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Maintaining and updating accurate internal 
representations of continuous variables with 
a handful of neurons

Marcella Noorman      , Brad K. Hulse, Vivek Jayaraman    , Sandro Romani     & 
Ann M. Hermundstad     

Many animals rely on persistent internal representations of continuous 
variables for working memory, navigation, and motor control. Existing 
theories typically assume that large networks of neurons are required to 
maintain such representations accurately; networks with few neurons 
are thought to generate discrete representations. However, analysis of 
two-photon calcium imaging data from tethered flies walking in darkness 
suggests that their small head-direction system can maintain a surprisingly 
continuous and accurate representation. We thus ask whether it is possible 
for a small network to generate a continuous, rather than discrete, 
representation of such a variable. We show analytically that even very small 
networks can be tuned to maintain continuous internal representations, 
but this comes at the cost of sensitivity to noise and variations in tuning. 
This work expands the computational repertoire of small networks, and 
raises the possibility that larger networks could represent more and 
higher-dimensional variables than previously thought.

The brain is thought to rely on persistent internal representations of 
continuous variables for a wide range of computations, from working 
memory1–4 to navigation5–9 to motor control10–12. Such internal rep-
resentations have been described in terms of manifolds along which 
population activity evolves (Fig. 1a, top), and they have been studied theo-
retically within the framework of continuous attractor networks2,3,5,7,11,13; 
see refs. 14–16 for recent reviews. This framework for continuous attrac-
tor networks has historically relied on large numbers of neurons to ensure 
that these internal representations are approximately continuous and 
accurate, and this requirement becomes even more crucial in multiple 
dimensions and to represent multiple variables. Theories of navigation, 
for example, rely on large numbers of neurons to explain how continuous 
attractors could underlie the activity of head direction (HD), place, and 
grid cells in multiple dimensions17–19, and how the hippocampus might 
build multiple continuous attractors corresponding to different envi-
ronments that an animal has visited5,20,21. Here, we ask whether such con-
tinuous representations can be maintained in much smaller networks.

One prominent example of a continuous attractor network is the 
ring attractor network, which can maintain an internal representation 
of a periodic variable such as orientation13,22, and has been proposed as a 
model of the HD system9,23–26. Ring attractor networks derive their name 
from the one-dimensional ring manifold on which activity evolves. 
This manifold emerges in the limit that an infinitely large population of 
orientation-tuned neurons maintains sustained and localized activity 
through positive feedback13,22,24; this can be achieved through recurrent 
connectivity by which neurons with similar tuning excite one another, 
and neurons with dissimilar tuning inhibit one another (Fig. 1a, bottom, 
and refs. 13,22,24,27, but also see ref. 28). The resulting population 
dynamics can generate a localized bump of activity that persists at 
the same orientation in the absence of input and traverses the ring 
manifold through the integration of self-motion inputs23–25. As a result 
of their infinite size, ring attractor networks achieve infinite precision 
in maintaining and accurately updating the bump of activity. Large 
networks have been used to approximate this infinite precision2,4,7; 
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infinity (what we term a ‘continuous’ system), a ring attractor network 
generates a continuum of configurations that define the ring attractor 
manifold13,22,24 (Fig. 1f, top). These configurations are marginally stable, 
such that perturbations along the manifold will be maintained, and 
perturbations off the manifold will be driven back to it. These properties 
allow us to express the manifold as a flat dimension in the energy land-
scape of the system7; all points along this flat dimension have equal and 
minimum energy; thus, the system can stably sit at any of these points 
in the absence of input (Fig. 1g, second column, dark blue). Moreover, 
small changes in input can drive the system along this flat dimension 
without obstruction, such that the population activity accurately tracks 
these changes23–25 (Fig. 1g, third and fourth columns, dark blue). This 
flat energy dimension gives the system infinite precision in encoding 
and updating an internal representation of a one-dimensional circular 
variable such as HD.

However, when the system is small (what we term a ‘discrete’ sys-
tem), these properties are thought to break down, thereby limiting how 
precisely the internal HD representation can be stored and updated. 
Instead of exhibiting a flat dimension, the energy landscape is assumed 
to exhibit a set of discrete basins (Fig. 1f, bottom) that attract the popu-
lation activity in the absence of input39 (Fig. 1g, second column, light 
blue), prevent the integration of small inputs14 (Fig. 1g, third column, 
light blue), and prevent the accurate integration of large inputs (Fig. 1g, 
fourth column, light blue). For a small network such as the fly compass 
network, we would thus expect to observe three distinct signatures of 
discreteness: (1) drift in the absence of input, in which the HD bump 
drifts to stereotyped orientations around the EB when the fly stops 
turning; (2) failure to integrate small angular velocities, in which the 
HD bump does not move continuously when the fly makes slow turns; 
and (3) variable responses to larger angular velocities, in which the HD 
bump moves faster or slower relative to the fly’s movements, depending 
on its orientation within the EB.

To assess whether the fly circuit can overcome these expected 
limitations, we performed two-photon calcium imaging of compass 
neurons in the EB while head-fixed flies walked on an air-supported ball 
in darkness (Fig. 1d,e,h–j and Methods). While fly-to-fly variability in 
the accuracy of integration may be due, in part, to limitations of the 
fly-on-a-ball system (Methods), several flies showed a remarkable abil-
ity to track changes in their angular orientation in darkness. We first 
measured bump drift in the absence of input8 by comparing the bump 
orientation when the fly stopped moving to when the fly began walking 
again. The distributions of initial and final bump orientations were 
similar (Extended Data Fig. 1), and there were no apparent signatures 
that the bump drifted to a discrete number of stereotypical orienta-
tions (Fig. 1h). The distribution of drifts was strongly peaked at zero 
(Fig. 1i, top row), and included epochs in which the bump persisted 
at the same orientation for several seconds8 (Fig. 1i, bottom row). We 
then analyzed the average bump velocity at different orientations as 

small networks, in contrast, exhibit notable failures that are indica-
tive of finite, rather than infinite, precision29–31. Consistent with these 
studies, we work under the a priori assumption that achieving infinite 
precision in representing periodic variables requires infinitely large 
networks (see the Supplementary Note for further discussion).

Although ring attractor networks were proposed theoretically 
several decades ago, it has been difficult to identify ring-like archi-
tectures in brains. Ring attractor networks have been used to explain 
bell-shaped tuning curves of mammalian HD neurons that display 
persistent firing in the absence of input and whose activity is updated 
by self-motion even in darkness6,32, but it has not yet been possible to 
measure patterns of connectivity between these neurons. Mammalian 
HD neurons have been observed to coherently change their tuning 
when animals are placed in different settings6, and recent work suggests 
that HD population dynamics traverse a one-dimensional ring-like 
manifold33. In the fly Drosophila melanogaster, a recurrent network of 
neurons in a brain region called the central complex (CX; Fig. 1b) was 
recently shown to exhibit the functional and structural connectivity34–36 
(Fig. 1c), as well as the dynamics8,30,34,37 (Fig. 1d,e), of a ring-like attrac-
tor network. These dynamics are observable as a bump of population 
activity in so-called EPG or ‘compass’ neurons in a toroidal structure of 
the CX called the ellipsoid body (EB). This bump of activity tracks the 
fly’s orientation during turns and persists when the fly stops moving 
(Fig. 1e). These dynamics are driven both by localizing sensory cues 
and by the integration of self-motion cues, which enables the bump 
to track the fly’s movements even in darkness8,30,37. The underlying 
circuit architecture features two subpopulations of ‘shift’ neurons that 
are jointly tuned to orientation and angular velocity and that receive 
input from and project back to the compass neurons30,35–37, as previously 
hypothesized23 (Fig. 1a, bottom). Thus, both physiological and anatomi-
cal considerations suggest that this circuit exhibits the key features of 
a ring-like attractor network, with one major exception: the fly circuit 
has far fewer computational units—sets of neurons with the same HD 
tuning—than are thought necessary to approximate an accurate ring 
attractor36. This low number is likely conserved across many insects, 
including those that are considered more accomplished navigators, 
such as bees38, suggesting that it does not limit navigational perfor-
mance. Motivated by these observations, we sought to characterize 
the capabilities of small networks to represent and integrate an analog, 
periodic variable. In what follows, we dissect the functional properties 
of discrete ring-like attractor networks, and show how small circuits 
might overcome limitations of discreteness to achieve functional 
performance thought to emerge only in the limit of large systems.

Results
The computational properties that make ring attractor networks such 
appealing models of the HD system arise in the limit of large system 
sizes. Specifically, in the limit that the number of neurons approaches 

Fig. 1 | A biological attractor network overcomes hypothesized limitations 
of discreteness. a, Top: ring-like manifold of neural activity. Bottom: a ring 
attractor network maintains an internal representation of orientation through 
local excitation (red) and broad inhibition (blue). Two side rings use angular 
velocity input to shift this representation (green). CW, clockwise; CCW, 
counterclockwise. b, Schematic of the fly CX. ‘Compass’ neurons innervate the EB 
and maintain an internal representation of orientation. ‘Shift’ neurons innervate 
the protocerebral bridge (PB) and shift the representation through angular 
velocity input from the noduli (NO). c, Electron microscopy reconstruction of 
compass neurons. d, Two-photon imaging setup for tethered walking flies. Box: 
32 regions of interest (ROIs) are used to compute the population vector average 
(PVA) of the change in fluorescence (ΔF/F). e, Compass neurons maintain a 
localized bump of activity (heatmap) that tracks the fly’s orientation (red line). 
f, In the absence of input, network dynamics evolve toward the minima of an 
energy landscape. Infinitely large networks generate flat landscapes (top); small 
networks generate bumpy landscapes (bottom; illustrated for N = 6 neurons). 

g, In continuous networks (dark blue), a flat landscape allows activity to persist at 
the same orientation in the absence of input (second column) and to integrate 
velocity input linearly (third and fourth columns). In discrete networks (light 
blue), local minima cause drift in the absence of input (second column), prevent 
continuous integration of small inputs (third column), and cause nonlinear 
integration of large inputs (fourth column). h, Bump orientations in the EB before 
and after stopping periods that exceeded 300 ms, schematized for discrete 
versus continuous networks (top) and shown for the same flies from e (middle 
and bottom). i, Distribution of bump drifts (top histograms) accumulated across 
stopping periods (bottom scatterplots), shown for the same two flies (left and 
middle columns) and accumulated across flies (right column). j, Residual bump 
velocities during left versus right turns as a function of bump orientation in the 
EB, schematized for discrete versus continuous networks (top) and shown for 
individual flies (middle and bottom; dark blue lines show population averages). 
Bump velocities were normalized for gain differences before computing 
residuals (Methods).
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a function of the fly’s average turning velocity. Again, across several 
flies, the bump velocity was consistent across orientations, with no 
apparent signatures of nonlinear integration nor apparent failures to 
track small velocities (Fig. 1j and Extended Data Fig. 2). Thus, despite 

the imperfections of measuring the accuracy of the HD representa-
tion in head-fixed flies on a ball, we found that the peak performance 
of the HD system belied its small size both in its low drift and in its 
accurate integration.
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Fig. 2 | Optimally tuned local excitation can recover a ring attractor manifold. 
a, Schematic of the network model and connectivity Wjk. Top: a population of 
neurons is recurrently connected through local excitation (JE) and broad 
inhibition (JI). Two side rings receive input from and project back to the center 
ring with shifted, velocity-dependent connections. Bottom: a threshold-linear 
response function ensures that a subset of Nact neurons is active at any time; their 
dynamics are governed by an ‘active submatrix’ of the full connectivity. b, Top:  
JE and JI can be selected to maintain a persistent bump of population activity. 
Bottom: characterization of the bump configuration (Methods). c, Top: energy  
of different bump configurations for naive choices of JE and JI. The resulting 
landscape is bumpy, with local minima (white points) separated by barriers. 
Bottom: we sought parameters that ‘flatten’ the energy landscape by minimizing 
local curvature. d, For a network of size N, there are N − 3 optimal values of JE that 
flatten the energy. Shaded bar: optimal values of excitation for a network size of 
N = 6 (see e–h). e–h, We evaluate the performance (rows) of networks of size N = 6 

with different values of JE (columns; J∗E = [12,4, 2.4] (optimal); JE = [6, 3] 
(nonoptimal)). e, Same as c, for different values of JE. Optimal energy landscapes 
are flat (white line); nonoptimal landscapes have local minima (filled markers) 
separated by barriers (open markers). f, Bump trajectories in response to a 
constant input (top row) and in the absence of input (bottom row). Insets show 
zoomed-in portions of trajectories, which highlight the failure to integrate small 
inputs. g, Same as b, shown for bump configurations at the endpoints in f. h, Top 
row: same as heatmaps in a, shown for active submatrices corresponding to the 
bump configurations in g. Filled markers denote active neurons. Middle row: the 
leading eigenvalue of each submatrix governs the dynamics of active neurons. 
Bottom row: in optimal networks, the bump is always maintained by the same 
number of active neurons (gray); in nonoptimal networks, the bump is 
maintained by different numbers of active neurons depending on whether the 
bump configuration is stable (turquoise) or unstable (orange).
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Small networks generate a continuum of stable configurations
The previous results suggest that small networks can, in practice, 
integrate angular velocity without suffering the performance failures 
expected of discrete systems. To explore how this might be achieved 
in principle, we studied the performance of small attractor networks 
(Fig. 2a and Methods).

We considered networks of N orientation-tuned neurons whose 
preferred orientations θj uniformly tile orientation space, with an 
angular separation of Δθ = 2π/N radians (rad). These neurons can be 
arranged topologically in a ring according to their preferred orienta-
tions, with neurons locally exciting and broadly inhibiting their neigh-
bors. We capture this with a symmetric cosine weight matrix 
W sym
jk = JI + JE cos(θj − θk) , where JE and JI respectively control the 

strength of the tuned and untuned components of recurrent connectiv-
ity between neurons with preferred orientations θj and θk. We will refer 
to these components as local excitation and broad inhibition, respec-
tively (but note that the tuned component takes on both positive and 
negative values, and thus is not strictly excitatory; within the parameter 
regimes that we consider, the untuned component is strictly inhibi-
tory). The network receives angular velocity input vin through asym-
metric, velocity-modulated weights W asym

jk = sin(θj − θk)  (see also  
ref. 24); this input could be implemented through two linear side rings 
whose time constants are much smaller than that of neurons in the 
center ring (Supplementary Note). Each neuron transforms its inputs 
through a nonlinear transfer function ϕ(⋅). The total input activity hj 
of each neuron is then governed by

τ ̇hj = −hj +
1
N∑

k
(W sym

jk + vinW asym
jk )ϕ(hk) + cff, j = 1,… ,N, (1)

where cff is a constant feedforward input to all neurons in the network. 
In what follows, we take ϕ(⋅) to be threshold linear; this ensures that 
only a subset of all neurons will be active at any time. As a result, the 
dynamics of active neurons will be governed by an ‘active submatrix’ 
of the full connectivity (Fig. 2a, bottom). We derive our theoretical 
results for networks of arbitrary size N < ∞; unless otherwise noted, 
we illustrate these results using a network of size N = 6 because this 
is the smallest network that exhibits the range of dynamics observed 
across parameter tunings.

For sufficiently strong local excitation and broad inhibition, this 
network generates a stable bump of activity (Fig. 2b (top), Extended 
Data Fig. 3a and Methods). We characterize the bump by the Fourier 
modes of the population activity (given by equation (1)). For the net-
work connectivity chosen here, which varies sinusoidally with the dif-
ference between preferred orientations, the population activity is fully 
specified by the zeroeth- and first-order Fourier modes. This allows 
us to characterize the ‘configuration’ of the activity bump in terms 
of its relative amplitude a, angular width w, and angular orientation 
ψ (Fig. 2b (bottom) and Supplementary Note). These quantities vary 
continuously over time, and thus, the same number of active neurons 
can maintain bump configurations with different relative amplitudes, 
widths, and orientations.

We began by characterizing the manifold of stable bump configu-
rations in the absence of angular velocity input (Extended Data Fig. 3b–i 
and Methods). To this end, we constructed a landscape that describes 
the energy of different bump configurations for a given set of param-
eters JE and JI (refs. 40,41 and Methods). For most parameter settings, 
the energy landscape is bumpy, with discrete minima separated by 
barriers (Fig. 2c, top), as expected for small networks39. The landscape 
is highly curved about these minima, indicating that the bump would 
be highly attracted to these particular orientations. To weaken this 
attraction, we analytically determined the values of JE and JI that would 
locally minimize this curvature, and thus locally flatten the energy 
landscape (Fig. 2c, bottom). Surprisingly, we found that specific values 
of local excitation drive the curvature to zero, resulting in an energy 

landscape that is completely flat as a function of orientation (Extended 
Data Fig. 4). For a network of size N, there are N − 3 such ‘optimal’ values 
of local excitation J∗E (Fig. 2d). Figure 2e illustrates the corresponding 
optimal energy landscapes for a network of size N = 6, and contrasts 
these with two nonoptimal landscapes generated with intermediate 
values of local excitation.

To verify that these optimally tuned networks could overcome the 
failure modes highlighted in Fig. 1g, we simulated the response of each 
network to a constant velocity input (Fig. 2f and Methods). As expected, 
we found that optimal networks accurately integrated angular veloc-
ity input, such that the bump orientation changed linearly over time 
(Fig. 2f, top row). When this velocity input was removed (Fig. 2f, bottom 
row), the bump persisted at the same orientation and did not drift (we 
also observed this in networks with different nonlinearities and con-
nectivity profiles in one and two dimensions; Extended Data Fig. 5 and 
Methods). In contrast, nonoptimal networks failed to integrate small 
velocities (Fig. 2f, top row insets), and they nonlinearly integrated 
larger velocities (Fig. 2f, top row main panels). When this velocity input 
was removed, the bump drifted toward the set of discrete orientations 
corresponding to the local minima of their energy landscapes (Fig. 2f, 
bottom row).

In the absence of velocity input, optimal networks generate a 
continuum of marginally stable configurations in which the bump 
can persist (Fig. 2g). These configurations share one striking feature: 
the bump is always maintained by the same number of active neurons 
despite variations in relative amplitude, width, and orientation. This 
feature has important consequences for network dynamics: when a 
fixed subset of neurons is active, equation (1) for hj > 0 reduces to a 
linear dynamical system that depends only on an ‘active submatrix’ of 
the full connectivity W (Fig. 2h, top row; note that we take the full con-
nectivity to be W = (W sym/N − I)/τ). Moreover, because the connectivity 
is rotationally invariant, this active submatrix—and thus the resulting 
network dynamics—will be identical for any contiguous subset of Nact 
active neurons. To characterize these dynamics, we determined the 
eigenvalue spectra of these active submatrices (Methods). Each sub-
matrix exhibited a single zero eigenvalue (Fig. 2h, middle row); the 
real part of all remaining eigenvalues was less than zero. This property 
gives rise to a so-called line attractor that produces a continuum of 
marginally stable configurations along a line11. Thus, in this network, 
a ring attractor emerges as a discrete set of N line attractors that each 
governs the dynamics of distinct subsets of active neurons (Fig. 2h, 
bottom row), and that are ‘stitched together’ at the points where an 
active subset gains and loses an active neuron.

In contrast, nonoptimal networks can only maintain a discrete set 
of bump configurations in the absence of input; these configurations 
correspond to so-called fixed points of the dynamics. One subset of 
these configurations is stable; the bump will return to these stable 
fixed points following small perturbations (Fig. 2g, turquoise curves). 
The other subset is unstable; the bump will move away from these 
unstable fixed points if perturbed (Fig. 2g, orange curves). In these 
two configurations—stable and unstable—the bump is maintained 
by different numbers of active neurons (also called the ‘support’ of 
the fixed point42,43), and the corresponding active submatrices differ 
in size (Fig. 2h, top row). The smaller of these submatrices has a lead-
ing eigenvalue less than zero and governs network dynamics about 
the stable fixed point, whereas the larger of these submatrices has a 
leading eigenvalue greater than zero and governs dynamics about the 
unstable fixed point (Fig. 2h, middle row). In what follows, we use these 
active submatrices to dissect the dynamics of nonoptimal networks, 
and we show how the balance between stable and unstable dynamics 
shapes performance.

Variations in tuning degrade network performance
The previous results highlight a unique feature of threshold-linear 
networks: when a fixed subset of neurons is active, the corresponding 
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dynamical system is linear, and the dynamics of the full network can be 
viewed as a set of linear subsystems that are stitched together at points 
where the active subset gains or loses an active neuron. In this way, a 
ring attractor that encodes a continuum of values on a circle can be con-
structed by stitching together multiple line attractors that each encode 
a continuum of values on a line segment. Because a line attractor can be 
constructed from a network with as few as two neurons, a minimal ring 

attractor could, in principle, be constructed using only three neurons. 
However, our choice of connectivity requires a minimum of four neurons 
to construct a ring attractor, in which each contiguous pair of neurons 
encodes a distinct line attractor (Fig. 3a). This requires a precise handoff 
between linear systems that share active neurons, such that the network 
dynamics move between line attractors by simultaneously activating 
and inactivating single neurons at the edges of the active subset.
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Fig. 3 | Nonoptimal networks balance periods of stability and instability. 
a, A linear subsystem of active neurons can be tuned to encode a continuum of 
orientations over a fixed interval (heatmap; left). Multiple line attractors can be 
stitched together at orientations where the active subset simultaneously gains 
and loses an active neuron (middle), thereby generating a ring attractor (right). 
b, Without precise tuning, each linear subsystem (shaded region; left) encodes 
a single unstable or stable fixed point (‘FP’; markers). When stitched together 
(middle), the set of linear subsystems can stably encode only a finite number 
of orientations (‘point attractors’; right). c, Top: the dynamics of each linear 
subsystem are governed by the leading eigenvalue λ of the active submatrix of 
the connectivity (Fig. 2h). Bottom: in the unstable regime (orange), the bump 
accelerates away from an unstable fixed point at rate λu > 0; in the stable regime 
(turquoise), the bump decelerates toward a stable fixed point at rate λs < 0. d, 
Bump dynamics depend on the fixed-point orientations (square markers), drift 
rates λ (color map), and angular span of each regime (colored areas). Illustrated 

without velocity input. e–h, Bump dynamics without velocity input. e, Simplified 
energy landscape. f, Same as e for different JE. As JE approaches an optimal value, 
one region of the landscape flattens and fills the entire ring; the other sharpens 
and shrinks in span. g, Bump dynamics for energy landscapes in f. h, Net drift 
speed, computed analytically (line) and by simulation (markers). i–l, Bump 
dynamics with velocity input. i, Small velocities shift the fixed points toward the 
boundary between stable and unstable regimes, tipping the energy landscape in 
the direction of the input. At a threshold velocity (equation (5)), the fixed points 
meet at the boundary, and the bump slides continuously down the landscape. 
j, Same as i for different JE, given a fixed input velocity. JE affects how quickly the 
fixed points move through the energy landscape, and, thus, how readily the 
landscape tips for a given velocity. k, Bump dynamics for energy landscapes in j. 
l, Threshold velocity (solid curve) and linearity of integration (dashed curves), 
computed analytically (lines) and by simulation (markers).
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Achieving this precise handoff requires precise tuning, such that 
the leading eigenvalue λ of all active submatrices of W is zero. Without a 
zero eigenvalue, a linear subsystem can, at most, encode a single stable 
or unstable fixed point. By interleaving linear subsystems that encode 
stable and unstable fixed points, the network can still cover a circular 
interval, but the values that can be stably represented are limited to 
a discrete set (Fig. 3b). In the vicinity of an unstable fixed point (the 
‘unstable’ regime), the bump is pushed exponentially quickly away 
from the fixed point with rate λu > 0 (Fig. 3c, orange). In the vicinity of 
a stable fixed point (the ‘stable’ regime), the bump is pulled exponen-
tially slowly toward the fixed point with rate λs < 0 (Fig. 3c, turquoise). 
The bump transitions from the unstable to the stable regime when the 
active subset loses an active neuron.

This picture highlights how nonlinear computations, such as the 
integration of angular velocity, can be performed through an orches-
trated interaction between multiple linear subsystems that have dif-
ferent fixed-point structures44. By decomposing the full dynamical 
system into linear subsystems, this picture allows us to analytically 
characterize inaccuracies in nonoptimal networks, and thereby esti-
mate the precision in tuning required to bound these inaccuracies. 
We measure these inaccuracies using the expected signatures of dis-
creteness highlighted in Fig. 1g (drift in the absence of input, failure to 
integrate small inputs, and nonlinear integration of large inputs), and 
we relate these to a simplified description of the energy landscapes 
shown in Fig. 2e. A complete description of the energy landscape is not 
attainable in the presence of velocity inputs due to the asymmetry that 
it introduces in the connectivity matrix (Fig. 2a); to circumvent this, 
we construct an approximate description that relies on three features 
of the linear subsystems described above: (1) the orientations of the 
unstable and stable fixed points, (2) the rates at which the bump is 
pushed from or pulled toward these fixed points, and (3) the angular 
span of the regimes governed by each fixed point. As we will show, 
the local excitation determines the overall curvature of the energy 
landscape through the rates and angular spans of each regime, which 
affects the amount of drift. Input velocity shifts the fixed points within 
this landscape, which influences the accuracy of velocity integration.

Drift in the absence of input. In the absence of velocity input, the 
stable and unstable fixed points are evenly spaced by Δθ/2 = π/N rad 
regardless of the strength of local excitation. However, the local excita-
tion affects how quickly the bump moves relative to each fixed point, 
which, in turn, affects the rate of drift in the network. If we vary the local 
excitation between two optimal values, J∗E,n and J∗E,n+1 (corresponding 
to scenarios in which the bump is always maintained by n or n + 1 active 
neurons, respectively), we find that the drift rates λs and λu depend on 
how closely tuned the local excitation is to either optimal value (Fig. 3d 
and Extended Data Fig. 6):

λs = (JE/J∗E,n − 1) /τ < 0,

λu = (JE/J∗E,n+1 − 1) /τ > 0.
(2)

Thus, in the stable regime, where the bump is maintained by n 
active neurons, the dynamics depend on how closely tuned the excita-
tion is to the value that would be optimal if n neurons maintained the 
bump. Similarly, in the unstable regime, where the bump is maintained 
by n + 1 active neurons, the dynamics depend on how closely tuned 
the excitation is to the value that would be optimal if n + 1 neurons 
maintained the bump. Assuming that the bump orientation transitions 
smoothly between regimes (as seen in simulations; Fig. 2f, top row), 
the relative widths Δθs,u/Δθ of these regimes depend on the ratio of 
the drift rates (Fig. 3d):

Δθs
Δθ

= 1
1 + |λs|/ |λu|

= 1 − Δθu
Δθ

. (3)

Together, these expressions enabled us to construct a simplified land-
scape that captures the energy of different bump orientations within 
each linear subsystem (Fig. 3e and Methods). The fixed points deter-
mine the locations of extrema within the landscape, the drift rates 
determine the curvature of the landscape about these extrema, and 
the angular spans of each regime delineate different regions of the 
landscape that correspond to stable versus unstable dynamics. This 
description explains how a ring attractor emerges as the connectivity 
is tuned toward an optimal value (Fig. 3f): at one extreme ( JE → J∗E,n), 

the stable region of the landscape flattens and expands to fill the entire 
ring (λs → 0, Δθs → Δθ), whereas the unstable region sharpens and shrinks 
in span; at the other extreme ( JE → J∗E,n+1), the unstable region of the 

landscape flattens and expands to fill the entire ring (λu → 0, Δθu → Δθ), 
whereas the stable region sharpens and shrinks in span. These differ-
ences in the shape of the energy landscape affect the drift dynamics 
(Fig. 3g), an effect that we quantify by measuring the net drift speed 
of the bump (Fig. 3h):

|λd| = cΔθs|λs| = cΔθu|λu|, (4)

where c = (e − 1)/2e is a constant. This speed is related to the overall 
curvature of the landscape, and will be largest at intermediate values 
of local excitation for which the landscape is bumpiest.

Inaccuracies in velocity integration. When a sufficiently small veloc-
ity input is injected into the network, the local curvature and angular 
span of the stable and unstable regions of the landscape will remain 
approximately unchanged (Extended Data Fig. 7). However, the ori-
entations of the fixed points will shift toward the boundary between 
regions, thereby tipping the landscape in the direction of the velocity 
input and driving the bump to a new stable fixed point (Fig. 3i and 
Extended Data Fig. 8c,d). The flatter the overall landscape (that is, the 
smaller the value of |λd|), the more readily the landscape will tip for a 
given velocity input (Fig. 3j).

At a particular threshold velocity, vthresh, the fixed points will meet 
at the boundary between regions, thereby enabling the bump to slide 
down the landscape without getting stuck. This threshold velocity 
specifies the minimum input that can be continuously integrated by 
the network, and depends on the overall curvature of the landscape 
through the net drift speed |λd|:

vthresh ≊ |λd|/ 2c. (5)

The larger the overall curvature of the landscape, the larger the input 
velocity needed to continuously move the bump (Fig. 3k). In the limit 
that the local excitation approaches an optimal value, the overall cur-
vature goes to zero, and the network can integrate infinitesimally small 
inputs (Fig. 3l, solid curve).

Above this threshold velocity, the fixed points will shift outside of 
their respective regions of the landscape, but their effect will still be 
felt through the local landscape curvature. As a result, the bump will 
speed up and slow down as it moves through the unstable and stable 
regions of the landscape, but it will never get stuck at a fixed point 
(Fig. 3k and Extended Data Fig. 8e,f). This manifests as nonlinear inte-
gration, which we quantify by measuring the ratio between the slowest 
and fastest bump velocities, νmin and νmax. This ratio depends only on 
the relative difference between the threshold and input velocities:

linearity(vin) =
νmin
νmax

≊ vin − vthresh
vin + vthresh

. (6)

Bumpier energy landscapes lead to larger threshold velocities, which 
lead to increasingly nonlinear integration. However, because the overall 
curvature (and thus the threshold velocity) is fixed for a given value of 
local excitation, its relative impact on integration decreases as input 
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velocity increases (Fig. 3l, dashed curves). In the limit that the local 
excitation approaches an optimal value, the threshold velocity goes to 
zero, and the bump moves continuously at the rate of the input velocity.

Optimal small networks are less robust
The previous results provide a mechanistic understanding of how small 
networks can achieve optimal performance through the precise tuning 
of local excitation. To assess the potential cost of this precision, we used 
the previous results to characterize how size affects the robustness of 
optimal networks.

We first characterized robustness to variations in parameter tun-
ing. For a given network size, deviations from optimal tuning degrade 
performance through more rapid drift, larger threshold velocities, and 
more nonlinear velocity integration. In larger networks, this degrada-
tion is less severe (Fig. 4a, top). To quantify this, we asked how precisely 
the local excitation should be tuned to meet a criterion level of perfor-
mance (Fig. 4a, bottom). For small values of this criterion, we analyti-
cally determined the width of the interval about each optimal value of 
local excitation J∗E for which a given measure of network performance 
meets this criterion; we define the width of this interval to be the toler-
ance tol ( J∗E ,N ):

tol ( J∗E ,N ) ≥ cPJ
∗
EN, (7)

where cP is a constant that depends on the specific performance meas-
ure (net drift rate, threshold velocity, or linearity of integration) and 
the desired performance criterion. For a given network size, equation 
(7) shows that larger optimal values of local excitation permit a wider 

range of parameter values that meet the same criterion level of perfor-
mance, and are thus more robust to parameter tuning (Fig. 4b). This 
robustness increases linearly with network size; this can be seen most 
clearly for J∗E = 4, which is an optimal value of local excitation for all 
evenly sized networks (Fig. 4c). When summed across all optimal values 
of local excitation, equation (7) allows us to estimate the net volume 
of parameter space that achieves a desired performance threshold 
(Methods). Because larger networks permit more values of optimal 
excitation and exhibit higher tolerances around these values, we find 
that the net volume of desirable parameter space increases at least 
quadratically with network size (Extended Data Fig. 9a).

We next characterized robustness to noise. We simulated the 
dynamics of optimally tuned networks with additive Gaussian noise, 
and measured how quickly the bump diffused in the absence of velocity 
input (Fig. 4d, top). At longer timescales, the difference between the 
initial and final bump positions is diffusive, with a variance that grows 
linearly over time (Fig. 4d, bottom). The inverse diffusion rate gives a 
measure of noise robustness; the faster the diffusion, the less robust 
the network is to noise. For a given network size, larger optimal values 
of excitation are more robust to noise (Fig. 4e), in qualitative agree-
ment with their increased robustness to variations in parameter tuning 
(Fig. 4b). For a given value of excitation, noise robustness increases 
linearly with network size, and inversely with the noise variance (Fig. 4f 
and Extended Data Fig. 9b).

Together, these results highlight that optimally tuned small net-
works can recover the performance of infinitely large networks. How-
ever, in the networks considered here, this comes at the cost of being 
less robust to variations in parameter tuning and to noise.
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Fig. 4 | Smaller networks require more fine-tuning and are less robust to 
noise. a, Top: log of net drift speed (color map) as a function of JE and N. Red 
circular markers indicate optimal values of J∗E; darker blue colors indicate slower 
(that is, better) drift rates. Suboptimal networks achieve better performance  
as N increases. Bottom: to estimate tolerance around an optimal value of J∗E,  
we compute the local change in net drift speed with respect to JE (turquoise lines) 
that will achieve performance below some threshold (horizontal dashed black 
line, illustrated for a threshold of 0.1 rad s−1). b, For a given N (different colors), 
larger values of local excitation require less fine-tuning to achieve the same 
performance. Solid lines mark the analytic tolerance given in equation (7); filled 
circles indicate the numerically estimated tolerance about each optimal value of 
J∗E. Results were computed for a threshold value of 0.001 rad s−1, and are shown 

for all evenly sized networks between N = 6 and N = 20. c, Given a fixed value of J∗E, 
the tolerance increases linearly with N. Results are shown for J∗E = 4, the only 

optimal value of local excitation that remains unchanged with even N. d, Top: 
error variance between the current and initial bump positions in a small, 
optimally tuned network with additive Gaussian noise. Numerical results are 
shown for three different optimal values of J∗E, and with a noise variance 
σ2 = (A/6)2, where A = 0.2 is the bump amplitude. Bottom: beyond 10 s, the error 
variance grows linearly over time, following a diffusion equation with slope 2D 
(where D is the diffusion coefficient). We use 1/2D as a measure of noise 
robustness, with lower diffusion signifying higher robustness. e, Consistent  
with d, larger optimal values of J∗E lead to higher noise robustness for a fixed N.  
f, Given a fixed value of J∗E (shown for J∗E = 4), noise robustness increases  
linearly with N, and is inversely proportional to noise variance σ2 (shown for 
σ2 = (A/6)2 × [1, 4, 9, 16, 25]). Dashed lines indicate best linear fits; see Extended 
Data Fig. 9 for fit coefficients.
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Discussion
Continuous attractor networks have provided a common theoreti-
cal framework for studying a wide range of computations16 involved 
in working memory2–4, navigation5,7,9, and motor control11,12. Across 
these different task domains, this framework has historically invoked 
networks of many neurons to ensure smooth and accurate dynamics. 
However, growing evidence suggests that similar computations might 
be performed in much smaller brains with far fewer neurons8,30,34,35,37,45. 
Here, we asked to what extent network size limits the performance 
of attractor networks3,46, and whether small networks can overcome 
these limitations. We focused on a class of attractor networks that 
maintain a persistent internal representation of a single circular 
variable, such as orientation, and that update this representation 
by integrating an internal signal, such as angular velocity. In the limit 
of infinite numbers of neurons, these ring attractor networks gener-
ate a continuous ring manifold along which the population activity 
smoothly and accurately evolves in the absence of noise. Here, we 
showed that networks with as few as four neurons could recover this 
continuous ring attractor manifold, so long as the tuned component 
of the connectivity (what we term local excitation) is precisely chosen. 
In the threshold-linear networks studied here, this manifold emerges 
as a set of line attractor manifolds that govern the dynamics of active 
subsets of neurons, and that are stitched together to generate a com-
plete ring manifold. The resulting population activity can persist at 
any orientation in the absence of input, and it can smoothly integrate 
velocity input.

Together, these results suggest that very small networks can 
achieve levels of performance that were thought to require large net-
works. However, this performance comes at the cost of finely tuning 
local excitation to one of a discrete number of optimal values. Our 
biological inspiration was the small HD circuit of the fruit fly8,30,35,37. 
Although such networks have been modeled previously29–31,47, stud-
ies have not demonstrated persistent encoding of arbitrary orienta-
tions in the absence of orienting stimuli. Further, although previous 
studies31,47 have shown that network performance changes as connec-
tion strengths vary, our study fully characterizes how network size 
and connection strength influence performance. It is unclear whether 
the fly HD system relies on the fine-tuning that we require for optimal 
performance. To date, this system has only been probed under head 
fixation on an air-supported ball (Methods); thus, its performance 
during free behavior is unknown. Moreover, some inaccuracies in 
its performance may be attributable to errors in the computation of 
angular velocity, and not errors in its integration. Our main objective 
was to investigate the performance and capabilities of small ring-like 
attractor networks rather than to provide a detailed model of the 
fly HD circuit per se. As such, there are many differences between 
the fly circuit and the simple model we explore here, some of which 
may provide as-yet-undescribed mechanisms to overcome potential 
problems of discreteness. For example, a potential substrate for tun-
ing local excitation may be the synaptic contacts that fly HD neurons 
make between themselves in different substructures of the CX15,35. 
Some of these and other fine-scale details of synaptic connectivity 
have not been incorporated into existing rate models30,34 or spiking 
neuron models29,31,47 of the circuit. In addition, these previous modeling 
efforts have focused on capturing the dynamics of the circuit without 
incorporating the biophysical properties of its neurons, and, in most 
cases, with only a subset of the excitatory and inhibitory cell types 
likely involved in generating the dynamics. Although the receptor 
and transmitter profiles of the relevant neurons are known35, further 
experiments are required to assess how intrinsic neuronal properties 
shape persistent population activity, as reported in the mammalian 
HD system48. Indeed, these intrinsic properties may account for the 
low drift we observed in the circuit (Fig. 1i) relative to that predicted 
by the model (Fig. 4d). Thus, while our work shows that small networks 
can, with appropriate tuning, implement continuous ring attractors, 

further experiments are needed to understand their cellular and syn-
aptic implementation in real circuits.

Importantly, large ring attractor networks also suffer from the 
problem of fine-tuning, where noise in the connectivity—arising, 
for example, from heterogeneity in synaptic or cellular properties—
can yield bumpy energy landscapes similar to those generated here 
(Fig. 2e). Several mechanisms have been proposed to combat this issue, 
including homeostatic synaptic scaling49 and synaptic facilitation50. 
These mechanisms might also be effective in the small networks studied 
here, where—in addition to fine-tuning the profile of the connectiv-
ity—the overall strength of local excitation must also be fine-tuned. 
Away from these optimal values, network dynamics are governed by 
unstable and stable linear regimes in which the population activity 
is pushed from or pulled toward discrete fixed points. We identified 
three properties of these regimes that govern network performance: 
the angular width of each regime, the locations of fixed points within 
each regime, and the speed at which the bump is pushed from or pulled 
toward each fixed point. Varying the strength of local excitation alters 
the balance between the regimes, such that improving performance in 
one regime worsens performance in the other. However, as the local 
excitation approaches an optimal value, the overall performance is 
dominated by the better-performing regime, which, in the same limit, 
becomes a ring attractor.

This analysis relied on characterizing the behavior of threshold- 
linear networks in terms of a separation between different linear 
dynamical regimes. This separation has recently been used to infer 
the underlying connectivity of biological networks51, and to design 
different connectivity motifs that generate distinct dynamical patterns, 
for example, to keep count or coarsely represent different positions52,53. 
Here, we showed how the precise tuning of interactions within a single 
connectivity motif shapes the properties of these linear regimes, and 
how these properties, in turn, affect performance. We found that cer-
tain regions of parameter space reduce drift and improve integration, 
and among these ‘good’ parameter regions, some are more robust 
than others. Specifically, we found that larger optimal values of local 
excitation, which generate narrower activity bumps, are more robust 
to variations in tuning and to additive noise, consistent with previous 
studies of noise robustness in attractor networks3,46.

Our results relied on specific assumptions about network con-
nectivity and dynamics. We assumed local cosine-tuned excitation and 
broad uniform inhibition, but ring attractor manifolds can be generated 
with different hand-tuned22,24,25,27,54 or learned55 connectivity structures. 
Similarly, velocity integration can be performed in multiple ways, for 
example, using a network of two rings that receive differential velocity 
input25, or through two side rings that inherit heading activity from and 
project back to a center ring with velocity-dependent phase shifts23, as 
has been observed experimentally30,37. Our formulation approximates 
this second implementation in the limit that the side rings have fast neu-
ral time constants24. Finally, our choice of a threshold-linear response 
function enabled us to decompose the dynamics into distinct linear 
regimes42,43 that differentially affect performance, and it allowed us 
to analytically characterize the tuning precision required to achieve 
a desired level of performance. In such threshold-linear networks, 
this precision is limited to the tuned component of the connectivity; 
however, in networks with other nonlinearities, both the tuned and 
untuned components must be precisely chosen (Extended Data Fig. 5a). 
We expect such optimal tunings to exist more generally, provided that 
the energy of the system varies smoothly with the network tuning. In 
such cases, parameter-dependent changes in the stability of fixed 
points must be connected through optimal parameter tunings that 
locally flatten the energy as a function of orientation, as observed in 
Fig. 3f (Supplementary Note). In the absence of such tuning precision, 
small networks can fail to integrate velocity inputs and can drift in the 
absence of input. While such performance failures are known to arise 
in small attractor networks with differing connectivity structures and 
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neural response functions3,46, it remains an open question how these 
different design features affect the relationship between tuning preci-
sion and performance more broadly.

While these results were motivated by and interpreted in the con-
text of the small HD system of Drosophila, they immediately general-
ize to other scenarios. For example, the ring attractor network can 
be used to model place fields in circular environments, grid fields 
in one dimension, persistent-activity-mediated short-term memory 
of stimuli represented by angular variables1, and the preparation of 
motion toward targets on a circle10. Our results suggest that such repre-
sentations could be accurately maintained using few neurons, thereby 
broadening the classes of computations that could be performed 
by small circuits. Moreover, these results could further generalize 
to higher-dimensional continuous variables, such as HD, place, and 
grid fields in two or three dimensions9,17–19 (see Extended Data Fig. 5b 
for proof-of-principle numerical results). More broadly, the ability to 
represent one continuous variable accurately using small numbers of 
neurons could more easily enable large systems to represent multiple 
continuous variables, such as the representation of many environments 
observed in the rodent hippocampus5,20,21.
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Methods
Experimental setup
Fly preparation for imaging. We expressed the genetically encoded cal-
cium indicator GCaMP7f (ref. 56) in EPG neurons by crossing GCaMP7f 
flies (w1118;;PBac[20XUAS-IVS-Syn21-op1-GCaMP7f-p10] in VK00005) 
to the EPG GAL4 driver line SS00096 (ref. 57). Flies (females, age 5–9 
days, n = 10) were prepared for imaging as previously described8,58. 
Briefly, flies were anesthetized at 4 °C, their proboscis immobilized 
with wax to reduce brain movements, and their head/thorax fixed to a 
holder with a recording chamber using ultraviolet glue. To gain optical 
access to the brain, we removed a section of cuticle between the ocelli 
and antennae, along with the underlying fat and air sacs. Throughout 
the experiment, the head was submerged in saline containing NaCl 
(103 mM), KCl (3 mM), TES (5 mM), trehalose (8 mM), glucose (10 mM), 
NaHCO3 (26 mM), NaH2PO4 (1 mM), CaCl2 (2.5 mM) and MgCl2 (4 mM), 
with a pH of 7.3 and an osmolarity of 280 mOsm.

Two-photon calcium imaging. Calcium imaging was performed with 
a custom-built two-photon microscope controlled with ScanImage 
(version 2022, Vidrio Technologies)59. Excitation of GCaMP7f was gen-
erated with an infrared (920 nm), femtosecond-pulsed (pulse width 
~110 fs) laser (Chameleon Ultra II, Coherent) with 15 mW of power, 
as measured after the objective (×60 Olympus LUMPlanFL/IR, 0.9 
numerical aperture). Fast Z-stacks (eight planes with 6-μm spacing 
and three fly-back frames) were collected at 10 Hz by raster scanning 
(128 × 128 pixels, ~75 × 75 μm2) using an 8-kHz resonant-galvo system 
and piezo-controlled Z positioning. Focal planes were selected to cover 
the full extent of EPG processes in the EB. Emitted light was directed 
(primary dichroic: 735, secondary dichroic: 594), filtered (filter A: 680 
SP, filter B: 514/44) and detected with a GaAsP photomultiplier tube 
(H10770PB-40, Hamamatsu).

Spherical treadmill system. Following dissection, flies were posi-
tioned on an air-supported polyurethane foam ball (8-mm diameter, 
47 mg) under the two-photon microscope and allowed to walk. Rota-
tions of the ball were tracked at 500 Hz, as described previously58. 
Behavioral data and imaging timestamps were recorded using Wave-
Surfer (version 0.947, http://wavesurfer.janelia.org/). For each fly, 
we collected five 20-min trials during which flies walked or stood  
in darkness.

Data analysis
All data analysis was performed in MATLAB (version 2022a, Math-
Works). Some analyses relied on functions from the Circular Statistics 
Toolbox (version 2012a)60. No statistical methods were used to prede-
termine sample sizes, but our sample sizes are similar to those reported 
in previous publications8,30,61. Flies were selected at random from their 
vials; however, as all data were collected from a single experimental 
condition (flies walking in darkness), no other randomization was 
performed. Data collection and analysis were not performed blind to 
the conditions of the experiments. We excluded any data collected 
beyond 100 min for consistency and to exclude a small number of flies 
whose behavior and/or imaging degraded in quality, a known limitation 
of fly-on-a-ball calcium imaging experiments.

Extracting bump orientation and strength. Each Z-stack was reduced 
to a single frame using a maximum-intensity projection technique. 
An ellipse was manually drawn around the perimeter of the EB and 
automatically segmented into 32 equal-area, wedge-shaped ROIs. 
The number of ROIs was chosen to be twice the number of anatomi-
cally defined EB wedges62. Activity within each ROI was averaged for 
each frame, producing 32 ROI time series. For each ROI time series, 
baseline fluorescence (F0) was defined as the average of the lowest 
10% of samples. ΔF/F was computed as 100 × (F − F0)/(F0), where F is the 
instantaneous fluorescence from the raw ROI time series. These ROI 

time series were then smoothed with a third-order Savitzky–Golay filter 
over 11 frames as in previous studies8,30. We used the PVA as a measure 
of bump strength and orientation. PVA was computed by taking the 
circular mean of vectors whose angles were the ROI’s wedge positions 
and whose length was equal to the ROI’s ΔF/F. The magnitude of this 
mean resultant vector length was normalized to have a maximum 
possible length of 1.

Characterizing bump drift. To determine bump drift (Fig. 1h,i), we 
first identified periods when flies were standing still (defined as zero 
rotational and translational velocity), disregarding periods shorter 
than 300 ms. Drift was computed as the circular distance between 
bump orientations (PVA phase) at the beginning and end of these 
periods of standing. To determine whether the EPG bump drifted from 
its initial position to preferred discrete locations within the EB when 
the fly stood still, we compared the distributions of initial and final 
bump positions across 64 nonoverlapping bins from −π to π around 
the structure (Extended Data Fig. 1a,b). We used Watson’s U2 test63,64, 
a nonparametric two-sample test, for this comparison, implemented 
using MATLAB code from P. Mégevand (watsons_u2, https://github.
com/pierremegevand/watsons_u2, 2017). We used 500 permutations to 
compute P values for this test; these P values, together with the test sta-
tistic U2, are reported in the caption of Extended Data Fig. 1b. Finally, we 
computed the distribution of drifts for periods between 300 ms and 2 s 
across 64 nonoverlapping binned initial positions from −π to π around 
the EB, and fit each fly’s drift distribution with sinusoidal functions of 
the form A × sin(ω × ψ + θ) + C, where ω ∈ {8, 16} is the frequency of the 
sinusoid, ψ is the initial bump position during the standing period, and 
A, θ, C are learned parameters for the amplitude, phase, and DC offset, 
respectively (Extended Data Fig. 1c,d). Frequencies of 8 and 16 Hz were 
chosen to match the number of computational units in the fly’s compass 
network, which, in a discrete network, would cause the bump to drift 
toward 8 (or 16) distinct bump positions (schematized in Fig. 1h, top). 
For each fly, we computed the R2 value between the drift, measured as 
a function of HD, and the sinusoidal fits (Extended Data Fig. 1c); these 
R2 values are reported in Extended Data Fig. 1d.

Characterizing bump velocity. To determine whether the EPG 
bump shows signs of nonlinear integration (Fig. 1j, top), we meas-
ured whether the bump moved faster or slower than expected as a 
function of bump position for both left and right turns (Fig. 1j, middle 
and bottom). We began by performing a linear regression (ordinary 
least squares) between the fly’s instantaneous angular velocity and 
the bump’s angular velocity (both sampled at 10 Hz) to account for 
fly-to-fly variability in the gain of angular integration, as observed in 
previous studies8,30,61. Linear fits were separately performed for left 
and right turns, and the residuals were taken as a measure of whether 
the bump was moving faster (or slower) than expected after account-
ing for each fly’s naive gain. Next, we binned data by bump position 
(64 nonoverlapping bins from −π to π) and computed the average 
residual bump velocity for each bin, producing the curves shown in 
the middle and bottom panels of Fig. 1j. Lastly, we fit each fly’s curve 
with sinusoidal functions of the form A × sin(ω × ψ + θ) + C, where 
ω ∈ {8, 16} is the frequency of the sinusoid, ψ is the bump position, 
and A, θ, C are learned parameters for the amplitude, phase, and DC 
offset, respectively (Extended Data Fig. 2). Frequencies of 8 and 16 Hz 
were chosen to match the number of computational units in the fly’s 
compass network, which, in a discrete network, would cause the bump 
to move faster or slower than expected at 8 (or 16) distinct bump 
positions (schematized in Fig. 1j, top). For each fly, we computed the 
R2 value between the residual bump velocity, measured as a function 
of HD, and the sinusoidal fits (Extended Data Fig. 2a); these R2 values 
are reported in Extended Data Fig. 2b.

We note that our fly-on-a-ball calcium imaging setup comes with 
potential challenges for evaluating the presence or extent of nonlinear 
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integration, including slow GCaMP dynamics, altered proprioceptive 
feedback that the fly may experience while walking on a ball heavier 
than itself, head fixation that may prevent the fly from altering its 
head–body angle during turns, potential neural propagation delays 
involved in relaying and integrating the angular velocity signal, and 
measurement noise inherent to calcium imaging that could corrupt 
bump velocity estimation.

Model overview
Network equations. We consider an effective single-ring network of 
N neurons (or, equivalently, of N computational units; see ‘Network 
equations’ in the Supplementary Note). Neurons are ordered accord-
ing to their preferred heading θj, which we take to be evenly spaced by 
Δθ = 2π/N rad. Neurons are recurrently connected according to their 
preferred headings through a symmetric weight matrix 
W sym
jk = JI + JE cos(θj − θk) , where JE and JI parametrize the strength  

of local excitation and uniform inhibition, respectively (note that  
JE and JI actually correspond to tuned and untuned components of  
the connectivity; for ease of language, we use local excitation  
and broad inhibition here and throughout). Neurons receive velo
city input through an asymmetric, velocity-modulated weight  
matrix vinW

asym
jk = vin sin(θj − θk); in the main text, we took vin > 0. Each 

neuron j receives a constant feedforward input cff and a net input 
1/N∑k(W

sym
jk + vinW asym

jk )rk from all other neurons in the network, where 
the firing rate rk = ϕ(hk) is a nonlinear function of the total input activity 
hk. For all analyses shown in the main text, we took the nonlinear trans-
fer function ϕ(⋅) to be rectified linear (that is, ϕ(⋅) = [⋅]+, but see also 
Extended Data Fig. 5 and ‘Robustness to changes in the transfer  
function and recurrent weights’ in the Methods). The dynamics of 
each neuron are given by the system of single-neuron equations in 
equation (1); we chose τ = 0.1 s and cff = 1.

By applying a discrete Fourier transform to the single-neuron 
equations, we can express this system of equations in terms of its Fou-
rier modes. After initial transients, only the DC and first-order modes 
remain, and the resulting dynamical system reduces to a set of three 
equations that govern the dynamics of the orientation ψ, amplitude a 
relative to the average input activity, and width w of the bump (‘Order 
equations’ in the Supplementary Note); we will refer to these as the 
system of bump equations.

Stable parameter regime. The system of bump equations will gener-
ate a stable bump of activity for certain combinations of JE and JI (‘Fixed 
point analysis’ in the Supplementary Note and Extended Data Fig. 3a). 
For all analyses shown in the main text, we first selected a desired 
value of JE > 2, and then selected a value of JI such that it produced a 
bump of activity whose full amplitude A = H0 + a (where H0 is the aver-
age input activity) was at least approximately A = 0.2. To do so, we 
first uniformly sampled bump orientations ψ ∈ [0, 2π) and widths 
w ∈ [2π/N, 2(N − 1)π/N), and we used these to calculate the contour  
JE feven(w, ψ) = 1 using MATLAB’s ‘contourc.m’, where feven(w, ψ) is given 
by equation (S19) in the Supplementary Note (see also equation (S30) 
in the Supplementary Note and Extended Data Fig. 3c). This gave us 
values (w,ψ) ∈ CJE = {(w,ψ) | JEfeven(w,ψ) = 1}  that satisfy the contour 
equation. We then used these values of w and ψ to determine an upper 
bound on JI given by

JboundI = min
(w,ψ)∈CJE

− cos(w/2)
f0(w,ψ)

, (8)

where f0(w, ψ) is given by equation (S18) (see also equation (S32)) in 
the Supplementary Note. We then used these same values of w and ψ 
to determine a value for JI, given by

JI = min
(w,ψ)∈CJE

(cff/A − 1) cos(w/2) − cff/A
f0(w,ψ)

, (9)

and verified that JI < JboundI . Plugging A = 0.2 into equation (9) resulted 
in a bump of activity whose minimum full amplitude was approximately 
A = 0.2.

Model analytics
Stationary solutions. To determine the configurations to which the 
system evolves in the absence of velocity input, we characterized the 
stationary solutions of the system of bump equations (‘Fixed point 
analysis’ in the Supplementary Note). This allowed us to determine 
relationships between the bump orientation, relative amplitude, and 
width that would persistently maintain a stable bump of activity 
(Extended Data Fig. 3b,c). For a network of N neurons that receive no 
velocity input, most parameter settings will yield two sets of N fixed 
points each—one set will be stable, and the other will be unstable. For 
a given value of JE, one set will be aligned with the preferred headings 
{θj}, and the other set will be aligned precisely between the preferred 
headings; the second and fourth columns of Fig. 2e highlight examples 
for which the unstable (second column) and stable (fourth column) 
sets of fixed points are aligned with the preferred headings. The value 
of JE and the parity of N (whether the network consists of an even or odd 
number of neurons) together specify which of these two configurations 
the network will adopt. When N is even and JE < J∗E,N−2 (denoting bumps 
supported by N − 1 and N − 2 neurons), the set of fixed points aligned 
with the preferred headings will be unstable. When N is odd, the reverse 
will be true: for JE < J∗E,N−2, the set of fixed points aligned with the pre-
ferred headings will be stable. For a given network size N, as JE passes 
through an optimal value J∗E, this stability switches (Extended Data 
Fig. 3d,g). At each of these fixed points, the widths of the stable and 
unstable bump configurations are determined solely by JE, whereas 
their relative amplitudes depend on both JE and JI.

Energy landscape. We derived an energy landscape E(a, w, ψ; JE, JI) 
for the system of bump equations in the absence of velocity input40,41 
(‘Energy landscape’ in the Supplementary Note). This function 
describes the stable configurations to which the system will evolve in 
the absence of input.

To minimize the curvature of the energy landscape, we first deter-
mined the 3 × 3 Hessian matrix of the second derivatives of the energy 
E with respect to a, w, and ψ. When evaluated at the orientations ψs of 
the stable fixed points (see the previous subsection), we found that the 
Hessian reduced to a block diagonal matrix, with a single eigenvector 
along ψ whose eigenvalue is given by

∂2E
∂ψ2 ∝ 1 − JE

N ∑
k∈Kact

sin2(θk − ψs), (10)

where Kact denotes the set of indices of the neurons that actively main-
tain the bump. This eigenvalue quantifies the degree of local curvature 
of the energy as a function of bump orientation ψ. For a system of size 
N, there are N − 3 values of local excitation JE for which this eigenvalue 
goes to zero, and thus for which the energy landscape is locally flat as 
a function of ψ. These correspond to bump configurations for which 
the bump is maintained by Nact ∈ [2, N − 2] active neurons:

1
J∗E,Nact

= 1
4 + 1

2N ( ̃n + sin(2π ̃n/N)
sin(2π/N) ) ; ̃n = Nact −

N
2 . (11)

We found that these values of local excitation, which are shown in 
Fig. 2d, also ensure that the energy landscape is flat for all bump orienta-
tions (as shown in Fig. 2e; also see Extended Data Fig. 4).

Leading eigenvalues of active submatrices. In the absence of velocity 
input, the bump dynamics are governed by the leading eigenvalue λ of 
a submatrix of the connectivity (−I + W sym/N)/τ; this eigenvalue deter-
mines the rate at which the bump will drift in the absence of input. When 
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the local excitation JE is optimally tuned (that is, JE = J∗E,Nact
), the bump 

of activity will be maintained by a fixed number of active neurons 
Nact ∈ [2, …, N − 2]. For each distinct value of Nact, there is thus a distinct 
Nact × Nact submatrix of the connectivity whose single leading eigenvalue 
determines the drift dynamics. Away from these optimal values of local 
excitation, the bump of activity will be maintained by either n or n + 1 
active neurons (see equation (S50) in the Supplementary Note). The 
drift dynamics are then governed by the leading eigenvalues of the 
corresponding n × n and (n + 1) × (n + 1) active submatrices.

To determine these dynamics, we analytically determined the 
rates of bump drift in the stable and unstable regimes, which are given 
in equation (2) (see ‘Performance of non-optimal solutions: Dynamics 
in the absence of input velocity’, and, in particular, equations (S54) and 
(S56) in the Supplementary Note). We then compared these analytically 
derived drift rates to the leading eigenvalues that we computed numeri-
cally by directly diagonalizing active submatrices of the connectivity 
(using the MATLAB function ‘eig.m’); this comparison is shown in 
Extended Data Fig. 6.

Widths of stable and unstable regimes. In the absence of input, the 
widths of the stable and unstable regimes can be determined ana-
lytically by finding the orientation at which the bump transitions from 
unstable to stable dynamics as it drifts away from an unstable fixed 
point. This reduces to matching two exponential equations that govern 
the dynamics of the bump orientation in the two regimes (with drift 
rates λu and λs, respectively), and that must tend toward the orientations 
of the unstable and stable fixed points as t → −∞ and t → +∞, respectively. 
The resulting widths of each regime are given by equation (3) and 
shown in Fig. 3d and Extended Data Fig. 8b, and they are centered on 
the orientations of the stable and unstable fixed points in the absence 
of input. Given a stable fixed point at ψ = ψs and an unstable fixed point 
at ψ = ψu = ψs + π/N, the resulting equation for the bump can then be 
written as (see equations (S61) and (S62) in the Supplementary Note):

ψ(t) = {
ψu + (ψ0 − ψu) exp(λut) ; 0 < t < tΔn unstable regime

ψs + Δθs
2

exp(−|λs|(t − tΔn)) ; t > tΔn stable regime
,

(12)

where ψs + Δθs/2 < ψ0 < ψu is the initial orientation of the bump, and 
tΔn = (1/λu) log(Δθu/(2(ψu − ψ0))) is the time when the bump orientation 
crosses from the unstable regime into the stable regime. See ‘Perfor-
mance of non-optimal solutions: Dynamics in the absence of input 
velocity’ in the Supplementary Note for more details.

Drift in the absence of input. To measure the net bump drift, we ana-
lytically computed the time τd that it takes for the bump to drift from 
within εu of an unstable fixed point to within εs of a stable one. We chose 
εu = Δθu/2e and εs = Δθs/2e, such that the bump covered an angular dis-
tance of Δψd = (1 − 1/e)Δθ/2 in the time τd. We then measured the net drift 
speed as Δψd/τd (see equations (S68)–(S71) in the Supplementary Note).

Small velocity approximation. In the presence of velocity input, 
the bump dynamics will be governed by the leading eigenvalue λ of 
a submatrix of the full connectivity (−I + (Wsym + vinWasym)/N)/τ. The 
asymmetric component of this connectivity is modulated by the 
input velocity vin, and introduces a velocity-dependent correction 
to the eigenvalue λ0 of the symmetric connectivity (−I + Wsym/N)/τ 
(Extended Data Fig. 7):

λ ≊ λ0 + f( JE)v2in + 𝒪𝒪𝒪v3in). (13)

For sufficiently small input velocities, we can approximate the leading 
eigenvalues λu and λs, and thus the corresponding widths of the unsta-
ble and stable regimes, as being equal to their values in the absence 
of velocity input (see ‘Leading eigenvalues of active submatrices’ and 

‘Widths of stable and unstable regimes’ in the Methods). All analytic 
results shown in Fig. 3i–l were generated under this assumption. This 
approximation breaks down as the input velocity increases, and it 
breaks down more quickly for smaller values of local excitation (as 
shown in Fig. 3l; see also Extended Data Fig. 7a).

Locations of fixed points in a velocity-driven regime. Although we 
can approximate the rates and width of the stable and unstable regimes 
as remaining unchanged for a sufficiently small velocity input, we can-
not make the same approximation for the orientations of stable and 
unstable fixed points. Therefore, we will treat the stable and unstable 
fixed-point orientations as functions of vin: ψs = ψs(vin), ψu = ψu(vin), 
respectively. The orientation of the stable and unstable fixed points 
found in the absence of velocity input will then be given by ψs(0) 
and ψu(0), respectively. To determine how the orientations of these 
fixed points shift with velocity, we repeated the analyses described 
in ‘Widths of stable and unstable regimes’ in the Methods, but with 
a different set of initial conditions (see ‘Performance of non-optimal 
solutions: Dynamics in the presence of small input velocity’ in the 
Supplementary Note for details). Given a bump that begins at a sta-
ble fixed point ψ = ψs(0) in the absence of input, and given an initial 
velocity vin, the bump will be driven to a new stable fixed point at an 
orientation ψs(vin) = ψs(0) + vin/|λs| as t → ∞. In the limit that t → −∞, the 
bump will be driven to (and hence, in forward time, away from) an 
unstable fixed point at an orientation ψu(vin) = ψu(0) − vin/λu. Over an  
interval ψ ∈ [ψs(0) − Δθs/2, ψu(0) + Δθu/2], the resulting equation  
for the bump can be written as (see equations (S78) and (S79) in the 
Supplementary Note):

ψ(t) =

⎧
⎪
⎨
⎪
⎩

ψs(0) + vin
|λs |

(1 − exp(−|λs|t)) ; 0 < t < tc stable regime

ψu(0) − vin
λu
+ ( vin

λu
− 1

2
(Δθ − Δθs))

exp(λu(t − tc)); t > tc unstable regime

,

(14)

where tc = (1/|λs|) log(1/(1 − Δθs|λs|/2vin)) is the time when the bump 
orientation crosses from the stable regime into the unstable regime.

At the threshold velocity given in equation (5), the two fixed points 
will meet at the boundary between regimes; this is the minimum veloc-
ity needed for the bump to move continuously. Below this velocity, 
the bump will be driven away from the unstable fixed point in the 
unstable regime, and toward a stable fixed point in the stable regime. 
Above this velocity, the stable and unstable fixed points will still drive 
the bump dynamics, but their orientations will move outside of their 
respective regimes. The minimum and maximum bump velocities, 
νmin and νmax (given by equation (6)), can be computed analytically 
from equation (14) by evaluating the time derivative of ψ(t) at the 
boundary from the stable to the unstable regime, and vice versa. We 
used these minimum and maximum velocities to define the linearity 
of integration as νmin/νmax. See ‘Performance of non-optimal solutions: 
Dynamics in the presence of small input velocity’ in the Supplementary 
Note for details.

Simplified energy landscape. Having described each linear subsystem 
in terms of (1) the orientations of the fixed points, (2) the rate at which 
the bump drifts toward or away from these fixed points, and (3) the 
angular regime governed by each fixed point, we used these three prop-
erties to construct a simplified landscape that describes the energy of 
different bump orientations. Given a linear system, an energy function 
can be chosen to be quadratic65; we thus choose Eu,s(ψ) = αu,sψ2, where 
αs > 0 for the stable subsystem, and αu < 0 for the unstable subsystem. 
To select the appropriate values of αu,s, we require that the energy 
function has extrema at the orientations of the stable and unstable 
fixed points ψs(vin) and ψu(vin), and that the energy transitions smoothly 
between the stable and unstable regimes; this yields
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E(ψ) = {
−λu(ψ − ψu(vin))

2 + C(vin) unstable regime

−λs(ψ − ψs(vin))
2 stable regime

, (15)

where C(vin) = Δθ (λuΔθu/4 − vin + v2in/(λuΔθu)), and where αu = −λu < 0 and 
αs = −λs > 0 as required. When moving around the ring, each successive 
pair of stable and unstable regimes will be governed by an energy 
landscape of this form but with a vertical shift, such that 
E(ψ ± nΔθ) = E(ψ) ∓ 2nvinΔθ. See ‘Simplified energy’ in the Supplemen-
tary Note for more details.

Tolerance in tuning. To determine how precisely the local excitation 
must be tuned to achieve a criterion level of performance, we first 
computed the derivative of each performance measure as a function 
of local excitation, evaluated at an optimal value; we denote this mP( J∗E) 
(see equations (S96)–(S99) in the Supplementary Note). This slope 
gives us a local linear estimate of how quickly the performance 
degrades away from an optimal value of local excitation. Because each 
performance measure can be expressed as a function of the net drift 
speed |λd|, computing this slope reduced to computing ∂|λd|/∂JE|J∗E. Given 
a criterion for the system to be within εtolP  of optimal performance for 
a performance measure P, the tolerance about a given optimal value 
J∗E can then be computed as tolP( J∗E) ≥ 2εtolP / |mP( J∗E)| (where ≥ indicates 

that this is a lower bound on the tolerance, as the linear slope will over-
estimate the rate of degradation of performance; see equation (S113) 
in the Supplementary Note).

To determine the volume of parameter space that can meet this 
desired performance, we summed the tolerance across all optimal 
values of local excitation for a given network size N (see equation (S120) 
in the Supplementary Note). We then approximated this sum by its 
largest value, which reduces to

V(N) ≥ cP
N2

1 − cos(2π/N) . (16)

See ‘Degradation of performance as a function of local excitation’ in 
the Supplementary Note for more details.

Model simulations
Overview. All simulations that we performed used MATLAB’s ODE 
solver ‘ode45.m’ with an integration timestep of Δt = 0.01 s. We first 
initialized the network to generate a bump of activity at a given ori-
entation ψ. Using this as the initial condition for the network, we 
then simulated the single-neuron dynamics in equation (1), and we 
performed a discrete Fourier transform using MATLAB’s ‘fft.m’ func-
tion to extract the bump dynamics as a function of the single-neuron 
dynamics (see equation (S16) in the Supplementary Note). When 
simulating angular velocity integration, we first determined the veloc-
ity scaling that would generate a comparable rate of bump movement 
for a given (constant) velocity input (see ‘Velocity-driven dynamics’ in 
the Methods). We then simulated the network dynamics in response 
to this scaled input.

Parameter choices. All results shown in Figs. 2 and 3 were generated 
using networks of size N = 6. When illustrating network properties for 
different values of local excitation, we used the following values of JE 
(evenly spaced in 1/JE): JE = [12, 6, 4, 3, 2.4] (Fig. 2e–h); JE = [3.89, 3.6, 3.3, 
3, 2.77, 2.57, 2.44] (Fig. 3f,j); JE = [3.6, 3, 2.57, 2.44] (Fig. 3g,k); 17 evenly 
spaced values of 1/JE between 1/3.86 and 1/2.45 (Fig. 3h,l). When simu-
lating network dynamics in the presence of velocity input, we used the 
following values of velocity input vin: ten evenly spaced velocity values 
between 0.2 and 2.0 rad s−1 (Fig. 2f); ten evenly spaced values between 
0.1 and 1.0 rad s−1 (Fig. 3k); five evenly spaced values between 0.8 and 
1.6 rad s−1 (Fig. 3l). In all cases, we scaled the velocity input as described 
below (see ‘Velocity-driven dynamics’ in the Methods).

Drift in the absence of input. For simulations of bump drift, we simu-
lated the network with the velocity input set to zero. To illustrate drift 
trajectories for different values of JE (as shown in the bottom row of 
Fig. 2f and in Fig. 3g), we initialized the bump at six evenly spaced 
orientations between (and including) 0 and π/N, and we simulated the 
evolution of the bump for 3 s. We repeated this for repeating angular 
units between 0 and 2π.

Measuring net drift speed. To measure the net drift speed (as 
described in ‘Drift in the absence of input’ in ‘Model analytics’ in the 
Methods), we initialized the bump at an orientation ψu − εu (where ψu 
is the orientation of an unstable fixed point; for the values of JE used 
in Fig. 3, ψu = π/N; see ‘Parameter choices’ in the Methods). We then 
simulated the network dynamics until the bump reached an orienta-
tion εs. We set εu = Δθu/2e and εs = Δθs/2e, where Δθu,s were computed as 
described in ‘Widths of stable and unstable regimes’ in the Methods. 
We used the time it took for the bump to reach this orientation as the 
measure of the net drift timescale τd, and we used Δψd/τd as a measure 
of net drift speed, where Δψd = (1 − 1/e)Δθ/2 is the angular distance 
traveled by the bump in the time τd. Fig. 3h compares the net drift speed 
from simulations to that obtained analytically for different values of JE.

Velocity-driven dynamics. For simulations of angular velocity integra-
tion, we injected a constant velocity input throughout the simulation. 
To permit a comparison to analytic predictions, we scaled the input 
velocity such that the rate of movement of the bump matched the 
input velocity at an input of vin = 50 rad s−1. To this end, we determined 
the best-fitting linear trajectory that minimized the absolute deviation 
from the bump trajectory over a time window of t = 6 s, and we used the 
slope of this linear trajectory to scale all other input velocities injected 
into the network. We performed this scaling separately for each set 
of network parameters (that is, for each choice of ( JE, JI)). All velocity 
values described in simulations were scaled in this way.

Measuring threshold velocity. To measure the threshold velocity 
required to move the bump continuously (as shown in Fig. 3l), we first 
analytically computed the threshold velocity as described in ‘Locations 
of fixed points in a velocity-driven regime’ in the Methods. We then 
chose 50 evenly spaced input velocity values between (and including) 
vthresh − 0.05 rad s−1 and vthresh + 0.05 rad s−1. We initialized the bump at 
the orientation of a stable fixed point (here, at ψs = 0), and we then 
simulated the network dynamics in response to each velocity individu-
ally. We determined the minimum of these velocities that would move 
the bump beyond an orientation of π/N within a time interval of 10 s. 
Fig. 3l compares this simulated value to the value obtained analytically.

Measuring the linearity of integration. To measure the linearity of 
integration from simulations, we simulated the bump trajectory for 
different constant input velocities (as described above in ‘Overview’). 
For each input velocity, we determined the time tc when the bump orien-
tation ψ crossed from the stable into the unstable regime or vice versa; 
these times were used to compute the minimum and maximum veloci-
ties, respectively (note that we used the analytically derived boundaries 
between regimes to determine these crossing times; see ‘Widths of 
stable and unstable regimes’ in the Methods). We then determined 
the bump velocity as ν = (ψ(tc + Δt) − ψ(tc − Δt))/2Δt, where Δt = 0.1 s is 
the integration timestep used in all simulations. Fig. 3l compares this 
simulated value to the value derived analytically (see ‘Locations of fixed 
points in a velocity-driven regime’ in the Methods).

Robustness to variations in parameter tuning. To summarize per-
formance as a function of network size (shown in Fig. 4a), we analyti-
cally computed the net drift speed (as described in ‘Drift in the absence 
of input’ in ‘Model analytics’ in the Methods) as a function of local 
excitation in the range JE ∈ [ J∗E,N−2, J

∗
E,2] (that is, between the minimum 
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and maximum optimal values of local excitation, maintained by 
Nact = N − 2 and Nact = 2 active neurons, respectively). For each optimal 
value of local excitation, we numerically estimated the tolerance as the 
range of local excitation values about an optimum for which the net 
drift speed would be consistently below a fixed performance threshold 
(we used a threshold value of 0.001 rad s−1). We considered only those 
values of local excitation above the minimum optimal value or below 
the maximum optimal value to estimate this tolerance; thus, to esti-
mate the tolerance about the minimum and maximum optimal values, 
we measured the tolerance in only one direction ( JE ≤ J∗E,2 or JE ≥ J∗E,N−2), 
and we doubled this value to use as our estimate. We then compared 
these tolerance estimates to the analytic lower bound given in equation 
(7), as shown in Fig. 4b,c (also see equations (S113)–(S119) in the Sup-
plementary Note). Finally, we summed these tolerance values (com-
puted numerically or analytically) for each network size N to estimate 
the net volume of parameter space that meets this threshold level of 
performance, as shown in Extended Data Fig. 9a.

Robustness to noise. To measure noise robustness, we added inde-
pendent Gaussian noise with variance σ2 to each neuron in our optimal 
networks, and we simulated network dynamics in the absence of veloc-
ity input. We ran 10,000 simulations in which we tracked the orientation 
of the bump over a total time of 20 s, and we used this to measure the 
variance of the difference between the initial and final bump positions 
over time: 〈(ψ(t) − ψ0)2〉. For short timescales, the dynamics of this 
quantity are affected by the finite integration timescale τ; at longer 
timescales, this quantity follows a diffusion equation with diffusion 
constant D: ⟨(ψ(t) − ψ0)

2⟩ = σ20 + 2Dt. We used the bump trajectories for 
t > 10 s to fit a value for 2D, as shown in Fig. 4d, and we took 1/2D as a 
measure of noise robustness. Figure 4e,f measures this robustness for 
optimally tuned networks of varying J∗E and N, and for varying noise 
levels: σ2 = (A/6)2 × [1, 4, 9, 16, 25], where A = 0.2 is the bump amplitude. 
To extract the dependence on N and σ2, as shown in Fig. 4f, we found 
the best-fitting coefficients a, b for the linear relationship 
2D = (aN + b)/σ2 (see Extended Data Fig. 9b for a visualization of these 
coefficients).

Robustness to changes in the transfer function and recurrent 
weights. We examined the robustness of the continuous attractor 
regime to changes in the number of Fourier modes of the recurrent 
connections in Wsym, the neuron input–output relationship ϕ, and  
an increase in the dimensionality of the attractor. To this aim, we  
numerically solved the dynamics of equation (1) with vin = 0 in  
two different scenarios. First, we used (1) a von Mises connectivity 
profile with concentration parameter κ for the recurrent weights  
W sym
jk = JI + JE exp(κ cos(θj − θk))/(2πI0(κ)) , where I0(κ) is the modified 

Bessel function of order 0; (2) a smooth nonlinear transfer function, 
ϕ(x) = log(1 + ex). We numerically solved the dynamics of a network 
with N = 8 units and JI = −30, with cosine-shaped initial conditions cen-
tered at 50 uniformly spaced orientations on the ring (Extended Data 
Fig. 5a). We evaluated the dispersion (circular variance) between the 
initial and final orientations on the ring for different values of JE after 
numerically solving the dynamics for a total time of 500τ, where τ is 
the single-neuron time constant. We observed the presence of optimal 
values of JE (Extended Data Fig. 5a, red), where the network behaved 
like a continuous attractor, as opposed to other values of JE (Extended 
Data Fig. 5a, purple, blue) where the discreteness of the solution was 
evident. The specific values of optimal excitation depend on both the 
value of JI (Extended Data Fig. 5a, empty circles), and on the strength 
of constant feedforward input cff.

We next examined the dynamics in equation (1) with a recurrent 
weight profile storing a two-dimensional toroidal attractor with N = 16 
neurons, W sym

jk = JI +
JE
2
(cos(θ1j − θ

1
k) + cos(θ2j − θ

2
k)) , JI = −20, where the 

preferred orientations (θ1i ,θ
2
i ) of the units were uniformly spaced on 

the torus (Extended Data Fig. 5b). We similarly observed the presence 

of an optimal value of JE for which the dispersion between subthreshold 
bumps initialized at 100 different orientations on the torus and the 
final orientations were close to 0.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data collected for this study are freely available via figshare at 
https://doi.org/10.25378/janelia.26169355 (ref. 66).

Code availability
All custom code written for this study is freely available via 
Zenodo at https://doi.org/10.5281/zenodo.12789923 (ref. 67) and 
is maintained on GitHub at https://github.com/HermundstadLab/
DiscreteRingAttractor.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Analysis of bump drift during standing bouts.  
a, Histograms of orientations in the ellipsoid body occupied by the compass 
bump at the beginning (blue) and end (red) of standing bouts for all ten flies. 
Note degree of overlap in the distributions, with no sign of an increase in 
specific orientations from beginning to restart. b, Cumulative distributions 
of orientations in the ellipsoid body occupied by the compass bump at the 
beginning (blue) and end (red) of standing bouts for all ten flies. Differences 
between the two distributions are not statistically significant. P-values for 
Watson’s U2 test (flies 1-10): 0.5560, 1.0000, 1.0000, 0.9920, 0.9980, 1.0000, 
0.9580, 1.0000, 0.9860, 0.1180. U2 test statistic (flies 1-10): 0.0660, 0.0085, 
0.0095, 0.0193, 0.0157, 0.0070, 0.0295, 0.0128, 0.0221, 0.1394. c, Drift during 

standing bouts for all ten flies, measured at different starting orientations of the 
compass bump. 8- and 16-Hz sinusoids were fit to drifts for each fly. One signature 
of discreteness in the performance of the compass system would be lower drift 
when the bump starts at stable orientations during standing bouts and higher 
drift when the bump starts outside of those orientations. We did not see such 
fluctuations in the data (see panel d). d, R2 values for sinusoidal fits in panel c.  
In panels a-d, only those standing bouts that were greater that 0.3 s and less than 
2 s were used for analyses. This resulted in the following numbers of standing 
bouts for flies 1-10: 980, 1005, 835, 826, 723, 714, 573, 527, 312, 949. Flies 2 and  
6 correspond to flies GC7fA and GC7fB, respectively, in Fig. 1e,h–j.
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Extended Data Fig. 2 | Analysis of residual bump velocity. a, Average residual 
bump velocities measured at different bump orientations, shown separately for 
left and right turns for all ten flies. 8- and 16-Hz sinusoids were fit to these average 

residuals. One signature of discreteness would be systematically higher or lower 
residual velocities at specific bump orientations; we did not see such fluctuations 
in the data (see panel b). b, R2 values for sinusoidal fits in panel a.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01766-5

0 22 3 2

2

2.5

1.5

3

3.5

4

5

4.5

bu
m

p 
w

id
th

-0.02 -0.01 0 0.01 0.02

b

bump orientation     (rad)

contours of constant

0 22 3 2

1/2.41/3.31/5.11/12

c

bump orientation     (rad)

0.1

0.2

0.3

0.4

lo
ca

l e
xc

ita
tio

n

stable unstable
stability of fixed pointd

0-1 1 2 3 4
e

0-10 -2-4-6-8
f

g

-10 -8 -6 -4 -2 0
broad inhibition

h

-10 -8 -6 -4 -2 0
broad inhibition

i

0.1

0.2

0.3

0.4

lo
ca

l e
xc

ita
tio

n

0-1 1 2

broad inhibition

inhomogeneous; stable

-10 -8 -6 -4 -2 0
0

0.1

0.2

0.3

0.4

0.5

0.6
lo

ca
l e

xc
ita

tio
n

homogeneous; stable

unstable

stability of population profile
a

Extended Data Fig. 3 | Stability of population profile and fixed-point analysis. 
a, The stability of the shape of the population profile depends on JE and JI (shown 
for N = 6). ‘Unstable’ regime: the population activity diverges over time. 
‘Homogeneous’ regime: the network generates a stable activity profile that is 
uniform across the entire network. ‘Inhomogeneous’ regime: the network 
generates a stable bump of activity that persists at a discrete set of orientations in 
the absence of input. Dashed lines indicate optimal values of JE for which the 
network generates a set of marginally stable solutions that can persist at any 
orientation in the absence of input. b-c, Fixed point conditions from the 
equations for bump orientation (panel b; fodd = 0) and relative amplitude (panel c; 
feven = 1/JE). See Supplementary Note for details. b, Heatmap of fodd (w, ψ) for 
densely sampled bump widths w ∈ [ 2π/N, 2(N− 1)π/N ) and orientations ψ ∈ [0, 
2π). Red and blue regions correspond to fodd > 0 and fodd < 0 (which drive the bump 
orientation to the right and left, respectively). White regions indicate fodd = 0, 
which correspond to potential fixed points 𝒳𝒳∗ = (a∗,w∗,ψ∗) at which the bump 
can stably persist. Note that at ψ = (θc + θd)/2, d = c, c + 1, fodd (w, ψ) = 0 regardless of 
the value of w. c, Contours of constant feven(w, ψ), shown for 10 evenly spaced 

values of 1/JE between and including 1/12 and 1/2.4. These contours indicate a 
necessary (but not sufficient) relationship between w and ψ for stationary bump 
solutions. d-i, Eigenvalues of linearized system about fixed points with 
orientation ψ* = θj (panels d-f) or ψ* = (θj + θj+1)/2 (panels g-i), j = 1…N. See 
Supplementary Note for details. d, g, Eigenvalue λψ depends on JE. This eigenvalue 
corresponds to changes in orientation near the fixed points and is the sole 
determinant of stability of the fixed points. Note that when the set of fixed points 
corresponding to ψ* = θj, j = 1…N, is stable, the other set of fixed points 
corresponding to ψ* = (θj + θj+1)/2, j = 1…N, is unstable, and vice-versa. The 
remaining two eigenvalues λ+ (panels e, h) and λ− (panels f, i) depend on both JE 
and JI but are always negative in the parameter regime that generates bump-like 
profiles (region above black line; compare to ‘inhomogeneous; stable’ in panel a). 
Panels b,c,e,f,h,i were generated using redblueu.m (https://www.mathworks.
com/matlabcentral/fileexchange/74791-redblue-colormap-generator-with-zero-
as-white-or-black) and magma.m (https://www.mathworks.com/matlabcentral/
fileexchange/51986-perceptually-uniform-colormaps).
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Extended Data Fig. 4 | Flat directions in the energy landscape. Smallest 
magnitude eigenvalues (top row) and corresponding eigenvector components 
(lower three rows) for the Hessian matrix of the energy, computed for all three 
optimal values of local excitation in a network of size N = 6: a, J∗E  = 2.4; b, J∗E  = 4;  
c, J∗E  = 12. For each optimal value of local excitation, the Hessian has a single zero 

eigenvalue, indicating the existence of a zero-curvature direction within the 
energy landscape. The corresponding eigenvectors are purely aligned along ψ 
(second row) at the orientations of the stable fixed points (teal dashed lines). 
Away from these orientations, the corresponding eigenvectors involve 
contributions from w and a (third and fourth rows, respectively).
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Extended Data Fig. 5 | Robustness to changes in the single neuron transfer 
function and recurrent synaptic weights. Comparison between initial and final 
bump orientations as a function of JE for a, a network of N = 8 neurons with a Von 
Mises weight profile and a smooth nonlinear transfer function, and b, a network 
of N = 16 neurons with a recurrent weight profile storing a 2-dimensional toroidal 
attractor. In both cases, there is an optimal value of JE for which the circular 

variance between the initial and final orientations is close to zero (top, red 
markers), and the bump does not drift (bottom, center panels). Away from these 
values of JE, the circular variance increases (top, purple/blue markers), and the 
bump drifts from its original orientation (bottom left/right panels). See Methods 
for simulation details.
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Extended Data Fig. 7 | Velocity correction to leading eigenvalues of active 
submatrices. a, Leading eigenvalues λ of active submatrices as a function of 
input velocity vin for a network of size N = 6. Shown for 11 velocity values evenly 
spaced between (and including) vin = 0 and vin = 1 rad s−1 (darker colors indicate 
higher velocities). Eigenvalues were obtained by numerically diagonalizing active 
submatrices of the full connectivity W = ((Wsym + vin Wasym)/N − I)/τ. Red dashed line 

marks an optimal value of local excitation. b, Coefficients of the best-fitting 3rd 
order polynomial of the velocity correction λ − λ0 versus input velocity vin, where 
λ0 is the leading eigenvalue of the full connectivity in the absence of velocity input. 
c, Comparison of the velocity correction λ − λ0 (solid lines) and the best-fitting 
polynomial (dashed lines), including terms of order O(v2) and O(v3). Shown for  
6 different values of local excitation marked by arrows in panel b.
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Extended Data Fig. 8 | Impact of stable and unstable fixed points on drift 
and velocity integration. a-b, Repeated from Fig. 3c–d, with regimes colored 
according to drift speed (grayscale). c, Input velocity shifts the orientations of 
the fixed points. Top: as the input velocity increases from 0, the orientations 
of the stable and unstable fixed points shift toward the boundary between 
regimes. At a threshold velocity (Eq. (5)), the two fixed points will meet at the 
boundary; this threshold velocity is the minimum input velocity needed to move 
the bump continuously. Bottom: For velocities below this threshold, the bump 
will be driven to the stable fixed point, regardless of its initial orientation. d, The 
orientations of stable and unstable fixed points (turquoise and orange lines, 
respectively) shift with increasing velocity (darker shades). The rate of these 
shifts is set by the drift speeds in the stable and unstable regimes (see panel b): 
lower drift speeds lead to faster shifts (marked by the large spacing between 
turquoise lines at the left of the panel, and between orange lines at the right of 

the panel). The precise values of these drift speeds ensure that the pair of stable 
and unstable fixed points will meet at the boundary between regimes at the 
same threshold velocity, given a fixed value of JE. e, Top: as the input velocity 
increases above the threshold velocity, the stable and unstable fixed points move 
beyond their respective regimes. Bottom: When in the stable regime, the bump 
is pulled from ahead toward the stable fixed point. However, before reaching the 
stable fixed point, the bump transitions into the unstable regime, and is pushed 
from behind by the unstable fixed point. This push and pull causes the bump to 
slow down and speed up as it moves through the stable and unstable regimes, 
respectively; the closer the fixed points are to the boundary, the stronger this 
effect. f, Above the threshold velocity, the stable and unstable fixed points move 
beyond their respective regimes, and they continue to shift with velocity at the 
same rate as shown in panel d. g, Example bump trajectories in the absence (top 
row) and presence (bottom row) of velocity input.
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Extended Data Fig. 9 | Analysis of robustness as a function of network size. 
a, The net volume of parameter space that achieves a desired performance 
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Calcium imaging experiments in behaving flies involve tethering, dissections and positioning on the ball. These steps are each subject to some 

variability. In addition, fly behavior on the ball is variable. These factors, rather than statistical methods, motivated us to perform experiments 

in 10 flies with long trial durations (5 trials of 20 minutes each). We recorded 100 minutes of data without visual stimuli for each fly, which we 

assume to be sufficient for the types of analyses we performed. A sample size of 10 flies was chosen to be consistent with previous studies of 

this circuit (e.g. Seelig and Jayaraman, 2015). 

Data exclusions We excluded any data collected beyond 100 minutes for consistency and to exclude a small number of flies whose behavior and/or imaging 

degraded in quality, a known limitation of fly-on-a-ball calcium imaging experiments. 

Replication We specifically focused on the peak performance of the internal compass of flies walking in unnatural settings (on a ball), highlighting the top 

two performers. We additionally report performance across all flies as well. Given the variability and constraints of the experiment discussed 

above, we do not expect the performance of the internal compass to be perfectly accurate for all flies. In addition, in response to reviewer 

comments, we collected data from a new set of 10 flies with longer trial durations than were presented to flies featured in our initial 

submission: the main results replicated across these two different groups.  

Randomization Not relevant. Data was only collected from one genotype of flies. 

Blinding Not relevant. Data was only collected from one genotype of flies. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals All experiments featured Drosophila melanogaster females (age 5-9d) expressing GCaMP6f in EPG neurons.

Wild animals No wild animals were used in this study. 

Reporting on sex Female flies are larger, making them more suitable for calcium imaging experiments in tethered behaving flies.

Field-collected samples No field collected samples were used in the study.

Ethics oversight Studies in Drosophila do not require ethical approval. Treatment of flies was in accordance with standard lab procedures.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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