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High-resolution imaging mass cytometry to 
map subcellular structures
 

Alina Bollhagen    1,2,3,6, James Whipman1,2,3,6, Ricardo Coelho    4, 
Viola Heinzelmann-Schwarz4,5, Francis Jacob    4 & Bernd Bodenmiller    1,2 

Imaging mass cytometry (IMC) is a powerful multiplexed imaging 
technology used to investigate cell phenotypes and spatial organization 
of tissue in health and disease. The spatial resolution of IMC is presently 
at 1 µm, enabling the resolution of single cells and large subcellular 
compartments but not submicrometer intracellular structures. Here we 
report a method to improve the resolution of IMC so that it approaches that 
of light microscopy. High-resolution IMC (HR-IMC) uses an oversampling 
approach coupled with point-spread function-based deconvolution to 
achieve a resolution below 350 nm. We demonstrate the performance 
of HR-IMC in resolving subcellular structures, such as nuclear foci and 
mitochondrial networks previously undetectable with IMC, and applied 
it to visualize chemotherapy-induced perturbation of patient-derived 
ovarian cancer cells. HR-IMC extends highly multiplex IMC analyses into 
the subcellular regime, enabling analysis of cell biological features and 
characteristics of disease.

Multiplexed imaging of tissue at single-cell resolution has been trans-
formative in the understanding of disease through the discovery of 
novel biomarkers, regulators of immunity and mechanisms of drug 
resistance1–3. Single-cell analyses have unveiled fundamental concepts 
in biological systems, proving an invaluable tool in both basic research 
and translational settings4. Many multiplex imaging technologies exist, 
each with unique advantages and caveats. Immunofluorescence (IF) 
microscopy, for instance, can reach high multiplexity and resolution 
in a cyclic format but is limited by autofluorescence, and successive 
rounds of bleaching (or antibody removal) and imaging can undermine 
tissue integrity and introduce artifacts5,6. These effects, combined with 
the need for image registration, make the interpretation of subcellular 
physiology challenging. The emerging Deep Visual Proteomics plat-
form combines IF-guided microdissection with mass spectrometry 
for deep proteome coverage but currently lacks the spatial precision 
to resolve subcellular compartments7. IMC uses tissue laser ablation 
of metal isotope-labeled antibodies and mass spectrometry-based 
detection and thereby avoids autofluorescence and cycling artifacts 

due to its one-shot staining and imaging workflow. The technique, how-
ever, suffers from lower resolution than that of fluorescence imaging, 
challenging its application to subcellular biology8. To enable subcel-
lular analysis by IMC, new methods need to be developed to address 
these trade-offs.

The ability to resolve any structure by a given technology is deter-
mined by the so-called Nyquist limit, according to which a structure 
can be captured if the resolution of the technology is at least half the 
size of its smallest feature9. Currently, the laser ablation resolution of 
IMC is 1 µm, meaning that IMC resolves single cells and subcellular 
compartments such as the nucleus and the cytoplasm but subcel-
lular structures below 2 µm such as mitochondria and nucleoli can-
not be resolved. Achieving a higher laser ablation resolution in IMC 
is feasible but technically challenging due to difficulties associated 
with laser stability, tissue penetration and thermal degradation when 
using submicrometer laser beams10. As an alternative, computational 
approaches may overcome these limitations and achieve higher resolu-
tion in existing IMC systems. Recent computational strategies, such as 
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represent the underlying structure of the nucleolus (Fig. 1b,c). 
PSF-based deconvolution of these data improved performance, reas-
signing pixel values in the nucleolar cavity while accentuating the 
nucleolar periphery (Fig. 1b,c). We found that the first seven laser 
passes were critical for deconvolution while the last two passes con-
tributed minimally (Extended Data Fig. 1f). Notably, the convolved 
data had a signal-to-noise ratio (SNR) comparable to that of classic 
IMC on the sequential section (Extended Data Fig. 1g,h) and showed 
good spatial correlation for markers of large-scale structures (that is,  
smooth muscle actin (SMA) (blood vessels) and CD20 (germinal cent-
ers); Extended Data Fig. 1i), indicating that the convolved data are 
an adequate reference for benchmarking. Next, we examined the 
accuracy of our technique by comparing its performance to that 
of standard IF microscopy on the same section of formalin-fixed 
paraffin-embedded (FFPE) tissue. In each case, we stained the tissue 
section with a lanthanide-conjugated antibody but first imaged it using 
a fluorophore-labeled secondary antibody. The same section was then 
imaged with IMC. Comparing the two imaging modes for several mark-
ers (vimentin, SMA, mitochondrial membrane ATP synthase (ATP5A) 
and GLUT1) and tissue types (tonsil, lung adenocarcinoma, placenta, 
colorectal cancer, lung or bronchus, and kidney) showed that HR-IMC 
measured at 333 nm captures details as well as routine tissue IF (Fig. 1d 
and Extended Data Fig. 2a). As demonstrated on a SMA+ blood vessel, 
HR-IMC improved resolution also in fresh-frozen tissue in comparison 
to classical IMC (Extended Data Fig. 2b).

HR-IMC results were more similar to the IF pattern than classic IMC 
data from an adjacent region (Extended Data Fig. 2a) and showed better 
pixel-wise spatial correlation of markers to same-section IF data than 
did classic IMC data (Fig. 1c and Extended Data Fig. 2c). In a more visual 
assessment, HR-IMC enabled better delineation of SMA fibers in muscle 
tissue, offering improved structural separation compared to classical 
IMC (Extended Data Fig. 1j). Furthermore, in an exploration of subcel-
lular structures undetectable with classical IMC, analysis of high-grade 
serous ovarian carcinoma (HGSOC) tissue with HR-IMC revealed highly 
resolved features, including submicrometer-level structures such as 
mitochondrial networks encircling nuclei and stretching into the cyto-
plasm, filamentous SMA fibers traversing stromal cells, and fine cell 
membranes (Fig. 1e). In addition, we observed nucleolus-resembling 
structures and Ki-67 foci in nuclei of interphase cells (Fig. 1e). These 
data show that HR-IMC unveils known subcellular structures across 
multiple tissue types.

Owing to the reduction in laser energy per pass, HR-IMC had lower 
overall signal intensity than classical IMC, but notably this was not at 
the expense of SNR (Extended Data Fig. 1g). For many markers, decon-
volution improved the SNR because averaging multiple passes reduced 
noise while retaining signal (Extended Data Figs. 2d and 3a). Typically, 
the higher the resolution of HR-IMC and the higher the starting SNR 
of the marker, the stronger was this effect (Extended Data Fig. 3b), 
and some markers (for example, FOXP3) fell below the detection 
limit in HR-IMC. Furthermore, while our studies were primarily car-
ried out on the newer, more sensitive Hyperion XTi instrument, we 
achieved comparable HR-IMC performance on the Hyperion+ sys-
tem, albeit with a resolution limit of 500 nm due to its poorer stage 
precision and at slower imaging speeds (Extended Data Fig. 3c–e). 
While the SNR of many markers was within the same range as for the 
Hyperion XTi, lower-abundance markers such as CD11b or FOXP3 
were less interpretable or even no longer detected on the Hyperion+ 
(Extended Data Fig. 3f,g).

HR-IMC improves segmentation and cell phenotyping in 
densely packed tissues
Beyond measuring subcellular structures in high multiplex, HR-IMC 
should also enable better segmentation of cells in proximity to one 
another. For instance, the tonsil is a difficult tissue to segment, 
packed with small, interacting immune cells. We compared nuclear 

blind deconvolution (for example, SpiDe-SR11) and cross-modality deep 
learning12, have shown promise but rely on strong prior assumptions 
or high-resolution training data. Here we present a new method to 
increase resolution in IMC, based on oversampling coupled with image 
deconvolution. We demonstrate that HR-IMC enables the mapping of 
subcellular marker distribution at steady state and under perturbation, 
improves cell segmentation and can be used to characterize subcellular 
compartments in cell types of interest within tissue.

Results
Tissue oversampling and deconvolution enable 
submicrometer-resolution IMC
We achieved HR-IMC using a standard 1-µm laser spot to sample tissue 
at a submicrometer step size, resulting in partially redundant (that is, 
overlapping) ablation areas (Fig. 1a). To achieve this oversampling, 
we reduced the laser energy per pass, thereby obtaining a signal from 
several laser passes over any given tissue region (Extended Data Fig. 1a). 
Multiple overlapping shots thus subdivide individual 1-µm pixels 
into multiple subpixels; the number and size of subpixels for a given 
oversampled acquisition will depend on the step size used, for exam-
ple, nine subpixels for the 333-nm step size in the example shown 
(Extended Data Fig. 1b, left). In oversampled IMC, we assume that the 
signal from a given 1-µm pixel upon sampling with a single laser shot 
contains information from these subpixels, leading to image blur. To 
address this, we extracted information from the central subpixel by cor-
recting for the effect of border subpixels using deconvolution methods 
(Extended Data Fig. 1b, left). In classical microscopy, deconvolution is 
typically achieved by methods such as Richardson–Lucy (RL) or Wiener 
deconvolution, which approximate a high-resolution image by using 
a point spread function (PSF)13. Such techniques have been applied to 
fluorescence and superresolution imaging to reduce blur and resolve 
fine structures14,15. By repeating deconvolution for each overlapping 
shot, we could reconstruct a high-resolution image. This procedure 
yielded IMC images at a resolution exceeding the limits imposed by 
the laser spot size (Fig. 1a).

The effect of a border subpixel on the recorded signal for a given 
laser shot depends on two factors. First, it depends on the fraction of 
total pixel area covered by the border subpixel, which can be mathemat-
ically modeled by intersecting circle geometry (Extended Data Fig. 1b, 
left). Second, the effect of a border subpixel depends on the number of 
laser passes it has undergone before acquiring the pixel. Because IMC 
is destructive, tissue that has undergone multiple rounds of ablation 
from previous overlapping shots will contribute less signal. The number 
of laser passes for a given border subpixel can be determined based on 
its position in the laser pass map, as the direction of laser movement 
and the step size are known (Extended Data Fig. 1b, right). For instance, 
in our exemplary scenario using a laser step size of 333 nm, designed 
to achieve a resolution of 333 nm, a given analyzed region will receive 
signal from one to nine laser passes. We estimated signal loss per laser 
pass in separate experiments by repeated sampling of a tissue region in 
the identical experimental setup, followed by mathematical modeling 
of the signal loss (Extended Data Fig. 1c). Spatial correlation of mark-
ers was high between consecutive laser passes, indicating that signals 
were preserved between passes, despite an indication of some loss over 
all passes (Extended Data Fig. 1d). We then estimated the PSF for our 
experimental setup and the 333-nm step size by multiplying the propor-
tional area of the contribution of each subpixel by the signal expected 
given the number of passes across these areas (Extended Data Fig. 1e).

We compared oversampled HR-IMC data to the same HR-IMC 
data artificially convolved to a resolution of 1 µm. We used these 
artificially convolved data as a comparator rather than separately 
acquired IMC data to enable comparison on the identical section, given 
the destructive nature of the technique. As expected, this analysis 
revealed high-density, detailed images compared to the convolved 
HR-IMC data. However, oversampling alone failed to accurately 

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | December 2025 | 2601–2608 2603

Article https://doi.org/10.1038/s41592-025-02889-8

segmentation masks between HR-IMC and classic IMC on the tonsil 
and found that convolved HR-IMC data underestimated cell numbers 
and merged adjacent nuclei (Fig. 2a,b). Ground truth comparisons 
with hematoxylin and eosin (H&E)-stained images of the same sec-
tions showed that HR-IMC more accurately separated individual cells 

and better distinguished mutually exclusive markers in a pixel-level 
analysis, in both cases compared to classic IMC (Fig. 2a,c–f). Previous 
IMC publications detail so-called ‘BnT’ cells, representing interacting 
B and T cells that could not be separated by segmentation3,16. To assess 
whether HR-IMC could mitigate this problem, we imaged an FFPE tonsil 
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Fig. 1 | HR-IMC enables imaging of subcellular structures. a, Schematic 
overview comparing classic (1 µm) and high-resolution (for example, 500 nm) 
IMC. In HR-IMC, the laser ablates tissue in 1-µm spots but the tissue is sampled at 
smaller step sizes (500 nm as shown here or adapted to the desired resolution). 
Ablated ions are measured by a time-of-flight mass cytometer; images are 
reconstructed from ion count information and further processed for image 
analysis. CyTOF, cytometry by time of flight. b(i)–b(iii), Representative IMC 
images of the same cell, nucleus and nucleolus. Data were acquired at 333-nm 
steps using 1-µm laser shots (b(ii)) and transformed to a resolution of 333 nm 
using RL deconvolution (b(iii)). Data were artificially convolved to 1 µm (b(i)), 
and an IF image was acquired on the same section (b(iv)). Overlapping 1-µm laser 
shots (b(ii)) are separated and visualized consecutively; thus, each unit in the 
image represents the data from a single laser shot. Intensities were 0–1 
normalized. Scale bars, 1 µm. c, Spearman correlation between 0–1 normalized 

HR-IMC count values (1 µm, 333 nm before RL deconvolution, 333 nm after RL 
deconvolution) and 0–1 normalized IF intensity values observed at IF-IMC 
aligned nucleolar regions. Center lines of the box plot represent median values, 
box limits show the first and third quartiles, and whiskers extend to 1.5 times the 
interquartile range. The mean is represented as μ̂. Points display individual data 
points from different images (n = 3). Significance was assessed using a two-sided 
t-test. d, Representative images of a section of tonsil tissue imaged with ×40 IF 
(top) and HR-IMC (bottom). Similar results were observed in six different image 
pairs. Scale bars, 30 µm. e, Representative images of high-grade serous ovarian 
cancer tissue measured with HR-IMC compared to representative examples of 
the same subcellular structures measured with classical IMC from different 
images. Iridium 191 (191Ir), DNA intercalation marker; Ki-67, proliferation marker. 
Scale bars, 5 µm.
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Fig. 2 | HR-IMC improves segmentation and cell phenotyping. a, Representative 
images comparing nuclear boundaries in the tonsil measured with HR-IMC 
versus with convolved HR-IMC data as a model of classical IMC. Colors indicate 
merged, matched or split cell masks between the two data types. Stacked bar 
plots represent relative mask contribution. H&E images of the same section serve 
as ground truth. b, Total number of cells segmented in HR-IMC (333 nm) data, in 
the respective image convolved to the resolution of classical IMC (1 µm), and in a 
same-section brightfield H&E image (×40); data are presented as mean ± s.e.m.). 
Points display individual images (n = 4). c, The proportion of segmentation masks 
that could not be mapped to equivalent masks on the same-section H&E image 
(presented as mean ± s.e.m.). Proportions were compared between the HR-IMC 
(333 nm) images and convolved equivalents. Points display individual images 
(n = 4). Significance was assessed using a two-sided t-test. d, Proportion of pixels 
that were deemed positive for both CD20 and CD3 based on a Gaussian mixture 

model (presented as mean ± s.e.m.). Proportions were compared between the 
HR-IMC (333 nm) images and convolved equivalents. Points display individual 
images (n = 4). Significance was assessed using a two-sided t-test. e, Same-section 
H&E and HR-IMC (333 nm) staining of human colon, lung adenocarcinoma and 
tonsil FFPE tissues. Scale bars, 100 µm. f, Representative images of B and T cells in 
close proximity in HR-IMC (333 nm) and classical IMC acquired on a consecutive 
section. g, Heatmap of mean marker expression of annotated immune subtypes. 
Expression values are scaled, and relative abundance is compared between 
HR-IMC (333 nm) and classical IMC (acquired on the consecutive section). h, 
The proportion of total B and T cells that were classified as BnT cells compared 
between HR-IMC (333 nm) and classical IMC on the consecutive section 
(presented as mean ± s.e.m.). Points display individual images (n = 4). Significance 
was assessed using a paired two-sided t-test.

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | December 2025 | 2601–2608 2605

Article https://doi.org/10.1038/s41592-025-02889-8

11

9

12

5

6

2

8

4

10

7

1

13

−1.0 −0.5 0 0.5 1.0 1.5

2

1

0

Cytoplasm

β-catenin Signaling

GSTP1 Detoxification

HSP70 Chaperone

TUBB3 Microtubules

HSP27 Chaperone

Vimentin Cytoskeleton

Nucleus

H3 Histone

p53
Tumor
suppressor

Ki-67 Proliferation

p-H2AX DNA damage

p-ATM DNA repair

ERCC1 DNA repair

Survivin Cell survival

H4K12Ac
Histone
modification

H3K4me2
Histone
modification

p-Rb Proliferation

Cl. PARP Apoptosis

Cl. caspase 3 Apoptosis
191Ir DNA
193Ir DNA

Mitochondria

ATP5A ATPase

HSP10 Chaperone

Membrane

GLUT1 Metabolism

E-cadherin Adhesion

MUC16 Anti-apoptosis

Mesothelin Adhesion

LRP/MVP Drug transport

5 Resistance

4 Mitochondria

6 Membrane

10 Anti-apoptosis

3 Background

2 DNA repair/drug e�lux

1 DNA repair

11 Proliferation

13 DNA damage

12 DNA

7 Apoptosis

9 Proliferation

8 Proliferation

b

c d

CPDMSO

log (FC)

Pixel cluster

Significance
P value < 0.05
P value > 0.05

Scaled
exprs

Nuclear Nonnuclear

f

Correlation
di�erence

DNA damage
DNA repair

Apoptosis

Anti-apoptosis
Mitochondria

Proliferation
DNA repair/drug e�lux

Membrane
Resistance

DNA

Proliferation
Proliferation

t-SNE1

t-S
N

E2

Pixel cluster
1 Membrane 
5 Mitochondria 
9 Proliferation 
Other clusters

g

Cluster quality
e

h

a Image reconstruction and
pixel convolution1 2

HR-IMC of chemotherapy-
treated ovarian cancer cells

3
Comparison of subcellular
compartments

DNA p-H2AX H3K27me2 Composite

Pixel clusters ATP5A DNA

Ki-67 DNA GLUT1 DNA

6 10 3

7

4 5

2 9 8 12 13 1 11

Nuclear pixel clusters

Nonnuclear pixel clusters

Clustering of pixels using
self-organizing maps

4

1 µm 1 µm

0.10

0.05
0
–0.05

N
P/D

BISW

Group
Classic IMC
(1 µm)
HR-IMC
(333 nm)

P < 0.001

P = 0.006

P = 0.001

P = 0.026

Su
rv

iv
in

p-
Rb

H
4K

12
Ac

Ki
-6

7
p-

H
2A

X
D

N
A1

D
N

A2
H

3K
4m

e2
p-

AT
M H
3

p5
3

ER
C

C
1

β-
ca

te
ni

n
cC

3
H

SP
10

AT
P5

A
H

SP
70

G
ST

P1
TU

BB
3

H
SP

27
G

LU
T1

E-
ca

dh
er

in
LR

P
M

es
ot

he
lin

M
U

C
16

−4
−2
0
2
4

AT
P5

A
DN

A1
E-

ca
dhe

rin

ERCC1

GLUT1

GSTP1

H3K4me2H4K12AcHSP10

HSP27

H
SP70

Ki-67LR
P

M
UC

16

Meso
thelinSurvivin

TUBB3

β-catenin

p53

p-ATM

p-H2AX
p-Rb
cC

3

0

0.05

0.10

0.15

0.20

0.25

SW NP DBI

Fig. 3 | HR-IMC reveals changes in subcellular organization of ovarian cancer 
cells in response to chemotherapy. a, Schematic overview of the experimental 
workflow. b, Targets of the antibody panel grouped by subcellular location 
and with their associated functions indicated. Cl., cleaved. p-, phospho. c, 
t-distributed stochastic neighborhood embedding (t-SNE) visualization of 
tumor cell-derived pixels. Each dot represents a pixel, and colors represent 
pixel clusters. d, Heatmap of mean marker expression (exprs) of each flowSOM 
pixel cluster. Expression values are scaled, and markers as well as clusters are 
separated by nuclear or nonnuclear localization. Cluster annotations were made 
based on mean marker expression and biological knowledge. e, Comparison of 
cluster quality based on silhouette width (SW), neighborhood purity (NP) and 
Davies-Bouldin index (DBI) between clusters. The plot compares pixel-level 
clusters at a resolution of 333 nm from Fig. 2d and data artificially convolved to 
a resolution of 1 µm from Extended Data Fig. 5f. f, Representative image of cells 
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Hochberg-adjusted P value < 0.05) and where the difference in colocalization 
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DNA damage foci (p-H2AX) and open chromatin regions (H3K4me2) upon 
chemotherapy treatment are depicted below. Scale bars, 10 µm.
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section at a resolution of 333 nm and then segmented single cells from 
both HR-IMC data and classic IMC (Fig. 2g). The proportion of these 
‘BnT’ cells was over threefold greater in classical IMC than in HR-IMC 
(Fig. 2h). These data show that HR-IMC improves tissue segmentation 
in comparison to classical IMC.

HR-IMC enables analysis of subcellular phenomena in 
high-grade serous ovarian cancer
To further probe subcellular phenomena with HR-IMC, we applied 
it to patient-derived HGSOC cells cultured in 3D, aiming to compare 
chemotherapy response captured with both high-resolution and 
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Fig. 4 | HR-IMC links subcellular features to cell types and states. a, Heatmap of 
mean marker expression of annotated tumor, immune and endothelial cells and 
fibroblasts. Expression values are scaled. panCK, pan-cytokeratin.  
b, Example HR-IMC (333 nm) images of in situ HGSOC (n = 3) demonstrating 
pixel-level clustering to detect mitochondrial pixels and subsequent 
mitochondrial patch detection. c, Heatmap of mean expression of the 
mitochondrial markers HSP10 and ATP5A in pixel-level clusters. Expression 
values are scaled. d, Box plot comparing mean size of mitochondrial patches 
(mitochondrial interconnectivity, left) and number of mitochondria normalized 
to cell area (mitochondrial density, right) across different cell types. Center 
lines of the box plots represent median values, box limits show the first and third 
quartiles, and whiskers extend to 1.5 times the interquartile range. Points display 
individual cells across regions of interest (ROIs) (n = 3 ROIs). Significance was 
assessed using a two-sided, paired t-test comparing the average value for each 

cell type, calculated per ROI. e, Representative images of panCK+ tumor cells 
with high mitochondrial load and SMA+FAP+ fibroblasts with less mitochondria. 
Scale bar, 30 µm. f, Box plots comparing GLUT1 expression (left), mean size of 
mitochondrial patches (mitochondrial interconnectivity, middle) and number 
of mitochondria normalized to cell area (mitochondrial density, right) between 
normoxic (N) and hypoxic (H) tumor cells. Tumor hypoxia status was determined 
by Gaussian mixture modeling of carbonic anhydrase expression. Points display 
individual cells across ROIs (n = 3 ROIs). Center lines of the box plot represent 
median values, box limits show the first and third quartiles, and whiskers extend 
to 1.5 times the interquartile range. Significance was assessed using a two-sided, 
paired t-test comparing the average value for each cell type, calculated per ROI.  
g, Representative images of adjacent normoxic and hypoxic tumor regions showing 
differential mitochondrial (ATP5A) and GLUT1 expression. Scale bar, 60 µm.
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classical IMC (Fig. 3a). We built a 25-plex antibody panel visualizing 
chemotherapy response markers and subcellular structures (Fig. 3b 
and Extended Data Fig. 4a) and used this panel to image cells cultured 
in the presence and absence of combined chemotherapy using car-
boplatin and paclitaxel (Extended Data Fig. 4a–c). We then artificially 
convolved the high-resolution data to a resolution of 1 µm to simulate 
classical IMC and performed pixel-level clustering of the HR-IMC data 
and the convolved data to identify regions within cells exhibiting shared 
marker profiles. For the HR-IMC data, this yielded 13 distinct clusters 
(Extended Data Fig. 4d), with marker expression patterns correspond-
ing to known subcellular structures (Fig. 3c,d). We annotated cluster 
4 as mitochondrial regions based on expression of ATP5A and heat 
shock protein 10 (HSP10) and also annotated eight nuclear clusters 
that included DNA repair regions, replication foci and DNA damage 
(Fig. 3d). The same pixel-level clustering on the artificially convolved 
image recovered similar patterns but with less distinct marker separa-
tion, and we could also reproduce the HR-IMC clusters using a differ-
ent clustering approach (Extended Data Fig. 4e,f). Using both global 
and local cluster quality metrics (Methods), we found that HR-IMC 
showed enhanced separation of clusters based on subcellular markers 
compared to convolved data as a model for classical IMC (Fig. 3e and 
Extended Data Fig. 4g–i).

Annotated clusters showed spatial colocalization with subcellu-
lar compartments that were consistent with biological expectations 
(Fig. 3f). For instance, cluster 8, associated with proliferation, cor-
responded to Ki-67 foci, while cluster 4, representing mitochondrial 
pixels, was characterized by ATP5A staining localized to the mitochon-
dria (Fig. 3f). To examine whether HR-IMC can recover known effects 
of chemotherapy on the subcellular level, we analyzed the differential 
abundance of clusters after treatment. This analysis showed an upregu-
lation of DNA damage and repair foci and a downregulation of prolifera-
tive clusters in treated cells, consistent with the classical chemotherapy 
response (Fig. 3g). Changes of marker colocalizations upon chemo-
therapy furthermore suggested a loss of Ki-67 nuclear localization and 
a significant gain of phosphorylated histone H2AX (p-H2AX) in regions 
of open transcription marked by histone methylation and acetylation 
variants, which we could confirm in the corresponding images (Fig. 3h). 
These experiments illustrate that HR-IMC identifies features that are 
not detectable with classical IMC and detects shifts on the subcellular 
level in these compartments after drug perturbation, showcasing its 
value in studying intracellular processes.

Finally, we took advantage of our unique combination of highly 
multiplex and subcellular resolution imaging to examine subcellular 
architecture of different cell types in situ, within their tissue context. We 
defined tumor cells, immune cells and fibroblasts in HR-IMC-imaged 
ovarian tumor tissue based on marker expression patterns (Fig. 4a), 
identified mitochondrial pixel clusters and networks marked by ATP5A 
and HSP10 expression (Fig. 4b,c and the Methods) and then com-
pared these mitochondrial networks across different cell types. As 
expected, tumor cells displayed higher mitochondrial density and 
larger mitochondrial networks than the other cell types (Fig. 4d,e). 
Also, hypoxic (CAIX+) tumor cells showed reduced mitochondrial 
content and increased GLUT1 expression compared to normoxic cells 
(Fig. 4f,g). This approach holds great potential for mapping subcellular 
structures in different cell types and states in situ.

Discussion
This work demonstrates the application of submicrometer-level UV 
laser positioning to approximate and reconstruct image details at a 
resolution greater than that achievable with standard IMC in the tissue 
types studied. By modeling and optimizing laser energy settings, we 
could deconvolve the HR-IMC signal in a manner uniquely tailored to 
the characteristics of IMC. We have thus established a new acquisition 
mode for IMC that enhances resolution while remaining compatible 
with current instrumentation.

While a host of superresolution methods have shown enhanced 
resolution in IF data, these methods have limited application to IMC. 
Many require considerable computational resources as well as pairs of 
high- and low-resolution training data, with the latter thus far not avail-
able for IMC. Recently described self-supervised blind deconvolution 
strategies for IMC data are constrained by the need for post hoc infer-
ence of information that has not been experimentally measured11,12. By 
contrast, our HR-IMC approach primarily relies on technical innova-
tion at the image acquisition stage rather than on inference alone. By 
precisely altering the physical characteristics of ablation, we record 
dense, richer imaging data that can be deconvolved with a PSF spe-
cifically tailored for IMC. Moreover, the data generated using HR-IMC 
could be useful for the development of superresolution technologies 
specifically adapted for IMC.

Currently the resolution of HR-IMC is limited by the precision of 
tissue ablation and stage movement, the decrease in signal intensity 
and the increase in imaging times (Extended Data Fig. 3). As the speed 
of laser ablation and the precision of stage movement improve, these 
technical limitations can be addressed. Furthermore, the loss of signal 
intensity observed in HR-IMC could be overcome by signal amplifica-
tion methods such as SABER-IMC17. On the other hand, the computa-
tional processing of oversampled data could be achieved with a range 
of deconvolution strategies. For instance, we modeled laser aperture as 
an evenly ablating circle, thus not accounting for crater effects or tissue 
density. Craters arise from the Gaussian profile of most laser beams, 
because the center delivers more energy than the edges. Incorporating 
these factors into the calculations or developing spatially variant PSFs 
to account for local tissue composition may provide a more accurate 
representation of the tissue in the near future.

In summary, we provide a new approach to analyze cell biology 
at the intracellular level. HR-IMC can capture spatial distribution of 
proteins within cells, identify organelle-specific signaling events and 
characterize subtle morphological features that correlate with func-
tion or disease state. In the future, this might facilitate discovery of 
complex cellular architectures and new cell phenotypes. Together, 
these advances establish HR-IMC as a new high-resolution, multiplexed 
imaging method capable of mapping the subcellular structures that 
underpin fundamental biological processes.
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Methods
Ethics
Ethical approval was granted by the Ethical Committee of Northwest and 
Central Switzerland (EKNZ, BASEC IDs 2017-01900 and 2023-00988).

High-resolution IMC
HR-IMC data were acquired with the Hyperion XTi or Hyperion+ imag-
ing system. While HR-IMC does not require hardware modification of 
the instrument, the step size parameter was adjusted to a value of either 
0.5 µm or 0.33 µm in the instrument’s acquisition mode settings and 
the laser energy was reduced accordingly to allow multiple rounds of 
tissue ablation. Detailed instructions for practical implementation are 
available in Extended Data Fig. 5. To deconvolve overlapping signals, we 
calculated the expected overlap between 1-µm ablations with a circular 
laser aperture (Extended Data Fig. 1b). Each pixel was divided into a 
number of subpixels based on intersecting circle geometry. Briefly, 
circles were superimposed (at either 500-nm or 333-nm steps) in vector 
graphics-based software to replicate the laser scanning pattern. The 
areas of these intersects were approximated using ImageJ18. The signal 
contribution of each subpixel was calculated by multiplication of the 
proportional area of the subpixel and the observed signal of the pixel. 
To account for subpixels that had been ablated several times from the 
overlapping acquisition above and to the left of the pixel of interest, 
overlaps were annotated with pass numbers. The resulting laser pass 
map depends on the direction of the scanning laser (classically left 
to right and top to bottom). For each successive laser shot, regions 
corresponding to the newest ablation were labeled with the number 
of previous passes they had received. The signal was then corrected 
based on the expected signal remaining given the number of passes 
received. Correction was based on an experimentally derived inverse 
sigmoidal loss function at −10 dB of laser energy. The calculated con-
tributions were summarized in a skewed 3 × 3 PSF by multiplying the 
signal of each subpixel by its relative area contribution, resulting in 
upper subpixels contributing less signal, given that their overlapping 
area was measured in regions that experienced greater pass numbers 
(Extended Data Fig. 1e).

Laser energy optimization and deconvolution
Signal loss was measured for different laser energies to select an energy 
that permitted signal recovery after nine rounds of ablation. To do 
this, a 500 × 500-µm area of the tissue was repeatedly ablated for a 
total of ten passes at laser energies of 0, −1, −10, −15 and −20 dB. Pixel 
values from the iridium channel (191Ir and 193Ir) were summed for each 
pass and for each energy, to measure intensity loss. The signal loss 
function was defined as:

Intensity (x) = I0 −
I0

1 + exp (− (x − x0))
,

where intensity(x) represents the estimated intensity at pass x, I0 is the 
maximum intensity and x0 is the inflection point (the pass number at 
which signal begins to rapidly decline). Model parameters were esti-
mated using nonlinear least-squares fitting implemented in R (version 
4.3.2) using the nsl2 package. After modeling each energy, we selected 
−10 dB as the optimal laser energy for our experimental setup.

For multiplexed analyses, the calculation was carried out for 
each channel, where I0 represented the maximum marker signal and 
remained constant across channels. This ensured that correction was 
carried out on a marker, rather than image-specific, level. To recover 
higher-resolution images, RL deconvolution was implemented in 
Python using the richardson_lucy function of the skimage.restora-
tion (version 0.16.2) module. The raw images were split into respective 
channels, and each was deconvolved with the predefined PSF using 
seven iterations to achieve convergence. The number of iterations was 
determined based on empirical testing to balance restoration quality 

and noise amplification. A three-pixel border was removed from the 
image after processing, as the PSF is designed to take into account the 
effect of surrounding pixels that are partially absent in border pixels. 
Our approach uses classic RL deconvolution, which is well suited for 
Poisson noise as present in IMC data. It is important to note that we 
focused on optimizing the PSF for nonuniformly ablated oversampled 
IMC data. By contrast, Wiener deconvolution is optimized for Gauss-
ian noise. To avoid noise amplification during the iterative process, 
we monitored the increase in the log likelihood of the Poisson model 
after each iteration. The optimal number of iterations was chosen 
based on the flattening of the log likelihood curve combined with visual 
inspection of the images, confirming enhanced resolution without the 
introduction of artifacts or noise.

Tissue staining
Tissue samples were preserved using formalin fixation and paraf-
fin embedding at the university hospitals of Basel and Zurich. Anti-
body staining was performed according to a standardized IMC 
protocol, with specific antibody clones and concentrations listed in 
Supplementary Table 1. All antibodies underwent a two-step validation 
process by detection of the unconjugated antibody using secondary 
IF staining and IMC analysis of the metal-conjugated antibody. Images 
were compared to staining patterns from the Human Protein Atlas using 
positive and negative control tissues. First, the tissue slides were depar-
affinized by incubation in Histo-Clear (Biosystems) for 10 min each over 
three consecutive rounds. They were then rehydrated by dipping them 
in 100% ethanol twice for 5 min each, followed by exposure to a series of 
ethanol solutions diluted with deionized water (96%, 90%, 80% and 70% 
ethanol) for 3 min each. Heat-induced epitope retrieval was carried out 
by incubating the slides in Tris-EDTA buffer (pH 9) at 95 °C for 30 min 
using a NxGen decloaking chamber (Biocare Medical). After cooling 
for 20 min, the slides were blocked in TBS-T buffer (20 mM Tris, pH 
7.6, 150 mM NaCl, 0.1% Tween) containing 3% BSA for 1 h to minimize 
nonspecific antibody binding. The tissue samples were incubated over-
night at 4 °C with a full panel of metal-tagged antibodies. The next day, 
the slides were washed with TBS buffer three times for 5 min each and 
subsequently incubated with 0.5 μM Cell-ID Intercalator-Ir (Standard 
BioTools) for 5 min to detect DNA. After another wash with TBS and 
a dip in deionized water, the slides were dried using pressurized air.

To perform combined IF and IMC staining, tissue samples were 
first stained overnight at 4 °C with primary antibodies (Supplemen-
tary Table 1), followed by the use of fluorophore-labeled secondary 
antibodies. After washing twice with TBS buffer, fluorescently labeled 
or metal-conjugated secondary antibodies targeting the host species 
of primary antibodies were applied for 1 h at room temperature. For IF, 
a coverslip was mounted using 85% glycerol to perform immunofluo-
rescent imaging. Images were acquired using a CELENA X microscope 
(Logos Biosystems) with a ×40 objective. After this imaging step, the 
coverslip was removed using TBS, and the slides were washed, dried 
and prepared for laser ablation and analysis by IMC.

To perform combined IMC with H&E staining, an additional H&E 
staining step was included after heat-induced epitope retrieval. Briefly, 
sections were stained according to standard protocols, mounted with a 
coverslip with 85% glycerol and imaged using a ZEISS Axio slide scanner 
at ×40 in brightfield mode. Immediately after imaging, the coverslip 
was removed using TBS, and the standard IMC staining protocol was 
continued as previously described.

Immunofluorescence comparison
IF staining was carried out on FFPE-embedded tonsil, lung adenocar-
cinoma, placenta, lung or bronchus, kidney and colorectal cancer 
tissues using a fluorophore-labeled secondary antibody. HR-IMC data 
were acquired from the same section after imaging, detecting the 
metal-labeled primary antibody using the ZEISS Axioscan 7 at ×40. To 
align the data modalities, a transformation matrix was generated with 

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02889-8

the Napari affinder plugin. For nucleolar comparison, IF pixel coordi-
nates were transformed into IMC space, and each pixel was assigned 
to its nearest IMC pixel based on a k-nearest-neighbor search using the 
R package RANN (version 4.0.16). For comparison to IF staining across 
larger tissue areas in lung adenocarcinoma, placenta, lung or bronchus, 
kidney and colorectal tissues, pixels were assigned by directly binning 
those that shared the same coordinates. Spearman’s correlation (using 
the stats package (version 4.3.1)) was then calculated on a subset of 
the image focused on nucleolar structures in the tonsil or across the 
whole image for other tissue types. Correlation was calculated using 
normalized expression values from the DNA, GLUT1, SMA, ATP5A or 
vimentin channel.

Data processing
Multiplexed tissue images were processed using the Steinbock toolkit 
and workflow19, available at https://github.com/BodenmillerGroup/
steinbock. Briefly, raw mcd files from the Hyperion Imaging System 
were converted to TIFF format and preprocessed by applying a hot pixel 
filter with a threshold of 50. Cell segmentation was performed using 
the pretrained neural network DeepCell, with min–max normaliza-
tion applied to each channel and an adjusted pixel size parameter of 
0.33. Cytoplasmic channels were assigned as panCK, E-cadherin and 
TUBB3 for the ex vivo and in situ analysis and as VIM and CD45 for tonsil 
segmentation. Nuclear channels were set as H3K4me2, 191Ir and 193Ir for 
ex vivo and in situ analysis and as 191Ir and 193Ir for tonsil segmentation. 
Single-cell segmentation masks were overlaid on the TIFF images, 
enabling the extraction of both spatial features and mean marker 
expression levels, which were summarized as the mean count values 
for each channel across pixels within a given cell. For downstream 
analysis, cells with an area smaller than 55 µm2 or greater than 555 µm2 
were removed, as they most likely result from segmentation artifacts.

Data transformation and normalization
To correct for signal spillover, pure spots of each metal-tagged anti-
body were measured, and compensation was performed using the 
CATALYST R package (version 1.26.1)20. The raw counts were adjusted 
by applying a 99th-percentile cutoff and then subjected to arc-sinh 
transformation with a cofactor of 1. For visualization and clustering, 
the transformed data were normalized to a scale ranging from 0 to 1. All 
further analyses were conducted using the arc-sinh transformed data.

Image convolution
HR-IMC images were artificially convolved to lower resolution to pro-
vide demonstrative same-slide low-resolution data. Convolution was 
performed in R (version 4.0.16), where pixels were binned into 3×3 
superpixels and raw count values were summed.

Segmentation comparison
Segmentation quality was assessed by phenotyping immune cells in the 
tonsil and direct comparison of cell masks in convolved and HR-IMC 
data. HR-IMC (333 nm) images were convolved, and both images under-
went nuclear segmentation using DeepCell as previously outlined. 
Each mask was assigned to its nearest mask in the corresponding image 
based on a nearest-neighbor search using the R package RANN (version 
4.0.16) (RRID:SCR_024297). Masks identified at a distance greater than 
the major axis of the matched cell were discounted. Multiple masks that 
aligned to a single mask were annotated as ‘split’, with the correspond-
ing mask annotated as ‘merged’. To assess the accuracy of segmenta-
tion in these data, H&E images were segmented using QuPath (version 
0.4.4) cell detection (threshold, 0.05; sigma, 0.5; minimum area, 8 µm; 
background radius, 20 µm; and standard settings), aligned using the 
Napari affinder plugin (version 0.5.6) and assigned to corresponding 
cell masks as previously outlined.

Cell phenotyping was assessed in the tonsil by comparing the 
ratio of ‘BnT’ cells in consecutive sections of the tonsil measured with 

HR-IMC (333 nm) and classical IMC. Cells were classified by independ-
ent clustering of the image-normalized expression values. The Rphe-
nograph algorithm21 was used to construct a shared nearest-neighbor 
graph (k = 20) using Euclidean distance, implemented in the R package 
Rphenograph (version 0.99.1) (RRID:SCR_022603). To refine edge 
weights in the shared nearest-neighbor graph, Jaccard similarity was 
applied to pairs of cells. Louvain community detection was then applied 
to optimize cluster modularity based on the resulting graph. The result-
ing clusters were annotated as either B cells, BnT cells, CD4+ T cells, 
CD8+ T cells or ‘other’, based on canonical immune cell markers. Pro-
portions of the shared cell types were compared between images. To 
assess clustering stability, the image-normalized expression values 
were independently clustered using k-means clustering (k = 10) with 
the R package clvalid (version 0.7). To determine pixel double positiv-
ity, images were converted into image matrices and Gaussian mixture 
models were implemented for the scaled expression values of CD3 
and CD20 with the densityMclust function in the R package mclust 
(version 6.1.1).

Quantification of signal intensity and signal-to-noise ratio
To quantify pixel signal intensities, pixel counts were extracted from 
each channel of raw TIFF images acquired at different resolutions 
(1,000 nm, 500 nm, 333 nm and 200 nm). Pixel classification into 
background and foreground was performed using Otsu threshold-
ing, implemented via the EBImage R package (version 4.44.0). Otsu’s 
method determines an optimal threshold by minimizing the vari-
ance within each class. We verified that the number of pixels classified 
as foreground remained consistent across conditions and visually 
inspected all thresholded images to exclude the occurrence of artifacts. 
Mean pixel intensity was then calculated as the average signal intensity 
across foreground pixels, while total pixel intensity was determined 
by summing the intensities of the foreground pixels. The SNR was 
computed by dividing the mean intensity of the foreground pixels by 
the mean intensity of the background pixels. It should be noted that 
this quantification may be influenced by variations in cell density and 
size within the images.

Three-dimensional patient-derived ovarian cancer culture
Three-dimensional patient-derived ovarian cancer cultures were per-
formed according to previously published protocols22. The tissue 
sample from a patient with high-grade serous ovarian cancer was pro-
cessed within 30 min after surgery. Cultures were treated with DMSO 
or a combination of 100 µM carboplatin (Labatec Pharma) and 100 nM 
paclitaxel (Merck).

Cell- and pixel-level clustering approaches
For pixel-level clustering of ex vivo and in situ data, single-pixel 
expression profiles were extracted from TIFF files and pixels outside 
segmentation masks were excluded. Pixels were aggregated across 
conditions and clustered into subcellular clusters using the flowSOM 
algorithm23 as implemented in the CATALYST package (version 1.26.1)24 
(RRID:SCR_017127) and suggested by the Pixie workflow25. Normalized 
marker expression values were used for this clustering step to minimize 
the impact of brightness variation between markers. Next, the mean 
expression profile of each cluster was determined and metaclustered 
using consensus hierarchical clustering based on z-scored expression 
values. The number of metaclusters was initially selected based on 
cluster stability (Extended Data Fig. 4d), and a final higher k value was 
selected to enable resolution of subcellular structures. Resulting clus-
ters were manually annotated using biological knowledge. To simulate 
traditional IMC data, HR-IMC data were artificially convolved to a reso-
lution of 1 µm and clustered using the same approach. For pixel-level 
clustering in the ex vivo analysis, additionally unsupervised clustering 
was performed using the Rphenograph algorithm with k = 600 to con-
struct a k-nearest-neighbor graph and identify community structure. 
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Due to computational constraints, the dataset was downsampled 
to 30,000 pixels for this analysis. All random sampling steps were 
controlled with fixed seeds to ensure reproducibility. For cell-level 
clustering in the ex vivo analysis, the Rphenograph algorithm (k = 20) 
was applied, and resulting clusters were annotated to cell types based 
on their scaled marker expression profiles.

Comparison of cluster qualities
To evaluate cluster quality of HR-IMC data compared to that simulated 
traditional IMC data, the average distance between cluster means and 
the silhouette width were computed. For the average distance, the 
Euclidean distance between the centroids (means) of all cluster pairs 
was calculated in the scaled marker expression space. The distances 
were averaged to quantify how well separated the clusters were. Larger 
average distances indicate better separation. The silhouette width 
was calculated for each individual pixel to evaluate how well each 
pixel matched its assigned cluster compared to other clusters26,27. It 
is determined by comparing the average distance of a pixel to other 
pixels within its own cluster (intracluster distance) with the average 
distance to pixels in the nearest neighboring cluster (nearest-cluster 
distance). The overall clustering quality was summarized by averaging 
the silhouette widths of all pixels, allowing for a direct comparison 
between HR-IMC and simulated traditional IMC datasets. In addition, 
neighborhood purity was computed as the percentage of the ten near-
est neighbors that belonged to the same cluster28. Davies–Bouldin 
index was computed using the index.DB function implemented in the 
clusterSim package29. The R package bluster was used for implementa-
tion of all other cluster quality metrics.

Differential abundance analysis
To assess significant differences in the proportions of subcellular 
clusters between untreated cells and those exposed to chemother-
apy, differential abundance analysis was performed using the edgeR 
R package (version 4.0.16)30 (RRID:SCR_012802). Cluster 3 showed 
no marker expression, suggestive of background pixels, and was 
therefore excluded from this analysis. This differential abundance 
analysis includes dispersion estimation to account for variability in 
the data and fitting a negative binomial generalized linear model to 
the cluster counts. A design matrix was created to represent the rela-
tionship between cluster counts and treatment conditions, enabling 
a comparison of chemotherapy-treated cells with the DMSO-treated 
reference group. The log (fold change) of each subcellular clus-
ter was computed, and significance was evaluated by performing 
quasi-likelihood F-tests. A false discovery rate threshold of <0.05 
was applied using the Benjamini–Hochberg method to adjust for 
multiple comparisons.

Pixel-level correlation analysis
To investigate colocalization of proteins, we conducted a pixel-level 
correlation analysis of markers. Spearman correlation coefficients 
were computed for each marker pair within cells using the stats pack-
age (version 4.3.1) and aggregated to mean correlation values for 
each treatment condition. To assess changes in correlation struc-
tures between conditions, Wilcoxon testing was used to compare the 
Spearman correlation coefficients between DMSO and chemotherapy 
(carboplatin and paclitaxel) conditions. The Benjamini–Hochberg 
method for multiple-comparison adjustment was used to control the 
false discovery rate, and P values < 0.05 were considered statistically 
significant. The final results visualize significant changes in protein 
colocalization induced by chemotherapy, represented as the difference 
in mean correlation between the two conditions.

Detection of mitochondria via patch analysis
To identify mitochondrial structures at the pixel level, we employed 
patch detection. First, a spatial interaction graph was constructed on 

the pixel level using the buildSpatialGraph function from the imcRtools 
package, with a one-pixel threshold for neighborhood expansion. Patch 
detection was then performed using the patchDetection function, 
which grouped spatially connected mitochondrial pixels (within the 
defined graph) into contiguous patches. Mitochondrial pixels were 
defined as those expressing the markers ATPTA and HSP10, and the 
detection was restricted to pixels of interest without additional spatial 
expansion. Patches were then summarized at the single-cell level by 
calculating the number of distinct mitochondrial patches per cell and 
the average number of mitochondrial pixels per patch.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data from this study are available at Zenodo (https://doi.
org/10.5281/zenodo.17077712)31 and upon request from the 
corresponding author.

Code availability
The code used to generate all analyses and figures in this study is 
available in our GitHub repository (https://github.com/Bodenmiller 
Group/HR_IMC).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Experimental and computational deconvolution 
strategy for HR-IMC. a) Representative images of Ir191 (DNA) signal in tonsil 
tissue after successive rounds of ablation at -15 dB laser energy. b) The schematic 
shows a pixel split into areas (indicated by shades of gray), where each area 
corresponds to a different intersection of surrounding pixels (left). The acquired 
pixel (blue) is represented as a composite of multiple sub-pixels (violet and 
red). To deconvolve the acquired pixel and isolate the central sub-pixel of 
interest (1, red), the influence of surrounding or border sub-pixels (2, violet), 
must be considered. On the right, the laser pass map is visualized for the same 
pixel, here split into regions defined by the number of laser passes received. 
These patterns are theorized from a model of 9 overlapping pixels, required for 
imaging at 333 nm. c) Signal intensity loss after repeated acquisition measured 
at different energies. Inverse sigmoidal models were fit for different laser 
energies. d) Pearson’s correlation of Ir191 (DNA) signal of image pixels measured 
between successive rounds of ablation (top). Pearson’s correlation was also 
correlated with the first pass as a reference (bottom) demonstrating z-stack 
related signal alterations. The smoothed line represents a LOESS fit with 95% 
confidence interval. e) Exemplary image of a 3×3 Point spread function (PSF) 
applied to 333 nm HR-IMC. Visualized is the signal contribution of individual 
sub-pixels to the acquired pixel. This PSF is utilized in the Richardson-Lucy 
deconvolution process to model the blurring of high-resolution estimates, 
enabling reconstruction of the acquired data. f ) Spearman correlation between 
0-1 normalized HR-IMC count values as indicated (that is, only oversampled or 

additionally deconvolved with varied pass omissions) and 0-1 normalized IF 
intensity values, at IF-IMC aligned nucleolar regions. Center lines of the boxplot 
represent median values, box limits show the first and third quartiles, and the 
whiskers extend to 1.5 times the interquartile range. Points display individual 
data points of technical replicates (n = 3). Significance was assessed using a 
two-sided t-test. g) Comparison of marker signal intensity (left) and SNR (right) 
between HR-IMC (333 nm) artificially convolved to the resolution of classical 
IMC (1 µm), and classical IMC (1 µm). Representative images are displayed on the 
far right. h) Representative IMC images of CD20 and vimentin before and after 
Otsu thresholding for SNR calculation. i) Correlation of markers of large-scale 
structures (SMA: smooth muscle surrounding blood vessels, CD20: B cells 
accumulating in germinal centers) between classic IMC and HR-IMC (333 nm) 
convolved to the resolution of classic IMC. Shown are arcsinh-transformed 
count values from spatially registered regions in consecutive tonsil sections. 
Pixel values were binned to a resolution of 8 µm, corresponding to twice the 
section thickness. Representative images are shown. j) Comparison of SMA 
fiber resolution in muscle tissue between convolved HR-IMC data to simulate 
classical IMC and HR-IMC (333 nm). Two regions of interest (1 and 2, left image) 
illustrate differences in spatial resolution. Line profiles extracted across SMA-
positive fibers in these two regions (right images) reveal discrete signal peaks 
corresponding to individual fibers. Regions highlighted in purple indicate areas 
where HR-IMC enables clear separation of adjacent fibers, which appear as 
merged structures in classic IMC data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Applicability of HR-IMC to different tissue types.  
a) HR-IMC and IF staining were carried out on five different FFPE tissue types 
(lung adenocarcinoma, lung/bronchus, placenta, colorectal cancer, kidney). 
Displayed are HR-IMC images and the corresponding IF image of the same 
section. Classical IMC data from an adjacent region of the section is shown 
for comparison of data quality. Data was generated using metal-labeled 
primary antibodies (GLUT1, SMA, Vimentin, ATP5A) in combination with 
fluorophore-labeled secondary antibodies (n = 1). b) Comparison of SMA 
signal in a blood vessel measured with classical IMC (left) and HR-IMC (333 nm, 

right) in fresh-frozen tissue (n = 1). c) Correlation of marker expression of 
classic IMC (1 µm resolution) and HR-IMC (333 nm resolution) to same-section 
immunofluorescence, for the indicated tissue types and markers. Areas of 
interest for classic IMC and HR-IMC (333 nm) were acquired on adjacent regions. 
Center lines of the boxplot represent median values, box limits show the first 
and third quartiles, and the whiskers extend to 1.5 times the interquartile range. 
Significance was assessed using a paired t-test. d) Change of signal-to-noise ratio 
(SNR) before and after deconvolution for the indicated tissue types and markers.
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Extended Data Fig. 3 | Performance of HR-IMC across IMC platforms. a) 
Change in SNR before and after deconvolution of HR-IMC (500 nm, left) and 
HR-IMC (333 nm, right) across different markers in human tonsil (FFPE). b) 
SNR versus signal intensity of markers detected at 1 µm (blue), 500 nm (pink), 
300 nm (orange) and 200 nm (yellow) IMC/HR-IMC. Data was not transformed 
with RL deconvolution. c) The exponential relationship between resolution 
and acquisition time with the indicated instruments. d) Representative images 
acquired using classic IMC (1 µm) and HR-IMC (500 nm) on the Hyperion+ 
system, highlighting subcellular structures such as Ki67 nuclear foci, cell 

boundaries, and smooth muscle actin (SMA) fibers. e) Signal intensity loss after 
repeated acquisition measured at different laser energies using the Hyperion + . 
Inverse sigmoidal models were fit for laser energies -4, -3, -1, 0, and 4 dB. f ) SNR 
plotted against signal intensity for markers detected across classic IMC (1 µm) 
and HR-IMC (500 nm) on both Hyperion XTi and Hyperion + . Data shown without 
Richardson-Lucy deconvolution. g) Representative HR-IMC (500 nm) examples 
of low-abundance markers on the Hyperion + , showing preservation of CD11b 
and loss of FoxP3 signal.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Evaluation of performance differences between high 
resolution and classical IMC. a) Representative HR-IMC (333 nm) images of 
marker expression in patient-derived ovarian cancer 3D cultures. All markers 
from the antibody panel are visualized, highlighting their known subcellular 
localization patterns. b) Example images of cell segmentation boundaries and 
resulting cell masks after size exclusion. c) Representative images of HGSOC 
patient-derived ex vivo cultures of control (DMSO) condition and carboplatin + 
paclitaxel treated cells showing expression of the indicated markers. Selected 
regions 1 and 2 visualize morphological changes (such as nucleoli and apoptotic 
bodies) uniquely observable with HR-IMC. d) Relative change in area under the 

cumulative distribution function curve at different k parameters. A final k = 13 
was chosen. e) Heatmap showing mean marker expression per pixel-level cluster 
of the ovarian cancer culture assessed using Rphenograph (k = 600). f ) Heatmap 
showing mean marker expression per pixel-level cluster of the ovarian cancer 
culture. FlowSOM clusters were computed using the same strategy as in Fig. 2 but 
with artificially convolved HR-IMC data (1 µm resolution) to resemble classical 
IMC data. g) Mean pixel distances within the same cluster and to different clusters 
in classic IMC (1 µm) and HR-IMC (333 nm). h) Ratio of cytoplasmic marker 
signal in the indicated subcellular compartment vs. the cytoplasm. i) Inter-pixel 
variance across markers in HR-IMC and convolved HR-IMC.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Practical guidelines for implementing high-resolution 
imaging mass cytometry. This step-by-step guide provides an overview of the 
high-resolution imaging mass cytometry (HR-IMC) process using standard IMC 
instrumentation. It outlines the essential pre-experiments required to optimize 
laser energy settings, key parameter adjustments for high-resolution acquisition 

(for example, laser step size), and details the workflow for image deconvolution 
and cell segmentation. The schematic is intended to support users in replicating 
HR-IMC, from data acquisition to downstream analysis, using openly available 
tools and software.
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