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T cell receptors (TCRs) play a vital role inimmune recognition by binding
specific epitopes. Accurate prediction of TCR-epitope interactionsis

fundamental for advancing immunology research. Although numerous
computational methods have been developed, acomprehensive evaluation
of their performance remains lacking. Here we assessed 50 state-of-the-art
TCR-epitope prediction models using 21 datasets covering 762 epitopes
and hundreds of thousands binding TCRs. Our analysis revealed that

the source of negative TCRs substantially impacts model accuracy, with
external negatives potentially introducing uncontrolled confounders.
Model performance generally improved with more TCRs per epitope,
highlighting the importance of large and diverse datasets. Models
incorporating multiple features typically outperformed those using only
complementarity-determining region 3f3 information, yet all struggle to
generalize to unseen epitopes. The use of independent test sets proved
crucial for unbiased assessment on both seen and unseen epitopes. These
insights will guide the development of more accurate and generalizable
TCR-epitope prediction models for real-world applications.

T cell receptors (TCRs) are key components of the adaptive immune
system, responsible for recognizing specific epitopes—short peptide
fragments derived from pathogens or self-proteins—presented by
major histocompatibility complex (MHC) molecules'. Approximately
95% of TCRs consist of one a chain and one 3 chain?, each containing
three complementarity-determining regions (CDRs), in which CDR1and
CDR2 are well conserved and CDR3 is the primary region for antigen
contact®”. TCR-epitope interactions are pivotal for initiating immune
responses against foreign invaders and tumor cells.

The high diversity of TCRs, coupled with the specificity of their
interactions with epitopes, makes large-scale experimental determina-
tion of TCR-epitope interactions challenging. Traditionally, methods
such as multimer-based assays®, in vitro stimulation’, peptide scan-
ning®and enzyme-linked immunospot assays’ are labor-intensive and

low-throughput, necessitating the development of high-throughput
ways torecognize TCR-epitopeinteractions'®. Recentadvancementsin
single-cell sequencing technologies have facilitated the identification
ofagrowing number of TCR-epitope pairs. This surge in experimental
datahasdrivenrapid progress in computational prediction models of
TCR-epitope interactions.

Nevertheless, several key challenges continue toimpede progress
in understanding and predicting TCR-epitope interactions. (1) The
complexity and limited understanding of interactions present amajor
barrier. Currentknowledgeislargely based onarelatively smallnumber
of structural models, which fall short of providing comprehensive
rules applicable to TCR-epitope interactions'*". (2) The diversity of
features that need consideration adds another layer of complexity”.
These features include all six CDRs from o and 3 chains, MHC classes
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and allotypes, introducing high dimensionality and variability. (3)
Many models struggle to predict interactions with unseen epitopes,
hindering the application of real-world scenarios where new epitopes
need to be rapidly identified>". (4) Labeled TCR-epitope data are
notably scarce and available in substantial quantities for only a few
epitopes, varying widely in terms of the features provided. (5) The
choice of negative datasets, which consists of TCRs that do not bind
to specific epitopes, can introduce biases into the models and affect
their predictive power.

To assess the performance of TCR-epitope prediction models,
several benchmarking studies” " have been conducted with focuses
onmodel generalizability and data dependency, such as IMMREP22"
and IMMREP23". These studies provided valuable insights into the
strengths and weaknesses of different methods, highlighting advance-
ments in performance when incorporating features beyond CDR33
and the challenges associated with generalizing predictions for
unseen epitopes.

However, these studies often involve a limited number of evalu-
ated models or focus primarily on specific aspects of evaluation. For
instance, IMMREP22 focused onretraining and evaluating TCR-epitope
prediction methods using paired af3 TCR sequence data, specifically
targeting the seen-epitope scenario. IMMREP23 introduced a dataset
comprising unpublished paired TCR data, aiming to address some of
the gaps left by IMMREP22. However, it is reported that this test data
contained potential target leakage, which would allow some models
toexploitthe test dataset structure, potentially inflating their perfor-
mance metrics. In addition, previous studies did not define specific
training data, complicating comparisons between different model
architectures and training strategies.

To address these limitations, we conducted a comprehensive
benchmark of 50 publicly available TCR-epitope prediction models
(including variants) using well-curated data from 21 databases. Our
multifaceted evaluation strategy included (1) comprehensive data
collection: we gathered data from multiple sources to ensure diversity
and representativeness across human epitopes and TCRs; (2) exten-
sive prediction models: we assessed not only models that consider
CDR3p-only feature but also those thatincorporate additional features;
(3) independent testing: we used fully independent test sets to evalu-
ate reliability and generalization of models; (4) model retraining: we
retrained available models to control for variations inimplementation
and data settings, allowing for a fair comparison under standardized
conditions; (5) impact of TCR similarity and cross-reactivity: we applied
a stringent evaluation by excluding similar TCR sequences between
training and test sets, and assessed model robustness with and without
cross-reactivity; (6) analysis of training set characteristics: we analyzed
the effects of different training set compositions, including negative
TCR source and P-to-N ratio; and (7) evaluation under different sce-
narios: we assessed original and retrained models on both seen- and
unseen-epitope prediction to evaluate robustness and generalization
capability of models.

Our comprehensive benchmarking study offers a valuable
resource for both model developers and end users, facilitating
informed decisions in selecting the most appropriate models for
specific applications. This work lays the groundwork for future
developments in TCR-epitope prediction models, contributing to
our understanding of the immune system and aiding in the design of
personalized immunotherapies.

Results

Data collection and study design

We designed aworkflow integrating systematic data collection, model
retrievaland multiple comparison strategies (Fig. 1a). TCR-epitope data
were curated from 21 datasets: 19 with positive binding pairs and the
remaining 2 with unbound TCRs for negatives (Supplementary Table1).
Afterrigorousfiltering, such as preventing data leakage with CD-HIT"

and removing cross-reactive TCRs, we constructed the training, test
andindependent test sets for both original and retraining model evalu-
ation. Negative datasets were constructed using antigen-specific (AS),
patient-sourced (PS) and healthy-sourced (HS) TCRs. Importantly, we
introduced arefined cross-matching-based AS strategy under immuno-
logically relevant categories (Methods), which minimizes false-negative
pairings. Dataset analysis confirmed the rarity of such cross-category
matches, validating the reliability (Extended Data Fig.1a-c).

We focused on 50 models published in recent years, 46 of which
provided accessible model/portal/code (including training data) for
testing and 31 of which supplied complete code for retraining. The col-
lectionincludes 7 traditional machine-learning and 43 deep-learning
models, with focus on predicting both seen epitopes (in the training
set) and unseen epitopes (notinthe training set) interactions. Models
are categorized based on training features as CDR3-only models,
which rely solely on CDR3f sequences and constitute most of the
models; and CDR3 + others models, which incorporate additional
features beyond CDR3p, such as MHC and CDR3a-derived features
(Supplementary Table 2).

First, to ensure unbiased evaluation of original models, we
constructed several independent test sets containing TCRs not
present in any training data of the original models (Fig. 1b and
Extended DataFig.1d), enabling assessment of performance on entirely
new data. Given the large disparity in size of the available test data,
CDR3p-only and CDR3 + others models were assessed separately for
seen- and unseen-epitope prediction. Models trained exclusively on
individual epitopes were excluded from unseen-epitope evaluation
toensure fairness.

Second, to ensure standardized evaluation, we retrained 31
models with accessible code under consistent conditions (Fig. 1b and
Extended DataFig.1e), aiming to assess the methodological superiority
of different model designs. Both categories of models were evaluated
ontestdata (internal datasets, same sources as training data) and inde-
pendent data (external datasets, different sources from training data)
for seen- and unseen-epitope prediction. Our evaluations primarily
focused on CDR3-only models due to their larger dataavailability and
representation, with key evaluationsincluding the impact of negative
sample sources and other factors (Supplementary Note 1).

The evaluations from multiple angles, using area under the
precision-recall curve (AUPRC) as the primary metric, complemented
by other metrics, such as accuracy, precision and recall, ensured
that our analysis provided a robust and unbiased assessment of
TCR-epitope prediction models.

Building test sets to evaluate the original models

We evaluated 46 published original TCR-epitope prediction mod-
els (31 CDR3-only, 15 CDR3 + others) (Supplementary Note 2).
During preprocessing, non-canonical TCR sequences were adjusted
by adding ‘C’ and ‘F’ residues to increase predictive data coverage'
(Extended DataFig.2a,b). For CDR3f3-only models, separated test sets
were constructed for seen (S_Datal: 978 TCRs across 3 epitopes; Fig. 2a)
and unseen (U_Datal: 345 TCRs across 40 epitopes; Fig. 2b) epitope
scenarios. For CDR3 + others models, test sets were also built for seen
(S_Data2:239 TCRs across 2 epitopes; Fig. 2c) and unseen (U_Data2: 67
TCRs across 14 epitopes; Fig. 2d) epitope prediction. To reduce bias
from inconsistent negative TCR sampling (Supplementary Table 3),
CDR3p-only models were tested with AS, PS and HS negatives, whereas
only AS negatives were used for CDR3p + others models.

Performance of original models with CDR3p-only feature

For CDR3[3-only models using AS negatives, ATM-TCR achieved the high-
est AUPRC (0.70) in the seen-epitope scenario (S_Datal), followed by
the TEIM (0.68) and TEPCAM (0.67), whereas models like PiTE-epiSplit,
TITAN and TCRfinder performed near random (AUPRC of -0.5) (Fig. 2e).
Among higher-scoring models, only ATM-TCR demonstrated arelatively
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Fig.1| Benchmarking workflow for TCR-epitope prediction models. a, Overview of the TCR-epitope binding, data collection, model training and evaluation.
b, Framework for assessing TCR-epitope prediction models and evaluating key effect factors.

good trade-off between precision and recall, with an F; score of 0.57
(Extended Data Fig. 2c and Supplementary Table 4). Other models
like TEIM showed notably low recall values around 0.2, indicating
they missed many true TCR-epitope binding pairs, despite maintain-
ing high precision and specificity under the fixed threshold of 0.5.
Conversely, models like epiTCR and AttnTAP-vdj exhibited high recall
(>0.8) but low precision (-0.5), reflecting a more aggressive strategy
that increases positive predictions at the cost of misclassifying many
non-binding pairs.

In the unseen-epitope scenario (U_Datal), overall performance
decreased compared with the seen-epitope case (Fig. 2e,f). ImRex
achieved the highest AUPRC value of just 0.55, followed by ATM-TCR
and othersat 0.52 (Fig. 2f). Notably, 13 out of 28 models (46.4%) exhib-
ited AUPRC < 0.5, suggesting that these models failed to effectively
learnthe underlying TCR-epitope binding pattern. For fixed-threshold
metrics, ImRex maintained a relatively better specificity-recall
trade-off. However, most models showed unbalanced performance,
with occasional high values onindividual metrics likely due to extreme
predictions rather than consistent, generalizable performance
(Extended Data Fig. 2d and Supplementary Table 4).

When using PS and HS negatives, the overall model rankings were
similar to those obtained using AS negatives (with a correlation of
0.94 and 0.92 for PS and HS, respectively) in the seen-epitope sce-
nario (Extended Data Fig. 2e-i). For instance, TEIM (AUPRC of 0.70
and 0.74 for PS and HS, respectively) and ATM-TCR (0.68 and 0.67
for PS and HS, respectively) remained the top-ranked performers

(Extended Data Fig. 2e,f). Additionally, the averaged prediction
performances of AS-, PS- and HS-based methods were consistent
(Extended Data Fig. 2g), likely because most models were originally
trained with the stringent AS-based method, leading to potentially
in-depth learning of TCR-epitope binding features and more robust
handling of different negative sources.

Inthe unseen-epitope scenario, similar to the results of AS-based
strategy, using PS and HS negatives produced AUPRC near 0.5 for the
majority of models (Extended DataFig. 2j-land Supplementary Table 4).
This random-resemble performance diminished the interpretability of
relative model rankings and showed low correlation in overall rankings
across different negative types (Extended Data Fig.2m,n), highlighting
the weak generalization to new epitopes.

Model performance variability for both seen and unseen epitopes
may arise fromacombination of factorsincluding model architecture,
training data sizes and epitope-specific capabilities. We counted the
total number of TCRs used by models and the number of TCRs that
matched our three tested seen epitopes (Supplementary Tables 5
and 6) in the training data: although models trained with larger num-
bers of TCRs, such as ATM-TCR, tended to perform better, this does
not fully account for all results. Standardized retraining and evaluation
are essential to accurately assess intrinsic model performance.

Performance of original models with CDR3f and other features
In the seen-epitope scenario, CDR3[3 + others models overall under-
performed compared to CDR33-only models, likely due to limited
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Fig. 2| Performance of original TCR-epitope prediction models.

a-d, Distribution of TCR and epitope counts in seen-epitope (a,c) and unseen-
epitope (b,d) for CDR3pB-only datasets and CDR3p + others datasets used to
assess originally trained models. e,f, Performance of CDR33-only models on seen-
epitope (e) and unseen-epitope (f) evaluation. g, Performance of CDR3f + others
models on seen-epitope evaluation. h, AUPRC comparison between CDR33-only
(n=31)and CDR3p + others (n =15) models on seen-epitope CDR3p + others test

data. i, Performance of CDR3f + others models on unseen-epitope evaluation.

Jj, AUPRC comparison between CDR3f3-only (n = 28) and CDR3p + others (n =10)
models on unseen-epitope CDR3 + others test data. Heatmaps (e-g,i) show
epitope-level AUPRC, with adjacent bar charts showing overall AUPRC. Box plots
(h,j) show mean (center line), the first and third quartiles (box) and minimum
and maximum values within 1.5 x interquartile range (whiskers). All Pvalues were
from two-sided Wilcoxon rank-sum tests.

multifeature data (Fig. 2a,c). vibtcr-AB demonstrated the top perfor-
mance with AUPRC of just 0.59, followed by PISTE-reftcr (0.57) and
TCRconv-large (0.55) (Fig. 2g). Some models showed relatively high pre-
cision (>0.7) but poor specificity-recall balance (Extended Data Fig. 3a
and Supplementary Table 4). When CDR3[3-only models were applied
to the multifeature dataset (S_Data2), results were similarly modest
(AUPRC ranging from 0.45 to 0.57) (Extended Data Fig. 3b,c and
Supplementary Table 4). In this context, CDR3p + others models
generally performed better, although the improvement was not statisti-
cally significant (Fig. 2h). Notably, several models that were designed
toacceptboth CDR3f3-only and CDR3p + others features, such as vibtcr,
benefited from incorporating additional features beyond CDR3.

In the unseen-epitope scenario, model performance remained
around 0.5, consistent with CDR3f3-only models (Fig. 2f,i). ERGOII-vdj
achieved the top performance with an AUPRC of only 0.58. Most models
showed poor specificity-recall balance, often making extreme pre-
dictions (Extended Data Fig. 3d and Supplementary Table 4). When
CDR3p-only models were again tested on the multifeature dataset
(U_Data2) using only CDR3f input, models integrating additional
features still showed modest gains (Fig. 2j, Extended Data Fig. 3e,f
and Supplementary Table 4). For instance, epiTCR, ERGO-vdj and
vibtcr exhibited improved predictive performance when incorpora-
ting additional features.

Overall, originally trained models obviously perform better on
seen than unseen epitopes, especially among CDR33-only models
(Extended Data Fig. 3g), highlighting generalization challenges with
unseen epitopes. Itisimportant to note that the small size of multifea-
ture tested datamightinfluence the robustness of overall performance
of models. Consistent training and reliable data are needed to better
assess performance and influencing factors.

Building standardized datasets to retrain the models
Toimpartially evaluate TCR-epitope prediction models, we retrained
31available models (24 CDR3[-only, 7 CDR3[3 + others) on integrated
datasets (Fig. 3a and Supplementary Note 3). For CDR33-only mod-
els, the dataset contained 600 epitopes and 98,846 binding TCRs
(Extended DataFig.4a). Datawere split under stratified samplinginto
(1) cross-validation training and intradatabase-sourced seen-epitope
testing (389 epitopes, 94,361 TCRs; Extended Data Fig. 4b,c) sets,
and (2) independent test sets for seen (80 epitopes, 2,941 TCRs) and
unseen (211 epitopes, 1,581 TCRs; Extended Data Fig. 4d-g) epitopes.
Similarly, the CDR3p + others dataset (249 epitopes, 5,294 TCRs;
Extended Data Fig. 4h) was divided for cross-validation (57 epitopes,
4,292 TCRs; Extended Data Fig. 4i,j) and independent testing for
seen (18 epitopes, 313 TCRs) and unseen (192 epitopes, 689 TCRs;
Extended Data Fig. 4k-n) epitopes.
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Performance of retrained models with only CDR3f feature

In the seen-epitope scenario, models using AS negatives generally
achieved lower AUPRC than those using PS or HS negatives (Fig. 3b,c).
With AS-based strategy, epiTCR (0.83) and TEPCAM (0.82) achieved
the highest AUPRC. Top-performing models exhibited relatively bal-
anced AUPRC, precision, recall, specificity and F; score, indicating
their capability to distinguish positive and negative samples. In con-
trast, lower-ranked models often showed extreme predictions, such
as high specificity with low recall (for example, TITAN and MCMC)
or vice versa (for example, ERGO-Istm) (Extended Data Fig. 5a and
Supplementary Table 7).

For the results from the independent test, which was considered
amore stringent test compared to the initial test dataset, top-ranked
models like epiTCR, TCRGP, TEIM, TCR-BERT and TEPCAM remained
consistent with the initial test results but showed AUPRC declines of
up to 0.23, along with similar drops in other metrics (Fig. 3d,e and
Extended DataFig. 5b). Taking TEPCAM with AS negatives as an exam-
ple, AUPRC fell from 0.82 (test) to 0.59 (independent test) (Fig. 3b,d and
Supplementary Table 7), indicating common challenges of overfitting
or differencesinintradatadistribution.

Inthe unseen-epitope scenario, AS-based models like TCR-H, TEIM
and NetTCR ranked higher, with relatively balanced metrics, but only
achieved mean AUPRC of 0.52-0.53 (Fig. 3fand Extended Data Fig. 5c).
Although some top-ranked models in the seen-epitope scenario,
such as TEIM and ATM-TCR, also performed relatively better in
unseen-epitope prediction, overall performance declined sharply
(Fig. 3b,d,f). For instance, the AUPRC of epiTCR declined from 0.7 in
the seen-epitope independent test (Fig. 3d) to 0.51in unseen-epitope
prediction (Fig. 3f). Models like TPBTE, MCMC and ERGO-Istm con-
tinued to display extreme one-class bias (Extended Data Fig. 5c and
Supplementary Table 7), underscoring poor generalization to external
datasets and unseen-epitope predictions.

Overall, across both test and independent datasets in seen- and
unseen-epitope scenarios, models trained with PS or HS negatives
consistently outperformed those using AS negatives, except for
DLpTCR-series models (Fig. 3b-g). Models like vibtcr, ERGO-Istm,
AttnTAP and TEINet showed unusually high gains in AUPRC with
PS/HS negatives, suggesting potential model-specific sensitivities to
negative data composition. Despite this overall advantage, it remains
unclear whether PS or HS TCRs are superior as negative controls, as
models were retrained and tested on matching negative source—such
as HS-trained models being used exclusively on HS-test data—and their
use may introduce confounding biases'**°.

Performance of retrained models with CDR3f and

other features

When retraining models using the CDR3[ + others dataset, only AS
negatives were applied because PS and HS TCRs rarely contain addi-
tionalinformation beyond CDR3p. In the seen-epitope scenario, three
TCRconv models exhibited top-ranked AUPRC (0.76, 0.71 and 0.71)
but suffered from low recall (<0.44). Other CDR3[3 + others models

showed balanced but poor performance across all metrics (Fig. 3h,
Extended Data Fig. 5d and Supplementary Table 7).

Tofairly assess the value of additional features, we also retrained
CDR3-only models using the multifeature dataset but relying solely
on CDR3Binput (Fig. 3iand Extended Data Fig. Se). Their performance
rankings remained highly consistent with those retrained on the
standard CDR3[-only dataset (Fig. 3b), although the average perfor-
mance was lower, likely due to the substantial difference in training
data size (Extended Data Fig. 4b,i). Independent test results showed
a similar trend (Fig. 3k,1), with top-ranked models performance con-
sistent across CDR3f-only and CDR3p + others datasets (Fig. 3d,1,
Extended Data Fig. 5f,g and Supplementary Table 7).

Overall, CDR3p + others models generally outperformed
CDR3p-only models when retrained and tested under the same data
conditions, although not significantly (Fig. 3j,m). Among four models
supporting both CDR3[-only and CDR3p + others features (DeepTCR,
NetTCR, TCRGP and vibtcr), two improved and one performed compa-
rably with added features (Fig. 3j,m).

Inthe unseen-epitope scenario, only three CDR33 + others models
were tested, with TCRconv and TCRGP excluded as they cannot predict
unseen epitopes. All models performed close to random prediction
(AUPRC around 0.5), with DeepTCR-ABVJ showing extreme class bias
(Fig.3n-p, Extended DataFig.5h,iand Supplementary Table 7). These
results again highlight the need to develop specialized models to
improve unseen-epitope predictioninreal-world applications.

Source effects of negative TCR data onretrained models

To evaluate whether key factors, including data leakage and nega-
tive sample sources, affect TCR-epitope prediction, we focused on
CDR3pB-only models for their larger training data and broader repre-
sentation. Using CD-HIT" to remove similar TCR sequences and prevent
dataleakage, we found that AUPRC values for models trained on AS/PS
negativesremained stable, whereasthose using HS negatives decreased,
suggesting that HS-based sampling may introduce confounders and
overfitting, whereas AS/PS negatives offer more robust predictionsin
the context of TCR sequence similarity (Extended Data Fig. 6a-c and
Supplementary Note 4).

When models retrained on PS or HS negatives were evaluated on
rigorous AS-based test and independent sets, performance dropped
significantly in both seen- and unseen-epitope scenarios, despite
the models performing well on their own internal testing (Fig. 4a,b,
Extended DataFig. 6d and Supplementary Table 8). Specifically, PS-AS
and HS-AS training-test pairs exhibited substantially lower perfor-
mance compared to PS-PS and HS-HS strategies in both test and
independent sets, suggesting that the models trained with external
HS/PS negatives may learn dataset-specific artifacts rather than true
binding patterns. Interestingly, whereas PS-AS and HS-AS testing
performed worse than AS-AS oninternal test sets, their performance
aligned closely with AS-AS on externalindependent data. Thisindicates
that although AS-based training is a stringent approach, it may still
be preferentially influenced by internal dataset-specific structures.

Fig. 3 | Performance of retrained TCR-epitope prediction models. a, Epitope
(and corresponding TCR) counts across antigen groups from different datasets.
YFV, yellow fever virus; HBV, hepatitis B virus; HHV, human herpesvirus; HIV,
humanimmunodeficiency virus. b, Performance of retrained CDR33-only
models on seen-epitope test.c, AUPRC comparison of models (n =24) fromb
across AS/PS/HS negatives. d, Performance of retrained CDR33-only models
onseen-epitope independent test. e, AUPRC comparison of models (n = 24)
from d across AS/PS/HS negatives. f, Performance of retrained CDR3(3-only
modelsin unseen-epitope test. g, AUPRC comparison of models (n = 21) from f
across AS/PS/HS negatives. h,i, Performance on seen-epitope CDR3p + others
test data of retrained CDR3p + others models (h) and CDR3p3-only models (i).

Jj, AUPRC comparison between CDR3(-only (n=24,i) and CDR3p + others (n=7,
h) models. k.1, Performance on seen-epitope CDR3p + others independent test

data of retrained CDR3 + others models (k) and CDR3f-only models (I).

m, AUPRC comparison between CDR3p3-only (n =24, 1) and CDR3p + others
(n=7,k) models. n,0, Performance on unseen-epitope CDR3f3 + others
independent test data of retrained CDR3f + others models (n) and CDR33-only
models (o). p, AUPRC comparison between CDR3B-only (n =21, 0) and

CDR3p + others (n =3, n) models. Dot plots (b,d,h,i k1) show per-antigen AUPRC,
with adjacent heatmaps showing overall AUPRC, ordered by AS-based AUPRC.
Heatmaps (f,n,0) show epitope-level AUPRC, categorized by antigen group and
ordered by AS-based AUPRC. Colored dots (c,e,g) represent individual model
AUPRC, black dots indicate the mean and error bars represent the mean +s.d.
Box plots (j,m,p) show mean (center line), first and third quartiles (box) and
minimum and maximum values within 1.5 x interquartile range (whiskers).

All Pvalues were from two-sided Wilcoxon rank-sum tests.
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Fig. 4 |Source effect evaluation of negative TCRs on retrained models.

a,b, Performance of PS-and HS-based retrained models evaluated on AS-based
seen-epitope (a, n = 24) and unseen-epitope (b, n = 21) test data using CDR3-only
features. c¢,d, Performance of AS-based retrained models on PS- and HS-based

seen-epitope (c, n=24) and unseen-epitope (d, n = 21) test data with CDR3f3-only
features. Lines connect the same models across evaluation settings. All Pvalues
were from two-sided Wilcoxon signed-rank tests with Benjamini-Hochberg
correction.

Conversely, when AS-trained models were evaluated on PS or HS test
sets, performance declined in the seen-epitope scenario. However,
onindependent test sets for both seen and unseen epitopes, their
performance remained consistent with that of AS-AStesting (Fig. 4c,d,
Extended Data Fig. 6e and Supplementary Table 8).

These findings highlight that using external PS or HS negatives
may artificially inflate internal validation performance by leveraging
systematic biases. In contrast, the AS-based reshuffling strategy—
aligned with immunological context—enables more reliable learning
of biologically meaningful TCR-epitope binding patterns. Despite
its advantages, AS-based training still benefits from independently
sourced test sets to ensure objective assessment.

Cross and low-prevalence effects of TCRs on retrained models
In generating negative samples using the AS-based approach,
cross-reactive TCRs—those that bind multiple epitopes—are likely to
introduce false negatives (FNs). In our dataset, about 10.5% of positive
TCRswere cross-reactive (Extended Data Fig. 7a). Although these TCRs
were excluded by default to reduce noise, we reintroduced theminto
all data splits to evaluate their effect on model performance.

We first compared modelsretrained and evaluated withand with-
out cross-reactive TCRs using the AS negatives. Overall, including
cross-reactive TCRs did not significantly alter model performance
on both test and independent test sets (Extended Data Fig. 7b,c and
Supplementary Table 8). Additionally, we evaluated a traditional
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random reshuffling method (defined as AS-Rand), which is commonly
used inmodel training, as a control, confirming minimal performance
differences between models trained with or without cross-reactive
TCRs (Extended Data Fig. 7d). These results suggest that with a rela-
tively low cross-reactivity rate, which may introduce FNs, model pre-
dictability for both seen and unseen peptides remains stable.

We further specifically compared the model performance
between AS and AS-Rand methods, using training data that included
cross-reactive TCRs (Extended DataFig. 7e,f). The AS method outper-
formed AS-Rand in seen-epitope scenarios when test data originated
from the same databases as training data, highlighting that the AS
method improves model performance and mitigates the potential risk
of FNs caused by cross-reactivity. However, for external independent
test data, performance differences between AS and AS-Rand groups
were negligible in both seen and unseen-epitope scenarios. These
findings indicate that the AS-based method could mitigate some issues
related to cross-reactivity withininternal datasets. Nonetheless, it does
notsubstantially enhance the model’s generalization for external data
compared toits ability to learn frominternal data.

To evaluate TCR-epitope binding prediction under realis-
tic low-prevalence conditions (as low as 0.1%), we systematically
tested multiple models using downsampled datasets. In both seen
and unseen-epitope scenarios, nearly all models exhibited a sharp
declinein precision as prevalence decreased (Extended Data Fig.8a-c
and Supplementary Note 5). These results indicate that despite bal-
anced training, current models perform poorly in real-world sce-
narios with rare bindings, highlighting a critical limitation in their
practical applicability.

Performance of retrained models under different sample sizes
To explore the effect of sample size on model performance, we con-
structed multiple subsets of training and test sets with varying num-
bers of TCRs per epitope. Results reveal that the average AUPRC of all
models declines as the number of TCRs per epitope decreases during
training, with15 out of 24 models exhibiting ageneral declinein AUPRC
with fewer training TCRs (Fig. 5a,b and Supplementary Table 9), high-
lighting the importance of sufficient data availability for improving
predictive performance.

Under the tests from the subset where TCR count per epitope
exceeded 300, a generally positive correlation between the number
of TCRs per epitope and model performance was observed for some
well-performing models, such as epiTCR, TCRGP and TEPCAM (Fig. 5¢
and Supplementary Table 9). The results of other models were also posi-
tively correlated, with the exception of TPBTE, TITAN, DeepTCR, MCMC,
DLpTCR-RESNET, DLpTCR-CNN and DLpTCR-FULL, which showed rela-
tively poor performance in prediction (Supplementary Fig. 1). These
findings indicate that in most cases, epitopes with a larger number
of associated TCRs may help enhance model performance. However,
certain models were still capable of achieving high AUPRC on epitopes
with relatively few TCRs, indicating that sample size is not the sole
determining factor. Although the number of TCRs appears to play a
role, the task of predicting TCR-epitope binding likely depends on
multiple factors, including the type of features used and model archi-
tecture. Forinstance, beyond sequence-based features, incorporating
structural features of TCRs during training has been shown toimprove
predictionaccuracy?.

Although increasing the number of training samples could
enhance model performance, experimentally reliable TCR-epitope
pairs are typically limited. We also compared multimer-based and
in vitro stimulation-derived datasets. Using consensus predictions
from top models and cross-validation on high-confidence external
data, we found thatin vitro stimulation data exhibited arelatively lower
false-positive (FP) rate, but further experimental validation remains
essential for conclusive reliability assessment (Supplementary Fig. 2a,b
and Supplementary Note 6).

To further evaluate model predictive capability across different
sample sizes for the same epitope, we retrained the top 10 models
(identified in Fig. 3d) on datasets of varying TCR sizes for the five
epitopes with the most TCRs, with hyperparameter tuning to ensure
optimal performance (Supplementary Fig. 3). Using the top three
models as examples, epiTCR, TCRGP and TEPCAM showed marked
performance improvements as the number of TCRs increased, pla-
teauing when the number of TCRs exceeded around 1,000 (Fig. 5d).
Most models followed this trend, although PiTE showed continuous
improvement (Extended Data Fig. 9a,b and Supplementary Table 9).
This saturation may be attributed to the diminishing novel patterns
available for model learning or the increasing TCR heterogeneity.
Growthrate analysis confirmed substantialimprovements when test-
ing with fewer than 1,000 TCRs, with marginal gains beyond this point
(Extended DataFig. 9c). Across all five epitopes, well-performing mod-
els like epiTCR tended to maintain relatively high performance even
when trained on smaller TCR datasets and consistently improved
with additional TCRs (Extended Data Fig. 9b). Additionally, nearly
all these top models consistently exhibited a negative correlation
between prediction performance and TCR sequence dissimilarity
(Extended Data Fig. 9d,e and Supplementary Note 7). Overall, our
findings indicate that predictive performance generally improves with
larger positive datasets and higher sequence similarity among TCRs
targeting the same epitope.

Performance of retrained models with different
positive-to-negative ratios

The number of TCRs with unknown epitopes far exceeds those with
knownbindings, implying alarger pool of potential negative samples
compared to positive samples. Published studies vary in their use of
positive-to-negative (P-to-N) ratios for model training. To explore how
this factor impacts model performance, we retrained models with
different P-to-N ratios.

In the seen-epitope test, most models showed improved perfor-
mance as negative samplesincreased, with performance stabilizing ata
P-to-Nratio of approximately 1:1(Fig. 6a,b and Supplementary Table 10).
Top-ranked models like epiTCR, TEPCAM, TEIM and TCR-BERT par-
ticularly benefited from this moderate increase in negative samples,
indicating that balanced training enhances performance up to a
certain point beyond which additional negative samples offer little
further improvement, likely due to a lack of novel patterns for the
models to learn. In contrast, ATM-TCR and TEINet showed declining
performance at higher ratios (Fig. 6a), suggesting limited tolerance
to large-scale class imbalance. Similar trends were observed on inde-
pendent test sets, although overall performance was lower (Fig. 6¢,d
and Supplementary Table 10).

Inunseen-epitope prediction, model performance was obviously
reduced. Nevertheless, aslightincrease in average AUPRC also occurred
up to a P-to-N ratio of 1:1 (Fig. 6e,fand Supplementary Table 10). Only
epiTCRshowed noticeable improvement with the addition of negative
samples before stabilizing, whereas other models were almost unaf-
fected by P-to-Nratio changes. Overall, balancing positive and negative
data (-1:1) optimizes performance for both seen and unseen epitopes,
whereas excess negatives offer little gain in generalization and may
harm performance or increase computational cost.

Comparison of computational efficiency of models

We evaluated time and memory usage across dataset sizes under uni-
form hardware. Although training time and memory increases were rela-
tively small onsmaller datasets, they rose sharply with scale. At1 million
samples, TCR-H, TCRconv and TCR-BERT required more than 50 hours
for training, whereas epiTCR, DeepTCR and DLpTCR-FULL were the
fastest. TITAN used the least memory, and VitTCR consumed the most
memory (Extended DataFig.10a,b and Supplementary Table10). TCRGP
and TCRGP-AB failed at 100,000 samples due to memory overflow.
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the mean and error bars represent the mean + s.d. ¢, Correlation between

Duringtesting, runtime and memory usage were generally lowerthan  This assessment offers practical insights for researchers selecting
duringtraining. DeepTCR, DeepTCR-ABVJ, NetTCRandepiTCRhadrela- models for large-scale TCR-epitope prediction tasks.

tively short testing durations, whereas TCR-H, TCRconv and TCR-BERT

required considerably longer. TCRGP and TCR-BERT exhibited Discussion

unstable memory usage, whereas AttnTAP and TEINet were memory In this study, we conducted a comprehensive benchmarking of
efficient (Extended Data Fig. 10c¢,d and Supplementary Table 10). TCR-epitope prediction models, systematically evaluating their
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Fig. 6 | Performance of retrained models across P-to-N ratios. a, Performance
of models in the seen-epitope test across P-to-N ratios. b, AUPRC comparison
across ratios based on the results froma (n = 23). ¢, Performance of models in
the seen-epitope independent test across different ratios. d, AUPRC comparison
across different ratios based on the results from ¢ (n =23). e, Performance of

modelsin the unseen-epitope independent test across different ratios. f, AUPRC

comparison across ratios based on the results from e (n = 21). Colored dots (b,d,f)
representindividual model AUPRC, black dots indicate the mean and error bars
represent the mean +s.d.

performanceinboth seen-and unseen-epitope scenarios. Beyond com-
paring originally trained models, we established a unified retraining
and evaluation framework with standardized datasets to ensure fair and
reproducible comparisons. In addition, our analysis extends beyond
modelarchitectures to explore the influence of several biological and
methodological factors—including the integration of MHC class and
paired o TCR chains, negative sampling strategies, cross-reactivity,
low prevalence of true binders, potential FPs of different experiment
methods and dataimbalance.

Our results indicate that several models perform relatively well
in predicting seen epitopes. Recent studies™'*?>?* identified IMW
DETECT" (code not available), MixTCRpred** and NetTCR* as effec-
tive models for seen-epitope prediction. Consistently, both MixTCR-
pred and NetTCR ranked among the top 10 performing modelsin our
assessment. However, when faced with unseen epitopes, even the
top-performing models exhibit a dramatic decline in performance,

often approaching levels akin to random guessing. This observation
is consistent with prior studies such as IMMREP22"*, IMMREP23"
and ref. 12 and highlights a fundamental limitation of current
modeling strategies.

Our analysis reaffirmed earlier observations from IMMREP23
regarding the overestimation of model performance when using intra-
dataset test sets. We found that performance on independent test
sets was consistently lower across almost all models, underscoring
the critical need for rigorous external validation and raising concerns
aboutmodel generalizability in real-world applications. Another crucial
finding was the benefit of incorporating additional biological features.
Models that included MHC class and a3 TCR information generally
outperformed those trained on CDR3[3 sequences alone, consistent
with IMMREP22",

A key focus of our analysis was the impact of negative control
sampling strategies. In retrained models, we compared AS, PS and
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HS negatives and found that incorporating external PS or HS TCRs
would introduce batch-like confounders, causing models to learn
dataset-specific artifacts rather than true TCR-epitope binding sig-
nals. This finding aligns with previous studies'>". Regarding data
leakage, IMMREP23 employed a Levenshtein-distance-based strategy
to avoid FNs during reshuffling, which would result in target leakage
during random reshuffling due to repeated TCR reuse. In contrast,
we applied arefined AS strategy that could minimize FNs and prevent
repeated sampling of cross-matched TCRs, thereby reducing bias
and enabling models to learn more robust and biologically realistic
binding patterns.

Cross-reactivity remains a challengingissue in TCR-epitope mod-
eling. Although some studies suggest that random reshuffling for nega-
tive sampling may introduce FNs from cross-reactive TCRs, potentially
biasing model learning®, our evaluation comparing models with and
without cross-reactivity revealed minimal impact on performance.
Furthermore, implementing the proposed refined AS reshuffling
strategy would mitigate this concern, allowing the inclusion of cross-
reactive TCRs without significantly degrading model performance.

Although we designed this analysis from multiple aspects, it still
has several limitations. (1) Input sequence lengthrestrictions imposed
by many models reduced the number of usable TCR-epitope pairs. This
isparticularly problematic for models trained with CDR33 + others fea-
turesinunseenscenarios, where limited available test datamightintro-
duce performance fluctuations. (2) Current models predominantly
focus on CDR3pB-only feature because most available data provide
only CDR3p information. This restricts the full performance potential
of models incorporating CDR3p3 + others features due to limited data
availability for retraining. (3) Although we applied a refined AS-based
TCRreshuffling approach to increase the likelihood of true negatives
(TNs), this method does not guarantee that they are ground-truth
non-binders. (4) To ensure sufficient data for evaluation, we used
high-confidence pairs when scores were available and included all
pairs from datasets without such scores. Although we computation-
ally estimated FP rates across antigen identification methods, experi-
mental confirmationis still required. (5) This study primarily focused
on supervised sequence-based models, as a majority of developed
tools adopt this strategy. Unsupervised models, such as TULIP” and
TCRdock?, which do not consider negative samples, and models like
TCRen”, which require experimentally resolved TCR-pMHC structures,
were notincluded.

To advance the field, future efforts would prioritize several key
areas. (1) Expanding high confidential TCR-epitope data is crucial to
minimize FPs. Beyond experimentally generating reliable unpaired
TCR-epitope data, incorporating MHC class, antigen specificity and
other biologically relevant information may help construct credible
non-binding datasets. (2) Our analysis indicates that incorporating
multiple features generally improves model performance. Cross-modal
learning frameworks that combine sequence, structural and contextual
information represent a promising direction for more effective model
development. (3) Our findings highlight the limited performance of
current models on novel epitopes, underscoring the need forinnova-
tive architectures capable of capturing broader binding patterns. In
parallel, curating training datasets with extensive diversity in both
TCRs and epitopes is essential to support real-world applicability.
(4) Accurate assessment of model generalization requires the use of
independent external test sets, rather than relying only on internal
training data-derived test sets. This approach ensures amore realistic
performance evaluation.

In summary, our benchmarking study not only compares the
performance of current models but also analyzes the methodological
choices that most impact predictive success. It would serve as a valu-
able guide for model developers and end users, offering afoundation
uponwhich more robust, interpretable and generalizable models can
bedevelopedtoaccelerateimmunological researchand applications.

Online content
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maries, source data, extended data, supplementary information,
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Methods

Workflow of model evaluation

Our evaluation involves collecting and preprocessing data from vari-
oussources, preparing models (both originally trained and retrained)
and conducting testing and independent testing with external data-
sets (Fig. 1b). The assessment process considers several factors: the
impact of different negative TCR sources (AS, PS and HS), the impact
of cross-reactivity, the influence of training data size (number of sam-
ples, P-to-N sample ratios, dataset size for model saturation and the
correlation between epitope-associated TCR numbers and model
performance) and the effects of epitope type (seen versus unseen
epitopes) on model predictions.

Data collection of TCRs and epitopes for model evaluation

To ensure a robust and comprehensive evaluation of TCR-epitope
binding prediction models, we systematically gathered data from a
total of 21 authoritative databases and scholarly articles'>°"*. Detailed
information onthese datasourcesis providedinSupplementary Table1
and Supplementary Note 8. These databases and studies collectively
provide a comprehensive set of TCR-epitope bindings, ensuring a
robust data foundation for the objective and accurate evaluation of
TCR-epitope prediction models.

Model collection for TCR-epitope binding prediction

This study comprehensively collected 54 original and derived TCR-
epitope binding prediction models published before October 2024
(Supplementary Table 2). Of these, 50 models'>?"* 434750 were evalu-
ated, and the remaining 4 were excluded due to datarequirements or
lack of open-source implementation. These models encompass awide
range of methodologies to ensure a holistic evaluation framework.
The collected models exhibit the following characteristics: (1) they
employ traditional machine-learning approaches or cutting-edge
deep-learning techniques that leverage large datasets; (2) some models
aredesigned to predict only seen epitopes, whereas others can handle
both seen and unseen epitopes; (3) the models vary in their use of
featuresfor training. Some consider only the CDR3[ feature, whereas
othersincorporate additional features such as MHC classes and both
aand B TCR chains. The brief summary for eachmodelincludedin our
benchmark study is provided in Supplementary Note 9.

Preprocessing of TCR and epitope sequence data
Positive data obtained from 19 data sources (listed in Supplementary
Table 1) were initially preprocessed separately for the original model
testing task and the model retraining task. Given the limited avail-
ability of data for testing the original models, we retained all available
data when constructing the test set. We noted that a great number of
TCR sequences within the IEDB database deviated from established
research findings, which indicate that the CDR3 region of TCRs typi-
cally begins with a conserved cysteine (‘C’) and ends with phenylala-
nine (‘F’). Upon aligning the sequence lengths to a uniform format,
we observed that the first amino acid of these aberrant sequences
matched the second position of the normal sequence, and the last
amino acid aligned with the penultimate position. Torectify the format
ofthe TCRsequencesinthelEDB, we prefixed a‘C’ and appendedan‘F’
to these aberrant sequences. In addition, TCR-epitope pairs belong-
ing to the MHC-II class were excluded from original model testing
because the majority of models were trained using only MHC-I-class
data. For the retraining of models, given the sufficient volume of data
available for both training and testing phases, we directly filtered
out TCR sequences that did not start with ‘C’ and end with ‘F’. Both
MHC-1and MHC-II class data were retained in retraining for assessing
models comprehensively.

Subsequently, for both the datasetintended for model retraining
and assessment as well as the test set used for the evaluation of the
original models, weimplemented the following sequence procedures:

(1) Standard amino acid consideration: Because most
feature-encoding methods consider only the standard 20
amino acids, we deleted sequences of TCRs or epitopes that
contained special symbols, lowercase letters and uncommon
amino acids to ensure the accuracy of feature encoding.

(2) Sequence length criteria: Considering the consensus
criteria of all collected models, for the original model
testing, we retained epitopes with a length of 9 amino acids
and TCR sequences ranging from 10 to 18 amino acids.
However, in model retraining, we increased the length
scale of epitopes to 8-15 amino acids to build a larger
retraining dataset.

(3) Binding confidence: We removed sequences with low TCR-
epitope binding confidence. In the VDJdb database, sequences
are assigned confidence scores ranging from O to 3 based on
specificity and credibility. We excluded all TCR sequences with
a confidence score of 0 to maintain high-quality data. From the
dbPepNe02.0 database, only high-confidence neoantigen en-
tries validated by specific TCR recognition assays were retained.
In the case of the MIRA database, we included only statistically
inferred high-confidence TCR-epitope pairs with a posterior
probability greater than 0.9 of being associated with a specific
query antigen.

(4) Unique TCR-epitope pairs: The raw data contain a large
proportion of TCRs that do not bind to unique epitopes, a
phenomenon referred to as cross-reactivity. Although genuine
cross-reactivity does exist biologically, in certain experimen-
tal contexts such patterns may arise from technical limitations
or annotation errors, potentially introducing FPs. Specifi-
cally, in the MIRA dataset, cross-reactive TCRs account for
up to 66% of the entries within the high-confident annotated
subset. This method likely overestimates the actual degree of
cross-reactivity, as it may be influenced by methodological
limitations rather than genuine TCR-epitope recognition.

To minimize redundancy, reduce noise and ensure the unique-
ness of TCR-epitope interactions in our benchmark, we
excluded entries in which a single TCR was linked to more than
one epitope.

(5) Feature categories for TCR-epitope pairs: We considered the
following two scenarios to filter data according to feature avail-
ability: (1) the CDR3 sequence of the TCR -chain is provided
and (2) additional features beyond the CDR3f sequence are
available, including CDR3a, MHC type and V(D)) genes. Thus,
we generate two datasets (‘CDR3f-only’ and ‘CDR3 + others’
datasets) for both original model testing and retraining
model assessment.

For negative sequence data, we applied the TCR filtering condi-
tions mentioned above to ensure consistency across all data. This
approach ensures that the datasets used for training and testing are
of high quality and consistency, thereby enhancing the reliability of
the subsequent model evaluations.

Generation of negative data

We evaluated the models using three different sources of negative
data: AS, PS and HS TCRs. Regarding the size of negative data, for our
default setting, we maintained al:1ratio between the positive and nega-
tive datasets. Thisbalanced ratio was used unless we were specifically
investigating the effects of varying the P-to-N ratio.

The approach of AS TCRs (set as the default) is a commonly
used and stringent method to construct negative data by randomly
reshuffling positive TCR-epitope pairs, but it would have introduced
FNs caused by probable cross-reactivity. To mitigate this effect, we
employed arefined approach underimmunologically relevant catego-
ries, which considers the cross-matching of MHC classes, MHC alleles
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and antigen groups rather than relying solely on random shuffling. This
approach is based on the following assumptions: (1) the probability
of cross-reactivity between different MHC alleles is lower than within
the same allele, (2) MHC-II restricted TCRs have a lower likelihood of
binding to MHC-I restricted peptides and (3) the probability of TCR
binding to epitopes within one type of antigenis greater than for other
types of antigens.

Given that the number of MHC-I restricted TCR-epitope pairs is
substantially larger than those restricted by MHC-II, and there is domi-
nance of certain MHC alleles (for example, HLA-A*02:01) and antigens
(for example, SARS-CoV-2) of positive TCR-epitope pairs compared
with alleles and antigens, it is impractical to rely exclusively on MHC
class, MHC allele or antigen information to construct the entire nega-
tive dataset. Therefore, we adopted a stepwise cross-matching method.
Specifically, for both seen-epitope and unseen-epitope scenarios, we
first created negative pairs using cross-matched MHC information
when both MHC-1and MHC-II classes were present. In this process,
MHC-IIrestricted TCRs served as negative controls for MHC-Irestricted
positive TCR-epitope pairsand vice versa. Ifany MHC-l dataremained,
we thenemployed MHC-Irestricted TCRs specific to differentalleles as
negative controls. For any remaining MHC-I data with the same allele
information, we created negative pairs between different antigentypes.
Finally, if there were remaining data that could not be cross-matched,
weresorted to random reshuffling.

Togenerate HS and PS negative data, we obtained TCR sequences
fromtwo sources: the Dean-2015 dataset for healthy individuals and the
TCRdb database for patients. When generating negative samples from
HS TCRs, we excluded CMV-positive samples to avoid FNs. For PSTCRs,
we focused on clonally expanded TCRs, which have a high probability
of being disease-associated. For both seen-epitope and unseen-epitope
scenarios, we generated negative samples by randomly sampling TCRs
fromeither healthy or patient individuals, ensuring the sampling size
matched the number of TCRs in the positive dataset. These sampled
TCRswere then combined with the preprocessed epitopes to create a
set of negative data.

Construction of consensus test sets for original

model evaluation

To construct test sets for evaluating the original models, we followed
a systematic process. We first merged the 19 preprocessed positive
datasets and removed any duplicate data. For the seen-epitope sce-
nario, we retained only the epitopes commonly used by all models
and deleted the TCR sequences corresponding to these epitopes that
had already been used in model training. The remaining TCR-epitope
pairings were used as positive samples for the seen-epitope test set. For
the unseen-epitope scenario, we removed all epitopes and TCRs used
by the original models. The remaining TCR-epitope pairings formed
the positive samples for the unseen-epitope test set. Then, negative
samples were generated using the above-described negative datagen-
eration method for three types of negative datasources (AS, PSand HS).

Inthe original publications of the epiTCR, epiTCR-BH and NetTCR
models, the cysteine (‘C’) and phenylalanine (‘F’) amino acids at the
beginning and end of TCR sequences were removed during training.
To ensure consistency between the test data and the training data for
these models, we also artificially removed these amino acids when
using these models for prediction.

By following these steps, we ensured that the test sets accurately
reflected the requirements for evaluating the original models in both
seen-epitope and unseen-epitope scenarios.

To prevent data leakage, we used CD-HIT" to exclude highly simi-
lar sequences (>95% similarity) between the training and test sets.
Specifically, after integrating the positive samples with the generated
negative samples for each data group, CD-HIT was applied to eliminate
these highly similar TCR sequences, ensuring robust and unbiased
evaluation of the models.

Construction of training, test and independent sets for

model retraining

To construct training, test and independent sets for model retrain-
ing, we followed a systematic approach. Initially, we removed all
duplicate TCR-epitope pairings derived from 19 data sources
(Supplementary Table 1). Positive samples for the seen-epitope and
unseen-epitope independent test sets were sourced from IMMREP23,
MCcPAS-TCR and VDJdb, and positive samples from the remaining 16
databases were used for model retraining and testing.

To guarantee complete separationbetween theindependent sets
and the training/test sets, we excluded any samples from the training
and test data sources that overlapped with those in the independent
data sources (IMMREP23, McPAS-TCR and VDJdb). For the unseen
independent set, we retrained only the epitopes that did not appear
inthe training sets.

Subsequently, we employed a 5-fold cross-validation strategy to
generate five groups of training and test sets. A stratified sampling
method was applied to ensure uniform distribution of epitopes across
eachfold.Forthe seen-epitope scenario, we further filtered the candi-
date training and test samples by retaining only positive samples with
five or more TCRs corresponding to an epitope. For each set of positive
samples, we matched the epitopes with TCRs from three datasources
(AS, PS and HS) to create negative samples.

Inmodelretraining, we also used CD-HIT to exclude TCR sequences
with greater than 95% similarity between the training and test sets, and
between the training set and the independent test sets. This procedure
ensured the removal of highly similar sequences, thereby enhancing
the robustness and fairness of retraining model evaluation.

Evaluation of the impact of cross-reactivity on model
performance

Cross-reactivity poses a challenge in analyzing TCR-epitope bind-
ing data. When negative data are generated using the AS-based
reshuffling approach, cross-reactive TCRs could result in FNs. To
systematically assess the impact of cross-reactivity on model per-
formance, we conducted an analysis by incorporating cross-reactive
data into our model evaluation framework, which initially excluded
cross-reactive TCRs. Weidentified 11,667 cross-reactive TCR-epitope
entries (cross-reactive data from MIRA dataset were not included
due to an unusually high ratio of cross-reactive TCRs). After apply-
ing CD-HIT to eliminate sequences with high similarity in both test
and independent test sets, 11,083 unique cross-reactive entries were
addedinthisevaluation. Specifically, 9,104 of these entries were evenly
assigned across training and test sets within a 5-fold cross-validation
scheme. Additionally, 971 cross-reactive samples wereincludedin the
seen-epitope independent test set, and 1,008 were included in the
unseen-epitope independent test set.

The performance of models trained both with and without
cross-reactive TCRs was then evaluated by predicting the test and
independent test datasets comprising both cross-reactive and
non-cross-reactive entries. This comparison provides insights into
the extent to which cross-reactivity influences predictive accuracy
and model generalizability.

Evaluation of AS TCR identification methods on
retrained models
The quality of AS TCRs directly impacts thereliability of TCR-epitope
binding prediction models. In this study, we leveraged a large dataset
of TCRs to evaluate model performance and implement various data
filtering strategies to ensure data quality. However, challenges arising
from the AS TCR identification methods themselves cannot be fully
addressed through preprocessing alone.

To investigate the quality of data derived from different AS TCR
identification methods, we examined the annotation information
across our datasets. We found that the majority of samples lacked
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explicit labeling of experimental methods, whereas the clearly anno-
tated entries primarily fell into two categories of well-established meth-
ods: (1) multimer-related assays and (2) in vitro stimulation-related
assays. Accordingly, we focused our comparative analysis on these
two classical methods.

We conducted two key analyses. First, we applied the 8 retrained
models—selected from the top 10 performers in our benchmark
(Fig. 3d) and capable of predicting unseen epitopes—to predict sam-
plesfromeach group and estimate their FP rates. This analysis assumes
that the top-performing models have adequate discriminative power
and that consensus predictions across multiple models can act as an
indirect measure of data quality.

Second, we trained models independently on datasets gener-
ated by each method and evaluated their performance on the same
high-confidence test sets. This approach assumes that model per-
formance reflects the reliability of the training data. To ensure a fair
comparison, we standardized the training set size by aligning it with the
method that yielded fewer samples: in vitro stimulation. Specifically,
both training sets were limited to 1,409 TCRs, matching the sample
size of theinvitro stimulation group. Ashared high-confidence test set
containing 274 TCRs was used for evaluation. To mitigate the effects of
random sampling and ensure robust comparison, we downsampled the
positive samples from the multimer datasets and repeated the model
training and evaluation process 10 times.

Evaluation of the size effects of TCR-epitope pairsin
modelretraining

To examine the impact of TCR numbers on model performance, we
created several groups of training and test sets by varying the number
of TCRs associated with each epitope. This process was based on the
five standardized training and test splits used for model retraining
whenusing AS TCRs as anegative datasource. For epitopes with more
than300 associated TCRs, we retained all TCR-epitope pairings where
the TCR count exceeded 300 in both the five training sets and the
corresponding five test sets. Subsequently, for specific TCR count
thresholds of 300, 200, 100 and 10, we constructed training sets by
selecting TCR-epitope pairings in which the TCR count per epitope
equaled exactly 300,200, 100 or 10 within the five training splits. For
all these training configurations, the same five test sets—originally
generated for the group with TCR counts exceeding 300—were con-
sistently used for evaluation, ensuring comparability across different
TCR count settings.

Totest therequired TCR number for different models toreach opti-
mal performance, we extracted epitopes whose TCR numbers ranked
amongthe top five from all databases and validated how TCR number
impacted model performance with samples grouped by epitope. For
the training data of each epitope, we created multiple training sets with
16 different TCRsizes, ranging from 50t0 3,000, with each size repeated
five times. For test data, we randomly extracted 500 binding TCRs for
each epitope to construct positive samples and repeated five times.
To ensure balanced datasets, an equal number of negative samples
were generated for each training or test set using the refined AS-based
negative-data-creation strategy. A separate dataset was constructed for
each epitope, where negative samples were created by pairing the given
epitopes with TCRs not included in the corresponding positive set.
Thus, for each epitope, we obtained five training sets and test sets by
combining positive and negative samples. The top 10 models identified
inFig.3d, which previously demonstrated strong generalization to the
seen-epitopeindependent test set, were retrained for this evaluation.

To assess whether TCR sequence heterogeneity within the same
epitope affected model performance, we used the data from one of
the five training-test splits generated through 5-fold cross-validation
duringmodelretraining, corresponding to the results shownin Fig. 3b.
For each epitope, we calculated the pairwise Levenshtein distances
among all associated TCR CDR33 sequences and used the average

distance as a measure of TCR heterogeneity. We then computed the
Pearson correlation coefficient between TCR heterogeneity and model
performance (measured by AUPRC) for each model across epitopes. To
evaluate statistical differences in correlation strength between models,
we performed pairwise comparisons using Fisher’s r-to-z transforma-
tionand calculated the corresponding Pvalues. To account for multiple
comparisons and reduce the likelihood of FP findings, we applied the
Benjamini-Hochberg correctionto the resulting Pvalues. The same top
10 modelsidentified in Fig. 3d were also used in this analysis.

Evaluation of the effects of P-to-N ratios in model retraining
When exploring the model’s performance under varying degrees of
data imbalance, we constructed seven groups of training sets with
P-to-Nsampleratiosof 9:1, 6:1,3:1,1:1,1:3,1:6 and 1:9 based on the posi-
tive samples used for model retraining. This evaluation used AS TCRs
as the negative data source. It is worth noting that the TCRGP model
could notbetrained at the 1:3 ratio due to excessive data volume, and
thusitsresults are notincludedin this part.

To generate the most imbalanced dataset (1:9 P-to-N ratio), we
employed the refined AS-based reshuffling strategy with repetition
applied seven times, creating the maximum possible number of syn-
thetic TCR-epitope pairsbased on the available positive samples. Only
epitopes with asufficient number of corresponding negative matches
were retained.

This1:9 dataset was then used to generate five training-test splits
via5-fold cross-validation, employing stratified sampling to ensure an
even distribution of epitopes across all folds. The five training-test
splits under other P-to-N ratios were derived by downsampling the
negative samples accordingly while keeping the positive samples
consistentacross all datasets.

To ensure a fair comparison of prediction performance across
different P-to-Nratios, we used the test sets from the 1:1ratio configu-
ration for evaluation in all cases. Finally, the models shown in Fig. 3b
were retrained using each dataset to assess the impact of different
P-to-N sample ratios.

To evaluate generalizability, we built seen- and unseen-epitope
independent test sets (1:1 P-to-N ratio) using IMMREP23, McPAS-TCR
and VDJdb. The seen-epitope set shared epitopes with training data,
and unseen-epitope sets contained the remaining epitopes.

Evaluation of time and resource consumption in model
training and testing

To evaluate the computational demands of various models, we created
datasets with 1,000, 5,000,10,000,100,000 and 1,000,000 samples
by randomly selecting TCRs and epitopes. Each dataset was used for
both training and testing to record runtime and memory usage. For
each run, we allocated the same amount of memory and number of
CPU cores, and deep-learning models were executed on a GPU with
uniform settings. All experiments were performed on a computing
server with the following hardware configuration: Intel Xeon Gold 6342
CPU (2.8 GHz, 48 cores) with 1,024 GB of RAM and NVIDIA A100-PCIE
GPU with 80 GB of VRAM.

Model preparation and tuning

The original models utilized in the evaluation were primarily the ver-
sionsreleased on GitHub. Models that were not available were trained
using the original training dataset and default settings as specified in
therespectivearticles (Supplementary Table 2). Inthe unseen-epitope
predictionscenario, we excluded several models and their variants (if
available)—-TCRGP, TCR-BERT, SETE, MixTCRpred, DeepTCR, TCRconv
and TCR-H—for the following reasons: DeepTCR was originally trained
onnon-humandata; TCR-H did not provide accesstoits exact training
data or pretrained model; and the remaining models generate sepa-
rate models for each epitope, making them unsuitable for predicting
unseen epitopes. Incomparing the impact of different P-to-N ratios of
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samples on model performance, we excluded TCRGP because it failed
to run properly when the ratio reached 1:3 due to the limitations of
TensorFlow, which cannot handle tensors larger than 2 GB.

During the retraining process, we examined the effects of tuning
key hyperparameters for models. However, the observed performance
differences were minimal, and in most cases, the default or recom-
mended settings yielded comparable or superior results. Therefore, we
adopted the default configurations or those suggested in the original
publications for consistency and reproducibility. When evaluating the
impact of data size on model performance, the number of epochs was a
factorinfluencing the convergence of deep-learning models. We tested
model performance under five different epoch settings and used the
best results for comparison.

Metrics for model evaluation

When evaluating model performance, a large portion of the outputs
represent the binding probability or binding affinity between TCRs
and epitopes, which does not clearly indicate whether binding will
occur. Most models consider abinding likelihood greaterthan0.5asa
positive prediction. However, the binding relationship between TCRs
and epitopes is complex, making it challenging to establish a precise
binding threshold.

In classification models, predictions fallinto four categories: true
positives (TPs), where the model correctly predicts positive samples;
FPs, where negative samples are incorrectly predicted as positive;
TNs, where negative samples are correctly identified; and FNs, where
positive samples areincorrectly predicted as negative.

In our evaluation, the primary metric we adopted was AUPRC,
which quantifies the trade-off between precision and recall across
all possible classification thresholds. AUPRC is widely recognized as
arobust evaluation metric for imbalanced classification tasks, as it
reflects amodel’s ability to rank TPs—such as high-affinity TCR-epitope
pairs—above FPs. We calculated AUPRC using the precrec package, as
recommended in the literature™.

In addition, we evaluated the models using a comprehensive set
of performance metrics including area under the receiver operating
characteristic curve for allmodels. Other metrics, including accuracy,
precision, recall, specificity, Matthews correlation coefficient (MCC)
and F; score, discussed in specific sections, offer threshold-specific
insights thatare intuitive for fixed thresholds (with 0.5 set as the default
to distinguish true from false). These additional metrics offer targeted
evaluations but may be influenced by the chosen threshold.

Accuracy measures the overall correctness of classifications,
defined as

TP+ TN

Aceuracy = o TN T FP T EN

Recall assesses models’ sensitivity in identifying TPs from actual
positives, defined as

TP

Recall = TP-I-—FN

Precision evaluates the proportion of TP predictions among all
positive predictions, defined as

TP

Precision = TPLFP

Specificity quantifies models’ability to correctly identify negative
instances, defined as

Specificity = TNT—FFP

MCC provides abalanced assessment of model performance, tak-
ingintoaccountboth true and false positives and negatives, defined as

co TP x TN — FP x FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Finally, the F, score offers a harmonic mean of precision and recall,
reflecting a balance between these two metrics, defined as

Precision x Recall

F, = 2 x Tecision x Recan
1 Precision + Recall

These metrics collectively provide arobust framework for evalu-
ating the effectiveness and reliability of the models across various
aspectsoftheir performance. For models like MixTCRpred and pMTnet,
which generaterelative binding affinity scores rather than probability
thresholds or binary classifications, only AUPRCis calculated because
other metrics requiring fixed cutoffs are not applicable. The detailed
results for each metric are presented in the Supplementary Tables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw data were obtained from publicly accessible databases and
scholarly articles, including VDJdb*’, McPAS-TCR”, IEDB*, TBAdb*,
dbPepNeo2.0**, MIRA®, Glanville-2017°¢, Tsuruta-2018%, Luo-2018°,
TetTCR-2018°°, Huth-2019*°, TetTCRHD-2021*, Francis-2022*,
pMTnet-2021%, Ishigaki-2022**, Minervina-2022*, Mudd-2022",
PISTE-2024*, IMMREP23", TCRdb2.0*® and Dean-2015*, with
web links provided in Supplementary Table 1. The processed
data employed to generate the results are available via figshare at
https://doi.org/10.6084/m9.figshare.27020455 (ref. 75). Source data
are provided with this paper.

Code availability

Thesource codes of the TCR-epitope binding prediction models evalu-
ated in this paper are publicly available via GitHub at https://github.
com/Suolab-GZLab/TCREpitopeBenchmark.
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Extended Data Fig. 1| Proportional distribution of TCR-epitope pairings
matching differentimmunologically relevant categories and study design
for original and retraining model evaluations. a-c, Proportional distribution
of TCR-epitope pairings matching across different MHC classes (a), alleles

(b) and antigens (c). d, Experimental design for original model evaluations.

The evaluations were conducted separately for CDR3[3-only models and
CDR3B+others models. We constructed two groups of seen- and unseen-epitope
test sets by excluding the training data of all original models from our collected
databases: one group contains only CDR3f3 and epitope sequences, and the other
group contains additional features other than CDR3p and epitope sequences
(such as MHC classes, CDR3a sequences). e, Experimental design for retraining
model evaluations. The evaluations were conducted separately for CDR3f3-only
models and CDR3f+others models. We constructed two groups of seen-epitope
tests together with seen- and unseen-epitope independent test sets based on our

collected 21 databases: one group contains only CDR3f and epitope sequences,
and the other group contains additional features other than CDR3 and epitope
sequences (such as MHC classes, CDR3a sequences). Inretraining, CDR3B-only
models were further tested for the impact of multiple factors, including TCR
similarity, negative TCR sources, cross-reactive TCRs, the refined AS method,
low prevalence of true bindings and training data size. Across both experimental
designs (d, e), CDR3B-only models were evaluated using three types of negative
datasources: AS, PS and HS TCRs, whereas CDR3B+others models were tested
only with AS negatives, as PS and HS TCRs rarely contain additional information
except for CDR3p. Additionally, the CDR3B-only models were also evaluated
with CDR3pB+others data to assess the impact of feature enrichment on model
performance. For all tests, TCRs highly similar to training sequences were
excluded from test sets to avoid data leakage.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2| Performance evaluation of originally trained CDR3-
Only models on seen- and unseen-epitope predictions based on CDR33-only
data. a-b, Amino acid distribution of CDR3f sequences starting with Cand
ending with F (a) and of CDR3 sequences not starting with C and ending with
F (b). c-d, Performance of original CDR3-only models in seen-epitope (c) and
unseen-epitope test (d) using AS negatives based on CDR3f-only datain terms
of multiple metrics: AUPRC, Precision, Specificity, Recall, F1. e-f, Performance
of CDR3f-only models on three seen epitopes using PS negatives (e) and HS
negatives (f). g, AUPRC comparison of originally trained CDR3-only models
(n=31) using AS/PS/HS negatives in seen-epitope test. h-i, AUPRC correlation
between the seen-epitope test results of original CDR3B-only models (n = 31)

obtained using AS and PS negatives (h) and using AS and HS negatives (i).

Jj-k, Performance of CDR33-only models on unseen epitopes using PS negatives
(j) and HS negatives (k). 1, AUPRC comparison of originally trained CDR3B-only
models (n =28) using AS/PS/HS negatives in unseen-epitope test. m-n, AUPRC
correlation between the unseen-epitope test results of original CDR33-only
models (n =28) obtained using AS and PS negatives (m) and using AS and HS
negatives (n). Heatmaps (e, f, j, k) show epitope-level AUPRC, with adjacent bar
charts showing overall AUPRC. Colored dots (g, I) represent individual model
AUPRC, black dots indicate mean, error bars represent the mean + SD. P-values of
Pearson correlations (h, i, m, n) were from two-sided ¢-test.
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Extended Data Fig. 3 | Performance evaluation of originally trained models in unseen-epitope test using AS negatives based on CDR33+others data.
CDR3g-only and CDR3f+others models on seen- and unseen-epitope g, AUPRC comparison of original CDR3B-only models (left) and CDR3f+others
predictions based on CDR3p+O0thers data in terms of multiple metrics. models (right) using AS negatives on seen- and unseen-epitope test (for the
a, Performance of original CDR3B+others models in seen-epitope test using AS CDR3p-only models, n=31for the seen test and n = 28 for the unseen test; for the
negatives based on CDR3f+others data. b, AUPRC of CDR33-only models on two CDR3p+others models, n =15 for the seen test and n = 10 for the unseen test);
seen epitopes of CDR3f+others data using AS negatives. c-d, Performance of box plots display mean (center line), the first and third quartiles (box), minimum
original CDR3B-only models in seen-epitope test (c) and original CDR3B+others and maximum values within 1.5xinterquartile range (whiskers). P-values are
models in unseen-epitope test (d) using AS negatives based on CDR33+others from two-sided Wilcoxon signed-rank tests. Heatmaps (a, ¢, d, f) show results of
data. e, Performance of CDR33-only models on unseen epitopes of multiple metrics: AUPRC, Precision, Specificity, Recall, and F1. Heatmaps (b, e)
CDR3p+others data using AS negatives. f, Performance of original CDR3f-only show epitope-level AUPRC, with adjacent bar charts showing overall AUPRC.
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Extended Data Fig. 4 | Distribution of training, test and independent test data
for retrained model evaluation using the CDR3f-only and CDR3f+others
datasets. a, Distribution of TCR length in the CDR3f-only dataset. b, Distribution
of data used by retrained CDR3B-only models. ¢, Percentage and number of TCRs
inthe stratified sampling of 5 times for constructing training and test sets within
the CDR3f-only dataset. d, Distribution of antigen types and epitopesin the
seen-epitope independent test set of CDR3[3-only data. e, Number of epitopes
that correspond to different TCR numbers in the seen-epitope independent

test set of CDR3pB-only data. f, Distribution of antigen types and epitopes in the
unseen-epitope independent test set of CDR3-only data. g, Number of epitopes
that correspond to different TCR numbers in the unseen-epitope independent
test set of CDR3B-only data. h, Distribution of TCR length in the CDR3B+others

dataset. i, Distribution of data used by retrained CDR3B+others models.

Jj, Percentage and number of TCRs in the stratified sampling of 5 times

for constructing training and test sets within the CDR3p+others dataset.

k, Distribution of antigen types and epitopes in the seen-epitope independent
test set of CDR3B+others data. I, Number of epitopes that correspond to different
TCR numbers in the seen-epitope independent test set of CDR3f+others

data.m, Distribution of anti

gen types and epitopes in the unseen-epitope

independent test set of CDR3fB+others data.n, Number of epitopes that
correspond to different TCR numbers in the unseen-epitope independent test
set of CDR3B+others data. Heatmaps (b, d, f, i, k, m) show the log10-transformed
number of TCRs corresponding to each epitope, with x-axis representing
epitopes and y-axis representing antigens.
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Extended Data Fig. 5| Performance of retrained CDR3-only and retrained CDR3pB+others models (f) and retrained CDR33-only models (g) in
CDR3p+others models on seen- and unseen-epitope predictions in terms seen-epitope independent test using AS negatives based on CDR3f+others
of multiple metrics. a-c, Performance of retrained CDR33-only models in data. h-i, Performance of retrained CDR3[+others models (h) and retrained
seen-epitope test (a), independent test (b) and unseen-epitope independent test CDR3-only models (i) in unseen-epitope independent test using AS negatives
(c) using AS negatives based on CDR3pB-only data. d-e, Performance of retrained based on CDR3B+others data. All heatmaps show results of multiple metrics:

CDR3B+others models (d) and retrained CDR3[-only models (e) in seen-epitope AUPRC, Precision, Specificity, Recall and F1.
test using AS negatives based on CDR3f+others data. f-g, Performance of
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Impact of key factors on model performance: sequence
similarity and source effects of negative data. a-c, AUPRC comparison between
models retrained with CDR3p-only features in predicting seen-epitope test data
(a), seen-epitope independent test data (b), and unseen-epitope independent
test data (c) with and without removing similar TCR sequences using AS/PS/HS
negatives. Dots represent individual model AUPRC, and lines connect the

same models across evaluation settings. P-values were from two-sided

Wilcoxon signed-rank test (n = 24 for seen-epitope predictions and n = 21 for
unseen-epitope predictions) with Benjamini-Hochberg correction. d, AUPRC
performance of PS- and HS-based retrained models on AS-based test, seen-
epitope independent test and unseen-epitope independent test data with
CDR3p-only features. e, AUPRC performance of AS-based retrained models on
PS-and HS-based seen-epitope test, seen-epitope independent test and unseen-
epitope independent test data with CDR3-only features.
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Extended DataFig. 7 | Impact of key factors on model performance:
cross-reactive TCRs and refined AS-based reshuffling methods.

a, Distribution of cross-reactive and non-cross-reactive TCRs in our datasets
after preprocessing. b-c, AUPRC comparison between models retrained with
and without cross-reactive TCRs under the refined AS-based negative sample
generation approach when testing with data comprising both cross-reactive
and non-cross-reactive entries. d, AUPRC comparison between models
retrained with and without cross-reactive TCRs under the random AS-based
negative sample generation. e-f, AUPRC comparison of models retrained
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with cross-reactive TCRs under two negative data reshuffling strategies: the
refined AS-based and the traditional random AS-based reshuffling approach,
when testing with data comprising both cross-reactive and non-cross-reactive
entries. Dots (b, d, e) represent individual model AUPRC, and lines connect
the same models across evaluation settings. P-values were from two-sided
Wilcoxon signed-rank test (n = 24 for seen-epitope predictions and n = 21 for
unseen-epitope predictions) with Benjamini-Hochberg correction. All metrics
(c, f) wererounded to three decimals to enable clearer comparison of subtle
performance differences across models.
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Extended Data Fig. 8| Performance of the retrained CDR3f3-only models on (0.1%,1%,10%, and 50%) of positive samples in terms of Precision, F1, Recall and
low prevalence of true TCR-epitope pairs. a-c, Performance of CDR3f-only Specificity. In consideration of the relatively small magnitude of many metric
models using AS negatives in predicting seen-epitope test data (a), independent values, all metrics were rounded to three decimals to enable clearer comparison

test (b) and unseen-epitope independent test (c) data with different prevalences of subtle performance differences across models.
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Extended Data Fig. 9| See next page for caption.
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Extended Data Fig. 9| Additional results of testing the effects of TCR counts on
model performance and correlation between the heterogeneity of TCRs and
model performance. a, Performance saturation analysis for TEIM, TCR-BERT,
ERGO-AE, VitTCR, NetTCR, PiTE and ATM-TCR, using five epitopes with most

TCR counts, showing per-epitope AUPRC and mean performance (red line).

b, AUPRC comparison of average AUPRC of models obtained by five epitopes
across different TCR numbers. ¢, Growth trend of AUPRC across TCR count
intervals. The x-axis denotes three intervals of TCR counts employed in model
training. The heatmap shows the slopes, calculated as AUPRC change divided by
the TCR count range within eachinterval. d, Correlation between TCR sequence

heterogeneity and AUPRC for models: epiTCR, TCRGP, TEPCAM, VitTCR, TEIM,
TCR-BERT, PiTE, NetTCR, ATM-TCR, and ERGO-AE; dots represent epitopes,
colored by antigen group. The heterogeneity between TCR sequences was
measured by average Levenshtein distance per epitope. Spearman correlation
was used, and P-values were from two-sided t-test (n = 389). e, Differences in the
strength of the negative correlation between intra-epitope TCR heterogeneity
and model AUPRC across different models based on the results fromd. P-values
of Fisher’s r-to-z transformation were from two-sided z-test with Benjamini-
Hochberg correction (n =389).

Nature Methods


http://www.nature.com/naturemethods

Analysis

https://doi.org/10.1038/s41592-025-02910-0

a

103+

102

Usage Time (log10 s)

10"+

100+

Time used for training models

TCR-H
TCR-BERT
TCRconv
DLpTCR-CNN
vibtcr-AB
vibter

PITE
ERGO-Istm
VitTCR
DLpTCR-RESNET
TITAI

NetTCR

1000

Usage Time (log10 s)
=
s

Time used for testing models

1000000

1000

1000000

ERGO-Istm
vibtcr-AB

ImRex
DLpTCR-RESNET
vibtcr

TEPCAM
ERGO-AE
DLpTCR-FULL
NetTCR-AB
TEINet
DLpTCR-CNN
AttnTAP
ATM-TCR
epiTCR
NetTCR
DeepTCR-ABVJ
DeepTCR
TCRGP-AB
TCRGP

Memory Usage (log10 MB)

Memory Usage (log10 MB)

10°

10%

10%

102

10'

Memory used for training models

WA
Sxbras ow Bo W

1000

5000 10000 100000

Number of TCRs

Memory used for testing models

1000000

1000

5000 10000 100000

Number of TCRs

1000000

VitTCR
PITE
ImRex
SETE
TCRconv
vibtcr-AB

DLpTCR-CNN
DeepTCR-ABVJ
TEPCAM
TCR-BERT
DLpTCR-RESNET
MCMC

ERGO-Istm
DeepTCR
TPBTE

TEIM
DLpTCR-FULL
TEINet

vibtcr-AB
vibter

VitTCR

PITE

TCRconv
SETE
NetTCR-AB
DLpTCR-CNN
NetTCR
epiTCR
DLpTCR-FULL
ERGO-AE
DLpTCR-RESNET
MC

DeepTCR-ABVJ

ERGO-Istm
ATM-TCR
TITAN
TCR-BERT
TEINet
AttnTAP
TCRGP-AB
TCRGP

Extended Data Fig. 10 | Time and memory usage of models in training and testing under different datasizes. a-d, Training time (a), memory usage during training
(b), testing time (c), and memory usage during testing (d) for various data sizes; CDR3p+others models are highlighted in red.
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Software and code

Policy information about availability of computer code

Data collection  We collected publicly available data manually without using any software or code.

Data analysis We used the following software in this research: Python 3.8.13, scikit-learn 1.1.2, NumPy 1.22.4, and pandas 1.22.4 for data preprocessing
and analysis.

We compared the performance of 50 TCR-epitope binding prediction models: DLpTCR-CNN(https://github.com/jiangBiolab/DLpTCR), DLpTCR-
FULL(https://github.com/jiangBiolab/DLpTCR), DLpTCR-RESNET(https://github.com/jiangBiolab/DLpTCR), NetTCR(https://github.com/
jiangBiolab/DLpTCR), NetTCR-AB(https://github.com/jiangBiolab/DLpTCR), TCR-BERT(https://github.com/wukevin/tcr-bert), ERGO-Istm-
vdj(https://github.com/IdoSpringer/ERGO), ERGO-Istm-mc(https://github.com/IdoSpringer/ERGO), ERGO-AE-vdj(https://github.com/
|doSpringer/ERGO), ERGO-AE-mc(https://github.com/IdoSpringer/ERGO), ERGOII-vdj(https://github.com/IdoSpringer/ERGO-II), ERGOII-
mc(https://github.com/IdoSpringer/ERGO-II), epiTCR(https://github.com/ddiem-ri-4D/epiTCR), epiTCR-BH(https://github.com/ddiem-ri-4D/
epiTCR), TEINet-small(https://github.com/jiangdada1221/TEINet), TEINet-large(https://github.com/jiangdada1221/TEINet), ATM-TCR(https://
github.com/Lee-CBG/ATM-TCR), AttnTAP-vdj(https://github.com/Bioinformatics7181/AttnTAP), AttnTAP-mc(https://github.com/
Bioinformatics7181/AttnTAP), TPBTE-vdj(https://github.com/Aries-Wu/TPBTE), TPBTE-mc(https://github.com/Aries-Wu/TPBTE), TEIM(https://
github.com/pengxingang/TEIM), ImRex(https://github.com/pmoris/ImRex), TCRGP(https://github.com/emmijokinen/TCRGP), TCRGP-
AB(https://github.com/emmijokinen/TCRGP), SETE(https://github.com/wonanut/SETE), DeepAlR(https://github.com/
TencentAlLabHealthcare/DeepAIR), DeepTCR(https://github.com/sidhomj/DeepTCR), DeepTCR-ABVJ(https://github.com/sidhomj/DeepTCR),
iTCep(https://github.com/kbvstmd/iTCep), MCMC(https://github.com/jssong-lab/TCR-Epitope-Binding), MixTCRpred(https://github.com/
GfellerLab/MixTCRpred), PanPep(https://github.com/bm2-lab/PanPep), PISTE-random(https://github.com/Armilius/PISTE), PISTE-
unipep(https://github.com/Armilius/PISTE), PISTE-reftcr(https://github.com/Armilius/PISTE), PiTE-base-tcrSplit(https://github.com/Lee-CBG/
PIiTE), PiTE-base-epiSplit(https://github.com/Lee-CBG/PiTE), pMTnet(https://github.com/tianshilu/pMTnet), pMTnet_omni(https://
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github.com/Yugiu-Yang/pMTnet_Omni_Document), TCRConv-small(https://github.com/emmijokinen/TCRconv/), TCRConv-large(https://
github.com/emmijokinen/TCRconv/), TCRConv-AB-large(https://github.com/emmijokinen/TCRconv/), TCRfinder(https://www.biorxiv.org/
content/10.1101/2024.06.27.601008v1), TCR-H(https://github.com/rajitha-tatikonda/TCR-H), TEPCAM(https://github.com/Chenjw99/
TEPCAM), TITAN(https://github.com/mahmoodlab/TITAN), vibtcr(https://github.com/nec-research/vibtcr), vibtcr-AB (https://github.com/nec-
research/vibtcr), and VitTCR(https://github.com/Jiang-Mengnan/VitTCR). All models have been deposited on Figshare (https://
doi.org/10.6084/m9.figshare.27020455).

Among the 50 evaluated models, 43 were deep learning-based models, established based on pytorch or tensorflow framework with required
dependencies, and 7 were traditional machine learning-based models, established based on scikit-learn with its dependencies. The library
versions used by each model were different, with details provided at https://github.com/SuolLab-GZLab/TCREpitopeBenchmark.

The evaluation metrics for model performance were calculated using r-precrec (v0.14.4) (for AUPRC) and scikit-learn (v1.1.2) (for Accuracy,
Precision, Recall, Specificity, MCC, and F1 score).

Correlation and statistical analyses were conducted using scipy (v1.7.3), with statsmodels (v0.14.1) to make adjustments for multiple
comparisons.

Data and results visualization was carried out using Matplotlib (v3.7.3), r-ggplot2 (v3.4.4), r-tidyverse (v2.0.0), and ggsignif (v0.6.4).

Custom scripts for data preparation, model construction, metric computation, and results visualization are available at https://github.com/
Suolab-GZLab/TCREpitopeBenchmark.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The processed data employed to generate the results were deposited on figshare (https://doi.org/10.6084/m9.figshare.27020455).

The original data information is as follows:

1. VDJdb: contains 68,306 TCR sequences and 1,195 epitopes; the access address is https://vdjdb.cdr3.net.

2. McPAS-TCR: contains 40,731 TCR sequences and 380 epitopes; the access address is http://friedmanlab.weizmann.ac.il/McPAS-TCR.

3. IEDB: contains 51,139 TCR sequences and 74 epitopes; the access address is https://www.iedb.org/.

4. TBAdb: contains 182,579 TCR sequences and 2,290 epitopes; the access address is https://db.cngb.org/pird/.

5. dbPepNe02.0: contains 648 TCR sequences and 80 epitopes; the access address is http://www.biostatistics.online/dbPepNeo.

6. MIRA: contains 133,887 TCR sequences and 148 epitopes; the access address is https://clients.adaptivebiotech.com/pub/covid-2020.

7. Glanville-2017: Contains 4876 TCR sequences and 9 epitopes; access address: https://www.nature.com/articles/nature22976.

8. Huth-2019: contains 1,090 TCR sequences and 4 epitopes; the access address is 10.4049/jimmunol.1801401.

9. Francis-2022: contains 2,688 TCR sequences and 666 epitopes; the access address is 10.1126/sciimmunol.abk3070.

10. Ishigaki-2022: contains 99 TCR sequences and 4 epitopes; the access address is https://www.nature.com/articles/s41588-022-01032-z#Sec29.

11. Luo-2018: contains 1,545 TCR sequences and 4 epitopes; the access address is https://www.pnas.org/doi/full/10.1073/pnas.1818150116.

12. Minervina-2022: contains 4,432 TCR sequences and 17 epitopes; the access address is https://www.sciencedirect.com/science/article/pii/S0092867421014896.
13. Mudd-2022: contains 396 TCR sequences and 1 epitopes; the access address is https://www.sciencedirect.com/science/article/pii/S0092867421014896.
14. PISTE-2024: contains 425 TCR sequences and 61 epitopes; the access address is https://www.nature.com/articles/s42256-024-00901-y#Bib1.

15. TetTCR-2018: contains 1,202 TCR sequences and 216 epitopes; the access address is https://pubmed.ncbi.nim.nih.gov/30418433/.

16. TetTCRHD-2021: contains 5,089 TCR sequences and 14 epitopes; the access address is https://www.nature.com/articles/s41590-021-01073-2.

17. pMTnet-2021: contains 619 TCR sequences and 224 epitopes; the access address is https://www.nature.com/articles/s42256-021-00383-2.

18. Tsuruta-2018: contains 40 TCR sequences and 2 epitopes; the access address is https://www.tandfonline.com/doi/full/10.1080/2162402X.2017.1415687.
19. IMMREP23: contains 3,484 TCR sequences and 20 epitopes; the access address is https://www.sciencedirect.com/science/article/pii/S2667119024000156.
20. Dean-2015: Contains 30,010,729 TCR sequences; the access address is: 10.1186/s13073-015-0238-z.

21. TCRdb2.0: Contains 36,143,198 TCR sequences; the access address is https://guolab.wchscu.cn/TCRdb2/.

Here, Dean-2015 and TCRdb2.0 are datasets of negative data sources, so there is no epitope information.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No human participants were involved in this study.
Reporting on race, ethnicity, or  No human participants were involved in this study.
other socially relevant

groupings

Population characteristics No human participants were involved in this study.
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Recruitment No human participants were involved in this study.

Ethics oversight No human participants were involved in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We made efforts to systematically collect all currently publicly available TCR-epitope binding datasets to ensure comprehensive coverage. Our
study encompasses 21 datasets, covering 762 distinct epitopes and hundreds of thousands of TCR binding events.

Data exclusions (1) We deleted sequences of TCRs or epitopes that contained special symbols, lowercase letters and uncommon amino acids to ensure the
accuracy of feature encoding.
(2) Considering the consensus criteria of all collected models, for the original model testing, we retained epitopes with a length of 9 amino
acids and TCR sequences ranging from 10 to 18 amino acids. While in model retraining, we increase the length scale of epitopes to 8 to 15
amino acids so as to build a larger retraining dataset.
(3) We removed sequences with low TCR-epitope binding confidence. In the VDJdb database, sequences are assigned confidence scores
ranging from O to 3 based on specificity and credibility. We excluded all TCR sequences with a confidence score of O to maintain high-quality
data. From the dbPepNeo02.0 database, only high-confidence neoantigen entries validated by specific TCR recognition assays were retained. In
the case of the MIRA database, we included only statistically inferred high-confidence TCR—epitope pairs with a posterior probability greater
than 0.9 of being associated with a specific query antigen.

Replication We have confirmed that all computational results could be reproduced in replicates.

Randomization  Stratified sampling was applied in the random generation of training and test sets from the pooled TCR-epitope pairs, ensuring that data from
different databases were evenly distributed between the sets. Another aspect of the design that involves randomness is the generation of
negative data. We used 3 different sources of negative datasets: antigen-specific (AS) TCRs, patient-sourced (PS) TCRs and healthy-sourced
(HS) TCRs in our study. For PS and HS TCRs, negative samples were generated by matching epitopes with TCRs randomly selected TCRs. We
used AS TCRs as the default negative controls and applied a refined reshuffling method. We first created negative pairs using cross-matched
MHC information when both MHC-I and MHC-II classes were present. Then, if any MHC-I data remaining unmatched, we employed MHC-I
restricted TCRs specific to different alleles as negative controls. For any remaining MHC-I data with the same allele information, we created
negative pairs between different antigen groups. Finally, if there was remaining data that could not be cross-matched, we resorted to random
reshuffling.

Blinding Blinding was not applicable as this study exclusively involved computational analysis of publicly available datasets, without manual group
allocation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Plants

Seed stocks This study did not involve the use of any plant materials.

Novel plant genotypes  This study did not involve the use of any plant materials.

Authentication This study did not involve the use of any plant materials.
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