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Imaging mass cytometry (IMC) is a powerful multiplexed imaging
technology used to investigate cell phenotypes and spatial organization

of tissue in health and disease. The spatial resolution of IMC is presently
at1lum, enabling the resolution of single cells and large subcellular
compartments but not submicrometer intracellular structures. Here we
reportamethod toimprove the resolution of IMC so that it approaches that
of light microscopy. High-resolution IMC (HR-IMC) uses an oversampling
approach coupled with point-spread function-based deconvolution to
achieve aresolution below 350 nm. We demonstrate the performance

of HR-IMC in resolving subcellular structures, such as nuclear foci and
mitochondrial networks previously undetectable with IMC, and applied
it to visualize chemotherapy-induced perturbation of patient-derived
ovarian cancer cells. HR-IMC extends highly multiplex IMC analyses into
the subcellular regime, enabling analysis of cell biological features and
characteristics of disease.

Multiplexed imaging of tissue at single-cell resolution has been trans-
formative in the understanding of disease through the discovery of
novel biomarkers, regulators of immunity and mechanisms of drug
resistance'. Single-cell analyses have unveiled fundamental concepts
inbiological systems, proving aninvaluable toolinboth basic research
andtranslational settings*. Many multiplex imaging technologies exist,
each with unique advantages and caveats. Immunofluorescence (IF)
microscopy, for instance, can reach high multiplexity and resolution
ina cyclic format but is limited by autofluorescence, and successive
rounds of bleaching (or antibody removal) and imaging can undermine
tissueintegrity and introduce artifacts*®. These effects, combined with
the need forimage registration, make the interpretation of subcellular
physiology challenging. The emerging Deep Visual Proteomics plat-
form combines IF-guided microdissection with mass spectrometry
for deep proteome coverage but currently lacks the spatial precision
to resolve subcellular compartments’. IMC uses tissue laser ablation
of metal isotope-labeled antibodies and mass spectrometry-based
detection and thereby avoids autofluorescence and cycling artifacts

duetoitsone-shot staining and imaging workflow. The technique, how-
ever, suffers fromlower resolution than that of fluorescence imaging,
challenging its application to subcellular biology®. To enable subcel-
lular analysis by IMC, new methods need to be developed to address
these trade-offs.

The ability toresolve any structure by agiven technology is deter-
mined by the so-called Nyquist limit, according to which a structure
can be captured if the resolution of the technology is at least half the
size of its smallest feature’. Currently, the laser ablation resolution of
IMC is 1 um, meaning that IMC resolves single cells and subcellular
compartments such as the nucleus and the cytoplasm but subcel-
lular structures below 2 pm such as mitochondria and nucleoli can-
not be resolved. Achieving a higher laser ablation resolution in IMC
is feasible but technically challenging due to difficulties associated
with laser stability, tissue penetration and thermal degradation when
using submicrometer laser beams'’. As an alternative, computational
approaches may overcome these limitations and achieve higher resolu-
tion in existing IMC systems. Recent computational strategies, such as
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blind deconvolution (for example, SpiDe-SR™) and cross-modality deep
learning', have shown promise but rely on strong prior assumptions
or high-resolution training data. Here we present a new method to
increaseresolutioninIMC, based on oversampling coupled withimage
deconvolution. We demonstrate that HR-IMC enables the mapping of
subcellular marker distribution at steady state and under perturbation,
improves cell segmentation and canbe used to characterize subcellular
compartmentsin cell types of interest within tissue.

Results

Tissue oversampling and deconvolution enable
submicrometer-resolution IMC

We achieved HR-IMC using astandard 1-pm laser spot to sample tissue
atasubmicrometer step size, resulting in partially redundant (thatis,
overlapping) ablation areas (Fig. 1a). To achieve this oversampling,
wereduced the laser energy per pass, thereby obtaining a signal from
several laser passes over any given tissue region (Extended DataFig.1a).
Multiple overlapping shots thus subdivide individual 1-pum pixels
into multiple subpixels; the number and size of subpixels for a given
oversampled acquisition will depend on the step size used, for exam-
ple, nine subpixels for the 333-nm step size in the example shown
(Extended Data Fig. 1b, left). In oversampled IMC, we assume that the
signal from a given 1-pum pixel upon sampling with a single laser shot
contains information from these subpixels, leading to image blur. To
address this, we extracted information from the central subpixel by cor-
recting for the effect of border subpixels using deconvolution methods
(Extended DataFig. 1b, left). In classical microscopy, deconvolutionis
typically achieved by methods suchas Richardson-Lucy (RL) or Wiener
deconvolution, which approximate a high-resolution image by using
apointspread function (PSF)". Such techniques have been applied to
fluorescence and superresolutionimaging toreduce blur and resolve
fine structures'". By repeating deconvolution for each overlapping
shot, we could reconstruct a high-resolution image. This procedure
yielded IMC images at a resolution exceeding the limits imposed by
the laser spot size (Fig. 1a).

The effect of aborder subpixel on the recorded signal for a given
laser shot depends on two factors. First, it depends on the fraction of
total pixel area covered by the border subpixel, which canbe mathemat-
ically modeled by intersecting circle geometry (Extended DataFig. 1b,
left). Second, the effect of aborder subpixel depends on the number of
laser passes it has undergone before acquiring the pixel. Because IMC
is destructive, tissue that has undergone multiple rounds of ablation
from previous overlapping shots will contribute less signal. The number
of laser passes foragivenborder subpixel canbe determined based on
its position in the laser pass map, as the direction of laser movement
andthe step size are known (Extended DataFig. 1b, right). For instance,
in our exemplary scenario using a laser step size of 333 nm, designed
toachieve aresolution of 333 nm, agiven analyzed region will receive
signal from one to nine laser passes. We estimated signal loss per laser
passinseparate experiments by repeated sampling of atissue regionin
theidentical experimental setup, followed by mathematical modeling
of the signal loss (Extended Data Fig. 1c). Spatial correlation of mark-
erswas highbetween consecutive laser passes, indicating that signals
were preserved between passes, despite anindication of some loss over
all passes (Extended Data Fig. 1d). We then estimated the PSF for our
experimental setup and the 333-nm step size by multiplying the propor-
tional area of the contribution of each subpixel by the signal expected
giventhe number of passes across these areas (Extended Data Fig. 1e).

We compared oversampled HR-IMC data to the same HR-IMC
data artificially convolved to a resolution of 1 um. We used these
artificially convolved data as a comparator rather than separately
acquired IMC datato enable comparisonon the identical section, given
the destructive nature of the technique. As expected, this analysis
revealed high-density, detailed images compared to the convolved
HR-IMC data. However, oversampling alone failed to accurately

represent the underlying structure of the nucleolus (Fig. 1b,c).
PSF-based deconvolution of these dataimproved performance, reas-
signing pixel values in the nucleolar cavity while accentuating the
nucleolar periphery (Fig. 1b,c). We found that the first seven laser
passes were critical for deconvolution while the last two passes con-
tributed minimally (Extended Data Fig. 1f). Notably, the convolved
data had a signal-to-noise ratio (SNR) comparable to that of classic
IMC on the sequential section (Extended Data Fig. 1g,h) and showed
good spatial correlation for markers of large-scale structures (that is,
smooth muscle actin (SMA) (blood vessels) and CD20 (germinal cent-
ers); Extended Data Fig. 1i), indicating that the convolved data are
an adequate reference for benchmarking. Next, we examined the
accuracy of our technique by comparing its performance to that
of standard IF microscopy on the same section of formalin-fixed
paraffin-embedded (FFPE) tissue. In each case, we stained the tissue
section withalanthanide-conjugated antibody but firstimaged it using
afluorophore-labeled secondary antibody. The same section was then
imaged with IMC. Comparing the two imaging modes for several mark-
ers (vimentin, SMA, mitochondrial membrane ATP synthase (ATP5A)
and GLUT1) and tissue types (tonsil, lung adenocarcinoma, placenta,
colorectal cancer, lung or bronchus, and kidney) showed that HR-IMC
measured at 333 nm captures details as well as routine tissue IF (Fig. 1d
and Extended Data Fig. 2a). As demonstrated on a SMA" blood vessel,
HR-IMCimprovedresolutionalsoin fresh-frozen tissuein comparison
to classical IMC (Extended Data Fig. 2b).

HR-IMC results were more similar to the IF pattern than classic IMC
datafromanadjacentregion (Extended Data Fig. 2a) and showed better
pixel-wise spatial correlation of markers to same-section IF data than
did classicIMC data (Fig. 1cand Extended Data Fig. 2c).Inamore visual
assessment, HR-IMC enabled better delineation of SMA fibers in muscle
tissue, offering improved structural separation compared to classical
IMC (Extended DataFig.1j). Furthermore, in an exploration of subcel-
lular structures undetectable with classical IMC, analysis of high-grade
serous ovarian carcinoma (HGSOC) tissue with HR-IMC revealed highly
resolved features, including submicrometer-level structures such as
mitochondrial networks encircling nuclei and stretching into the cyto-
plasm, filamentous SMA fibers traversing stromal cells, and fine cell
membranes (Fig. 1e). In addition, we observed nucleolus-resembling
structures and Ki-67 foci in nuclei of interphase cells (Fig. 1e). These
data show that HR-IMC unveils known subcellular structures across
multiple tissue types.

Owingtothereductioninlaserenergy per pass, HR-IMC had lower
overall signal intensity than classical IMC, but notably this was not at
the expense of SNR (Extended Data Fig. 1g). For many markers, decon-
volutionimproved the SNR because averaging multiple passes reduced
noise whileretaining signal (Extended Data Figs. 2d and 3a). Typically,
the higher the resolution of HR-IMC and the higher the starting SNR
of the marker, the stronger was this effect (Extended Data Fig. 3b),
and some markers (for example, FOXP3) fell below the detection
limit in HR-IMC. Furthermore, while our studies were primarily car-
ried out on the newer, more sensitive Hyperion XTi instrument, we
achieved comparable HR-IMC performance on the Hyperion+ sys-
tem, albeit with a resolution limit of 500 nm due to its poorer stage
precision and at slower imaging speeds (Extended Data Fig. 3c-e).
While the SNR of many markers was within the same range as for the
Hyperion XTi, lower-abundance markers such as CD11b or FOXP3
were less interpretable or even no longer detected on the Hyperion+
(Extended DataFig. 3f,g).

HR-IMCimproves segmentation and cell phenotyping in
densely packed tissues

Beyond measuring subcellular structures in high multiplex, HR-IMC
should also enable better segmentation of cells in proximity to one
another. For instance, the tonsil is a difficult tissue to segment,
packed with small, interacting immune cells. We compared nuclear
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Fig.1|HR-IMC enables imaging of subcellular structures. a, Schematic
overview comparing classic (1 pm) and high-resolution (for example, 500 nm)
IMC. InHR-IMC, the laser ablates tissue in 1-um spots but the tissue is sampled at
smaller step sizes (500 nm as shown here or adapted to the desired resolution).
Ablated ions are measured by a time-of-flight mass cytometer; images are
reconstructed fromion count information and further processed forimage
analysis. CyTOF, cytometry by time of flight. b(i)-b(iii), Representative IMC
images of the same cell, nucleus and nucleolus. Data were acquired at 333-nm
steps using 1-pm laser shots (b(ii)) and transformed to a resolution of 333 nm
using RL deconvolution (b(iii)). Data were artificially convolved to 1 um (b(i)),
and anIF image was acquired on the same section (b(iv)). Overlapping 1-um laser
shots (b(ii)) are separated and visualized consecutively; thus, each unitin the
image represents the data from a single laser shot. Intensities were 0-1
normalized. Scale bars, 1 pum. ¢, Spearman correlation between 0-1normalized
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HR-IMC count values (1 um, 333 nm before RL deconvolution, 333 nm after RL
deconvolution) and 0-1normalized IF intensity values observed at IF-IMC
aligned nucleolar regions. Center lines of the box plot represent median values,
box limits show the first and third quartiles, and whiskers extend to 1.5 times the
interquartile range. The mean s represented as [1. Points display individual data
points from differentimages (n = 3). Significance was assessed using a two-sided
t-test.d, Representative images of a section of tonsil tissue imaged with x40 IF
(top) and HR-IMC (bottom). Similar results were observed in six different image
pairs. Scale bars, 30 pm. e, Representative images of high-grade serous ovarian
cancer tissue measured with HR-IMC compared to representative examples of
the same subcellular structures measured with classical IMC from different
images. Iridium 191 (*"!Ir), DNA intercalation marker; Ki-67, proliferation marker.
Scalebars, 5 pm.

segmentation masks between HR-IMC and classic IMC on the tonsil
and found that convolved HR-IMC data underestimated cell numbers
and merged adjacent nuclei (Fig. 2a,b). Ground truth comparisons
with hematoxylin and eosin (H&E)-stained images of the same sec-
tions showed that HR-IMC more accurately separated individual cells

and better distinguished mutually exclusive markers in a pixel-level
analysis, inboth cases compared to classic IMC (Fig. 2a,c—f). Previous
IMC publications detail so-called ‘BnT’ cells, representing interacting
Band T cells that could not be separated by segmentation®'®. To assess
whether HR-IMC could mitigate this problem, we imaged an FFPE tonsil
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Fig.2 | HR-IMCimproves segmentation and cell phenotyping. a, Representative
images comparing nuclear boundaries in the tonsil measured with HR-IMC
versus with convolved HR-IMC data as a model of classical IMC. Colors indicate
merged, matched or split cell masks between the two data types. Stacked bar
plots represent relative mask contribution. H&E images of the same section serve
asground truth. b, Total number of cells segmented in HR-IMC (333 nm) data, in
the respective image convolved to the resolution of classical IMC (1 pm), andina
same-section brightfield H&E image (x40); data are presented as mean +s.e.m.).
Points display individual images (n = 4). ¢, The proportion of segmentation masks
that could not be mapped to equivalent masks on the same-section H&E image
(presented as mean + s.e.m.). Proportions were compared between the HR-IMC
(333 nm) images and convolved equivalents. Points display individual images
(n=4).Significance was assessed using a two-sided ¢-test. d, Proportion of pixels
that were deemed positive for both CD20 and CD3 based on a Gaussian mixture
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model (presented as mean *s.e.m.). Proportions were compared between the
HR-IMC (333 nm) images and convolved equivalents. Points display individual
images (n = 4). Significance was assessed using a two-sided ¢-test. e, Same-section
H&E and HR-IMC (333 nm) staining of human colon, lung adenocarcinomaand
tonsil FFPE tissues. Scale bars, 100 pm. f, Representative images of Band T cells in
close proximity in HR-IMC (333 nm) and classical IMC acquired on a consecutive
section. g, Heatmap of mean marker expression of annotated immune subtypes.
Expression values are scaled, and relative abundance is compared between
HR-IMC (333 nm) and classical IMC (acquired on the consecutive section). h,

The proportion of total Band T cells that were classified as BnT cells compared
between HR-IMC (333 nm) and classical IMC on the consecutive section
(presented as mean + s.e.m.). Points display individual images (n = 4). Significance
was assessed using a paired two-sided ¢-test.
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Fig. 3| HR-IMCreveals changes in subcellular organization of ovarian cancer
cells inresponse to chemotherapy. a, Schematic overview of the experimental
workflow. b, Targets of the antibody panel grouped by subcellular location

and with their associated functionsindicated. Cl., cleaved. p-, phospho.c,
t-distributed stochastic neighborhood embedding (¢-SNE) visualization of
tumor cell-derived pixels. Each dot represents a pixel, and colors represent
pixel clusters. d, Heatmap of mean marker expression (exprs) of each flowSOM
pixel cluster. Expression values are scaled, and markers as well as clusters are
separated by nuclear or nonnuclear localization. Cluster annotations were made
based on mean marker expression and biological knowledge. e, Comparison of
cluster quality based on silhouette width (SW), neighborhood purity (NP) and
Davies-Bouldinindex (DBI) between clusters. The plot compares pixel-level
clusters at aresolution of 333 nm from Fig. 2d and data artificially convolved to
aresolution of 1 um from Extended Data Fig. 5f. f, Representative image of cells
comparing localization of pixel clusters and key marker expression on original
images. Depicted are representative examples of membrane (cluster 6, GLUT1),
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mitochondria (cluster 4, ATP5A) and nucleus (cluster 8, Ki-67). Scale bars, 5 pm.
g, Log (fold change (FC)) in the absolute frequency of subcellular clusters upon
treatment with carboplatin and paclitaxel (CP) relative to the dimethylsulfoxide
(DMSO) control, determined by differential abundance testing using edgeR.
Significantly changing clusters are indicated (P < 0.05, Benjamini-Hochberg-
adjusted likelihood ratio tests). h, Changes in marker colocalization within cells
upon chemotherapy treatment. Spearman correlations of marker expression
within each cell were computed, and the mean difference with and without
chemotherapy was plotted pairwise for significant changes (Benjamini-
Hochberg-adjusted Pvalue < 0.05) and where the difference in colocalization
exceeded 0.05; this threshold was chosen for clarity in the visualization. Red and
blue linesindicate positive and negative changes in correlation, respectively.
Thickness of lines reflects the extent of the change. All nonredundant markers
were included in this analysis. Examples of marker colocalization between

DNA damage foci (p-H2AX) and open chromatin regions (H3K4me2) upon
chemotherapy treatment are depicted below. Scale bars, 10 pm.
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Fig. 4| HR-IMClinks subcellular features to cell types and states. a, Heatmap of
mean marker expression of annotated tumor,immune and endothelial cells and
fibroblasts. Expression values are scaled. panCK, pan-cytokeratin.

b, Example HR-IMC (333 nm) images of in situ HGSOC (n = 3) demonstrating
pixel-level clustering to detect mitochondrial pixels and subsequent
mitochondrial patch detection. ¢, Heatmap of mean expression of the
mitochondrial markers HSP10 and ATP5A in pixel-level clusters. Expression
values are scaled. d, Box plot comparing mean size of mitochondrial patches
(mitochondrial interconnectivity, left) and number of mitochondria normalized
to cell area (mitochondrial density, right) across different cell types. Center
lines of the box plots represent median values, box limits show the first and third
quartiles, and whiskers extend to 1.5 times the interquartile range. Points display
individual cells across regions of interest (ROIs) (n = 3 ROIs). Significance was
assessed using a two-sided, paired t-test comparing the average value for each
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Scale bar, 30 um. f, Box plots comparing GLUT1 expression (left), mean size of
mitochondrial patches (mitochondrial interconnectivity, middle) and number
of mitochondria normalized to cell area (mitochondrial density, right) between
normoxic (N) and hypoxic (H) tumor cells. Tumor hypoxia status was determined
by Gaussian mixture modeling of carbonic anhydrase expression. Points display
individual cells across ROIs (n = 3 ROIs). Center lines of the box plot represent
median values, box limits show the first and third quartiles, and whiskers extend
toL.5times theinterquartile range. Significance was assessed using a two-sided,
paired t-test comparing the average value for each cell type, calculated per ROI.

g, Representative images of adjacent normoxic and hypoxic tumor regions showing
differential mitochondrial (ATP5A) and GLUT1 expression. Scale bar, 60 pum.

sectionataresolution of333 nmand then segmented single cells from
both HR-IMC data and classic IMC (Fig. 2g). The proportion of these
‘BnT’ cells was over threefold greater in classical IMC than in HR-IMC
(Fig.2h). These data show that HR-IMC improves tissue segmentation
in comparison to classical IMC.

HR-IMC enables analysis of subcellular phenomenain
high-grade serous ovarian cancer

To further probe subcellular phenomena with HR-IMC, we applied
it to patient-derived HGSOC cells cultured in 3D, aiming to compare
chemotherapy response captured with both high-resolution and
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classical IMC (Fig. 3a). We built a 25-plex antibody panel visualizing
chemotherapy response markers and subcellular structures (Fig. 3b
and Extended Data Fig. 4a) and used this panel to image cells cultured
in the presence and absence of combined chemotherapy using car-
boplatinand paclitaxel (Extended Data Fig. 4a-c). We then artificially
convolved the high-resolution data to aresolution of 1 pm to simulate
classical IMC and performed pixel-level clustering of the HR-IMC data
andthe convolved datatoidentify regions within cells exhibiting shared
marker profiles. For the HR-IMC data, this yielded 13 distinct clusters
(Extended DataFig.4d), withmarker expression patterns correspond-
ing to known subcellular structures (Fig. 3c,d). We annotated cluster
4 as mitochondrial regions based on expression of ATP5A and heat
shock protein 10 (HSP10) and also annotated eight nuclear clusters
thatincluded DNA repair regions, replication foci and DNA damage
(Fig. 3d). The same pixel-level clustering on the artificially convolved
image recovered similar patterns but with less distinct marker separa-
tion, and we could also reproduce the HR-IMC clusters using a differ-
ent clustering approach (Extended Data Fig. 4e,f). Using both global
and local cluster quality metrics (Methods), we found that HR-IMC
showed enhanced separation of clusters based on subcellular markers
compared to convolved data as a model for classical IMC (Fig. 3e and
Extended Data Fig. 4g-i).

Annotated clusters showed spatial colocalization with subcellu-
lar compartments that were consistent with biological expectations
(Fig. 3f). For instance, cluster 8, associated with proliferation, cor-
responded to Ki-67 foci, while cluster 4, representing mitochondrial
pixels, was characterized by ATP5A staining localized to the mitochon-
dria (Fig. 3f). To examine whether HR-IMC can recover known effects
of chemotherapy onthe subcellular level, we analyzed the differential
abundance of clusters after treatment. This analysis showed an upregu-
lation of DNA damage and repair fociand adownregulation of prolifera-
tive clustersintreated cells, consistent with the classical chemotherapy
response (Fig. 3g). Changes of marker colocalizations upon chemo-
therapy furthermore suggested aloss of Ki-67 nuclear localization and
asignificant gain of phosphorylated histone H2AX (p-H2AX) inregions
of open transcription marked by histone methylation and acetylation
variants, whichwe could confirmin the corresponding images (Fig. 3h).
These experiments illustrate that HR-IMC identifies features that are
not detectable with classical IMC and detects shifts on the subcellular
level in these compartments after drug perturbation, showcasing its
value instudying intracellular processes.

Finally, we took advantage of our unique combination of highly
multiplex and subcellular resolution imaging to examine subcellular
architecture of different cell typesinsitu, within their tissue context. We
defined tumor cells, immune cells and fibroblasts in HR-IMC-imaged
ovarian tumor tissue based on marker expression patterns (Fig. 4a),
identified mitochondrial pixel clusters and networks marked by ATPSA
and HSP10 expression (Fig. 4b,c and the Methods) and then com-
pared these mitochondrial networks across different cell types. As
expected, tumor cells displayed higher mitochondrial density and
larger mitochondrial networks than the other cell types (Fig. 4d,e).
Also, hypoxic (CAIX") tumor cells showed reduced mitochondrial
contentandincreased GLUT1 expression compared to normoxic cells
(Fig.4f,g). Thisapproach holds great potential for mapping subcellular
structures in different cell types and states in situ.

Discussion

This work demonstrates the application of submicrometer-level UV
laser positioning to approximate and reconstruct image details at a
resolution greater than thatachievable with standard IMCinthe tissue
types studied. By modeling and optimizing laser energy settings, we
could deconvolve the HR-IMC signal in a manner uniquely tailored to
the characteristics of IMC. We have thus established anew acquisition
mode for IMC that enhances resolution while remaining compatible
with current instrumentation.

While a host of superresolution methods have shown enhanced
resolution in IF data, these methods have limited application to IMC.
Many require considerable computational resources as well as pairs of
high-and low-resolution training data, with the latter thus far not avail-
able for IMC. Recently described self-supervised blind deconvolution
strategies for IMC data are constrained by the need for post hoc infer-
ence of information that has not been experimentally measured"". By
contrast, our HR-IMC approach primarily relies on technical innova-
tion at the image acquisition stage rather than on inference alone. By
precisely altering the physical characteristics of ablation, we record
dense, richer imaging data that can be deconvolved with a PSF spe-
cifically tailored for IMC. Moreover, the datagenerated using HR-IMC
could be useful for the development of superresolution technologies
specifically adapted for IMC.

Currently the resolution of HR-IMC is limited by the precision of
tissue ablation and stage movement, the decrease in signal intensity
andtheincreaseinimagingtimes (Extended DataFig. 3). As the speed
of laser ablation and the precision of stage movement improve, these
technicallimitations can be addressed. Furthermore, the loss of signal
intensity observed in HR-IMC could be overcome by signal amplifica-
tion methods such as SABER-IMC”. On the other hand, the computa-
tional processing of oversampled data could be achieved with arange
of deconvolutionstrategies. Forinstance, we modeled laser aperture as
anevenly ablating circle, thus not accounting for crater effects or tissue
density. Craters arise from the Gaussian profile of most laser beams,
because the center delivers more energy than the edges. Incorporating
these factorsinto the calculations or developing spatially variant PSFs
to account for local tissue composition may provide a more accurate
representation of the tissue in the near future.

In summary, we provide a new approach to analyze cell biology
at the intracellular level. HR-IMC can capture spatial distribution of
proteins within cells, identify organelle-specific signaling events and
characterize subtle morphological features that correlate with func-
tion or disease state. In the future, this might facilitate discovery of
complex cellular architectures and new cell phenotypes. Together,
these advances establish HR-IMC as anew high-resolution, multiplexed
imaging method capable of mapping the subcellular structures that
underpin fundamental biological processes.
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Methods

Ethics

Ethicalapprovalwasgranted by the Ethical Committee of Northwest and
Central Switzerland (EKNZ, BASEC IDs 2017-01900 and 2023-00988).

High-resolution IMC

HR-IMC datawere acquired with the Hyperion XTior Hyperion+imag-
ing system. While HR-IMC does not require hardware modification of
theinstrument, the step size parameter was adjusted toavalue of either
0.5 pm or 0.33 pmin the instrument’s acquisition mode settings and
the laser energy was reduced accordingly to allow multiple rounds of
tissue ablation. Detailed instructions for practicalimplementationare
availablein Extended Data Fig. 5. To deconvolve overlapping signals, we
calculated the expected overlap between 1-pm ablations with acircular
laser aperture (Extended Data Fig. 1b). Each pixel was divided into a
number of subpixels based on intersecting circle geometry. Briefly,
circlesweresuperimposed (ateither 500-nm or 333-nm steps) in vector
graphics-based software to replicate the laser scanning pattern. The
areas of these intersects were approximated using ImageJ'®. The signal
contribution of each subpixel was calculated by multiplication of the
proportional area of the subpixel and the observed signal of the pixel.
To account for subpixels that had been ablated several times from the
overlapping acquisition above and to the left of the pixel of interest,
overlaps were annotated with pass numbers. The resulting laser pass
map depends on the direction of the scanning laser (classically left
to right and top to bottom). For each successive laser shot, regions
corresponding to the newest ablation were labeled with the number
of previous passes they had received. The signal was then corrected
based on the expected signal remaining given the number of passes
received. Correction was based on an experimentally derived inverse
sigmoidal loss function at =10 dB of laser energy. The calculated con-
tributions were summarized in a skewed 3 x 3 PSF by multiplying the
signal of each subpixel by its relative area contribution, resulting in
upper subpixels contributing less signal, given that their overlapping
areawas measured in regions that experienced greater pass numbers
(Extended DataFig. 1e).

Laser energy optimization and deconvolution

Signalloss was measured for differentlaser energies to select an energy
that permitted signal recovery after nine rounds of ablation. To do
this, a 500 x 500-pum area of the tissue was repeatedly ablated for a
total of ten passes at laser energies of 0, -1, -10, -15 and -20 dB. Pixel
values from the iridium channel (*"Ir and *’Ir) were summed for each
pass and for each energy, to measure intensity loss. The signal loss
function was defined as:

lo

Intensity (x) = Iy — T+exp(—(x—x0)’

whereintensity(x) represents the estimated intensity at passx, /,isthe
maximum intensity and x, is the inflection point (the pass number at
which signal begins to rapidly decline). Model parameters were esti-
mated using nonlinear least-squares fittingimplementedin R (version
4.3.2) using the nsl2 package. After modeling each energy, we selected
-10 dB as the optimal laser energy for our experimental setup.

For multiplexed analyses, the calculation was carried out for
each channel, where /, represented the maximum marker signal and
remained constant across channels. This ensured that correction was
carried out on a marker, rather than image-specific, level. To recover
higher-resolution images, RL deconvolution was implemented in
Python using the richardson_lucy function of the skimage.restora-
tion (version 0.16.2) module. The raw images were splitinto respective
channels, and each was deconvolved with the predefined PSF using
seveniterationsto achieve convergence. The number of iterations was
determined based on empirical testing to balance restoration quality

and noise amplification. A three-pixel border was removed from the
image after processing, as the PSF is designed to take into account the
effect of surrounding pixels that are partially absent in border pixels.
Our approach uses classic RL deconvolution, which is well suited for
Poisson noise as present in IMC data. It is important to note that we
focused on optimizing the PSF for nonuniformly ablated oversampled
IMC data. By contrast, Wiener deconvolution is optimized for Gauss-
ian noise. To avoid noise amplification during the iterative process,
we monitored the increase in the log likelihood of the Poisson model
after each iteration. The optimal number of iterations was chosen
based on the flattening of the log likelihood curve combined with visual
inspection of theimages, confirming enhanced resolution without the
introduction of artifacts or noise.

Tissue staining

Tissue samples were preserved using formalin fixation and paraf-
fin embedding at the university hospitals of Basel and Zurich. Anti-
body staining was performed according to a standardized IMC
protocol, with specific antibody clones and concentrations listed in
Supplementary Table 1. Allantibodies underwent a two-step validation
process by detection of the unconjugated antibody using secondary
IF staining and IMC analysis of the metal-conjugated antibody. Images
were compared to staining patterns from the Human Protein Atlas using
positive and negative control tissues. First, the tissue slides were depar-
affinized by incubation in Histo-Clear (Biosystems) for 10 mineach over
three consecutive rounds. They were thenrehydrated by dipping them
in100% ethanol twice for 5 min each, followed by exposure to aseries of
ethanol solutions diluted with deionized water (96%, 90%, 80% and 70%
ethanol) for 3 mineach. Heat-induced epitope retrieval was carried out
by incubating the slides in Tris-EDTA buffer (pH 9) at 95 °C for 30 min
using a NxGen decloaking chamber (Biocare Medical). After cooling
for 20 min, the slides were blocked in TBS-T buffer (20 mM Tris, pH
7.6,150 mM NacCl, 0.1% Tween) containing 3% BSA for 1 h to minimize
nonspecificantibody binding. The tissue samples were incubated over-
nightat4 °Cwithafull panel of metal-tagged antibodies. The next day,
the slides were washed with TBS buffer three times for 5 min each and
subsequently incubated with 0.5 uM Cell-ID Intercalator-Ir (Standard
BioTools) for 5 min to detect DNA. After another wash with TBS and
adipin deionized water, the slides were dried using pressurized air.

To perform combined IF and IMC staining, tissue samples were
first stained overnight at 4 °C with primary antibodies (Supplemen-
tary Table 1), followed by the use of fluorophore-labeled secondary
antibodies. After washing twice with TBS buffer, fluorescently labeled
or metal-conjugated secondary antibodies targeting the host species
of primary antibodies were applied for1 hatroom temperature. For IF,
a coverslip was mounted using 85% glycerol to perform immunofluo-
rescentimaging. Images were acquired usinga CELENA X microscope
(Logos Biosystems) with a x40 objective. After this imaging step, the
coverslip was removed using TBS, and the slides were washed, dried
and prepared for laser ablation and analysis by IMC.

To perform combined IMC with H&E staining, an additional H&E
staining step was included after heat-induced epitope retrieval. Briefly,
sections were stained according to standard protocols, mounted witha
coverslip with 85% glycerol and imaged using a ZEISS Axio slide scanner
at x40 in brightfield mode. Immediately after imaging, the coverslip
was removed using TBS, and the standard IMC staining protocol was
continued as previously described.

Immunofluorescence comparison

IF staining was carried out on FFPE-embedded tonsil, lung adenocar-
cinoma, placenta, lung or bronchus, kidney and colorectal cancer
tissues using a fluorophore-labeled secondary antibody. HR-IMC data
were acquired from the same section after imaging, detecting the
metal-labeled primary antibody using the ZEISS Axioscan 7 at x40. To
align the datamodalities, a transformation matrix was generated with
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the Napari affinder plugin. For nucleolar comparison, IF pixel coordi-
nates were transformed into IMC space, and each pixel was assigned
toitsnearest IMC pixel based onak-nearest-neighbor searchusingthe
Rpackage RANN (version 4.0.16). For comparison to IF staining across
larger tissue areasin lung adenocarcinoma, placenta, lung or bronchus,
kidney and colorectal tissues, pixels were assigned by directly binning
those that shared the same coordinates. Spearman’s correlation (using
the stats package (version 4.3.1)) was then calculated on a subset of
the image focused on nucleolar structures in the tonsil or across the
whole image for other tissue types. Correlation was calculated using
normalized expression values from the DNA, GLUT1, SMA, ATP5A or
vimentin channel.

Data processing

Multiplexed tissue images were processed using the Steinbock toolkit
and workflow”, available at https://github.com/BodenmillerGroup/
steinbock. Briefly, raw mcd files from the Hyperion Imaging System
were converted to TIFF format and preprocessed by applying a hot pixel
filter with a threshold of 50. Cell segmentation was performed using
the pretrained neural network DeepCell, with min-max normaliza-
tion applied to each channel and an adjusted pixel size parameter of
0.33. Cytoplasmic channels were assigned as panCK, E-cadherin and
TUBB3 for the ex vivo and in situ analysis and as VIM and CD45 for tonsil
segmentation. Nuclear channels were set as H3K4me2, *'Ir and **Ir for
exvivo and insituanalysis and as"'Ir and *Ir for tonsil segmentation.
Single-cell segmentation masks were overlaid on the TIFF images,
enabling the extraction of both spatial features and mean marker
expression levels, which were summarized as the mean count values
for each channel across pixels within a given cell. For downstream
analysis, cells with anarea smaller than 55 pm?or greater than 555 pm?
were removed, as they most likely result from segmentation artifacts.

Data transformation and normalization

To correct for signal spillover, pure spots of each metal-tagged anti-
body were measured, and compensation was performed using the
CATALYST R package (version1.26.1)*°. The raw counts were adjusted
by applying a 99th-percentile cutoff and then subjected to arc-sinh
transformation with a cofactor of 1. For visualization and clustering,
the transformed datawere normalized to ascale ranging from O to 1. All
further analyses were conducted using the arc-sinh transformed data.

Image convolution

HR-IMCimages were artificially convolved to lower resolution to pro-
vide demonstrative same-slide low-resolution data. Convolution was
performed in R (version 4.0.16), where pixels were binned into 3x3
superpixels and raw count values were summed.

Segmentation comparison
Segmentation quality was assessed by phenotypingimmune cellsinthe
tonsil and direct comparison of cell masks in convolved and HR-IMC
data. HR-IMC (333 nm) images were convolved, and both images under-
went nuclear segmentation using DeepCell as previously outlined.
Each mask was assigned toits nearest mask inthe corresponding image
based on anearest-neighbor search using the R package RANN (version
4.0.16) (RRID:SCR_024297). Masks identified at a distance greater than
the major axis of the matched cell were discounted. Multiple masks that
aligned to asingle mask were annotated as ‘split’, with the correspond-
ing mask annotated as ‘merged’. To assess the accuracy of segmenta-
tioninthese data, H&E images were segmented using QuPath (version
0.4.4) cell detection (threshold, 0.05; sigma, 0.5; minimumarea, 8 pm;
background radius, 20 pm; and standard settings), aligned using the
Napari affinder plugin (version 0.5.6) and assigned to corresponding
cell masks as previously outlined.

Cell phenotyping was assessed in the tonsil by comparing the
ratio of ‘BnT’ cells in consecutive sections of the tonsil measured with

HR-IMC (333 nm) and classical IMC. Cells were classified by independ-
ent clustering of the image-normalized expression values. The Rphe-
nograph algorithm? was used to construct a shared nearest-neighbor
graph (k=20) using Euclidean distance,implemented in the R package
Rphenograph (version 0.99.1) (RRID:SCR_022603). To refine edge
weights in the shared nearest-neighbor graph, Jaccard similarity was
applied to pairs of cells. Louvain community detection was then applied
to optimize cluster modularity based onthe resulting graph. The result-
ing clusters were annotated as either B cells, BnT cells, CD4" T cells,
CDS8'T cells or ‘other’, based on canonical immune cell markers. Pro-
portions of the shared cell types were compared between images. To
assess clustering stability, the image-normalized expression values
were independently clustered using k-means clustering (k=10) with
the R package clvalid (version 0.7). To determine pixel double positiv-
ity,images were converted into image matrices and Gaussian mixture
models were implemented for the scaled expression values of CD3
and CD20 with the densityMclust function in the R package mclust
(version 6.1.1).

Quantification of signal intensity and signal-to-noise ratio

To quantify pixel signal intensities, pixel counts were extracted from
each channel of raw TIFF images acquired at different resolutions
(1,000 nm, 500 nm, 333 nm and 200 nm). Pixel classification into
background and foreground was performed using Otsu threshold-
ing, implemented via the EBImage R package (version 4.44.0). Otsu’s
method determines an optimal threshold by minimizing the vari-
ance within each class. We verified that the number of pixels classified
as foreground remained consistent across conditions and visually
inspected allthresholded images to exclude the occurrence of artifacts.
Mean pixel intensity was then calculated as the average signal intensity
across foreground pixels, while total pixel intensity was determined
by summing the intensities of the foreground pixels. The SNR was
computed by dividing the mean intensity of the foreground pixels by
the mean intensity of the background pixels. It should be noted that
this quantification may be influenced by variations in cell density and
size within the images.

Three-dimensional patient-derived ovarian cancer culture
Three-dimensional patient-derived ovarian cancer cultures were per-
formed according to previously published protocols®. The tissue
sample froma patient with high-grade serous ovarian cancer was pro-
cessed within 30 min after surgery. Cultures were treated with DMSO
oracombination of100 pM carboplatin (Labatec Pharma) and100 nM
paclitaxel (Merck).

Cell- and pixel-level clustering approaches

For pixel-level clustering of ex vivo and in situ data, single-pixel
expression profiles were extracted from TIFF files and pixels outside
segmentation masks were excluded. Pixels were aggregated across
conditions and clustered into subcellular clusters using the flowSOM
algorithm? asimplemented in the CATALYST package (version1.26.1)**
(RRID:SCR_017127) and suggested by the Pixie workflow”. Normalized
marker expression values were used for this clustering step to minimize
the impact of brightness variation between markers. Next, the mean
expression profile of each cluster was determined and metaclustered
using consensus hierarchical clustering based on z-scored expression
values. The number of metaclusters was initially selected based on
cluster stability (Extended Data Fig. 4d), and afinal higher k value was
selected to enable resolution of subcellular structures. Resulting clus-
ters were manually annotated using biological knowledge. To simulate
traditional IMC data, HR-IMC data were artificially convolved toareso-
lution of 1 um and clustered using the same approach. For pixel-level
clusteringin the ex vivo analysis, additionally unsupervised clustering
was performed using the Rphenographalgorithm with k= 600 to con-
struct ak-nearest-neighbor graph and identify community structure.
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Due to computational constraints, the dataset was downsampled
to 30,000 pixels for this analysis. All random sampling steps were
controlled with fixed seeds to ensure reproducibility. For cell-level
clustering inthe ex vivo analysis, the Rphenograph algorithm (k = 20)
was applied, and resulting clusters were annotated to cell types based
on their scaled marker expression profiles.

Comparison of cluster qualities

To evaluate cluster quality of HR-IMC data compared to that simulated
traditional IMC data, the average distance between cluster means and
the silhouette width were computed. For the average distance, the
Euclidean distance between the centroids (means) of all cluster pairs
was calculated in the scaled marker expression space. The distances
were averaged to quantify how well separated the clusters were. Larger
average distances indicate better separation. The silhouette width
was calculated for each individual pixel to evaluate how well each
pixel matched its assigned cluster compared to other clusters®?. It
is determined by comparing the average distance of a pixel to other
pixels within its own cluster (intracluster distance) with the average
distance to pixels in the nearest neighboring cluster (nearest-cluster
distance). The overall clustering quality was summarized by averaging
the silhouette widths of all pixels, allowing for a direct comparison
between HR-IMC and simulated traditional IMC datasets. In addition,
neighborhood purity was computed as the percentage of the ten near-
est neighbors that belonged to the same cluster®®. Davies-Bouldin
index was computed using the index.DB functionimplementedin the
clusterSim package®. The R package bluster was used forimplementa-
tion of all other cluster quality metrics.

Differential abundance analysis

To assess significant differences in the proportions of subcellular
clusters between untreated cells and those exposed to chemother-
apy, differential abundance analysis was performed using the edgeR
R package (version 4.0.16)*° (RRID:SCR_012802). Cluster 3 showed
no marker expression, suggestive of background pixels, and was
therefore excluded from this analysis. This differential abundance
analysisincludes dispersion estimation to account for variability in
the dataand fitting a negative binomial generalized linear model to
the cluster counts. A design matrix was created to represent the rela-
tionship between cluster counts and treatment conditions, enabling
acomparison of chemotherapy-treated cells with the DMSO-treated
reference group. The log (fold change) of each subcellular clus-
ter was computed, and significance was evaluated by performing
quasi-likelihood F-tests. A false discovery rate threshold of <0.05
was applied using the Benjamini-Hochberg method to adjust for
multiple comparisons.

Pixel-level correlation analysis

To investigate colocalization of proteins, we conducted a pixel-level
correlation analysis of markers. Spearman correlation coefficients
were computed for each marker pair within cells using the stats pack-
age (version 4.3.1) and aggregated to mean correlation values for
each treatment condition. To assess changes in correlation struc-
tures between conditions, Wilcoxon testing was used to compare the
Spearman correlation coefficients between DMSO and chemotherapy
(carboplatin and paclitaxel) conditions. The Benjamini-Hochberg
method for multiple-comparison adjustment was used to control the
false discovery rate, and P values < 0.05 were considered statistically
significant. The final results visualize significant changes in protein
colocalizationinduced by chemotherapy, represented as the difference
inmean correlation between the two conditions.

Detection of mitochondria via patch analysis
To identify mitochondrial structures at the pixel level, we employed
patch detection. First, a spatial interaction graph was constructed on

the pixellevel using the buildSpatialGraph function from the imcRtools
package, with aone-pixel threshold for neighborhood expansion. Patch
detection was then performed using the patchDetection function,
which grouped spatially connected mitochondrial pixels (within the
defined graph) into contiguous patches. Mitochondrial pixels were
defined as those expressing the markers ATPTA and HSP10, and the
detection was restricted to pixels of interest without additional spatial
expansion. Patches were then summarized at the single-cell level by
calculating the number of distinct mitochondrial patches per cell and
the average number of mitochondrial pixels per patch.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from this study are available at Zenodo (https://doi.
org/10.5281/zenodo.17077712)* and upon request from the
corresponding author.

Code availability

The code used to generate all analyses and figures in this study is
available in our GitHub repository (https://github.com/Bodenmiller
Group/HR_IMC).
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Extended Data Fig. 1| Experimental and computational deconvolution
strategy for HR-IMC. a) Representative images of [r191 (DNA) signal in tonsil
tissue after successive rounds of ablation at -15 dB laser energy. b) The schematic
shows a pixel splitinto areas (indicated by shades of gray), where each area
corresponds to a different intersection of surrounding pixels (left). The acquired
pixel (blue) is represented as acomposite of multiple sub-pixels (violet and

red). To deconvolve the acquired pixel and isolate the central sub-pixel of
interest (1, red), the influence of surrounding or border sub-pixels (2, violet),
must be considered. On the right, the laser pass map is visualized for the same
pixel, here splitinto regions defined by the number of laser passes received.
These patterns are theorized from a model of 9 overlapping pixels, required for
imaging at 333 nm. ¢) Signal intensity loss after repeated acquisition measured
atdifferent energies. Inverse sigmoidal models were fit for different laser
energies. d) Pearson’s correlation of [r191 (DNA) signal of image pixels measured
between successive rounds of ablation (top). Pearson’s correlation was also
correlated with the first pass as areference (bottom) demonstrating z-stack
related signal alterations. The smoothed line represents a LOESS fit with 95%
confidence interval. e) Exemplary image of a 3x3 Point spread function (PSF)
applied to 333 nm HR-IMC. Visualized is the signal contribution of individual
sub-pixels to the acquired pixel. This PSF is utilized in the Richardson-Lucy
deconvolution process to model the blurring of high-resolution estimates,
enabling reconstruction of the acquired data. f) Spearman correlation between
0-1normalized HR-IMC count values as indicated (that is, only oversampled or

additionally deconvolved with varied pass omissions) and 0O-1 normalized IF
intensity values, at IF-IMC aligned nucleolar regions. Center lines of the boxplot
represent median values, box limits show the first and third quartiles, and the
whiskers extend to 1.5 times the interquartile range. Points display individual
data points of technical replicates (n = 3). Significance was assessed using a
two-sided t-test. g) Comparison of marker signal intensity (left) and SNR (right)
between HR-IMC (333 nm) artificially convolved to the resolution of classical
IMC (1 pm), and classical IMC (1 um). Representative images are displayed on the
far right. h) Representative IMC images of CD20 and vimentin before and after
Otsu thresholding for SNR calculation. i) Correlation of markers of large-scale
structures (SMA: smooth muscle surrounding blood vessels, CD20: B cells
accumulating in germinal centers) between classic IMC and HR-IMC (333 nm)
convolved to the resolution of classic IMC. Shown are arcsinh-transformed
count values from spatially registered regions in consecutive tonsil sections.
Pixel values were binned to a resolution of 8 um, corresponding to twice the
section thickness. Representative images are shown. j) Comparison of SMA
fiber resolution in muscle tissue between convolved HR-IMC data to simulate
classical IMC and HR-IMC (333 nm). Two regions of interest (1and 2, leftimage)
illustrate differences in spatial resolution. Line profiles extracted across SMA-
positive fibers in these two regions (right images) reveal discrete signal peaks
corresponding to individual fibers. Regions highlighted in purple indicate areas
where HR-IMC enables clear separation of adjacent fibers, which appear as
merged structures in classic IMC data.
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Extended DataFig. 2 | Applicability of HR-IMC to different tissue types. right) in fresh-frozen tissue (n =1). ¢) Correlation of marker expression of

a) HR-IMC and IF staining were carried out on five different FFPE tissue types classic IMC (1 pm resolution) and HR-IMC (333 nm resolution) to same-section
(lung adenocarcinoma, lung/bronchus, placenta, colorectal cancer, kidney). immunofluorescence, for the indicated tissue types and markers. Areas of
Displayed are HR-IMC images and the corresponding IF image of the same interest for classic IMC and HR-IMC (333 nm) were acquired on adjacent regions.
section. Classical IMC data from an adjacent region of the section is shown Center lines of the boxplot represent median values, box limits show the first

for comparison of data quality. Data was generated using metal-labeled and third quartiles, and the whiskers extend to 1.5 times the interquartile range.
primary antibodies (GLUT1, SMA, Vimentin, ATP5A) in combination with Significance was assessed using a paired t-test. d) Change of signal-to-noise ratio
fluorophore-labeled secondary antibodies (n =1). b) Comparison of SMA (SNR) before and after deconvolution for the indicated tissue types and markers.

signalinablood vessel measured with classical IMC (left) and HR-IMC (333 nm,
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Extended Data Fig. 4 | Evaluation of performance differences between high
resolution and classical IMC. a) Representative HR-IMC (333 nm) images of
marker expression in patient-derived ovarian cancer 3D cultures. All markers
from the antibody panel are visualized, highlighting their known subcellular
localization patterns. b) Example images of cell segmentation boundaries and
resulting cell masks after size exclusion. ¢) Representative images of HGSOC
patient-derived ex vivo cultures of control (DMSO) condition and carboplatin +
paclitaxel treated cells showing expression of the indicated markers. Selected
regions 1and 2 visualize morphological changes (such as nucleoli and apoptotic
bodies) uniquely observable with HR-IMC. d) Relative change in area under the

cumulative distribution function curve at different k parameters. A final k =13
was chosen. ) Heatmap showing mean marker expression per pixel-level cluster
ofthe ovarian cancer culture assessed using Rphenograph (k = 600). f) Heatmap
showing mean marker expression per pixel-level cluster of the ovarian cancer
culture. FlowSOM clusters were computed using the same strategy asin Fig. 2 but
withartificially convolved HR-IMC data (1 pm resolution) to resemble classical
IMC data. g) Mean pixel distances within the same cluster and to different clusters
inclassic IMC (1 um) and HR-IMC (333 nm). h) Ratio of cytoplasmic marker
signalin the indicated subcellular compartment vs. the cytoplasm. i) Inter-pixel
variance across markersin HR-IMC and convolved HR-IMC.
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Step 1: Panel Design

1.  Select antibodies with strong signal in classical IMC: Ensure antibodies have strong SNR in classical

(
> \/]l Jl mode. We recommend selecting a SNR > 5. Average signal intensity should reach at least 10 counts.
N

N

Titrate antibodies to determine optimal concentration: Dilute antibodies at a range of concentrations.
Test their expression on positive control tissue. Plot SNR by concentration, determining the optimal
SNR (where no further improvement is observed). Ensure antibodies are then tested at high resolution.

Step 2: Laser Energy Optimization

1. Perform Test Ablations: Using classical IMC mode (1 um ablation step size), ablate adjacent test areas using a range of
laser energy settings.

2. Assess Signal Retention: After each ablation, assess the remaining signal and tissue morphology. The goal is to identify a
laser energy that preserves sufficient ion signal for at least 4 consecutive ablation rounds (for 500 nm resolution) in the same
tissue region.

3. Choose Optimal Energy: Select the highest laser energy that still allows for consistent tissue detection across all 4 rounds.
4. Determine xo: Fit an inverse sigmoidal decay model to the marker signal intensity as a function of the number of laser

passes, and determine the inflection point (xo). This value represents the number of passes at which 50% of the tissue signal
is lost.

Step 3: Data Acquisition with HR-IMC

Begin high-resolution acquisition by adjusting the laser step size to the desired
resolution (e.g., setting it to 0.5 for 500 nm resolution). These parameters can be
configured separately for the x and y axes in the instrument's acquisition mode
settings. Reducing the step size modifies the stage movement to advance only

500 nm per laser pulse, resulting in oversampled images. The resulting TIFF files I

record each laser shot as an individual pixel placed adjacently, effectively capturing a
higher spatial sampling of the tissue.

Step 4: Image Deconvolution and Reconstruction

1. Download Deconvolution Algorithm: Access and download the HR-IMC deconvolution algorithm
from the designated online source (e.g., GitHub repository, as referenced in the Methods section).

2. Tiff File Extraction: Use steinbock to extract TIFF files from the raw mcd files
(https://bodenmillergroup.github.io/steinbock). This process will generate an img/ directory within
your working folder structure containing individual TIFF files.

3. Perform Deconvolution: Run the deconvolution algorithm using the TIFF files located in

the img/ folder as input. In the script, specify the path to your input images and define an output
directory for the deconvolved results. Additionally, set the xo value - the inflection point of the
modeled ablation profile from Step 1. Once configured, execute the script to generate a high-
resolution reconstruction of the sample. The algorithm automatically adapts the deconvolution
parameters based on intensity differences across markers.

Step 5: Image Segmentation

1. Quality control: Evaluate markers based on signal intensity and signal-to-noise ratio to identify
and exclude low-quality markers.

2. Segment Cells: Proceed with the steinbock segmentation workflow, replacing the original TIFF
files in the img/ folder with the deconvolved TIFF images. Ensure to update the segmentation
configuration to match the higher resolution of the HR-IMC data by adjusting the expected pixel
size parameter from the default value of 1 (used for classic IMC at 1 ym resolution) to the
appropriate value for your dataset (e.g., 0.5 for 500 nm resolution).

3. Data Analysis: Run the segmentation workflow and proceed with downstream single-cell
analysis as usual or analyze pixel-level data.

Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Practical guidelines for implementing high-resolution (for example, laser step size), and details the workflow for image deconvolution
imaging mass cytometry. This step-by-step guide provides an overview of the and cell segmentation. The schematicis intended to support users in replicating
high-resolution imaging mass cytometry (HR-IMC) process using standard IMC HR-IMC, from data acquisition to downstream analysis, using openly available
instrumentation. It outlines the essential pre-experiments required to optimize tools and software.

laser energy settings, key parameter adjustments for high-resolution acquisition
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
ggsbc(;/bellgﬁy authentication procedures foreach seed stock tised-ornovet genotype generated.-Describe-any-experiments-tised-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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