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Many animals rely on persistent internal representations of continuous
variables for working memory, navigation, and motor control. Existing

theories typically assume that large networks of neurons are required to
maintain such representations accurately; networks with few neurons
are thought to generate discrete representations. However, analysis of
two-photon calciumimaging data from tethered flies walking in darkness

suggests that their small head-direction system can maintain a surprisingly
continuous and accurate representation. We thus ask whether it is possible
for asmall network to generate a continuous, rather than discrete,

representation of such a variable. We show analytically that even very small

networks can be tuned to maintain continuous internal representations,
but this comes at the cost of sensitivity to noise and variations in tuning.
This work expands the computational repertoire of small networks, and
raises the possibility that larger networks could represent more and
higher-dimensional variables than previously thought.

Thebrain is thought to rely on persistent internal representations of
continuous variables for a wide range of computations, from working
memory'* to navigation®’ to motor control® 2, Such internal rep-
resentations have been described in terms of manifolds along which
populationactivity evolves (Fig. 1a, top), and they have been studied theo-
retically within the framework of continuous attractor networks>*>""%;
seerefs.14-16 for recent reviews. This framework for continuous attrac-
tor networks has historically relied on large numbers of neurons toensure
that these internal representations are approximately continuous and
accurate, and this requirement becomes even more crucial in multiple
dimensions and torepresent multiple variables. Theories of navigation,
forexample, rely onlarge numbers of neurons to explainhow continuous
attractors could underlie the activity of head direction (HD), place, and
grid cells in multiple dimensions” ", and how the hippocampus might
build multiple continuous attractors corresponding to different envi-
ronments that an animal has visited>***'. Here, we ask whether such con-
tinuous representations can be maintained in much smaller networks.

One prominent example of a continuous attractor network is the
ring attractor network, which can maintainaninternal representation
ofaperiodicvariable such as orientation*??, and has been proposed asa
model of the HD system”*2°, Ring attractor networks derive their name
from the one-dimensional ring manifold on which activity evolves.
This manifold emergesin the limit that aninfinitely large population of
orientation-tuned neurons maintains sustained and localized activity
through positive feedback>****; this canbe achieved through recurrent
connectivity by which neurons with similar tuning excite one another,
and neurons with dissimilar tuninginhibit one another (Fig. 1a, bottom,
and refs. 13,22,24,27, but also see ref. 28). The resulting population
dynamics can generate a localized bump of activity that persists at
the same orientation in the absence of input and traverses the ring
manifold through the integration of self-motion inputs” ., Asaresult
of their infinite size, ring attractor networks achieve infinite precision
in maintaining and accurately updating the bump of activity. Large
networks have been used to approximate this infinite precision®*’;
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small networks, in contrast, exhibit notable failures that are indica-
tive of finite, rather than infinite, precision®’~*'. Consistent with these
studies, we work under the a prioriassumption that achieving infinite
precision in representing periodic variables requires infinitely large
networks (see the Supplementary Note for further discussion).
Although ring attractor networks were proposed theoretically
several decades ago, it has been difficult to identify ring-like archi-
tectures in brains. Ring attractor networks have been used to explain
bell-shaped tuning curves of mammalian HD neurons that display
persistentfiringin the absence ofinput and whose activity is updated
by self-motion even in darkness®*, but it has not yet been possible to
measure patterns of connectivity between these neurons. Mammalian
HD neurons have been observed to coherently change their tuning
whenanimals are placedin different settings®, and recent work suggests
that HD population dynamics traverse a one-dimensional ring-like
manifold®. In the fly Drosophila melanogaster, arecurrent network of
neuronsin abrainregion called the central complex (CX; Fig. 1b) was
recently shown to exhibit the functional and structural connectivity**
(Fig. 1c), as well as the dynamics®***** (Fig.1d,e), of a ring-like attrac-
tor network. These dynamics are observable as abump of population
activity inso-called EPG or ‘compass’ neuronsinatoroidal structure of
the CX called the ellipsoid body (EB). This bump of activity tracks the
fly’s orientation during turns and persists when the fly stops moving
(Fig. 1e). These dynamics are driven both by localizing sensory cues
and by the integration of self-motion cues, which enables the bump
to track the fly’s movements even in darkness®***. The underlying
circuitarchitecture features two subpopulations of ‘shift’ neurons that
are jointly tuned to orientation and angular velocity and that receive
input fromand project back to the compass neurons®***"¥, as previously
hypothesized” (Fig.1a, bottom). Thus, both physiological and anatomi-
cal considerations suggest that this circuit exhibits the key features of
aring-like attractor network, with one major exception: the fly circuit
has far fewer computational units—sets of neurons with the same HD
tuning—than are thought necessary to approximate an accurate ring
attractor’®. This low number is likely conserved across many insects,
including those that are considered more accomplished navigators,
such as bees™®, suggesting that it does not limit navigational perfor-
mance. Motivated by these observations, we sought to characterize
the capabilities of small networks to represent and integrate an analog,
periodic variable. In what follows, we dissect the functional properties
of discrete ring-like attractor networks, and show how small circuits
might overcome limitations of discreteness to achieve functional
performance thought to emerge only in the limit of large systems.

Results

The computational properties that make ring attractor networks such
appealing models of the HD system arise in the limit of large system
sizes. Specifically, in the limit that the number of neurons approaches

infinity (what we terma‘continuous’ system), aring attractor network
generates a continuum of configurations that define the ring attractor
manifold™?** (Fig.1f, top). These configurations are marginally stable,
such that perturbations along the manifold will be maintained, and
perturbations off the manifold willbe driven back toit. These properties
allow us to express the manifold as a flat dimensionin the energy land-
scape of the system’; all points along this flat dimension have equal and
minimum energy; thus, the system can stably sit at any of these points
inthe absence of input (Fig. 1g, second column, dark blue). Moreover,
small changes in input can drive the system along this flat dimension
without obstruction, such that the population activity accurately tracks
these changes® (Fig. 1g, third and fourth columns, dark blue). This
flat energy dimension gives the system infinite precisionin encoding
and updatinganinternal representation of a one-dimensional circular
variable such as HD.

However, when the system is small (what we term a ‘discrete’ sys-
tem), these properties are thought to break down, thereby limiting how
precisely the internal HD representation can be stored and updated.
Instead of exhibiting aflat dimension, the energy landscapeis assumed
toexhibitasetof discrete basins (Fig. 1f, bottom) that attract the popu-
lation activity in the absence of input® (Fig. 1g, second column, light
blue), prevent the integration of small inputs™ (Fig. 1g, third column,
lightblue), and prevent the accurate integration of large inputs (Fig. 1g,
fourth column, light blue). For asmall network such as the fly compass
network, we would thus expect to observe three distinct signatures of
discreteness: (1) drift in the absence of input, in which the HD bump
drifts to stereotyped orientations around the EB when the fly stops
turning; (2) failure to integrate small angular velocities, in which the
HD bump does not move continuously when the fly makes slow turns;
and (3) variable responses to larger angular velocities, inwhich the HD
bump moves faster or slower relative to the fly’'s movements, depending
onits orientation within the EB.

To assess whether the fly circuit can overcome these expected
limitations, we performed two-photon calcium imaging of compass
neuronsinthe EB while head-fixed flies walked on an air-supported ball
in darkness (Fig. 1d,e,h-j and Methods). While fly-to-fly variability in
the accuracy of integration may be due, in part, to limitations of the
fly-on-a-ball system (Methods), several flies showed aremarkable abil-
ity to track changes in their angular orientation in darkness. We first
measured bump driftin the absence of input® by comparing the bump
orientation when the fly stopped moving to when the fly began walking
again. The distributions of initial and final bump orientations were
similar (Extended DataFig.1), and there were no apparent signatures
that the bump drifted to a discrete number of stereotypical orienta-
tions (Fig. 1h). The distribution of drifts was strongly peaked at zero
(Fig. 1i, top row), and included epochs in which the bump persisted
at the same orientation for several seconds® (Fig. 1i, bottom row). We
then analyzed the average bump velocity at different orientations as

Fig.1| Abiological attractor network overcomes hypothesized limitations
of discreteness. a, Top: ring-like manifold of neural activity. Bottom:aring
attractor network maintains aninternal representation of orientation through
local excitation (red) and broad inhibition (blue). Two side rings use angular
velocity input to shift this representation (green). CW, clockwise; CCW,
counterclockwise. b, Schematic of the fly CX. ‘Compass’ neurons innervate the EB
and maintain aninternal representation of orientation. ‘Shift’ neurons innervate
the protocerebral bridge (PB) and shift the representation through angular
velocity input from the noduli (NO). ¢, Electron microscopy reconstruction of
compass neurons. d, Two-photon imaging setup for tethered walking flies. Box:
32 regions of interest (ROIs) are used to compute the population vector average
(PVA) of the change in fluorescence (AF/F). e, Compass neurons maintaina
localized bump of activity (heatmap) that tracks the fly’s orientation (red line).
f, In the absence of input, network dynamics evolve toward the minima of an
energy landscape. Infinitely large networks generate flat landscapes (top); small
networks generate bumpy landscapes (bottom; illustrated for N= 6 neurons).

g, In continuous networks (dark blue), a flat landscape allows activity to persist at
the same orientation in the absence of input (second column) and to integrate
velocity input linearly (third and fourth columns). In discrete networks (light
blue), local minima cause driftin the absence of input (second column), prevent
continuous integration of small inputs (third column), and cause nonlinear
integration of large inputs (fourth column). h, Bump orientations in the EB before
and after stopping periods that exceeded 300 ms, schematized for discrete
versus continuous networks (top) and shown for the same flies from e (middle
and bottom). i, Distribution of bump drifts (top histograms) accumulated across
stopping periods (bottom scatterplots), shown for the same two flies (left and
middle columns) and accumulated across flies (right column). j, Residual bump
velocities during left versus right turns as a function of bump orientation in the
EB, schematized for discrete versus continuous networks (top) and shown for
individual flies (middle and bottom; dark blue lines show population averages).
Bump velocities were normalized for gain differences before computing
residuals (Methods).
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afunction of the fly’s average turning velocity. Again, across several
flies, the bump velocity was consistent across orientations, with no
apparentsignatures of nonlinear integration nor apparent failures to
track small velocities (Fig. 1j and Extended DataFig. 2). Thus, despite

the imperfections of measuring the accuracy of the HD representa-
tionin head-fixed flies on aball, we found that the peak performance
of the HD system belied its small size both in its low drift and in its
accurateintegration.
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Fig.2|Optimally tuned local excitation can recover a ring attractor manifold.
a, Schematic of the network model and connectivity Wj. Top: a population of
neuronsisrecurrently connected through local excitation (/¢) and broad
inhibition (/;). Two side rings receive input from and project back to the center
ring with shifted, velocity-dependent connections. Bottom: a threshold-linear
response function ensures that asubset of N, neurons is active at any time; their
dynamics are governed by an ‘active submatrix’ of the full connectivity. b, Top:
Jeand/,can be selected to maintain a persistent bump of population activity.
Bottom: characterization of the bump configuration (Methods). ¢, Top: energy
of different bump configurations for naive choices of J; and /. The resulting
landscape is bumpy, with local minima (white points) separated by barriers.
Bottom: we sought parameters that ‘flatten’ the energy landscape by minimizing
local curvature. d, For anetwork of size N, there are N - 3 optimal values of /; that
flatten the energy. Shaded bar: optimal values of excitation for a network size of
N=6(seee-h).e-h, We evaluate the performance (rows) of networks of size N=6

with different values of J; (columns; Jf = [12,4,2.4](optimal); J; =[6, 3]
(nonoptimal)). e, Same as ¢, for different values of /.. Optimal energy landscapes
are flat (white line); nonoptimal landscapes have local minima (filled markers)
separated by barriers (open markers). f, Bump trajectoriesin responsetoa
constantinput (top row) and in the absence of input (bottom row). Insets show
zoomed-in portions of trajectories, which highlight the failure to integrate small
inputs. g, Same as b, shown for bump configurations at the endpointsinf. h, Top
row: same as heatmaps in a, shown for active submatrices corresponding to the
bump configurationsin g. Filled markers denote active neurons. Middle row: the
leading eigenvalue of each submatrix governs the dynamics of active neurons.
Bottom row: in optimal networks, the bump is always maintained by the same
number of active neurons (gray); in nonoptimal networks, the bump is
maintained by different numbers of active neurons depending on whether the
bump configuration s stable (turquoise) or unstable (orange).
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Small networks generate a continuum of stable configurations
The previous results suggest that small networks can, in practice,
integrate angular velocity without suffering the performance failures
expected of discrete systems. To explore how this might be achieved
in principle, we studied the performance of small attractor networks
(Fig.2a and Methods).

We considered networks of N orientation-tuned neurons whose
preferred orientations 6; uniformly tile orientation space, with an
angular separation of A@ =2m/Nradians (rad). These neurons can be
arranged topologically in aring according to their preferred orienta-
tions, with neuronslocally exciting and broadly inhibiting their neigh-
bors. We capture this with a symmetric cosine weight matrix
W;(ym =J; +Je cos(6; — 6;) , where J; and J, respectively control the
strength of the tuned and untuned components of recurrent connectiv-
itybetween neurons with preferred orientations 6;and 6,. We will refer
to these componentsas local excitation and broad inhibition, respec-
tively (but note that the tuned component takes on both positive and
negative values, and thusis not strictly excitatory; within the parameter
regimes that we consider, the untuned component is strictly inhibi-
tory). The network receives angular velocity input v;, through asym-
metric, velocity-modulated weights Wjisym = sin(6; — 6;) (see also
ref.24); thisinput could be implemented through two linear side rings
whose time constants are much smaller than that of neurons in the
center ring (Supplementary Note). Each neuron transformsiits inputs
through a nonlinear transfer function ¢(-). The total input activity A;
of eachneuronis then governed by

A 1 sym asym .
Thjz—hj+NZk:(l4/jk +Uin Wy, )¢(hk)+cﬁ, j=1..,N, @

where crisa constant feedforward input to allneuronsinthe network.
In what follows, we take ¢(-) to be threshold linear; this ensures that
only a subset of all neurons will be active at any time. As a result, the
dynamics of active neurons will be governed by an ‘active submatrix’
of the full connectivity (Fig. 2a, bottom). We derive our theoretical
results for networks of arbitrary size N < «; unless otherwise noted,
we illustrate these results using a network of size N = 6 because this
is the smallest network that exhibits the range of dynamics observed
across parameter tunings.

For sufficiently strong local excitation and broad inhibition, this
network generates a stable bump of activity (Fig. 2b (top), Extended
Data Fig. 3a and Methods). We characterize the bump by the Fourier
modes of the population activity (given by equation (1)). For the net-
work connectivity chosen here, which varies sinusoidally with the dif-
ference between preferred orientations, the population activity is fully
specified by the zeroeth- and first-order Fourier modes. This allows
us to characterize the ‘configuration’ of the activity bump in terms
of its relative amplitude a, angular width w, and angular orientation
¢ (Fig. 2b (bottom) and Supplementary Note). These quantities vary
continuously over time, and thus, the same number of active neurons
canmaintain bump configurations with different relative amplitudes,
widths, and orientations.

Webegan by characterizing the manifold of stable bump configu-
rationsinthe absence of angular velocity input (Extended Data Fig. 3b-i
and Methods). Tothisend, we constructed alandscape that describes
the energy of different bump configurations for agiven set of param-
eters Jr and, (refs. 40,41 and Methods). For most parameter settings,
the energy landscape is bumpy, with discrete minima separated by
barriers (Fig. 2c, top), as expected for small networks®. The landscape
is highly curved about these minima, indicating that the bump would
be highly attracted to these particular orientations. To weaken this
attraction, we analytically determined the values of /; and/; that would
locally minimize this curvature, and thus locally flatten the energy
landscape (Fig. 2c, bottom). Surprisingly, we found that specific values
of local excitation drive the curvature to zero, resulting in an energy

landscape thatis completely flat as afunction of orientation (Extended
DataFig.4).Foranetwork of size N, there are N - 3 such ‘optimal’ values
oflocal excitation J; (Fig. 2d). Figure 2eillustrates the corresponding
optimal energy landscapes for a network of size N= 6, and contrasts
these with two nonoptimal landscapes generated with intermediate
values of local excitation.

To verify that these optimally tuned networks could overcome the
failure modes highlighted in Fig. 1g, we simulated the response of each
network toaconstant velocity input (Fig. 2f and Methods). As expected,
we found that optimal networks accurately integrated angular veloc-
ity input, such that the bump orientation changed linearly over time
(Fig. 2f, top row). When this velocity input was removed (Fig. 2f, bottom
row), thebump persisted at the same orientation and did not drift (we
also observed this in networks with different nonlinearities and con-
nectivity profilesin one and two dimensions; Extended Data Fig. 5and
Methods). In contrast, nonoptimal networks failed to integrate small
velocities (Fig. 2f, top row insets), and they nonlinearly integrated
larger velocities (Fig. 2f, top row main panels). When this velocity input
wasremoved, the bump drifted toward the set of discrete orientations
corresponding to the local minima of their energy landscapes (Fig. 2f,
bottom row).

In the absence of velocity input, optimal networks generate a
continuum of marginally stable configurations in which the bump
can persist (Fig. 2g). These configurations share one striking feature:
thebumpis always maintained by the same number of active neurons
despite variations in relative amplitude, width, and orientation. This
feature has important consequences for network dynamics: when a
fixed subset of neurons is active, equation (1) for ;> O reduces to a
linear dynamical system that depends only on an ‘active submatrix’ of
the full connectivity W (Fig. 2h, top row; note that we take the full con-
nectivity tobe W= (W*™/N -1)/t). Moreover, because the connectivity
isrotationally invariant, this active submatrix—and thus the resulting
network dynamics—will be identical for any contiguous subset of N,
active neurons. To characterize these dynamics, we determined the
eigenvalue spectra of these active submatrices (Methods). Each sub-
matrix exhibited a single zero eigenvalue (Fig. 2h, middle row); the
real part of all remaining eigenvalues was less than zero. This property
gives rise to a so-called line attractor that produces a continuum of
marginally stable configurations along a line". Thus, in this network,
aringattractor emerges as a discrete set of Nline attractors that each
governs the dynamics of distinct subsets of active neurons (Fig. 2h,
bottom row), and that are ‘stitched together’ at the points where an
active subset gains and loses an active neuron.

In contrast, nonoptimal networks can only maintain a discrete set
of bump configurations in the absence of input; these configurations
correspond to so-called fixed points of the dynamics. One subset of
these configurations is stable; the bump will return to these stable
fixed points following small perturbations (Fig. 2g, turquoise curves).
The other subset is unstable; the bump will move away from these
unstable fixed points if perturbed (Fig. 2g, orange curves). In these
two configurations—stable and unstable—the bump is maintained
by different numbers of active neurons (also called the ‘support’ of
the fixed point****), and the corresponding active submatrices differ
insize (Fig. 2h, top row). The smaller of these submatrices has alead-
ing eigenvalue less than zero and governs network dynamics about
the stable fixed point, whereas the larger of these submatrices has a
leading eigenvalue greater than zero and governs dynamics about the
unstable fixed point (Fig. 2h, middle row). Inwhat follows, we use these
active submatrices to dissect the dynamics of nonoptimal networks,
and we show how the balance between stable and unstable dynamics
shapes performance.

Variationsin tuning degrade network performance
The previous results highlight a unique feature of threshold-linear
networks: when a fixed subset of neurons s active, the corresponding
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Fig.3|Nonoptimal networks balance periods of stability and instability.

a, Alinear subsystem of active neurons can be tuned to encode a continuum of
orientations over afixed interval (heatmap; left). Multiple line attractors can be
stitched together at orientations where the active subset simultaneously gains
and loses an active neuron (middle), thereby generating a ring attractor (right).
b, Without precise tuning, each linear subsystem (shaded region; left) encodes
asingle unstable or stable fixed point (‘FP’; markers). When stitched together
(middle), the set of linear subsystems can stably encode only a finite number

of orientations (‘point attractors’; right). ¢, Top: the dynamics of each linear
subsystem are governed by the leading eigenvalue A of the active submatrix of
the connectivity (Fig. 2h). Bottom: in the unstable regime (orange), the bump
accelerates away from an unstable fixed point at rate A, > O; in the stable regime
(turquoise), the bump decelerates toward a stable fixed point at rate A, < 0.d,
Bump dynamics depend on the fixed-point orientations (square markers), drift
rates A (color map), and angular span of each regime (colored areas). Illustrated

Orientation (rad) Orientation (rad) Threshold velocity (rad sT)

without velocity input. e-h, Bump dynamics without velocity input. e, Simplified
energy landscape. f, Same as e for different J;. As Jy approaches an optimal value,
oneregion of the landscape flattens and fills the entire ring; the other sharpens
and shrinks in span. g, Bump dynamics for energy landscapesin f. h, Net drift
speed, computed analytically (line) and by simulation (markers). i-1, Bump
dynamics with velocity input. i, Small velocities shift the fixed points toward the
boundary between stable and unstable regimes, tipping the energy landscape in
the direction of the input. At a threshold velocity (equation (5)), the fixed points
meet at the boundary, and the bump slides continuously down the landscape.
Jj,Same asi for different/;, given a fixed input velocity. J; affects how quickly the
fixed points move through the energy landscape, and, thus, how readily the
landscape tips for a given velocity. k, Bump dynamics for energy landscapes inj.
1, Threshold velocity (solid curve) and linearity of integration (dashed curves),
computed analytically (lines) and by simulation (markers).

dynamical systemislinear, and the dynamics of the full network canbe
viewed as aset of linear subsystems that are stitched together at points
where the active subset gains or loses an active neuron. In this way, a
ring attractor thatencodes a continuum of values onacircle canbe con-
structed by stitching together multiple line attractors thateach encode
acontinuum of valuesonaline segment. Because aline attractor can be
constructed from a network with as few as two neurons, aminimal ring

attractor could, in principle, be constructed using only three neurons.
However, our choice of connectivity requires aminimum of four neurons
to constructaringattractor, in which each contiguous pair of neurons
encodesadistinctlineattractor (Fig. 3a). Thisrequires a precise handoff
betweenlinear systems that share active neurons, such that the network
dynamics move between line attractors by simultaneously activating
and inactivating single neurons at the edges of the active subset.
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Achieving this precise handoff requires precise tuning, such that
theleadingeigenvalueAof all active submatrices of Wis zero. Without a
zero eigenvalue, alinear subsystem can, at most, encode asingle stable
or unstable fixed point. By interleaving linear subsystems that encode
stable and unstable fixed points, the network can still cover a circular
interval, but the values that can be stably represented are limited to
adiscrete set (Fig. 3b). In the vicinity of an unstable fixed point (the
‘unstable’ regime), the bump is pushed exponentially quickly away
from the fixed point with rate A, > O (Fig. 3¢, orange). In the vicinity of
astable fixed point (the ‘stable’ regime), the bump is pulled exponen-
tially slowly toward the fixed point with rate A, < 0 (Fig. 3c, turquoise).
Thebump transitions fromthe unstable to the stable regime when the
active subset loses an active neuron.

This picture highlights how nonlinear computations, such as the
integration of angular velocity, can be performed through an orches-
trated interaction between multiple linear subsystems that have dif-
ferent fixed-point structures**. By decomposing the full dynamical
system into linear subsystems, this picture allows us to analytically
characterize inaccuracies in nonoptimal networks, and thereby esti-
mate the precision in tuning required to bound these inaccuracies.
We measure these inaccuracies using the expected signatures of dis-
creteness highlighted in Fig. 1g (driftinthe absence of input, failure to
integrate smallinputs, and nonlinear integration of large inputs), and
we relate these to a simplified description of the energy landscapes
showninFig.2e. Acomplete description of the energy landscapeis not
attainableinthe presence of velocity inputs due to the asymmetry that
itintroduces in the connectivity matrix (Fig. 2a); to circumvent this,
we construct an approximate description thatrelies on three features
of the linear subsystems described above: (1) the orientations of the
unstable and stable fixed points, (2) the rates at which the bump is
pushed from or pulled toward these fixed points, and (3) the angular
span of the regimes governed by each fixed point. As we will show,
the local excitation determines the overall curvature of the energy
landscape through the rates and angular spans of each regime, which
affects the amount of drift. Input velocity shifts the fixed points within
this landscape, which influences the accuracy of velocity integration.

Drift in the absence of input. In the absence of velocity input, the
stable and unstable fixed points are evenly spaced by A6/2 =1/N rad
regardless of the strength of local excitation. However, the local excita-
tion affects how quickly the bump moves relative to each fixed point,
which, inturn, affects the rate of drift inthe network. If we vary the local
excitation between two optimal values, Jin and /E,n+1 (corresponding
toscenariosinwhich the bumpis always maintained by norn +1active
neurons, respectively), we find that the drift ratesA,and A, depend on
how closely tuned the local excitationis to either optimal value (Fig. 3d
and Extended DataFig. 6):

A= Ul -1)/r <0,

(2
Ay = e/ —1) /1> 0.

Thus, in the stable regime, where the bump is maintained by n
active neurons, the dynamics depend on how closely tuned the excita-
tion is to the value that would be optimal if n neurons maintained the
bump. Similarly, inthe unstable regime, where the bump is maintained
by n+1active neurons, the dynamics depend on how closely tuned
the excitation is to the value that would be optimal if n + 1 neurons
maintained the bump. Assuming that the bump orientation transitions
smoothly between regimes (as seen in simulations; Fig. 2f, top row),
the relative widths A6; /A6 of these regimes depend on the ratio of
thedriftrates (Fig. 3d):

A, 1 AB,

—_——=— =] — —. 3
AO 1+|/15|/|/lu| AO @)

Together, these expressions enabled us to construct asimplified land-
scape that captures the energy of different bump orientations within
each linear subsystem (Fig. 3e and Methods). The fixed points deter-
mine the locations of extrema within the landscape, the drift rates
determine the curvature of the landscape about these extrema, and
the angular spans of each regime delineate different regions of the
landscape that correspond to stable versus unstable dynamics. This
description explains how aring attractor emerges as the connectivity
is tuned toward an optimal value (Fig. 3f): at one extreme ( /g —>j§n),

the stableregion of the landscape flattens and expands to fill the entire
ring (A, > 0, A@, > AB), whereas the unstable region sharpens and shrinks

inspan; at the other extreme (Jg — J; n+1), the unstable region of the

landscape flattens and expands tofill the entire ring (1, > 0, A8, > A6),
whereas the stable region sharpens and shrinks in span. These differ-
ences in the shape of the energy landscape affect the drift dynamics
(Fig. 3g), an effect that we quantify by measuring the net drift speed
of the bump (Fig. 3h):

|/ld| = CABsMsl = CABU |/lu|’ (4)

where ¢ = (e —1)/2e is a constant. This speed is related to the overall
curvature of the landscape, and will be largest at intermediate values
of local excitation for which the landscape is bumpiest.

Inaccuracies in velocity integration. When a sufficiently small veloc-
ity input is injected into the network, the local curvature and angular
span of the stable and unstable regions of the landscape will remain
approximately unchanged (Extended Data Fig. 7). However, the ori-
entations of the fixed points will shift toward the boundary between
regions, thereby tipping the landscape in the direction of the velocity
input and driving the bump to a new stable fixed point (Fig. 3i and
Extended DataFig. 8c,d). The flatter the overall landscape (that is, the
smaller the value of |A4]), the more readily the landscape will tip for a
given velocity input (Fig. 3j).

Ataparticular threshold velocity, vy, the fixed points willmeet
attheboundary betweenregions, thereby enabling the bump toslide
down the landscape without getting stuck. This threshold velocity
specifies the minimum input that can be continuously integrated by
the network, and depends on the overall curvature of the landscape
through the net drift speed |A4]:

Uthresh & Md'/ 2c. (5)

Thelarger the overall curvature of the landscape, the larger the input
velocity needed to continuously move the bump (Fig. 3k). In the limit
that the local excitation approaches an optimal value, the overall cur-
vature goes to zero, and the network can integrate infinitesimally small
inputs (Fig. 31, solid curve).

Above this threshold velocity, the fixed points will shift outside of
their respective regions of the landscape, but their effect will still be
felt through the local landscape curvature. As a result, the bump will
speed up and slow down as it moves through the unstable and stable
regions of the landscape, but it will never get stuck at a fixed point
(Fig. 3k and Extended DataFig. 8e,f). This manifests as nonlinear inte-
gration, which we quantify by measuring the ratio between the slowest
and fastest bump velocities, Vi, and vy,ax. This ratio depends only on
therelative difference between the threshold and input velocities:

Vmin

Uin — Uthresh (6)

linearity(v;,) = .
Vin + Uthresh

12

Vmax

Bumpier energy landscapeslead to larger threshold velocities, which
lead toincreasingly nonlinear integration. However, because the overall
curvature (and thus the threshold velocity) is fixed for a given value of
local excitation, its relative impact on integration decreases as input
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Fig. 4| Smaller networks require more fine-tuning and are less robust to
noise. a, Top: log of net drift speed (color map) as a function of . and N. Red
circular markers indicate optimal values of J*; darker blue colors indicate slower
(thatis, better) drift rates. Suboptimal networks achieve better performance

as Nincreases. Bottom: to estimate tolerance around an optimal value of J%,

we compute the local change in net drift speed with respect to J; (turquoise lines)
that will achieve performance below some threshold (horizontal dashed black
line, illustrated for a threshold of 0.1 rad s ™). b, For a given N (different colors),
larger values of local excitation require less fine-tuning to achieve the same
performance. Solid lines mark the analytic tolerance given in equation (7); filled
circles indicate the numerically estimated tolerance about each optimal value of
Jg-Results were computed for a threshold value of 0.001 rad s, and are shown
for all evenly sized networks between N = 6 and N = 20. ¢, Given a fixed value of J¥,
the tolerance increases linearly with N. Results are shown for Ji = 4, the only

Network size N

optimal value of local excitation that remains unchanged with even N.d, Top:
error variance between the current and initial bump positions inasmall,
optimally tuned network with additive Gaussian noise. Numerical results are
shown for three different optimal values of /i, and with a noise variance
0*>=(A/6)*, where A =0.2is the bump amplitude. Bottom: beyond 10 s, the error
variance grows linearly over time, following a diffusion equation with slope 2D
(where Dis the diffusion coefficient). We use 1/2D as a measure of noise
robustness, with lower diffusion signifying higher robustness. e, Consistent
withd, larger optimal values of J; lead to higher noise robustness for a fixed N.
f, Given a fixed value ofj;‘ (shown for j;‘ = 4), noise robustness increases
linearly with N, and is inversely proportional to noise variance ¢* (shown for
0>=(A/6)*x[1,4,9,16,25]). Dashed lines indicate best linear fits; see Extended
Data Fig. 9 for fit coefficients.

velocity increases (Fig. 31, dashed curves). In the limit that the local
excitation approaches an optimal value, the threshold velocity goes to
zero,and thebump moves continuously at therate of the input velocity.

Optimal small networks are less robust

The previous results provide amechanistic understanding of how small
networks canachieve optimal performance through the precise tuning
oflocal excitation. To assess the potential cost of this precision, we used
the previous results to characterize how size affects the robustness of
optimal networks.

We first characterized robustness to variations in parameter tun-
ing. For agiven network size, deviations from optimal tuning degrade
performance through morerapid drift, larger threshold velocities, and
more nonlinear velocity integration. Inlarger networks, this degrada-
tionis less severe (Fig. 4a, top). To quantify this, we asked how precisely
thelocal excitation should be tuned to meet a criterion level of perfor-
mance (Fig. 4a, bottom). For small values of this criterion, we analyti-
cally determined the width of the interval about each optimal value of
local excitation J; for which a given measure of network performance
meets this criterion; we define the width of thisinterval to be the toler-
ance tol (J§, N):

tol (J§, N) = cpfpN, (7)
where c,yis aconstant that depends on the specific performance meas-
ure (net drift rate, threshold velocity, or linearity of integration) and
the desired performance criterion. For agiven network size, equation
(7) shows that larger optimal values of local excitation permit awider

range of parameter values that meet the same criterion level of perfor-
mance, and are thus more robust to parameter tuning (Fig. 4b). This
robustnessincreases linearly with network size; this can be seen most
clearly for J; = 4, which is an optimal value of local excitation for all
evenly sized networks (Fig. 4c). When summed across all optimal values
of local excitation, equation (7) allows us to estimate the net volume
of parameter space that achieves a desired performance threshold
(Methods). Because larger networks permit more values of optimal
excitation and exhibit higher tolerances around these values, we find
that the net volume of desirable parameter space increases at least
quadratically with network size (Extended Data Fig. 9a).

We next characterized robustness to noise. We simulated the
dynamics of optimally tuned networks with additive Gaussian noise,
and measured how quickly the bump diffused in the absence of velocity
input (Fig. 4d, top). At longer timescales, the difference between the
initial and final bump positionsis diffusive, with a variance that grows
linearly over time (Fig. 4d, bottom). The inverse diffusion rate gives a
measure of noise robustness; the faster the diffusion, the less robust
the network is to noise. For agiven network size, larger optimal values
of excitation are more robust to noise (Fig. 4¢), in qualitative agree-
mentwith theirincreased robustness to variationsin parameter tuning
(Fig. 4b). For a given value of excitation, noise robustness increases
linearly with network size, and inversely with the noise variance (Fig. 4f
and Extended Data Fig. 9b).

Together, these results highlight that optimally tuned small net-
works canrecover the performance of infinitely large networks. How-
ever, in the networks considered here, this comes at the cost of being
less robust to variations in parameter tuning and to noise.
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Discussion

Continuous attractor networks have provided a common theoreti-
cal framework for studying a wide range of computations'® involved
in working memory®™*, navigation®”’, and motor control''>. Across
these different task domains, this framework has historically invoked
networks of many neurons to ensure smooth and accurate dynamics.
However, growing evidence suggests that similar computations might
be performed in much smaller brains with far fewer neurons®30+353745,
Here, we asked to what extent network size limits the performance
of attractor networks**¢, and whether small networks can overcome
these limitations. We focused on a class of attractor networks that
maintain a persistent internal representation of a single circular
variable, such as orientation, and that update this representation
byintegrating aninternal signal, such as angular velocity. In the limit
ofinfinite numbers of neurons, these ring attractor networks gener-
ate a continuous ring manifold along which the population activity
smoothly and accurately evolves in the absence of noise. Here, we
showed that networks with as few as four neurons could recover this
continuousringattractor manifold, so long as the tuned component
ofthe connectivity (what we termlocal excitation) is precisely chosen.
Inthe threshold-linear networks studied here, this manifold emerges
asaset of line attractor manifolds that govern the dynamics of active
subsets of neurons, and that are stitched together to generate acom-
plete ring manifold. The resulting population activity can persist at
any orientationin the absence of input, and it cansmoothly integrate
velocity input.

Together, these results suggest that very small networks can
achieve levels of performance that were thought to require large net-
works. However, this performance comes at the cost of finely tuning
local excitation to one of a discrete number of optimal values. Our
biological inspiration was the small HD circuit of the fruit fly>%3>%7,
Although such networks have been modeled previously* ", stud-
ies have not demonstrated persistent encoding of arbitrary orienta-
tions in the absence of orienting stimuli. Further, although previous
studies®*” have shown that network performance changes as connec-
tion strengths vary, our study fully characterizes how network size
and connectionstrengthinfluence performance. Itis unclear whether
the fly HD system relies on the fine-tuning that we require for optimal
performance. To date, this system has only been probed under head
fixation on an air-supported ball (Methods); thus, its performance
during free behavior is unknown. Moreover, some inaccuracies in
its performance may be attributable to errors in the computation of
angular velocity, and not errors inits integration. Our main objective
was to investigate the performance and capabilities of small ring-like
attractor networks rather than to provide a detailed model of the
fly HD circuit per se. As such, there are many differences between
the fly circuit and the simple model we explore here, some of which
may provide as-yet-undescribed mechanisms to overcome potential
problems of discreteness. For example, a potential substrate for tun-
ing local excitation may be the synaptic contacts that fly HD neurons
make between themselves in different substructures of the CX*,
Some of these and other fine-scale details of synaptic connectivity
have not been incorporated into existing rate models**** or spiking
neuron models®*** of the circuit. In addition, these previous modeling
efforts have focused on capturing the dynamics of the circuit without
incorporating the biophysical properties of its neurons, and, in most
cases, with only a subset of the excitatory and inhibitory cell types
likely involved in generating the dynamics. Although the receptor
and transmitter profiles of the relevant neurons are known®, further
experiments are required to assess how intrinsic neuronal properties
shape persistent population activity, as reported in the mammalian
HD system*®, Indeed, these intrinsic properties may account for the
low drift we observed in the circuit (Fig. 1i) relative to that predicted
by the model (Fig. 4d). Thus, while our work shows that small networks
can, with appropriate tuning, implement continuous ring attractors,

further experiments are needed to understand their cellular and syn-
apticimplementationinreal circuits.

Importantly, large ring attractor networks also suffer from the
problem of fine-tuning, where noise in the connectivity—arising,
for example, from heterogeneity in synaptic or cellular properties—
canyield bumpy energy landscapes similar to those generated here
(Fig. 2e). Several mechanisms have been proposed to combat thisissue,
including homeostatic synaptic scaling* and synaptic facilitation®.
These mechanisms might also be effectiveinthe small networks studied
here, where—in addition to fine-tuning the profile of the connectiv-
ity—the overall strength of local excitation must also be fine-tuned.
Away from these optimal values, network dynamics are governed by
unstable and stable linear regimes in which the population activity
is pushed from or pulled toward discrete fixed points. We identified
three properties of these regimes that govern network performance:
the angular width of each regime, the locations of fixed points within
eachregime, and the speed at which the bumpis pushed fromor pulled
toward each fixed point. Varying the strength of local excitation alters
the balance between the regimes, such thatimproving performancein
one regime worsens performance in the other. However, as the local
excitation approaches an optimal value, the overall performance is
dominated by the better-performing regime, which, in the same limit,
becomes aring attractor.

This analysis relied on characterizing the behavior of threshold-
linear networks in terms of a separation between different linear
dynamical regimes. This separation has recently been used to infer
the underlying connectivity of biological networks®, and to design
different connectivity motifs that generate distinct dynamical patterns,
forexample, to keep countor coarsely represent different positions™*,
Here, we showed how the precise tuning of interactions within asingle
connectivity motif shapes the properties of these linear regimes, and
how these properties, in turn, affect performance. We found that cer-
tainregions of parameter space reduce driftand improve integration,
and among these ‘good’ parameter regions, some are more robust
than others. Specifically, we found that larger optimal values of local
excitation, which generate narrower activity bumps, are more robust
tovariations intuning and to additive noise, consistent with previous
studies of noise robustness in attractor networks**¢.

Our results relied on specific assumptions about network con-
nectivity and dynamics. We assumed local cosine-tuned excitation and
broad uniforminhibition, but ringattractor manifolds canbe generated
with different hand-tuned®*****>* or learned* connectivity structures.
Similarly, velocity integration can be performed in multiple ways, for
example, using a network of two rings that receive differential velocity
input®, or through two side rings that inherit heading activity from and
project back to a center ring with velocity-dependent phase shifts*, as
hasbeen observed experimentally*®*. Our formulation approximates
thissecondimplementationinthe limitthat the side rings have fast neu-
ral time constants®. Finally, our choice of athreshold-linear response
function enabled us to decompose the dynamics into distinct linear
regimes*** that differentially affect performance, and it allowed us
to analytically characterize the tuning precision required to achieve
a desired level of performance. In such threshold-linear networks,
this precision is limited to the tuned component of the connectivity;
however, in networks with other nonlinearities, both the tuned and
untuned components must be precisely chosen (Extended Data Fig. 5a).
We expect such optimal tunings to exist more generally, provided that
the energy of the system varies smoothly with the network tuning. In
such cases, parameter-dependent changes in the stability of fixed
points must be connected through optimal parameter tunings that
locally flatten the energy as a function of orientation, as observed in
Fig.3f (Supplementary Note). In the absence of such tuning precision,
small networks can fail to integrate velocity inputs and candriftin the
absence of input. While such performance failures are known to arise
insmall attractor networks with differing connectivity structures and
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neural response functions®*¢, it remains an open question how these

different design features affect the relationship between tuning preci-
sion and performance more broadly.

While these results were motivated by and interpreted in the con-
text of the small HD system of Drosophila, they immediately general-
ize to other scenarios. For example, the ring attractor network can
be used to model place fields in circular environments, grid fields
in one dimension, persistent-activity-mediated short-term memory
of stimuli represented by angular variables’, and the preparation of
motion toward targets onacircle’. Our results suggest that such repre-
sentations could be accurately maintained using few neurons, thereby
broadening the classes of computations that could be performed
by small circuits. Moreover, these results could further generalize
to higher-dimensional continuous variables, such as HD, place, and
grid fields in two or three dimensions”” " (see Extended Data Fig. 5b
for proof-of-principle numerical results). More broadly, the ability to
represent one continuous variable accurately using small numbers of
neurons could more easily enable large systems to represent multiple
continuous variables, such as therepresentation of many environments
observed in the rodent hippocampus>*°?,

Online content
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Methods

Experimental setup

Fly preparation forimaging. We expressed the genetically encoded cal-
ciumindicator GCaMP7f (ref. 56) in EPG neurons by crossing GCaMP7f
flies (w1118;;PBac[20XUAS-IVS-Syn21-op1-GCaMP7f-p10] in VKOO0O0S5)
to the EPG GAL4 driver line SS00096 (ref. 57). Flies (females, age 5-9
days, n=10) were prepared for imaging as previously described®*®.
Briefly, flies were anesthetized at 4 °C, their proboscis immobilized
withwax toreduce brain movements, and their head/thorax fixedtoa
holder witharecording chamber using ultraviolet glue. To gain optical
access to the brain, weremoved a section of cuticle between the ocelli
and antennae, along with the underlying fat and air sacs. Throughout
the experiment, the head was submerged in saline containing NaCl
(103 mM), KCI (3 mM), TES (5 mM), trehalose (8 mM), glucose (10 mM),
NaHCO; (26 mM), NaH,PO, (1 mM), CaCl, (2.5 mM) and MgCl, (4 mM),
with a pH of 7.3 and an osmolarity of 280 mOsm.

Two-photon calcium imaging. Calciumimaging was performed with
a custom-built two-photon microscope controlled with Scanimage
(version 2022, Vidrio Technologies)>’. Excitation of GCaMP7fwas gen-
erated with an infrared (920 nm), femtosecond-pulsed (pulse width
~110 fs) laser (Chameleon Ultra II, Coherent) with 15 mW of power,
as measured after the objective (x60 Olympus LUMPlanFL/IR, 0.9
numerical aperture). Fast Z-stacks (eight planes with 6-pum spacing
and three fly-back frames) were collected at 10 Hz by raster scanning
(128 x 128 pixels, ~75 x 75 um?) using an 8-kHz resonant-galvo system
and piezo-controlled Z positioning. Focal planes were selected to cover
the full extent of EPG processes in the EB. Emitted light was directed
(primary dichroic: 735, secondary dichroic: 594), filtered (filter A: 680
SP, filter B: 514/44) and detected with a GaAsP photomultiplier tube
(H10770PB-40, Hamamatsu).

Spherical treadmill system. Following dissection, flies were posi-
tioned on an air-supported polyurethane foam ball (8-mm diameter,
47 mg) under the two-photon microscope and allowed to walk. Rota-
tions of the ball were tracked at 500 Hz, as described previously*.
Behavioral data and imaging timestamps were recorded using Wave-
Surfer (version 0.947, http://wavesurfer.janelia.org/). For each fly,
we collected five 20-min trials during which flies walked or stood
indarkness.

Data analysis

All data analysis was performed in MATLAB (version 2022a, Math-
Works). Some analyses relied on functions from the Circular Statistics
Toolbox (version 2012a)°°. No statistical methods were used to prede-
termine sample sizes, but our sample sizes are similar to those reported
in previous publications®**°’, Flies were selected at random from their
vials; however, as all data were collected from a single experimental
condition (flies walking in darkness), no other randomization was
performed. Data collection and analysis were not performed blind to
the conditions of the experiments. We excluded any data collected
beyond 100 min for consistency and to exclude asmallnumber of flies
whose behavior and/orimaging degraded in quality, aknown limitation
of fly-on-a-ball calcium imaging experiments.

Extracting bump orientation and strength. Each Z-stack was reduced
to a single frame using a maximume-intensity projection technique.
An ellipse was manually drawn around the perimeter of the EB and
automatically segmented into 32 equal-area, wedge-shaped ROIs.
The number of ROIs was chosen to be twice the number of anatomi-
cally defined EB wedges®. Activity within each ROl was averaged for
each frame, producing 32 ROI time series. For each ROl time series,
baseline fluorescence (F,) was defined as the average of the lowest
10% of samples. AF/Fwas computed as100 x (F - F,)/(F,), where Fis the
instantaneous fluorescence from the raw ROI time series. These ROI

time series were then smoothed with a third-order Savitzky-Golay filter
over 11framesasin previous studies®*°. We used the PVA as ameasure
of bump strength and orientation. PVA was computed by taking the
circular mean of vectors whose angles were the ROI's wedge positions
and whose length was equal to the ROI's AF/F. The magnitude of this
mean resultant vector length was normalized to have a maximum
possible length of 1.

Characterizing bump drift. To determine bump drift (Fig. 1h,i), we
firstidentified periods when flies were standing still (defined as zero
rotational and translational velocity), disregarding periods shorter
than 300 ms. Drift was computed as the circular distance between
bump orientations (PVA phase) at the beginning and end of these
periods of standing. To determine whether the EPG bump drifted from
its initial position to preferred discrete locations within the EB when
the fly stood still, we compared the distributions of initial and final
bump positions across 64 nonoverlapping bins from -t to w around
the structure (Extended Data Fig. 1a,b). We used Watson’s L? test®>**,
anonparametric two-sample test, for this comparison, implemented
using MATLAB code from P. Mégevand (watsons_u2, https://github.
com/pierremegevand/watsons_u2,2017). We used 500 permutations to
compute Pvalues for this test; these Pvalues, together with the test sta-
tistic U2, are reported in the caption of Extended DataFig. 1b. Finally, we
computed the distribution of drifts for periods between300 msand2s
across 64 nonoverlapping binned initial positions from -t tomaround
the EB, and fit each fly’s drift distribution with sinusoidal functions of
theformA xsin(w x ¢ + ) + C,where w € {8,16} isthe frequency of the
sinusoid, ¢is theinitial bump position during the standing period, and
A, 0, Carelearned parameters for the amplitude, phase, and DC offset,
respectively (Extended Data Fig. 1c,d). Frequencies of 8and 16 Hzwere
chosento matchthe number of computational unitsinthe fly’scompass
network, which, in a discrete network, would cause the bump to drift
toward 8 (or16) distinct bump positions (schematized in Fig. 1h, top).
For each fly, we computed the R?value between the drift, measured as
afunction of HD, and the sinusoidal fits (Extended Data Fig. 1c); these
R*values are reported in Extended Data Fig. 1d.

Characterizing bump velocity. To determine whether the EPG
bump shows signs of nonlinear integration (Fig. 1j, top), we meas-
ured whether the bump moved faster or slower than expected as a
function of bump position for both left and right turns (Fig. 1j, middle
and bottom). We began by performing a linear regression (ordinary
least squares) between the fly’s instantaneous angular velocity and
the bump’s angular velocity (both sampled at 10 Hz) to account for
fly-to-fly variability in the gain of angular integration, as observed in
previous studies®**®', Linear fits were separately performed for left
andright turns, and theresiduals were taken as ameasure of whether
the bump was moving faster (or slower) than expected after account-
ing for each fly’s naive gain. Next, we binned data by bump position
(64 nonoverlapping bins from -t to ) and computed the average
residual bump velocity for each bin, producing the curves shown in
the middle and bottom panels of Fig. 1j. Lastly, we fit each fly’s curve
with sinusoidal functions of the form A x sin(w x ¢ + 8) + C, where
w € {8, 16} is the frequency of the sinusoid, ¢ is the bump position,
and A, 6, Care learned parameters for the amplitude, phase, and DC
offset, respectively (Extended Data Fig. 2). Frequencies of 8and 16 Hz
were chosen to match the number of computational units in the fly’s
compass network, which, ina discrete network, would cause the bump
to move faster or slower than expected at 8 (or 16) distinct bump
positions (schematized in Fig. 1j, top). For each fly, we computed the
R*value between the residual bump velocity, measured as a function
of HD, and the sinusoidal fits (Extended Data Fig. 2a); these R* values
arereported in Extended Data Fig. 2b.

We note that our fly-on-a-ball calcium imaging setup comes with
potential challenges for evaluating the presence or extent of nonlinear
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integration, including slow GCaMP dynamics, altered proprioceptive
feedback that the fly may experience while walking on a ball heavier
than itself, head fixation that may prevent the fly from altering its
head-body angle during turns, potential neural propagation delays
involved in relaying and integrating the angular velocity signal, and
measurement noise inherent to calcium imaging that could corrupt
bump velocity estimation.

Model overview

Network equations. We consider an effective single-ring network of
N neurons (or, equivalently, of N computational units; see ‘Network
equations’inthe Supplementary Note). Neurons are ordered accord-
ingtotheir preferred heading 6, which we take to be evenly spaced by
AB@=21mt/Nrad.Neuronsarerecurrently connected according to their
preferred headings through a symmetric weight matrix
W;ky'“ =i +Jg cos(B; — 6;) , where J; and J, parametrize the strength
of local excitation and uniform inhibition, respectively (note that
Je and J, actually correspond to tuned and untuned components of
the connectivity; for ease of language, we use local excitation
and broad inhibition here and throughout). Neurons receive velo-
city input through an asymmetric, velocity-modulated weight
matrix v;, Wj‘fy"’ = v;, sin(6; — 6y); in the main text, we took v;, > 0. Each
neuronj receives a constant feedforward input ¢ and a net input
UNZ, W™ + vinW, ™ ™rifromall other neuronsin the network, where
thefiring rater, = ¢(hy) is anonlinear function of the total input activity
h;.Forallanalyses shown in the main text, we took the nonlinear trans-
fer function ¢(-) to be rectified linear (that is, ¢(-) =[-]., but see also
Extended Data Fig. 5 and ‘Robustness to changes in the transfer
function and recurrent weights’ in the Methods). The dynamics of
each neuron are given by the system of single-neuron equations in
equation (1);wechoser=0.1sand cx=1.

By applying a discrete Fourier transform to the single-neuron
equations, we can express this system of equationsin terms of its Fou-
rier modes. After initial transients, only the DC and first-order modes
remain, and the resulting dynamical system reduces to a set of three
equations that governthe dynamics of the orientation ¢, amplitude a
relative to the average input activity, and width w of the bump (‘Order
equations’ in the Supplementary Note); we will refer to these as the
system of bump equations.

Stable parameter regime. The system of bump equations will gener-
ate astablebump of activity for certain combinations of Jyand /, (‘Fixed
pointanalysis’inthe Supplementary Note and Extended Data Fig. 3a).
For all analyses shown in the main text, we first selected a desired
value of J; > 2, and then selected a value of /; such that it produced a
bump of activity whose fullamplitude A = H, + a (where H,is the aver-
age input activity) was at least approximately A=0.2. To do so, we
first uniformly sampled bump orientations ¢ € [0, 2m) and widths
w e [21/N, 2(N - 1)1t/N), and we used these to calculate the contour
Jefoven(W, ) =1using MATLAB'’s ‘contourc.m’, where f,...(w, ¥) is given
by equation (S19) inthe Supplementary Note (see also equation (S30)
in the Supplementary Note and Extended Data Fig. 3c). This gave us
values (w, ) € G, = {(w, ) |Jefeven(w, ) = 1} that satisfy the contour
equation. We then used these values of w and ¢ to determine an upper
bound on/, given by

jlbound: min —cos(w/2)

wheg, fow,p) ’ ®

where f,(w, ) is given by equation (S18) (see also equation (S32)) in
the Supplementary Note. We then used these same values of w and ¢
to determine a value for J,, given by

(cg/A —1) cos(w/2) — cg/A

9
fO(w’lp) ( )

min
(w,p)eC;,

h=

and verified that J; <P, Plugging A = 0.2into equation (9) resulted
inabump of activity whose minimum fullamplitude was approximately
A=0.2.

Model analytics

Stationary solutions. To determine the configurations to which the
system evolves in the absence of velocity input, we characterized the
stationary solutions of the system of bump equations (‘Fixed point
analysis’ in the Supplementary Note). This allowed us to determine
relationships between the bump orientation, relative amplitude, and
width that would persistently maintain a stable bump of activity
(Extended Data Fig. 3b,c). For a network of N neurons that receive no
velocity input, most parameter settings will yield two sets of N fixed
points each—one set will be stable, and the other will be unstable. For
agiven value of /;, one set will be aligned with the preferred headings
{0}, and the other set will be aligned precisely between the preferred
headings; the second and fourth columns of Fig. 2e highlight examples
for which the unstable (second column) and stable (fourth column)
sets of fixed points are aligned with the preferred headings. The value
ofJ:and the parity of N(whether the network consists of an even or odd
number of neurons) together specify which of these two configurations
the network willadopt. When Nisevenand J; <jE’N_2(denoting bumps
supported by N-1and N - 2 neurons), the set of fixed points aligned
with the preferred headings will be unstable. When Nis odd, the reverse
willbe true: for Je <J;,_,, the set of fixed points aligned with the pre-
ferred headings will be stable. For a given network size N, as J; passes
through an optimal value /%, this stability switches (Extended Data
Fig. 3d,g). At each of these fixed points, the widths of the stable and
unstable bump configurations are determined solely by J;, whereas
their relative amplitudes depend on both /; and,.

Energy landscape. We derived an energy landscape E(a, w, ¥; J:, /)
for the system of bump equations in the absence of velocity input*®*!
(‘Energy landscape’ in the Supplementary Note). This function
describes the stable configurations to which the system will evolve in
the absence of input.

Tominimize the curvature of the energy landscape, we first deter-
mined the 3 x 3 Hessian matrix of the second derivatives of the energy
Ewithrespecttoa, w, and ¢. When evaluated at the orientations ¢*° of
the stable fixed points (see the previous subsection), we found that the
Hessianreduced to a block diagonal matrix, with asingle eigenvector
along ¢ whose eigenvalue is given by

> sin’ (6 — ¢°), (10)

k€Ker

where K, denotes the set of indices of the neurons that actively main-
tainthebump. This eigenvalue quantifies the degree of local curvature
ofthe energy as afunction of bump orientation ¢. For asystem of size
N, there are N -3 values of local excitation J; for which this eigenvalue
goes to zero, and thus for which the energy landscape is locally flat as
afunction of ¢. These correspond to bump configurations for which
the bump is maintained by N, € [2, N - 2] active neurons:

1 % + 1 (ﬁ + 11)

* 2N

EvNaC[

sin(2nﬁ/N)> N
2

sin@m/n) )= Nact = 5+

We found that these values of local excitation, which are shown in
Fig.2d,also ensure that the energy landscape s flat for all bump orienta-
tions (as shown in Fig. 2e; also see Extended Data Fig. 4).

Leading eigenvalues of active submatrices. In the absence of velocity
input, the bump dynamics are governed by the leading eigenvalue 1 of
asubmatrix of the connectivity (-/+ W*™/N)/t; this eigenvalue deter-
minestherate at whichthe bump will driftin the absence of input. When
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the local excitation /¢ is optimally tuned (that s, J; = E,Nm)' the bump
of activity will be maintained by a fixed number of active neurons
N, €12,...,N-2].Foreachdistinct value of N, thereis thusadistinct
N, X N, submatrix of the connectivity whose single leading eigenvalue
determines the drift dynamics. Away from these optimal values of local
excitation, the bump of activity will be maintained by eithernorn+1
active neurons (see equation (S50) in the Supplementary Note). The
drift dynamics are then governed by the leading eigenvalues of the
correspondingn x nand (n +1) x (n +1) active submatrices.

To determine these dynamics, we analytically determined the
rates of bump driftin the stable and unstable regimes, which are given
inequation (2) (see ‘Performance of non-optimal solutions: Dynamics
inthe absence of input velocity’, and, in particular, equations (554) and
(S56) inthe Supplementary Note). We then compared these analytically
deriveddriftratesto theleading eigenvalues that we computed numeri-
cally by directly diagonalizing active submatrices of the connectivity
(using the MATLAB function ‘eig.m’); this comparison is shown in
Extended DataFig. 6.

Widths of stable and unstable regimes. In the absence of input, the
widths of the stable and unstable regimes can be determined ana-
lytically by finding the orientation at which the bump transitions from
unstable to stable dynamics as it drifts away from an unstable fixed
point. This reduces to matching two exponential equations that govern
the dynamics of the bump orientation in the two regimes (with drift
rates A, and A, respectively), and that must tend toward the orientations
ofthe unstable and stable fixed pointsas ¢ > —eand ¢t > +e, respectively.
The resulting widths of each regime are given by equation (3) and
shown in Fig. 3d and Extended Data Fig. 8b, and they are centered on
the orientations of the stable and unstable fixed pointsin the absence
ofinput. Given astable fixed pointat ¢ = ¢*and an unstable fixed point
at Y =y¢"=¢*+1/N, the resulting equation for the bump can then be
written as (see equations (S61) and (562) in the Supplementary Note):

P+ (Yo — Y exp(Ay0) ;

¢S+ ATHS exp(—|As|(t = tpn)); t>tn, stableregime

0 <t<ty, unstableregime

) =

B

(12)

where ¢* + ABy/2 < p, < ¢" is the initial orientation of the bump, and
ty, = (1/1,) log(AB/2(¢" - ¢,))) is the time when the bump orientation
crosses from the unstable regime into the stable regime. See ‘Perfor-
mance of non-optimal solutions: Dynamics in the absence of input
velocity’in the Supplementary Note for more details.

Driftin the absence of input. To measure the net bump drift, we ana-
lytically computed the time 7, that it takes for the bump to drift from
within e, of an unstable fixed point to within &, of astable one. We chose
&,=A0,/2eand ;= Af/2e, suchthat thebump covered an angular dis-
tance of Ay, = (1-1/e)A6/2 inthe time 4. We then measured the net drift
speed as Ay,/1, (see equations (S68)—-(S71) in the Supplementary Note).

Small velocity approximation. In the presence of velocity input,
the bump dynamics will be governed by the leading eigenvalue A of
a submatrix of the full connectivity (-=/+ (W™ + v,,W*¥™)/N)/t. The
asymmetric component of this connectivity is modulated by the
input velocity v;,, and introduces a velocity-dependent correction
to the eigenvalue A, of the symmetric connectivity (-/+ W*™/N)/t
(Extended Data Fig.7):

A& Ao + UV}, + Oy (13)
For sufficiently smallinput velocities, we can approximate the leading
eigenvaluesA,andA,, and thus the corresponding widths of the unsta-
ble and stable regimes, as being equal to their values in the absence
of velocity input (see ‘Leading eigenvalues of active submatrices’ and

‘Widths of stable and unstable regimes’ in the Methods). All analytic
results shown in Fig. 3i-1 were generated under this assumption. This
approximation breaks down as the input velocity increases, and it
breaks down more quickly for smaller values of local excitation (as
showninFig. 3I; see also Extended Data Fig. 7a).

Locations of fixed points in a velocity-driven regime. Although we
canapproximate theratesand width of the stable and unstable regimes
as remaining unchanged for a sufficiently small velocity input, we can-
not make the same approximation for the orientations of stable and
unstable fixed points. Therefore, we will treat the stable and unstable
fixed-point orientations as functions of v;,: ¢° = ¢*(v;,), ¢" = ¢"(v;),
respectively. The orientation of the stable and unstable fixed points
found in the absence of velocity input will then be given by ¢*(0)
and ¢"(0), respectively. To determine how the orientations of these
fixed points shift with velocity, we repeated the analyses described
in ‘Widths of stable and unstable regimes’ in the Methods, but with
a different set of initial conditions (see ‘Performance of non-optimal
solutions: Dynamics in the presence of small input velocity’ in the
Supplementary Note for details). Given a bump that begins at a sta-
ble fixed point ¢ = ¢*(0) in the absence of input, and given an initial
velocity v;,, the bump will be driven to a new stable fixed point at an
orientation ¢*(v;,) = ¢*(0) + v;,/IAJ as t > e, In the limit that ¢ > —, the
bump will be driven to (and hence, in forward time, away from) an
unstable fixed point at an orientation ¢"(v;,) = ¢"(0) - v;,/A,. Over an
interval ¢ € [¢°(0) - A8/2, ¢"(0) + AB,/2], the resulting equation
for the bump can be written as (see equations (S78) and (S79) in the
Supplementary Note):

¢5(0) + Ilf/l_l (1-exp(=|A|D); 0 < t < t, stableregime

YO =y yu(0) - 2o 4 (”— - %(AB— Aﬂs))

A A

exp(A,(t—t.)); t>t. unstable regime

14)

where ¢, = (1/|A]) log(1/(1 - AB,|A|/2v,,)) is the time when the bump
orientation crosses from the stable regime into the unstable regime.

Atthethreshold velocity givenin equation (5), the two fixed points
willmeet attheboundary between regimes; this is the minimum veloc-
ity needed for the bump to move continuously. Below this velocity,
the bump will be driven away from the unstable fixed point in the
unstableregime, and toward astable fixed pointin the stable regime.
Above this velocity, the stable and unstable fixed points will still drive
the bump dynamics, but their orientations will move outside of their
respective regimes. The minimum and maximum bump velocities,
Vmin aNd v, (given by equation (6)), can be computed analytically
from equation (14) by evaluating the time derivative of ¢(t) at the
boundary from the stable to the unstable regime, and vice versa. We
used these minimum and maximum velocities to define the linearity
ofintegration as v,in/Vmax See ‘Performance of non-optimal solutions:
Dynamicsinthe presence of smallinput velocity’ inthe Supplementary
Note for details.

Simplified energy landscape. Having described eachlinear subsystem
interms of (1) the orientations of the fixed points, (2) the rate at which
the bump drifts toward or away from these fixed points, and (3) the
angular regime governed by each fixed point, we used these three prop-
erties to construct asimplified landscape that describes the energy of
differentbump orientations. Given alinear system, an energy function
can be chosen to be quadratic®; we thus choose E,, () = a, *, where
a,> 0forthestable subsystem, and a, < O for the unstable subsystem.
To select the appropriate values of a, ,, we require that the energy
function has extrema at the orientations of the stable and unstable
fixed points ¢*(v;,) and ¢ (v;,), and that the energy transitions smoothly
between the stable and unstable regimes; this yields
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AW — (/1“(1)",))2 + C(vy,) unstable regime
E@) = , L)
=A@ — P (Uin)) stable regime

where C(v;,) = A (A,A6,/4 — vy, + V2, /(A,A8,)) and where a, = A, < Oand
a,=—-A;>0asrequired. When moving around the ring, each successive
pair of stable and unstable regimes will be governed by an energy
landscape of this form but with a vertical shift, such that
E(Y £ nAB) = E(y) ¥ 2nv,,A0.See ‘Simplified energy’in the Supplemen-
tary Note for more details.

Tolerance in tuning. To determine how precisely the local excitation
must be tuned to achieve a criterion level of performance, we first
computed the derivative of each performance measure as a function
oflocal excitation, evaluated at an optimal value; we denote this mp(J;)
(see equations (596)-(S99) in the Supplementary Note). This slope
gives us a local linear estimate of how quickly the performance
degrades away froman optimal value of local excitation. Because each
performance measure can be expressed as a function of the net drift
speed|A4], computing this slope reduced to computing 8|A41/0Je |- Given
acriterion for the system to be within i of optimal performance for
a performance measure P, the tolerance about a given optimal value
Ji canthen be computed as toly(J;) > 28;,"'/ Imp(J{)| (where > indicates
that thisisalower bound onthetolerance, as thelinear slope will over-
estimate the rate of degradation of performance; see equation (S113)
inthe Supplementary Note).

To determine the volume of parameter space that can meet this
desired performance, we summed the tolerance across all optimal
values of local excitation foragiven network size N (see equation (S120)
in the Supplementary Note). We then approximated this sum by its
largest value, which reduces to

2

V(N) > CPW- (16)

See ‘Degradation of performance as a function of local excitation’ in
the Supplementary Note for more details.

Model simulations

Overview. All simulations that we performed used MATLAB’s ODE
solver ‘ode45.m’ with an integration timestep of At=0.01s. We first
initialized the network to generate a bump of activity at a given ori-
entation ¢. Using this as the initial condition for the network, we
then simulated the single-neuron dynamics in equation (1), and we
performed a discrete Fourier transform using MATLAB’s ‘fft.m’ func-
tionto extract the bump dynamics as a function of the single-neuron
dynamics (see equation (S16) in the Supplementary Note). When
simulating angular velocity integration, we first determined the veloc-
ity scaling that would generate acomparable rate of bump movement
foragiven (constant) velocity input (see ‘Velocity-driven dynamics’in
the Methods). We then simulated the network dynamics in response
to thisscaled input.

Parameter choices. All results shown in Figs. 2 and 3 were generated
using networks of size N= 6. Whenillustrating network properties for
different values of local excitation, we used the following values of J;
(evenlyspacedinl//p):/:=112,6,4,3,2.4] (Fig.2e-h); J: =[3.89,3.6,3.3,
3,2.77,2.57,2.44] (Fig. 3f)j); J: = [3.6, 3, 2.57, 2.44] (Fig. 3g k); 17 evenly
spaced values of 1//; between 1/3.86 and 1/2.45 (Fig. 3h,1). When simu-
lating network dynamics inthe presence of velocity input, we used the
following values of velocity input v,,: tenevenly spaced velocity values
between 0.2and 2.0 rad s (Fig. 2f); ten evenly spaced values between
0.1and 1.0 rad s™ (Fig. 3k); five evenly spaced values between 0.8 and
L.6rads™ (Fig.3l).Inall cases, we scaled the velocity input as described
below (see ‘Velocity-driven dynamics’in the Methods).

Drift in the absence of input. For simulations of bump drift, we simu-
lated the network with the velocity input set to zero. Toillustrate drift
trajectories for different values of J; (as shown in the bottom row of
Fig. 2f and in Fig. 3g), we initialized the bump at six evenly spaced
orientationsbetween (and including) 0 and /N, and we simulated the
evolution of the bump for 3 s. We repeated this for repeating angular
units between 0 and 2m.

Measuring net drift speed. To measure the net drift speed (as
described in ‘Drift in the absence of input’ in ‘Model analytics’ in the
Methods), we initialized the bump at an orientation ¢" - €, (Where ¢"
is the orientation of an unstable fixed point; for the values of J; used
in Fig. 3, ¢" =/N; see ‘Parameter choices’ in the Methods). We then
simulated the network dynamics until the bump reached an orienta-
tione,. Wesete, = A8, /2e and ;= Af,/2e, where AG, ;were computed as
described in ‘Widths of stable and unstable regimes’ in the Methods.
We used the time it took for the bump to reach this orientation as the
measure of the net drift timescale 7, and we used Ay,/7,as ameasure
of net drift speed, where Ay, = (1-1/e)A6/2 is the angular distance
traveled by thebumpinthe time 7,. Fig. 3h compares the net drift speed
from simulations to that obtained analytically for different values of /.

Velocity-driven dynamics. For simulations of angular velocity integra-
tion, weinjected a constant velocity input throughout the simulation.
To permit a comparison to analytic predictions, we scaled the input
velocity such that the rate of movement of the bump matched the
input velocity ataninput of v, = 50 rad s. To this end, we determined
the best-fittinglinear trajectory that minimized the absolute deviation
from the bump trajectory over atime window of t = 6 s,and we used the
slope of this linear trajectory to scale all other input velocities injected
into the network. We performed this scaling separately for each set
of network parameters (that is, for each choice of (J, /). All velocity
values described in simulations were scaled in this way.

Measuring threshold velocity. To measure the threshold velocity
required to move the bump continuously (as shownin Fig. 31), we first
analytically computed the threshold velocity as described in ‘Locations
of fixed points in a velocity-driven regime’ in the Methods. We then
chose 50 evenly spaced input velocity values between (and including)
Ugnresh — 0.05 rad s™ and v, + 0.05 rad s™. We initialized the bump at
the orientation of a stable fixed point (here, at ¢*=0), and we then
simulated the network dynamicsinresponse to each velocity individu-
ally. We determined the minimum of these velocities that would move
the bump beyond an orientation of /N within a time interval of 10 s.
Fig. 3l compares this simulated value to the value obtained analytically.

Measuring the linearity of integration. To measure the linearity of
integration from simulations, we simulated the bump trajectory for
different constantinput velocities (as described above in ‘Overview’).
Foreachinput velocity, we determined the time ¢, when the bump orien-
tation ¢ crossed fromthe stableinto the unstable regime or vice versa;
these times were used to compute the minimum and maximum veloci-
ties, respectively (note that we used the analytically derived boundaries
between regimes to determine these crossing times; see ‘Widths of
stable and unstable regimes’ in the Methods). We then determined
the bump velocity as v = ((¢, + At) — (¢, — At))/2At, where At=0.1sis
the integration timestep used in all simulations. Fig. 31 compares this
simulated value to the value derived analytically (see ‘Locations of fixed
pointsinavelocity-driven regime’ in the Methods).

Robustness to variations in parameter tuning. To summarize per-
formance as a function of network size (shown in Fig. 4a), we analyti-
cally computed the netdrift speed (as described in‘Driftin the absence
of input’ in ‘Model analytics’ in the Methods) as a function of local
excitationin therange J; € Ui e SEs] (that is, between the minimum
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and maximum optimal values of local excitation, maintained by
N,..=N-2andN,. =2 active neurons, respectively). For each optimal
value of local excitation, we numerically estimated thetolerance asthe
range of local excitation values about an optimum for which the net
drift speed would be consistently below a fixed performance threshold
(weused athreshold value of 0.001 rad s™). We considered only those
values of local excitation above the minimum optimal value or below
the maximum optimal value to estimate this tolerance; thus, to esti-
mate the tolerance about the minimum and maximumoptimal values,
we measured the toleranceinonly onedirection ( Jg <Jg,0r Je 2]’E’N_2),
and we doubled this value to use as our estimate. We then compared
these tolerance estimates to the analytic lower bound givenin equation
(7), as shown in Fig. 4b,c (also see equations (S113)-(S119) in the Sup-
plementary Note). Finally, we summed these tolerance values (com-
puted numerically or analytically) for each network size Nto estimate
the net volume of parameter space that meets this threshold level of
performance, as shown in Extended Data Fig. 9a.

Robustness to noise. To measure noise robustness, we added inde-
pendent Gaussian noise with variance ¢° to each neuron in our optimal
networks, and we simulated network dynamicsinthe absence of veloc-
ityinput. Weran10,000 simulations in which we tracked the orientation
of the bump over a total time of 20 s, and we used this to measure the
variance of the difference between theinitial and final bump positions
over time: (((t) — ,)?). For short timescales, the dynamics of this
quantity are affected by the finite integration timescale 7; at longer
timescales, this quantity follows a diffusion equation with diffusion
constant D: (((0) — Po)*) = 05 +2Dt. We used the bump trajectories for
t>10stofita value for 2D, as shown in Fig. 4d, and we took 1/2D as a
measure of noise robustness. Figure 4e,f measures this robustness for
optimally tuned networks of varying J: and N, and for varying noise
levels: 0> = (A4/6)* % [1,4,9,16,25], where A = 0.2 is the bump amplitude.
To extract the dependence on N and ¢?, as shown in Fig. 4f, we found
the best-fitting coefficients a, b for the linear relationship
2D = (aN + b)/0* (see Extended Data Fig. 9b for a visualization of these
coefficients).

Robustness to changes in the transfer function and recurrent
weights. We examined the robustness of the continuous attractor
regime to changes in the number of Fourier modes of the recurrent
connections in W™, the neuron input-output relationship ¢, and
an increase in the dimensionality of the attractor. To this aim, we
numerically solved the dynamics of equation (1) with v;,=0 in
two different scenarios. First, we used (1) a von Mises connectivity
profile with concentration parameter k for the recurrent weights
W;(ym =J +Je exp(k cos(6; — 6,))/(21ly (k) , where Iy(k) is the modified
Bessel function of order O; (2) a smooth nonlinear transfer function,
@(x) =log(1+e*). We numerically solved the dynamics of a network
with N=8unitsand/,= -30, with cosine-shaped initial conditions cen-
tered at 50 uniformly spaced orientations on the ring (Extended Data
Fig. 5a). We evaluated the dispersion (circular variance) between the
initial and final orientations on the ring for different values of J; after
numerically solving the dynamics for a total time of 5007, where 7 is
the single-neuron time constant. We observed the presence of optimal
values of J; (Extended Data Fig. 5a, red), where the network behaved
like a continuous attractor, as opposed to other values of J; (Extended
Data Fig. 5a, purple, blue) where the discreteness of the solution was
evident. The specific values of optimal excitation depend on both the
value of J, (Extended Data Fig. 5a, empty circles), and on the strength
of constant feedforward input c.

We next examined the dynamics in equation (1) with a recurrent
weight profile storing atwo-dimensional toroidal attractor with N=16
neurons, Wfkym =S+ %(cos(@} -6+ cos(ej? -62) ,J,=-20, where the
preferred orientations (6}, 6%) of the units were uniformly spaced on
thetorus (Extended Data Fig. 5b). We similarly observed the presence

ofan optimal value of J; for which the dispersion between subthreshold
bumps initialized at 100 different orientations on the torus and the
final orientations were close to 0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data collected for this study are freely available via figshare at
https://doi.org/10.25378/janelia.26169355 (ref. 66).

Code availability
All custom code written for this study is freely available via
Zenodo at https://doi.org/10.5281/zenod0.12789923 (ref. 67) and
is maintained on GitHub at https://github.com/HermundstadLab/
DiscreteRingAttractor.
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Extended Data Fig. 1| Analysis of bump drift during standing bouts.

a, Histograms of orientationsin the ellipsoid body occupied by the compass
bump at the beginning (blue) and end (red) of standing bouts for all ten flies.
Note degree of overlap in the distributions, with no sign of anincrease in
specific orientations from beginning to restart. b, Cumulative distributions
of orientationsin the ellipsoid body occupied by the compass bump at the
beginning (blue) and end (red) of standing bouts for all ten flies. Differences
between the two distributions are not statistically significant. P-values for
Watson’s U test (flies 1-10): 0.5560,1.0000,1.0000, 0.9920, 0.9980,1.0000,
0.9580,1.0000, 0.9860, 0.1180. > test statistic (flies 1-10): 0.0660, 0.0085,
0.0095,0.0193, 0.0157, 0.0070, 0.0295, 0.0128, 0.0221, 0.1394. ¢, Drift during

standing bouts for all ten flies, measured at different starting orientations of the
compass bump. 8- and 16-Hz sinusoids were fit to drifts for each fly. One signature
of discreteness in the performance of the compass system would be lower drift
when the bump starts at stable orientations during standing bouts and higher
drift when the bump starts outside of those orientations. We did not see such
fluctuations in the data (see panel d). d, R? values for sinusoidal fits in panel c.

In panels a-d, only those standing bouts that were greater that 0.3 s and less than
2swere used for analyses. This resulted in the following numbers of standing
bouts for flies 1-10: 980,1005, 835, 826, 723, 714, 573, 527, 312, 949. Flies 2 and

6 correspond to flies GC7fA and GC7fB, respectively, in Fig. 1e,h-j.
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leftand right turns for all ten flies. 8- and 16-Hz sinusoids were fit to these average inthe data (see panel b). b, R? values for sinusoidal fits in panel a.
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Extended Data Fig. 3 | Stability of population profile and fixed-point analysis.
a, The stability of the shape of the population profile depends on/-and/, (shown
for N=6).‘Unstable’ regime: the population activity diverges over time.
‘Homogeneous’ regime: the network generates a stable activity profile that is
uniform across the entire network. Inhomogeneous’ regime: the network
generates a stable bump of activity that persists at adiscrete set of orientationsin
the absence of input. Dashed lines indicate optimal values of /. for which the
network generates a set of marginally stable solutions that can persist at any
orientation in the absence of input. b-c, Fixed point conditions from the
equations for bump orientation (panel b; f,4, = 0) and relative amplitude (panel c;
Sfoven=1/J¢). See Supplementary Note for details. b, Heatmap of f, . (w, ¢) for
densely sampled bump widths w € [ 21t/N,2(N — 1)rr/N )and orientations ¢ € [0,
2m). Red and blue regions correspond to f, ;> 0 and f,4;< 0 (which drive the bump
orientation to the right and left, respectively). White regions indicate f,,4=0,
which correspond to potential fixed points X* = (a*, w*, ¢*) at which the bump
canstably persist. Note thatat ¢ =(6.+6,)/2,d=c, c+1,f,q4 (W, ¥) = O regardless of
the value of w. ¢, Contours of constant f,..(w, ¢), shown for 10 evenly spaced

-6
broad inhibition .J;

-6
broad inhibition .J;

-4 2 0
values of 1//.between and including 1/12 and 1/2.4. These contours indicate a
necessary (but not sufficient) relationship between w and ¢ for stationary bump
solutions. d-i, Eigenvalues of linearized system about fixed points with
orientation ¢ =0, (panels d-f) or ¢’ = (6, +6;.,,)/2 (panels g-i),j=1...N. See
Supplementary Note for details. d, g, Eigenvalue 1, depends on . This eigenvalue
corresponds to changes in orientation near the fixed points and is the sole
determinant of stability of the fixed points. Note that when the set of fixed points
correspondingtoy’=6,j=1...N, is stable, the other set of fixed points
corresponding to ¢’ = (6;+6;,,)/2,j=1...N, is unstable, and vice-versa. The
remaining two eigenvalues A, (panels e, h) and A_(panelsf, i) depend on both /;
and/,but are always negative in the parameter regime that generates bump-like
profiles (region above black line; compare to ‘inhomogeneous; stable’ in panel a).
Panelsb,c,e,f,h,iwere generated using redblueu.m (https://www.mathworks.
com/matlabcentral/fileexchange/74791-redblue-colormap-generator-with-zero-
as-white-or-black) and magma.m (https://www.mathworks.com/matlabcentral/
fileexchange/51986-perceptually-uniform-colormaps).
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Extended DataFig. 4 | Flat directions in the energy landscape. Smallest eigenvalue, indicating the existence of a zero-curvature direction within the
magnitude eigenvalues (top row) and corresponding eigenvector components energy landscape. The corresponding eigenvectors are purely aligned along ¢
(lower three rows) for the Hessian matrix of the energy, computed for all three (second row) at the orientations of the stable fixed points (teal dashed lines).
optimal values of local excitation ina network of size N=6:a, J;=2.4;b, J;=4; Away from these orientations, the corresponding eigenvectors involve
C, fE“ =12.For each optimal value of local excitation, the Hessian has a single zero contributions from w and a (third and fourth rows, respectively).
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Extended Data Fig. 5| Robustness to changes in the single neuron transfer variance between the initial and final orientations is close to zero (top, red
function and recurrent synaptic weights. Comparison between initial and final markers), and the bump does not drift (bottom, center panels). Away from these
bump orientations as a function of J;for a, anetwork of N=8 neurons witha Von values of J;, the circular variance increases (top, purple/blue markers), and the
Mises weight profile and asmooth nonlinear transfer function, and b, a network bump drifts from its original orientation (bottom left/right panels). See Methods
of N=16 neurons with a recurrent weight profile storing a 2-dimensional toroidal for simulation details.

attractor. In both cases, there is an optimal value of /. for which the circular
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Extended DataFig. 6 | Leading eigenvalues of active submatrices. full connectivity W= (W*™/N-I)/tin the absence of velocity input. Shown for
Comparison of analytically- versus numerically- derived eigenvalues (solid lines network sizesa, N=6,b, N=8,and ¢, N=10. Red dotted lines mark optimal values
versus markers, respectively), computed from the active submatrices of the oflocal excitation for each network size.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article https://doi.org/10.1038/s41593-024-01766-5

c stable regime unstable regime
— correction correction
- fit O(u?)+O(v*) -~ fit O(u?)+O(v*)
a b correction to leading eigenvalue 0 0 ~—
stable regime unstable regime -0.054 \\
1124 . 1/2.4 - . - g ol 044 \
‘ Hirm best-fit R
1 I = 1 coefficients E’, 0.15 038
- he —
Vin 0 > NG
1/2.8 1/2.8 1 £ 4 N
3 1 ]
4 — 1 i}
05 ]
1/3.3 1/3.3 1 3 N
£ 1 N
8 ]
] - i | .
\\
Q) <
= 1740 4 = 1740 - 1 -
- - 0 0T
1 1 1 best-fit N
coefficients o -0.0054 -0.05 b
1/5.4 1 1/5.1 - — 0 §
f:é) -0.01 -0.1
1 - 1 -0.05 ® ~<
2 N
117.2 1 1721 1 g 1 1 AN
2
] N 1 c
2
112 T 1n2 - . i £ N\
-10 0 10 20 5 5 ) 3 ° 1 N\
leading eigenvalues O(1) O(v) O(v*) O(v*)  O(1) Ov) O(v*) O(v*) N\
0 05 1 0 05 1
Vin Vin
Extended DataFig. 7| Velocity correction to leading eigenvalues of active marks an optimal value of local excitation. b, Coefficients of the best-fitting 3rd
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Extended Data Fig. 8 | Impact of stable and unstable fixed points on drift
and velocity integration. a-b, Repeated from Fig. 3c-d, with regimes colored
according to drift speed (grayscale). ¢, Input velocity shifts the orientations of
the fixed points. Top: as the input velocity increases from O, the orientations

of the stable and unstable fixed points shift toward the boundary between
regimes. At athreshold velocity (Eq. (5)), the two fixed points will meet at the
boundary; this threshold velocity is the minimum input velocity needed to move
the bump continuously. Bottom: For velocities below this threshold, the bump
willbe driven to the stable fixed point, regardless of its initial orientation. d, The
orientations of stable and unstable fixed points (turquoise and orange lines,
respectively) shift with increasing velocity (darker shades). The rate of these
shiftsis set by the drift speeds in the stable and unstable regimes (see panel b):
lower drift speeds lead to faster shifts (marked by the large spacing between
turquoise lines at the left of the panel, and between orange lines at the right of

the panel). The precise values of these drift speeds ensure that the pair of stable
and unstable fixed points will meet at the boundary between regimes at the
same threshold velocity, given a fixed value of /.. e, Top: as the input velocity
increases above the threshold velocity, the stable and unstable fixed points move
beyond their respective regimes. Bottom: When in the stable regime, the bump
is pulled from ahead toward the stable fixed point. However, before reaching the
stable fixed point, the bump transitions into the unstable regime, and is pushed
from behind by the unstable fixed point. This push and pull causes the bump to
slow down and speed up as it moves through the stable and unstable regimes,
respectively; the closer the fixed points are to the boundary, the stronger this
effect. f, Above the threshold velocity, the stable and unstable fixed points move
beyond their respective regimes, and they continue to shift with velocity at the
samerate as shownin panel d. g, Example bump trajectories in the absence (top
row) and presence (bottom row) of velocity input.
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Extended Data Fig. 9 | Analysis of robustness as a function of network size.
a, The net volume of parameter space that achieves a desired performance
threshold (estimated by summing the tolerance across all optimal values of
local excitation for a given network size N) increases faster than N*. Computed
analytically via Eq. (7) by summing over all optimal values of local excitation
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(solid black line), and estimated numerically by summing over all values shown
inFig. 4b). The analytic lower bound given in Methods Eq. (16) is shown for
comparison (gray dashed line). b, Left: noise robustness increases linearly with
network size. Right: the coefficients of the best linear fit vary inversely with the
noise variance o*.
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
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Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

All experiments featured Drosophila melanogaster females (age 5-9d) expressing GCaMP6f in EPG neurons.
No wild animals were used in this study.

Female flies are larger, making them more suitable for calcium imaging experiments in tethered behaving flies.
No field collected samples were used in the study.

Studies in Drosophila do not require ethical approval. Treatment of flies was in accordance with standard lab procedures.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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