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Assessment of computational methods in 
predicting TCR–epitope binding recognition
 

Yanping Lu1,2,3,9, Yuyan Wang1,9, Meng Xu1,4,5, Bingbing Xie1, Yumeng Yang1,3,6, 
Haodong Xu    7   & Shengbao Suo    1,2,8 

T cell receptors (TCRs) play a vital role in immune recognition by binding 
specific epitopes. Accurate prediction of TCR–epitope interactions is 
fundamental for advancing immunology research. Although numerous 
computational methods have been developed, a comprehensive evaluation 
of their performance remains lacking. Here we assessed 50 state-of-the-art 
TCR–epitope prediction models using 21 datasets covering 762 epitopes 
and hundreds of thousands binding TCRs. Our analysis revealed that 
the source of negative TCRs substantially impacts model accuracy, with 
external negatives potentially introducing uncontrolled confounders. 
Model performance generally improved with more TCRs per epitope, 
highlighting the importance of large and diverse datasets. Models 
incorporating multiple features typically outperformed those using only 
complementarity-determining region 3β information, yet all struggle to 
generalize to unseen epitopes. The use of independent test sets proved 
crucial for unbiased assessment on both seen and unseen epitopes. These 
insights will guide the development of more accurate and generalizable 
TCR–epitope prediction models for real-world applications.

T cell receptors (TCRs) are key components of the adaptive immune 
system, responsible for recognizing specific epitopes—short peptide 
fragments derived from pathogens or self-proteins—presented by 
major histocompatibility complex (MHC) molecules1. Approximately 
95% of TCRs consist of one α chain and one β chain2, each containing 
three complementarity-determining regions (CDRs), in which CDR1 and 
CDR2 are well conserved and CDR3 is the primary region for antigen 
contact3–5. TCR–epitope interactions are pivotal for initiating immune 
responses against foreign invaders and tumor cells.

The high diversity of TCRs, coupled with the specificity of their 
interactions with epitopes, makes large-scale experimental determina-
tion of TCR–epitope interactions challenging. Traditionally, methods 
such as multimer-based assays6, in vitro stimulation7, peptide scan-
ning8 and enzyme-linked immunospot assays9 are labor-intensive and 

low-throughput, necessitating the development of high-throughput 
ways to recognize TCR–epitope interactions10. Recent advancements in 
single-cell sequencing technologies have facilitated the identification 
of a growing number of TCR–epitope pairs. This surge in experimental 
data has driven rapid progress in computational prediction models of 
TCR–epitope interactions.

Nevertheless, several key challenges continue to impede progress 
in understanding and predicting TCR–epitope interactions. (1) The 
complexity and limited understanding of interactions present a major 
barrier. Current knowledge is largely based on a relatively small number 
of structural models, which fall short of providing comprehensive 
rules applicable to TCR–epitope interactions10,11. (2) The diversity of 
features that need consideration adds another layer of complexity5. 
These features include all six CDRs from α and β chains, MHC classes 
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and removing cross-reactive TCRs, we constructed the training, test 
and independent test sets for both original and retraining model evalu-
ation. Negative datasets were constructed using antigen-specific (AS), 
patient-sourced (PS) and healthy-sourced (HS) TCRs. Importantly, we 
introduced a refined cross-matching-based AS strategy under immuno-
logically relevant categories (Methods), which minimizes false-negative 
pairings. Dataset analysis confirmed the rarity of such cross-category 
matches, validating the reliability (Extended Data Fig. 1a–c).

We focused on 50 models published in recent years, 46 of which 
provided accessible model/portal/code (including training data) for 
testing and 31 of which supplied complete code for retraining. The col-
lection includes 7 traditional machine-learning and 43 deep-learning 
models, with focus on predicting both seen epitopes (in the training 
set) and unseen epitopes (not in the training set) interactions. Models 
are categorized based on training features as CDR3β-only models, 
which rely solely on CDR3β sequences and constitute most of the 
models; and CDR3β + others models, which incorporate additional 
features beyond CDR3β, such as MHC and CDR3α-derived features 
(Supplementary Table 2).

First, to ensure unbiased evaluation of original models, we 
constructed several independent test sets containing TCRs not 
present in any training data of the original models (Fig. 1b and 
Extended Data Fig. 1d), enabling assessment of performance on entirely 
new data. Given the large disparity in size of the available test data, 
CDR3β-only and CDR3β + others models were assessed separately for 
seen- and unseen-epitope prediction. Models trained exclusively on 
individual epitopes were excluded from unseen-epitope evaluation 
to ensure fairness.

Second, to ensure standardized evaluation, we retrained 31 
models with accessible code under consistent conditions (Fig. 1b and 
Extended Data Fig. 1e), aiming to assess the methodological superiority 
of different model designs. Both categories of models were evaluated 
on test data (internal datasets, same sources as training data) and inde-
pendent data (external datasets, different sources from training data) 
for seen- and unseen-epitope prediction. Our evaluations primarily 
focused on CDR3β-only models due to their larger data availability and 
representation, with key evaluations including the impact of negative 
sample sources and other factors (Supplementary Note 1).

The evaluations from multiple angles, using area under the  
precision–recall curve (AUPRC) as the primary metric, complemented 
by other metrics, such as accuracy, precision and recall, ensured 
that our analysis provided a robust and unbiased assessment of  
TCR–epitope prediction models.

Building test sets to evaluate the original models
We evaluated 46 published original TCR–epitope prediction mod-
els (31 CDR3β-only, 15 CDR3β + others) (Supplementary Note 2). 
During preprocessing, non-canonical TCR sequences were adjusted 
by adding ‘C’ and ‘F’ residues to increase predictive data coverage18 
(Extended Data Fig. 2a,b). For CDR3β-only models, separated test sets 
were constructed for seen (S_Data1: 978 TCRs across 3 epitopes; Fig. 2a) 
and unseen (U_Data1: 345 TCRs across 40 epitopes; Fig. 2b) epitope 
scenarios. For CDR3β + others models, test sets were also built for seen 
(S_Data2: 239 TCRs across 2 epitopes; Fig. 2c) and unseen (U_Data2: 67 
TCRs across 14 epitopes; Fig. 2d) epitope prediction. To reduce bias 
from inconsistent negative TCR sampling (Supplementary Table 3), 
CDR3β-only models were tested with AS, PS and HS negatives, whereas 
only AS negatives were used for CDR3β + others models.

Performance of original models with CDR3β-only feature
For CDR3β-only models using AS negatives, ATM-TCR achieved the high-
est AUPRC (0.70) in the seen-epitope scenario (S_Data1), followed by 
the TEIM (0.68) and TEPCAM (0.67), whereas models like PiTE-epiSplit, 
TITAN and TCRfinder performed near random (AUPRC of ~0.5) (Fig. 2e). 
Among higher-scoring models, only ATM-TCR demonstrated a relatively 

and allotypes, introducing high dimensionality and variability. (3) 
Many models struggle to predict interactions with unseen epitopes, 
hindering the application of real-world scenarios where new epitopes 
need to be rapidly identified12,13. (4) Labeled TCR–epitope data are 
notably scarce and available in substantial quantities for only a few 
epitopes, varying widely in terms of the features provided. (5) The 
choice of negative datasets, which consists of TCRs that do not bind 
to specific epitopes, can introduce biases into the models and affect 
their predictive power.

To assess the performance of TCR–epitope prediction models, 
several benchmarking studies13–16 have been conducted with focuses 
on model generalizability and data dependency, such as IMMREP2213 
and IMMREP2314. These studies provided valuable insights into the 
strengths and weaknesses of different methods, highlighting advance-
ments in performance when incorporating features beyond CDR3β 
and the challenges associated with generalizing predictions for 
unseen epitopes.

However, these studies often involve a limited number of evalu-
ated models or focus primarily on specific aspects of evaluation. For 
instance, IMMREP22 focused on retraining and evaluating TCR–epitope 
prediction methods using paired αβ TCR sequence data, specifically 
targeting the seen-epitope scenario. IMMREP23 introduced a dataset 
comprising unpublished paired TCR data, aiming to address some of 
the gaps left by IMMREP22. However, it is reported that this test data 
contained potential target leakage, which would allow some models 
to exploit the test dataset structure, potentially inflating their perfor-
mance metrics. In addition, previous studies did not define specific 
training data, complicating comparisons between different model 
architectures and training strategies.

To address these limitations, we conducted a comprehensive 
benchmark of 50 publicly available TCR–epitope prediction models 
(including variants) using well-curated data from 21 databases. Our 
multifaceted evaluation strategy included (1) comprehensive data 
collection: we gathered data from multiple sources to ensure diversity 
and representativeness across human epitopes and TCRs; (2) exten-
sive prediction models: we assessed not only models that consider 
CDR3β-only feature but also those that incorporate additional features; 
(3) independent testing: we used fully independent test sets to evalu-
ate reliability and generalization of models; (4) model retraining: we 
retrained available models to control for variations in implementation 
and data settings, allowing for a fair comparison under standardized 
conditions; (5) impact of TCR similarity and cross-reactivity: we applied 
a stringent evaluation by excluding similar TCR sequences between 
training and test sets, and assessed model robustness with and without 
cross-reactivity; (6) analysis of training set characteristics: we analyzed 
the effects of different training set compositions, including negative 
TCR source and P-to-N ratio; and (7) evaluation under different sce-
narios: we assessed original and retrained models on both seen- and 
unseen-epitope prediction to evaluate robustness and generalization 
capability of models.

Our comprehensive benchmarking study offers a valuable 
resource for both model developers and end users, facilitating 
informed decisions in selecting the most appropriate models for 
specific applications. This work lays the groundwork for future 
developments in TCR–epitope prediction models, contributing to 
our understanding of the immune system and aiding in the design of 
personalized immunotherapies.

Results
Data collection and study design
We designed a workflow integrating systematic data collection, model 
retrieval and multiple comparison strategies (Fig. 1a). TCR–epitope data 
were curated from 21 datasets: 19 with positive binding pairs and the 
remaining 2 with unbound TCRs for negatives (Supplementary Table 1). 
After rigorous filtering, such as preventing data leakage with CD-HIT17 
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good trade-off between precision and recall, with an F1 score of 0.57 
(Extended Data Fig. 2c and Supplementary Table 4). Other models 
like TEIM showed notably low recall values around 0.2, indicating 
they missed many true TCR–epitope binding pairs, despite maintain-
ing high precision and specificity under the fixed threshold of 0.5. 
Conversely, models like epiTCR and AttnTAP-vdj exhibited high recall 
(>0.8) but low precision (~0.5), reflecting a more aggressive strategy 
that increases positive predictions at the cost of misclassifying many 
non-binding pairs.

In the unseen-epitope scenario (U_Data1), overall performance  
decreased compared with the seen-epitope case (Fig. 2e,f). ImRex 
achieved the highest AUPRC value of just 0.55, followed by ATM-TCR 
and others at 0.52 (Fig. 2f). Notably, 13 out of 28 models (46.4%) exhib-
ited AUPRC ≤ 0.5, suggesting that these models failed to effectively 
learn the underlying TCR–epitope binding pattern. For fixed-threshold 
metrics, ImRex maintained a relatively better specificity–recall 
trade-off. However, most models showed unbalanced performance, 
with occasional high values on individual metrics likely due to extreme 
predictions rather than consistent, generalizable performance 
(Extended Data Fig. 2d and Supplementary Table 4).

When using PS and HS negatives, the overall model rankings were 
similar to those obtained using AS negatives (with a correlation of 
0.94 and 0.92 for PS and HS, respectively) in the seen-epitope sce-
nario (Extended Data Fig. 2e–i). For instance, TEIM (AUPRC of 0.70 
and 0.74 for PS and HS, respectively) and ATM-TCR (0.68 and 0.67 
for PS and HS, respectively) remained the top-ranked performers 

(Extended Data Fig. 2e,f). Additionally, the averaged prediction 
performances of AS-, PS- and HS-based methods were consistent 
(Extended Data Fig. 2g), likely because most models were originally 
trained with the stringent AS-based method, leading to potentially 
in-depth learning of TCR–epitope binding features and more robust 
handling of different negative sources.

In the unseen-epitope scenario, similar to the results of AS-based 
strategy, using PS and HS negatives produced AUPRC near 0.5 for the 
majority of models (Extended Data Fig. 2j–l and Supplementary Table 4). 
This random-resemble performance diminished the interpretability of 
relative model rankings and showed low correlation in overall rankings 
across different negative types (Extended Data Fig. 2m,n), highlighting 
the weak generalization to new epitopes.

Model performance variability for both seen and unseen epitopes 
may arise from a combination of factors including model architecture, 
training data sizes and epitope-specific capabilities. We counted the 
total number of TCRs used by models and the number of TCRs that 
matched our three tested seen epitopes (Supplementary Tables 5  
and 6) in the training data: although models trained with larger num-
bers of TCRs, such as ATM-TCR, tended to perform better, this does  
not fully account for all results. Standardized retraining and evaluation 
are essential to accurately assess intrinsic model performance.

Performance of original models with CDR3β and other features
In the seen-epitope scenario, CDR3β + others models overall under-
performed compared to CDR3β-only models, likely due to limited 
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multifeature data (Fig. 2a,c). vibtcr-AB demonstrated the top perfor-
mance with AUPRC of just 0.59, followed by PISTE-reftcr (0.57) and 
TCRconv-large (0.55) (Fig. 2g). Some models showed relatively high pre-
cision (≥0.7) but poor specificity–recall balance (Extended Data Fig. 3a 
and Supplementary Table 4). When CDR3β-only models were applied 
to the multifeature dataset (S_Data2), results were similarly modest  
(AUPRC ranging from 0.45 to 0.57) (Extended Data Fig. 3b,c and 
Supplementary Table 4). In this context, CDR3β + others models  
generally performed better, although the improvement was not statisti-
cally significant (Fig. 2h). Notably, several models that were designed 
to accept both CDR3β-only and CDR3β + others features, such as vibtcr, 
benefited from incorporating additional features beyond CDR3β.

In the unseen-epitope scenario, model performance remained 
around 0.5, consistent with CDR3β-only models (Fig. 2f,i). ERGOII-vdj 
achieved the top performance with an AUPRC of only 0.58. Most models 
showed poor specificity–recall balance, often making extreme pre-
dictions (Extended Data Fig. 3d and Supplementary Table 4). When 
CDR3β-only models were again tested on the multifeature dataset 
(U_Data2) using only CDR3β input, models integrating additional 
features still showed modest gains (Fig. 2j, Extended Data Fig. 3e,f 
and Supplementary Table 4). For instance, epiTCR, ERGO-vdj and 
vibtcr exhibited improved predictive performance when incorpora
ting additional features.

Overall, originally trained models obviously perform better on 
seen than unseen epitopes, especially among CDR3β-only models 
(Extended Data Fig. 3g), highlighting generalization challenges with 
unseen epitopes. It is important to note that the small size of multifea-
ture tested data might influence the robustness of overall performance 
of models. Consistent training and reliable data are needed to better 
assess performance and influencing factors.

Building standardized datasets to retrain the models
To impartially evaluate TCR–epitope prediction models, we retrained 
31 available models (24 CDR3β-only, 7 CDR3β + others) on integrated 
datasets (Fig. 3a and Supplementary Note 3). For CDR3β-only mod-
els, the dataset contained 600 epitopes and 98,846 binding TCRs 
(Extended Data Fig. 4a). Data were split under stratified sampling into 
(1) cross-validation training and intradatabase-sourced seen-epitope 
testing (389 epitopes, 94,361 TCRs; Extended Data Fig. 4b,c) sets, 
and (2) independent test sets for seen (80 epitopes, 2,941 TCRs) and 
unseen (211 epitopes, 1,581 TCRs; Extended Data Fig. 4d–g) epitopes. 
Similarly, the CDR3β + others dataset (249 epitopes, 5,294 TCRs; 
Extended Data Fig. 4h) was divided for cross-validation (57 epitopes, 
4,292 TCRs; Extended Data Fig. 4i,j) and independent testing for 
seen (18 epitopes, 313 TCRs) and unseen (192 epitopes, 689 TCRs; 
Extended Data Fig. 4k–n) epitopes.
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Fig. 2 | Performance of original TCR–epitope prediction models.  
a–d, Distribution of TCR and epitope counts in seen-epitope (a,c) and unseen-
epitope (b,d) for CDR3β-only datasets and CDR3β + others datasets used to 
assess originally trained models. e,f, Performance of CDR3β-only models on seen-
epitope (e) and unseen-epitope (f) evaluation. g, Performance of CDR3β + others 
models on seen-epitope evaluation. h, AUPRC comparison between CDR3β-only 
(n = 31) and CDR3β + others (n = 15) models on seen-epitope CDR3β + others test 

data. i, Performance of CDR3β + others models on unseen-epitope evaluation. 
j, AUPRC comparison between CDR3β-only (n = 28) and CDR3β + others (n = 10) 
models on unseen-epitope CDR3β + others test data. Heatmaps (e–g,i) show 
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and maximum values within 1.5 × interquartile range (whiskers). All P values were 
from two-sided Wilcoxon rank-sum tests.
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Performance of retrained models with only CDR3β feature
In the seen-epitope scenario, models using AS negatives generally 
achieved lower AUPRC than those using PS or HS negatives (Fig. 3b,c). 
With AS-based strategy, epiTCR (0.83) and TEPCAM (0.82) achieved 
the highest AUPRC. Top-performing models exhibited relatively bal-
anced AUPRC, precision, recall, specificity and F1 score, indicating 
their capability to distinguish positive and negative samples. In con-
trast, lower-ranked models often showed extreme predictions, such 
as high specificity with low recall (for example, TITAN and MCMC) 
or vice versa (for example, ERGO-lstm) (Extended Data Fig. 5a and 
Supplementary Table 7).

For the results from the independent test, which was considered 
a more stringent test compared to the initial test dataset, top-ranked 
models like epiTCR, TCRGP, TEIM, TCR-BERT and TEPCAM remained 
consistent with the initial test results but showed AUPRC declines of 
up to 0.23, along with similar drops in other metrics (Fig. 3d,e and 
Extended Data Fig. 5b). Taking TEPCAM with AS negatives as an exam-
ple, AUPRC fell from 0.82 (test) to 0.59 (independent test) (Fig. 3b,d and 
Supplementary Table 7), indicating common challenges of overfitting 
or differences in intradata distribution.

In the unseen-epitope scenario, AS-based models like TCR-H, TEIM 
and NetTCR ranked higher, with relatively balanced metrics, but only 
achieved mean AUPRC of 0.52–0.53 (Fig. 3f and Extended Data Fig. 5c). 
Although some top-ranked models in the seen-epitope scenario, 
such as TEIM and ATM-TCR, also performed relatively better in 
unseen-epitope prediction, overall performance declined sharply 
(Fig. 3b,d,f). For instance, the AUPRC of epiTCR declined from 0.7 in 
the seen-epitope independent test (Fig. 3d) to 0.51 in unseen-epitope 
prediction (Fig. 3f). Models like TPBTE, MCMC and ERGO-lstm con-
tinued to display extreme one-class bias (Extended Data Fig. 5c and 
Supplementary Table 7), underscoring poor generalization to external 
datasets and unseen-epitope predictions.

Overall, across both test and independent datasets in seen- and 
unseen-epitope scenarios, models trained with PS or HS negatives 
consistently outperformed those using AS negatives, except for 
DLpTCR-series models (Fig. 3b–g). Models like vibtcr, ERGO-lstm, 
AttnTAP and TEINet showed unusually high gains in AUPRC with  
PS/HS negatives, suggesting potential model-specific sensitivities to 
negative data composition. Despite this overall advantage, it remains 
unclear whether PS or HS TCRs are superior as negative controls, as 
models were retrained and tested on matching negative source—such 
as HS-trained models being used exclusively on HS-test data—and their 
use may introduce confounding biases19,20.

Performance of retrained models with CDR3β and  
other features
When retraining models using the CDR3β + others dataset, only AS 
negatives were applied because PS and HS TCRs rarely contain addi-
tional information beyond CDR3β. In the seen-epitope scenario, three 
TCRconv models exhibited top-ranked AUPRC (0.76, 0.71 and 0.71) 
but suffered from low recall (≤0.44). Other CDR3β + others models 

showed balanced but poor performance across all metrics (Fig. 3h, 
Extended Data Fig. 5d and Supplementary Table 7).

To fairly assess the value of additional features, we also retrained 
CDR3β-only models using the multifeature dataset but relying solely 
on CDR3β input (Fig. 3i and Extended Data Fig. 5e). Their performance 
rankings remained highly consistent with those retrained on the 
standard CDR3β-only dataset (Fig. 3b), although the average perfor-
mance was lower, likely due to the substantial difference in training 
data size (Extended Data Fig. 4b,i). Independent test results showed 
a similar trend (Fig. 3k,l), with top-ranked models performance con-
sistent across CDR3β-only and CDR3β + others datasets (Fig. 3d,l, 
Extended Data Fig. 5f,g and Supplementary Table 7).

Overall, CDR3β + others models generally outperformed 
CDR3β-only models when retrained and tested under the same data 
conditions, although not significantly (Fig. 3j,m). Among four models 
supporting both CDR3β-only and CDR3β + others features (DeepTCR, 
NetTCR, TCRGP and vibtcr), two improved and one performed compa-
rably with added features (Fig. 3j,m).

In the unseen-epitope scenario, only three CDR3β + others models 
were tested, with TCRconv and TCRGP excluded as they cannot predict 
unseen epitopes. All models performed close to random prediction 
(AUPRC around 0.5), with DeepTCR-ABVJ showing extreme class bias 
(Fig. 3n–p, Extended Data Fig. 5h,i and Supplementary Table 7). These 
results again highlight the need to develop specialized models to 
improve unseen-epitope prediction in real-world applications.

Source effects of negative TCR data on retrained models
To evaluate whether key factors, including data leakage and nega-
tive sample sources, affect TCR–epitope prediction, we focused on 
CDR3β-only models for their larger training data and broader repre-
sentation. Using CD-HIT17 to remove similar TCR sequences and prevent 
data leakage, we found that AUPRC values for models trained on AS/PS 
negatives remained stable, whereas those using HS negatives decreased, 
suggesting that HS-based sampling may introduce confounders and 
overfitting, whereas AS/PS negatives offer more robust predictions in 
the context of TCR sequence similarity (Extended Data Fig. 6a–c and 
Supplementary Note 4).

When models retrained on PS or HS negatives were evaluated on 
rigorous AS-based test and independent sets, performance dropped 
significantly in both seen- and unseen-epitope scenarios, despite 
the models performing well on their own internal testing (Fig. 4a,b, 
Extended Data Fig. 6d and Supplementary Table 8). Specifically, PS–AS 
and HS–AS training–test pairs exhibited substantially lower perfor-
mance compared to PS–PS and HS–HS strategies in both test and 
independent sets, suggesting that the models trained with external 
HS/PS negatives may learn dataset-specific artifacts rather than true 
binding patterns. Interestingly, whereas PS–AS and HS–AS testing 
performed worse than AS–AS on internal test sets, their performance 
aligned closely with AS–AS on external independent data. This indicates 
that although AS-based training is a stringent approach, it may still 
be preferentially influenced by internal dataset-specific structures. 

Fig. 3 | Performance of retrained TCR–epitope prediction models. a, Epitope 
(and corresponding TCR) counts across antigen groups from different datasets. 
YFV, yellow fever virus; HBV, hepatitis B virus; HHV, human herpesvirus; HIV, 
human immunodeficiency virus. b, Performance of retrained CDR3β-only 
models on seen-epitope test. c, AUPRC comparison of models (n = 24) from b 
across AS/PS/HS negatives. d, Performance of retrained CDR3β-only models  
on seen-epitope independent test. e, AUPRC comparison of models (n = 24)  
from d across AS/PS/HS negatives. f, Performance of retrained CDR3β-only 
models in unseen-epitope test. g, AUPRC comparison of models (n = 21) from f 
across AS/PS/HS negatives. h,i, Performance on seen-epitope CDR3β + others 
test data of retrained CDR3β + others models (h) and CDR3β-only models (i).  
j, AUPRC comparison between CDR3β-only (n = 24, i) and CDR3β + others (n = 7, 
h) models. k,l, Performance on seen-epitope CDR3β + others independent test 

data of retrained CDR3β + others models (k) and CDR3β-only models (l).  
m, AUPRC comparison between CDR3β-only (n = 24, l) and CDR3β + others  
(n = 7, k) models. n,o, Performance on unseen-epitope CDR3β + others 
independent test data of retrained CDR3β + others models (n) and CDR3β-only 
models (o). p, AUPRC comparison between CDR3β-only (n = 21, o) and 
CDR3β + others (n = 3, n) models. Dot plots (b,d,h,i,k l) show per-antigen AUPRC, 
with adjacent heatmaps showing overall AUPRC, ordered by AS-based AUPRC. 
Heatmaps (f,n,o) show epitope-level AUPRC, categorized by antigen group and 
ordered by AS-based AUPRC. Colored dots (c,e,g) represent individual model 
AUPRC, black dots indicate the mean and error bars represent the mean ± s.d. 
Box plots (j,m,p) show mean (center line), first and third quartiles (box) and 
minimum and maximum values within 1.5 × interquartile range (whiskers).  
All P values were from two-sided Wilcoxon rank-sum tests.
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Conversely, when AS-trained models were evaluated on PS or HS test 
sets, performance declined in the seen-epitope scenario. However, 
on independent test sets for both seen and unseen epitopes, their 
performance remained consistent with that of AS–AS testing (Fig. 4c,d, 
Extended Data Fig. 6e and Supplementary Table 8).

These findings highlight that using external PS or HS negatives 
may artificially inflate internal validation performance by leveraging 
systematic biases. In contrast, the AS-based reshuffling strategy—
aligned with immunological context—enables more reliable learning 
of biologically meaningful TCR–epitope binding patterns. Despite 
its advantages, AS-based training still benefits from independently 
sourced test sets to ensure objective assessment.

Cross and low-prevalence effects of TCRs on retrained models
In generating negative samples using the AS-based approach, 
cross-reactive TCRs—those that bind multiple epitopes—are likely to 
introduce false negatives (FNs). In our dataset, about 10.5% of positive 
TCRs were cross-reactive (Extended Data Fig. 7a). Although these TCRs 
were excluded by default to reduce noise, we reintroduced them into 
all data splits to evaluate their effect on model performance.

We first compared models retrained and evaluated with and with-
out cross-reactive TCRs using the AS negatives. Overall, including 
cross-reactive TCRs did not significantly alter model performance 
on both test and independent test sets (Extended Data Fig. 7b,c and 
Supplementary Table 8). Additionally, we evaluated a traditional 

Independent testTest Independent test

0.002

0.009

0.003

0.01

0.002

0.009

0.003

0.08

0.003

0.24

0.003

0.87

AS
|

AS

AS
|

HS

HS
|

HS

AS
|

AS

AS
|

PS

PS
|

PS

AS
|

AS

AS
|

HS

HS
|

HS

AS
|

AS

AS
|

PS

PS
|

PS

AS
|

AS

HS
|

AS

HS
|

HS

AS
|

AS

PS
|

AS

PS
|

PS

0.008

0.96

0.008

0.96

0.001

0.16

0.001

0.16

0.4

0.5

0.6

0.7

0.8

AS
|

AS

AS
|

HS

HS
|

HS

AS
|

AS

AS
|

PS

PS
|

PS

AS
|

AS

HS
|

AS

HS
|

HS

AS
|

AS

PS
|

AS

PS
|

PS

Training

Test

0.001

0.008

0.001

0.093

AS
|

AS

HS
|

AS

HS
|

HS

AS
|

AS

PS
|

AS

PS
|

PS

0.4

0.5

0.6

0.7

0.8

0.9

AU
PR

C

0.4

0.5

0.6

0.7

0.8

0.9

AU
PR

C

0.4

0.5

0.6

0.7

0.8

0.9

AU
PR

C

AU
PR

C

0.4

0.5

0.6

0.7

0.8

0.9

AU
PR

C

AU
PR

C

Test Independent test Independent test

0.4

0.5

0.6

0.7

0.8

Training

Test

a b

c d

Training

Test

Training

Test

Fig. 4 | Source effect evaluation of negative TCRs on retrained models.  
a,b, Performance of PS- and HS-based retrained models evaluated on AS-based 
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random reshuffling method (defined as AS-Rand), which is commonly 
used in model training, as a control, confirming minimal performance 
differences between models trained with or without cross-reactive 
TCRs (Extended Data Fig. 7d). These results suggest that with a rela-
tively low cross-reactivity rate, which may introduce FNs, model pre-
dictability for both seen and unseen peptides remains stable.

We further specifically compared the model performance 
between AS and AS-Rand methods, using training data that included 
cross-reactive TCRs (Extended Data Fig. 7e,f). The AS method outper-
formed AS-Rand in seen-epitope scenarios when test data originated 
from the same databases as training data, highlighting that the AS 
method improves model performance and mitigates the potential risk 
of FNs caused by cross-reactivity. However, for external independent 
test data, performance differences between AS and AS-Rand groups 
were negligible in both seen and unseen-epitope scenarios. These 
findings indicate that the AS-based method could mitigate some issues 
related to cross-reactivity within internal datasets. Nonetheless, it does 
not substantially enhance the model’s generalization for external data 
compared to its ability to learn from internal data.

To evaluate TCR–epitope binding prediction under realis-
tic low-prevalence conditions (as low as 0.1%), we systematically 
tested multiple models using downsampled datasets. In both seen 
and unseen-epitope scenarios, nearly all models exhibited a sharp 
decline in precision as prevalence decreased (Extended Data Fig. 8a–c 
and Supplementary Note 5). These results indicate that despite bal-
anced training, current models perform poorly in real-world sce-
narios with rare bindings, highlighting a critical limitation in their 
practical applicability.

Performance of retrained models under different sample sizes
To explore the effect of sample size on model performance, we con-
structed multiple subsets of training and test sets with varying num-
bers of TCRs per epitope. Results reveal that the average AUPRC of all 
models declines as the number of TCRs per epitope decreases during 
training, with 15 out of 24 models exhibiting a general decline in AUPRC 
with fewer training TCRs (Fig. 5a,b and Supplementary Table 9), high-
lighting the importance of sufficient data availability for improving 
predictive performance.

Under the tests from the subset where TCR count per epitope 
exceeded 300, a generally positive correlation between the number 
of TCRs per epitope and model performance was observed for some 
well-performing models, such as epiTCR, TCRGP and TEPCAM (Fig. 5c 
and Supplementary Table 9). The results of other models were also posi-
tively correlated, with the exception of TPBTE, TITAN, DeepTCR, MCMC, 
DLpTCR-RESNET, DLpTCR-CNN and DLpTCR-FULL, which showed rela-
tively poor performance in prediction (Supplementary Fig. 1). These 
findings indicate that in most cases, epitopes with a larger number 
of associated TCRs may help enhance model performance. However, 
certain models were still capable of achieving high AUPRC on epitopes 
with relatively few TCRs, indicating that sample size is not the sole 
determining factor. Although the number of TCRs appears to play a 
role, the task of predicting TCR–epitope binding likely depends on 
multiple factors, including the type of features used and model archi-
tecture. For instance, beyond sequence-based features, incorporating 
structural features of TCRs during training has been shown to improve 
prediction accuracy21.

Although increasing the number of training samples could 
enhance model performance, experimentally reliable TCR–epitope 
pairs are typically limited. We also compared multimer-based and 
in vitro stimulation-derived datasets. Using consensus predictions 
from top models and cross-validation on high-confidence external 
data, we found that in vitro stimulation data exhibited a relatively lower 
false-positive (FP) rate, but further experimental validation remains 
essential for conclusive reliability assessment (Supplementary Fig. 2a,b 
and Supplementary Note 6).

To further evaluate model predictive capability across different 
sample sizes for the same epitope, we retrained the top 10 models 
(identified in Fig. 3d) on datasets of varying TCR sizes for the five 
epitopes with the most TCRs, with hyperparameter tuning to ensure 
optimal performance (Supplementary Fig. 3). Using the top three 
models as examples, epiTCR, TCRGP and TEPCAM showed marked 
performance improvements as the number of TCRs increased, pla-
teauing when the number of TCRs exceeded around 1,000 (Fig. 5d). 
Most models followed this trend, although PiTE showed continuous 
improvement (Extended Data Fig. 9a,b and Supplementary Table 9). 
This saturation may be attributed to the diminishing novel patterns 
available for model learning or the increasing TCR heterogeneity. 
Growth rate analysis confirmed substantial improvements when test-
ing with fewer than 1,000 TCRs, with marginal gains beyond this point 
(Extended Data Fig. 9c). Across all five epitopes, well-performing mod-
els like epiTCR tended to maintain relatively high performance even 
when trained on smaller TCR datasets and consistently improved 
with additional TCRs (Extended Data Fig. 9b). Additionally, nearly 
all these top models consistently exhibited a negative correlation 
between prediction performance and TCR sequence dissimilarity 
(Extended Data Fig. 9d,e and Supplementary Note 7). Overall, our 
findings indicate that predictive performance generally improves with 
larger positive datasets and higher sequence similarity among TCRs 
targeting the same epitope.

Performance of retrained models with different  
positive-to-negative ratios
The number of TCRs with unknown epitopes far exceeds those with 
known bindings, implying a larger pool of potential negative samples 
compared to positive samples. Published studies vary in their use of 
positive-to-negative (P-to-N) ratios for model training. To explore how 
this factor impacts model performance, we retrained models with 
different P-to-N ratios.

In the seen-epitope test, most models showed improved perfor-
mance as negative samples increased, with performance stabilizing at a 
P-to-N ratio of approximately 1:1 (Fig. 6a,b and Supplementary Table 10). 
Top-ranked models like epiTCR, TEPCAM, TEIM and TCR-BERT par-
ticularly benefited from this moderate increase in negative samples, 
indicating that balanced training enhances performance up to a 
certain point beyond which additional negative samples offer little 
further improvement, likely due to a lack of novel patterns for the 
models to learn. In contrast, ATM-TCR and TEINet showed declining 
performance at higher ratios (Fig. 6a), suggesting limited tolerance 
to large-scale class imbalance. Similar trends were observed on inde-
pendent test sets, although overall performance was lower (Fig. 6c,d 
and Supplementary Table 10).

In unseen-epitope prediction, model performance was obviously 
reduced. Nevertheless, a slight increase in average AUPRC also occurred 
up to a P-to-N ratio of 1:1 (Fig. 6e,f and Supplementary Table 10). Only 
epiTCR showed noticeable improvement with the addition of negative 
samples before stabilizing, whereas other models were almost unaf-
fected by P-to-N ratio changes. Overall, balancing positive and negative 
data (~1:1) optimizes performance for both seen and unseen epitopes, 
whereas excess negatives offer little gain in generalization and may 
harm performance or increase computational cost.

Comparison of computational efficiency of models
We evaluated time and memory usage across dataset sizes under uni-
form hardware. Although training time and memory increases were rela-
tively small on smaller datasets, they rose sharply with scale. At 1 million 
samples, TCR-H, TCRconv and TCR-BERT required more than 50 hours 
for training, whereas epiTCR, DeepTCR and DLpTCR-FULL were the  
fastest. TITAN used the least memory, and VitTCR consumed the most 
memory (Extended Data Fig. 10a,b and Supplementary Table 10). TCRGP 
and TCRGP-AB failed at 100,000 samples due to memory overflow. 
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During testing, runtime and memory usage were generally lower than 
during training. DeepTCR, DeepTCR-ABVJ, NetTCR and epiTCR had rela-
tively short testing durations, whereas TCR-H, TCRconv and TCR-BERT 
required considerably longer. TCRGP and TCR-BERT exhibited 
unstable memory usage, whereas AttnTAP and TEINet were memory  
efficient (Extended Data Fig. 10c,d and Supplementary Table 10).  

This assessment offers practical insights for researchers selecting 
models for large-scale TCR–epitope prediction tasks.

Discussion
In this study, we conducted a comprehensive benchmarking of 
TCR–epitope prediction models, systematically evaluating their 
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performance in both seen- and unseen-epitope scenarios. Beyond com-
paring originally trained models, we established a unified retraining 
and evaluation framework with standardized datasets to ensure fair and 
reproducible comparisons. In addition, our analysis extends beyond 
model architectures to explore the influence of several biological and 
methodological factors—including the integration of MHC class and 
paired αβ TCR chains, negative sampling strategies, cross-reactivity, 
low prevalence of true binders, potential FPs of different experiment 
methods and data imbalance.

Our results indicate that several models perform relatively well 
in predicting seen epitopes. Recent studies13,14,22,23 identified IMW 
DETECT14 (code not available), MixTCRpred24 and NetTCR25 as effec-
tive models for seen-epitope prediction. Consistently, both MixTCR
pred and NetTCR ranked among the top 10 performing models in our 
assessment. However, when faced with unseen epitopes, even the 
top-performing models exhibit a dramatic decline in performance, 

often approaching levels akin to random guessing. This observation 
is consistent with prior studies such as IMMREP2213, IMMREP2314 
and ref. 12 and highlights a fundamental limitation of current 
modeling strategies.

Our analysis reaffirmed earlier observations from IMMREP23 
regarding the overestimation of model performance when using intra-
dataset test sets. We found that performance on independent test 
sets was consistently lower across almost all models, underscoring 
the critical need for rigorous external validation and raising concerns 
about model generalizability in real-world applications. Another crucial 
finding was the benefit of incorporating additional biological features. 
Models that included MHC class and αβ TCR information generally 
outperformed those trained on CDR3β sequences alone, consistent 
with IMMREP2213.

A key focus of our analysis was the impact of negative control 
sampling strategies. In retrained models, we compared AS, PS and 
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HS negatives and found that incorporating external PS or HS TCRs 
would introduce batch-like confounders, causing models to learn 
dataset-specific artifacts rather than true TCR–epitope binding sig-
nals. This finding aligns with previous studies12,15. Regarding data 
leakage, IMMREP23 employed a Levenshtein-distance-based strategy 
to avoid FNs during reshuffling, which would result in target leakage 
during random reshuffling due to repeated TCR reuse. In contrast, 
we applied a refined AS strategy that could minimize FNs and prevent 
repeated sampling of cross-matched TCRs, thereby reducing bias 
and enabling models to learn more robust and biologically realistic 
binding patterns.

Cross-reactivity remains a challenging issue in TCR–epitope mod-
eling. Although some studies suggest that random reshuffling for nega-
tive sampling may introduce FNs from cross-reactive TCRs, potentially 
biasing model learning26, our evaluation comparing models with and 
without cross-reactivity revealed minimal impact on performance.  
Furthermore, implementing the proposed refined AS reshuffling 
strategy would mitigate this concern, allowing the inclusion of cross- 
reactive TCRs without significantly degrading model performance.

Although we designed this analysis from multiple aspects, it still 
has several limitations. (1) Input sequence length restrictions imposed 
by many models reduced the number of usable TCR–epitope pairs. This 
is particularly problematic for models trained with CDR3β + others fea-
tures in unseen scenarios, where limited available test data might intro-
duce performance fluctuations. (2) Current models predominantly 
focus on CDR3β-only feature because most available data provide 
only CDR3β information. This restricts the full performance potential 
of models incorporating CDR3β + others features due to limited data 
availability for retraining. (3) Although we applied a refined AS-based 
TCR reshuffling approach to increase the likelihood of true negatives 
(TNs), this method does not guarantee that they are ground-truth 
non-binders. (4) To ensure sufficient data for evaluation, we used 
high-confidence pairs when scores were available and included all 
pairs from datasets without such scores. Although we computation-
ally estimated FP rates across antigen identification methods, experi-
mental confirmation is still required. (5) This study primarily focused 
on supervised sequence-based models, as a majority of developed 
tools adopt this strategy. Unsupervised models, such as TULIP27 and 
TCRdock28, which do not consider negative samples, and models like 
TCRen29, which require experimentally resolved TCR-pMHC structures, 
were not included.

To advance the field, future efforts would prioritize several key 
areas. (1) Expanding high confidential TCR–epitope data is crucial to 
minimize FPs. Beyond experimentally generating reliable unpaired 
TCR–epitope data, incorporating MHC class, antigen specificity and 
other biologically relevant information may help construct credible 
non-binding datasets. (2) Our analysis indicates that incorporating 
multiple features generally improves model performance. Cross-modal 
learning frameworks that combine sequence, structural and contextual 
information represent a promising direction for more effective model 
development. (3) Our findings highlight the limited performance of 
current models on novel epitopes, underscoring the need for innova-
tive architectures capable of capturing broader binding patterns. In 
parallel, curating training datasets with extensive diversity in both 
TCRs and epitopes is essential to support real-world applicability. 
(4) Accurate assessment of model generalization requires the use of 
independent external test sets, rather than relying only on internal 
training data-derived test sets. This approach ensures a more realistic 
performance evaluation.

In summary, our benchmarking study not only compares the 
performance of current models but also analyzes the methodological 
choices that most impact predictive success. It would serve as a valu-
able guide for model developers and end users, offering a foundation 
upon which more robust, interpretable and generalizable models can 
be developed to accelerate immunological research and applications.
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Methods
Workflow of model evaluation
Our evaluation involves collecting and preprocessing data from vari-
ous sources, preparing models (both originally trained and retrained) 
and conducting testing and independent testing with external data-
sets (Fig. 1b). The assessment process considers several factors: the 
impact of different negative TCR sources (AS, PS and HS), the impact 
of cross-reactivity, the influence of training data size (number of sam-
ples, P-to-N sample ratios, dataset size for model saturation and the 
correlation between epitope-associated TCR numbers and model 
performance) and the effects of epitope type (seen versus unseen 
epitopes) on model predictions.

Data collection of TCRs and epitopes for model evaluation
To ensure a robust and comprehensive evaluation of TCR–epitope 
binding prediction models, we systematically gathered data from a 
total of 21 authoritative databases and scholarly articles14,30–49. Detailed 
information on these data sources is provided in Supplementary Table 1 
and Supplementary Note 8. These databases and studies collectively 
provide a comprehensive set of TCR–epitope bindings, ensuring a 
robust data foundation for the objective and accurate evaluation of 
TCR–epitope prediction models.

Model collection for TCR–epitope binding prediction
This study comprehensively collected 54 original and derived TCR–
epitope binding prediction models published before October 2024 
(Supplementary Table 2). Of these, 50 models12,21,23–25,43,47,50–73 were evalu-
ated, and the remaining 4 were excluded due to data requirements or 
lack of open-source implementation. These models encompass a wide 
range of methodologies to ensure a holistic evaluation framework. 
The collected models exhibit the following characteristics: (1) they 
employ traditional machine-learning approaches or cutting-edge 
deep-learning techniques that leverage large datasets; (2) some models 
are designed to predict only seen epitopes, whereas others can handle 
both seen and unseen epitopes; (3) the models vary in their use of 
features for training. Some consider only the CDR3β feature, whereas 
others incorporate additional features such as MHC classes and both 
α and β TCR chains. The brief summary for each model included in our 
benchmark study is provided in Supplementary Note 9.

Preprocessing of TCR and epitope sequence data
Positive data obtained from 19 data sources (listed in Supplementary  
Table 1) were initially preprocessed separately for the original model 
testing task and the model retraining task. Given the limited avail-
ability of data for testing the original models, we retained all available 
data when constructing the test set. We noted that a great number of 
TCR sequences within the IEDB database deviated from established 
research findings, which indicate that the CDR3 region of TCRs typi-
cally begins with a conserved cysteine (‘C’) and ends with phenylala-
nine (‘F’). Upon aligning the sequence lengths to a uniform format, 
we observed that the first amino acid of these aberrant sequences 
matched the second position of the normal sequence, and the last 
amino acid aligned with the penultimate position. To rectify the format 
of the TCR sequences in the IEDB, we prefixed a ‘C’ and appended an ‘F’ 
to these aberrant sequences. In addition, TCR–epitope pairs belong-
ing to the MHC-II class were excluded from original model testing 
because the majority of models were trained using only MHC-I-class 
data. For the retraining of models, given the sufficient volume of data 
available for both training and testing phases, we directly filtered 
out TCR sequences that did not start with ‘C’ and end with ‘F’. Both 
MHC-I and MHC-II class data were retained in retraining for assessing  
models comprehensively.

Subsequently, for both the dataset intended for model retraining 
and assessment as well as the test set used for the evaluation of the 
original models, we implemented the following sequence procedures:

	(1)	 Standard amino acid consideration: Because most 
feature-encoding methods consider only the standard 20 
amino acids, we deleted sequences of TCRs or epitopes that 
contained special symbols, lowercase letters and uncommon 
amino acids to ensure the accuracy of feature encoding.

	(2)	 Sequence length criteria: Considering the consensus  
criteria of all collected models, for the original model  
testing, we retained epitopes with a length of 9 amino acids  
and TCR sequences ranging from 10 to 18 amino acids.  
However, in model retraining, we increased the length  
scale of epitopes to 8–15 amino acids to build a larger  
retraining dataset.

	(3)	 Binding confidence: We removed sequences with low TCR–
epitope binding confidence. In the VDJdb database, sequences 
are assigned confidence scores ranging from 0 to 3 based on 
specificity and credibility. We excluded all TCR sequences with 
a confidence score of 0 to maintain high-quality data. From the 
dbPepNeo2.0 database, only high-confidence neoantigen en-
tries validated by specific TCR recognition assays were retained. 
In the case of the MIRA database, we included only statistically 
inferred high-confidence TCR–epitope pairs with a posterior 
probability greater than 0.9 of being associated with a specific 
query antigen.

	(4)	 Unique TCR–epitope pairs: The raw data contain a large 
proportion of TCRs that do not bind to unique epitopes, a 
phenomenon referred to as cross-reactivity. Although genuine 
cross-reactivity does exist biologically, in certain experimen-
tal contexts such patterns may arise from technical limitations 
or annotation errors, potentially introducing FPs. Specifi-
cally, in the MIRA dataset, cross-reactive TCRs account for 
up to 66% of the entries within the high-confident annotated 
subset. This method likely overestimates the actual degree of 
cross-reactivity, as it may be influenced by methodological 
limitations rather than genuine TCR–epitope recognition.  
To minimize redundancy, reduce noise and ensure the unique-
ness of TCR–epitope interactions in our benchmark, we 
excluded entries in which a single TCR was linked to more than 
one epitope.

	(5)	 Feature categories for TCR–epitope pairs: We considered the 
following two scenarios to filter data according to feature avail-
ability: (1) the CDR3 sequence of the TCR β-chain is provided 
and (2) additional features beyond the CDR3β sequence are 
available, including CDR3α, MHC type and V(D)J genes. Thus, 
we generate two datasets (‘CDR3β-only’ and ‘CDR3β + others’ 
datasets) for both original model testing and retraining  
model assessment.

For negative sequence data, we applied the TCR filtering condi-
tions mentioned above to ensure consistency across all data. This 
approach ensures that the datasets used for training and testing are 
of high quality and consistency, thereby enhancing the reliability of 
the subsequent model evaluations.

Generation of negative data
We evaluated the models using three different sources of negative 
data: AS, PS and HS TCRs. Regarding the size of negative data, for our 
default setting, we maintained a 1:1 ratio between the positive and nega-
tive datasets. This balanced ratio was used unless we were specifically 
investigating the effects of varying the P-to-N ratio.

The approach of AS TCRs (set as the default) is a commonly 
used and stringent method to construct negative data by randomly 
reshuffling positive TCR–epitope pairs, but it would have introduced 
FNs caused by probable cross-reactivity. To mitigate this effect, we 
employed a refined approach under immunologically relevant catego-
ries, which considers the cross-matching of MHC classes, MHC alleles 
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and antigen groups rather than relying solely on random shuffling. This 
approach is based on the following assumptions: (1) the probability 
of cross-reactivity between different MHC alleles is lower than within 
the same allele, (2) MHC-II restricted TCRs have a lower likelihood of 
binding to MHC-I restricted peptides and (3) the probability of TCR 
binding to epitopes within one type of antigen is greater than for other 
types of antigens.

Given that the number of MHC-I restricted TCR–epitope pairs is 
substantially larger than those restricted by MHC-II, and there is domi-
nance of certain MHC alleles (for example, HLA-A*02:01) and antigens 
(for example, SARS-CoV-2) of positive TCR–epitope pairs compared 
with alleles and antigens, it is impractical to rely exclusively on MHC 
class, MHC allele or antigen information to construct the entire nega-
tive dataset. Therefore, we adopted a stepwise cross-matching method. 
Specifically, for both seen-epitope and unseen-epitope scenarios, we 
first created negative pairs using cross-matched MHC information 
when both MHC-I and MHC-II classes were present. In this process, 
MHC-II restricted TCRs served as negative controls for MHC-I restricted 
positive TCR–epitope pairs and vice versa. If any MHC-I data remained, 
we then employed MHC-I restricted TCRs specific to different alleles as 
negative controls. For any remaining MHC-I data with the same allele 
information, we created negative pairs between different antigen types. 
Finally, if there were remaining data that could not be cross-matched, 
we resorted to random reshuffling.

To generate HS and PS negative data, we obtained TCR sequences 
from two sources: the Dean-2015 dataset for healthy individuals and the 
TCRdb database for patients. When generating negative samples from 
HS TCRs, we excluded CMV-positive samples to avoid FNs. For PS TCRs, 
we focused on clonally expanded TCRs, which have a high probability 
of being disease-associated. For both seen-epitope and unseen-epitope 
scenarios, we generated negative samples by randomly sampling TCRs 
from either healthy or patient individuals, ensuring the sampling size 
matched the number of TCRs in the positive dataset. These sampled 
TCRs were then combined with the preprocessed epitopes to create a 
set of negative data.

Construction of consensus test sets for original  
model evaluation
To construct test sets for evaluating the original models, we followed 
a systematic process. We first merged the 19 preprocessed positive 
datasets and removed any duplicate data. For the seen-epitope sce-
nario, we retained only the epitopes commonly used by all models 
and deleted the TCR sequences corresponding to these epitopes that 
had already been used in model training. The remaining TCR–epitope 
pairings were used as positive samples for the seen-epitope test set. For 
the unseen-epitope scenario, we removed all epitopes and TCRs used 
by the original models. The remaining TCR–epitope pairings formed 
the positive samples for the unseen-epitope test set. Then, negative 
samples were generated using the above-described negative data gen-
eration method for three types of negative data sources (AS, PS and HS).

In the original publications of the epiTCR, epiTCR-BH and NetTCR 
models, the cysteine (‘C’) and phenylalanine (‘F’) amino acids at the 
beginning and end of TCR sequences were removed during training. 
To ensure consistency between the test data and the training data for 
these models, we also artificially removed these amino acids when 
using these models for prediction.

By following these steps, we ensured that the test sets accurately 
reflected the requirements for evaluating the original models in both 
seen-epitope and unseen-epitope scenarios.

To prevent data leakage, we used CD-HIT17 to exclude highly simi-
lar sequences (>95% similarity) between the training and test sets. 
Specifically, after integrating the positive samples with the generated 
negative samples for each data group, CD-HIT was applied to eliminate 
these highly similar TCR sequences, ensuring robust and unbiased 
evaluation of the models.

Construction of training, test and independent sets for  
model retraining
To construct training, test and independent sets for model retrain-
ing, we followed a systematic approach. Initially, we removed all 
duplicate TCR–epitope pairings derived from 19 data sources 
(Supplementary Table 1). Positive samples for the seen-epitope and 
unseen-epitope independent test sets were sourced from IMMREP23, 
McPAS-TCR and VDJdb, and positive samples from the remaining 16 
databases were used for model retraining and testing.

To guarantee complete separation between the independent sets 
and the training/test sets, we excluded any samples from the training 
and test data sources that overlapped with those in the independent 
data sources (IMMREP23, McPAS-TCR and VDJdb). For the unseen 
independent set, we retrained only the epitopes that did not appear 
in the training sets.

Subsequently, we employed a 5-fold cross-validation strategy to 
generate five groups of training and test sets. A stratified sampling 
method was applied to ensure uniform distribution of epitopes across 
each fold. For the seen-epitope scenario, we further filtered the candi-
date training and test samples by retaining only positive samples with 
five or more TCRs corresponding to an epitope. For each set of positive 
samples, we matched the epitopes with TCRs from three data sources 
(AS, PS and HS) to create negative samples.

In model retraining, we also used CD-HIT to exclude TCR sequences 
with greater than 95% similarity between the training and test sets, and 
between the training set and the independent test sets. This procedure 
ensured the removal of highly similar sequences, thereby enhancing 
the robustness and fairness of retraining model evaluation.

Evaluation of the impact of cross-reactivity on model 
performance
Cross-reactivity poses a challenge in analyzing TCR–epitope bind-
ing data. When negative data are generated using the AS-based 
reshuffling approach, cross-reactive TCRs could result in FNs. To 
systematically assess the impact of cross-reactivity on model per-
formance, we conducted an analysis by incorporating cross-reactive 
data into our model evaluation framework, which initially excluded 
cross-reactive TCRs. We identified 11,667 cross-reactive TCR–epitope 
entries (cross-reactive data from MIRA dataset were not included 
due to an unusually high ratio of cross-reactive TCRs). After apply-
ing CD-HIT to eliminate sequences with high similarity in both test 
and independent test sets, 11,083 unique cross-reactive entries were 
added in this evaluation. Specifically, 9,104 of these entries were evenly 
assigned across training and test sets within a 5-fold cross-validation 
scheme. Additionally, 971 cross-reactive samples were included in the 
seen-epitope independent test set, and 1,008 were included in the 
unseen-epitope independent test set.

The performance of models trained both with and without 
cross-reactive TCRs was then evaluated by predicting the test and 
independent test datasets comprising both cross-reactive and 
non-cross-reactive entries. This comparison provides insights into 
the extent to which cross-reactivity influences predictive accuracy 
and model generalizability.

Evaluation of AS TCR identification methods on  
retrained models
The quality of AS TCRs directly impacts the reliability of TCR–epitope 
binding prediction models. In this study, we leveraged a large dataset 
of TCRs to evaluate model performance and implement various data 
filtering strategies to ensure data quality. However, challenges arising 
from the AS TCR identification methods themselves cannot be fully 
addressed through preprocessing alone.

To investigate the quality of data derived from different AS TCR 
identification methods, we examined the annotation information 
across our datasets. We found that the majority of samples lacked 
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explicit labeling of experimental methods, whereas the clearly anno-
tated entries primarily fell into two categories of well-established meth-
ods: (1) multimer-related assays and (2) in vitro stimulation-related 
assays. Accordingly, we focused our comparative analysis on these 
two classical methods.

We conducted two key analyses. First, we applied the 8 retrained 
models—selected from the top 10 performers in our benchmark 
(Fig. 3d) and capable of predicting unseen epitopes—to predict sam-
ples from each group and estimate their FP rates. This analysis assumes 
that the top-performing models have adequate discriminative power 
and that consensus predictions across multiple models can act as an 
indirect measure of data quality.

Second, we trained models independently on datasets gener-
ated by each method and evaluated their performance on the same 
high-confidence test sets. This approach assumes that model per-
formance reflects the reliability of the training data. To ensure a fair 
comparison, we standardized the training set size by aligning it with the 
method that yielded fewer samples: in vitro stimulation. Specifically, 
both training sets were limited to 1,409 TCRs, matching the sample 
size of the in vitro stimulation group. A shared high-confidence test set 
containing 274 TCRs was used for evaluation. To mitigate the effects of 
random sampling and ensure robust comparison, we downsampled the 
positive samples from the multimer datasets and repeated the model 
training and evaluation process 10 times.

Evaluation of the size effects of TCR–epitope pairs in  
model retraining
To examine the impact of TCR numbers on model performance, we 
created several groups of training and test sets by varying the number 
of TCRs associated with each epitope. This process was based on the 
five standardized training and test splits used for model retraining 
when using AS TCRs as a negative data source. For epitopes with more 
than 300 associated TCRs, we retained all TCR–epitope pairings where 
the TCR count exceeded 300 in both the five training sets and the 
corresponding five test sets. Subsequently, for specific TCR count 
thresholds of 300, 200, 100 and 10, we constructed training sets by 
selecting TCR–epitope pairings in which the TCR count per epitope 
equaled exactly 300, 200, 100 or 10 within the five training splits. For 
all these training configurations, the same five test sets—originally 
generated for the group with TCR counts exceeding 300—were con-
sistently used for evaluation, ensuring comparability across different 
TCR count settings.

To test the required TCR number for different models to reach opti-
mal performance, we extracted epitopes whose TCR numbers ranked 
among the top five from all databases and validated how TCR number 
impacted model performance with samples grouped by epitope. For 
the training data of each epitope, we created multiple training sets with 
16 different TCR sizes, ranging from 50 to 3,000, with each size repeated 
five times. For test data, we randomly extracted 500 binding TCRs for 
each epitope to construct positive samples and repeated five times. 
To ensure balanced datasets, an equal number of negative samples 
were generated for each training or test set using the refined AS-based 
negative-data-creation strategy. A separate dataset was constructed for 
each epitope, where negative samples were created by pairing the given 
epitopes with TCRs not included in the corresponding positive set. 
Thus, for each epitope, we obtained five training sets and test sets by 
combining positive and negative samples. The top 10 models identified 
in Fig. 3d, which previously demonstrated strong generalization to the 
seen-epitope independent test set, were retrained for this evaluation.

To assess whether TCR sequence heterogeneity within the same 
epitope affected model performance, we used the data from one of 
the five training–test splits generated through 5-fold cross-validation 
during model retraining, corresponding to the results shown in Fig. 3b. 
For each epitope, we calculated the pairwise Levenshtein distances 
among all associated TCR CDR3β sequences and used the average 

distance as a measure of TCR heterogeneity. We then computed the 
Pearson correlation coefficient between TCR heterogeneity and model 
performance (measured by AUPRC) for each model across epitopes. To 
evaluate statistical differences in correlation strength between models, 
we performed pairwise comparisons using Fisher’s r-to-z transforma-
tion and calculated the corresponding P values. To account for multiple 
comparisons and reduce the likelihood of FP findings, we applied the 
Benjamini–Hochberg correction to the resulting P values. The same top 
10 models identified in Fig. 3d were also used in this analysis.

Evaluation of the effects of P-to-N ratios in model retraining
When exploring the model’s performance under varying degrees of 
data imbalance, we constructed seven groups of training sets with 
P-to-N sample ratios of 9:1, 6:1, 3:1, 1:1, 1:3, 1:6 and 1:9 based on the posi-
tive samples used for model retraining. This evaluation used AS TCRs 
as the negative data source. It is worth noting that the TCRGP model 
could not be trained at the 1:3 ratio due to excessive data volume, and 
thus its results are not included in this part.

To generate the most imbalanced dataset (1:9 P-to-N ratio), we 
employed the refined AS-based reshuffling strategy with repetition 
applied seven times, creating the maximum possible number of syn-
thetic TCR–epitope pairs based on the available positive samples. Only 
epitopes with a sufficient number of corresponding negative matches 
were retained.

This 1:9 dataset was then used to generate five training–test splits 
via 5-fold cross-validation, employing stratified sampling to ensure an 
even distribution of epitopes across all folds. The five training–test 
splits under other P-to-N ratios were derived by downsampling the 
negative samples accordingly while keeping the positive samples 
consistent across all datasets.

To ensure a fair comparison of prediction performance across 
different P-to-N ratios, we used the test sets from the 1:1 ratio configu-
ration for evaluation in all cases. Finally, the models shown in Fig. 3b 
were retrained using each dataset to assess the impact of different 
P-to-N sample ratios.

To evaluate generalizability, we built seen- and unseen-epitope 
independent test sets (1:1 P-to-N ratio) using IMMREP23, McPAS-TCR 
and VDJdb. The seen-epitope set shared epitopes with training data, 
and unseen-epitope sets contained the remaining epitopes.

Evaluation of time and resource consumption in model 
training and testing
To evaluate the computational demands of various models, we created 
datasets with 1,000, 5,000, 10,000, 100,000 and 1,000,000 samples 
by randomly selecting TCRs and epitopes. Each dataset was used for 
both training and testing to record runtime and memory usage. For 
each run, we allocated the same amount of memory and number of 
CPU cores, and deep-learning models were executed on a GPU with 
uniform settings. All experiments were performed on a computing 
server with the following hardware configuration: Intel Xeon Gold 6342 
CPU (2.8 GHz, 48 cores) with 1,024 GB of RAM and NVIDIA A100-PCIE 
GPU with 80 GB of VRAM.

Model preparation and tuning
The original models utilized in the evaluation were primarily the ver-
sions released on GitHub. Models that were not available were trained 
using the original training dataset and default settings as specified in 
the respective articles (Supplementary Table 2). In the unseen-epitope 
prediction scenario, we excluded several models and their variants (if 
available)—TCRGP, TCR-BERT, SETE, MixTCRpred, DeepTCR, TCRconv 
and TCR-H—for the following reasons: DeepTCR was originally trained 
on non-human data; TCR-H did not provide access to its exact training 
data or pretrained model; and the remaining models generate sepa-
rate models for each epitope, making them unsuitable for predicting 
unseen epitopes. In comparing the impact of different P-to-N ratios of 
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samples on model performance, we excluded TCRGP because it failed 
to run properly when the ratio reached 1:3 due to the limitations of 
TensorFlow, which cannot handle tensors larger than 2 GB.

During the retraining process, we examined the effects of tuning 
key hyperparameters for models. However, the observed performance 
differences were minimal, and in most cases, the default or recom-
mended settings yielded comparable or superior results. Therefore, we 
adopted the default configurations or those suggested in the original 
publications for consistency and reproducibility. When evaluating the 
impact of data size on model performance, the number of epochs was a 
factor influencing the convergence of deep-learning models. We tested 
model performance under five different epoch settings and used the 
best results for comparison.

Metrics for model evaluation
When evaluating model performance, a large portion of the outputs 
represent the binding probability or binding affinity between TCRs 
and epitopes, which does not clearly indicate whether binding will 
occur. Most models consider a binding likelihood greater than 0.5 as a 
positive prediction. However, the binding relationship between TCRs 
and epitopes is complex, making it challenging to establish a precise 
binding threshold.

In classification models, predictions fall into four categories: true 
positives (TPs), where the model correctly predicts positive samples; 
FPs, where negative samples are incorrectly predicted as positive; 
TNs, where negative samples are correctly identified; and FNs, where 
positive samples are incorrectly predicted as negative.

In our evaluation, the primary metric we adopted was AUPRC, 
which quantifies the trade-off between precision and recall across 
all possible classification thresholds. AUPRC is widely recognized as 
a robust evaluation metric for imbalanced classification tasks, as it 
reflects a model’s ability to rank TPs—such as high-affinity TCR–epitope 
pairs—above FPs. We calculated AUPRC using the precrec package, as 
recommended in the literature74.

In addition, we evaluated the models using a comprehensive set 
of performance metrics including area under the receiver operating 
characteristic curve for all models. Other metrics, including accuracy, 
precision, recall, specificity, Matthews correlation coefficient (MCC) 
and F1 score, discussed in specific sections, offer threshold-specific 
insights that are intuitive for fixed thresholds (with 0.5 set as the default 
to distinguish true from false). These additional metrics offer targeted 
evaluations but may be influenced by the chosen threshold.

Accuracy measures the overall correctness of classifications, 
defined as

Accuracy = TP + TN
TP + TN + FP + FN

Recall assesses models’ sensitivity in identifying TPs from actual 
positives, defined as

Recall = TP
TP + FN

Precision evaluates the proportion of TP predictions among all 
positive predictions, defined as

Precision = TP
TP + FP

Specificity quantifies models’ ability to correctly identify negative 
instances, defined as

Specificity = TN
TN + FP

MCC provides a balanced assessment of model performance, tak-
ing into account both true and false positives and negatives, defined as

MCC = TP × TN − FP × FN
√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Finally, the F1 score offers a harmonic mean of precision and recall, 
reflecting a balance between these two metrics, defined as

F1 = 2 × Precision × Recall
Precision + Recall

These metrics collectively provide a robust framework for evalu-
ating the effectiveness and reliability of the models across various 
aspects of their performance. For models like MixTCRpred and pMTnet, 
which generate relative binding affinity scores rather than probability 
thresholds or binary classifications, only AUPRC is calculated because 
other metrics requiring fixed cutoffs are not applicable. The detailed 
results for each metric are presented in the Supplementary Tables.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw data were obtained from publicly accessible databases and 
scholarly articles, including VDJdb30, McPAS-TCR31, IEDB32, TBAdb33, 
dbPepNeo2.034, MIRA35, Glanville-201736, Tsuruta-201837, Luo-201838, 
TetTCR-201839, Huth-201940, TetTCRHD-202141, Francis-202242, 
pMTnet-202143, Ishigaki-202244, Minervina-202245, Mudd-202246, 
PISTE-202447, IMMREP2314, TCRdb2.048 and Dean-201549, with 
web links provided in Supplementary Table 1. The processed 
data employed to generate the results are available via figshare at  
https://doi.org/10.6084/m9.figshare.27020455 (ref. 75). Source data 
are provided with this paper.

Code availability
The source codes of the TCR–epitope binding prediction models evalu-
ated in this paper are publicly available via GitHub at https://github.
com/SuoLab-GZLab/TCREpitopeBenchmark.
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Extended Data Fig. 1 | Proportional distribution of TCR-epitope pairings 
matching different immunologically relevant categories and study design 
for original and retraining model evaluations. a-c, Proportional distribution 
of TCR-epitope pairings matching across different MHC classes (a), alleles 
(b) and antigens (c). d, Experimental design for original model evaluations. 
The evaluations were conducted separately for CDR3β-only models and 
CDR3β+others models. We constructed two groups of seen- and unseen-epitope 
test sets by excluding the training data of all original models from our collected 
databases: one group contains only CDR3β and epitope sequences, and the other 
group contains additional features other than CDR3β and epitope sequences 
(such as MHC classes, CDR3α sequences). e, Experimental design for retraining 
model evaluations. The evaluations were conducted separately for CDR3β-only 
models and CDR3β+others models. We constructed two groups of seen-epitope 
tests together with seen- and unseen-epitope independent test sets based on our 

collected 21 databases: one group contains only CDR3β and epitope sequences, 
and the other group contains additional features other than CDR3β and epitope 
sequences (such as MHC classes, CDR3α sequences). In retraining, CDR3β-only 
models were further tested for the impact of multiple factors, including TCR 
similarity, negative TCR sources, cross-reactive TCRs, the refined AS method, 
low prevalence of true bindings and training data size. Across both experimental 
designs (d, e), CDR3β-only models were evaluated using three types of negative 
data sources: AS, PS and HS TCRs, whereas CDR3β+others models were tested 
only with AS negatives, as PS and HS TCRs rarely contain additional information 
except for CDR3β. Additionally, the CDR3β-only models were also evaluated 
with CDR3β+others data to assess the impact of feature enrichment on model 
performance. For all tests, TCRs highly similar to training sequences were 
excluded from test sets to avoid data leakage.

http://www.nature.com/naturemethods


Nature Methods

Analysis https://doi.org/10.1038/s41592-025-02910-0

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Performance evaluation of originally trained CDR3β-
Only models on seen- and unseen-epitope predictions based on CDR3β-only 
data. a-b, Amino acid distribution of CDR3β sequences starting with C and 
ending with F (a) and of CDR3β sequences not starting with C and ending with 
F (b). c-d, Performance of original CDR3β-only models in seen-epitope (c) and 
unseen-epitope test (d) using AS negatives based on CDR3β-only data in terms 
of multiple metrics: AUPRC, Precision, Specificity, Recall, F1. e-f, Performance 
of CDR3β-only models on three seen epitopes using PS negatives (e) and HS 
negatives (f). g, AUPRC comparison of originally trained CDR3β-only models 
(n = 31) using AS/PS/HS negatives in seen-epitope test. h-i, AUPRC correlation 
between the seen-epitope test results of original CDR3β-only models (n = 31) 

obtained using AS and PS negatives (h) and using AS and HS negatives (i).  
j-k, Performance of CDR3β-only models on unseen epitopes using PS negatives 
(j) and HS negatives (k). l, AUPRC comparison of originally trained CDR3β-only 
models (n = 28) using AS/PS/HS negatives in unseen-epitope test. m-n, AUPRC 
correlation between the unseen-epitope test results of original CDR3β-only 
models (n = 28) obtained using AS and PS negatives (m) and using AS and HS 
negatives (n). Heatmaps (e, f, j, k) show epitope-level AUPRC, with adjacent bar 
charts showing overall AUPRC. Colored dots (g, l) represent individual model 
AUPRC, black dots indicate mean, error bars represent the mean ± SD. P-values of 
Pearson correlations (h, i, m, n) were from two-sided t-test.
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Extended Data Fig. 3 | Performance evaluation of originally trained 
CDR3β-only and CDR3β+others models on seen- and unseen-epitope 
predictions based on CDR3β+Others data in terms of multiple metrics.  
a, Performance of original CDR3β+others models in seen-epitope test using AS 
negatives based on CDR3β+others data. b, AUPRC of CDR3β-only models on two  
seen epitopes of CDR3β+others data using AS negatives. c-d, Performance of 
original CDR3β-only models in seen-epitope test (c) and original CDR3β+others 
models in unseen-epitope test (d) using AS negatives based on CDR3β+others 
data. e, Performance of CDR3β-only models on unseen epitopes of 
CDR3β+others data using AS negatives. f, Performance of original CDR3β-only 

models in unseen-epitope test using AS negatives based on CDR3β+others data. 
g, AUPRC comparison of original CDR3β-only models (left) and CDR3β+others 
models (right) using AS negatives on seen- and unseen-epitope test (for the 
CDR3β-only models, n = 31 for the seen test and n = 28 for the unseen test; for the 
CDR3β+others models, n = 15 for the seen test and n = 10 for the unseen test); 
box plots display mean (center line), the first and third quartiles (box), minimum 
and maximum values within 1.5×interquartile range (whiskers). P-values are 
from two-sided Wilcoxon signed-rank tests. Heatmaps (a, c, d, f) show results of 
multiple metrics: AUPRC, Precision, Specificity, Recall, and F1. Heatmaps (b, e) 
show epitope-level AUPRC, with adjacent bar charts showing overall AUPRC.
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Extended Data Fig. 4 | Distribution of training, test and independent test data 
for retrained model evaluation using the CDR3β-only and CDR3β+others 
datasets. a, Distribution of TCR length in the CDR3β-only dataset. b, Distribution 
of data used by retrained CDR3β-only models. c, Percentage and number of TCRs 
in the stratified sampling of 5 times for constructing training and test sets within 
the CDR3β-only dataset. d, Distribution of antigen types and epitopes in the 
seen-epitope independent test set of CDR3β-only data. e, Number of epitopes 
that correspond to different TCR numbers in the seen-epitope independent 
test set of CDR3β-only data. f, Distribution of antigen types and epitopes in the 
unseen-epitope independent test set of CDR3β-only data. g, Number of epitopes 
that correspond to different TCR numbers in the unseen-epitope independent 
test set of CDR3β-only data. h, Distribution of TCR length in the CDR3β+others  

dataset. i, Distribution of data used by retrained CDR3β+others models.  
j, Percentage and number of TCRs in the stratified sampling of 5 times  
for constructing training and test sets within the CDR3β+others dataset.  
k, Distribution of antigen types and epitopes in the seen-epitope independent 
test set of CDR3β+others data. l, Number of epitopes that correspond to different 
TCR numbers in the seen-epitope independent test set of CDR3β+others 
data. m, Distribution of antigen types and epitopes in the unseen-epitope 
independent test set of CDR3β+others data. n, Number of epitopes that 
correspond to different TCR numbers in the unseen-epitope independent test 
set of CDR3β+others data. Heatmaps (b, d, f, i, k, m) show the log10-transformed 
number of TCRs corresponding to each epitope, with x-axis representing 
epitopes and y-axis representing antigens.
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Extended Data Fig. 5 | Performance of retrained CDR3β-only and 
CDR3β+others models on seen- and unseen-epitope predictions in terms 
of multiple metrics. a-c, Performance of retrained CDR3β-only models in 
seen-epitope test (a), independent test (b) and unseen-epitope independent test 
(c) using AS negatives based on CDR3β-only data. d-e, Performance of retrained 
CDR3β+others models (d) and retrained CDR3β-only models (e) in seen-epitope 
test using AS negatives based on CDR3β+others data. f-g, Performance of 

retrained CDR3β+others models (f) and retrained CDR3β-only models (g) in 
seen-epitope independent test using AS negatives based on CDR3β+others 
data. h-i, Performance of retrained CDR3β+others models (h) and retrained 
CDR3β-only models (i) in unseen-epitope independent test using AS negatives 
based on CDR3β+others data. All heatmaps show results of multiple metrics: 
AUPRC, Precision, Specificity, Recall and F1.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Impact of key factors on model performance: sequence 
similarity and source effects of negative data. a-c, AUPRC comparison between 
models retrained with CDR3β-only features in predicting seen-epitope test data 
(a), seen-epitope independent test data (b), and unseen-epitope independent 
test data (c) with and without removing similar TCR sequences using AS/PS/HS  
negatives. Dots represent individual model AUPRC, and lines connect the 
same models across evaluation settings. P-values were from two-sided 

Wilcoxon signed-rank test (n = 24 for seen-epitope predictions and n = 21 for 
unseen-epitope predictions) with Benjamini-Hochberg correction. d, AUPRC 
performance of PS- and HS-based retrained models on AS-based test, seen-
epitope independent test and unseen-epitope independent test data with 
CDR3β-only features. e, AUPRC performance of AS-based retrained models on 
PS- and HS-based seen-epitope test, seen-epitope independent test and unseen-
epitope independent test data with CDR3β-only features.
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Extended Data Fig. 7 | Impact of key factors on model performance: 
cross-reactive TCRs and refined AS-based reshuffling methods.  
a, Distribution of cross-reactive and non-cross-reactive TCRs in our datasets 
after preprocessing. b-c, AUPRC comparison between models retrained with 
and without cross-reactive TCRs under the refined AS-based negative sample 
generation approach when testing with data comprising both cross-reactive 
and non-cross-reactive entries. d, AUPRC comparison between models 
retrained with and without cross-reactive TCRs under the random AS-based 
negative sample generation. e-f, AUPRC comparison of models retrained 

with cross-reactive TCRs under two negative data reshuffling strategies: the 
refined AS-based and the traditional random AS-based reshuffling approach, 
when testing with data comprising both cross-reactive and non-cross-reactive 
entries. Dots (b, d, e) represent individual model AUPRC, and lines connect 
the same models across evaluation settings. P-values were from two-sided 
Wilcoxon signed-rank test (n = 24 for seen-epitope predictions and n = 21 for 
unseen-epitope predictions) with Benjamini-Hochberg correction. All metrics 
(c, f) were rounded to three decimals to enable clearer comparison of subtle 
performance differences across models.
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Extended Data Fig. 8 | Performance of the retrained CDR3β-only models on 
low prevalence of true TCR-epitope pairs. a-c, Performance of CDR3β-only 
models using AS negatives in predicting seen-epitope test data (a), independent 
test (b) and unseen-epitope independent test (c) data with different prevalences 

(0.1%, 1%, 10%, and 50%) of positive samples in terms of Precision, F1, Recall and 
Specificity. In consideration of the relatively small magnitude of many metric 
values, all metrics were rounded to three decimals to enable clearer comparison 
of subtle performance differences across models.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional results of testing the effects of TCR counts on 
model performance and correlation between the heterogeneity of TCRs and 
model performance. a, Performance saturation analysis for TEIM, TCR-BERT, 
ERGO-AE, VitTCR, NetTCR, PiTE and ATM-TCR, using five epitopes with most  
TCR counts, showing per-epitope AUPRC and mean performance (red line).  
b, AUPRC comparison of average AUPRC of models obtained by five epitopes 
across different TCR numbers. c, Growth trend of AUPRC across TCR count 
intervals. The x-axis denotes three intervals of TCR counts employed in model 
training. The heatmap shows the slopes, calculated as AUPRC change divided by 
the TCR count range within each interval. d, Correlation between TCR sequence 

heterogeneity and AUPRC for models: epiTCR, TCRGP, TEPCAM, VitTCR, TEIM, 
TCR-BERT, PiTE, NetTCR, ATM-TCR, and ERGO-AE; dots represent epitopes, 
colored by antigen group. The heterogeneity between TCR sequences was 
measured by average Levenshtein distance per epitope. Spearman correlation 
was used, and P-values were from two-sided t-test (n = 389). e, Differences in the 
strength of the negative correlation between intra-epitope TCR heterogeneity 
and model AUPRC across different models based on the results from d. P-values 
of Fisher’s r-to-z transformation were from two-sided z-test with Benjamini-
Hochberg correction (n = 389).
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Extended Data Fig. 10 | Time and memory usage of models in training and testing under different data sizes. a-d, Training time (a), memory usage during training 
(b), testing time (c), and memory usage during testing (d) for various data sizes; CDR3β+others models are highlighted in red.
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