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A fully automated benchmarking suite to 
compare macromolecular complexes
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Peter Škrinjar    1,2, Gerardo Tauriello    1,2, Andrew Mark Waterhouse    1,2 & 
Torsten Schwede    1,2 

Protein structure prediction has a long history of benchmarking efforts 
such as critical assessment of structure prediction, continuous automated 
model evaluation and critical assessment of prediction of interactions. 
With the rise of artificial intelligence-based methods for prediction of 
macromolecular complexes, benchmarking with large datasets and robust, 
unsupervised scores to compare predictions against a reference has become 
essential. Also, the increasing size and complexity of experimentally 
determined reference structures by crystallography or cryogenic electron 
microscopy poses challenges for structure comparison methods. Here 
we review the current state of the art in scoring methodologies, identify 
existing limitations and present more suitable approaches for scoring of 
tertiary and quaternary structures, protein–protein interfaces and protein–
ligand complexes. Our methods are designed to scale efficiently, enabling 
the assessment of large, complex systems. All developments are available in 
the structure benchmarking framework of OpenStructure. OpenStructure is 
open source software and available for free at https://openstructure.org/.

The field of protein structure modeling has a long history in benchmark-
ing the accuracy of prediction methods. Various numerical scores are 
used to systematically compare the computationally generated models 
against experimental ground truth, reference structures (also known 
as ‘target’ or ‘gold standard’). The double-blind critical assessment 
of structure prediction (CASP) experiment1 has biennially assessed 
state-of-the-art methodologies since 19942 and is a major driver advanc-
ing the field. The complementary continuous automated model evalu-
ation (CAMEO)3 project assesses automated servers every week and is 
driving the development of fully automated prediction and assessment 
methods. The critical assessment of prediction of interactions (CAPRI) 
experiment4,5 assesses the accuracy of the interface prediction in pro-
tein–protein complexes, with new rounds announced approximately 
every 6 months. CASP and CAPRI have been collaborating since 20166. 
A variety of ligand pose prediction challenges have taken place, such as 
D3R7–10, CELPP11 and others12–16, and ligand assessment has been included 
in CASP since 202217. Over the past decades, objective, blind, independ-
ent benchmarking efforts have been a major driver for the development 
of highly accurate structure prediction methods18. However, despite 

the impressive recent progress in prediction accuracy, even the latest 
developments in the field of structure prediction such as AlphaFold19,20 
and RoseTTAFold21 have their limitations, highlighting the importance 
of continuing benchmarking efforts in the future. Large datasets22 and 
robust scores that can be applied in a high-throughput manner without 
human intervention are essential for the development of data-driven 
artificial intelligence (AI)-based prediction methods.

Chemical mapping
To allow for a comparison between a prediction and the reference struc-
ture, a one-to-one mapping between all equivalent chemical molecules 
(polymer chains, small molecule ligands, etc.), in the reference struc-
ture and in the model must be established. For robust benchmarking, 
the chain mapping problem is defined as the task of establishing a 
one-to-one assignment between chains in the model and the reference 
structure, such that the mapping is optimal with respect to the scoring 
metric used to evaluate model quality. This ensures that benchmarking 
results reflect the best possible structural correspondence rather than 
artifacts of arbitrary chain assignments.
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differences in the local environment34. Examples include the contact 
area difference (CAD) score35, and the local distance difference test 
(LDDT) score36. Both scores consider all heavy atoms and thus require 
correct sidechain placement to achieve optimal values.

Benchmarking protein assemblies requires a set of specialized 
scores to focus on accuracy of the interfaces. CAPRI roughly classifies 
the similarity of a prediction to the reference structure as ‘incorrect’, 
‘acceptable’, ‘medium’ or ‘high’ on the basis of ligand r.m.s.d.(L-RMSD), 
interface r.m.s.d. (i-RMSD) and fnat (ref. 4). The DockQ score37 was intro-
duced in CAPRI recently as an effort to combine these three scores 
into one continuous number, avoiding a classification approach and 
thus making it more suitable as a target score for automated mod-
eling methods38. The CASP assessment of oligomers primarily relies 
on interface contact-based scores, akin to fnat, named the interface 
contact similarity (ICS) and interface patch similarity (IPS) scores6. To 
encompass the accuracy of the individual subunits and overall topol-
ogy, these interface-centric scores have been supplemented by scores 
originally devised for tertiary structure comparison, including LDDT 
and TM-score39–41. When the modeling challenge includes predicting 
the stoichiometry, as in CAMEO, the QS-score28 is appropriate as it 
discriminates between alternative quaternary structures and different 
stoichiometries (Supplementary Section 3).

Predicting how a small-molecule ligand binds to a protein target, 
also known as pose prediction, is an important task in drug discov-
ery. Previous ligand pose prediction challenges employed two main 
types of scores to assess how well participants could model recep-
tor–ligand complexes—a symmetry-corrected r.m.s.d. to measure the 
absolute accuracy of the predicted ligand within the binding site—and 
contact-based scores to evaluate the reproduction of native recep-
tor–ligand noncovalent interactions13,42,43. The GPCR dock15,16 and 
the first stage of the D3R Grand Challenge 39 also challenged their 
participants to model the conformation of the receptor protein. The 
assessment required an additional superposition of the model onto 
the reference structure.

CASP15 presented a more complex challenge. Participants 
were tasked to model entire protein–ligand complexes including 
the receptor, sometimes as an oligomer, and potentially multiple 
ligands. Preexisting methods were unable to score these complex 
predictions out of the box. Spyrmsd30 computes symmetry-corrected 
r.m.s.d. for a single reference model ligand pair in the same frame of 
reference, doesn’t include binding site detection and superposition, 
and does not generalize to complexes containing several ligands. 
Similarly, previous fingerprint-based scores assessing protein−ligand 
interactions13,42–44 are restricted to a subjective set of interactions 
(such as hydrogen bonds, ionic, hydrophobic or π interactions, or 
metal coordination) and dependent on manual preparation steps, 
making them difficult to reproduce consistently. Therefore, new 
ligand assessment methods with automated ligand identification, 
chain mapping for oligomers and superposition of the receptor had 
to be developed29. The resulting scores, binding site superposed 
symmetry-corrected r.m.s.d. (BiSyRMSD) and LDDT-protein–ligand 
interactions (LDDT-PLI), have since been refined and their implemen-
tation is described in detail in this paper.

Aim of this manuscript
We describe a fully automated, fast and reliable suite of tools to com-
pare theoretical models with experimental reference structures, imple-
mented in the OpenStructure structural biology framework. We discuss 
strengths and limitations of the various scores, and offer recommenda-
tions to guide researchers on aspects that require special attention. 
OpenStructure automatically applies the necessary steps to compute 
the scores, including state-of-the-art algorithms for chain mapping. 
OpenStructure provides a large array of complementary scores to 
assess the accuracy of different types of predictions (summarized 
in Fig. 1) including protein, DNA or RNA tertiary structures; single or 

For polymers, this ‘chain mapping’ is only trivial in cases of mono-
meric predictions. Extending this mapping to complexes with multiple 
polymer chains has long been a challenge. The naive approach consists 
of enumerating all possible mappings, computing a score and selecting 
the optimal result. This quickly becomes intractable as the complexity 
of the problem grows factorially with the number of chains. Histori-
cally, several simplifications of this problem have been introduced to 
allow the scoring of complexes. The CAPRI community4,5 developed 
interface-centric scores solely applicable to dimeric complexes, bypass-
ing the need for global pairwise mappings. Only recently, CAPRI has 
started to assess larger assemblies by averaging per-interface scores4.

Most current tools aim to derive an explicit one-to-one mapping by 
heuristically optimizing for rigid superposition based scores. Notably, 
the MM-align tool23 aims to maximize the template modeling score 
(TM-score)24 between model and reference by enumerating the full 
solution space but omits the costly score computation for unlikely 
mappings. US-align25 also maximizes the TM-score, but avoids exhaus-
tive enumeration by deriving an initial mapping with a greedy search 
algorithm, which is then iteratively optimized. The algorithm described 
for AlphaFold-Multimer26 selects an anchor chain in the reference and 
initializes mappings by superposing all matching-sequence model 
chains followed by iterative chain pairing by minimal centroid distance, 
searching for the mapping with lowest centroid root mean squared 
deviation (r.m.s.d.). Foldseek-Multimer27 performs all-versus-all super-
positions and clusters transformation matrices to identify compat-
ible chain sets for mapping. For non-superposition-based scores, the 
problem can sometimes be reduced to the identification of mappings 
between symmetry related groups28. To date, chain mapping methods 
specifically designed for these types of scores remain absent in the field.

Small-molecule ligands can be matched with graph-based 
methods29,30. Here, we refer to it as ‘ligand assignment’, to distinguish 
it from the polymer ‘chain mapping’ term. Challenges are similar to 
those experienced for polymers, with the additional consideration 
of symmetrical groups within ligands such as phenyl groups, where 
atoms cannot be unambiguously assigned.

Here, we introduce a consistent framework to establish mappings 
between any number of compounds in a reference structure, be it pro-
tein, DNA, RNA or small molecule ligand, and their counterpart in the 
predicted model. This flexible framework allows us to compute a large 
array of scores to assess different aspects of the quality of predicted 
macromolecular complexes.

Comparison scores
In this context, we use the term ‘score’ specifically to refer to bench-
marking metrics that quantify the agreement between a predicted 
model and a reference structure. This usage is distinct from scores 
that may reflect energy-based evaluations, such as those generated 
by tools such as ZRank31, which are used during modeling or docking 
but are not direct measures of structural similarity.

Tertiary structure scores can be broadly categorized into two 
groups. First, scores reliant on rigid superposition of representative 
backbone atoms (typically Cα for proteins), such as the r.m.s.d.32, global 
distance test (GDT)33 or TM-score24. The r.m.s.d. has been largely aban-
doned in this context owing to its sensitivity to outliers and movements 
of individual protein domains. In addition, the r.m.s.d. requires subsets 
of mapped atom positions, meaning it does not penalize for missing 
residues in incomplete models and ignores any extra atoms present in 
one structure that are not found in the other. CASP mitigates for the 
effects of domain movements to some extent by manually segmenting 
reference structures into rigid substructures for separate evaluation. 
However, structural flexibility remains a challenge for fully automated 
benchmarking initiatives, such as CAMEO, and large-scale comparisons 
required for data-intensive applications in the field of AI. Here, a second 
group of scores plays a crucial role. Local and superposition independ-
ent scores are less sensitive to domain movements by focusing on 
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multiple polymer–polymer interfaces; small molecule and ion poses 
and geometry of the ligand binding pocket; and the stoichiometry of 
predicted macromolecular complexes. Together, these scores paint a 
comprehensive view of how accurately a model represents the target 
structure45. Providing all these scores in a single, consistent and highly 
optimized framework greatly facilitates high-throughput benchmark-
ing experiments, for both method developers and benchmark opera-
tors. The OpenStructure scoring framework was used in recent CASP 
and CAMEO experiments.

Results
Mapping polymer chains
To date, the field has lacked a method adept at deriving chain mappings 
for large assemblies, while operating on superposition-independent 
scores to mitigate the limitations of superposition-dependent meth-
ods. In this work, we present QSMap—a heuristic algorithm that opti-
mizes for the interface contact-based QS-score or backbone LDDT (Cα 
for protein and C3′ for nucleotides). For applications where overall 
topology is of relevance, we provide QSMapR, which optimizes for 
backbone r.m.s.d. (Cα for peptides and C3′ for nucleotides). Like the 
chain mapping algorithm utilized by AlphaFold-Multimer, QSMap/
QSMapR are sequence dependent, that is, reference/model chains are 
mapped within groups that are considered chemically equivalent. This 
is a desired property in a benchmarking scenario. All approaches are 
described in detail in the Methods section.

Two test datasets were constructed to assess the practical limits 
for QSMap/QSMapR, and to compare their performance on a real 
world benchmarking scenario. In addition, we compared QSMapR 
with US-align25, Foldseek-Multimer27 and our own implementation 
of the chain-mapping algorithm used in AlphaFold-Multimer26, all of 
which rely on global superposition and are optimized for assessing 
overall topology. The first set consists of a maximum of ten randomly 
selected structures retrieved using the RCSB PDB search API46 (see 
Data availability statement) for homomers with increasing numbers 
of chains, N. For cases where fewer than ten structures were avail-
able, we performed data augmentation by randomly selecting larger 
experimental structures and truncating them to contain only the first N 
chains. Mappings have been performed using these oligomers as both 
model and reference structures, performing a chain mapping on the 
structures themselves. The second set consists of models generated 
for the CASP15 assembly modeling challenge41 excluding trivial cases, 
such as dimers and hetero-oligomers with one-to-one chain assign-
ment. The dataset comprises 3,559 models of varying stoichiometry, 
ranging from homo-trimers to hetero 9-9-9-mers.

In general, QSMap/QSMapR can handle problem sizes involv-
ing up to 10 polymer chains with runtimes in the order of seconds or 
30 chains in the order of 100s of seconds (a single thread of an AMD 
EPYC 7742 processor). As the number of chains increases beyond this 
threshold, runtimes gradually increase and become impractical. This is 
substantially better than the approximately ten chains that are tracta-
ble by naive enumeration (Fig. 2a). QSMap chain mappings outperform 
QSMapR chain mappings in contact-based comparisons, as indicated 
by QS-score (Fig. 2b) and other similar scores, including ICS and LDDT 
(Supplementary Fig. 1). For comparisons focusing on overall topology, 
that is, rigid superposition-based comparisons such as TM-score, chain 
mappings from QSMapR perform better (Fig. 2c). In essence, each 
algorithm excels in the specific aspects they optimize for. In terms of 
runtime, QSMap/QSMapR successfully establish a chain mapping for 
all test cases, rarely exceeding 100 s (Supplementary Fig. 4a). QSMapR 
produces chain mappings that are superior to Foldseek-Multimer and 
AlphaFold-Multimer and as accurate as US-align but approximately one 
order of magnitude faster (Supplementary Section 1). To conclude, 
QSMap is recommended for contact-based scenarios, while QSMapR 
should be preferred when overall topology is the primary concern.

Updated LDDT reference implementation
The LDDT measures differences in distance between every atom pair 
within a defined inclusion radius, henceforth termed as ‘contact’. It was 
introduced in the CASP9 experiment47 and has been used as the primary 
comparison score for tertiary structures in CAMEO as it allows for fully 
automated assessment owing to its robustness against domain move-
ment events. The score applies stereochemistry checks to penalize for 
serious stereochemical irregularities and was originally restricted to 
single-chain proteins. Starting with CASP1339 and CAMEO3, LDDT was 
extended to evaluate protein quaternary structures. However, already 
at CASP13, the employed chain mapping algorithm proved insufficient 
to process large assemblies and needed input from external tools in 
these cases39. With the shifting focus of the modeling community to 
macromolecular complexes3 and interest in applying the concept of 
superposition-independent distance differences to RNA or small mol-
ecules, we introduce a new LDDT reference implementation.

This implementation successfully processes large assemblies by 
tightly integrating with the QSMap chain mapping algorithm (see the 
QSMap section in Methods), and was extended to nucleotides. In addi-
tion, two variations have been added: (1) i-LDDT, which considers only 
distances across interfaces and (2) bb-LDDT, which considers only repre-
sentative backbone coordinates (Cα for peptides and C3′ for nucleotides). 
Extensive testing and comparisons with other scores were conducted in 

Interface

Tertiary 
structure 

Binding pocket

Small-
molecule 

ligand

Stoichiometry

Reference Model

Fig. 1 | Different aspects of structure prediction assessment. Schematic 
example of a hetero-2-2 dimer reference with a small-molecule ligand (left). 
Evaluating a model (right) includes mapping equivalent components and 
scoring differences to the reference. Inaccuracies of the model may include 
incorrect stoichiometry of the complex, structural differences in the tertiary 

structures and in interfaces, incorrect size and shape of the binding site, and 
wrong conformation or pose of the small-molecule ligand. In contrast to the ‘spot 
seven differences’ game, differences must be assessed not just qualitatively but 
quantitatively.
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the context of the CASP15 RNA modeling challenge48. Stereochemistry 
checks for nucleotides were not implemented for CASP15 but have been 
implemented in the context of this manuscript and CASP16.

Small-molecule ligands
To assess the accuracy of predictions of small-molecule ligands in a 
complex with a target structure, such as cofactors, inhibitors or drug 
compounds, in the context of CASP1529, we developed three new scores. 
The BiSyRMSD is a symmetry-corrected r.m.s.d. in Å, which measures 
the absolute accuracy of a ligand pose prediction computed after 
superposing the binding site coordinates of the model onto the refer-
ence. The binding site is defined as any residue with at least one atom 
within 4 Å of the ligand, excluding hydrogen atoms, based solely on 
the reference structure. A local superposition was needed as the ref-
erence structures in CASP were larger and more flexible than those in 
GPCR dock15,16 and the first stage of the D3R Grand Challenge 39. Lower 
values indicate more accurate predictions, with scores below 2 Å typi-
cally interpreted as ‘success’ in docking experiments. While there is 
no strict upper limit to the score, ligands posed more than 20 Å away 
from their correct position might cause the binding site detection to 
fail if they are positioned far away from the chain they interact with. 
To mitigate limitations of r.m.s.d.-based scores of incomplete predic-
tions, we require the entirety of the reference ligands to be modeled.

LDDT-PLI is an LDDT score restricted to polymer–ligand atomic 
contacts, which assesses the reproduction of native contacts by looking 
at every atom pair within a defined inclusion radius, and penalizes con-
tact overprediction in the model. Like LDDT, LDDT-PLI is constrained 
between 0 and 1, with higher values indicating more accurate results. 
A non-zero LDDT-PLI score indicates that the ligand was modeled 
in the right pocket, and quickly goes down to 0 as contacts become 
unfulfilled. However LDDT-PLI can remain higher than 0 even with 
large BiSyRMSD values if the part of a flexible ligand making contact 
with the polymer is modeled accurately. Finally, LDDT-ligand pocket 
(LDDT-LP) is an LDDT restricted to atomic contacts between polymer 
residues of the binding site, and is constrained between 0 and 1. The 
value of LDDT-LP is 0 when the binding site consists of a single residue 
mapped between the model and the reference. All scores take care of 
chain mapping, symmetry correction for ligands and, when multiple 
ligands are present, generate a ligand assignment where no reference 
or model ligands can be part of more than one PLI (for details, see Meth-
ods). Here, we discuss some properties of these scores in more detail.

In order to investigate the scores’ behavior, we gathered all models 
that were assessed in the CASP15 ligand modeling challenge29. Figure 3a 

shows the relationship between LDDT-PLI and BiSyRMSD (plotted on 
a log scale). Missing values (when scores were missing or could not be 
computed; see ‘Ligand assignment’ section in the Methods) are marked 
with a triangle. While the two scores are strongly negatively correlated 
(Spearman ρ = −0.989), a few interesting outliers where the two scores 
deviate from the correlation line can be observed. Figure 3b shows an 
example where a BiSyRMSD of 0.02 Å indicates a spot-on prediction, 
with a very low backbone superposition r.m.s.d. of the binding site 
of 0.37 Å. However, some side chains in the binding site are flipped 
(Asp72 and Asn77), which results in slightly lower LDDT-LP (0.83) and 
LDDT-PLI (0.902). Another source of discrepancy is shown in Fig. 3c, 
where a part of the ligand was modeled in the correct binding pocket 
(Fig. 3c, left), resulting in a non-zero LDDT-PLI of 0.26, but a discon-
nected part of the ligand was modeled more than 100 Å away (Fig. 3c, 
right). As expected, the BiSyRMSD applies a square penalty to these 
very far atoms, resulting in a score of 87.5 Å. A third example is shown 
in Fig. 3d, where a magnesium atom is placed 0.67 Å away from the cor-
rect position. However, because the ligand is still located at the same 
correct distance from the atoms of the binding site residues, there is 
almost no penalty to LDDT-PLI (0.99).

Figure 4 illustrates the effect of the extra penalty in LDDT-PLI for 
the additional contacts in the model. In Fig. 4a, an additional chain (in 
pink) was modeled to pass through the binding site and clashes both 
with the ligand and the binding site. Without this chain, the model 
would result in almost perfect scores (BiSyRMSD <0.5; LDDT-LP and 
LDDT-PLI both >0.9). However, with the penalty for added contacts, 
LDDT-PLI becomes 0.53, indicating an average prediction accuracy. 
Figure 4b shows a more subtle case of loop and side chain misplace-
ment. The terminal loop, and in particular Arg6, is modeled closer to 
the ligand than in the reference. This results in an LDDT-PLI of 0.65, 
while BiSyRMSD and, to a lesser extent, LDDT-LP do not suffer from 
this as much, with scores of 1.11 and 0.80, respectively. While effective 
at detecting deviations from the reference, the extra added contacts 
penalty should not replace stereochemical checks on the model.

A limitation of the ligand scores is that they are restricted to 
interactions between polymer chains (proteins or nucleic acids) and 
small-molecule ligands by definition, and do not consider other small 
molecules or short peptides the ligand might be interacting with. This 
can be an issue for ions interacting with organic molecules rather than 
with the protein, such as in the CASP target T1118v1 where iron atoms 
interact with macrocyclic bisucaberin ligands, but not with the FoxA 
protein. As a result, no score can be computed for the iron atoms with 
the default parameters. A workaround is to increase the binding site 
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and LDDT inclusion radiuses to cover the protein, and thereby allow a 
score to be computed. Despite this limitation, BiSyRMSD, LDDT-PLI 
and LDDT-LP have proven to be complementary scores showing useful 
properties for scoring small-molecule ligand pose predictions.

OpenStructure as a fully automated benchmarking suite
Overview. The OpenStructure computational structural biology 
framework49 has streamlined the implementation of comparison scores 
addressing various aspects discussed in this manuscript, including pro-
teins, protein complexes and protein–ligand complexes. Furthermore, 

external tools have been integrated to complement our implementa-
tions and provide a one-stop-shop for modeling method developers 
and benchmark assessors. The available scores are summarized in 
Table 1 and can be computed as described in ‘Command line inter-
face’ section. A subset of scores can be invoked from a web server as 
described in ‘Web interface’ section.

Command line interface. The benchmarking suite is implemented 
in OpenStructure as executables in the form of ‘actions’. Two of these 
actions are concerned with the comparison of theoretical models of 
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Fig. 4 | Effect of penalizing added model contacts in LDDT-PLI. a,b, An extra model chain in the binding site (a, pink) and a misplaced arginine residue (b), depicted 
with balls and sticks. Model chains are depicted in purple and reference chains in green.
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macromolecular complexes with their reference counterpart and allow 
direct access to the scores described in this manuscript.

‘Compare-structures’ focuses on comparisons involving polymer 
entities, that is, protein, DNA and RNA chains.

‘Compare-ligand-structures’ focuses on comparisons of interac-
tions between polymer entities and nonpolymer entities, that is, 
small-molecule ligands

Examples on how to run these ‘actions’ are available in the Open-
Structure Git repository at https://git.scicore.unibas.ch/schwede/
openstructure/-/blob/master/examples/scoring/README.md. This 
README file also includes instructions on how to set up OpenStructure 
using Docker, Singularity or Conda, or how to compile it from source.

Web interface. A selection of scores for polymer entities is also avail-
able in the SWISS-MODEL Structure Assessment server50 available at 
https://swissmodel.expasy.org/assess. By providing a reference struc-
ture, users can obtain the most relevant LDDT, QS-Score, TM-Score, 
r.m.s.d. and DockQ scores. Automated access to the full functionality 
available for the command line ‘actions’ is available via a REST API at 
https://swissmodel.expasy.org/ost.

Scoring recommendations. In this section, we discuss common pit-
falls when scoring structural predictions and provide recommenda-
tions to perform meaningful analysis in automated settings.

Structural flexibility is not taken into account in global superposition- 
based scores. Proteins are flexible and typically organized in relatively 
rigid domains whose relative orientation with respect to each other can 
vary36,51. Superposition-dependent scores fail to account for this flex-
ibility and require manual segmentation of the reference structure51; in 
Table 1, this affects the GDT, r.m.s.d. and TM-scores. The consequences 
are artificially low scores that potentially overshadow accurate domain 
predictions. Local superposition-independent scores, such as LDDT 
and CAD-score, avoid this pitfall by operating on local internal con-
tacts or distances, limiting penalties for wrongly predicted domain 
orientation. Therefore, LDDT and CAD-scores are generally preferable 
for evaluating the overall accuracy of protein structure predictions, 
except for the use case of differentiating relative domain orientations 
and overall topology.

The r.m.s.d.-based superpositions and scores can be dispropor-
tionately affected by outlier regions. GDT and TM-score are superposi-
tion dependent too but mitigate this effect by focusing on maximizing 
the alignment of correctly predicted regions, limiting the influence 
of erroneous regions by treating them as outliers. Superpositions 
minimizing r.m.s.d. should be applied with care or in a localized man-
ner, with examples being BiSyRMSD or i-RMSD. L-RMSD, and conse-
quently DockQ, are problematic as L-RMSD first derives a superposition 
from the full ‘receptor’ chain and then computes an r.m.s.d. on the 
full ‘ligand’ chain. Both steps may be affected by erroneous regions 
far away from any interface. The CAPRI community considers issues 
concerning L-RMSD by falling back on i-RMSD for these cases in their 
model quality classification rules52.

Incomplete models should score lower than predictions with 
a complete coverage of the target sequence. Contact-based scores, 
along with GDT and TM-scores, naturally penalize incomplete models 
by design, but r.m.s.d.-based measures do not as no distance between 
model and reference can be computed for missing residues. From 
Table 1, this includes i-RMSD, L-RMSD, DockQ, r.m.s.d. and BiSyRMSD. 
While BiSyRMSD partially mitigates this issue by considering only com-
plete ligand predictions, the initial superposition of the binding site 
can still be adversely affected by incomplete coordinates and should 
be carefully monitored given the provided OpenStructure output.

Incomplete reference structures, which may arise from limita-
tions in experimental procedures, such as missing or not interpretable 
electron density in X-ray or cryogenic electron microscopy structures, 
should not result in penalties for models covering such missing regions. 
This affects QS-score and ICS/IPS. QS-score (referred to as QS-global in 
OpenStructure) is designed to compare complexes and differentiate 
between quaternary states. It is symmetric by design, that is, swap-
ping the model and reference structure gives the same score. As a 
consequence, if the reference is incomplete, contacts that are present 
only in the model will penalize the score, even though the involved 
residues are not covered by experiment. For benchmarking scenarios 
that assume that the model and reference have the same stoichiometry 
and the model provides complete coverage, it is advisable to use the 
QS-best variant. This variant, available through the compare-structures 
action when requesting the QS-score, evaluates only the contacts 
between residues present in both the model and reference structure. 

Table 1 | Comparison scores in OpenStructure and their applications

Protein tertiary 
structures

RNA tertiary 
structures

Protein 
complexes

Protein–RNA 
complexes

Small 
molecules

Chain mapping4 Primary citation

LDDT/bb-LDDT1 Yes Yes Yes Yes No QSMap Ref. 36 and updates in 
this manuscript

i-LDDT1 No No Yes Yes No QSMap This manuscript

QS-score1 No No Yes No No QSMap Ref. 28

DockQ/ fnat/ i-RMSD./ L-RMSD2 No No Yes Yes No QSMap Ref. 37

ICS/IPS2,5 No No Yes Yes No QSMap Ref. 6

DockQ-ave/DockQ-wave1 No No Yes No No QSMap Ref. 57

GDT2 Yes Yes Yes Yes No QSMapR Ref. 33

r.m.s.d.2 Yes Yes Yes Yes No QSMapR Ref. 32

CAD-score3 Yes Yes Yes Yes No QSMap Ref. 35

TM-score3 Yes Yes Yes Yes No US-align Ref. 25

BiSyRMSD1 No No No No Yes Full enumeration of 
binding site chains

This manuscript

LDDT-PLI1 No No No No Yes Full enumeration of 
binding site chains

This manuscript

1The OpenStructure scoring framework is the reference implementation. 2Implementation in the OpenStructure scoring framework—implementation details available in Methods and 
comparison to reference implementation available in Supplementary Section 4. 3External tool integrated in the OpenStructure scoring framework. 4Only relevant for protein complexes or 
protein–RNA complexes, external tools either use their own chain mapping or the OpenStructure chain mapping gets injected. 5Scores for higher order oligomers may differ from legacy 
implementation used until CASP15, with differences discussed in Methods.

http://www.nature.com/naturemethods
https://git.scicore.unibas.ch/schwede/openstructure/-/blob/master/examples/scoring/README.md
https://git.scicore.unibas.ch/schwede/openstructure/-/blob/master/examples/scoring/README.md
https://swissmodel.expasy.org/assess
https://swissmodel.expasy.org/ost


Nature Methods

Article https://doi.org/10.1038/s41592-025-02973-z

However, for this reason, QS-best will not penalize incomplete models 
or models with wrong stoichiometry. A similar situation applies to 
ICS/IPS. While it is beneficial to penalize contacts that exist only in 
the model, it is problematic if the involved residues are not covered 
by experimental evidence. For the benchmarking scenario of the same 
stoichiometry and full model coverage, the compare-structures action 
provides ‘trimmed’ variants for ICS/IPS, where the model is trimmed 
to include only residues that are present in the reference before score 
computation.

Interface centric evaluations can be conducted by i-LDDT, 
QS-score, DockQ/fnat/i-RMSD/L-RMSD or ICS/IPS. The standalone 
CAD score executable can also perform assessment solely on interface 
contacts, but this feature is not integrated in the OpenStructure bench-
marking suite. The DockQ family of scores assesses two-body interac-
tions and to derive a score for higher order oligomers, DockQ-ave/
DockQ-wave can be used. These two scores differ in how they aggregate 
per-interface contributions, with DockQ-wave weighing per-interface 
contributions by interface size. This can be problematic as small inter-
faces, which may be critical for the overall topology or biological func-
tion, get down-weighted and a simple average from DockQ-ave can be 
more informative. It is also important to consider that other contact 
based scores (i-LDDT, QS-score and ICS/IPS) can similarly be dominated 
by larger interfaces.

Sequence alignments are a prerequisite to establish residue- 
by-residue relationships between two polymer chains. All the scores 
in Table 1 except the TM-score use sequence-based pairwise align-
ments. In a benchmarking setting such as CASP or CAMEO, models 
are required to be numbered according to the target sequence(s). 
Users are advised to enforce residue number-based alignments in 
these cases. This has no effect on TM-score in OpenStructure as it is 
computed with US-align using default parameters, which performs 
sequence-independent alignments. It should be noted that this purely 
structure-based approach may result in mapping of chains with differ-
ent identities.

Backbone-only scores (as in Table 1; bb-LDDT, QS-score, DockQ/ 
i-RMSD/L-RMSD, GDT, RMSD and TM-score) only consider representa-
tive atom positions from polymer backbones and apply no penalty to 
incorrectly modeled side chains. Side chains are critical for protein 
structures, and ensuring they are properly modeled is desirable in 
most benchmarking scenarios.

Discussion
Despite the large array of scores that we provide, additional use 
cases such as interactions between protein complexes and various 
molecular entities, including peptides, oligosaccharides as well as 
post-translational modifications, highlight further modeling chal-
lenges within this field that are still to be tackled to gain a compre-
hensive view of macromolecular complexes. Considerations such as 
structure quality validation53 and detailed stereochemical analysis are 
not included in this work. Automating structural quality validation 
is challenging, and we are working on incorporating corresponding 
checks into the benchmark dataset creation process22,54 and separately 
into the scores themselves. Assessment of protein–peptide interac-
tions is currently limited by the lack of reliable alignment methods that 
work with arbitrary nonstandard amino acids. Finally, considerations 
about flexibility and disorder, involving considerably different sets of 
methods55,56, are out of the scope of this manuscript.

The OpenStructure scoring framework is a comprehensive bench-
marking suite providing a large array of complementary scores to assess 
different types of three-dimensional structure predictions in a robust 
and automated way. The combined scores give comprehensive deep 
insights into a model’s accuracy. In the wake of data-driven AI-based 
prediction methods, high-throughput benchmarking will become 
increasingly critical to assess the prediction accuracy of novel methods. 
By providing a single, consistent and highly optimized framework, 

we will facilitate future developments in the field. OpenStructure has 
been used extensively in CASP16 and CAMEO benchmarking efforts, 
proving its usefulness.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02973-z.
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Methods
Data input and structure preprocessing
OpenStructure accepts structural information in legacy PDB format58 
or in the preferred PDBx/mmCIF format59. Structures are processed 
as described in ref. 49. Shortly, internal residue connectivity is estab-
lished on the basis of residue and atom names using the PDB chemical 
component dictionary (CCD)60. Ligands that are part of the CCD can 
be extracted from PDBx/mmCIF files on the basis of nonpolymer entity 
annotation. However, the recommended approach is to load ligand 
structures from SDF files61, which inherently provide detailed con-
nectivity information.

For polymer chain-based scores, a cleanup step replaces nonstand-
ard residues with their corresponding parent residues as defined in 
the CCD (for example, SEP to SER). Residues without entry in the CCD 
are removed completely. In addition, hydrogen atoms, terminal OXT 
atoms and atoms with names that do not match the CCD are removed. 
Short polymer chains are excluded from scoring, with a threshold  
of fewer than six residues for peptides and fewer than four residues 
for nucleotides.

Ligand-based scores apply the same cleanup to the receptor 
structures, which consist of polymer chains, with the exception that 
nonstandard residues are not replaced. Only hydrogen atoms are 
removed from ligands.

Structure visualization
Structural models in the manuscript figures were displayed in Mol*62.

Sequence-based grouping of polymer chains for  
QSMap/QSMapR
Grouping is on the basis of pairwise sequence alignments and a straight-
forward sequence identity measure. To minimize the likelihood of 
achieving high sequence identity by chance alone, QSMap/QSMapR 
only consider reference and model chains with a minimum length, 
N (default of N = 6 for proteins and N = 4 for nucleotides). Pairwise 
sequence alignments are constructed via the Needleman–Wunsch 
dynamic programming algorithm63, which employs the BLOSUM62 
substitution matrix64 for proteins and NUC44 for nucleotides (ftp://
ftp.ncbi.nih.gov/blast/matrices/NUC.4.4). Alternatively, upon user 
request, alignments can be constructed from residue numbers, which 
is useful for CASP or CAMEO scenarios where participants are asked 
to number residues according to the submitted modeling target 
sequence. The grouping procedure consists of two steps: first, we 
need to define groups of chemically identical chains in the reference 
structure, and second, we need to assign each chain in the model struc-
ture to one of these groups.

By default, reference chain grouping is on the basis of sequences 
extracted from coordinate data. Protein and nucleotide chains are 
first separated, followed by clustering using a sequence identity 
threshold of 95%. Within each cluster, the longest chain is selected 
as representative. One rare failure mode arises when multiple chains 
originate from the same underlying target sequence but cover 
nonoverlapping regions, leading to their classification as differ-
ent groups (for example, PDB ID 8CBU). To address this limitation, 
grouping information and representative sequences for reference 
structures are extracted from entity records when available in 
the PDBx/mmCIF format. If the reference structure is provided in 
legacy PDB format the sequence-based grouping method remains  
the default.

Each model chain is assigned to a reference group on the basis 
of its maximum sequence identity with the respective representative 
sequences. To allow chain mapping between homologs, the sequence 
identity threshold for model-to-reference assignment is relaxed to 
70%. Model chains that cannot be assigned to any reference group 
are reported as unmapped. This threshold can be adjusted or com-
pletely removed to enforce assignment. However, doing so may lead to 

assignments of nonrelated chains if the model contains chains which 
are not represented in the reference.

QSMap
QSMap optimizes for QS-score. The QS-score has protein-specific 
parameterizations, and QSMap switches to backbone LDDT (Cα for 
proteins and C3′ for nucleotides) with increased inclusion radius 
(30 Å) if nucleotides are involved. The default LDDT inclusion radius 
of 15 Å would be insufficient to reflect relevant pairwise distances 
between nucleotide backbones. While QSMap can handle protein 
and nucleotide chains, as well as hetero-oligomers, we describe the 
algorithm’s complexity in terms of two equally sized homo-oligomers 
with N chains for simplicity. QS-score and LDDT are pairwise decom-
posable. That is, given a model and reference complex, the overall 
score can be derived by separately processing contributions from 
individual chains and pairwise interfaces. Enumerating the full solu-
tion space of N! possible mappings can be sped up by caching the 
computationally demanding score computations. Considering a 
model and reference complex with N chains, there are N(N − 1)/2 
possible chain pairs in the reference (n choose k, with k = 2). Given 
N(N − 1)/2 possible chain pairs in the model, this results in N(N − 1) 
possible assignments for each reference chain pair (two possibili-
ties to assign a model chain pair to a reference chain pair) and a 
total of N2(N − 1)2/2 possible interchain contributions. Single chain 
contributions, which are only relevant for LDDT, add up to N2. As a 
consequence, the score computation has a polynomial complexity 
of O(N4). This pushes the boundary of feasible problem sizes but 
still necessitates the introduction of heuristics for large N. We found 
problem sizes with N ≤ 8 to complete with reasonable runtimes, so 
those can be handled by exhaustive enumeration. Larger problems 
are delegated to a greedy algorithm.

The greedy algorithm employs an extension strategy that starts 
from an initial mapping and iteratively adds pairs of model/reference 
chains that maximize the increase in LDDT/QS-score, as illustrated in 
the schematic in Extended Data Fig. 1. For efficiency, the search can 
be confined to pairs of chains that are ‘close’ or ‘accessible’ from the 
continuously updated mapping. A chain is considered accessible if its 
inclusion has the potential to improve the interchain component of 
the target score. For the QS-score (applicable to proteins only), a chain 
is accessible if it contains at least one representative residue position 
(Cβ, or Cα for glycine) within 12 Å of any chain of the same type (model 
or reference) already in the mapping. In addition, model or reference 
chains must form at least three inter-residue contacts to any chain of 
the same type already in the mapping. Interface contacts are defined 
as representative positions within 8 Å. For LDDT, a reference chain is 
accessible if it contains at least one representative residue position 
(Cα for proteins or C3′ for nucleotides) within the LDDT inclusion 
radius (15 Å, or 30 Å if nucleotides are involved) of any reference chain 
already in the mapping. For model chains, the threshold is extended 
to the sum of the inclusion radius and the maximum allowed distance 
deviation (4 Å).

In order to mitigate the risk of the algorithm being trapped 
in a local optimum, we sample all possible reference/model chain 
pairs as initial mappings (N2 starting points in the case of two homo 
N-mers). In case of hetero-oligomers, all initial chain pairs must 
belong to the same group as defined by the algorithm described in 
‘Sequence-based grouping of polymer chains in QSMap/QSMapR’ 
section. In addition we tried an approach similar to one described for 
US-align, where at every n extension steps (n = 3), all possible swaps 
among already assigned chains were evaluated for potential score 
improvement to escape local optima. However, this did not improve 
mapping accuracy (Supplementary Fig. 2b) and was discarded. 
The greedy extension does not guarantee a complete mapping in  
the case of disconnected structures. The final algorithm enforces 
a full mapping.

http://www.nature.com/naturemethods
ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4
ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4


Nature Methods

Article https://doi.org/10.1038/s41592-025-02973-z

For each possible reference/model chain pair: 
 � Use pair as initial mapping and perform greedy 
extension

  While mapping incomplete: 
  �  For each possible unmapped reference/model chain 

pair:
   �   Add combination to mapping and perform greedy 

extension
      Keep mapping with highest QS-score/LDDT 
  Keep complete mapping with highest QS-score/LDDT

QSMapR
A multiple sequence alignment is created for each group of equivalent 
chains and Cα (C3′ for nucleotides) positions of columns, which are 
covered in each sequence, are considered for superposition and r.m.s.d. 
computation. To reduce runtime with limited impact on accuracy 
(Supplementary Fig. 2a), a subsampling by only selecting n equidistant 
columns is performed (default n = 50). The same as QSMap, QSMapR 
samples all possible reference/model chain pairs as initial mappings 
(N2 starting points in case of two homo N-mers) to start a greedy exten-
sion, as illustrated in Extended Data Fig. 1, and keeps the mapping 
with minimal overall r.m.s.d. In the case of hetero-oligomers, all initial 
chain pairs must belong to the same group, as defined by the algorithm 
described in ‘Sequence-based grouping of polymer chains in QSMap/
QSMapR’ section.

In the case of a homo N-mer, the greedy heuristic performs N3 Kab-
sch minimal r.m.s.d. transformations. Naive enumeration of the solu-
tion space requires N! transformations. QSMapR therefore performs 
naive enumeration for N ≤ 5 (53 = 125 versus 5! = 120) and switches to 
the described greedy heuristic for larger problem sizes.

Updated LDDT reference implementation
LDDT was completely re-implemented. Extending LDDT to support 
protein complexes did not require conceptual changes to the algorithm 
described in ref. 36 and summarized in Supplementary Section 2 but 
involved technical adjustments to natively handle multi-chain com-
plexes with model/reference chain mappings from QSMap/QSMapR. 
However, extending LDDT to nucleotides required two modifications. 
First, Ideal bond lengths and angles, along with their standard devia-
tions for the stereochemistry preprocessing were expanded to include 
nucleotides. Amino acid and nucleotide parameters are now extracted 
from the CCP4 MON_LIB65 instead of the previously used amino acid 
parameters from ref. 66. No changes were made for clash checks. Sec-
ond, the potential swapping of OP1/OP2 atoms in a nucleotide polymer, 
resulting in chemically equivalent molecules, was added to a hardcoded 
list of symmetries that originally only included symmetries from pro-
teinogenic amino acids.

Ligand definition and identification
We follow the definition of ligands from the PDB, including small mol-
ecules such as ions, solvent molecules, drugs, enzymes, co-factors, etc. 
associated with biological polymers67. In addition, the scores described 
here do not take biological relevance into account. This is the result of 
a conscious decision from our side. Other resources such as BioLiP68, 
FireDB69 or the defunct IBIS database70 have attempted to tackle the 
issue. However, it is very hard to address, at least in part owing to the 
fact that relevance is relative and dependent on the context, and there-
fore is essentially impossible to automate in a general case. Therefore, 
we decided to focus on the assessment of ligand accuracy only. As a 
result, all small-molecule ligands present in the structures are assessed.

Ligand matching and symmetry correction
We don’t rely on ligand names to identify pairs of ligands in models and 
references, but represent all ligands by molecular graphs. If two graphs 
are isomorphic, they are considered a match. However, reference 

ligands may be incomplete owing to, for instance, missing density in 
the experimental structure, while model ligands are expected to be 
complete. Therefore, an option allows two graphs to be considered a 
match if the reference graph is an isomorphic subgraph of the model 
graph. All ligand scores described in the following sections of this 
manuscript can operate on incomplete reference ligands. However, 
post-processing must consider coverage—the fraction of model ligand 
atoms that are covered by the reference ligand—to avoid nonsensical 
matches, such as small organic solvent molecules in the reference 
matching organic model ligands or cofactors by pure chance. Further-
more, enumerating graph isomorphisms produces a list of one-to-one 
atom mappings between reference and model ligands, allowing us to 
account for potential symmetries that are chemically equivalent, fol-
lowing established methodologies30. Ligand atom elements serving as 
graph node features and graph connectivity (bonds) is established in 
the following order of preference: (1) loaded explicitly from an input 
SDF file61, (2) extracted from the chemical component dictionary on 
the basis of ligand name60 and (3) determined by a heuristic set of rules 
on the basis of van der Waals radii. All graph operations are performed 
using the Python NetworkX software71.

BiSyRMSD, RMSD-LP and LDDT-LP
BiSyRMSD operates on ligand atom positions and corrects for sym-
metries, as described in ‘Ligand matching and symmetry correction’ 
section, to report the best possible r.m.s.d. This approach is sufficient 
for re-docking experiments, where the reference and model polymer 
chains are identical and already in the same frame of reference. How-
ever, when the full model has been built in the absence of any reference 
information, it is necessary to appropriately transform the model ligand 
onto the reference ligand frame before calculating the BiSyRMSD. To 
mitigate the impact of structural flexibility, BiSyRMSD performs a local-
ized transformation on the basis of the reference binding site, defined 
as polymer residues in close contact with the reference ligand (at least 
one atom within 4 Å of any reference ligand atom, excluding hydrogens). 
When both the reference and model consist of a single polymer chain, 
the corresponding binding site residues in the model are identified via 
sequence alignment. These residues are then used as input for a Kabsch 
transformation32, utilizing the respective Cα atoms (or C3′ atoms for 
nucleotides), or all backbone atoms if the binding site contains two 
or fewer residues. For cases where the reference or model includes 
multiple polymer chains, mapping the model binding site becomes a 
chain mapping problem. The relevant set of reference polymer chains 
is determined by the reference binding site, whereas the relevant set of 
model polymer chains follows a more lenient contact definition (at least 
one heavy atom within 25 Å of any model ligand atom) to promote a com-
plete mapping even with an imperfectly modeled binding site. The same 
sequence-based grouping used for QSMap/QSMapR (‘Sequence-based 
grouping of macromolecule chains for QSMap/QSMapR’ section) is 
applied to both sets. All possible mappings of model chains onto refer-
ence chains are processed. For each mapping, the model binding site 
residues are identified via the respective pairwise sequence alignments, 
and the best BiSyRMSD observed for any mapping is reported.

BiSyRMSD exclusively considers ligand atom positions. Although 
the binding site is critical to accommodate the ligand, it only indirectly 
influences BiSyRMSD through its role in the superposition process. 
To directly compare reference and model binding sites, RMSD-LP and 
LDDT-LP have been introduced, where LP stands for ligand pocket, and 
are similar to the previously described LDDT-BS score72. These meth-
ods utilize the reference/model binding site mapping obtained from 
BiSyRMSD to compute a backbone r.m.s.d. (using Cα atoms for proteins 
and C3′ atoms for nucleotides) and an all-atom LDDT, respectively.

LDDT-PLI
LDDT-PLI is an all-atom score that, unlike BiSyRMSD, explicitly 
considers interactions between a ligand and its binding site. It is a 
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symmetry-corrected LDDT score that operates on pairwise distances 
between ligand and binding site with standard LDDT distance dif-
ference thresholds (0.5 Å, 1.0 Å, 2.0 Å and 4.0 Å) but with a reduced 
inclusion radius of 6 Å to emphasize the score’s local nature. While 
it does not perform stereochemistry checks, LDDT-PLI is distinct in 
one key aspect: it considers pairwise distances within the inclusion 
radius in the model but not in the reference. In classical LDDT, the set 
of distances used for score computation is solely defined by the refer-
ence, which can be problematic for very local analyses, as intended by 
LDDT-PLI. For example, if a loop of a model incorrectly interacts with 
the ligand, the classical approach misses these interactions. LDDT-PLI 
addresses this by also including interatomic distances within the inclu-
sion radius in the model, provided there is experimental evidence for 
both atoms involved, meaning they can be mapped to the reference. For 
cases where the reference or model includes multiple polymer chains, 
their mapping must also be considered. All chains that potentially 
fulfill a contact for the final LDDT-PLI score in the reference and in the 
model (that is, with at least one atom within the inclusion radius plus 
the maximum distance difference threshold of the reference ligand; 
10 Å in total) are included. The same sequence-based grouping used 
for QSMap/QSMapR (‘Sequence-based grouping of macromolecule 
chains for QSMap/QSMapR’ section) is applied to both sets. All pos-
sible mappings of model chains onto reference chains are processed. 
For each mapping, model polymer residues are assigned to reference 
polymer residues via the respective pairwise sequence alignments. 
If a chain potentially contributing contacts in the model cannot be 
mapped to the reference at this point, the closest (by center of mass) 
chemically equivalent chain in the reference not already covered by 
the chain mapping is used, even if not initially included in the relevant 
set of reference polymer chains. When both the reference and model 
consist of a single polymer chain, the problem can be reduced to a 
simple pairwise sequence alignment. The optimal score is computed 
by simultaneously enumerating all chain mappings, all symmetries in 
the ligand as described in ‘Ligand matching and symmetry correction’ 
section and symmetries from the polymer chain, and the best LDDT-PLI 
observed for any mapping is reported.

Ligand assignment
BiSyRMSD and LDDT-PLI are initially computed for each isomorphic 
pair of ligands. In this manuscript, we considered three benchmarking 
scenarios: (1) providing a score assessing each modeled ligand pose, 
(2) providing a score assessing how well each reference ligand is repre-
sented in the model and (3) providing a single score for comparing two 
macromolecular complexes with multiple ligands. All three scenarios 
require a one-to-one assignment between reference and model ligands. 
To be meaningful, this assignment must be nonredundant, ensuring 
that each model ligand is assigned to only one reference ligand and vice 
versa. Individual assignments are generated separately for LDDT-PLI 
and BiSyRMSD scores, and we found that a simple greedy algorithm 
yields satisfactory results. This approach iteratively assigns the best 
scoring pair of matching reference and model ligands until no more 
reference or model ligands remain to be assigned. For cases involv-
ing incomplete reference ligands, coverage—as described in ‘Ligand 
matching and symmetry correction’ section—is also considered. In 
each iteration, possible assignments are limited to pairs with coverage 
greater than the maximum coverage minus a user-specified threshold 
(default of 0.2). As a consequence, an assignment with a higher score 
is preferred, even if the coverage is slightly lower, while nonsensical 
assignments between small solvent ligands in the reference and large 
organic model ligands are discouraged.

Implementation of external scores in OpenStructure
DockQ, fnat, i-RMSD and L-RMSD. The OpenStructure implementation 
follows the descriptions in refs. 37,73. The scores are designed to evalu-
ate dimers with a defined chain assignment, eliminating the need for 

a chain mapping algorithm. Results from OpenStructure align closely 
with those from DockQ v2.1.374, available from https://github.com/
bjornwallner/DockQ, with additional details provided in Supplemen-
tary Section 4. For protein–peptide interactions, the CAPRI community 
recommended modifying the default parameters75. This adjustment 
can be applied in OpenStructure by enabling the dockq-capri-peptide 
flag in the compare-structures ‘action’.

ICS/IPS. The OpenStructure implementation follows the descrip-
tions in ref. 6. The original description does not specify procedures 
for chain mapping or score aggregation for higher-order oligomers. 
In OpenStructure, QSMap chain mapping is applied and all contacts 
from the complete model and reference complexes are collected to 
compute ICS/IPS for full complexes. Per-interface scores are reported 
separately. The ICS/IPS implementation used by the CASP Prediction 
Center (https://predictioncenter.org) aggregates per-interface scores, 
but it is unclear if any weighting is involved or small interfaces are dis-
carded. Since it is not publicly available, we compared our results with 
those published by the Prediction Center. Results from OpenStructure 
closely match for dimers. Results for higher-order assemblies are 
qualitatively similar, with discrepancies owing to differences in score 
aggregation (Supplementary Section 4).

GDT. The GDT reports the fraction of reference Cɑ positions that can 
be superposed within a specified distance threshold of the respective 
model positions, which is an optimization problem with an implemen-
tation in the LGA tool33. OpenStructure offers its own implementation, 
which largely follows LGA but allows for seamless integration into the 
quaternary structure and RNA scoring capabilities of OpenStructure. 
The algorithm relies on a strict mapping between model and refer-
ence positions (Cα for peptides and C3′ for nucleotides). Starting 
from an initial set of mapped model/reference position pairs, the 
following steps are iteratively applied: (1) use set to compute a mini-
mal RMSD transformation, (2) apply the transformation to all model 
positions and (3) update set to include all pairs within the specified 
distance threshold, stopping if the set no longer changes, and report 
the largest set observed. Other than LGA, which employs the longest 
continuous segment algorithm33 to help identify good starting sets, 
OpenStructure simply uses sliding windows of sizes of 7, 9, 12, 24 and 
48 on the model/reference positions. To prevent long runtimes for 
large structures, each sliding window is applied a maximum of 1,000 
times at equidistant locations.

Historically, CASP uses GDT_TS (total score), which averages GDT 
scores with distance thresholds 1, 2, 4 and 8Å. The GDT_HA (high accu-
racy) variant, introduced in the high accuracy category of CASP7, uses 
lower distance thresholds of 0.5, 1, 2 and 4 Å to provide a finer-grained 
estimate for high-quality models76. OpenStructure provides the GDT_
TS and GDT_HA scores, but other than LGA, which scales these scores 
in the range 0–100, OpenStructure scales them to 0–1. In the case of 
oligomers, model/reference positions are mapped on the basis of the 
QSMapR chain mapping algorithm. Results from OpenStructure align 
closely with those from LGA, as queried from https://predictioncenter.
org, with additional details provided in Supplementary Section 4.

R.m.s.d. OpenStructure employs the Kabsch algorithm32 to compute 
the r.m.s.d. on the basis of Cα positions for peptides and C3′ positions 
for nucleotides. In the case of oligomers, chain mapping is determined 
by QSMapR before r.m.s.d. computation. Given that r.m.s.d. computa-
tion is a well-established procedure, no benchmarking against refer-
ence implementations was conducted.

US-align. OpenStructure includes US-align (version 20231222, 
GitHub commit 444144c) natively. Alternatively, it is possible to use 
a locally-installed version of US-align by supplying the path to the 
US-align binary.
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CAD-score. The CAD-score is computed with the voronota-cadscore 
program77, which must be installed separately from OpenStructure.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The analyses presented in this manuscript are based on data obtained 
from the CASP15 experiment (available via the Protein Structure 
Prediction Center at https://predictioncenter.org/download_area/
CASP15/) and the RCSB PDB Search API (documented at https://
search.rcsb.org/#search-api). Data and code to reproduce the fig-
ures are available via Basel University at https://git.scicore.unibas.ch/
schwede/2025_scoring_paper_plots.

Code availability
The OpenStructure source code is available at https://git.scicore.uni-
bas.ch/schwede/openstructure under the LGPL version 3 license.
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Extended Data Fig. 1 | Greedy extension for QSMap/QSMapR. Both algorithms 
extend an initial chain mapping between a model and a reference (abbreviated 
as mdl/ref) using a greedy strategy. Extension for QSMapR produces complete 
mappings, while the one for QSMap may stop early for disconnected structures, 

though the full QSMap algorithm still enforces a complete mapping. For hetero-
oligomers, chain pairs that are considered for mapping extension (orange in 
workflow), must belong to the same group as defined by the algorithm described 
in “Sequence-based grouping of polymer chains in QSMap/QSMapR”.
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