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% Check for updates The blood-brain barrier (BBB) protects the brain and maintains neuronal

homeostasis. BBB properties can vary between brain regions to support
regional functions, yet how BBB heterogeneity occurs is poorly understood.
Here, we used single-cell and spatial transcriptomics to compare the mouse
median eminence, one of the circumventricular organs that has naturally
leaky blood vessels, with the cortex. We identified hundreds of molecular
differencesin endothelial cells (ECs) and perivascular cells, including
astrocytes, pericytes and fibroblasts. Using electron microscopy and an
aqueous-based tissue-clearing method, we revealed distinct anatomical
specializations and interaction patterns of ECs and perivascular cells
inthese regions. Finally, we identified candidate regionally enriched
EC-perivascular cell ligand-receptor pairs. Our results indicate that

both molecular specializations in ECs and unique EC-perivascular cell
interactions contribute to BBB functional heterogeneity. This platform can
be used to investigate BBB heterogeneity in other regions and may facilitate
the development of central nervous system region-specific therapeutics.

The BBB is a physiological barrier between the blood and brain.  naturally leaky despite being adjacent to regions with asealed BBB™.

Although BBB breakdown is involved in neurodegenerative diseases,
anintact BBBisamajor obstacle for central nervous system (CNS) drug
delivery to treat neurological disorders'. Understanding the molecular
mechanisms of BBB regulation will permit BBB manipulation for barrier
repair or CNS drug delivery to improve disease treatment.

Different brain regions show different levels of blood vessel
permeability. For example, the circumventricular organs (CVOs),
specialized regions that include the median eminence (ME), are

CVO neurons sense signaling compounds and secrete hormones into
circulationto facilitate rapid communication with the periphery and
regulate processes like feeding, cardiovascular function and thirst>*.
Moreover, BBB heterogeneity is observed in the hippocampus, basal
gangliaand cerebellum;increased BBB permeability was reportedin
human aging and the early onset of neurodegenerative diseases™*°.
Yet how these variations in BBB permeability occur is incompletely
understood.
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CNS capillary endothelial cells (cECs) constitute the BBB and have
features like specialized tight junctions and low rates of transcytosis
toregulate paracellular and transcellular trafficking, respectively”°.
To date, several studies have compared cECs from the CNS and periph-
eral tissue to identify molecular determinants of the BBB". Yet BBB
properties also require active induction and maintenance from the
local environment™. Specifically, perivascular pericytes and astrocyte
endfeet ensheath brain capillaries, forming the interface between
ECs and neurons. Indeed, mice with reduced numbers of pericytes
and astrocytes have a leaky BBB"°, However, how local cues and cell
interactions in the vascular microenvironment regulate regional brain
barrier properties is largely unknown.

The major technical challenge to determining the mechanism
underlying BBB heterogeneity is that ECs are rare in the brain, repre-
senting 4-6% of brain cells”. Some perivascular cells, including peri-
cytes, are even less abundant'®, Therefore, although typical unbiased
single-cell transcriptomic studies of the brain often include vascular
cells, they yield limited dataabout their transcriptomes owing to their
relative scarcity following dissociation protocols optimized for neu-
rons. To circumvent this problem, most studies of brain vascular and
perivascular cells have relied on cell sorting from the entire brain™°.
Thisapproachisnot optimal for capturing BBB heterogeneity because
itunderrepresents smaller brain regions, which may contain transcrip-
tionally diverse and specialized cells. Therefore, an investigation of
regional vascular and perivascular cell heterogeneity necessitated the
development of methods to enrich for brain ECs to discern differences
in BBB-associated cellsin small regions.

Here, we develop a platform to investigate how vascular and
perivascular cells affect BBB functional heterogeneity in small,
defined brain regions. We perform unbiased single-cell RNA
sequencing (scRNA-seq) of a CVO, the ME, and a size-matched region
(-0.05 x 0.2 x 1.2 mm?®) of the somatosensory cortex (cortex) in the
mouse brain. Comparison of these two small brain regions with dis-
tinct barrier properties revealed molecular differences in cECs and
perivascular astrocytes and fibroblasts. Using spatial transcriptomics,
we also identified molecular differences in pericytes. Correspondingly,
we observed morphological differences in these cells and their inter-
actions by electron microscopy and three-dimensional whole-brain
imaging following tissue clearing by U.Clear. Finally, bioinformatics
analysis identified regionally enriched ligand-receptor pairs, which
may mediate the unique EC-perivascular cell interactions in these
regions. Together, this work reveals both regional specializations of
cECs and their unique interactions with surrounding perivascular
cells, highlighting the importance of considering regional vascular
and perivascular cell diversity to understand BBB heterogeneity and
develop region-specific therapies.

Results
U.Clear reveals vascular differences in cortex and ME
We used U.Clear, an aqueous-based tissue-clearing protocol, to charac-
terize ME and cortex blood vessels (Fig. 1a—e and Extended Data Fig. 1).
U.Clear preserves endogenous fluorescence, permits the use of most anti-
bodiestostainintact mousetissues in their entirety and allows conven-
tional confocal microscopy imaging. Consistent with previous reports
intissue sections”, afterintravenous tracer injection, we observed tracer
leak into the ME, but tracer remained confined to vessels in adjacent
BBB-containing regions and the cortex in 3D (Fig. 1a, Extended Data
Fig.laand Supplementary Video1). As expected?*, the ME vasculature
lacks BBB markers glucose transporter 1(GLUT1, encoded by Sic2al)
and claudin-5 (CLDN5) and expresses plasmalemma vesicle-associated
protein (PLVAP) (Extended Data Fig.1b-d). Inaddition, wefound that the
key BBB regulator, MFSD2lysolipid transporter A(MFSD2A), was absent
inthe ME vasculature (Fig. 1b and Extended Data Fig. 1e).

Finally, with U.Clear, we observed distinct blood vessel morpholo-
giesinthese regions. ME capillaries have alarger diameter and higher

cEC density than cortex capillaries (Fig. 1c,d and Supplementary
Video 2). Three-dimensional modeling after sparse labeling with an
ECreporter (Cdh5-CreER; Ail4) revealed that ME capillary lumens are
formed by more than one EC, while cortex capillary lumens comprised
asingle EC (Fig. 1e and Supplementary Video 3).

Vascular and perivascular cell organization in cortex and ME
To understand how vascular and perivascular cells contribute to
functional differences in BBB permeability, we first used transmis-
sion electron microscopy (TEM) to examine their interactions at the
ultrastructural level. Cortex cECs are well known to interact closely
with pericytes and astrocyte endfeet (Fig. 1f and Extended Data Fig. 2a).
However, studies from several species indicated that ME perivascu-
lar cell interactions are quite different?. Indeed, we found that ME
cECs arefenestrated and share abasement membrane with pericytes.
Surprisingly, we did not see typical astrocyte endfeet surrounding ME
capillaries. Rather, fibroblasts were presentin alarge perivascular space
filled with extracellular matrix (Fig. 1g and Extended Data Fig. 2b,c).
Tanycytes, specialized glial cells in CVOs?, were also not readily dis-
tinguishable in the ME parenchyma, which abuts the ME perivascular
space on the dorsal side.

U.Clearrevealed that cortex cECs, pericytes and astrocyte endfeet
interact closely, and ME pericytes and fibroblasts (platelet-derived
growth factor receptor beta (PDGFRp)*) interact with cECs in the
perivascular space (Fig. 1h). However, AQP4 is not polarized at ME
astrocyte endfeet but rather is found throughout processes extend-
ing toward the ME vasculature (Extended Data Fig. 2d). These nota-
ble structural differences motivated us to identify their molecular
underpinnings.

Regionally enriched cell types in cortex and ME by scRNA-seq
To identify molecular differences in ECs and perivascular cells, we per-
formed inDrops scRNA-seq”*® of the ME and a size-matched region of
the cortex. We developed a tissue dissociation protocol to obtain effi-
cient, unbiased recovery of vascular cells. All blood vessel-associated
cell types are well represented in our dataset, with ECs comprising
~4% of cells, on par with estimates of their prevalence in the mouse
brain. After quality control filtering (Methods), 58,117 high-quality
cells were retained for further analysis; 35,879 from ME and 22,238
from the cortex. Unbiased cell clustering with Seurat identified 27
clusters corresponding to 11 cell types based on the expression of
cell-type-specific transcripts (Fig. 2, Extended Data Fig. 3, Supple-
mentary Figs.1-3 and Supplementary Table 1). Notably, astrocytes
from the ME and cortex clustered separately (Fig. 2 and Extended
DataFig.3d,e).

We firstinvestigated EC regional differences by performing sub-
clustering analysis, finding seven subtypes, including capillary ECs
(cECs1and 2), arteriolar ECs (aECs 1 and 2) and venous ECs (VECs)
(Fig. 3a, Extended Data Fig. 4 and Methods). ECs from the ME were
found in all subclusters because ECs from ME-adjacent regions with
BBB-containing blood vessels are inevitably included in our dis-
section. Despite this, an ME-specific EC subtype expressing Plvap
emerged, which we confirmed by immunostaining (Fig. 3a, Extended
Data Fig. 4a,b and Supplementary Table 1). Plvap-expressing ECs are
cECsbased on the expression of markers attributed to cECs?° (but not
arteriolar or venous markers) and the absence of smooth muscle cells
(which envelop arteries but not capillaries) (Extended Data Figs. 4a
and 5a-c). Thus, we will refer to these cells as ‘ME cECs’. Finally, asmall
cluster of ECs was derived predominantly from the ME (36 out of 37
cells) that expressed markers characteristic of tip cells?’, consistent
with the characterization of this region as angiogenic”. Thus, we cap-
tured rare EC subtypesinsmall brainregions and ECs from all segments
of the vascular tree, demonstrating that we can perform fine-grained
molecular analysis and effectively investigate EC and perivascular cell
heterogeneity with our method.
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Fig.1|Morphological and functional differences of the vasculature between
the ME and cortex. a, Tracer leakage assay with tracer sulfo-NHS-biotin
(magenta) and immunostaining for blood vessels (CD31, white) in cortex (upper
panel) and ME (lower panel) following U.Clear. Tracer in circulation was washed
out by perfusion before analysis. b, Co-immunostaining of CD31 (white) and
MFSD2A (green) in cortex and ME. ¢, High-magnification images of capillaries
(CD31) highlighting vessel morphology in cortex and ME (left) and quantification
of vessel diameter (right) (n = 5 mice, three images per region in each mouse,
with the same colors showing points from the same mice). Data presented as
mean =s.d., P=3.604601 x 107, nested two-tailed t-test. d, High-magnification
images of capillaries (CD31, white) and EC nuclei (ERG, red) in the cortex and ME
(left). Quantification shows EC density, number of endothelial cell nuclei (ERG")
over the length of capillaries (n = 5 mice, three images per regionin each mouse,
with the same colors showing points from the same mice). Data presented as
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mean £ s.d., P=4.569415 x 10", nested two-tailed ¢-test. ¢, Immunostaining and
3Dreconstruction of three single Tomato* ECs (red) within capillaries (CD31,
white) in cortex and ME. Single ECs were labeled by a single low-dose injection

of 40H-tamoxifen in adult Cdh5-CreER:Ail4 mice 1 week before analysis. f, TEM
images of a cortex capillary. Pseudocolors highlight different cells: cEC (E),
pericyte (P), astrocyte endfoot (A), lumen (L) and neuropil. Insets show cEC tight
junctions (white arrows), pericyte cells and astrocyte endfeet. g, TEM images of
an MEblood vessel. Pseudocolors (asin f) highlight different cells: cECs, pericyte,
fibroblast, lumen and neuropil. Insets show capillary fenestrations (white
arrowheads), cEC tight junctions (white arrows), extracellular matrix-filled
perivascular space (ECM), pericyte cells and fibroblast cells. h, Immunostaining
for CD31 (red), mural cell marker PDGFRp (white) and astrocyte endfoot marker
aquaporin 4 (AQP4, green) in cortex (left) and ME (right).
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Fig.2|ME and cortex cell types profiled by scRNA-seq. a, Uniform manifold approximation and projection (UMAP) plot of 58,238 single-cell transcriptomes (35,934
from ME and 22,304 from cortex). Cell-type clusters were annotated post hoc based on their transcriptional profiles (Methods). The number of clusters identified for

eachcelltypeisindicatedin the plotlegend.

ME and cortex cECs show transcriptional differences

We evaluated regional cEC differences, finding 445 differentially
expressed genes (Extended Data Fig. 4b and Supplementary Table 1).
We validated nine of these genes (summarized in Fig. 3b) by immu-
nostaining: endomucin (EMCN) and endothelial cell-specific molecule 1
(ESM1) are expressed in ME cECs but not cortex cECs (Fig. 3¢,d), whereas
insulin-like growth factor 1receptor (IGF1R), basigin (BSG) and SPARC/
osteonectin, Cwcv and Kazal-like domains proteoglycan 2 (SPOCK2)
(Fig. 3e,f and Extended Data Fig. 5d) are expressed in cortex cECs but
arenot detected in ME cECs (additional validationin Figs. 4fand 7d-f).
These six cortex cEC-enriched genes are expressed in BBB-containing
cECs throughout the brain, acting as common BBB-related genes.
However, we anticipate that other cortex cEC-enriched genes may be
expressed in aregion-specific manner.

Gene set enrichment analysis of cEC differentially expressed
genes corresponded to regional functional differences (Extended Data
Fig.5eand Supplementary Table1). Cortex cEC genes were enriched for
BBB-related pathways, including canonical Wnt signaling, in part owing
to the expression of Lef1. We confirmed alack of LEF1activity in the ME*®
(Extended Data Fig. 5f), consistent with reports of low Wnt activity in
CVOs*?*. ME cEC-enriched genes were related to pathways like ghrelin
signaling, in accordance with the role of ME in the hunger response®.
Additionally, we observed enrichment for vascular endothelial growth
factor (VEGF) signaling, in part owing to different expression patterns
of VEGF receptors in ME and cortex cECs (Vegfr2 vs VegfrI; Extended
DataFig.4b and Supplementary Table1).

Given that ME blood vessels share features with blood vessels
in peripheral organs, we next compared gene expression patterns
between ME or cortex cECs and cECs from peripheral tissues. We per-
formed gene set enrichment for cell type signatures and determined
the overlap of enriched genes in ME cECs, tip cells and cortex cECs
with published datasets profiling cECs throughout the body****>.,
Cortex cECsshowed little similarity to peripheral ECs, whereas ME cECs
showed overlap with ECs from the choroid plexus and the pancreas,
kidney, colon and small intestine (Extended Data Fig. 6a-g), organs
with fenestrated vessels. Moreover, a comparison of our data to ECs
from the mouse pituitary gland® and neurohypophysis*, which are
adjacent to the ME, reveals some overlap (Extended Data Fig. 6h,i).
Together, the ~400 molecular differences between cECsinthe ME and
cortex indicate that the differences in BBB permeability are at leastin
partaresult of the molecular specialization of cECs.

ME astrocyte subtypes and their association with capillaries
Astrocyte endfeet ensheath brain capillaries with BBB properties; how-
ever, we found that ME astrocytes lack typical endfoot features (Fig. 1g,h
and Extended Data Fig. 2), and astrocytes from each region clustered
separately by scRNA-seq (Figs. 2 and 4a and Extended Data Fig. 7a-c).
One gene, Slcolcl, previously known to be expressed in cortex astro-
cytesand cECs*, was absentin ME astrocytes and cECs (Figs. 3band 4b).
We validated this expression pattern with Slcolc1-CreER:Ail4 reporter
mice (Fig. 4c and Extended Data Fig. 7d). Pathway analysis showed
enrichmentfor ‘cell surfaceinteractions at the vascular wall’in cortex
astrocytes and ‘GPCR signaling’ and ‘peptide-receptor interactions’in
ME astrocytes (Extended Data Fig. 7e).

Subclustering analysis identified four astrocyte subtypes, one
fromthe cortex and three from the ME (Fig. 4a):‘ME1’,'ME 2’ and, con-
sistent with previous reportsin other CVOs, asubtype with high expres-
sion of Gfap predominantly (651 out of 678; 96%) from the ME (‘Gfap
high’). Harmony analysis** confirmed all subtypes are in a similar cell
state (Extended Data Fig. 7f). We next compared these astrocyte sub-
types to two published datasets that profiled multiple brain regions;
our cortex astrocytes express markers of protoplasmic astrocytes
from one of the datasets™ and Gfap-low frontal cortex astrocytes from
the other®®. Our ME astrocytes express markers of the diencephalon,
and Gfap-high astrocytes express markers similar to ‘dorsal midbrain
Myoc-expressing’ cells as reportedinref. 35 (Extended DataFig. 7g,h).
Inref.36, ME subtypes showed similarity to substantia nigraand globus
pallidus astrocytes (Extended DataFig. 7i,j). Thus, ME astrocytes most
likely represent novel subtypes.

We also found that ME and cortex astrocytes associate dif-
ferently with blood vessels. We used reporters driven by Sicla3
(Glast-CreER:Ai14) or Gfap (GFAP-EGFP¥) to visualize individual
astrocytes. Slcla3 encodes GLAST and is expressed in both regions
(Fig. 4b and Extended Data Fig. 7k). As expected, cortex GLAST"
astrocytes were stellate, with cell bodies situated away from the
vasculature and extending numerous processes around blood ves-
sels (Fig. 4d, Extended Data Fig. 71,m and Supplementary Video 4).
GLAST® ME astrocytes exhibited two morphologies (Fig. 4d,
Extended Data Fig. 7I,m and Supplementary Video 4): one subtype
was directly associated with ME blood vessels, nestled between
the vessels with few, short processes, and the other subtype had
cell bodies near the ventricle and long processes extending into
the ME region but not associating with blood vessels. The third ME
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based on their transcriptional profiles (see Extended Data Fig. 4a). The number of
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clusteridentified in a that were validated by immunostaining. Regionally
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¢, Co-immunostaining for ME cEC-enriched EMCN (red) with CD31 (white) in
cortexand ME. d, Co-immunostaining for ME cEC-enriched ESM1 (white), EMCN
(red) and cortex cEC-enriched protein GLUT1 (green) in cortex and ME.

e, Co-immunostaining for cortex cEC-enriched IGF1R (white), ME cEC-enriched
protein EMCN (red) and cortex cEC-enriched protein GLUT1(green) in cortex and
ME. f, Co-immunostaining for cortex cEC-enriched BSG (white), GLUT1 (green)
and EMCN (red) in cortex and ME.

subtype, Gfap-EGFP* astrocytes (‘Gfap high’) had cell bodies near the
ventricle and extended numerous processes toward the vasculature
(Fig. 4e, Extended Data Fig. 7n,0 and Supplementary Video 4). To
distinguish ME astrocyte subtypes 1and 2, Aldh1l1-EGFP reporter
micewere used. Aldhl1l1is expressed by ME 2 and Gfap-high astrocytes
(Fig.4b).Aldhl1l1-expressing ME astrocytes have cell bodies near the
ventricle and extend few processes toward the vasculature (Fig. 4f),
indicating that ME 2 astrocytes correspond to the astrocytes interact-
ing more distantly with the ME vasculature. Therefore, itis plausible
that the ME1subtype represents the astrocytes nestled between ME
blood vessels.

Thus, ME astrocytes are molecularly distinct from cortex astro-
cytes, lack endfeet typical of cortex astrocytes and show limited vascu-
lar association. In line with these differences, we found that most of the
top 100 differentially expressed genes between ME and cortex astro-
cytesare predicted to be secreted or associated with the cellmembrane

(64% and 70%, respectively; Supplementary Table 1), suggesting that
astrocyte molecular differences may berelated to EC-astrocyte signal-
ing (elaborated in Fig. 7).

Cortex pericyte-cECinteraction features by serial TEM

Giventhat cEC physicalinteraction with pericytesisimportant for the
BBB, we first examined cortex cEC-pericyte interactions using serial
TEM. We reconstructed pericytes and cECs in two capillaries from a
published mouse visual cortex dataset®, as we expect features of this
interaction to be present throughout the cortex. These reconstructions
(Fig.5a,b) show pericyte processes extending fromthe cellbody along
the length of blood vessels and wrapping around them (Supplemen-
tary Video 5). We quantified three features in four vessels (Fig. 5c and
Extended DataFig. 8a). First, welooked at close pericyte-cECinterac-
tions, in which the extracellular matrix was not visible between the
pericyte and EC, finding a close interaction in ~83% of sections on
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cortex. d, Fluorescent labeling of astrocytes in cortex and ME using Glast-
CreER:Ai14 mice after low-dose 40H-tamoxifen to achieve sparse cell labeling.
Top row shows immunostaining for Tomato* astrocytes (red) and blood vessels
(CD31, white). Yellow arrow indicates the location of the cell body, as determined
by DAPI staining. Bottom row displays 3D reconstructions of astrocytes (red).
Cellsmodeled in yellow are tanycytes. For acomparison of different astrocyte
populations with the same scales, see Extended Data Fig. 7b. e, Left: GFP (green)
inthe cortex and ME of GFAP-GFP mice. Right: co-staining for CD31 (white,
vessels). Inthe cortex, GFP only sparsely labeled peri-arterial astrocytes (yellow
arrows). Scale bar, 50 pm in the top row and 20 pm in the middle and lower rows.
f, Left: fluorescent labeling (green) of cortex astrocytes and ventricle-associated
ME 2 astrocytes using Aldh1l1-GFP mice. Right: co-staining for CD31 (white) to
label capillaries.

average. Next, we analyzed ‘peg and socket’ interactions, membrane
invaginations between ECs and pericytes. These interactions were rare
invessel 2 (13.8% of sections), appeared more frequently in vessels 1and
4 (46% and 50% of sections, respectively) and were prominentin vessel
3 (85% of sections). Finally, we quantified pericyte contact with EC tight
junctionclefts, finding this interaction more frequently in vessels1and
2(64%and 40% of sections) thanin vessel 3 (25% of sections). In vessel
4, tight junction clefts were not detectable in the ~6.5 pum analyzed
(Extended DataFig. 8b). Together, these findings detail pericyte-cEC
interactions along the length of a cortex capillary. Consistent with a
previous report®’, we found frequent pericyte interactions with EC
tight junctions, while ‘peg and socket’ interactions were concentrated
insmaller domains.

Distinct molecular and structural features of ME pericytes

Although brain pericytes have generally been viewed as homogenous
across brain regions in rodents and humans*®*, we identified several
regional differences. First, we observed striking morphological differ-
ences by immunostaining and sparse labeling in Pdgfrb-CreERT2:Ail4
reporter mice (Fig. 5d,e, Extended Data Fig. 8c,d and Supplementary
Video 6). Cortex capillary-associated pericytes showed a characteristic
‘bump on alog’ morphology (a prominent cell body with long, thin
processes extending along vessels), whereas ME pericytes had amore
irregular shape (aless defined cellbody found between blood vessels
with processes of varying lengths). Additionally, although we observed
cortex pericytes frequently interacting along a single vessel, some ME
pericyte processes contacted several blood vessels. This interaction
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reconstruction of EC and pericyte interactions in two cortex blood vessels. ECs
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increment. Whiskers span the smallest and largest values, and the boxplot shows
the median and first and third quantiles. d, Co-immunostaining for pan-pericyte
marker PDGFRp (red) and pan-EC marker ICAM2 (white) in cortex and ME.

e, Immunostaining and 3D reconstruction of single Tomato* pericytes (red) in touch

with capillaries (CD31, white) in cortex and ME (two examples). Single pericytes
labeled by single low-dose injection of 4OH-tamoxifen in adult Pdgfrb-CreER:Ail4
micelweek before analysis. f, Left: co-immunostaining for EC nuclei marker ERG
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(white) and pericytes labeled using Pdgfrb-CreER:Ail4; Pdgfra-GFP mice. Magenta
arrowheads point at GFP"Tomato" pericytes; cyan arrowheads point at ERG* EC
nuclei. Right: quantification of pericyte (GFP"Tomato") to EC (ERG") ratio using
Pdgfra-H2B-GFP; Pdgfrb-CreER:Ail4 mice (n = 5mice, for quantification three
images per region and mouse were taken, same colors refer to same mice, data
presented as mean +s.d., P=4.793057 x 10°¢, nested two-tailed t-test).

g, Co-immunostaining for pericyte marker desmin (DES, yellow), GFP (to visualize
Pdgfra-H2B-EGFPinfibroblasts, green), EC marker CD31 (red) and nuclear marker
Syto83 (blue) for GeoMX area of interest morphologicalidentification. h, Volcano plot
of differentially expressed genes between ME and cortex pericyte-enriched region
of interest from GeoMX whole transcriptome profiling (also shown in Extended Data
Fig. 8f). Differential expression was determined by linear mixed model analysis and
significance assessed by FDR. Red points show log,(fold change) > |1|and FDR < 0.05
between cortex and ME pericyte-enriched regions of interest.
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Fig. 6 | ME contains capillary-associated fibroblasts. a, TEM images of
Pdgfra-CreERHRP reporter after DAB reaction in the ME. HRP is detected in the
endoplasmic reticulum (white arrowheads) of Pdgfra-expressing fibroblast

cells. b, Fluorescent labeling of fibroblasts in the cortex and ME using Pdgfra-
CreER:Ail4 mice after low-dose 40H-tamoxifen to achieve sparse cell labeling.
Left: Tomato® fibroblasts (red). Right column: merged with immunostaining for
CD31 (white). Yellow arrow indicates artery. ¢, Co-immunostaining for fibroblasts
with DECORIN (white) and collagen1(green) in cortex and ME.

Cortex

is reminiscent of pericyte-EC interactions in peripheral organs like
the pancreas®.

Several studies have shown that a lower ratio of pericytes to ECs
is associated with higher brain blood vessel permeability’®***, To
quantify pericytes and ECs, we performed pericyte-specific labeling.
Although Pdgfrb labels pericytes, it can also label fibroblasts, which
surround ME cECs. Fibroblasts also express Pdgfra. Thus, we performed
immunostaining for EC nuclei (Ets transcription factor (ERG)) in Pdgfra-
H2B-GFP; Pdgfrb-CreERT2:Ail4 tdTomato reporter mice, quantify-
ing tdTomato*GFP™ pericytes and ERG" ECs in each region. We found
approximately half as many pericytes per ECinthe ME thanin the cortex
(Fig. 5f), correlating with increased ME blood vessel permeability.

We next investigated molecular differences between ME and
cortex pericytes using GeoMX whole transcriptome spatial profiling.
As shown in Fig. 1a, leaky ME blood vessels are adjacent to non-leaky,
BBB-containing blood vessels. Therefore, to gain higher resolution, we
selected a spatial transcriptomic approach to unambiguously profile

pericytes only from the ME region. As this method does not isolate
single cells, we used Pdgfra-H2B-EGFP reporter mice and antibodies
to distinguish fibroblasts (EGFP*), pericytes (DES*) and ECs (CD31")
(Fig. 5g). We selected pericyte-enriched areas around blood vessels
in both regions and ME fibroblast-enriched areas as a control. We
focused our analysis on genes expressed in pericytes (Methods and
Supplementary Table 1). We confirmed pericyte enrichment based
on expression of established markers (Extended Data Fig. 8e). We
identified 137 differentially expressed genes between cortex and ME
pericyte-enriched regions and 36 gene sets with differential enrichment
by pathway analysis (Fig. 5Sh, Extended Data Fig. 8f and Supplementary
Table 1). By immunostaining, we validated expression of one region-
ally enriched gene expressed in ME pericyte-enriched regions, Sic12a7
(encoding KCC4) (Extended Data Fig. 8g). Finally, we compared genes
expressed in ME pericyte-enriched samples to human lung®, gut*¢ and
kidney* mural cells and the recently described T- and M-pericytes in
the human brain*’. In total, 20 out of 65 ME differentially expressed
genes (30.8%) were found in mural cells from another peripheral tis-
sue compared to 13 out of 77 (16.9%) of cortex differentially expressed
genes (Extended DataFig. 8h). Differentially expressed genes between
ME and cortex pericyte-enriched regions and pericyte marker genes
from our scRNA-seq dataset did not show enrichment for markers of
human T-pericytes and M-pericytes (Extended Data Fig. 8i,j), and ME
pericyte-enriched and fibroblast-enriched regions showed gene expres-
siondifferences (Extended Data Fig. 9a,b and Supplementary Table1).

In short, pericytes show different morphologies and capillary
coverage in the ME and cortex. Although brain pericytes show tran-
scriptomic differences from pericytes in the periphery', our analysis
revealed thatbrain pericytes may also show transcriptomic differences
across regions. Together, these findings suggest that like astrocytes,
pericytes probably contribute to BBB functional differences between
the cortex and ME through their interactions with cECs (elaborated
inFig.7).

Capillary-associated fibroblasts are present in the ME
Perivascular fibroblasts were observed previously in the cortex associ-
ated withlarge blood vessels'”. Surprisingly, we found that only the ME
contains numerous capillary-associated fibroblasts (Figs. 1g and 5f).
Tobetter characterize ME fibroblasts with TEM, we used a horseradish
peroxidase (HRP) reporter driven by Pdgfra-CreERT2, finding fibro-
blasts in the ME extracellular space surrounding capillaries (Fig. 6a).
We also used Pdgfra-CreERT2:Ail4 reporter mice to model fibroblast
morphology with U.Clear. We found cortex fibroblasts along large
vessels whereas ME fibroblasts were near capillaries, in accordance
with our TEM data (Fig. 6b and Extended Data Fig. 9c,d).

Subclustering analysis of fibroblasts revealed three ME fibroblast
subtypes (fibroblasts 1-3) and one subtype from the ME and cortex
(fibroblast 4) (Extended Data Fig. 9e-h). Comparison of these sub-
types to capillary-associated choroid plexus fibroblasts* showed that
ME-enriched subtypes exhibit similarity to third and fourth ventricle
choroid plexus fibroblasts, whereas fibroblasts from subtype 4 are
most similar to third ventricle meningeal fibroblasts (Extended Data
Fig. 9i). Although all subtypes expressed Pdgfra, Dcn and Collal, we
found that they were present only around ME capillaries (Fig. 6¢c and
Extended Data Fig. 9j). Thus, the abundant fibroblasts near ME capil-
laries suggest that fibroblasts also have arole inregulating ME vascular
permeability, perhaps by altering the composition of the extracellular
matrix. Perivascular fibroblasts have also been observed near CNS cap-
illaries in other CVOs and brain tumors**’, indicating that fibroblasts
may generally be associated with leaky CNS blood vessels in normal
physiology and disease.

Bioinformatic method finds candidate ligand-receptor pairs
The proximity and direct physical interactions between cECs and
perivascular cells suggested the feasibility of ligand-receptor
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Fig.7 | Differential intercellular signaling capacity identified in the ME and
cortex. a, Alluvial plot showing the number of significant (P < 0.05) co-expressed
EC ligands and perivascular receptors. b, Co-immunostaining for BSG (white)
and its receptor integrin a6 (ITGA6, red) in cortex and ME, validating elevated
expression of ligand (BSG) and receptor (ITGA6) in cortex. ¢, Co-immunostaining
for CD31 (white), AQP4 (green) and ITGA6 (red) in cortex. d, Co-immunostaining
for VEGFR2 (red), EMCN (cyan, ME ECs) and GLUT1 (green, cortex ECs) in cortex
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and ME. EMCN and GLUT1were used to label ECs instead of CD31 owing to
antibody compatibility with VEGFR2. e, Co-immunostaining for VEGF (white),
EMCN (cyan, ME ECs) and (GLUT1, green, cortex ECs) in cortex and ME. EMCN and
GLUT1were used to label ECs instead of CD31 owing to antibody compatibility
with VEGF. f, Immunostaining illustrating complementary spatial distribution of
ligand VEGF (white) and receptor VEGFR2 (red) in ME. Non-ME vessels are labeled
ingreen (GLUTI).

interactions between these cellsasamechanismto regulate local blood
vessel permeability. Indeed, arecent study showed suchaninteraction
between pericytes and cECs at the BBB. Specifically, pericyte-secreted
vitronectininteracts withreceptorintegrinalpha5, expressedin neigh-
boring cECs, to actively suppress transcytosis in cECs and thus maintain

BBBintegrity*". Similarly, recent studies indicate that the CVO environ-
ment contains cues to actively regulate leakiness***. To unbiasedly
identify ligand-receptor pairs that may support intercellular signal-
ing to regulate blood vessel permeability, we used CellChat>” and a
co-expression method®. For the co-expression method, we sought
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to identify new interactions, supplementing a published database
of experimentally validated interactions with predicted interactions
of differentially expressed genes (Methods). By both methods, we
identified known interactions important for the BBB, like PDGF[3—
PDGFRp between cECs and pericytes. Using CellChat, we found 25
and 33 enriched ligand-receptor pairs between cECs and pericytesin
the cortexand ME, respectively, and 35 and 20 enriched ligand-recep-
tor pairs between cECs and astrocytes in the cortex and ME, respec-
tively (Extended DataFig.10a,b and Supplementary Table1). Using the
co-expression method, we found 37 and 62 enriched ligand-receptor
pairsbetween cECs and pericytesin the cortexand ME, respectively, and
21and17 enriched ligand-receptor pairs between ECs and astrocytesin
the cortexand ME (ME1astrocytes), respectively (Fig. 7a, Extended Data
Fig.10c,d and Supplementary Table1). We confirmed the co-expression
of one candidate cortex EC-astrocyte ligand-receptor pair: Bsgand
Itga6. Immunostaining shows BSG expression in cortex cECs but not
inME cECs, and robust ITGA6 expressionin cortex astrocyte endfeet—
in addition to ECs—but decreased perivascular expression in the ME
(Fig. 7b,c). Finally, extending our analysis to other ME cell types, we
confirmed the expression of VEGFR2 (encoded by Kdr) in ME cECs and
found co-expression of its ligand (VEGFA) in ME-specific tanycyte cells
(Fig. 7d-f), in line with both methods.

This in silico analysis evaluated ligand-receptor expression pat-
terns to identify candidate pericyte-derived and astrocyte-derived
factorsthatmayact upon ECs to maintain BBB integrity. Moreover, the
co-expression method provides amolecular handle for future strategic
investigation of EC-perivascular cellinteractions. Future experimen-
tal characterization of this intercellular signaling, together with the
fast-growing identification of additional signaling pathways in cECs,
will provide a comprehensive understanding of local BBB regulation
and heterogeneity.

Discussion

We combined scRNA-seq, spatial transcriptomic profiling, TEM and
serial EM reconstruction, and U.Clear imaging to compare the vascular
microenvironment of two brain regions showing BBB heterogeneity.
Inadditionto molecular and morphological specializations of ECs and
perivascular cells, we found distinct cell organization and identified
putative ligand-receptor pairs that may mediate cell-cell signaling
in the ME and cortex. These findings support the idea that intracel-
lular signaling within ECs and intercellular signaling between ECs and
perivascular cells control brain cEC permeability. This is in line with
previous work showing that molecules like MFSD2A regulate perme-
ability within ECs®***, and that intercellular signaling with astrocytes
through the Wnt pathway® and pericytes through vitronectin-integrin
regulate BBB formation®. This work serves as a foundation, reveal-
ing how alterations in cell interactions may control local blood vessel
permeability and demonstrating the importance of performing both
molecular and morphological characterizations to understand BBB
properties.

The CVOs are key sites for body-brain communication. The leaky
nature of CVO blood vessels permits rapid bidirectional communica-
tionbetween the circulation and the brain. Neurons that sense signals
through the CVOs are being found to performincreasingly important
and diverse functions related to body physiology regulation in health
and disease. Multiple CVOs communicate with the hypothalamus®*/,
acentral regulator of temperature and sickness behavior during infec-
tion***, to coordinate humoral responses to environmental stimuli by
affecting feeding behaviors, cardiovascular functionand body temper-
ature. Recent work also shows that CVOs may serve asanimmune entry
sitein disease models®. This CVO vascular atlas can provide informa-
tionto help understand how body-brain communicationis achievedin
this area to performthese essential functions. It hasbeen also observed
that blood vessels adjacent to the ME show increased leakiness during
the physiological response to hunger®®'. Our molecular profiling of ME

perivascular cells may facilitate future investigation of such plasticity
by uncovering molecules and cell types involved in regulating CVO
permeability.

Our transcriptomic analyses also lend further supporttotheidea
thatincreased vascular permeability in the CNSis actively regulated
and maintained by extrinsic factors in the local environment. Blood
vessels in other CVOs, the choroid plexus and the choroid capillaries
of the eye also show increased permeability>®*. Recent studies indicate
that the permeability of these specialized vessels is not caused by a
lack of barrier induction but is actively induced by the local micro-
environment®, In choroid capillaries, VEGF secreted by the retinal
pigment epithelium®* and inhibition of Wnt signaling regulate blood
vessel permeability?. In the zebrafish pituitary, blood vessel perme-
ability isinduced by Cyp26b1, Tgfb and VEGF derived from pituicytes®.
In the mouse area postrema, Wifl, which blocks Wnt activation, is
expressed”. Although in all cases, permeability is locally induced in
the perivascular environment, the cell source of these signals differs.
By systematically analyzing ME cell-cell interactions, we found that
VEGF is expressed in ME astrocytes and tanycytes and that ME cECs
have enriched expression of VEGFR2. Additionally, in accordance
withsuppressed Wnt signaling in ME cECs (Extended Data Fig. 5f). The
Wnt inhibitor Sfrp5°° was expressed in ME astrocytes (Extended Data
Fig.7g). Moreover, the presence of ME capillary-associated fibroblasts,
whicharefoundinotherleaky CNSregions, suggests that the extracel-
lular matrix may also have a role in promoting vascular permeability
intheseregions.

Finally, this work revealed how performing scRNA-seq on small
regions can uncover information about cell heterogeneity and the
specialization of rare cell types within the brain. This platform can be
appliedinother brainregionsto clarify how regional differences in cell
organization and signaling affect BBB properties. Most CNS diseases
affect specific brain regions. Therefore, alterations in cell signaling
in disease could be driven by differences in the local composition or
interactions of perivascular cells. Identifying the factors underlying
BBB heterogeneity is an important step toward developing targeted
therapies to make disease treatment as region-specific as possible.
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Methods
Mice
All mouse experiments followed institutional and US National Insti-
tutes of Healthguidelines and were approved by the Harvard University
Institutional Animal Care and Use Commiittee. Mice were maintained
onal2hlight:12 hdark cycle at 22 °C and 55% humidity. Mice used in all
experiments were 8-14 weeks old; both male and female mice were used
unless otherwiseindicated. The following mouse strains were used: wild
type (C57BL/6N, Charles River Laboratories, strain 027), Ail4 (JAX, strain
007914)%, Aldh1lI-EGFP (JAX, strain 026033)°, GFAP-GFP (JAX, strain
003257)%, Glast-CreER (JAX, strain 012586)°, TCF/LEF-GFP (JAX, strain
032577), Cdh5-CreERT27, SlcolcI-CreERT2%, Pdgfrb-CreERT2 (JAX,
strain 029684)”", Pdgfra-H2B-EGFP (JAX, strain 007669)"?, ROSA26"S- £~ HRP
(JAX, strain 034746) and Mfsd2a*° (MMRRC, strain 032467-UCD)".
Heterozygous Glast-CreER, Pdgfrb-CreERT2, SlcolcI-CreERT2 or
Cdh5-CreERT2 mice were crossed with homozygous Ail4 mice to gen-
erate CreER-dependentreporter mice. Cell-type labeling wasinduced
by five subsequent intraperitoneal injections of tamoxifen (1 mg per
mouse). Brains were collected 2 weeks later. For sparse cell labeling, a
single dose of 40OH-tamoxifen (0.4 mg per mouse) was injected 1 week
before analysis. Given that the GLAST reporter can occasionally label
tanycytes, whichexpress Slcla3at alower level than astrocytes, we dis-
tinguished tanycytes from ME astrocytes by morphology, expression of
vimentin and cellbody location relative to the third ventricle (Fig. 4d,
Extended Data Fig. 7k,n,0 and Supplementary Video 4).

U.Clear tissue clearing

U.Clear tissue clearing is a newly optimized protocol based on the
Adipo-Clear framework™”. In brief, mice were deeply anesthetized
with ketamine and xylazine (100 mg kg™) and subsequently intracar-
dially perfused with cold 4% paraformaldehyde (PFA) in PBS. Brains
were dissected and fixed overnight in 4% PFA at 4 °C. For claudin-5
staining, brains were perfused with cold PBS and drop-fixed in cold
100% methanol overnight before rehydrating brains in a series of
70% methanol-PBS, 30% methanol-PBS and PBS. After PBS wash-
ing, brains were dissected into a 5 x 5 x 5 mm cube of somatosensory
cortexand asimilarly sized cube of hypothalamus containing the ME.
The resulting samples were delipidized by four washes (1h,2 h, 4 h,
overnight) with SBiP buffer (200 pM Na,HPO,, 0.08% sodium dode-
cyl sulfate, 16% 2-methyl-2-butanol, 8% 2-propanol in H,0 (pH 7.4)) at
room temperature (-22 °C). Next, samples were transferred into Bln
buffer (0.1% Triton X-100, 2% glycine, 0.01% 10 N sodium hydroxide,
0.008% sodium azide in H,0) for blocking under nutation at room
temperature. On the next day, samples in B1n buffer were incubated
at 37 °Cfor 1h. Forimmunolabeling, samples were incubated at 37 °C
for 2 days in primary antibodies diluted in PTxwH buffer (0.1% Triton
X-100, 0.05% Tween-20, 0.002% heparin (w/v), 0.02% sodium azide
in PBS) with gentle rocking. Samples were then washed four times
with PTxwH (1 h, 2 h, 4 h, overnight). Samples were then incubated at
37 °Cfor 2 daysin secondary antibodies diluted in PTxwH with gentle
rocking and subsequently washed four timeswithPTxwH (1 h,2 h,4 h,
overnight).For further delipidization, samples wereimmersed in SBiP
buffer four times (1 h,2 h, 4 h, overnight). Next, samples were washed
twicein 0.5 mMNa,HPO, (1 h,2 h), twice in PB buffer (16 mM Na,HPO,,
4 mM NaH,PO, in H,0) (1 h, 2 h) and finally twice in PTS solution (75%
PB buffer, 25% 2,2’-thiodiethanol) (1 h, overnight), then equilibrated
with histodenz gradient buffer with refractive index adjusted to 1.53
using thiodiethanol. Samples were stored at —20 °C until acquisition.
To validate that BBB organization and morphology were intact fol-
lowing U.Clear, we performed a comparison to thick tissue sections
(Extended DataFig. If).

Immunohistochemistry
For anti-KCC4 (Slc12a7) and anti-CD31 co-immunostaining, wild-type
brain tissue was perfused and fixed in 4% PFA and PBS as described

above. The tissue was washed three times in PBS, equilibrated in 30%
sucrose and PBS at4 °C and flash-frozen in NEG-50 for cryosectioning.
Then, 25 um coronal sections were blocked for1 h at room temperature
in PBS plus 10% normal donkey serum and 0.1% Triton X-100, then
incubated in blocking buffer with primary antibodies overnight at
4°C.Samples were washed three times in PBS with 0.1% Triton X-100,
thenincubated in blocking buffer with secondary antibodies for1hat
roomtemperature. Samples were washed three timesin PBS with 0.1%
Triton X-100 and stained with DAPI.

Antibodies
Primary and secondary antibodies used in this study are detailed in
Supplementary Table 2.

Apolyclonalantibody to the carboxyl terminus of mouse Mfsd2a
was generated by New England Peptide using Institutional Animal Care
and Use Committee-approved protocols. Rabbits wereimmunized with
aKLH-conjugated peptide (Ac-CSDTDSTELASIL-OH). Antiserum was
purified by peptide affinity column. Antibody specificity was validated
in Mfsd2a*° mice (Extended DataFig. 1e).

Light microscopy

Cleared and stained brains and tissue sections were analyzed at high
resolution with aLeica TCS SP8 confocal microscope. U.Clear Z-stacks
were processed and 3D-reconstructed with Imaris software (v.9.3.1;
Oxford Instruments). Immunostained sections were processed with
FIJI (v.2.1.0). Photoshop CC and Illustrator CC (Adobe) were used for
image formatting.

Image analysis

Capillary diameter, EC density and EC pericyte coverage were quanti-
fied fromthree ~-50 pm-thick 40x confocal stacks of capillariesin cortex
and ME per mouse. To measure capillary thickness, the area covered by
three different capillaries ineachimage, labeled by CD31immunostain-
ing, was measured and divided by their respective vessel length. The
average of these three diameters was used as the average capillary
length for an image, represented as a single data point on a graph.
To measure EC nuclei per vessel length, ERG* EC nuclei were counted
and total capillary length was measured. All analysis was performed
blinded. Each data point in the graph represents an individual image.
To measure pericyte coverage, EC nuclei were labeled with ERG anti-
body. Pericytes (GFP~, Tomato®) were identified using Pdgfra-H2B-GF
P; Pdgfrb-CreERT2:Ail4 mice. All analysis was performed blinded. Each
datapointinthegraphrepresentsanindividualimage.Inall analyses,
data points from the same mice are depicted in the same color, values
are shown as mean * s.d. and significance was determined using a
nested two-tailed t-testin GraphPad Prism (v.8). Data distribution was
assumed to be normal, but this was not formally tested.

Tracer permeability assays

EZ-Link sulfo-NHS-LC-biotintracer was injected retro-orbitally under
short isoflurane anesthesia (0.2 mg g bodyweight). Brains were dis-
sected 30 min afterinjection after perfusion with 4% PFA as described
above.

scRNA-seq and analysis

Sample isolation and dissociation. For each experimentalreplicate,
cortex and ME were isolated from five 9-week-old male mice, pooled
and processed together. Male mice were used to limit variationsin the
ME by the estrous cycle, as the ME is responsive to reproductive hor-
mones’. Mice werekilled at 08:00 h to avoid circadian cycle variation.
Dissociationinto single cells was performed using a protocol adapted
from a previous publication’. Brains were dissected in ice-cold disso-
ciation medium (DM; 1x Hank's balanced salt solution without calcium
and magnesium, 0.01 MHEPES, 9 mM MgCl,, 35 mM b-glucose pH 7.35).
First, the ME was removed then the brain was cut into 1 um thick
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sections by sectioning matrix (Ted Pella). Cortex samples were obtained
with al mm biopsy puncher (Harris Uni-Core). Samples were dissoci-
ated using the papain dissociation system (Worthington) according
to the manufacturer’s instructions with the following modifications.
Dissociation was performed at 37 °C for 45 min with gentle agitationin
DM plus papain (20 U mI™) and DNase (200 U mI™). After centrifugation
with ovomucoid inhibitor in DM, cells were washed in DM containing
0.04% BSA and resuspended in DM with 0.04% BSA and 15% Optiprep
(Sigma-Aldrich) for inDrops cell encapsulation, performed by the
Single Cell Core at Harvard Medical School.

inDrops library preparation, sequencing and data processing.
Tworeplicates of approximately 3,000 cells were collected fromeach
experimental sample. inDrops was performed as described previ-
ously** using v3 barcodes, generating 22 and 30 libraries from cortex
and ME samples, respectively. Libraries were pooled and sequencedin
21runs withthe NextSeq 500 using the high output flow cell (Illumina),
pooling 3,000 to 12,000 cells per sequencing run. Transcripts were
processed with bcbio-nextgen inDrops3 data pipeline (v.1.2.8) using
the default parameters.

Quality control and filtering. Analysis was performed withR” (v.4.0.2)
in RStudio’® using the Seurat analysis package (v.4.0.2)”°"%., In each
library, empty droplets were predicted using the EmptyDrops func-
tion® and doublets were predicted with scrublet®. The levels of ambi-
entRNA in ME and cortex were estimated separately using SoupX®.In
brief, before filtering, all samples from each region were merged into
asingle dataset. Each dataset was clustered using the default Seurat
analysis parameters to assign tentative cluster identities. Using the
assumption that the background profile is the same as the average
expression across all cells, we performed a custom estimation of the
soup profile using the ‘setSoupProfile’command. The corrected count
matrices were then merged to generate the combined dataset.

To select for high-quality cells, we filtered based on number of
genes expressed (atleast 500), number of reads per cell (at least 750),
percentage of mitochondrial genes (<15%) and, by novelty index, the
ratio of the number of genes detected to the number of reads for each
cell (=0.4). Clustering analysis was performed using the default Seurat
analysis pipeline. In brief, the dataset was log-normalized and scaled
t010,000 transcripts per cell. Highly variable genes were determined
with the Vst selection method using the default 2,000 features. All
genes were then scaled across all cells so the mean expression of each
geneis 0 and the variance of each geneis 1. Next, principal component
analysis was performed using the calculated variable features.

The top 30 principal components were used in downstream steps
based on the output of the EIbowPlot function. Clustering was per-
formed at resolution 0.5 to identify broad cell types, resulting in 35
clusters. After clustering, cells predicted tobe empty droplets (Empty-
Drops output false discovery rate (FDR) > 0.01) and doublets (scrublet
output score of >0.25) were removed from the dataset. Additionally,
one cluster in which more than 70% of the cells had a doublet score of
>0.25 and showed expression of marker genes of both neurons and
oligodendrocytes was removed from the dataset. The dataset was then
re-analyzed as above without these cells, resulting in 104,091 cells and
33 clusters. After subclustering analyses (described below), the dataset
was re-analyzed to generate the final dataset of 58,117 cellsin 30 clusters
withanaverage number of unique molecularidentifiers per cell of 4,283
and anaverage number of genes per cell of 2,197. We defined clusters as
regionally enriched by the scProportionTest algorithm® (v.0.0.0.9000).

Cell type assignment and subclustering analyses. Marker genes
for each cluster were determined with the FindAllIMarkers function
using the default Wilcoxon test and the following parameters: only.
pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25. To assign cell types,
known marker genes were used (Supplementary Table 3).

Classification of cell subtypes. For iterative subclustering, analysis
was performed as for the complete dataset described above unless
indicated. Clusters that expressed marker genes characteristic of
multiple cell types or that were isolated from only one sample were
removed (described below), and the data were reclustered until all
subtype clusters showed expression of known marker genes for the
given cell type. ECs, astrocytes, neurons, oligodendrocytes, mural
cells, fibroblasts and pars tuberalis cells were subclustered individu-
ally; tanycytes and ependymal cells, and microglia, PVMs and T cells
were subclustered together.

ECs. ECs were subclustered four times to remove contamination from
SMCsand pericytes and to remove clusters withribosomal marker genes.
This analysis resulted in seven subclusters that correspond to cECs,
VECs, aECs, Plvap' ECs and tip cells (Fig. 3 and Extended Data Fig.4).aECs
express the marker genes Bmxand Vegfc; vECs express marker genes Lcn2
and Nr2f2; and cECs lacked expression of arteriolar and venous marker
genes and expressed marker genes Mfsd2a and Tfrc. cECs1and 2 differ
in their expression of immediate early genes, probably because of EC
activity-induced transcription’ or activation following tissue dissocia-
tion®. aECs1expressarteriolar markers atalower level thanaECs 2, sug-
gesting that they represent ECs at the capillary-to-arteriolar transition.

Mural cells. To identify mural cell subtypes, mural cells were subclus-
tered three times (firstat resolution 0.5, then at resolution 2) toremove
clusters with EC marker genes, resulting in four clusters that include
two pericyte subclusters and two smooth muscle cell clusters. One
cluster was removed that expressed both EC and pericyte marker genes,
considered doublets. The remaining clusters express pericyte or SMC
marker genes, with or without activation markers.

Astrocytes. Subclustering analysis was performed first at resolution
2, then at resolution 0.4 to remove clusters expressing neuron and
oligodendrocyte marker genes and ribosomal marker genes, resulting
in four subclusters.

Fibroblasts. Initial subclustering analysis of fibroblasts (resolution 2,20
principal components) revealed 12 subclusters. Subclusters express-
ing EC marker genes were removed and the dataset was reclustered
(resolution 0.5,20 principal components), resulting in four subclusters.
The smallest subcluster contained cells from only one experimental
replicate. These cells were removed and the data were reclustered
(resolution 0.5, 20 principal components) to reveal four subclusters.

Microglia, PVMsand T cells. Subclustering analysis removed subclusters
with VEC, oligodendrocyte and astrocyte marker genes, resulting in
eightimmune cell subtypes® ¢,

Tanycytes and ependymal cells. Subclustering of tanycyte and ependy-
mal cells (20 principal components, resolution 0.5) removed clusters
witholigodendrocyte or PVM marker genes or ribosomal marker genes,
revealing eight ME-derived subclusters, with subtypes consistent with
previous reports®’.

Oligodendrocytes.Subclustering analysis of oligodendrocytes removed
astrocyte and immune cell contamination, revealing 12 subclusters,
consistent with previous reports®*”°.

Neurons. Subclustering analysis removed astrocyte and oligodendro-
cyte contamination and low-quality clusters with Malat1 or ribosomal
genes as marker genes, resulting in 23 subclusters; 10 from the cortex
and 13 from the ME.

Pars tuberalis. Subclustering analysis removed clusters with neuron,
astrocyte and keratinocyte contamination, resulting in four subclusters.
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Pathway enrichment analysis. Pathway enrichment analysis was per-
formed as previously described”. In brief, curated gene sets (C2) and
cell type signature gene sets (C8) were downloaded from the MSigdB
(v.7.5.1)°*%; mouse gene IDs were converted to human homologs using
SynGO®*. Differentially expressed genes were calculated in Seurat using
the two-sided Wilcoxon test as indicated. Pathway enrichment was
determined using bc3net” (v.1.0.4) with default parameters and plot-
ted with the pheatmap function (v.1.0.12) as -log of the adjusted FDR.

Differential gene expression analysis and comparison to pituitary
gland, neurohypophysis and peripheral ECs. Differentially expressed
genesbetween cortex and ME cECs were calculated with the FindMark-
ers function (Wilcoxon test, min.pct > 0.25, avg_log,FC > 0.6). The inter-
section of the top 100 enriched genes in ME cECs, the top 100 marker
genes in vascular ECs from the mouse neurohypophysis* and the top
100 genes in pituitary ECs* was displayed using ggvenn (v.0.1.9). For
ECsfrom peripheraltissues, the top 50 enriched genes were compared
tothetop 50 marker genes from ME cECs, tip cells and cortex-derived
cECs1subtypes. Barplotsshow the per cent overlap of the top 50 genes.
Finally, the overlap betweenall enriched genesinkidney cECs, pancreas
cECs* and choroid plexus ECs*, and ME cECs-enriched differentially
expressed genes was displayed using ggvenn (v.0.1.10).

Integration analysis of astrocytes and comparison to astrocyte sub-
types. Integration analysis was performed with Harmony** in Seurat
using the RunHarmony function. Genes differentially enriched in astro-
cyte subtypesin a previous publication® were visualized with VInPlot
and FeaturePlot featuresin Seurat. For comparison to aggregate meta-
cellastrocyte subtypes from another publication®, astrocyte subtype
aggregated expression was calculated with the AggregateExpression
functioninSeurat. Differentially expressed genesinastrocyte subtypes
from this study were determined with the FindAlIMarkers function
(Wilcoxon test, min.pct > 0.25, avg_log,FC > 0.6), and samples from
both studies were clustered based on the expression of these genes with
pheatmap. Expression of the top 15 genes in the most similar astrocyte
subtypesinaprevious publication® was also visualized with pheatmap.

GeoMX spatial whole transcriptomic profiling

Tissue preparation. Pdgfra-H2B-EGFP mice were anesthetized with
ketamine and xylazine, then transcardially perfused with 15 ml of
ice-cold PBS followed by 50 ml of ice-cold fixative solution (4% PFA in
PBS). Brains were extracted and post-fixed for 3 x 20 min, then 4 h in
fixative solution on ice. Brains were further fixed in fixative solution
at4 °Covernight, then for afinal 4 h the next day. Brains were washed
three times for 5 min in PBS before paraffin embedding. Then, 5 pm
sections containing the ME and/or cortex were mounted on SuperFrost
slides (Fisherbrand).

GeoMX digital spatial profiling. For digital spatial profiling (DSP),
spatial transcriptomics was performed in the NanoString GeoMx DSP
platform using the mouse whole transcriptome atlas for >19,000 tran-
scripts of protein-encoding genes. The DSP workflow was carried out
by NanoString Technologies through the Technology Access Program.

Slides were baked, deparaffinized and rehydrated using graded
ethanol. Target epitope retrieval was performed with Tris-EDTA (pH
9.0), then proteinase K to expose RNA targets. In situ hybridization
with the whole transcriptome probes was performed overnight. The
next day, slides were washed to remove off-target probes and samples
were stained with morphology markers, to distinguish ECs, pericytes
andfibroblasts (Supplementary Table 2), and Syto83 (1:10; Invitrogen)
tovisualize cell nuclei. Fluorescentimages were collected by a GeoMx
DSP instrument for region of interest selection.

ME and cortex DES'GFP™ areas (pericyte segments) and ME
DES GFP" areas (fibroblast segments) were collected for transcrip-
tional profiling. Labeled cells associated with large blood vessels were

excluded as much as possible to reduce the collection of vascular
smooth muscle cells. Additionally, samples were selected from the
middle of the ME region to avoid smooth muscle cells (Extended Data
Fig. 5a-c). In total, samples from eight animals of both sexes were
profiled over three separate days for atotal of 79 segments. Ultraviolet
light was used to photocleave antibodies and release oligodendrocytes
fromareas ofinterest. Oligodendrocytes were collected and quantified
by next-generation sequencing, and reads were processed into digital
counts for data analysis.

DSP analysis. Data were analyzed in R (v.4.1.2) using GeomxTools
(v.3.1.1).

Quality control. First, all segments passed a sequencing quality con-
trol assessment. Next, negative control probes were used to estimate
background and downstream gene detection and to remove outliers.
Thelimit of quantification of negative control probesin each region of
interest was calculated to identify genes detected above background.

Several segments were removed because of low gene detection
(<10% of the probes detected). Samples from six animals remained
for analysis. Gene filtering was performed, resulting in 7,844 targets
detected above the limit of quantification in 30% or more segments.
Owing to differential distribution of cell types in the ME and cortex
(Supplementary Table1), genes attributed to astrocyte, L5.PT.CTX and
EC profiles from a published study”® and genes from ME cECs, cortex
cECsandtip cell subtypes were removed from the analysis (unless they
overlapped with the annotated pericyte profile). Atotal of 2,921 genes
remained from 53 of the 79 segments from four animals. Quartile three
normalization was performed for genes in each segment. Principal
component analysis followed by dimensional reduction showed that
ME segments cluster separately from cortex segments and that ME
pericytes and fibroblasts cluster separately. Coefficient of variation
analysis of the top 292 genes (90" quantile) showed that these genes
cluster by region and cell type.

Differential gene expression and pathway analysis. Differential gene
expression analysis was performed on a per-gene basis, modeling nor-
malized gene expression using a linear mixed-effect model to account
for the sampling of multiple segments from each tissue. To compare
ME and cortex pericyte segments, the following formula was used:
gene -~ pericyte region segment + (1 + pericyte region segment per ani-
mal). To compare ME pericyte and fibroblast segments, the following
formulawas used: gene -~ cell type segment + (1 + cell type segment per
animal). Differentially expressed genes were considered significant at
aFDR <0.05and |log,(fold change)| > 1. Differentially expressed genes
were compared to enriched genes from human mural cells from the
lung®, gut*® kidney* and brain*° and visualized by UpSetR (v.1.4.0)"".
Differentially expressed genes were also compared to mouse choroid
plexus pericytes® and lung pericyte-enriched genes reported previ-
ously”. Finally, pathway analysis was performed with GSVA (v.1.46.0)
using the KEGG BRITE database. A total of 337 gene sets were scored,
with each gene set containing 5 and 500 genes. Enriched pathways
were significantat FDR < 0.05. Plots were generated with the Enhanced-
Volcano (v.1.6.0) and UpsetR packages. We also found enrichment of
eight gene setsand 22 genes in ME fibroblasts relative to ME pericytes
(Extended DataFig. 9a,b and Supplementary Table 1), including EGFP
and cortex fibroblast markers /Islr and Ptgds.

TEM

Mice were anesthetized with ketamine and xylazine, thentranscardially
perfused with cold, 5% glutaraldehyde, 4% PFA and 0.1 Msodium caco-
dylate. Brains were dissected and post-fixed overnight at 4 °Cin fixative
solution. Brains were then washed overnight in 0.1 M sodium caco-
dylate. Brains were washed three times for 15 minin 0.1 Msodium caco-
dylate, thensectionedinto 100 um coronal sections by vibratome. HRP
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reporter strains were processed with diaminobenzidine as described
previously®’. Regions of interest were microdissected, post-fixed in1%
osmium tetroxide and 1.5% potassium ferrocyanide, dehydrated and
embedded in epoxy resin. Ultrathin sections of 80 nm were cut from
theblocksurface, collected on copper grids and counter-stained with
Reynold’s lead citrate before examination under a 1200EX electron
microscope (JEOL) equipped with a2k CCD digital camera (AMT).

Serial TEM reconstruction

Serial TEM data of the visual cortex was generated previously
(450 pm x 450 pm x 50 pmvolume)*®. Capillaries were reconstructedin
FII'°° using TrakEM2 (ref. 101). ECs and pericytes were manually traced
ineachsectioninthe dataset, thentheimages wererendered together
to create a3D reconstruction. Vessel 1was reconstructed through 794
serial 40 nm sections or 31.8 pm, with 66 sections excluded. Vessel 2
wasreconstructed in490 serial 40 nmsections or19.6 um, with 28 sec-
tions excluded. Renderings were processed in blender (blender.org).
Two additional vessels were analyzed for interaction features: vessel
3 over22 pmand vessel 4 over 6.5 pm.

Ligand-receptor analysis

We analyzed our dataset with CellChat** (v.1.6.0) and performed an
analysis similar to that in a previous publication®. In brief, a ligand-
receptor database was assembled. To facilitate the discovery of novel
ligand-receptor interactions, the reference database was supple-
mented with differentially expressed genes in cECs and astrocytes
(Supplementary Table 1). The predicted subcellular localization of
each gene was determined using the Uniprot database'*’. For those
genes known or predicted to be localized to the plasma membrane,
secreted proteins or extracellular matrix components, the STRING
database'® was queried to identify candidate interaction partners.
Interaction partners with experimental validation were added to our
ligand-receptor database. Established interactions® are displayed
inuppercase (for example, ‘PDGFB-PDGFRB’) and candidate ligand-
receptor pairs are displayed in lowercase (for example, ‘Bsg-Itgaé’).
Aninteraction score was calculated for each ligand-receptor pair for
two candidate interacting cell subtypes of interest by multiplying the
average expression of theligand genein the candidate signaling cell and
the average expression of the receptor genein the candidate receiving
cell. ME pericyte average expression data was generated by coercing
the GeoMX data into a Seurat object (R v.4.1.3). An interaction score
cutoffwas determined by bootstrapping. In brief, the average expres-
sionofallgenesineach cell subtype was calculated. For eachiteration,
the dataset was randomized with replacement, and interaction scores
were calculated between the ligand-expressing cell subtype of inter-
estand 2,192 random genes (the size of the supplemented database).
Thisiterationwas repeated 1,000 times to generate a null distribution
of interaction scores. We focused on interaction scores >40, as these
values were observed withaone-sided P value of <0.01 after Bonferroni
correction for multiple comparisons (Supplementary Table 1). For
the determination of unique ligand-receptor pairsin pericytes, pairs
from the ME that were above this threshold in all cell types except ME
pericytes were excluded, as we expect that they are probably a result
of methodological differences.

Statistics and reproducibility
Data collection and analysis were performed blind to the conditions
of the experiments where indicated. All representative immunofluo-
rescence and TEM images were performed in three or more mice and
repeatedinatleastthreeindependent experiments. For confocal and
electron microscopy data, we performed preliminary experiments
to identify the variation. We then performed a power test to identify
appropriate sample sizes of images per mouse.

A total of 52 total inDrops scRNA-seq samples were collected on
15 separate days, with two technical replicates from ME and cortex

samples on each day (except for days 12-15, which were ME only).
Sequencing libraries were generated over 9 days to minimize vari-
ation owing to library preparation. For GeoMX DSP, samples from
eight animals of both sexes were profiled over three separate days.
For transcriptomic experiments, sample sizes were chosen based on
the yield of high-quality vascular cells. For scRNA-seq, we aimed to
profile at least 100 cells per cluster from each region of our cell types
of interest. For GeoMX, we based our sample size on the reproducible
clustering of samples from multiple animals on separate experiment
days both by sample region and enriched cell type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The scRNA-seq data and GeoMX spatial profiling generated during
thisstudy are available for download at the Gene Expression Omnibus
(GEO) (accession GSE241206). The analyzed scRNA-seq dataset has
been uploaded to the Single Cell Portal (singlecell.broadinstitute.org/
single_cell/study/SCP2553).

Code availability
Thesource codetorunligand-receptor analysis is available at GitHub
(https://github.com/gulabneuro/scRNAseq-ligand_receptor).
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Extended Data Fig.1| Morphological, molecular and functional differences
of the vasculature between the ME and cortex. (a) Tracer leakage assay with
Sulfo-NHS-Biotin (magenta) and immunostaining for blood vessels (CD31, white)
in cortex (upper panel) and ME (lower panel). Tracer in circulation was washed
out by perfusion prior to analysis. Scale bar 10 pm. (b) Co-immunostaining of
GLUT1 (green) and PLVAP (red) in ME and cortex. Scale bar 100 pm. (c) High
magnification images of capillaries showing distinct Glutl (green) and Plvap (red)

PLVAP

merge

CD31

expression pattern and vessel morphology in the cortex and ME. Scale bar 20 pm.
(d) Co-immunostaining of CD31 (white) and tight junction protein Cldn5 (green)
incortex and ME. Scale bar 10 pm. (e) Validation of specificity of newly generated
polyclonal antibody against MFSD2A (green) by immunostaining of cortex from
wild type and Mfsd2a*° mice. Scale bar 100 pm. (f) Immunostaining of CD31
(white) inthe ME in thick tissue section. Scale bar 100 pm.
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Extended Data Fig. 2| TEM reveals differences in organization of the pseudocolors highlight different cells: cEC (purple), pericyte (teal), fibroblast
vasculature and cellular environment in the ME and cortex. (a) TEM images (red), lumen (L, white) and neuropil (yellow). Insets show capillary fenestrations
ofacortical capillary. As outlined in the legend, pseudocolors highlight different (white arrowheads), cEC tight junctions (white arrows), extracellular matrix-
cells: cEC (purple), pericyte (teal), astrocyte endfoot (cyan), lumen (L, white) filled perivascular space (ECM), pericyte cells (P, teal) and fibroblast cells (F, red).
and neuropil (yellow). Insets show cEC tight junctions (white arrows), pericyte Scale bar represents 1 pm. (c) TEM images of two groups of ME blood vessels.
cells (P, teal) and astrocyte endfeet (A, cyan). Scale bar represents 1 pm (left). (b) Scale bar represents 4 pm. (d) Co-immunostaining for astrocyte endfoot marker

TEM images of two blood vessels in the ME, (i) and (ii). As outlined in the legend, Aqp4 (green) and CD31 (white) in cortex and ME. Scale bar 20 pm.
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Extended Data Fig. 3| Single cell RNA sequencing of median eminence and
asize-matched region of somatosensory cortex reveals unique cell typesin
each brainregion. (a) Bar plot showing distribution of cells in each cell type for
each experimental replicate. Replicates 12-15, in bold, are from the ME region
only. (b) Bar plot showing distribution of cellsin each cell type for each library
batch preparation. Batch 9, highlighted in bold, is comprised of libraries from the
ME region only. (c) Dot plot showing average expression of one cell type-specific
transcript used to annotate cluster cell typesin Fig. 2. Additional transcripts
used for annotation are detailed in Methods. (d) Tukey box and whisker plot
depicting the number of genes detected per cell in all identified clusters in Fig. 2.
Box shows the median and first and third quartiles, whiskers represent 1.5 times
theinterquartile range. The cell number in each cluster per sample region is

indicated at the right of each plot, with cortex-enriched clusters highlighted in
red and ME-enriched clusters highlighted in blue (as determined in (e)). Data was
collected on15 separate days, with two technical replicates from ME and cortex
samplesineachreplicate (except for replicates 12-15, which were ME only). ME
and cortex regions were isolated from the same 5 mice in each replicate and
pooled by region prior to dissociation. (e) Point-range plot showing the relative
differencesin cell proportions for each cluster in (d) between the ME and cortex.
Regional enrichment was determined by permutation test, with significance
assessed by false discovery rate following bootstrapping (implemented by the
scProportionTest R package). Clusters showing regional enrichment (log, fold-
change greater than [4.5| and FDR < 0.05) are labeled and shown in red.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Novel regionally enriched genes identified in cECs

in the ME and cortex. (a) Dot plot of average expression of vascular zonation
markers and several transcripts used to annotate cluster cell typesin Fig. 3a.
Actb and CdhS are expressed in all populations, and CldnS5 and Slc2al are cortex-
enriched transcripts, asillustrated in Extended Data Fig. b-d. Lcn2, Vcamli, Lrgl,
and Slc38a5are enriched in VECs; Nr4al, Jun and Fos are enriched in cECs 2; Apln,
Aplrand Trp53ill are enriched in tip cells; Vegfc, Sema3g and Gkn3 are enriched in
aECs1and 2; Tfrcand Mfsd2a are enriched in cECs1and 2; Emcn, Esm1, and Plvap
areenriched in ME cECs; UncSbis enriched in aECs 1; Rgcc and Kdr are enriched
in capillary ECs (cECs 1and 2 and ME cECs). (b) Heatmap illustrating the top 75
differentially expressed genes from each group when comparing cortex-derived

cECs1and cECs 2 with ME cECs. Differentially expressed genes were determined
by two-sided Wilcoxon test in Seurat (minimum percentage = 25%, log2-fold
change > 0.6, adjusted p-value < 0.05). (c) Heatmapillustrating endothelial
activity-induced transcripts (reported in Hrvatin, et al.”®) that are differentially
expressed between cECs1and cECs 2. Differentially expressed genes were
determined by two-sided Wilcoxon test in Seurat (minimum percentage =10%,
log2-fold change > 0.25, adjusted p-value < 0.05). (d) Percentage of EC subtypes
sequenced by experimental replicate. Experimental replicates with only ME
samples are highlighted in blue. (e) Percentage of EC subtypes sequenced by
library batch. Library batches with only ME samples are highlighted in blue.
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Extended Data Fig. 5 | Immunostaining reveals ME capillary boundary and
validates differential gene expression across regions. (a) Co-immunostaining
with anti-CD31 (white) and anti-SMA (red) antibodies to visualize arteries in the
cortex and ME. Scale bar 200 um. (b) High magnification images of blood
vessels (CD31, white), highlighting vessels interacting with SMA-positive smooth
muscle cells (red) in cortex (top) and ME (bottom). Scale bar 20 pm.

(c) Co-immunostaining with anti-CD31 (white) and anti-PLVAP (red) antibodies in
the ME. Yellow arrows indicate arteries in this region. Scale bar 50 pm.

(d) Co-immunostaining of SPOCK2 (white), GLUT1 (green) and EMCN (red) in
the cortex and ME of P5 wild type mouse. Scale bar 10 pm. (e) Heatmap showing
significantly upregulated Reactome pathways for the top 115 differentially

expressed genes in cortex-derived cECs1and 2 and ME cECs. Differentially
expressed genes were determined by two-sided Wilcoxon test in Seurat
comparing cortex-derived cECs 1and 2 with ME cECs (minimum percentage =
25%,log2-fold change > 0.6, adjusted p-value < 0.05). p-value was calculated with
aone-sided Fisher’s exact test, and -log(FDR) values are shown. Upregulated
pathways from other pathway databases can be found in Supplementary Table 1.
(f) Co-immunostaining for CD31 (white), endothelial nuclei marker ERG (red),
and GFP in cortex and ME of TCF/LEF-GFP Wnt-signaling reporter mice. GFP
expression (green) indicates activation of the Wnt-signaling pathway. Arrows
indicate ERG and GFP double positive nuclei. Scale bar 50 pm.
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Extended Data Fig. 6 | Comparison of scRNAseq of ME-derived Plvap + ECs
to published ECs from the mouse neurohypophysis, pituitary gland and
peripheral organs. (a) Heatmap showing the top 10 most similar cell types
when analyzing the top 115 differentially expressed genes for each cEC subtype.
Differentially expressed genes were determined by two-sided test in Seurat
comparing each subcluster to all other astrocyte cell subclusters with min.
pct=0.25and logFC>0.6. Hypergeometric p-value was calculated and -log(FDR)
values are shown. Brain cell types are highlighted in blue, while peripheral cell
types are highlighted in green. (b) Table showing genes common between the
top 50 differentially expressed genes in Plvap ECs, tip cells and cECsl1 (calculated
by two-sided Wilcoxon test in Seurat comparing each EC subtype to all other ECs
with min.pct=0.25 and logFC>0.6) and marker genes of ECs from the choroid
plexus from Dani etal.”. (c) Bar plot showing the percentage overlap of the top
50 enriched genes from Plvap ECs, tip cells and cECs 1 EC subtypes (calculated
by two-sided Wilcoxon test in Seurat comparing each EC subtype to all other ECs
with min.pct=0.25 and logFC>0.6) and each of the top 50 enriched genesin ECs
reported from Kalucka et al.”’. (d) Table showing genes common between Plvap+
ECs, tip cells and cECs 2 in the organs with the highest level of overlap in (c).

(e) Bar plot showing the percentage overlap of the top 50 enriched genes from
Plvap ECs, tip cells and cECs 1EC subtypes (calculated by two-sided Wilcoxon
testin Seurat comparing each EC subtype to all other ECs with min.pct=0.25and
logFC>0.6) and each of the top 50 enriched genes in ECs reported from Feng et
al.’. (f) Table showing genes common between Plvap+ECs, tip cells and cECs 1
inthe organs with the highest level of overlapin (e). (g) Venn diagram showing
the overlap between EC marker genes from the kidney and pancreas from Feng
etal.” and the choroid plexus from Dani et al.* with marker genes of Plvap ECs
(calculated by two-sided Wilcoxon test in Seurat comparing Plvap ECs to all other
ECs with min.pct=0.25and logFC>0.6). The 9 genes common to all samples are
listed in the center. (h) The top 100 genes enriched in ME-derived Plvap+ECs
when compared to cortex-derived cECs (asin (a), blue) were compared to the top
100 genes enriched in vascular ECs from the mouse neurohypophysis® (gray) and
the top 100 genes enriched in ECs isolated from the mouse pituitary gland® (red).
Plvap+EC enriched genes were calculated by two-sided Wilcoxon testin Seurat
comparing each EC subtype to all other ECs. (i) Table containing the identities of
the 8 genes expressed by all samples compared in (h).
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Extended Data Fig. 7| Astrocyte subtypes and their interactions with

blood vessels are distinct between the ME and cortex and from published
datasets. (a) Heatmapiillustrating the top 5 genes differentiating each astrocyte
cell subcluster. Differentially expressed genes were determined by two-sided
Wilcoxon test in Seurat comparing each subcluster to all other astrocyte cell
subclusters. (b) Percentage of astrocyte subtypes sequenced by experimental
replicate. Experimental replicates with only ME samples are highlighted in bold
(12-15). (c) Percentage of astrocyte subtypes sequenced by library batch. Library
batches with only ME samples are highlighted in bold (9). (d) Fluorescent labeling
of cortex blood vessels and astrocyte populations (Tomato, red) in cortex and

ME using SlcoIc1-CreER:Ail4 mice. Co-staining for blood vessels (CD31, white).
Scale bar100 pm. (e) Heatmap showing the significance of upregulated pathways
for the top 50 differentially expressed genes for each astrocyte subtype.
Differentially expressed genes were determined by two-sided Wilcoxon test in
Seurat comparing each subcluster to all other astrocyte cell subclusters with
min.pct=0.25 and logFC>0.6. p-value was calculated with a one-sided Fisher’s
exact test, and -log(FDR) values are shown. (f) UMAP projections of astrocyte
transcriptomes following Harmony cross-correlation analysis. (g) Violin plots
showing the expression of GLAST (SlcIa3), SfrpS, and of markers reported
previously® of telencephalon astrocytes, expressed in cortex astrocytes (Lhx2,
Foxgl, Mfge8) and diencephalon astrocytes expressed in ME astrocytes (Gfap,
Aqp4, Slcéall, Agt, Slc7al0, Fgfr3, Cldn10, Igsf1, Itih3, Ntsr2). (h) UMAP plots
highlighting the expression of markers (purple) reported previously* of Myoc-
expressing astrocytes in Gfap high population (outlined in black). (i) Clustergram

showing similarity of ME and cortex astrocyte subtypes to those reported
previously®®. The expression patterns of the top 25 differentially expressed genes
inthe 4 astrocyte subtypes (calculated by two-sided Wilcoxon testin Seurat
comparing each astrocyte subtype to all other astrocytes, with min.pct = 0.25and
logFC>0.6) were clustered in aggregate metacells using the pheatmap R package
with the default parameters. (j) Heatmap (scaled by row) illustrating the top 15
genes distinguishing the FC_8-1_Gfap- astrocytes (FC), GP_5-1.Astrocyte.Gjal.
Gfap (GP), and SN_7-2_Astrocyte.Gjal.Cst3 (SN) subtypes previously reported®.
Genes expressed in atleast 2 of the above astrocyte subtypes are labeled as
‘multiple. (k) Violin plot showing expression of Slc1a3, which encodes GLAST,
inastrocyte and tanycyte populations. (I) Fluorescent labeling of astrocyte
populations (Tomato, red) in cortex and ME using Glast-CreER:Ail4 mice with
ahigh dose of tamoxifen. Co-staining for blood vessels (CD31, white). Scale bar
50 pm. (m) Fluorescent labeling of astrocyte populations in the cortex and ME
using Glast-CreER:Ail4 mice after alow dose of tamoxifen to achieve sparse cell
labeling. Upper row: immunostaining for Tomato-positive astrocytes (red) and
blood vessels (CD31, white). Lower row displays 3D reconstructions of astrocytes
(red). Scale bar 20 pm (upper) and 10 pm (lower). (n) Co-immunostaining for
GFAP-enriched astrocyte population (GFAP, red) and tanycyte marker Vimentin
(yellow). Scale bar 30 um. (0) Co-immunostaining for tanycyte marker VIMENTIN
(yellow) and pan EC marker CD31 (white) in ME. Ventral and coronal view of ME
shown, note tanycyte protrusions in touch with ME vessels. Scale bar 30 um
(upper panel) and 15um (lower panel).
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Extended Data Fig. 8 | Mural cells associated with cortex and ME blood
vessels show distinct morphology and transcriptomic differences.

(a) Representative cross section images of (i) vessel 1and (ii) vessel 2
reconstruction by serial TEM. Pseudocolors show reconstructed regions: blood
vessel lumen (L, red); EC (green); and pericyte cell (blue). White arrows indicate
EC tight junctions (purple), and white boxes highlight ‘peg and socket’ pericyte-
EC interactions. Scale bar represents 1 um. (b) Representative image of cortex
vessel 4 from serial TEM dataset. Scale bar represents 1 pm. (¢) Immunostaining
for PDGFRQ (white, left panels) and Imaris 3D reconstruction of pericytes (white,
middle and right panels) in cortex and ME. Co-staining for Glutl (green) and

Emcn (red) to mark capillaries in the cortex and ME, respectively. Scale bar 10 pm.

(d) High magnification images of reconstructed pericytes (PDGFRp, white) in
contact with capillaries (Glutl, green and Emcn, red) in cortex and ME. Arrows
point at ME pericyte protrusions not in contact with capillaries. Scale bar 5 pm.
(e) Violin plots showing expression of published markers of brain pericytesin

both ME and cortex areas of interest from GeoMX whole transcriptome profiling.
(f) Heatmap of differentially expressed genes (log, fold-change greater than [1|
and FDR < 0.05) between cortex and ME pericyte-enriched regions of interest
from GeoMX whole transcriptome profiling (also shown in Fig. 5h). Differential
expression was determined by linear mixed model analysis and significance
assessed by false discovery rate (FDR). (g) Immunostaining for CD31 (green) and
SLCI12A7 (red) in ME and cortex in coronal tissue sections. Scale bar 10 pm.

(h) Upset plot showing overlap between human pericyte cell type signatures and
differentially expressed genes in ME and cortex pericyte-enriched regions.

(i) Upset plot showing overlap between human brain pericyte cell type signatures
and ME and cortex pericyte-enriched differentially expressed genes (Fig. 5h).

(j) Upset plot showing overlap between human pericyte cell type signatures

and pericyte marker genes from our scRNAseq dataset (calculated by two-sided
Wilcoxon test in Seurat comparing pericytes to other mural cells, with
min.pct=0.25and logFC>0.6).
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Extended Data Fig. 9 | Fibroblasts in the ME. (a) Heatmap of differentially
expressed genes between ME pericyte- and fibroblast-enriched areas of interest
from GeoMX whole transcriptome profiling. (log, fold-change greater than 1|
and FDR < 0.05). Differential expression was determined by linear mixed model
analysis and significance assessed by false discovery rate (FDR). (b) Upset plot
showing overlap between ME fibroblast-enriched regions from GeoMx whole
transcriptome profiling and fibroblasts from choroid plexus in Dani et al.>".

(c) 3D reconstructions of fibroblasts in the ME and cortex are shown in red
(based on Pdgra-CreER:Ail4 Tomato expression). Immunostaining for CD31is
shownin white. Scale bar 15 um. (d) Another 3D view of (g) showing the location
of fibroblasts below ME blood vessels. Scale bar 5 um. (e) UMAP plot of 714
fibroblast transcriptomes. Fibroblast subtype clusters were identified with an
unbiased analysis. The number of cells identified for each subtype s indicated

inthe plotlegend. (f) UMAP plotin (a) colored by sample region. (g) VInPlot
showing the expression of Colala, Dcn and Pdgfrain fibroblast subclusters.
(h) Heatmapiillustrating the top 5 genes differentiating each fibroblast
subcluster. Differentially expressed genes were determined by two-sided
Wilcoxon test in Seurat comparing each subcluster to all other mural cell
subclusters with min.pct=0.25 and log2_FC > 0.6 thresholds. (i) Table showing
overlap of fibroblasts 1and 4 subtypes with fibroblast topics from Dani et al.>.
Differentially expressed genes were determined by two-sided Wilcoxon test
in Seurat comparing the fibroblast 1 subcluster to the fibroblast 4 subcluster,
withmin.pct=0.25and log2_FC > 0.6 thresholds. (j) Co-immunostaining for
fibroblast-enriched protein, DECORIN (white) and Tomato in cortex and ME.
Blood vessels labelled with Tomato using Cdh5-CreERT2:Ail4 mice.

Scale bar 20 pum.
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Extended Data Fig. 10 | Differences in perivascular cell signaling capacity in
the ME and cortex. (a, b) Bubble plots from CellChat analysis showing ligand-
receptor pairs between (b) cortex ECs and pericytes and astrocytes and (c) ME
Plvap ECs and astrocytes, tanycytes, pericytes and fibroblasts. ME pericyte data
is from the scRNAseq dataset. p-values were calculated by permutation testin
the CellChat R package. (c) Overview of ligand-receptor analysis methodology

and workflow. (d) EC ligand-receptor interaction scores with pericyte, astrocyte,

tanycyte and fibroblast receptors in the ME or cortex with values > 40 and
p-values < 0.01. Candidate, ME-enriched ligand-receptor interaction investigated
inFig. 7 is highlighted in blue. Candidate, cortex-enriched ligand-receptor
interaction investigated in Fig. 7 is highlighted in red. Uppercase ligand-receptor
pairs are from Kumar et al. database. ME pericyte data is from GeoMX spatial
transcriptomic profiling.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The following software’s were used to collect the data in this study:
e LAS X 3.0.16120.2 for Leica SP8 Confocal Imaging
e OlyVIA Ver.2.9.1 for V5120 Virtual Slide Microscope
¢ AMT_V700 for electron microscopy imaging

Data analysis Imaris 9, Oxford Instruments, https://imaris.oxinst.com/
TrakEM?2, Cardona et al., 2012, https://imagej.net/TrakEM2
FIJI (2.1.0) Schindelin et al., 2012, https://fiji.sc
Blender (2.90.0), Blender Institute, https://www.blender.org
bcbio-nextgen (1.2.8) https://bcbio-nextgen.readthedocs.io/en/latest/contents/single_cell.html
Python (3.8.3) https://www.python.org
scrublet (0.2.3), Wolock et al., 2019. https://github.com/swolock/scrublet
emptyDrops, Lun et al., 2019 DropletUtils package (1.8.0): https://bioconductor.org/packages/release/bioc/html/DropletUtils.html
SoupX (1.5.0), Young and Behjati, 2020. https://github.com/constantAmateur/SoupX
scProportionTest (0.0.0.9000), Miller et al., 2021, https://github.com/rpolicastro/scProportionTest
R version 4.0.2, R Core Team, 2020, https://www.r-project.org
R version 4.1.1, R Core Team, 2021, https://www.r-project.org
R version 4.1.3, R Core Team, 2022, https://ww.r-project.org
RStudio (2023.09.1+494) , RStudio Team, 2016, http://www.rstudio.com
Seurat version 4, Macosko et al., 2015; Butler et al., 2018; Hao, Hao, et al., 2021 https://satijalab.org/seurat/
bc3net R package (1.0.4), de Matos Simoes et al., 2012. https://cran.r-project.org/web/packages/bc3net/index.html
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pheatmap R package( 1.0.12) https://cran.r-project.org/web/packages/pheatmap/index.html

ggvenn R package (0.1.10) https://cran.r-project.org/web/packages/ggvenn/index.html

EnhancedVolcano R package (1.6.0), Blighe et al., 2024. https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
GSVA R package (1.38.2), Hanzelmann et al., 2013. https://bioconductor.org/packages/release/bioc/html/GSVA.html

harmony R package(1.0.3) Korsunsky et al., 2019, https://github.com/immunogenomics/harmony

UpsetR R package (1.4.0 ),Conway et al., 2017. https://cran.r-project.org/web/packages/UpSetR/index.html

Prism 8, GraphPad, https://www.graphpad.com/scientific-software/prism/

Interaction Score algorithm, Kumar et al., 2018, https://github.com/mkumar45/syngeneic_scRNAseq; this paper, https://github.com/
gulabneuro/scRNAseq

GeomxTools R package (3.1.1), Ortogero et al., 2023 https://www.bioconductor.org/packages/release/bioc/html/GeomxTools.html
CellChat R package (1.6.0), Jin et al., 2021 https://github.com/sqjin/CellChat

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The sequencing data (single cell and GeoMX) generated during this study are available for download at GEO (accession GSE241206).
The scRNAseq database can be accessed interactively at https://singlecell.broadinstitute.org/single_cell/study/SCP2553.
The source code to run ligand-receptor analysis is available at https://github.com/gulabneuro/scRNAseq-ligand_receptor/.

The following publicly available databases were used for analysis:
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb)

UniProt (https://www.uniprot.org/)

STRING (https://string-db.org/)

The following studies were used for comparative scRNAseq analysis:
Chen et al., 2020 ,PMID: 31915267

Dani et al. 2021, PMID: 33932339

Elmentaite et al., 2021, PMID: 34497389

He etal.,, 2021, PMID: 33837218

Kalucka et al. 2020, PMID: 32059779

Saunders et al. 2018, PMID: 30096299

Travaglini et al., 2020, PMID: 332089466Feng et al. 2019 PMID: 31850371
Yang et al. 2022, PMID: 35165441

Wang et al. 2019, PMID: 30932813

Zeisel et al. 2018, PMID: 30096314

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or NA
other socially relevant

groupings

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For confocal and electron microscopy data, we performed preliminary experiments to identify the variation. We then perform a power test to
identify appropriate sample sizes of images per mouse. Based on previous experience with similar studies, the sample sizes were sufficient.
For transcriptomic experiments, sample sizes were chosen based on the yield of high quality vascular cells. For scRNAseq, we aimed to profile
at least 100 cells per cluster from each region of our cell types of interest. For GeoMX, we based our sample size on reproducible clustering of
samples from multiple animals on separate experiment days both by sample region and enriched cell type.

Data exclusions  Images were only excluded when the quality of the images was too poor for data analysis.

Replication All representative stainings and TEM images have been performed in equal to or more than 3 mice in at least 3 independent experiments.
inDrops scRNAseq samples were collected on 15 separate days, and sequencing libraries were generated over 9 days to minimize variation
due to library preparation. For GeoMX DSP, samples from 8 animals of both sexes were profiled over 3 separate days. In all cases, attempts at
replication were successful.

Randomization  Mice were randomized based on their genotypes and allocated randomly into their respective genotype group.

Blinding Acquisition, collection and analysis of the experiments were performed all blinded to the genotypes. Only after the data was completely
analyzed were the genotypes unblinded.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a 7 Involved in the study
] Antibodies [] chip-seq
IXI|[ ] Eukaryotic cell lines [] Flow cytometry
|Z| |:| Palaeontology and archaeology |:| MRI-based neuroimaging
[] Animals and other organisms
XI|[ ] Clinical data
IXI|[ ] Dual use research of concern
X[ ] Plants
Antibodies
Antibodies used Mouse monoclonal anti-alpha SMA-Cy3 (clone 1A4), Sigma-Aldrich C6198; RRID: AB_476856; 1:150

Rabbit polyclonal anti-Aquaporin 4, Millipore AB3594; RRID: AB_91530; 1:200

Goat polyclonal anti-Basigin/EMMPRIN, R&D Systems AF772; RRID: AB_355588; 1:50

Goat polyclonal anti-CD31, R&D Systems AF3628; RRID: AB_2161028; 1:50

Mouse monoclonal anti-Claudin-5 AF488 (clone 4C3C2), Thermo Fisher 352588; RRID: AB_2532189; 1:100
Rabbit polyclonal anti-Collagen 1, Millipore AB765P; RRID: AB_92259; 1:100

Goat polyclonal anti-Decorin, R&D Systems AF1060; RRID: AB_2090386; 1:50

Rat monoclonal anti-Endomucin (clone V.7C7) ,Santa Cruz sc-65495; RRID: AB_2100037; 1:100

Rabbit monoclonal anti-ERG (clone EPR3864), Abcam ab92513; RRID: AB_2630401; 1:100

Rabbit monoclonal anti-ERG AF488 (clone EPR3864), Abcam ab196374; RRID: AB_2889273; 1:100
Goat polyclonal anti-Esm1/Endocan, R&D Systems AF1999; RRID: AB_2101810; 1:50

Rabbit polyclonal anti-GFAP, Abcam ab7260; RRID: AB_305808; 1:200

Chicken polyclonal anti-GFP, Aves GFP-1020; RRID: AB_10000240; 1:200

Rabbit polyclonal anti-GFP, Thermo Fisher A21311; RRID: AB_221477; 1:150

Rabbit polyclonal anti-Glut1, Millipore 07-1401; RRID: AB_11212210; 1:100

Rat monoclonal anti-lcam2/CD102 (clone 3C4 (mIC2/4)), BD Biosciences 553326; RRID: AB_394784; 1:100
Goat polyclonal anti-IGF1R1, R&D Systems AF-305; RRID: AB_354457; 1:50

Rat monoclonal anti-Itga6 (clone GoH3), R&D Systems MAB13501; RRID: AB_2128311; 1:50

Rabbit polyclonal anti-KCC4, Novus, NBP1-85133; RRID: RRID:AB_11002763; 1:500

Rabbit monoclonal anti-LEF1 (clone C12A5), Cell Signaling 2230; RRID: AB_823558; 1:100

Rabbit polyclonal anti-Mfsd2a, This paper J9590; RRID: NA; 1:100

Goat polyclonal anti-PDGFRb, R&D Systems AF1042; RRID: AB_2162633; 1:50

Rat monoclonal anti-Plvap (clone MECA32), BD Biosciences 553849; RRID: AB_395086; 1:100

Goat polyclonal anti-Spock2, R&D Systems AF2328; RRID: AB_10717835; 1:50

Rabbit polyclonal anti-RFP, Rockland 600-401-379; RRID: AB_2209751; 1:150

Goat polyclonal anti-VEGF, R&D Systems AF-493; RRID: AB_354506; 1:50

Rat monoclonal anti-VEGFR2/FIk-1 (clone Avas 12a1), BD Biosciences 555307; RRID: AB_395720; 1:100
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Validation

Chicken polyclonal anti-Vimentin, Millipore AB5733; RRID: AB_11212377; 1:200

Rabbit polyclonal anti-GFP-Alexa488, Invitrogen A-21311; RRID: AB_221477; 1:100

Rabbit monoclonal anti-Desmin-Alexa594 (clone Y66), Abcam Y66, ab203419; RRID: AB_2943480; 1:200

Goat polyclonal anti-CD31-Alexa647, R&D Systems, AF3628; RRID: AB_2161028; 1:100

donkey polyclonal anti-goat AF488, Jackson Immuno Research 705-545-147; RRID: AB_2336933; 1:250, 1:300
donkey polyclonal anti-rabbit AF488, Jackson Immuno Research 711-545-152; RRID: AB_2313584; 1:250
donkey polyclonal anti-rat AF488, Jackson Immuno Research 712-545-153; RRID: AB_2340684; 1:250

donkey polyclonal anti-chicken AF488, Jackson Immuno Research 703-545-155; RRID: AB_2340375; 1:250
donkey polyclonal anti-goat Cy3, Jackson Immuno Research 705-165-147; RRID: AB_2307351; 1:250

donkey polyclonal anti-rabbit Cy3, Jackson Immuno Research 711-165-152; RRID: AB_2307443; 1:250
donkey polyclonal anti-rat Cy3, Jackson Immuno Research 712-165-153; RRID: AB_2340667;1:250

donkey polyclonal anti-chicken Cy3, Jackson Immuno Research 703-165-155; RRID: AB_2340363; 1:250
donkey polyclonal anti-goat AF647, Jackson Immuno Research 705-605-147; RRID: AB_2340437; 1:250
donkey polyclonal anti-rabbit AF647, Jackson Immuno Research 711-605-152; RRID: AB_2492288; 1:250, 1:300
donkey polyclonal anti-rat AF647, Jackson Immuno Research 712-605-153; RRID: AB_2340694; 1:250

donkey polyclonal anti-chicken AF647, Jackson Immuno Research 703-605-155; RRID: AB_2340379; 1:250

anti-alpha SMA-Cy3 is valid because staining was specifically localized to smooth muscle cells on arteries.

anti-Aquaporin 4 is valid because staining was specifically localized to astrocyte endfeet and used in many publications.
anti-Basigin/EMMPRIN is valid because the staining is consistent with our single cell RNA sequencing data, it is used in many
publications and tested by the manufacturer.

anti-CD31 is valid because the staining is consistent with the known expression of endothelial cells and extensively used in many
publications.

anti-Claudin-5 is valid because the staining is consistent with the known expression of CNS endothelial cells and extensively used in
many publications.

anti-Collagen 1 is valid because the staining is consistent with the known expression in fibroblasts, it is extensively used in many
publications and tested by the manufacturer.

anti-Decorin is valid because the staining is consistent with known expression in fibroblasts, matching our single cell RNA sequencing
data and testing by the manufacturer.

anti-Endomucin is valid because the staining is consistent with the known expression in endothelial cells and extensively used in many
publications.

anti-ERG and anti-ERG A488 are valid because the staining is consistent with the known expression in endothelial cell nuclei and
extensively used in many publications.

anti-Esm1/Endocan is valid because the staining is consistent with the known expression in endothelial cells and extensively used in
many publications.

anti-GFAP is valid because the staining is consistent with endogenous GFAP expression and extensively used in many publications.
chicken anti-GFP is valid because the staining is consistent with expression in reporter mice and extensively used in many publications
rabbit anti-GFP is valid because the staining is consistent with expression in reporter mice and extensively used in many publications.
anti-Glutl is valid because the staining is consistent with the known expression of CNS endothelial cells and extensively used in many
publications.

anti-lcam2/CD102 is valid because the staining is consistent with the known expression of endothelial cells and manufacturer
routinely test by flow cytometry.

anti-IGF1R1 is valid because the staining is consistent with our single cell RNA sequencing data and used in many publications.
anti-ITGA6 is valid because the staining is consistent with our single cell RNA sequencing data and used in many publications.
anti-KCC4 is valid because the staining is consistent with our spatial transcriptomics data and used in several publications.

anti-LEF1 is valid because the staining is consistent with its known expression pattern in brain endothelial cells and reporter mice and
it is extensively used in many publications.

anti-Mfsd2a has been validated on Mfsd2a brain KO tissue see Extended Data Fig. 1 f

anti-PDGFRb is valid because the staining is consistent with the known expression in pericytes and extensively used in many
publications.

anti-Plvap/Meca32 is valid because the staining is consistent with the known expression in ME endothelial cells and extensively used
in many publications.

anti-Spock2 has been validated on Spock2 brain KO tissue see Extended Data Fig. 5 a

anti-RFP is valid because the staining is consistent with endogenous RFP expression and extensively used in many publications.
anti-VEGF is valid because the staining is consistent with scRNAseq data and used in many publications.

anti-VEGFR2/FIk-1 is valid because the staining is consistent with the known expression of CNS endothelial cells and extensively used
in many publications.

anti-Vimentin is valid because the staining is consistent with the known expression in tanycytes and extensively used in many
publications.

anti-GFP-Alexa488, anti-Desmin-Alexa594 and anti-CD31-Alexa647 staining is consistent with genetic reporters. All were also
validated by NanoString for compatibility with theGeoMX platform.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

All animal experiments were approved by the Harvard University Institutional Animal Care and Use Committee (IACUC). Mice were
maintained on a 12-hour light/12-hour dark cycle at 71 degrees Fahrenheit and 55% humidity. All mice used for analysis were 8 to 14
weeks old unless stated otherwise. Both male and female mice were used in all experiments unless otherwise indicated. The
following mouse strains were used: wild type (C57BL/6N, Charles River Laboratories #027), Ai14 (JAX: 007914), Aldh1I1-EGFP (JAX:
026033), GFAP-GFP (JAX: 003257), Glast-CreER (JAX: 012586), TCF/LEF-GFP (JAX: 032577), Cdh5-CreERT2 (Wang et al., 2010),
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Slcolcl1-CreERT2 (Ridder et al., 2011), Pdgfrb-CreERT2 (JAX: 029684), Pdgfra-H2B-EGFP (JAX: 007669), Mfsd2ako (MMRRC strain
032467-UCD), and ROSA26LSL-ER-HRP (JAX: 034746).

Wild animals No wild animals were used in this study.

Reporting on sex Male mice were used for scRNAseq experiments because the ME is involved in the secretion of hormones related to estrus. Male and
female mice were used in all other experiments.

Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All mouse experiments followed institutional and US National Institute of Health (NIH) guidelines and were approved by the Harvard
University Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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