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Protein structure prediction has along history of benchmarking efforts

such as critical assessment of structure prediction, continuous automated
model evaluation and critical assessment of prediction of interactions.

With therise of artificial intelligence-based methods for prediction of
macromolecular complexes, benchmarking with large datasets and robust,
unsupervised scores to compare predictions against a reference has become
essential. Also, the increasing size and complexity of experimentally
determined reference structures by crystallography or cryogenicelectron
microscopy poses challenges for structure comparison methods. Here

we review the current state of the artin scoring methodologies, identify
existing limitations and present more suitable approaches for scoring of
tertiary and quaternary structures, protein—proteininterfaces and protein-
ligand complexes. Our methods are designed to scale efficiently, enabling
the assessment of large, complex systems. All developments are available in
the structure benchmarking framework of OpenStructure. OpenStructure is

opensource software and available for free at https://openstructure.org/.

The field of protein structure modeling has along history in benchmark-
ingthe accuracy of prediction methods. Various numerical scores are
used to systematically compare the computationally generated models
against experimental ground truth, reference structures (also known
as ‘target’ or ‘gold standard’). The double-blind critical assessment
of structure prediction (CASP) experiment’ has biennially assessed
state-of-the-art methodologies since 1994” and is amajor driver advanc-
ingthefield. The complementary continuous automated model evalu-
ation (CAMEO)’ project assesses automated servers every week and is
driving the development of fully automated prediction and assessment
methods. The critical assessment of prediction of interactions (CAPRI)
experiment** assesses the accuracy of theinterface predictionin pro-
tein—-protein complexes, with new rounds announced approximately
every 6 months. CASP and CAPRI have been collaborating since 2016°.
Avariety ofligand pose prediction challenges have taken place, such as
D3R™", CELPP"and others™ ", and ligand assessment has beenincluded
in CASPsince 2022". Over the past decades, objective, blind, independ-
entbenchmarking efforts have been amajor driver for the development
of highly accurate structure prediction methods’. However, despite

theimpressive recent progressin predictionaccuracy, even the latest
developmentsin the field of structure prediction such as AlphaFold"*°
and RoseTTAFold* have their limitations, highlighting the importance
of continuing benchmarking efforts in the future. Large datasets® and
robust scores that canbe appliedin a high-throughput manner without
humanintervention are essential for the development of data-driven
artificial intelligence (Al)-based prediction methods.

Chemical mapping

Toallow foracomparisonbetween a prediction and the reference struc-
ture, aone-to-one mapping betweenall equivalent chemical molecules
(polymer chains, small molecule ligands, etc.), in the reference struc-
ture and inthe model must be established. For robust benchmarking,
the chain mapping problem is defined as the task of establishing a
one-to-one assignment between chainsin the model and thereference
structure, such that the mapping is optimal with respect to the scoring
metric used to evaluate model quality. This ensures that benchmarking
results reflect the best possible structural correspondence rather than
artifacts of arbitrary chain assignments.
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For polymers, this ‘chain mapping’is only trivial in cases of mono-
meric predictions. Extending this mapping to complexes with multiple
polymer chains has long been a challenge. The naive approach consists
of enumerating all possible mappings, computing ascore and selecting
the optimalresult. This quickly becomesintractable as the complexity
of the problem grows factorially with the number of chains. Histori-
cally, several simplifications of this problem have been introduced to
allow the scoring of complexes. The CAPRI community* developed
interface-centricscoressolely applicable to dimeric complexes, bypass-
ing the need for global pairwise mappings. Only recently, CAPRI has
started to assess larger assemblies by averaging per-interface scores®.

Most current tools aim to derive an explicit one-to-one mapping by
heuristically optimizing for rigid superpositionbased scores. Notably,
the MM-align tool* aims to maximize the template modeling score
(TM-score)* between model and reference by enumerating the full
solution space but omits the costly score computation for unlikely
mappings. US-align® also maximizes the TM-score, but avoids exhaus-
tive enumeration by deriving an initial mapping with a greedy search
algorithm, whichis theniteratively optimized. The algorithm described
for AlphaFold-Multimer® selects an anchor chain in the reference and
initializes mappings by superposing all matching-sequence model
chains followed by iterative chain pairing by minimal centroid distance,
searching for the mapping with lowest centroid root mean squared
deviation (r.m.s.d.). Foldseek-Multimer” performs all-versus-all super-
positions and clusters transformation matrices to identify compat-
ible chain sets for mapping. For non-superposition-based scores, the
problem can sometimes be reduced to the identification of mappings
between symmetry related groups®. To date, chain mapping methods
specifically designed for these types of scores remain absentin the field.

Small-molecule ligands can be matched with graph-based
methods®°. Here, we refer to it as ‘ligand assignment’, to distinguish
it from the polymer ‘chain mapping’ term. Challenges are similar to
those experienced for polymers, with the additional consideration
of symmetrical groups within ligands such as phenyl groups, where
atoms cannot be unambiguously assigned.

Here, weintroduce a consistent framework to establish mappings
between any number of compoundsin areference structure, beit pro-
tein, DNA, RNA or small molecule ligand, and their counterpartin the
predicted model. This flexible framework allows us to compute alarge
array of scores to assess different aspects of the quality of predicted
macromolecular complexes.

Comparisonscores

In this context, we use the term ‘score’ specifically to refer to bench-
marking metrics that quantify the agreement between a predicted
model and a reference structure. This usage is distinct from scores
that may reflect energy-based evaluations, such as those generated
by tools such as ZRank™, which are used during modeling or docking
butare not direct measures of structural similarity.

Tertiary structure scores can be broadly categorized into two
groups. First, scores reliant on rigid superposition of representative
backbone atoms (typically Ca for proteins), such as ther.m.s.d.*, global
distance test (GDT)* or TM-score?*. The r.m.s.d. has been largely aban-
doned in this context owing toits sensitivity to outliers and movements
ofindividual protein domains. Inaddition, ther.m.s.d. requires subsets
of mapped atom positions, meaning it does not penalize for missing
residuesinincomplete models and ignores any extraatoms presentin
one structure that are not found in the other. CASP mitigates for the
effects of domain movements to some extent by manually segmenting
reference structures into rigid substructures for separate evaluation.
However, structural flexibility remains a challenge for fully automated
benchmarkinginitiatives, suchas CAMEOQ, and large-scale comparisons
required for data-intensive applications in the field of Al. Here, a second
group of scores plays a crucial role. Local and superpositionindepend-
ent scores are less sensitive to domain movements by focusing on

differences in the local environment*. Examples include the contact

area difference (CAD) score®, and the local distance difference test
(LDDT) score®®. Bothscores consider all heavy atoms and thus require
correct sidechain placement to achieve optimal values.

Benchmarking protein assemblies requires a set of specialized
scoresto focusonaccuracy of the interfaces. CAPRIroughly classifies
the similarity of a prediction to the reference structure as ‘incorrect’,
‘acceptable’,‘medium’ or ‘high’ onthe basis of ligand r.m.s.d.(L-RMSD),
interface r.m.s.d. (i-RMSD) and f,,, (ref.4). The DockQscore” wasintro-
duced in CAPRI recently as an effort to combine these three scores
into one continuous number, avoiding a classification approach and
thus making it more suitable as a target score for automated mod-
eling methods’. The CASP assessment of oligomers primarily relies
on interface contact-based scores, akin to f,,, named the interface
contactsimilarity (ICS) and interface patch similarity (IPS) scores®. To
encompass the accuracy of the individual subunits and overall topol-
ogy, these interface-centric scores have been supplemented by scores
originally devised for tertiary structure comparison, including LDDT
and TM-score®*., When the modeling challenge includes predicting
the stoichiometry, as in CAMEO, the QS-score* is appropriate as it
discriminates between alternative quaternary structures and different
stoichiometries (Supplementary Section 3).

Predicting how asmall-molecule ligand binds to a protein target,
also known as pose prediction, is an important task in drug discov-
ery. Previous ligand pose prediction challenges employed two main
types of scores to assess how well participants could model recep-
tor-ligand complexes—asymmetry-corrected r.m.s.d. to measure the
absolute accuracy of the predicted ligand within the binding site—and
contact-based scores to evaluate the reproduction of native recep-
tor-ligand noncovalent interactions™***>, The GPCR dock™® and
the first stage of the D3R Grand Challenge 3° also challenged their
participants to model the conformation of the receptor protein. The
assessment required an additional superposition of the model onto
the reference structure.

CASP15 presented a more complex challenge. Participants
were tasked to model entire protein-ligand complexes including
the receptor, sometimes as an oligomer, and potentially multiple
ligands. Preexisting methods were unable to score these complex
predictions out of the box. Spyrmsd*’ computes symmetry-corrected
r.m.s.d.for asingle reference model ligand pair in the same frame of
reference, doesn’tinclude binding site detection and superposition,
and does not generalize to complexes containing several ligands.
Similarly, previous fingerprint-based scores assessing protein-ligand
interactions**** are restricted to a subjective set of interactions
(such as hydrogen bonds, ionic, hydrophobic or mt interactions, or
metal coordination) and dependent on manual preparation steps,
making them difficult to reproduce consistently. Therefore, new
ligand assessment methods with automated ligand identification,
chain mapping for oligomers and superposition of the receptor had
to be developed®. The resulting scores, binding site superposed
symmetry-corrected r.m.s.d. (BiSyRMSD) and LDDT-protein-ligand
interactions (LDDT-PLI), have since beenrefined and theirimplemen-
tationis described in detail in this paper.

Aim of this manuscript

We describe a fully automated, fast and reliable suite of tools to com-
pare theoretical models with experimental reference structures, imple-
mentedinthe OpenStructure structural biology framework. We discuss
strengths and limitations of the various scores, and offer recommenda-
tions to guide researchers on aspects that require special attention.
OpenStructure automatically applies the necessary stepsto compute
the scores, including state-of-the-art algorithms for chain mapping.
OpenStructure provides a large array of complementary scores to
assess the accuracy of different types of predictions (summarized
in Fig. 1) including protein, DNA or RNA tertiary structures; single or

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02973-z

| _—

/

Q

Reference

Fig.1| Different aspects of structure prediction assessment. Schematic
example of a hetero-2-2 dimer reference with asmall-molecule ligand (left).
Evaluating amodel (right) includes mapping equivalent components and
scoring differences to the reference. Inaccuracies of the model may include
incorrect stoichiometry of the complex, structural differences in the tertiary
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structures and in interfaces, incorrect size and shape of the binding site, and
wrong conformation or pose of the small-molecule ligand. In contrast to the ‘spot
seven differences’ game, differences must be assessed not just qualitatively but
quantitatively.

multiple polymer-polymer interfaces; small molecule and ion poses
and geometry of the ligand binding pocket; and the stoichiometry of
predicted macromolecular complexes. Together, these scores painta
comprehensive view of how accurately amodel represents the target
structure®. Providing all these scores in asingle, consistent and highly
optimized framework greatly facilitates high-throughput benchmark-
ing experiments, for both method developers and benchmark opera-
tors. The OpenStructure scoring framework was used in recent CASP
and CAMEO experiments.

Results

Mapping polymer chains

Todate, the field has lacked amethod adept at deriving chain mappings
for large assemblies, while operating on superposition-independent
scores to mitigate the limitations of superposition-dependent meth-
ods. In this work, we present QSMap—a heuristic algorithm that opti-
mizes for theinterface contact-based QS-score or backbone LDDT (Ca
for protein and C3’ for nucleotides). For applications where overall
topology is of relevance, we provide QSMapR, which optimizes for
backbone r.m.s.d. (Ca for peptides and C3’ for nucleotides). Like the
chain mapping algorithm utilized by AlphaFold-Multimer, QSMap/
QSMapRare sequence dependent, that s, reference/model chains are
mapped within groups that are considered chemically equivalent. This
isa desired property in abenchmarking scenario. All approaches are
described in detail in the Methods section.

Two test datasets were constructed to assess the practical limits
for QSMap/QSMapR, and to compare their performance on a real
world benchmarking scenario. In addition, we compared QSMapR
with US-align®, Foldseek-Multimer®” and our own implementation
of the chain-mapping algorithm used in AlphaFold-Multimer®, all of
which rely on global superposition and are optimized for assessing
overall topology. The first set consists of amaximum of tenrandomly
selected structures retrieved using the RCSB PDB search API*® (see
Data availability statement) for homomers with increasing numbers
of chains, N. For cases where fewer than ten structures were avail-
able, we performed data augmentation by randomly selecting larger
experimental structures and truncating themto contain only the first NV
chains. Mappings have been performed using these oligomers asboth
model and reference structures, performing a chain mapping on the
structures themselves. The second set consists of models generated
for the CASP15 assembly modeling challenge* excluding trivial cases,
such as dimers and hetero-oligomers with one-to-one chain assign-
ment. The dataset comprises 3,559 models of varying stoichiometry,
ranging from homo-trimers to hetero 9-9-9-mers.

In general, QSMap/QSMapR can handle problem sizes involv-
ing up to 10 polymer chains with runtimes in the order of seconds or
30 chains in the order of 100s of seconds (a single thread of an AMD
EPYC 7742 processor). As the number of chains increases beyond this
threshold, runtimes gradually increase and become impractical. Thisis
substantially better thanthe approximately ten chains that are tracta-
ble by naive enumeration (Fig.2a). QSMap chain mappings outperform
QSMapR chainmappingsin contact-based comparisons, asindicated
by QS-score (Fig. 2b) and other similar scores, including ICS and LDDT
(Supplementary Fig.1). For comparisons focusing on overall topology,
thatis, rigid superposition-based comparisons such as TM-score, chain
mappings from QSMapR perform better (Fig. 2¢). In essence, each
algorithm excels in the specific aspects they optimize for. In terms of
runtime, QSMap/QSMapR successfully establish a chain mapping for
alltest cases, rarely exceeding 100 s (Supplementary Fig. 4a). QSMapR
produces chain mappings that are superior to Foldseek-Multimer and
AlphaFold-Multimer and as accurate as US-align but approximately one
order of magnitude faster (Supplementary Section 1). To conclude,
QSMap is recommended for contact-based scenarios, while QSMapR
should be preferred when overall topology is the primary concern.

Updated LDDT reference implementation

The LDDT measures differences in distance between every atom pair
within a defined inclusion radius, henceforth termed as ‘contact’. It was
introduced in the CASP9 experiment*’ and has been used as the primary
comparisonscore for tertiary structuresin CAMEO asit allows for fully
automated assessment owing to its robustness against domain move-
ment events. The score applies stereochemistry checks to penalize for
serious stereochemical irregularities and was originally restricted to
single-chain proteins. Starting with CASP13* and CAMEO?, LDDT was
extended to evaluate protein quaternary structures. However, already
at CASP13, the employed chain mapping algorithm proved insufficient
to process large assemblies and needed input from external tools in
these cases®. With the shifting focus of the modeling community to
macromolecular complexes® and interest in applying the concept of
superposition-independent distance differences to RNA or small mol-
ecules, weintroduce a new LDDT reference implementation.

This implementation successfully processes large assemblies by
tightly integrating with the QSMap chain mapping algorithm (see the
QSMap section in Methods), and was extended to nucleotides. In addi-
tion, two variations have been added: (1) i-LDDT, which considers only
distancesacrossinterfaces and (2) bb-LDDT, which considers only repre-
sentative backbone coordinates (Ca for peptides and C3’ for nucleotides).
Extensive testing and comparisons with other scores were conductedin
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Fig.2|QSMap/QSMapR benchmark. a, The average runtimes for homo N-mers
to determine tractable problem sizes. Naive enumerations are impractical
for N>10, whereas QSMap and QSMapR enable mapping of larger structures.
b, QSMap often finds chain mappings with higher QS-scores compared with

QS-score (QSMap)

TM-score (QSMapR)

QSMapR. ¢, For comparisons based on global superposition-based metrics,
QSMapRis the preferred method. b,¢, Shaded areas highlight data points with
notable score differences (absolute difference > 0.1).

the context of the CASP15 RNA modeling challenge*®. Stereochemistry
checksfornucleotides were notimplemented for CASP15but have been
implemented in the context of this manuscript and CASP16.

Small-molecule ligands
To assess the accuracy of predictions of small-molecule ligands in a
complex with a target structure, such as cofactors, inhibitors or drug
compounds, inthe context of CASP15”, we developed three new scores.
The BiSyRMSD is asymmetry-corrected r.m.s.d.in A, which measures
the absolute accuracy of a ligand pose prediction computed after
superposing the binding site coordinates of the model onto the refer-
ence. The binding site is defined as any residue with at least one atom
within 4 A of the ligand, excluding hydrogen atoms, based solely on
the reference structure. A local superposition was needed as the ref-
erence structures in CASP were larger and more flexible than those in
GPCRdock™" and the first stage of the D3R Grand Challenge 3°. Lower
valuesindicate more accurate predictions, with scores below 2 A typi-
cally interpreted as ‘success’ in docking experiments. While there is
no strict upper limit to the score, ligands posed more than 20 A away
from their correct position might cause the binding site detection to
failif they are positioned far away from the chain they interact with.
To mitigate limitations of r.m.s.d.-based scores of incomplete predic-
tions, we require the entirety of the reference ligands to be modeled.
LDDT-PLIis an LDDT score restricted to polymer-ligand atomic
contacts, which assesses the reproduction of native contacts by looking
atevery atom pair withinadefined inclusion radius, and penalizes con-
tact overprediction in the model. Like LDDT, LDDT-PLI is constrained
between 0 and 1, with higher values indicating more accurate results.
A non-zero LDDT-PLI score indicates that the ligand was modeled
in the right pocket, and quickly goes down to 0 as contacts become
unfulfilled. However LDDT-PLI can remain higher than O even with
large BiSyRMSD values if the part of a flexible ligand making contact
with the polymer is modeled accurately. Finally, LDDT-ligand pocket
(LDDT-LP) is an LDDT restricted to atomic contacts between polymer
residues of the binding site, and is constrained between 0 and 1. The
value of LDDT-LPis O when the binding site consists of a single residue
mapped between the model and the reference. All scores take care of
chain mapping, symmetry correction for ligands and, when multiple
ligands are present, generate aligand assignment where no reference
ormodelligands can be part of more than one PLI (for details, see Meth-
ods). Here, we discuss some properties of these scores in more detail.
Inorder toinvestigate the scores’ behavior, we gathered allmodels
that were assessed in the CASP15 ligand modeling challenge®. Figure 3a

shows the relationship between LDDT-PLI and BiSyRMSD (plotted on
alogscale). Missing values (when scores were missing or could not be
computed; see ‘Ligand assignment’ sectionin the Methods) are marked
withatriangle. While the two scores are strongly negatively correlated
(Spearman p =-0.989), afew interesting outliers where the two scores
deviate fromthe correlation line can be observed. Figure 3b shows an
example where a BiSyRMSD of 0.02 A indicates a spot-on prediction,
with a very low backbone superposition r.m.s.d. of the binding site
of 0.37 A. However, some side chains in the binding site are flipped
(Asp72 and Asn77), whichresults in slightly lower LDDT-LP (0.83) and
LDDT-PLI (0.902). Another source of discrepancy is shown in Fig. 3c,
where a part of the ligand was modeled in the correct binding pocket
(Fig. 3¢, left), resulting in a non-zero LDDT-PLI of 0.26, but a discon-
nected part of the ligand was modeled more than 100 A away (Fig. 3c,
right). As expected, the BiSyRMSD applies a square penalty to these
very far atoms, resulting in ascore of 87.5 A. A third example is shown
inFig.3d, where amagnesium atomis placed 0.67 A away from the cor-
rect position. However, because the ligand is still located at the same
correct distance from the atoms of the binding site residues, there is
almost no penalty to LDDT-PLI (0.99).

Figure 4 illustrates the effect of the extra penalty in LDDT-PLI for
the additional contactsin the model. In Fig. 4a, an additional chain (in
pink) was modeled to pass through the binding site and clashes both
with the ligand and the binding site. Without this chain, the model
would result in almost perfect scores (BiSyRMSD <0.5; LDDT-LP and
LDDT-PLI both >0.9). However, with the penalty for added contacts,
LDDT-PLI becomes 0.53, indicating an average prediction accuracy.
Figure 4b shows a more subtle case of loop and side chain misplace-
ment. The terminal loop, and in particular Argé, is modeled closer to
the ligand than in the reference. This results in an LDDT-PLI of 0.65,
while BiSyRMSD and, to a lesser extent, LDDT-LP do not suffer from
thisas much, withscores of 1.11and 0.80, respectively. While effective
at detecting deviations from the reference, the extra added contacts
penalty should not replace stereochemical checks on the model.

A limitation of the ligand scores is that they are restricted to
interactions between polymer chains (proteins or nucleic acids) and
small-molecule ligands by definition, and do not consider other small
molecules or short peptides the ligand might be interacting with. This
canbeanissue forionsinteracting with organic molecules rather than
with the protein, such asin the CASP target T1118v1l where iron atoms
interact with macrocyclic bisucaberin ligands, but not with the FoxA
protein. As aresult, no score can be computed for the iron atoms with
the default parameters. A workaround is to increase the binding site

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02973-z

a q
10%
10" 4
) ]
ke] |
S ]
a4
g 10° 4
10" 4
1072 T T T T T T
0 0.2 0.4 06 0.8 1.0
LDDT-PLI

Fig. 3 | Relationship between BiSyRMSD and LDDT-PLI. a, A scatter plot of
LDDT-PLI (x axis) and BiSyRMSD (y axis, log scale). Each point (n = 31,905)
represents an assigned reference ligand pair. Pairs for which LDDT-PLI (n = 7,798)
or BiSyRMSD (n =7,921) could not be computed are represented with a triangle
and values were replaced with 0.1 (LDDT-PLI) or a value of 1.5 times the highest
BiSyRMSD score observed in the analysis. Points have 10% opacity, and more solid

pointsindicate multiple identical predictions. Interesting outliers are marked
witharrows. b-d, Examples of ligand outlier pose predictions with disagreeing
LDDT-PLIand BiSyRMSD models highlighted in a, showing flipped side chains (b),
adisconnected ligand (c) and misplaced ion conserving inter-atomic distances
(d). Model chains are depicted in purple and reference chains in green. Binding
site residues and ligands are shown as balls and sticks.

Fig. 4| Effect of penalizing added model contacts in LDDT-PLI. a,b, An extramodel chain in the binding site (a, pink) and a misplaced arginine residue (b), depicted
with balls and sticks. Model chains are depicted in purple and reference chains in green.

and LDDT inclusion radiuses to cover the protein, and thereby allow a
score to be computed. Despite this limitation, BiSyRMSD, LDDT-PLI
and LDDT-LP have proven to be complementary scores showing useful
properties for scoring small-molecule ligand pose predictions.

OpenStructure as a fully automated benchmarking suite

Overview. The OpenStructure computational structural biology
framework* has streamlined the implementation of comparisonscores
addressing various aspects discussed in this manuscript, including pro-
teins, protein complexes and protein-ligand complexes. Furthermore,

external tools have been integrated to complement our implementa-
tions and provide a one-stop-shop for modeling method developers
and benchmark assessors. The available scores are summarized in
Table 1 and can be computed as described in ‘Command line inter-
face’ section. A subset of scores can be invoked from a web server as
described in ‘Web interface’ section.

Command line interface. The benchmarking suite is implemented
in OpenStructure as executables in the form of ‘actions’. Two of these
actions are concerned with the comparison of theoretical models of
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Table 1| Comparison scores in OpenStructure and their applications

Proteintertiary RNAtertiary Protein Protein-RNA Small Chain mapping* Primary citation
structures structures complexes complexes molecules
LDDT/bb-LDDT! Yes Yes Yes Yes No QSMap Ref. 36 and updates in
this manuscript
i-LDDT' No No Yes Yes No QSMap This manuscript
QS-score' No No Yes No No QSMap Ref. 28
DockQ/ f./ i-RMSD./ L-RMSD? No No Yes Yes No QSMap Ref. 37
ICS/IPS%S No No Yes Yes No QSMap Ref. 6
DockQ-ave/DockQ-wave' No No Yes No No QSMap Ref. 57
GDT? Yes Yes Yes Yes No QSMapR Ref. 33
r.m.s.d.? Yes Yes Yes Yes No QSMapR Ref. 32
CAD-score® Yes Yes Yes Yes No QSMap Ref. 35
TM-score® Yes Yes Yes Yes No US-align Ref. 25
BiSyRMSD' No No No No Yes Full enumeration of This manuscript
binding site chains
LDDT-PLI' No No No No Yes Full enumeration of This manuscript

binding site chains

'"The OpenStructure scoring framework is the reference implementation. 2lmplementation in the OpenStructure scoring framework—implementation details available in Methods and
comparison to reference implementation available in Supplementary Section 4. *External tool integrated in the OpenStructure scoring framework. “Only relevant for protein complexes or
protein-RNA complexes, external tools either use their own chain mapping or the OpenStructure chain mapping gets injected. *Scores for higher order oligomers may differ from legacy

implementation used until CASP15, with differences discussed in Methods.

macromolecular complexes with their reference counterpart and allow
directaccess to the scores described in this manuscript.

‘Compare-structures’ focuses on comparisons involving polymer
entities, thatis, protein, DNA and RNA chains.

‘Compare-ligand-structures’ focuses on comparisons of interac-
tions between polymer entities and nonpolymer entities, that is,
small-molecule ligands

Examples on how to run these ‘actions’ are available in the Open-
Structure Git repository at https://git.scicore.unibas.ch/schwede/
openstructure/-/blob/master/examples/scoring/README.md. This
README file alsoincludesinstructions on how toset up OpenStructure
using Docker, Singularity or Conda, or how to compile it from source.

Web interface. A selection of scores for polymer entities is also avail-
able in the SWISS-MODEL Structure Assessment server>® available at
https://swissmodel.expasy.org/assess. By providing areference struc-
ture, users can obtain the most relevant LDDT, QS-Score, TM-Score,
r.m.s.d.and DockQ scores. Automated access to the full functionality
available for the command line ‘actions’ is available via a REST APl at
https://swissmodel.expasy.org/ost.

Scoring recommendations. In this section, we discuss common pit-
falls when scoring structural predictions and provide recommenda-
tions to perform meaningful analysis in automated settings.

Structural flexibility is not taken into accountin global superposition-
based scores. Proteins are flexible and typically organized in relatively
rigid domains whose relative orientation with respect to each other can
vary***!, Superposition-dependent scores fail to account for this flex-
ibility and require manual segmentation of the reference structure™; in
Table], thisaffects the GDT, r.m.s.d.and TM-scores. The consequences
areartificially low scores that potentially overshadow accurate domain
predictions. Local superposition-independent scores, such as LDDT
and CAD-score, avoid this pitfall by operating on local internal con-
tacts or distances, limiting penalties for wrongly predicted domain
orientation. Therefore, LDDT and CAD-scores are generally preferable
for evaluating the overall accuracy of protein structure predictions,
except for the use case of differentiating relative domain orientations
and overall topology.

The r.m.s.d.-based superpositions and scores can be dispropor-
tionately affected by outlier regions. GDT and TM-score are superposi-
tiondependenttoo but mitigate this effect by focusing on maximizing
the alignment of correctly predicted regions, limiting the influence
of erroneous regions by treating them as outliers. Superpositions
minimizing r.m.s.d. should be applied with care orin alocalized man-
ner, with examples being BiSyRMSD or i-RMSD. L-RMSD, and conse-
quently DockQ, are problematic as L-RMSD first derives a superposition
from the full ‘receptor’ chain and then computes an r.m.s.d. on the
full ‘ligand’ chain. Both steps may be affected by erroneous regions
far away from any interface. The CAPRI community considers issues
concerning L-RMSD by falling back on i-RMSD for these cases in their
model quality classification rules®.

Incomplete models should score lower than predictions with
a complete coverage of the target sequence. Contact-based scores,
along withGDT and TM-scores, naturally penalizeincomplete models
by design, butr.m.s.d.-based measures donot as no distance between
model and reference can be computed for missing residues. From
Table1, thisincludesi-RMSD, L-RMSD, DockQ, r.m.s.d. and BiSyRMSD.
While BiSyRMSD partially mitigates this issue by considering only com-
plete ligand predictions, the initial superposition of the binding site
can still be adversely affected by incomplete coordinates and should
be carefully monitored given the provided OpenStructure output.

Incomplete reference structures, which may arise from limita-
tionsinexperimental procedures, such as missing or notinterpretable
electrondensity in X-ray or cryogenic electron microscopy structures,
should notresultin penalties for models covering such missing regions.
This affects QS-score and ICS/IPS. QS-score (referred to as QS-globalin
OpenStructure) is designed to compare complexes and differentiate
between quaternary states. It is symmetric by design, that is, swap-
ping the model and reference structure gives the same score. As a
consequence, if the reference isincomplete, contacts that are present
only in the model will penalize the score, even though the involved
residues are not covered by experiment. For benchmarking scenarios
thatassume that the model and reference have the same stoichiometry
and the model provides complete coverage, it is advisable to use the
QS-bestvariant. This variant, available through the compare-structures
action when requesting the QS-score, evaluates only the contacts
between residues present in both the model and reference structure.
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However, for this reason, QS-best will not penalize incomplete models
or models with wrong stoichiometry. A similar situation applies to
ICS/IPS. While it is beneficial to penalize contacts that exist only in
the model, it is problematic if the involved residues are not covered
by experimental evidence. For the benchmarking scenario of the same
stoichiometry and fullmodel coverage, the compare-structures action
provides ‘trimmed’ variants for ICS/IPS, where the model is trimmed
toinclude only residues that are presentin the reference before score
computation.

Interface centric evaluations can be conducted by i-LDDT,
QS-score, DockQ/f,,,./i-RMSD/L-RMSD or ICS/IPS. The standalone
CAD score executable canalso performassessment solely oninterface
contacts, but thisfeatureis notintegrated in the OpenStructure bench-
marking suite. The DockQ family of scores assesses two-body interac-
tions and to derive a score for higher order oligomers, DockQ-ave/
DockQ-wave can be used. These two scores differin how they aggregate
per-interface contributions, with DockQ-wave weighing per-interface
contributions by interface size. This canbe problematic as smallinter-
faces, which may be critical for the overall topology or biological func-
tion, getdown-weighted and asimple average from DockQ-ave canbe
more informative. It is also important to consider that other contact
basedscores (i-LDDT, QS-score and ICS/IPS) can similarly be dominated
by larger interfaces.

Sequence alignments are a prerequisite to establish residue-
by-residue relationships between two polymer chains. All the scores
in Table 1 except the TM-score use sequence-based pairwise align-
ments. In a benchmarking setting such as CASP or CAMEO, models
are required to be numbered according to the target sequence(s).
Users are advised to enforce residue number-based alignments in
these cases. This has no effect on TM-score in OpenStructure as it is
computed with US-align using default parameters, which performs
sequence-independent alignments. It should be noted that this purely
structure-based approach may resultin mapping of chains with differ-
entidentities.

Backbone-only scores (as in Table 1; bb-LDDT, QS-score, DockQ/
i-RMSD/L-RMSD, GDT,RMSD and TM-score) only consider representa-
tive atom positions from polymer backbones and apply no penalty to
incorrectly modeled side chains. Side chains are critical for protein
structures, and ensuring they are properly modeled is desirable in
most benchmarking scenarios.

Discussion

Despite the large array of scores that we provide, additional use
cases such as interactions between protein complexes and various
molecular entities, including peptides, oligosaccharides as well as
post-translational modifications, highlight further modeling chal-
lenges within this field that are still to be tackled to gain a compre-
hensive view of macromolecular complexes. Considerations such as
structure quality validation®® and detailed stereochemical analysis are
not included in this work. Automating structural quality validation
is challenging, and we are working on incorporating corresponding
checksinto the benchmark dataset creation process*** and separately
into the scores themselves. Assessment of protein-peptide interac-
tionsis currently limited by the lack of reliable alignment methods that
work with arbitrary nonstandard amino acids. Finally, considerations
about flexibility and disorder, involving considerably different sets of
methods™?, are out of the scope of this manuscript.

The OpenStructure scoring framework is acomprehensive bench-
markingsuite providingalarge array of complementary scoresto assess
different types of three-dimensional structure predictionsinarobust
and automated way. The combined scores give comprehensive deep
insights into a model’s accuracy. In the wake of data-driven Al-based
prediction methods, high-throughput benchmarking will become
increasingly critical to assess the prediction accuracy of novel methods.
By providing a single, consistent and highly optimized framework,

we will facilitate future developments in the field. OpenStructure has
been used extensively in CASP16 and CAMEO benchmarking efforts,
proving its usefulness.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02973-z.
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Methods

Data input and structure preprocessing

OpenStructure accepts structural information inlegacy PDB format*®
or in the preferred PDBx/mmCIF format®. Structures are processed
as described inref. 49. Shortly, internal residue connectivity is estab-
lished on the basis of residue and atom names using the PDB chemical
component dictionary (CCD)®. Ligands that are part of the CCD can
be extracted from PDBx/mmCIF files on the basis of nonpolymer entity
annotation. However, the recommended approach is to load ligand
structures from SDF files®, which inherently provide detailed con-
nectivity information.

For polymer chain-based scores, a cleanup step replaces nonstand-
ard residues with their corresponding parent residues as defined in
the CCD (for example, SEP to SER). Residues without entry in the CCD
are removed completely. In addition, hydrogen atoms, terminal OXT
atoms and atoms with names that do not match the CCD are removed.
Short polymer chains are excluded from scoring, with a threshold
of fewer than six residues for peptides and fewer than four residues
for nucleotides.

Ligand-based scores apply the same cleanup to the receptor
structures, which consist of polymer chains, with the exception that
nonstandard residues are not replaced. Only hydrogen atoms are
removed from ligands.

Structure visualization
Structural models in the manuscript figures were displayed in Mol**2,

Sequence-based grouping of polymer chains for
QSMap/QSMapR

Groupingis on the basis of pairwise sequence alignments and a straight-
forward sequence identity measure. To minimize the likelihood of
achieving high sequence identity by chance alone, QSMap/QSMapR
only consider reference and model chains with a minimum length,
N (default of N =6 for proteins and N =4 for nucleotides). Pairwise
sequence alignments are constructed via the Needleman-Wunsch
dynamic programming algorithm®, which employs the BLOSUM62
substitution matrix®* for proteins and NUC44 for nucleotides (ftp://
ftp.ncbi.nih.gov/blast/matrices/NUC.4.4). Alternatively, upon user
request, alignments canbe constructed from residue numbers, which
is useful for CASP or CAMEO scenarios where participants are asked
to number residues according to the submitted modeling target
sequence. The grouping procedure consists of two steps: first, we
need to define groups of chemically identical chains in the reference
structure, and second, we need to assign each chainin the model struc-
ture to one of these groups.

By default, reference chain grouping is on the basis of sequences
extracted from coordinate data. Protein and nucleotide chains are
first separated, followed by clustering using a sequence identity
threshold of 95%. Within each cluster, the longest chain is selected
as representative. One rare failure mode arises when multiple chains
originate from the same underlying target sequence but cover
nonoverlapping regions, leading to their classification as differ-
ent groups (for example, PDB ID 8CBU). To address this limitation,
grouping information and representative sequences for reference
structures are extracted from entity records when available in
the PDBx/mmCIF format. If the reference structure is provided in
legacy PDB format the sequence-based grouping method remains
the default.

Each model chain is assigned to a reference group on the basis
of its maximum sequence identity with the respective representative
sequences. To allow chain mapping between homologs, the sequence
identity threshold for model-to-reference assignment is relaxed to
70%. Model chains that cannot be assigned to any reference group
are reported as unmapped. This threshold can be adjusted or com-
pletely removed to enforce assignment. However, doing so may lead to

assignments of nonrelated chains if the model contains chains which
are not represented in the reference.

QSMap

QSMap optimizes for QS-score. The QS-score has protein-specific
parameterizations, and QSMap switches to backbone LDDT (Ca for
proteins and C3’ for nucleotides) with increased inclusion radius
(30 A)ifnucleotides are involved. The default LDDT inclusion radius
of 15 A would be insufficient to reflect relevant pairwise distances
between nucleotide backbones. While QSMap can handle protein
and nucleotide chains, as well as hetero-oligomers, we describe the
algorithm’s complexity in terms of two equally sized homo-oligomers
with N chains for simplicity. QS-score and LDDT are pairwise decom-
posable. That is, given a model and reference complex, the overall
score can be derived by separately processing contributions from
individual chains and pairwise interfaces. Enumerating the full solu-
tion space of N! possible mappings can be sped up by caching the
computationally demanding score computations. Considering a
model and reference complex with N chains, there are N(N -1)/2
possible chain pairs in the reference (n choose k, with k=2). Given
N(N -1)/2 possible chain pairs in the model, this results in N(N - 1)
possible assignments for each reference chain pair (two possibili-
ties to assign a model chain pair to a reference chain pair) and a
total of N> (N —1)%*/2 possible interchain contributions. Single chain
contributions, which are only relevant for LDDT, add up to N’. As a
consequence, the score computation has a polynomial complexity
of O(N*). This pushes the boundary of feasible problem sizes but
still necessitates the introduction of heuristics for large N. We found
problem sizes with N < 8 to complete with reasonable runtimes, so
those can be handled by exhaustive enumeration. Larger problems
are delegated to a greedy algorithm.

The greedy algorithm employs an extension strategy that starts
fromaninitial mapping anditeratively adds pairs of model/reference
chains that maximize the increasein LDDT/QS-score, asillustrated in
the schematic in Extended Data Fig. 1. For efficiency, the search can
be confined to pairs of chains that are ‘close’ or ‘accessible’ from the
continuously updated mapping. A chainis considered accessibleiif its
inclusion has the potential to improve the interchain component of
the targetscore. For the QS-score (applicable to proteins only), achain
isaccessibleifit contains at least one representative residue position
(CB, or Cafor glycine) within 12 A of any chain of the same type (model
orreference) already in the mapping. Inaddition, model or reference
chains must form at least three inter-residue contacts to any chain of
the same type already in the mapping. Interface contacts are defined
as representative positions within 8 A. For LDDT, a reference chain is
accessible if it contains at least one representative residue position
(Ca for proteins or C3’ for nucleotides) within the LDDT inclusion
radius (15 A, or 30 Aif nucleotides are involved) of any reference chain
already in the mapping. For model chains, the threshold is extended
tothesumof theinclusion radius and the maximum allowed distance
deviation (4 A).

In order to mitigate the risk of the algorithm being trapped
in a local optimum, we sample all possible reference/model chain
pairs as initial mappings (N starting points in the case of two homo
N-mers). In case of hetero-oligomers, all initial chain pairs must
belong to the same group as defined by the algorithm described in
‘Sequence-based grouping of polymer chains in QSMap/QSMapR’
section. Inaddition we tried an approach similar to one described for
US-align, where at every n extension steps (n = 3), all possible swaps
among already assigned chains were evaluated for potential score
improvement to escape local optima. However, this did notimprove
mapping accuracy (Supplementary Fig. 2b) and was discarded.
The greedy extension does not guarantee a complete mapping in
the case of disconnected structures. The final algorithm enforces
afull mapping.
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For each possible reference/model chain pair:
Use pair as initial mapping and perform greedy
extension
While mapping incomplete:
For each possible unmapped reference/model chain
pair:
Add combination to mapping and perform greedy
extension
Keep mapping with highest QS-score/LDDT
Keep complete mapping with highest QS-score/LDDT

QSMapR

Amultiple sequence alignment is created for each group of equivalent
chains and Ca (C3’ for nucleotides) positions of columns, which are
coveredineachsequence, are considered for superpositionandr.m.s.d.
computation. To reduce runtime with limited impact on accuracy
(Supplementary Fig. 2a), asubsampling by only selecting n equidistant
columns is performed (default n = 50). The same as QSMap, QSMapR
samples all possible reference/model chain pairs as initial mappings
(N*starting pointsin case of two homo N-mers) to start a greedy exten-
sion, as illustrated in Extended Data Fig. 1, and keeps the mapping
with minimal overallr.m.s.d. Inthe case of hetero-oligomers, all initial
chain pairs must belong to the same group, as defined by the algorithm
described in ‘Sequence-based grouping of polymer chains in QSMap/
QSMapR’section.

Inthe case of ahomo N-mer, the greedy heuristic performs N> Kab-
schminimal r.m.s.d. transformations. Naive enumeration of the solu-
tion space requires N! transformations. QSMapR therefore performs
naive enumeration for N <5 (5* =125 versus 5! =120) and switches to
the described greedy heuristic for larger problem sizes.

Updated LDDT reference implementation

LDDT was completely re-implemented. Extending LDDT to support
protein complexes did not require conceptual changes to the algorithm
described in ref. 36 and summarized in Supplementary Section 2 but
involved technical adjustments to natively handle multi-chain com-
plexes with model/reference chain mappings from QSMap/QSMapR.
However, extending LDDT to nucleotides required two modifications.
First, Ideal bond lengths and angles, along with their standard devia-
tions for the stereochemistry preprocessing were expanded to include
nucleotides. Amino acid and nucleotide parameters are now extracted
from the CCP4 MON_LIB®® instead of the previously used amino acid
parameters fromref. 66. No changes were made for clash checks. Sec-
ond, the potential swapping of OP1/OP2 atomsin anucleotide polymer,
resultingin chemically equivalent molecules, was added toahardcoded
list of symmetries that originally only included symmetries from pro-
teinogenic amino acids.

Ligand definition and identification

We follow the definition of ligands from the PDB, including small mol-
eculessuchasions, solvent molecules, drugs, enzymes, co-factors, etc.
associated with biological polymers®. Inaddition, the scores described
here do not take biological relevance into account. Thisis the result of
aconscious decision from our side. Other resources such as BioLiP®*,
FireDB® or the defunct IBIS database’ have attempted to tackle the
issue. However, it is very hard to address, at least in part owing to the
factthatrelevanceisrelative and dependent on the context, and there-
foreis essentiallyimpossible to automatein a general case. Therefore,
we decided to focus on the assessment of ligand accuracy only. As a
result, allsmall-molecule ligands presentin the structures are assessed.

Ligand matching and symmetry correction

We don’trely onligand names to identify pairs of ligandsin models and
references, butrepresentall ligands by molecular graphs. If two graphs
are isomorphic, they are considered a match. However, reference

ligands may be incomplete owing to, for instance, missing density in
the experimental structure, while model ligands are expected to be
complete. Therefore, an option allows two graphs to be considered a
matchif the reference graph is anisomorphic subgraph of the model
graph. All ligand scores described in the following sections of this
manuscript can operate on incomplete reference ligands. However,
post-processing must consider coverage—the fraction of model ligand
atoms that are covered by the reference ligand—to avoid nonsensical
matches, such as small organic solvent molecules in the reference
matching organic model ligands or cofactors by pure chance. Further-
more, enumerating graphisomorphisms produces alist of one-to-one
atom mappings between reference and model ligands, allowing us to
account for potential symmetries that are chemically equivalent, fol-
lowing established methodologies®. Ligand atom elements serving as
graph node features and graph connectivity (bonds) is established in
the following order of preference: (1) loaded explicitly from an input
SDF file®, (2) extracted from the chemical component dictionary on
thebasis of ligand name®® and (3) determined by a heuristic set of rules
onthe basis of van der Waals radii. Allgraph operations are performed
using the Python NetworkX software”.

BiSyRMSD, RMSD-LP and LDDT-LP
BiSyRMSD operates on ligand atom positions and corrects for sym-
metries, as described in ‘Ligand matching and symmetry correction’
section, to report the best possible r.m.s.d. This approachiis sufficient
for re-docking experiments, where the reference and model polymer
chains are identical and already in the same frame of reference. How-
ever, when the fullmodel has been builtin the absence of any reference
information, itis necessary to appropriately transform the model ligand
onto the reference ligand frame before calculating the BiSyRMSD. To
mitigate theimpact of structural flexibility, BiSyRMSD performs alocal-
ized transformation on the basis of the reference binding site, defined
as polymer residuesin close contact with the reference ligand (at least
oneatomwithin4 A ofany reference ligand atom, excluding hydrogens).
When both the reference and model consist of a single polymer chain,
the corresponding binding site residuesin the model areidentified via
sequence alignment. These residues are then used asinput for a Kabsch
transformation®, utilizing the respective Ca atoms (or C3’ atoms for
nucleotides), or all backbone atoms if the binding site contains two
or fewer residues. For cases where the reference or model includes
multiple polymer chains, mapping the model binding site becomes a
chain mapping problem. The relevant set of reference polymer chains
is determined by the reference binding site, whereas the relevant set of
model polymer chains follows amorelenient contact definition (atleast
one heavy atomwithin 25 A of any model ligand atom) to promote a com-
plete mapping even with animperfectly modeled binding site. The same
sequence-based grouping used for QSMap/QSMapR (‘Sequence-based
grouping of macromolecule chains for QSMap/QSMapR’ section) is
applied tobothsets. All possible mappings of model chains onto refer-
ence chains are processed. For each mapping, the model binding site
residues areidentified viathe respective pairwise sequence alignments,
and the best BiSyRMSD observed for any mapping is reported.
BiSYyRMSD exclusively considers ligand atom positions. Although
thebindingsiteis critical toaccommodate the ligand, it only indirectly
influences BiSyRMSD through its role in the superposition process.
Todirectly compare reference and model binding sites, RMSD-LP and
LDDT-LP havebeenintroduced, where LP stands for ligand pocket, and
are similar to the previously described LDDT-BS score’. These meth-
ods utilize the reference/model binding site mapping obtained from
BiSyRMSD to compute abackboner.m.s.d. (using Ca atoms for proteins
and C3’ atoms for nucleotides) and an all-atom LDDT, respectively.

LDDT-PLI
LDDT-PLI is an all-atom score that, unlike BiSyRMSD, explicitly
considers interactions between a ligand and its binding site. Itis a
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symmetry-corrected LDDT score that operates on pairwise distances
between ligand and binding site with standard LDDT distance dif-
ference thresholds (0.54,1.0 A, 2.0 A and 4.0 A) but with a reduced
inclusion radius of 6 A to emphasize the score’s local nature. While
it does not perform stereochemistry checks, LDDT-PLI is distinct in
one key aspect: it considers pairwise distances within the inclusion
radius in the model but not in the reference. In classical LDDT, the set
of distances used for score computationis solely defined by the refer-
ence, which canbe problematicfor verylocal analyses, asintended by
LDDT-PLI. For example, if aloop of a model incorrectly interacts with
theligand, the classical approach misses these interactions. LDDT-PLI
addresses this by alsoincluding interatomic distances within the inclu-
sionradius in the model, provided there is experimental evidence for
both atomsinvolved, meaning they can be mappedtothe reference. For
cases where thereference or modelincludes multiple polymer chains,
their mapping must also be considered. All chains that potentially
fulfill a contact for the final LDDT-PLI score in the reference and in the
model (that is, with at least one atom within the inclusion radius plus
the maximum distance difference threshold of the reference ligand;
10 A in total) are included. The same sequence-based grouping used
for QSMap/QSMapR (‘Sequence-based grouping of macromolecule
chains for QSMap/QSMapR’ section) is applied to both sets. All pos-
sible mappings of model chains onto reference chains are processed.
For each mapping, model polymer residues are assigned to reference
polymer residues via the respective pairwise sequence alignments.
If a chain potentially contributing contacts in the model cannot be
mapped to the reference at this point, the closest (by center of mass)
chemically equivalent chain in the reference not already covered by
the chain mappingisused, evenifnotinitiallyincludedin therelevant
set of reference polymer chains. When both the reference and model
consist of a single polymer chain, the problem can be reduced to a
simple pairwise sequence alignment. The optimal score is computed
by simultaneously enumeratingall chain mappings, all symmetriesin
theligand as described in ‘Ligand matching and symmetry correction’
section and symmetries from the polymer chain, and the best LDDT-PLI
observed for any mappingis reported.

Ligand assignment

BiSyRMSD and LDDT-PLI are initially computed for each isomorphic
pair of ligands. In this manuscript, we considered three benchmarking
scenarios: (1) providing a score assessing each modeled ligand pose,
(2) providing ascore assessing how well each reference ligand is repre-
sented inthe model and (3) providing a single score for comparing two
macromolecular complexes with multiple ligands. All three scenarios
requireaone-to-one assignment betweenreference and model ligands.
To be meaningful, this assignment must be nonredundant, ensuring
thateachmodel ligandis assigned to only one reference ligand and vice
versa. Individual assignments are generated separately for LDDT-PLI
and BiSyRMSD scores, and we found that a simple greedy algorithm
yields satisfactory results. This approach iteratively assigns the best
scoring pair of matching reference and model ligands until no more
reference or model ligands remain to be assigned. For cases involv-
ing incomplete reference ligands, coverage—as described in ‘Ligand
matching and symmetry correction’ section—is also considered. In
eachiteration, possible assignments are limited to pairs with coverage
greater than the maximum coverage minus a user-specified threshold
(default of 0.2). As a consequence, an assignment with a higher score
is preferred, even if the coverage is slightly lower, while nonsensical
assignments between small solvent ligandsin the reference and large
organic model ligands are discouraged.

Implementation of external scores in OpenStructure

DockQ, f,,., i-RMSD and L-RMSD. The OpenStructureimplementation
follows the descriptionsinrefs.37,73. The scores are designed to evalu-
ate dimers with a defined chain assignment, eliminating the need for

achainmapping algorithm. Results from OpenStructure align closely
with those from DockQ v2.1.3, available from https://github.com/
bjornwallner/DockQ, with additional details provided in Supplemen-
tary Section 4. For protein-peptide interactions, the CAPRIcommunity
recommended modifying the default parameters™. This adjustment
canbeappliedin OpenStructure by enabling the dockq-capri-peptide
flaginthe compare-structures ‘action’.

ICS/IPS. The OpenStructure implementation follows the descrip-
tions in ref. 6. The original description does not specify procedures
for chain mapping or score aggregation for higher-order oligomers.
In OpenStructure, QSMap chain mapping is applied and all contacts
from the complete model and reference complexes are collected to
compute ICS/IPS for full complexes. Per-interface scores are reported
separately. The ICS/IPS implementation used by the CASP Prediction
Center (https://predictioncenter.org) aggregates per-interface scores,
butitisunclearifany weightingisinvolved or smallinterfaces are dis-
carded. Sinceitis not publicly available, we compared our results with
those published by the Prediction Center. Results from OpenStructure
closely match for dimers. Results for higher-order assemblies are
qualitatively similar, with discrepancies owing to differences inscore
aggregation (Supplementary Section 4).

GDT. The GDT reports the fraction of reference Ca positions that can
be superposed within aspecified distance threshold of the respective
model positions, whichis an optimization problem with animplemen-
tationin the LGA tool®. OpenStructure offers its own implementation,
which largely follows LGA but allows for seamless integrationinto the
quaternary structure and RNA scoring capabilities of OpenStructure.
The algorithm relies on a strict mapping between model and refer-
ence positions (Ca for peptides and C3’ for nucleotides). Starting
from an initial set of mapped model/reference position pairs, the
following steps are iteratively applied: (1) use set to compute a mini-
mal RMSD transformation, (2) apply the transformation to all model
positions and (3) update set to include all pairs within the specified
distance threshold, stoppingif the set no longer changes, and report
the largest set observed. Other than LGA, which employs the longest
continuous segment algorithm? to help identify good starting sets,
OpenStructure simply uses sliding windows of sizes of 7,9,12, 24 and
48 on the model/reference positions. To prevent long runtimes for
large structures, each sliding window is applied amaximum of 1,000
times at equidistant locations.

Historically, CASP uses GDT_TS (total score), which averages GDT
scores with distance thresholds1,2,4 and 8A. The GDT_HA (highaccu-
racy) variant, introduced in the high accuracy category of CASP7, uses
lower distance thresholds of 0.5,1,2 and 4 A to provide a finer-grained
estimate for high-quality models’. OpenStructure provides the GDT_
TS and GDT_HA scores, but other than LGA, which scales these scores
in the range 0-100, OpenStructure scales them to 0-1. In the case of
oligomers, model/reference positions are mapped on the basis of the
QSMapR chain mappingalgorithm. Results from OpenStructure align
closely withthose from LGA, as queried from https://predictioncenter.
org, with additional details provided in Supplementary Section 4.

R.m.s.d. OpenStructure employs the Kabsch algorithm*? to compute
ther.m.s.d. onthebasis of Ca positions for peptides and C3’ positions
for nucleotides. Inthe case of oligomers, chain mappingis determined
by QSMapRbeforer.m.s.d.computation. Given thatr.m.s.d. computa-
tion is a well-established procedure, no benchmarking against refer-
ence implementations was conducted.

US-align. OpenStructure includes US-align (version 20231222,
GitHub commit 444144c) natively. Alternatively, it is possible to use
alocally-installed version of US-align by supplying the path to the
US-align binary.
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CAD-score. The CAD-score is computed with the voronota-cadscore
program’”’, which must be installed separately from OpenStructure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The analyses presented in this manuscript are based on data obtained
from the CASP15 experiment (available via the Protein Structure
Prediction Center at https://predictioncenter.org/download_area/
CASP15/) and the RCSB PDB Search API (documented at https://
search.rcsb.org/#search-api). Data and code to reproduce the fig-
ures are available via Basel University at https://git.scicore.unibas.ch/
schwede/2025_scoring_paper_plots.

Code availability
The OpenStructure source codeis available at https://git.scicore.uni-
bas.ch/schwede/openstructure under the LGPL version 3 license.
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Extended Data Fig. 1| Greedy extension for QSMap/QSMapR. Both algorithms though the full QSMap algorithm still enforces a complete mapping. For hetero-

extend aninitial chain mapping between a model and areference (abbreviated oligomers, chain pairs that are considered for mapping extension (orange in
asmdl/ref) using agreedy strategy. Extension for QSMapR produces complete workflow), must belong to the same group as defined by the algorithm described
mappings, while the one for QSMap may stop early for disconnected structures, in“Sequence-based grouping of polymer chains in QSMap/QSMapR”.
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blinding was not relevant to your study.

Did the study involve field work? [] Yes []No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XX XXX XX s
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pngme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] Public health

[] National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Plants

Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.




Cell population abundance

Gating strategy

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

D Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether

ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

-
g
C
=
()

©
O
E‘t\
o
=
—
™

©
O
E;..
)

Q
wn
C
3
=
Q
>

<




Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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