMCs from four donors, two of which 
overlapped with the first run, were stimulated separately and pooled 
before fluorescence-activated cell sorting.

Preprocessing of AIM-seq data
The AIM-seq dataset was processed using Cell Ranger version 6.1.1 
with default parameters and alignment to hg38 reference genome. The 
donor of origin for each cell was determined using Demuxlet version 
1.0 with a doublet-prior of 0.1 (ref. 70). Cells with a null or ambiguous 
Demuxlet result, fewer than 10 counts of the hashtag oligonucleotides, 
or fewer than 50 total RNA counts were filtered. To account for stain-
ing differences between the hashtag oligonucleotides and different 
sequencing depths of the two 10x runs, the counts for each hashtag 
oligonucleotide in each 10x run were scaled to have the same median 
value. Next we added a pseudocount to the hashtag oligonucleotide 
counts and log10 transformed these data. Then we ran Gaussian mixture 
models separately for each hashtag oligonucleotide with K = 2 clusters. 

Each cell was assigned to a single condition if it was in the high cluster 
for one oligonucleotide and the low clusters for all others, a doublet 
if it was in the high cluster for more than one oligonucleotide, or an 
empty droplet if it was in the low cluster for all oligonucleotides. Empty 
droplets or doublets based on the hashtag oligonucleotide clustering 
were filtered, as were doublets based on Demuxlet. Genes detected in 
fewer than ten cells were filtered before running TCAT.

Statistics and reproducibility
We did not perform a statistical analysis for choosing sample size. We 
chose to replicate the study across five samples for reproducibility, 
as we sequenced thousands of cells per donor and were well powered 
to find significant associations between stimulation conditions. We 
excluded cells based on unique molecular identifier counts and ability 
to be demultiplexed, as above. No blinding was performed.

cGEP associations with AIM positivity, proliferation and 
disease
To associate cGEPs with the AIM-seq stimulus, we first ran TCAT to fit 
the usages of the cGEPs in the AIM-seq dataset. We then computed the 
average usage of each cGEP in cells from each sort condition in each 
donor. We created two dummy variables, the first indicating whether 
a sample was treated with CEFX or mock, and the second indicating 
whether a sample was both CEFX-treated and AIM-positive or not. We 
used ordinary least-squares regression to estimate the effects of these 
two variables and an intercept. cGEPs associated with the CEFX or mock 
dummy variable were labeled ‘milieu-associated’, while cGEPs positively 
associated with the AIM-positive dummy were labeled ‘AIM-associated’.

To associate cGEPs with proliferation, we defined cells as pro-
liferating or non-proliferating in each dataset by setting a threshold 
of 0.1 on the sum of the three cell cycle cGEPs—CellCycle-S-phase, 
CellCycle-Late-S and CellCycle-G2M. We then computed the mean 
usage of each cGEP per sample separately in high cell-cycle (sum 
usage > 0.1) and low cell-cycle (sum usage < 0.1) cells. We filtered 
samples that did not have at least 10 high cell-cycle cells and 100 low 
cell-cycle cells. Then, for each cGEP, we performed a two-tailed paired 
t-test (ttest_rel in Scipy, default parameters) between average cGEP 
usage for high and low cell-cycle cells. We meta-analyzed P values across 
datasets using Fisher’s Method (combine_pvalues in Scipy).

To associate cGEPs with sample-level disease phenotypes, we 
calculated the average usage of each cGEP in each sample for a given 
dataset. We then used ordinary least-squares regression to find cGEPs 
with higher average usage in disease samples than controls, controlling 
for sample-level batch variables as covariates. For all datasets, disease 
status was modeled as a binary dummy variable, and an intercept was 
included. For UK-COVID, the processing site was included as a dummy 
variable covariate. For COMBAT, sequencing pool and processing insti-
tute were included as dummy variable covariates. For the pan-cancer 
dataset, all cancer types were initially included in the analysis and 
dummy variable covariates were included for tissue of origin. In addi-
tion, sequencing technology was included as a dummy variable. When 
there were multiple tumor samples or matched normal samples from 
the same donor, we excluded the duplicates with fewer total cells. For 
all association tests, we performed FDR correction of the P values using 
the Benjamini–Hochberg method (fdrcorrection in Statsmodels with 
method = ‘indep’).

For the ICI response analyses, we used one-tailed or two-tailed 
Welch’s t-tests as indicated in the main text for analyses of isolated 
pretreatment or post-treatment samples. For analyses of combined 
pretreatment and post-treatment samples, we used mixed linear 
models with an intercept, treatment status and clinical response as 
fixed effects, patient of origin as random intercepts, and average 
cGEP usage as the response variable. We used the MixedLM package 
in statsmodels with REML = False (that is, using maximum likelihood 
estimation) and computed P values for the response fixed effect using 
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the likelihood-ratio test. For meta-analyses, we used Fisher’s method 
to combine one-tailed P values.

Defining the ASA score
We used CD71+CD95+ surface protein coexpression in the COMBAT 
and flu-vaccine datasets as an in vivo correlate of TCR activation to 
help prioritize AIM-associated cGEPs for predicting TCR-activated 
cells. First, we preprocessed the ADT surface proteins in these datasets 
as described in the manual subset gating section. We then subsetted 
cells by their manual gating-defined broad cell types (conventional 
CD4, CD4+ Treg, conventional CD8, other) and gated CD71+CD95+ cells 
separately for each cell type as the response feature to be predicted 
by AIM-associated cGEPs.

We then performed forward stepwise selection, evaluating 
how well the summation of usages of different combinations of 
AIM-associated cGEPs would predict CD71+CD95+ gating. At each stage, 
the per-cell ASA score was computed as the sum of normalized usages of 
cGEPs in the predictive set. At each forward step, we determined which 
cGEP should be added to the predictive set based on which would most 
improve the average AUC across the flu-vaccine and COMBAT datasets. 
We used a reduction in AUC in both datasets as the stopping criterion 
for adding cGEPs. We considered all AIM-associated cGEPs identified 
as candidates for this but excluded those known to have a broader 
function outside T cell activation (for example, cytoskeleton, metal-
lothionein and cell cycle) and those reflecting activation-associated 
T cell subsets (TPH and TH17-activated). We also excluded exhaustion 
from the ASA score as it reflects a distinct inhibitory response to antigen 
stimulation that users may wish to annotate separately.

Benchmarking the ASA score
We benchmarked ASA’s prediction of activation with published T cell 
activation gene sets, where ground-truth activation is defined by AIM 
positivity in the AIM-seq dataset and CD71+CD95+ coexpression in the 
flu-vaccine dataset. We utilized all T cell activation gene sets present in 
the immunologic signature (C7) collection on MSigDB. We then scored 
each cell’s usage of each of the gene sets using scanpy’s score_genes 
function following data preprocessing (TP10K normalization, log trans-
formation, mean and variance scaling).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-025-02793-1.
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Methods
Materials and reagents

Data availability
The data used in this study for training and validating TCAT are pub-
licly available, and can be downloaded from the following sources: 
https://doi.org/10.7303/syn52297840 (AMP-RA), https://zenodo.
org/records/5461803 (pan-cancer), Gene Expression Omnibus (GEO): 
GSE164378 (HIV-Vaccine), https://www.ebi.ac.uk/biostudies/array-
express/studies/E-MTAB-10026 (UK-COVID), https://zenodo.org/
records/6120249 (COMBAT), https://www.tissueimmunecellatlas.
org/ (Pan-Tissue) and the GEO: GSE158769 (TBRU) and GSE206265 
(flu-vaccine). The count matrices and metadata for the AIM-seq data 
produced in this study are located on Zenodo (https://zenodo.org/

records/15271929)71 and on the GEO (GSE297814). Sequencing data 
produced in our AIM-seq study are located on dbGaP (phs004043). 
Source data are provided with this paper.

Code availability
The code for starCAT is available at https://github.com/immunog-
enomics/starCAT/. starCAT can also be run on our website (https://
immunogenomics.io/starcat/). The analysis scripts used in this paper 
are available at https://github.com/immunogenomics/TCAT_analysis/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Characterizing starCAT. a, Schematic of simulation with 
toy illustrations of gene expression programs (GEPs) and resulting Uniform 
Manifold Approximation and Projections (UMAPs). Cells are colored by subset 
GEPs. b, Pearson correlation of ground truth simulated usages of each GEP 
(columns) vs inferred usages (rows) for starCAT with the 20 GEP reference (top), 
starCAT with the 12 GEP reference (bottom) or cNMF of the query with 16 inferred 
components (middle). c, Pearson correlation between inferred gene expression 
programs and the corresponding ground truth usages, extracted from  
b. d, starCAT predicted GEP usage for cells with ground-truth usage > 0.2, 0-0.2, 
or 0 (blue), and GEPs present in the reference but absent in the query (orange). 
Boxes represent interquartile range and whiskers represent 1.5 x interquartile 
range. The box center line indicates the median. Sample sizes for each category 
are n = 46,535 (Usage > 0.2), n = 46,867 (0 < Usage < 0.2), n = 226,598 (Usage = 
0), and n = 80,000 (Unused GEP). e, Pearson correlation between ground truth 

and GEP usages inferred by starCAT and cNMF for different query dataset sizes. 
Simulation parameters described in Methods. Marker represents mean, error 
bars represent range. f, Summary of reference datasets including number of 
individual donors (x-axis), number of cells (y-axis), and tissue source (dot color). 
Phenotypes are listed below the dataset names. g, Number of GEPs identified 
per dataset, colored by whether they clustered with one or more other dataset 
GEPs (purple, red, or green), did not cluster with a GEP from another dataset 
but were kept as dataset-specific (orange), or did not cluster with a GEP from 
another dataset and were filtered (blue). h, Absolute value of Pearson correlation 
of spectra learned by cNMF (top) or PCA (bottom) between different pairs 
of datasets. PCs were computed from the same batch-corrected expression 
matrices used for cNMF. Mean |R| refers to the average along the matrix diagonal, 
which corresponds to pairs of components with highest correlation across the 
dataset pair.
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Extended Data Fig. 2 | Annotating cGEPs. a, Scatter plots of selected correlated 
GEP pairs with source dataset indicated in the axis labels (P < 1×10−100 for all 
correlations). b, Manual gating of COMBAT dataset using smoothed surface 
protein antibody-derived tag (ADTs, Methods). c, Multivariate logistic regression 
coefficients for cGEPs (columns) predicting manually gated populations (rows). 
For visualization, the minimum and maximum values are thresholded to 0 
and 1.25. Seven example non-subset cGEPs are shown on the right. d, Pearson 

correlation of cGEPs with percentage of mitochondrial transcript per cell, for 
each dataset. All cGEPs excluding Mito and Poor-Quality are included in “Other”. 
P-values are from a two-tailed Ranksum test of the selected cGEP against the 
Other cGEPs. e, Same as d but showing correlation with the percentage of UMIs 
assigned to protein coding genes. f, Scatter plot of the proportion of UMIs 
mapping to intergenic regions against Poor-Quality cGEP usage for cells in the 
AMP-RA dataset.
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Extended Data Fig. 3 | Benchmarking starCAT’s subset annotation. a, Manual 
gating for the Flu-Vaccine dataset analogous to Extended Data Fig. 2b. b, 
Proportion of cells within each manually gated lineage (columns) assigned to 
each lineage annotation (rows). c, Area under the curve (AUC) for prediction 
of manually gated subset based on TCAT multilabel prediction, a single most 
associated TCAT cGEP, analogous predictions using the single most associated 
NMF component published in Yasumizu et al., 202411, or using gene sets from 
NMF components in Gavish et al., 202314. d, Usage of the mitochondria cGEP 

against the percentage of mitochondrial reads per cell (left). Usage of the 
CellCycle-S (middle) and CellCycle-G2M (right) cGEPs against the S and G2M 
scores output by Scanpy’s score_genes_cell_cycle function with published 
proliferation gene sets27. e, Expression of selected Th1 marker genes in 
pseudobulk profiles of Th1-Like-high and low cells, per sample (rows). Cytotoxic-
high cells are included (left) and filtered (right). Sample expression is normalized 
by library size and z-scored across rows, separately for the two filtering 
conditions.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparing TCAT with COMBAT dataset clustering. 
a, Fraction of proliferating cells (cell cycle usage>0.1) assigned to each subset 
based on the most highly used subset-associated GEPs, for cells from Covid-19 
or healthy donors in the two Covid-19 datasets. Bar represents the proportion 
of cells and error bars represent 95% bootstrap confidence intervals around 
this proportion. b, Usage of selected cGEPs (columns) in cells (rows) grouped 
by maximum subset cGEP. Cells are drawn from subclusters with high usage 
of the ISG cGEP, indicated in the colorbar. c, Same as b, but only showing cells 

from subclusters with high cytotoxicity cGEP usage. d, Heatmap of pseudobulk 
expression of marker genes in cytotoxic-high and low cells and subset cGEP 
high and low cells, per sample. Expression is normalized by library size and 
z-scored across rows. e, Average fraction of polarized cells (usage>0.1) per gated 
subset, across samples, within COMBAT and Flu-Vaccine datasets. f, Pseudobulk 
expression profiles of selected marker genes in polarization-high and low cells, 
separately for gated CD4 and CD8s T cells, per sample. Sample expression is 
normalized by library size and z-scored across rows, for each polarization.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Identifying activation associated cGEPs with AIM-Seq. 
a, b, Flow cytometry data of CD3 + CD4+ and CD3 + CD4- gated populations 
for 3 donor samples for CEFX and mock conditions. c–e, Activation-induced 
marker (AIM) surface protein expression based on CITE-Seq for CD4 + , CD8 + , 
and Treg subsets, stratified by sort condition. Boxes represent interquartile 
range and whiskers represent 1.5x interquartile range. The box center line 
indicates the median. Sample sizes are c: 23,532 cells, d: 13,284 cells, and e: 932 
cells. f, Percentage of each sample assigned to each subset based on manual 

gating, colored by stimulation condition. * indicates t-test P < .05 comparing + 
and U. Exact P-values are CD4 CM: 3.17x10-3, CD4 EM: 3.48x10−2, Treg: 3.93x10−2, 
CD8_CM: 6.49x10-2, CD4_Naive: 4.47x10−2, CD8_Naive: 8.60x10−4. g, Average cGEP 
usage in each donor and condition, for AIM-associated cGEPs. h, Paired t-test of 
pseudobulk cGEP usage in high and low cell cycle usage cells (threshold 0.1) from 
each sample. X-axis shows the mean Log2 ratio of average usages across datasets. 
Y-axis shows the -Log10 P-value. Statistically significant and positively associated 
cGEPs are indicated in red.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Annotating antigen-specific activation in vivo.  
a, Definition of activation used for training the antigen-specific activation (ASA) 
score in the COMBAT dataset for manually gated subsets. b, AUC estimates for 
CD71/CD95 co-expression prediction based on summation of cGEPs sequentially 
added to the score from left to right. c, d, Receiver operator curve (ROC) for 
ASA prediction of CD71/CD95-based activation labels, with various thresholds 
denoted as colored points. e, ROC for ASA prediction of AIM-positivity in the 
AIM-Seq dataset. f, AUCs for prediction of CD71 + CD95+ co-expression by ASA 
as compared to cell scoring with alternative T cell gene sets in the Flu-Vaccine 
dataset. Full gene set names are GOBP_ACTIVATED_T_CELL_PROLIFERATION 
(GOBP_ACT), GSE13738_RESTING_VS_TCR_ACTIVATED_CD4_TCELL_DN 
(GSE13738_RVT), GSE13738_TCR_VS_BYSTANDER_ACTIVATED_CD4_TCELL_UP 
(GSE13738_TVB), GSE15659_CD45RA_NEG_CD4_TCELL_VS_ACTIVATED_TREG_DN 
(GSE15659_CVA), GSE15659_NAIVE_CD4_TCELL_VS_ACTIVATED_TREG_DN 
(GSE15659_NAVA), GSE15659_NONSUPPRESSIVE_TCELL_VS_ACTIVATED_TREG_
DN (GSE15659_NSVA), GSE15659_RESTING_VS_ACTIVATED_TREG_DN (GSE15659_
RVA), GSE28726_NAIVE_VS_ACTIVATED_CD4_TCELL_DN (GSE28726_NVA), 
WP_TCELL_ACTIVATION_SARSCOV2 (WP_ACTCOV). g, Same as f but prediction of 
AIM-positivity in the AIM-Seq dataset. h, Left - Odds ratio of enrichment between 
proliferation (aggregate cell cycle cGEP usage>0.1) and activation (ASA > 0.065) 
for each dataset. Estimates reflect odds ratios and error bars denote 95% 

confidence intervals around the estimate. Right - Pearson correlation between 
ASA and aggregate cell cycle cGEP usage with colors mapping to dataset. Box 
represents the interquartile range and whiskers represent 1.5 x interquartile 
range. The box center line indicates the median (n = 9 datasets). i, Clonality 
in manually gated conventional CD4 and CD8 T cells annotated as activated 
(ASA > 0.065) or not activated (ASA < 0.065). Clonality is defined as the number 
of cells in the same sample with an identical alpha and beta CDR3 amino acid 
sequence. j, Percentage of activated conventional CD4 T cells (ASA > 0.065) 
versus percentage of activated or exhausted (exhaustion usage>0.065) 
conventional CD8 T cells across tumor samples. k, Percentage of activated, 
exhausted, or bystander (ASA + exhaustion usage<0.065) Tregs in tumors and 
match normal samples. Boxes represent the interquartile range and whiskers 
represent 1.5 x interquartile range. The box center line indicates the median. 
Sample sizes are BC: n = 2 Tumor, n = 2 Normal; BCC: n = 11 Tumor; BCL: n = 2 
Tumor; ESCA: n = 7 Tumor,n = 7 Normal; HCC: n = 5 Tumor, n = 5 Normal; LUNG: 
n = 2 Tumor, n = 4 normal; MM: n = 3 Tumor; RC: n = 10 Tumor, n = 11 Normal; 
THCA: n = 10 Tumor, n = 8 Normal; UCEC: n = 9 Tumor, n = 8 Normal. BC - breast 
cancer, BCC - basal cell carcinoma, BCL - b-cell lymphoma, ESCA - esophageal 
cancer, HCC - hepatocellular carcinoma, MM - multiple myeloma, PACA - 
pancreatic cancer, RC - renal carcinoma, THCA - thyroid carcinoma,  
UCEC - uterine carcinoma.
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Extended Data Fig. 7 | Identifying cGEPs associated with disease phenotypes. 
a, Associations of cGEP usage with tumor versus matched normal tissue. X-axis 
shows the regression coefficient. Y-axis shows the -Log10 FDR-corrected P-value 
(I.e. Q-value). b, Regression coefficients for tumor vs. normal samples for each 
tissue of origin. * denotes P < .05 for the corresponding coefficient. Cancer type 
abbreviations are: breast cancer (BC), esophageal cancer (ESCA), hepatocellular 

carcinoma (HCC), renal cell carcinoma (RC), thyroid carcinoma (THCA), and 
endometrial cancer (UCEC). c, d, Same as a but for association with Covid-19 
status in the UK-Covid and COMBAT datasets. e, Scatter plot of regression 
coefficients from c and d. f, Same as a but comparing synovial T cells from 
patients with Rheumatoid Arthritis and Osteoarthritis.
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Extended Data Fig. 8 | cGEPs associated with immune checkpoint inhibitor 
response. a, T-statistics from pre-treatment melanoma and NMSC associations. 
R denotes Pearson correlation. Dots are colored by cGEP type. b–d, Average 
expression of naive T cell marker genes. Melanoma and NMSC P-values are 
from one-tailed T-tests and CRC P-values are from a mixed linear regression 
likelihood ratio tests. P-value in the title is from a meta-analysis across the three 
cancer types. Box represents the interquartile range and whiskers represent 1.5 x 
interquartile range. The box center line indicates the median. Sample sizes shown 

are n = 9, n = 6, n = 15 for responders in melanoma, NMSC, CRC respectively and 
n = 10, n = 7, n = 4 in non-responders in melanoma, NMSC, CRC e, Same as b but 
showing percentage of CD4 Naive T cells out of total CD4 T cells based on TCAT 
lineage classification. f, g, T-statistics computed in pre- and post- treatment CD4 
T cells for melanoma and non-melanoma skin cancer (NMSC). h, Same as F but 
showing mean difference rather than T-statistic due to the presence of only one 
pre-treatment non-responder. i–k, Same as Fig. 6b–d but for CD8 T cells.
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Data collection BD FACSDiva 9.4 was used for FACS sorting cells prior to sequencing.

Data analysis The code for star-CellAnnotator (starCAT) is available at https://github.com/immunogenomics/starCAT. The analysis scripts used in this paper 
are available at https://github.com/immunogenomics/TCAT_analysis. 
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data used in this study for training and validating TCAT is publicly available, and can be downloaded from the following sources: https://doi.org/10.7303/
syn52297840 (AMP-RA), https://zenodo.org/records/5461803 (Pan-Cancer), GEO: GSE164378 (HIV-Vaccine), https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-10026 (UK-Covid), https://zenodo.org/records/6120249 (COMBAT), https://www.tissueimmunecellatlas.org/ (Pan-Tissue), GEO: GSE158769 
(TBRU), GEO: GSE206265 (Flu-Vaccine). The count matrices for the Activation Induced Marker (AIM)-Seq data produced in this study are located on Zenodo (https://
zenodo.org/records/15271929). 
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender All five participants were female. No sex-specific analyses were performed.

Population characteristics Participants were healthy adults between the ages 40 and 50. We excluded individuals with autoimmune diseases or on 
immunomodulatory medications.

Recruitment These individuals were recruited from the Partners Biobank. We excluded individuals with autoimmune diseases or on 
immunomodulatory medications. Recruitment occurred at clinics associated with MGB and may be biased towards more 
complex cases and individuals representative of the Greater Boston area. Self-selection biases may be present as partaking in 
Partners Biobank is optional.  

Ethics oversight Mass General Brigham Institutional Review Board (IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our primary analysis of public data included 1.7 million T cells from 905 samples from 695 individuals. This allowed us to define a 
comprehensive atlas of T cell states in diseases using some of the largest scRNA-seq datasets  publicly available for T cells. As we were highly 
powered to resolve cell states in this large dataset, we then applied it to annotate cell states in our smaller experimental study, which 
included 43,222 cells across five samples from three stimulation conditions (stimulated, unstimulated, mock). We did not perform an analysis 
of number of samples necessary prior to performing the experiment. However, this sample size provided us many thousands of cells per 
donor, per stimulation condition. We were interested in testing the effects of simulation condition on cell states. This number of cells and 
samples allowed us to be powered to detect significant cell state differences between stimulation conditions.

Data exclusions No data was excluded from analyses.

Replication Data was collected on five participants (five replicates). All replications were successful and included in the data analysis. No further 
replication of data was performed.

Randomization All cells from all samples were randomly sorted into two groups corresponding to peptide treated and mock-stimulated cells.

Blinding Blinding was not relevant to the study as all samples were assigned to both peptide treated and mock-stimulated conditions. Data analysis 
was unbiased and tested differences between antigen-stimulation statuses.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging



6

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Antibodies
Antibodies used Co-stimulation: 

Anti-CD28 antibody, Biolegend, Catalog #: 302933 RRID: AB_11150591 
Anti-CD49d antibody, Biolegend, Catalog #: 304339 RRID: AB_281044 
 
Proteogenomics: 
TotalSeq™-C Human Universal Cocktail, V1.0, Biolegend, Catalog #: 399905 
Human TOTAL-SeqC Repertoire (5') Hashing Antibodies, BioLegend, Catalog #: 394661, 394663, 394665 
 
Flow Cytometry: 
Anti-CD3-BV421 (SK7), Biolegend, Catalog #: 344833 RRID: AB_2565674 
Anti-CD134-PE (Ber-ACT35), Biolegend, Catalog #: 350003 RRID: AB_10641708 
Anti-CD274-BV785 (29E.2A3), Biolegend, Catalog #: 329735 RRID: AB_2629581 
Anti-CD137-APC (4-B4-1), Biolegend, Catalog #: 309809 RRID: AB_830671 
Anti-CD4-FITC (RPA-T4), Biolegend, Catalog #: 300505 RRID: AB_314073

Validation All antibodies used are publicly available through Biolegend. Biolegend provides the following statements on its website: 
 
Antibodies used for co-stimulation: 
Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. FC - Quality tested 
IHC-F, Costim - Reported in the literature, not verified in house 
 
Antibodies used for proteogenomics: 
TotalSeq™ Antibodies 
Bulk lots are tested by PCR and sequencing to confirm the oligonucleotide barcodes. They are also tested by flow cytometry to 
ensure the antibodies recognize the proper cell populations. 
Bottled lots are tested by PCR and sequencing to confirm the oligonucleotide barcodes. 
 
Antibodies used for flow cytometry: 
Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. FC - Quality tested 

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation PBMCs from 5 healthy donors were quickly thawed and placed in pre-warmed xVIVO15 cell culture medium (Lonza) 
supplemented with 5% heat-inactivated FBS. To reduce cell clumping, PBMCs were incubated in xVIVO15 containing 50 U/mL 
of benzonase nuclease (Sigma-Aldrich) for 15 minutes at 37 degrees and filtered using a 70 μm cell strainer. Washed and 
nuclease treated cells were seeded in a 96 well cell culture plate at a concentration of 2.5 x 106/mL. Peptide stimulations 
were performed using the CEFX Ultra SuperStim Pool (JPT Peptide Technologies, Product Code: PM-CEFX-1) at a final 
concentration of 1.25 μg/mL per peptide for 22 hours at 37 degrees and 5% CO2. Recombinant anti-CD28 and anti-CD49d 
antibodies (BioLegend) were added at a final concentration of 5 μg/mL and 0.625 μg/mL, respectively, to provide co-
stimulation for peptide reactive T-cells. Separately mock-stimulated cells were treated with anti-CD28 and anti-CD49d 
antibodies at the same concentration. Peptide responsive T-cells were detected by the expression of the surface activation 
markers PD-L1, OX40, and CD137 via flow cytometry. Following the stimulation, peptide treated and mock-stimulated cells 
were washed in cell staining buffer (PBS + 2mM EDTA + 2% FBS) to end the stimulation. Fc receptor blocking was performed 
using a 1:50 dilution of Human TruStain FcX (Biolegend) in cell staining buffer for 10 minutes at 4 degrees. Cell viability 
staining was performed using a 1:500 dilution of Zombie Yellow Fixable Viability Dye (BioLegend) prepared in PBS for 30 
minutes at 4 degrees. Surface staining was performed using 1:100 dilutions of BV421 conjugated anti-CD3, FITC conjugated 
anti-CD4, BV786 conjugated anti-PD-L1, PE conjugated anti-OX40, and APC conjugated anti-CD137 (BioLegend) for 25 
minutes at 4 degrees in cell staining buffer. Following cell staining, antigen reactive and non-reactive T-cells were identified 
using a BD FACSAria II cell sorter and collected in cRPMI medium (100 U/mL penicillin-streptomycin + 2 mM L-glutamine + 10 
mM HEPES + 0.1 mM non-essential amino acids + 1 mM sodium pyruvate + .05 mM 2-Mercaptoethanol) supplemented with 
20% FBS. 

Instrument BD FACSAria II

Software BD FACSDiva 9.4
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Cell population abundance CD4+ and CD3+CD4- cell populations were 58% and 25% of total live gated PBMCs in the peptide stimulated condition. 

Within peptide-stimulated CD4 T cells, 4.21% were AIM-positive and 81.7% were AIM-negative. Within peptide-stimulated 
CD8 T cells, 2.45% were AIM-positive and 74.9% were AIM-negative.

Gating strategy Gating on CD3+CD4+ PBMCs isolated CD4 T cells. Gating on CD3+CD4- PBMCs isolated CD8 T cells. Gating on PDL1+OX40+ 
CD4 T cells was then performed to sort Antigen Induced Marker (AIM)-positive from AIM-negative cells. Gating on PDL1
+CD137+ CD8 T cells was performed to sort AIM-positive and AIM-negative cells.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


	Reproducible single-cell annotation of programs underlying T cell subsets, activation states and functions

	Results

	Annotating cells with predefined GEPs

	cGEPs for T cell annotation

	Benchmarking TCAT on an independent query dataset

	cGEPs capture multi-GEP T cell identities

	cGEPs associated with TCR-dependent activation

	Annotating antigen-dependent activation in disease

	Identifying disease-associated cGEPs

	Characterizing ICI response


	Discussion

	starCAT algorithm

	Dataset preprocessing and batch-effect correction

	cNMF

	Constructing a catalog of cGEPs

	Simulation analysis

	Gene-set enrichment analysis

	Manual subset gating analysis

	T cell subset classification benchmarking analyses

	AIM-seq

	Preprocessing of AIM-seq data

	Statistics and reproducibility

	cGEP associations with AIM positivity, proliferation and disease

	Defining the ASA score

	Benchmarking the ASA score

	Reporting summary


	Online content

	Fig. 1 Overview of starCAT.
	Fig. 2 Benchmarking TCAT on a query dataset.
	Fig. 3 Comparing TCAT to clustering in the COMBAT dataset.
	Fig. 4 Identifying cGEPs associated with TCR-dependent activation.
	Fig. 5 Annotating ASA in vivo.
	Fig. 6 cGEPs associated with ICI response.
	Extended Data Fig. 1 Characterizing starCAT.
	Extended Data Fig. 2 Annotating cGEPs.
	Extended Data Fig. 3 Benchmarking starCAT’s subset annotation.
	Extended Data Fig. 4 Comparing TCAT with COMBAT dataset clustering.
	Extended Data Fig. 5 Identifying activation associated cGEPs with AIM-Seq.
	Extended Data Fig. 6 Annotating antigen-specific activation in vivo.
	Extended Data Fig. 7 Identifying cGEPs associated with disease phenotypes.
	Extended Data Fig. 8 cGEPs associated with immune checkpoint inhibitor response.




