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Rastermap: a discovery method for neural 
population recordings

Carsen Stringer      , Lin Zhong    , Atika Syeda    , Fengtong Du, Maria Kesa & 
Marius Pachitariu     

Neurophysiology has long progressed through exploratory experiments 
and chance discoveries. Anecdotes abound of researchers listening to spikes 
in real time and noticing patterns of activity related to ongoing stimuli or 
behaviors. With the advent of large-scale recordings, such close observation 
of data has become difficult. To find patterns in large-scale neural data, we 
developed ‘Rastermap’, a visualization method that displays neurons as a 
raster plot after sorting them along a one-dimensional axis based on their 
activity patterns. We benchmarked Rastermap on realistic simulations 
and then used it to explore recordings of tens of thousands of neurons 
from mouse cortex during spontaneous, stimulus-evoked and task-evoked 
epochs. We also applied Rastermap to whole-brain zebrafish recordings; 
to wide-field imaging data; to electrophysiological recordings in rat 
hippocampus, monkey frontal cortex and various cortical and subcortical 
regions in mice; and to artificial neural networks. Finally, we illustrate 
high-dimensional scenarios where Rastermap and similar algorithms cannot 
be used effectively.

High-density electrodes and two-photon calcium imaging have 
generated an explosion of large-scale neural recordings1,2. Visualiz-
ing and analyzing such recordings can be done either directly at the 
single-cell level3,4 or at the population level using dimensionality reduc-
tion methods5–8, but both methods have caveats. Visualizing neurons 
one at a time can be difficult because single neurons are often very 
noisy9,10. Furthermore, single-neuron visualizations cannot show the 
population-wide coordination of neural firing patterns, which can vary 
across trials, leading to ‘trial-to-trial’ variability11–13. On the other hand, 
dimensionality reduction algorithms can find common patterns of 
covariation across neurons, allowing further analyses to be restricted 
to just these reliable modes of activity. However, in large-scale record-
ings or in recordings with complex tasks, many components must  
be used to capture the high-dimensional structure of the neural  
activity patterns14–18.

Nonlinear dimensionality reduction methods can overcome some 
of these limitations. For example, manifold discovery algorithms such 
as t-distributed stochastic neighbor embedding (t-SNE) and uniform 
manifold approximation and projection (UMAP) embed the firing pat-
terns of neurons into one or two dimensions19–21. Such algorithms can 

be used, for example, to place neurons with similar firing patterns close 
to each other. However, these algorithms are typically used to visualize 
the embedding space, which is a visualization of the relations between 
neurons rather than a direct visualization of their activity patterns22. 
Furthermore, it can be challenging for these algorithms to maintain 
both local and global structure on neural data, as their cost functions 
are not optimized for such data. Methods such as t-SNE and UMAP 
can also suffer from local minima during optimization23, and it can be 
difficult to evaluate what constitutes true clustering in the embedding 
space and what is an artifact of the algorithms24.

Unlike these existing methods, Rastermap provides a structured 
visualization of the activity patterns across different groups of neu-
rons, illustrating how these activity patterns relate to each other. The 
Rastermap visualization is inspired by ‘classical’ population raster 
plots, where the spike train of each neuron is shown as a row of raster-
ized ticks, often alongside other variables such as behavior25. These 
raster plots can illustrate the average population activity; to improve 
the plots, one can reorder the neurons across the y axis of the plot so 
that nearby neurons have similar activity patterns (Extended Data 
Fig. 1). Our reordering algorithm, Rastermap, is optimized for neural 
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sorting, we can make a single raster plot of all neurons that visualizes the 
most common patterns of activity. We typically use the full recording 
session to compute the Rastermap sorting, but we also show exam-
ples of Rastermap on trial-based data below. To start, we cluster the  
neural activity profiles by k-means clustering, typically into Nclusters = 100  
distinct clusters (Fig. 1a). We then define an asymmetric similarity 
measure between clusters, as the peak cross-correlation between the 
cluster activities at non-negative time lags (Fig. 1a,b). The asymmetry 
induced by this metric ensures that a well-defined ordering can be 
achieved, so that clusters with earlier activity are typically displayed 
toward the bottom of the raster plots.

Having obtained an Nclusters by Nclusters similarity matrix, the opti-
mization goal of Rastermap is to permute the rows and columns of 
this matrix until it matches a predefined matrix as closely as possible. 
The predefined matrix is chosen as a sum between a global and a local 

data by combining two commonly observed features of neural activ-
ity: (1) a power law scaling of eigenvalue variances and (2) sequential 
firing of neurons. We demonstrate here that Rastermap outperforms 
t-SNE, UMAP and other nonlinear dimensionality reduction methods 
on simulations of neural data. The algorithm is also fast: it runs in less 
than 2 min on datasets with tens of thousands of neurons. Rastermap 
is implemented in Python and can be run in a Jupyter notebook, on the 
command line or in the provided graphical user interface (Extended 
Data Fig. 2).

Results
The goal of Rastermap is to obtain a sorting of all neurons in a record-
ing, such that nearby neurons in the sorted list have similar functional 
properties, and, overall, the neural pairwise similarity decays smoothly 
as a function of pairwise distance in the sorting. Equipped with this 
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Fig. 1 | Benchmarking Rastermap on simulated data with multiplexed neural 
activity. a–d, These panels illustrate how Rastermap works. a, First, Rastermap 
divides neurons into 50–200 clusters based on their activity (left). The cross-
correlations between different clusters are computed at several time lags (right). 
b, The cluster correlations at different positive time lags are shown for a subset 
of clusters, and the entry-wise maximum of these matrices over a time window 
from 0 to Tmax defines an ‘asymmetric similarity matrix’. c, The asymmetric 
similarity matrix is sorted to match the ‘matching matrix’, which is a sum of a 
global similarity matrix and a local similarity matrix. d, The cluster features are 
upsampled using a locally linear interpolation method, and then each neuron is 

assigned to an upsampled cluster center. e, The simulated neurons were sorted 
by Rastermap or t-SNE and then averaged in bins of 30 neurons—the averages 
of these neurons are called ‘superneurons’. f, The sorted asymmetric similarity 
matrix for the simulation. g, The activity of the superneurons aligned to different 
stimulus events. h, The sorting of neurons from various algorithms plotted 
against the ground truth sorting. i, For each module of the simulation and each 
algorithm in h, the percentage of correctly ordered triplets is shown (n = 10 
simulations; error bars represent s.e.m.). j, The percentage of contamination 
in a module with neurons from other modules (n = 10 simulations; error bars 
represent s.e.m.). Corr, correlation; stim, stimulus.
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similarity matrix (Fig. 1c; see also multi-perplexity t-SNE26,27). The global 
similarity matrix has a heavy-tailed distribution that decays smoothly 
as a function of distance between clusters, with an eigenvalue decay 
of 1/n, which is observed in neural recordings and artificial neural  
networks (Extended Data Fig. 3). The local part of the matrix has a ‘trave-
ling salesman’ structure28, where the similarity is only high between 
consecutive nodes in the sorting to capture sequential activity patterns 
observed in neural datasets. The local and global matrices are added 
together with a weighting term w, the locality parameter, that can be 
adjusted based on the properties of the data.

The resulting matching matrix is the target that must be matched 
to the neural similarity matrix by permuting rows and columns, but 
the user can also input their own matching matrix, for example if a 
smoother representation is desired. At every iteration of the opti-
mization, we exhaustively check if any consecutive sequence of N 
clusters can be moved to any other position in the sorting, starting 
with sequences of length 1 and then progressively checking longer 
sequences, extending beyond 2-length and 3-length sequences, which 
are often used29,30. This specialized optimization can be implemented 
efficiently on modern CPUs using the numba Python package31, as long 
as Nclusters ≤ 200.

After re-sorting, the neural similarity matrix resembles the match-
ing matrix, as illustrated on an example simulation in Fig. 1f. Having 
obtained an ordering for the clusters, we must now obtain an ordering 
for the neurons. To do this, we upsampled the sorted cluster activi-
ties by a factor of 10 in the principal component analysis (PCA) fea-
ture space, thus creating Nclusters × 10 positions that can be matched 
to single neurons (Fig. 1d). Single neurons were then assigned to the 
position that is most highly correlated to their activity in PCA space. 
When the number of neurons is very large (thousands or more), we 
cannot visualize them as rows of a Rastermap due to a lack of vertical 
pixels on most monitors. We, therefore, bin the thousands of neurons 
into hundreds of ‘superneurons’. Superneurons are averages across 
groups of neurons that were put next to each other in the Rastermap, 
which, by definition, have similar firing patterns. An added bonus of 

creating superneurons is that they have less noisy activity compared to  
single neurons32.

Benchmarking with known ground truth
Benchmarking visualization methods is difficult because a good visu-
alization should be evaluated based on its ability to simplify complex 
data, and this is difficult to measure for real datasets. The approach 
that we take here is to start with a realistic simulation of neural activity, 
which contains multiple, complex signals with different spatiotemporal 
signatures. We then randomly shuffle the neurons and ask different 
methods to undo the shuffling. The simulated populations contain 
multiple sub-modules with realistic firing patterns: we use two mod-
ules with sequential firing, modeling, for example, place cells when an 
animal runs through a linear corridor; we then add a module of sensory 
responses to repeated flashed stimuli where the neurons have wide 
tuning curves to these stimuli; we also add a module of neurons with  
different response durations and latencies to a single stimulus pre-
sented many times; finally we add a module of neurons with power 
law PCA structure and add small amounts of this module to all other 
modules, to model the effect of spontaneous, ongoing activity as cor-
related noise across the population16 (Fig. 1e). Note that, if an algorithm 
sorts neurons from a module according to their power law contribution, 
this would be considered incorrect in our benchmark, unless those 
neurons are in the power law module.

Rastermap was able to find the natural ordering of this simulation, 
whereas other methods, such as t-SNE, failed, typically oversplitting 
clusters and positioning the pieces far from each other (Fig. 1e). After 
sorting, the asymmetric similarity matrix contained high values closer 
to the diagonal in Rastermap compared to other methods, such as t-SNE 
(Fig. 1f). The superneurons, defined as averages of 50 consecutive  
neurons in the Rastermap sorting, have clearly defined tuning proper-
ties, whether as part of a sequence or in response to the simulated stimuli 
(Fig. 1g). We also simulated neurons from a power law module only and 
found that Rastermap produced a more smoothly decaying correlation 
matrix compared to other methods (Extended Data Fig. 4a,b).
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Fig. 2 | Applying Rastermap to neural activity from a virtual reality task.  
a, In total, 66,318 neurons were recorded across mouse visual cortex using two-
photon calcium imaging, colored by position in the Rastermap sorting. b, During 
the recording, mice navigated through a one-dimensional virtual reality (VR) 
with two different corridors (‘leaves’ and ‘circles’) that were separated by a gray 
area and randomly interleaved. A tone was played in each corridor at a random 

time, and, in the ‘leaves’ corridor, the tone was followed by a reward. c, The sorted 
asymmetric similarity matrix from the recording. d, Top: neural activity sorted by 
Rastermap; colored backgrounds denote the type of corridor; green lines denote 
rewards. Bottom: event times in the task and running speed. e, Superneuron 
tuning curves to positions along each corridor. M, medial; A, anterior;  
P, posterior; L, lateral.
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To benchmark a set of commonly used embedding algorithms, we 
compare their embedding order with that of the ground truth (Fig. 1h). 
Although there are no relations between modules by construction, 
within each module we expect a non-interrupted monotonic relation 
between the embedding position and ground truth. To quantify the 
similarity of these orderings, we use two measures: the number of 
correctly ordered triplets and the percent contamination of neuron 
groups from the same module. The fraction of correctly ordered tri-
plets was higher for Rastermap across the two sequence modules and 
the power law module compared to all other methods. Rastermap, 
t-SNE and UMAP performed similarly on the flashed stimulus response 
modules (tuning and sustained), we suspect due to the wider tuning of 
the single neurons in these modules resulting in lower dimensionality 
(Fig. 1i). Finding correctly ordered triplets is not sufficient to ensure 
a good ordering; these triplets also have to be part of a continuous, 
unbroken module. To estimate how broken up a module is, we quanti-
fied the percent contamination with other modules for the neurons 
sorted in between any two neurons from the same module (Fig. 1j). This 
contamination was lowest for Rastermap across all modules except 
the sustained module in which all algorithms performed similarly. 
Additionally, we showed that Rastermap also performs better on the 
k-nearest neighbor metric introduced by ref. 26 (Extended Data Fig. 5). 
We also benchmarked Rastermap on simulations with a power law 
module only and without power law noise added to each neuron, and 
we found that Rastermap also outperformed other methods in these 
cases (Extended Data Fig. 4c–g).

Finally, we evaluated the consistency of Rastermap and t-SNE 
across multiple runs with different random seeds. The embedding qual-
ity across runs varied less for Rastermap than it did for t-SNE (Extended 
Data Fig. 6). We noticed that the main source of variability in Rastermap 
is from the initial clustering procedure, and we evaluated whether 
other more stable clustering algorithms perform better. However, 

graph-based clustering methods, such as the Leiden algorithm, per-
formed substantially worse (Leiden33; Extended Data Fig. 7). None-
theless, it is possible for users to potentially input other clustering 
algorithms to Rastermap34. We also found that the embedding quality 
was robust across various Rastermap parameters, suggesting that 
the user does not need to be precise when testing parameters for the 
visualization (Extended Data Fig. 7).

Rastermap on 50,000 neuron recordings during virtual reality
To illustrate Rastermap in practice, we apply it to a variety of data-
sets. We start in this section and the next with datasets collected 
in our own laboratory, using two-photon calcium imaging of large 
neural populations of up to 70,000 simultaneously recorded neu-
rons at sampling frequencies of approximately 3.2 Hz35,36. First, we 
applied Rastermap to data collected in visual cortex during naviga-
tion and sensory decision-making in virtual reality (Fig. 2a)37–39. Mice 
were trained to run through two corridors with different naturalis-
tic textures on the walls (‘leaves’ and ‘circles’) (Fig. 2b). Reward was 
delivered at pseudo-random positions in the leaves corridor, after an 
auditory cue, and the mouse had to lick to trigger the reward. After a 
few weeks of training, the mouse learned to reliably lick only in response 
to the cue in the leaves corridor and not in response to the cue in the  
circles corridor.

The neural activity generated in this task followed clear sequential 
patterns, which Rastermap was able to group together (Fig. 2c,d). Two 
large populations of neurons can be seen encoding the circles and 
leaves corridors, with a slightly larger population encoding the reward-
ing corridor (Fig. 2e). To place the sequences for the corridors together 
in the sorting, a non-zero locality weight was required (Extended Data 
Fig. 8a)—t-SNE and UMAP did not succeed at this (Extended Data Fig. 9). 
We also observed populations that encode the gray space, an area 
between corridors without visual stimuli. The encoding of the gray 
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space was also sequential as a function of position and mostly did not 
depend on either the previous or the next corridor. The sequential 
activity was interrupted in the leaves corridor at times when the mouse 
stops to collect the reward.

There are also multiple reward-related populations of inter-
est visible in just the single plot from Fig. 2. In a separate study, we 
found that one of these populations at the top of the Rastermap 
was active in the rewarded corridor only before the reward was 
delivered, turning off after reward delivery, suggesting that those 
neurons encode reward probability40. We discovered this popula-
tion of neurons using Rastermap, illustrating that hypothesis gen-
eration is possible with this visualization technique. Finally, there 
are other populations of neurons that do not seem engaged by any 
aspects of the task, which we think is related to the spontaneous oro 
facial behaviors.

Rastermap on neural recordings during spontaneous 
behaviors
Next, we applied Rastermap to data collected during spontaneous 
neural activity, where the animal is head fixed on top of an air-floating 
ball in complete darkness, without any explicit task16,41. In this prepa-
ration, we used a long ‘D’-shaped coverslip that covers many differ-
ent cortical areas, including the anterior part of visual cortex, the 
sensorimotor cortex and the posterior part of motor cortex (Fig. 3a). 
In this case, we wanted to emphasize the global structure of popula-
tion activity and did not observe sequential activity. Thus, we set 
the locality parameter to zero (Extended Data Fig. 8b). In general, 
we note that the locality parameter controls the balance between 
reproducing more of the global structure and more of the local struc-
ture in the data. Neurons across the brain had some degree of spatial 
clustering, as can be seen by their average position in the Rastermap 
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sorting, indicated by the color of the dots. Over a period of 2 min, the 
populations of neurons visible in Rastermap engaged in a variety of 
activation patterns that lasted from hundreds of milliseconds to tens 
of seconds, with many of the patterns repeatable within this time 
window (Fig. 3b). Overall, the patterns could be divided into roughly 
two classes based on whether they were active during running or dur-
ing sitting42,43, but, within those classes, different subsets of neurons 
were active at different times.

We previously showed that many of these spontaneous activity 
patterns can be predicted based on the orofacial behaviors of the 
mice, which we quantified either with a PCA-based decomposition of 
the face motion energy or by tracking keypoints on the mouse face16,41. 
To help us interpret the spontaneous activity clusters, we computed 
the eye area, whisker position and nose position estimates from the 
mouse face video using keypoint tracking (Fig. 3c)41. We then used these 
behavioral variables to estimate the spatiotemporal linear receptive 
fields for each superneuron from Rastermap and also to predict the 
superneuron activity across time (Fig. 3d,e). The receptive field is the 
spatiotemporal pattern of keypoint movements that would activate 
that particular superneuron the most. Across the Rastermap embed-
ding dimension, the receptive fields change gradually and appear to 
be organized hierarchically, in which subsets of neurons with the same 
global response patterns have differential responses at more local 
timescales (Fig. 3d).

The keypoint with the most influence on superneuron responses 
was the whisker horizontal location, which separates into negative 
deflections for the top clusters in the plot (that is, forward whisker 
deflections) and positive deflections for the bottom clusters (that is, 
backward whisker deflections). Within the set of clusters with negative 
whisker deflections, a subset was activated positively by running, and a 
subset was activated negatively. Analyzing the patterns of responses on 
the Rastermap plot itself, we observe different groups of neurons that 
are activated at the beginning and end of running, and those groups typ-
ically were inhibited by running in the model but excited by whisking. 

These neurons cannot easily be identified and visualized using the 
correlations to behavioral variables alone (Extended Data Fig. 10).

Rastermap on other biological neural networks
We have so far illustrated Rastermap on large-scale calcium imaging 
data from mouse cortex. In this section, we show that Rastermap can 
be applied more broadly to recordings from other organisms, with 
fewer recorded neurons and even on bulk neural activity, such as from 
wide-field one-photon imaging. Finally, we show an application of 
Rastermap to artifical neural networks that are used to control agents 
that play Atari games.

When fewer neurons are recorded (<200), Rastermap can skip the 
k-means clustering step and directly order the neurons according to 
their asymmetric cross-correlogram peaks. This also allows us to skip 
the upsampling step, thereby simplifying the algorithm substantially. 
We applied this simplified version of Rastermap to electrical popula-
tion recordings from rat hippocampus during running through a linear 
track (Fig. 4a)44. Rastermap found two main groups of neurons encod-
ing forward and backward runs through the track. For each group, a  
subset of neurons encoded the stationary periods at the end of each 
run. Finally, another group of neurons had dynamics that were driven 
only by running and not selective to corridor position. This group 
turned out to be composed entirely of fast-spiking interneurons, which 
had relatively homogeneous activity.

Another use case for Rastermap is in multi-area or whole-brain 
recordings, such as from larval zebrafish using calcium imaging45. In 
this case, different groups of neurons may be identified that corre-
spond to combinations of brain areas that perform a certain function 
together. We used recordings where different visual stimuli were pre-
sented (Fig. 4b)22: phototactic stimuli that elicited movement toward 
bright areas and drifting gratings that elicited optomotor responses 
toward the direction of the stimulus, primarily when the stimulus 
moved left and right. There were also periods in the recording with 
no visual stimulation, in which the fish rarely swam. Sorting with  

Time-interval reproduction task (ref. 49)a
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z-scored

Trial-averaged responsesb
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Fig. 5 | Visualizing monkey DMFC activity during a timing task. a, Top: two 
visual cues were flashed, indicating a ‘ready’ and a ‘set’ signal. The monkey 
needed to reproduce the time interval between these cues using its own ‘go’ 
action (saccade or joystick movement). Bottom: short and long trial blocks49.  
b, PSTHs for neurons sorted by Rastermap. The PSTHs of each neuron were 
z-scored together across conditions for visualization. c, The difference in neural 

responses between the top and bottom panels in b corresponding to the same 
time interval in blocks with different priors. Colored vertical dashed lines 
denote ready cue time, set cue time and go (action) time that maximizes reward. 
The color bar shows the difference in z-scored activity. ts, sample interval; tp, 
production interval.
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Rastermap, we found that many activity clusters correlated strongly 
with swimming in a condition-dependent fashion. Groups of neurons 
active during visually evoked swimming typically did not activate 
during spontaneous activity. However, the groups of neurons active 
during spontaneous activity were also often active during the visual 
stimulation conditions, although this activity was not aligned to the 
sensory stimulation events15,46. This resembles results that we previ-
ously found in rodent visual cortex16. These clusters were of two main 
kinds: (1) spread out throughout the fish brain and (2) concentrated 
in the anterior, forebrain areas. Another aspect of note was neuron 
clusters that were active for directional swimming regardless of 
condition (phototactic or drifting), whereas other clusters were 
only tuned to swim direction for specific conditions. These clusters 
generally aligned to sensory (frontal) and motor (posterior) areas 
in the fish brain, but substantial regions of overlap existed as well. 
Similarly, brain lateralization was apparent for most motor-related 
clusters, but some neuron groups from the other hemisphere were 
also sometimes included.

Rastermap can also be used on bulk signal recordings, such as from 
wide-field, one-photon calcium imaging in mice47. With this method, 
signals can be recorded from across the entire rodent cortex but not at 
single-cell resolution. Instead, each pixel may correspond to the aver-
aged population activity at that location. We used wide-field record-
ings collected while the mouse performed a decision-making task and 
during which several behavioral variables were monitored (Fig. 4c)48. 
Because different cortical areas can engage for different behaviors, 
Rastermap can group together brain areas according to the similarity 
of their dynamics. As expected, the grouping had well-defined spatial 
relations (Fig. 4c, i). To start, the embedding was symmetric across 
hemispheres, with the left and right brain areas embedded at similar 
locations. Second, the most anterior pixels corresponded to the olfac-
tory bulb and can be seen to have substantially different patterns of 
activity, which may be linked to sniffing bouts. The more posterior 
pixels also had different patterns of activity (corresponding to pink 
and red hues in the plot), and these may have been grouped together 
by visual responsiveness. To test this hypothesis, we predicted the 
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Fig. 6 | Sorting trials in a visual discrimination task. a, Top, mice were trained 
to discriminate between left and right contrast and to turn a wheel to report their 
choice (diagram from ref. 61). Bottom, locations of all neurons used, projected 
onto the sagittal plane (brain slice shape from ref. 62). b, Two example neuron 
trials sorted by time (top) or by Rastermap (bottom). c, PCs sorted by Rastermap 
for the same example recording as used in b, in z-scored units. d, Quantification 
of average reaction time and reward in the Rastermap sorting across sessions 
(error bars are s.e.m.; n = 78 sortings for left/right trials in 39 sessions). x axis 
represent trial index in Rastermap ordering, divided by total number of trials.  
e, Behavioral variables illustrated using the trial order obtained by Rastermap on 

the neural activity in an example session (top) and quantified across  
all sessions (bottom), in arbitrary units. Error bars are s.e.m. (n = 78).  
f, Trial number in session versus trial index in Rastermap ordering (top) and for 
a time-rolled shuffle of the ordering (bottom). The Rastermap order was flipped 
if the first 10 trials were on average later than the last 10 trials, and the same 
operation was applied to the shuffle. Error bars are s.e.m. (n = 78). g, Fraction of 
neurons with differential responses on trials early versus late in the session. Error 
bars represent s.e.m. (n = 50, 54, 58, 56, 40, 34 and 12 per brain region). norm., 
normalized (normalized by total number of trials); ctx, cortex.
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pixel activities from task and behavior variables and found that these 
variables alone can explain activity across the entire Rastermap, includ-
ing the anterior pixels in olfactory areas (Fig. 4c, ii). We compared this 
prediction to the prediction using behavior variables alone, which 
does not include information about stimuli (Fig. 4c, iii). The main 
difference between these two predictions was during visual stimulus 
trials, specifically in the visual cortex (Fig. 4c, iv).

Trial-based analyses with Rastermap
So far, we have illustrated Rastermap on continuous-time data.  
However, many experiments have a trial-based structure that can 
be taken advantage of. In this section, we illustrate Rastermap on 
trial-based data from two electrophysiology datasets: one from mon-
keys performing a timing task and one from mice performing a discrimi-
nation task. In the timing task, monkeys had to estimate the duration 
of an interval spanned by two cues. There were short and long prior 
blocks, in which the intervals were drawn from a distribution with either 
short or long durations, respectively (Fig. 5a)49. We applied Rastermap 
on a dataset from this study of 54 simultaneously recorded neurons 
from the dorsomedial frontal cortex (DMFC), skipping the clustering 
step. Rastermap ordered neurons primarily based on their latency and 
response durations relative to the visual cues (Fig. 5b). As in ref. 49, we 
found neurons with differential activity depending on the block type 
(Fig. 5c), especially in the subset of neurons with sustained responses 
to the first cue.

Another option for trial-based data is to use Rastermap for sorting 
trials according to their similarity. We illustrate this on data from an 
experiment in which mice performed a two-alternative task, during 
which neural activity was recorded from up to 500–1,000 neurons at 
the same time from multiple brain regions50 (Fig. 6a). We sorted trials 
with the same motor action (that is, all right turns) using Rastermap 
and visualized single neurons or principal components (PCs) after 

sorting (Fig. 6b,c). The neural activity patterns aligned to the stimulus  
suggested that reaction time might be a substantial factor in the 
ordering, which we found to be the case, with longer reaction time 
trials placed both at the start and end of the Rastermap sorting 
(Fig. 6d). These types of trials also resulted in overall smaller rewards. 
Next, we wanted to investigate what distinguishes the two types of 
long-reaction-time, low-success-rate trials that Rastermap placed at 
the start or end of the Rastermap. We did not find a clear difference in 
behavioral variables, such as licking, wheel movement, face motion or 
pupil speed (Fig. 6e). However, we did find that the start and ending 
blocks of Rastermap trials also generally corresponded to the start 
and ending of the session (Fig. 6f). With this insight, we hypothesized 
that the neurons recorded had differential activity between the start 
and end of the session, such as from decreasing motivation and satiety. 
We found that, indeed, a large proportion of neurons in all brain areas 
were modulated in this way, with generally more neurons late-active 
in the session rather than early-active (Fig. 6g).

These initial results obtained with Rastermap provide a possible 
bridge between the brain-wide satiety signals reported in ref. 51 and 
the brain-wide sensory, decision and motor signals reported in ref. 50, 
both studies having been conducted with Neuropixels electrodes. Such 
exploratory analyses can provide a starting point for more in-depth 
exploration of the differences between early and late trials.

Rastermap applied to artificial neural networks
Finally, we also ran Rastermap on artificial neural networks that have 
been trained with reinforcement learning techniques to play Atari 
games (Fig. 7). We used pre-trained networks from Deep Q-Network 
(DQN) agents52 and clustered all neurons from across all layers of the 
DQN, illustrating four example games: Pong, Space Invaders, Enduro 
and Seaquest. In all cases, an episode consisted of a single playthrough 
of the respective game. In games with more repetitive action sequences, 
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Fig. 7 | Applying Rastermap to artificial neural networks. We visualized 
activations from QR-DQNs that were trained to play various Atari games52. 
Superneurons were z-scored across the recording; white represents 0, and black 
represents 2.5. a, An agent trained on the Pong Atari game. Left: example frames 
from an episode of the agent playing Pong. Middle: activations of units from the 

agent’s neural network during the episode, sorted by Rastermap. Right: positions 
in the sorting colored by the layer in the network. b–d, Same as a, for agents 
trained to play Space Invaders (b), Enduro (c) and Seaquest (d). Blue vertical 
dashed lines denote the times of example frames illustrated in the left panels.
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such as Pong, Rastermap found the repeated neural sequences that cor-
responded to each repetition and separated the forward portion of the 
sequence (ball moving right) from the backward portion (ball moving 
left). The details of each volley were encoded in the finer details of the 
neural activity. For games with less structured states, such as Space 
Invaders and Seaquest, Rastermap still found sequences of neurons that 
tend to activate together, but these sequences were more disorganized. 
In the case of the Enduro game, neural activation patterns were domi-
nated by the graphical context of the game, which changed from day 
to night and between weather conditions, such as ‘fog’ and ‘ice’. Within 
each graphical state, mostly non-overlapping groups of neurons were 
active. A small set of neurons was active in more than one context, and 
these were generally found in the higher, more ‘abstract’ layers of the 
deep neural network. In all games, the neurons from the value network 
were placed all together in the Rastermap and appeared to have very 
homogeneous activity that directly corresponded to the value of a 
state. This indicates that perhaps the value network did not get suf-
ficient gradient information to differentiate the activity of its neurons.

Space-filling curves for higher intrinsic dimensionality
Rastermap is primarily a visualization algorithm, but visualizations 
can sometimes be deceptive, especially when the source data are 

high dimensional. In this section, we illustrate some use cases where  
Rastermap is ineffective at finding structure, and we try to provide an 
intuitive understanding of such cases. For example, we investigated  
Rastermap applied to neural responses in primary visual cortex 
to a large set of natural images (Fig. 8a). Natural images drive very 
high-dimensional response patterns across cortex, as we previously 
described17, and, thus, such data cannot be well described along 
any one-dimensional embedding dimension. Indeed, we observed 
that the Rastermap sorting had a high-dimensional, un-clustered 
aspect, except for some modulation induced by running (Fig. 8b). 
The running-modulated clusters corresponded primarily to neu-
rons in higher-order visual areas that have less sensory tuning 
(Fig. 8a,b). By computing the linear receptive fields of superneu-
rons from the Rastermap, we observed that nearby superneurons 
do, in fact, have similar receptive fields despite their apparently 
unorganized responses in the Rastermap (Fig. 8c). However, these 
receptive fields cannot be described by a single one-dimensional 
parameter, requiring several parameters to be well described: their 
retinotopic coordinates, their orientation, their spatial frequency, 
etc. To arrange filters with these properties across a one-dimensional 
continuum, Rastermap has to fill up this high-dimensional space with 
a so-called ‘space-filling curve’. Similar conclusions can be reached 
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Fig. 8 | High-dimensional responses of real and artificial neurons to natural 
images and simulated two-dimensional activity. a, In total, 5,000 natural 
images were shown to a mouse during a two-photon calcium imaging recording 
from V1 and higher visual areas. b, Activity from 69,957 neurons was sorted by 
Rastermap with splitting and binned into superneurons, plotted with the mouse’s 
running speed and the visual stimulus times. c, Linear receptive fields for the 
superneurons in b in the same order, in arbitrary units. d, AlexNet convolutional 
layer responses to the same 5,000 natural images sorted by Rastermap with 
splitting. Left: units in the convolutional layers colored by the Rastermap sorting. 
Right: unit activations sorted and binned into superneurons shown across 
stimuli. e–g, We simulated neural activity with an intrinsic dimensionality of 2 
by randomly choosing an x and y value for each neuron in the range of 0 to 1 and 

modeling its activity as a place field. e, Left: simulated neurons are plotted at 
their ground truth (x,y) positions and colored by their position in the Rastermap 
sorting run with Nclusters = 100. Middle: same as the left panel, using Rastermap 
with splitting, resulting in Nclusters = 800. Right: same as the left panel, using t-SNE 
with multiple perplexities (P = (10, 100)) to sort the neurons. f, The k-nearest 
neighbor score for benchmarking embedding algorithms from ref. 26: the 
percentage of k-nearest neighbors in the original space that are preserved as 
k-nearest neighbors in the embedding space—shown for Rastermap, Rastermap 
with splitting and t-SNE with various perplexities. g, Simulated activity sorted by 
Rastermap with splitting. RL, rostrolateral; AL, anterolateral; LM, lateromedial; 
V1, primary visual cortex; stim., stimulus; 2D, two-dimensional.
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when applying Rastermap to the visual responses of an artificial 
deep neural network (Fig. 8d).

To better illustrate when ‘space-filling curve’ behavior occurs, we 
constructed a simulation where the underlying intrinsic dimension 
was 2, and neurons were described with place-field-like responses. 
Sorted with one-dimensional Rastermap or t-SNE, the neurons were 
arranged across a curve that meandered in a fractal way to fill up the 
two-dimensional space (Fig. 8e). We also constructed a version of 
Rastermap where the sorting was further broken up iteratively into 
sub-segments that were sorted with Rastermap again. After three 
consecutive splits, the simulated population was split into 800 rather 
than just 100 clusters, and this, in turn, resulted in a higher resolution 
of the underlying space-filling curve. This higher resolution resulted in 
better metrics of percent neighbors preserved at small neighborhood 
sizes, without affecting the number of preserved neighbors at the larger 
neighborhood sizes (Fig. 8f). Thus, although this iterative version 
of Rastermap can improve on some metrics, it is unlikely to provide 
fundamentally better visualizations, because the fractal nature of the 
space-filling curve makes the visualizations non-intuitive (Fig. 8g). 
Although a two-dimensional embedding algorithm could be employed, 
the results of such an algorithm cannot then be used to make raster 
maps of neural activity.

Our recommendation in these cases is to recognize that Rastermap 
is fundamentally a dimensionality reduction method: clustered activity 
can be found and illustrated in the Rastermap, but higher-dimensional 
structure may be discarded and missed when it exists. We recommend 
using other approaches to find and illustrate such high-dimensional 
structure, such as constrained matrix decomposition techniques 
(NNMF, seqNMF, ICA, TCA, dPCA, sparse coding, GPFA and DataHigh) or 
nonlinear dimensionality reduction with multiple dimensions (t-SNE, 
UMAP, LFADS, pi-VAE and CEBRA)5,53–60.

Discussion
Here we described Rastermap, a visualization method that can be used 
to find new, interesting patterns in large-scale neural data. Rastermap 
makes a two-dimensional plot of neural activity versus time, allowing 
the user to observe complex spatiotemporal dynamics in relation to 
experimental events. At the core of the method lies a sorting algorithm 
that reorders the (possibly) tens of thousands of neurons so that nearby 
neurons in the sorting have similar activity. The sorting algorithm of 
Rastermap can also be seen as a one-dimensional embedding method 
and has several model features that allow it to accurately embed neu-
ral data: (1) modeling the long-tailed decay of pairwise correlations 
between neurons; (2) modeling sequential activity patterns that are 
often seen in neural data; and (3) using a specialized optimization algo-
rithm that can avoid local minima. These features allow Rastermap to 
perform better as an embedding algorithm compared to other meth-
ods, such as t-SNE and UMAP, specifically in the case of one-dimensional 
embeddings for neural-like datasets.

Using Rastermap, we identified, for example, different groups of 
neurons in mouse sensorimotor areas corresponding to whisking at 
the onset of running and to whisking at the offset of running. We also 
found diverse patterns of activity associated with corridor positions 
and reward times in mouse visual areas during a virtual reality task. 
Rastermap applied to rat hippocampal activity revealed the structure 
of neural firing along a linear track in putative inhibitory and excita-
tory neurons. In zebrafish brain-wide activity, we observed lateralized 
and non-lateralized activity patterns associated with different motor 
and stimulus events. Rastermap sorting of wide-field neural imaging 
provided an unsupervised parcellation of the entire cortex, in part 
according to the predictability of different regions from different 
task variables. In monkey DMFC, we visualized neurons with specific 
tuning for the task block structure in a time-interval reproduction 
task. Using Rastermap to sort trials, we found two different types 
of long-reaction-time trials in a sensory decision-making task, and 

these putatively corresponded to different motivation states at the 
beginning and end of a session. We found that Rastermap could also be 
used to discover structure in artificial neural networks, such as those 
trained to play Atari games. Finally, using an extension of Rastermap, 
we explored datasets with higher intrinsic dimensionality, illustrat-
ing the limitations of low-dimensional embedding algorithms when 
applied to such datasets.

We hope that Rastermap will be applied to diverse dataset types, 
and we include a graphical user interface so that users can easily run 
the algorithm and explore their data. We consider Rastermap to be a 
good first step in examining neural population activity, such as when a 
new dataset is first obtained. Rastermap can help users find patterns in 
data, but, to fully demonstrate these patterns, appropriate quantitative 
analyses must be set up afterwards.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-024-01783-4.

References
1.	 Ji, N., Freeman, J. & Smith, S. L. Technologies for imaging neural 

activity in large volumes. Nat. Neurosci. 19, 1154–1164 (2016).
2.	 Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges 

and opportunities for large-scale electrophysiology with 
Neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

3.	 Weber, A. I. & Pillow, J. W. Capturing the dynamical repertoire of 
single neurons with generalized linear models. Neural Comput. 
29, 3260–3289 (2017).

4.	 Poirazi, P. & Papoutsi, A. Illuminating dendritic function with 
computational models. Nat. Rev. Neurosci. 21, 303–321 (2020).

5.	 Cunningham, J. P. & Yu, B. M. Dimensionality reduction for 
large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 
(2014).

6.	 Pang, R., Lansdell, B. J. & Fairhall, A. L. Dimensionality reduction in 
neuroscience. Curr. Biol. 26, R656–R660 (2016).

7.	 Engel, T. A. et al. Selective modulation of cortical state during 
spatial attention. Science 354, 1140–1144 (2016).

8.	 Brunton, B. W., Johnson, L. A., Ojemann, J. G. & Kutz, J. N. 
Extracting spatial–temporal coherent patterns in large-scale 
neural recordings using dynamic mode decomposition. 
 J. Neurosci. Methods 258, 1–15 (2016).

9.	 Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous 
system. Nat. Rev. Neurosci. 9, 292–303 (2008).

10.	 Ermentrout, G. B., Galán, R. F. & Urban, N. N. Reliability, synchrony 
and noise. Trends Neurosci. 31, 428–434 (2008).

11.	 Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal 
correlations. Nat. Neurosci. 14, 811–819 (2011).

12.	 Lin, I.-C., Okun, M., Carandini, M. & Harris, K. D. The nature of 
shared cortical variability. Neuron 87, 644–656 (2015).

13.	 Ferguson, K. A. & Cardin, J. A. Mechanisms underlying gain 
modulation in the cortex. Nat. Rev. Neurosci. 21, 80–92 (2020).

14.	 Gao, P. et al. A theory of multineuronal dimensionality, 
dynamics and measurement. Preprint at bioRxiv https://doi.
org/10.1101/214262 (2017).

15.	 Avitan, L. et al. Spontaneous activity in the zebrafish tectum 
reorganizes over development and is influenced by visual 
experience. Curr. Biol. 27, 2407–2419 (2017).

16.	 Stringer, C. et al. Spontaneous behaviors drive multidimensional, 
brainwide activity. Science 364, eaav7893 (2019).

17.	 Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, 
K. D. High-dimensional geometry of population responses in 
visual cortex. Nature 571, 361–365 (2019).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01783-4
https://doi.org/10.1101/214262
https://doi.org/10.1101/214262


Nature Neuroscience | Volume 28 | January 2025 | 201–212 211

Technical Report https://doi.org/10.1038/s41593-024-01783-4

18.	 Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, 
R. A. Cerebellar granule cell axons support high-dimensional 
representations. Nat. Neurosci. 24, 1142–1150 (2021).

19.	 van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. 
Mach. Learn. Res. 9, 2579–2605 (2008).

20.	 McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold 
approximation and projection for dimension reduction. Preprint at 
https://arxiv.org/abs/1802.03426 (2018).

21.	 Behrisch, M., Bach, B., Henry Riche, N., Schreck, T. & Fekete, J.-D. 
Matrix reordering methods for table and network visualization. In 
Computer Graphics Forum 693–716 (Wiley, 2016).

22.	 Chen, X. et al. Brain-wide organization of neuronal activity and 
convergent sensorimotor transformations in larval zebrafish. 
Neuron 100, 876–890 (2018).

23.	 Kobak, D. & Linderman, G. C. Initialization is critical for preserving 
global data structure in both t-SNE and UMAP. Nat. Biotechnol. 39, 
156–157 (2021).

24.	 Chari, T. & Pachter, L. The specious art of single-cell genomics. 
PLoS Comput. Biol. 19, e1011288 (2023).

25.	 Ganguly, K. et al. Cortical representation of ipsilateral arm 
movements in monkey and man. J. Neurosci. 29, 12948–12956 
(2009).

26.	 Kobak, D. & Berens, P. The art of using t-SNE for single-cell 
transcriptomics. Nat. Commun. 10, 5416 (2019).

27.	 Lee, J. A., Peluffo-Ordóñez, D. H. & Verleysen, M. Multi-scale 
similarities in stochastic neighbour embedding: reducing 
dimensionality while preserving both local and global structure. 
Neurocomputing 169, 246–261 (2015).

28.	 Jünger, M., Reinelt, G. & Rinaldi, G. in Handbooks in Operations 
Research and Management Science (eds Ball, M. O. et al.)  
225–330 (1995).

29.	 Croes, G. A. A method for solving traveling-salesman problems. 
Operations Research 6, 791–812 (1958).

30.	 Lin, S. Computer solutions of the traveling salesman problem. Bell 
Syst. Tech. J. 44, 2245–2269 (1965).

31.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python 
JIT compiler. In Proc. Second Workshop on the LLVM Compiler 
Infrastructure in HPC https://doi.org/10.1145/2833157.2833162 
(Association for Computing Machinery, 2015).

32.	 Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S. E. & Pachitariu, M. 
High-precision coding in visual cortex. Cell 184, 2767–2778  
(2021).

33.	 Traag, V. A., Waltman, L. & Van Eck, N. J. From Louvain to Leiden: 
guaranteeing well-connected communities. Sci. Rep. 9, 5233 
(2019).

34.	 Lin, A. et al. Clustering time series with nonlinear dynamics: 
a Bayesian non-parametric and particle-based approach. In 
Proc. 22nd International Conference on Artificial Intelligence and 
Statistics 2476–2484 (PMLR, 2019).

35.	 Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field 
of view two-photon mesoscope with subcellular resolution for 
in vivo imaging. eLife 5, e14472 (2016).

36.	 Tsyboulski, D. et al. Remote focusing system for simultaneous 
dual-plane mesoscopic multiphoton imaging. Preprint at bioRxiv 
https://doi.org/10.1101/503052 (2018).

37.	 Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. 
D. Dynamic reorganization of neuronal activity patterns in parietal 
cortex. Cell 170, 986–999 (2017).

38.	 Pakan, J. M. P., Currie, S. P., Fischer, L. & Rochefort, N. L.  
The impact of visual cues, reward, and motor feedback  
on the representation of behaviorally relevant spatial  
locations in primary visual cortex. Cell Rep. 24, 2521–2528  
(2018).

39.	 Krumin, M., Lee, J. J., Harris, K. D. & Carandini, M. Decision and 
navigation in mouse parietal cortex. eLife 7, e42583 (2018).

40.	 Zhong, L. et al. Distinct streams for supervised and unsupervised 
learning in the visual cortex. Preprint at bioRxiv https://doi.org/ 
10.1101/2024.02.25.581990 (2024).

41.	 Syeda, A. et al. Facemap: a framework for modeling neural 
activity based on orofacial tracking. Nat. Neurosci. 27, 187–195 
(2024).

42.	 Niell, C. M. & Stryker, M. P. Modulation of visual responses by 
behavioral state in mouse visual cortex. Neuron 65, 472–479 
(2010).

43.	 Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal 
and locomotion make distinct contributions to cortical activity 
patterns and visual encoding. Neuron 86, 740–754 (2015).

44.	 Grosmark, A. D. & Buzsáki, G. Diversity in neural firing dynamics 
supports both rigid and learned hippocampal sequences. 
Science 351, 1440–1443 (2016).

45.	 Feierstein, C. E., Portugues, R. & Orger, M. B. Seeing the whole 
picture: a comprehensive imaging approach to functional 
mapping of circuits in behaving zebrafish. Neuroscience 296, 
26–38 (2015).

46.	 Avitan, L. & Stringer, C. Not so spontaneous: multi-dimensional 
representations of behaviors and context in sensory areas. 
Neuron 110, 3064–3075 (2022).

47.	 Ren, C. & Komiyama, T. Characterizing cortex-wide dynamics with 
wide-field calcium imaging. J. Neurosci. 41, 4160–4168 (2021).

48.	 Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, 
A. K. Single-trial neural dynamics are dominated by richly varied 
movements. Nat. Neurosci. 22, 1677–1686 (2019).

49.	 Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian 
computation through cortical latent dynamics. Neuron 103, 
934–947 (2019).

50.	 Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. 
Distributed coding of choice, action and engagement across the 
mouse brain. Nature 576, 266–273 (2019).

51.	 Allen, W. E. et al. Thirst regulates motivated behavior through 
modulation of brainwide neural population dynamics. Science 
364, eaav3932 (2019).

52.	 Mnih, V. et al. Human-level control through deep reinforcement 
learning. Nature 518, 529–533 (2015).

53.	 Mackevicius, E. L. et al. Unsupervised discovery of temporal 
sequences in high-dimensional datasets, with applications to 
neuroscience. eLife 8, e38471 (2019).

54.	 Kobak, D. et al. Demixed principal component analysis of neural 
population data. eLife 5, e10989 (2016).

55.	 Yu, B. M. et al. Gaussian-process factor analysis for 
low-dimensional single-trial analysis of neural population activity. 
In Advances in Neural Information Processing Systems Vol. 21 
https://papers.nips.cc/paper_files/paper/2008/file/ad972f10e080
0b49d76fed33a21f6698-Paper.pdf (NIPS, 2008).

56.	 Cowley, B. R. et al. DataHigh: graphical user interface for 
visualizing and interacting with high-dimensional neural activity. 
J. Neural Eng. 10, 066012 (2013).

57.	 Pandarinath, C. et al. Latent factors and dynamics in motor cortex 
and their application to brain–machine interfaces. J. Neurosci. 38, 
9390–9401 (2018).

58.	 Williams, A. H. et al. Unsupervised discovery of demixed, 
low-dimensional neural dynamics across multiple timescales 
through tensor component analysis. Neuron 98, 1099–1115 (2018).

59.	 Zhou, D. & Wei, X.-X. Learning identifiable and interpretable 
latent models of high-dimensional neural activity using pi-VAE. 
In Advances in Neural Information Processing Systems Vol. 33 
https://proceedings.neurips.cc/paper_files/paper/2020/file/510f2
318f324cf07fce24c3a4b89c771-Paper.pdf (NeurIPS, 2020).

60.	 Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent 
embeddings for joint behavioural and neural analysis. Nature 617, 
360–368 (2023).

http://www.nature.com/natureneuroscience
https://arxiv.org/abs/1802.03426
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1101/503052
https://doi.org/10.1101/2024.02.25.581990
https://doi.org/10.1101/2024.02.25.581990
https://papers.nips.cc/paper_files/paper/2008/file/ad972f10e0800b49d76fed33a21f6698-Paper.pdf
https://papers.nips.cc/paper_files/paper/2008/file/ad972f10e0800b49d76fed33a21f6698-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/510f2318f324cf07fce24c3a4b89c771-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/510f2318f324cf07fce24c3a4b89c771-Paper.pdf


Nature Neuroscience | Volume 28 | January 2025 | 201–212 212

Technical Report https://doi.org/10.1038/s41593-024-01783-4

61.	 The International Brain Laboratory. Standardized and 
reproducible measurement of decision-making in mice. eLife 10, 
e63711 (2021).

62.	 Wang, Q. et al. The Allen Mouse Brain Common Coordinate 
Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01783-4

Methods
All experimental procedures were conducted according to the Insti-
tutional Animal Care and Use Committee (IACUC) at Howard Hughes 
Medical Institute (HHMI) Janelia Research Campus.

Data acquisition
Animals. All experimental procedures were conducted according to 
the IACUC; ethics approval was received from the IACUC board at HHMI 
Janelia Research Campus. We performed three recordings in three 
mice bred to express GCaMP6s in excitatory neurons: TetO-GCaMP6s 
× Emx1-IRES-Cre mice (available as RRID: IMSR_JAX:024742 and RRID: 
IMSR_JAX:005628). These mice were male and female and ranged from 
2 months to 12 months of age. Mice were housed in reverse light cycle 
and were pair-housed with their siblings before and after surgery. 
Holding rooms were set to a temperature of 70 °F ± 2 °F and relative 
humidity of 50% ± 20%.

Surgical procedures. Surgeries were performed in adult mice  
(P35–P125) following procedures outlined in ref. 32. In brief, mice 
were anesthetized with isoflurane while a craniotomy was performed.  
Marcaine (no more than 8 mg kg−1) was injected subcutaneously 
beneath the incision area, and warmed fluids + 5% dextrose and 
buprenorphine 0.1 mg kg−1 (systemic analgesic) were administered 
subcutaneously along with dexamethasone 2 mg kg−1 via intramuscular 
route. For the visual cortical windows, measurements were taken to 
determine bregma–lambda distance and location of a 4-mm circular 
window over V1 cortex, as far lateral and caudal as possible without 
compromising the stability of the implant. A 4 + 5-mm double window 
was placed into the craniotomy so that the 4-mm window replaced the 
previously removed bone piece and the 5-mm window lay over the edge 
of the bone. The sensorimotor window was also a double window, and 
it was placed as medial and frontal as possible. The outer window was 
7 mm × 4.5 mm, and the inner window was approximately 1 mm smaller 
in all dimensions. After surgery, ketoprofen 5 mg kg−1 was administered 
subcutaneously, and the animal was allowed to recover on heat. The 
mice were monitored for pain or distress, and ketoprofen 5 mg kg−1 was 
administered for 2 d after surgery.

Imaging acquisition. We used a custom-built two-photon mesoscope35 
to record neural activity and ScanImage63 for data acquisition. We used 
a custom online z-correction module (now in ScanImage) to correct for 
z and x–y drift online during the recording. As described in ref. 32, for 
the visual area recordings, we used an upgrade of the mesoscope that 
allowed us to approximately double the number of recorded neurons 
using temporal multiplexing36.

The mice were free to run on an air-floating ball. Mice were accli-
matized to running on the ball for several sessions before imaging, and 
one mouse was trained on a virtual reality task for 2 weeks before the 
recording. The field of view was selected such that large numbers of 
neurons could be observed, with clear calcium transients.

Visual stimuli. We showed natural images or virtual reality corridors 
to the mice on three perpendicular LED tablet screens surrounding 
the mouse (covering 270° of the visual field of view of the mouse). To 
present the stimuli, we used PsychToolbox-3 in MATLAB64. The flashed 
visual stimuli were presented for 313 ms, alternating with a gray screen 
inter-stimulus interval lasting 313 ms. Occasionally, the screen was 
left blank (gray screen) for a few seconds. The virtual reality corridors 
were each 4 m long, and the mouse moved forward in the virtual real-
ity by running.

Videography. The camera setup was similar to the setup in ref. 16. A 
Thorlabs M850L3 (850 nm) infrared LED was pointed at the face of the 
mouse to enable infrared video acquisition in darkness. The videos were 
acquired at 50 Hz using FLIR cameras with a zoom lens and an infrared 

filter (850 nm, 50-nm cutoff). The wavelength of 850 nm was chosen to 
avoid the 970-nm wavelength of the two-photon laser while remaining 
outside the visual detection range of the mice65,66.

Processing of calcium imaging data. Calcium imaging data were 
processed using the Suite2p toolbox67, available at https://github.
com/MouseLand/suite2p. Suite2p performs motion correction, region 
of interest (ROI) detection, cell classification, neuropil correction 
and spike deconvolution as described previously16. For non-negative 
deconvolution, we used a timescale of decay of 1.25 s68,69.

Rastermap algorithm and implementation
The Rastermap algorithm is implemented in Python 3 using the NumPy, 
SciPy, numba and Scikit-learn packages, all of which are easy to install 
on Windows, Linux and Mac operating systems31,70–72. The graphical 
user interface is implemented using PyQt5 and PyQtGraph73,74. To 
perform analyses and create the figures in this paper, we used Jupyter 
notebooks and Matplotlib75,76.

The algorithm involves five main steps: dimensionality reduction, 
clustering, computing the asymmetric similarity matrix, sorting this 
matrix and upsampling the cluster centers. See Fig. 1a–d for a graphi-
cal representation of these steps. The input to the algorithm is a neural 
activity matrix of size neurons by timepoints. For electrophysiological 
datasets, we converted spike times into timepoints by binning in time.

Data normalization and dimensionality reduction. First, we normal-
ize the neural activity to avoid fitting single-neuron statistics with the 
embedding algorithm. We z-score the activity of each neuron so that 
the mean activity of each neuron is zero and its standard deviation is 1. 
z-scoring can make low-firing neurons appear more active, but we have 
not seen issues with this in our applications, in which we use neurons 
with a minimum firing rate of 0.1–0.25 Hz. Next, we project out the mean 
across neurons at each timepoint; this is optional but is recommended 
(parameter mean_time in the algorithm). Note that, for some applica-
tions, this step may need to be skipped, for example if the grand average 
population activity is of interest. An optional step, which depends on the 
noise level of the data, is binning in time, parameter time_bin. These 
binned data are then used to compute the singular vectors.

Next, to make the data size more manageable and to speed up 
the clustering, we compute the singular value decomposition of this 
normalized activity matrix, where the left singular vectors will be of 
length number of neurons. We generally keep the top 100 to 400 left 
singular vectors; this can be specified by the user with the parameter 
n_PCs in the algorithm. We scale each of these singular vectors by its 
singular value, to preserve distances in the original space, and compute 
clusters from these scaled singular vectors. Thus, the matrix that we 
cluster is of size number of neurons by n_PCs, which is faster to cluster 
than a matrix of size number of neurons by timepoints.

Clustering. We clustered the neural activity PCs, defined as above, to 
create groups of co-active neurons. We clustered the neurons using 
scaled k-means clustering67. Compared to regular k-means, scaled 
k-means fits an additional variable λi for each neuron i such that

xi = λiμσi + noise

where xi is the activity vector of neuron i; σi is the cluster assigned to 
neuron i; and μj is the activity of cluster j. Like regular k-means, this 
model is optimized by iteratively assigning each neuron to the cluster 
that best explains its activity and then re-estimating cluster means. The 
number of clusters N computed is called the n_clusters parameter 
in the algorithm.

Asymmetric similarity matrix. For each cluster out of N clusters, we 
compute the mean cluster activity by averaging all of the neurons 
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in a cluster, and then we z-score each cluster activity trace. We then 
compute the cross-correlation between all cluster activity traces ci:

(ci ∗ c j)[τ] =
1
T

T
∑
t=0

ci(t − τ)c j(t).

This is computed for a specified number of positive τ time lags τmax, 
called the time_lag_window parameter in the algorithm. Then, we use 
the maximum value of the cross-correlation for each cluster pair over 
these positive τ values for our asymmetric similarity matrix S:

Si, j = max
τ∈[0,τmax]

(ci ∗ c j)[τ]

Matrix S is of size N by N, where N is the number of clusters.

Sorting the similarity matrix. We optimize the sorting of the asym-
metric similarity matrix of the cluster nodes to maximize a matching 
score. This score is defined as the dot product between the sorted 
version of the asymmetric similarity matrix Ssorted and a pre-specified 
matching matrix M, which is the same size as S:

Score = ∑
i
∑
j
Mi, jSsortedi, j

This matching matrix has two parts: a global similarity and a local 
‘traveling salesman’ similarity. The global similarity matrix is defined as

Mglobal
i, j = − log(|xi − x j| + 0.001)

where xi = i/N, and the diagonal Mglobal
i,i  is set to zero. This type of matrix 

can be shown to have an approximately power law decay of eigenvalues 
with exponent 1 (ref. 17). We define Mglobal to have a heavy-tailed power 
law decay to approximate the high-dimensional structure of neural 
activity observed in various contexts15–18.

The local similarity matrix is close to 1 on the first off-diagonal and 
very small elsewhere:

Mlocal
i, j = exp(−(xi − x j)

2/(2σ2))

where σ = 1/(2N), and the diagonal Mlocal
i,i  is set to zero. We define Mlocal 

to have large values near the diagonal to force clusters with high cor-
relations to be put next to each other, preserving local correlations.

We then set the lower diagonal of each matrix to zero to force all 
correlations to be put above the diagonal, which enforces forward 
sequences of activity. Each of these matrices is then normalized by its 
mean across all entries. Then, the final matching matrix is a weighted 
sum of the two matrices:

M = (1 −w)Mglobal +wMlocal

where the weighting w is called the locality parameter in the algo-
rithm. w can vary from 0 to 1.

We initialize the sorting by the first singular vector weights for 
each cluster node. Then, we compute the change in score for each clus-
ter moved to each position in the matrix (n × (n − 1) tested moves). We 
first test all movements of groups of a single node, and then we move 
the node that increases the score the most. If none of the moves will 
increase the score, then we test all moves of two consecutive nodes, 
and, similarly, if none of those moves, we test all groups and moves 
of three nodes and so on. We repeat each step of searching for moves 
of groups of nodes that increase the score for 400 iterations or until 
no move of any group of nodes increases the score. During this opti-
mization, we skip every other node if the number of clusters to sort 
is 100 (the number of nodes skipped is the floor of the number of 
clusters divided by 30). If nodes were skipped, then the optimization 

is run again with all nodes for up to 400 iterations, although it usually 
takes fewer than 10 iterations to converge during this second run, and, 
thus, skipping nodes reduces runtime. This optimization can be made 
highly parallel: we can test all moves of groups of nodes of a certain 
length simultaneously and then choose the best move. Therefore, we 
accelerated this step and other steps in the optimization using the 
numba library31 in Python, which can be easily installed on any standard 
desktop or laptop computer.

This optimization takes less than 10 s for 100 clusters, approxi-
mately 20–30 s for 150 clusters and 1–2 min for 200 clusters. Because it 
exponentially gets slower for larger numbers of clusters, we find more 
positions for neurons by upsampling rather than using more clusters.

Upsampling and superneuron computation. We upsampled 
in-between cluster centers in PCA space using weighted, locally linear 
regression, to go from Nclusters to 10 × Nclusters nodes. The regression 
approximated linearly the function from discrete cluster index to PCA 
features, in small local neighborhoods around each cluster index. The 
sizes of these neighborhoods were controlled by weighting the regres-
sors according to their index separation in the Rastermap sorting. The 
weightings were Gaussian as a function of Euclidean distance with 
standard deviation σ = 1/(√2). Cluster centers beyond the 50 nearest 
neighbors of an upsampled point were not used. We performed this 
linear approximation at each upsampled position, at a resolution of 
10× the original resolution of the data. The upsampled features were 
then correlated with each neuron activity, and neurons were assigned 
to the position of their best-matching upsampled node.

Clustering and splitting steps. To increase the number of clusters, we 
also explored a strategy inspired by space-filling curves77. Starting with 
100 sorted clusters, we divide the sorting into quartiles of 25 clusters 
each and recluster the neurons in each quartile into 50 clusters. We 
then sort each of these groups of 50 clusters with the iterative optimi-
zation, including the asymmetric similarity matrix surrounding each 
group in the score to avoid discontinuities in the final sorted matrix 
across groups of clusters. The splitting and reclustering can be per-
formed as many times as preferred; the parameter in the algorithm is 
n_splits. For the analyses in Fig. 8, we split three times, resulting in 
800 total clusters.

Simulations
To compare the performance of different embedding algorithms, we 
created simulations of large-scale data with noise (Figs. 1 and 8).

Simulation with different modules. We created a simulation with five 
different types of one-dimensional modules: two sequence modules, 
one module with tuning curves, one module with sustained stimulus 
responses and one module with power law eigenvalues (Fig. 1e). The 
first four modules had 1,000 neurons each, and the last module had 
2,000 neurons.

Each neuron in a sequence module was assigned to a random posi-
tion along the sequence at which point it activated. The sequences in 
the sequence modules repeated many times throughout the simula-
tion, with each repetition having a random length between 350 and 
700 timepoints and the time between repetitions having a random 
length between 100 and 200 timepoints. A variable velocity for each 
sequence repetition was generated by adding to a constant velocity 
random Gaussian noise filtered by a Gaussian with standard deviation 
30 timepoints. These sequences could break at a random place for a 
short period with a probability of 50% per repetition, simulating the 
breaks in sequences that we observed when mice stopped moving 
through virtual corridors.

The tuning curve module consisted of neurons with one- 
dimensional Gaussian tuning curves at 1,500 possible positions along 
this axis. We presented, in a random order, 15 stimuli equally spaced 
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along this one-dimensional axis. In total, there were 500 stimulus pres-
entations spaced 100 timepoints apart. The stimulus responses from 
the neurons decayed exponentially from the onset with a timescale of 
25 timepoints.

The sustained module consisted of neurons with varying latencies 
and response durations to a single stimulus generated using a differ-
ence of exponentials filter with 100 timescales ranging from (25, 5) to 
(304, 61). Each neuron in the modules was assigned randomly to one 
of these 100 timescales. The inter-stimulus interval was drawn from an 
exponential with a decay timescale of 750 timepoints, with a minimum 
value of 2,000 timepoints used.

The power law module consisted of a neural population with eigen-
values ek = 1/k1.5. The right singular vectors of the neural population V, 
with length time, consisted of a sparse Boolean matrix filtered by an 
exponential filter with a timescale of 25 timepoints. The left singular 
vectors U were composed of cosine functions with increasing frequency 
as a function of component number k: cos(πkx), where x is a random 
number for each neuron between 0 and 1. Each neuron in the entire 
simulation is assigned a random x value. U, S and V were then multiplied 
and clipped at zero to create a positive neural activity matrix. We then 
added this activity to every neuron in the simulation with a weight of 
0.75; this reproduced the property in the data that most neurons are 
driven during spontaneous activity periods, and they continue to be 
driven by spontaneous activity patterns during stimulus presentations. 
In total, 2,000 neurons out of 6,000 were driven solely by the power 
law module.

The activity matrices created in each module represent the firing 
rate of each neuron at each timepoint. We scaled each firing rate trace 
by a random number drawn from an exponential to create neurons with 
different firing rates. We then used the Poisson distribution to gener-
ate spikes from these firing rates. We also added independent Poisson 
noise to all the neurons with mean 0.03. We sorted the neural activity 
with Rastermap using n_clusters = 100, n_PCs = 200, locality = 0.8 and 
time_lag_window = 10 in Fig. 1. We changed the random seed, which 
controlled the initialization for the scaled k-means clustering, using 
20 different values in Extended Data Fig. 6. We varied the number of 
clusters, the locality parameter and the time_lag_window parameter in 
Extended Data Fig. 7. When using the Leiden algorithm for clustering, 
we set the number of neighbors to 100 and the resolution to 3.0, which 
produced approximately 100 clusters (Extended Data Fig. 7a)33,78.

Simulation with power law module only. We created a power law 
module as above, consisting of 6,000 neurons, with eigenvalues ek = 1/k. 
The activity matrices created in each module represent the firing rate 
of each neuron at each timepoint. We scaled each firing rate trace 
by a random number drawn from an exponential to create neurons 
with different firing rates. We then used the Poisson distribution to 
generate spikes from these firing rates. We sorted the neural activity 
with Rastermap using n_clusters = 100, n_PCs = 200, locality = 0 and 
time_lag_window = 0.

Simulation with intrinsic dimensionality of 2. We simulated neural 
activity with an intrinsic dimensionality of 2 by randomly choosing an 
x and y value for each neuron in the range of 0 to 1 (Fig. 8). We simulated 
30,000 neurons in total using basis functions, which depended on x 
and y: Ukx ,ky (x, y) = cos(πkxx) ∗ cos(πkyy) , where kx and ky compose a 
two-dimensional grid from 1 to 30, for a total of 900 basis functions, 
which we used as the left singular vectors for construction of the simu-
lation. The singular values were defined as skx ,ky = (k2x + k2y)

−0.5
. The right 

singular vectors V were generated as random Gaussian noise at each 
of the 20,000 timepoints. We multiplied U, S and V and then added 
random Gaussian noise scaled by 5 × 10−3 at each timepoint. We sorted 
the neural activity with Rastermap using n_clusters = 100, n_PCs = 400, 
locality = 0, time_lag_window = 0 and n_splits = 0 or n_splits = 3 (result-
ing in 800 clusters due to splitting). We binned the sorted neural 

activity into superneurons of size 60 neurons each (Fig. 8g); the neu-
rons are colored by the sorting in Fig. 8e.

Benchmarking embedding algorithms
Each module in the one-dimensional simulation has a ground truth 
sorting defined by its one-dimensional axis. We compared the embed-
ding order found by a given algorithm to this ground truth order 
using two metrics: the percent of correctly ordered triplets and the 
percent contamination of neuron groups from the same module. To 
compute the triplet score, we drew many groups of three random 
neurons from the same module, and, if these three neurons were in 
the same order in the embedding as in the ground truth, then it was 
considered a correct triplet. For the percent contamination, we drew 
many groups of two random neurons from the same module and 
quantified the percentage of neurons between these two neurons, 
which were from a different module, and averaged the percentage 
over all groups. The results are shown in Fig. 1i,j. For the simulation 
with only one module, the power law module, we did not need to 
use these more complicated metrics and, instead, simply correlated 
the algorithm sorting with the ground truth sorting and took the  
absolute value.

Another way to benchmark embedding algorithms is to quan-
tify how well the local neighborhood of a data point in the original 
space is preserved in the embedding space26. This is done by com-
puting the percentage of k-nearest neighbors in the original space 
are preserved as k-nearest neighbors in the embedding space. In 
our case, for the original space, we can use the ground truth posi-
tion of the neuron in the simulation and compute distances between 
these positions rather than using noisy estimates of distances 
from the data as is required when the ground truth is unknown. We 
computed the percentage of neighbors preserved for k from 1 to 
500 on a random subset of 2,000 neurons from the full simulation 
(to speed up the neighbor computation); the results are shown in  
Extended Data Fig. 5.

We also defined local and global preservation scores to benchmark 
the asymmetric similarity matrices from the data (Extended Data 
Fig. 8). The local score is defined as the fraction of first upper diagonal 
entries in the sorted asymmetric similarity matrix, which were the larg-
est possible values in the matrix (similar to the neighbor preservation 
score). The global score is defined using the cost function from the 
matching matrix: the dot product between the upper triangular of 
the sorted asymmetric similarity matrix and the upper triangular of 
the matching matrix, normalized by the mean of the upper triangular 
of the matching matrix.

Running other embedding algorithms. We compared Rastermap 
to the most commonly used embedding algorithms: t-SNE19, UMAP20, 
ISOMAP79, Laplacian Eigenmaps80, hierarchical clustering81,82 and 
PCA (Fig. 1h–j and Extended Data Fig. 5a). We ran the openTSNE 
implementation of t-SNE due to its efficiency and flexibility83. We 
ran t-SNE and UMAP with the suggested initialization from ref. 26: 
the first PC scaled by a small number (we chose 0.0001). We used 
the cosine similarity metric for t-SNE, UMAP and ISOMAP, as this 
improved performance. We ran the ‘linkage’ and ‘fcluster’ methods 
in SciPy to perform hierarchical clustering, with the correlation simi-
larity metric, the ‘single’ method and t = 0.01 as this improved per-
formance71. Otherwise, the algorithms were run with their default  
parameters.

The performance of t-SNE and UMAP can depend on their param-
eters that define their local neighborhoods, perplexity and n_neigh-
bors. Therefore, we also ran t-SNE and UMAP with several different 
values of these parameters to determine whether they influenced the 
embedding quality (Extended Data Fig. 5b,c). For Extended Data Fig. 6, 
we ran t-SNE with 20 different random seeds, keeping the initialization 
fixed on each run to the first PC scaled by 0.0001.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01783-4

Data analysis
Neural activity from a virtual reality task. We analyzed neural activ-
ity collected from mouse visual cortical areas using two-photon cal-
cium imaging at a rate of 3.2 Hz while the mouse was free to run on an 
air-floating ball in a virtual reality task (Fig. 2a). The task contained 
two virtual corridors, ‘leaves’ and ‘circles’, and the ‘leaves’ corridor was 
rewarded at a random position in the corridor after a sound cue (the 
sound cue was also played in the ‘circles’ corridor but not rewarded) 
(Fig. 2b). We sorted the neural activity with Rastermap using n_clus-
ters = 100, n_PCs = 200, locality = 0.75 and time_lag_window = 10, and 
we binned the sorted neural activity into superneurons of size 100 
neurons each (Fig. 2d); the neurons are colored by the sorting in Fig. 2a, 
and the asymmetric similarity matrix for the clusters is shown in Fig. 2c. 
The superneuron tuning curves were computed for 100 positions along 
each corridor and in the gray space between corridors.

Spontaneous activity in sensorimotor areas. We analyzed neu-
ral activity collected from a large part of mouse dorsal cortex using 
two-photon calcium imaging at a rate of 3.2 Hz, centered on sensori-
motor areas, while the mouse was free to run on an air-floating ball in 
total darkness (Fig. 3a). We sorted the neural activity with Rastermap 
using n_clusters = 100, n_PCs = 128, locality = 0.0 and time_lag_win-
dow = 5, and we binned the sorted neural activity into superneurons 
of size 50 neurons each (Fig. 3b); the neurons are colored by the sort-
ing in Fig. 3a.

We used the keypoint tracking network from ref. 41 to track key-
points on the mouse face from the video taken during the recording 
(Fig. 3c). From these keypoints, we computed five interpretable vari-
ables: the eye area, the whisker pad position and the nose position. The 
eye area was computed by taking the difference of the top and bottom 
eye keypoints and the difference of the left and right eye keypoints and 
then multiplying these two values together. The whisker pad position 
was computed by averaging the positions of the three tracked whisker 
keypoints. Then, the PCs of the x and y positions were computed and 
used to rotate the coordinates such that the new x position corre-
sponded to movements along the major axis of whisker movements. 
The nose position was computed by averaging the position of the four 
tracked nose keypoints.

Next, we used the neural network from ref. 41 to predict 128 neu-
ral activity PCs from these five variables and the running speed. The 
behavioral prediction from this nonlinear neural network was visual-
ized in Fig. 3e. To estimate the superneuron receptive fields, we used a 
simplified linear version of this neural network. The network consisted 
of the same first two layers, an input linear layer and a one-dimensional 
convolutional layer, and then these layers were followed by a single 
output linear layer, which predicted the 128 PCs (Fig. 3d). The receptive 
field for a superneuron was estimated by optimizing a small behavioral 
snippet of length 8 s to maximally activate the superneuron at the 
timepoint at the midpoint of the snippet.

Rat hippocampus data. We analyzed a freely available neural activity 
recording collected from the CA1 region of rat hippocampus using two 
multi-shank silicon probes, during which the rat ran back and forth 
along a 1.6-m linear track (Fig. 4a)44,84. We binned the spiking in time 
bins of 200 ms, and we used the full time period in which the rat was in 
the maze and used all 137 recorded neurons. To estimate the location of 
the rat and the start and stop of the rat in each corridor, we used code 
available from ref. 59.

We sorted the neural activity with Rastermap using n_clus-
ters = None, n_PCs = 64, locality = 0.1 and time_lag_window = 0. 
When n_clusters is set to None or to 0, then the algorithm sorts 
the original datapoints—the single neuron traces—rather than first 
clustering the data and then sorting. Tuning curves for leftward 
runs and rightward runs along the corridor were computed for 30 
positions along the track.

Zebrafish whole-brain data. We analyzed a freely available neu-
ral activity recording collected from the whole brain of a paralyzed 
zebrafish using light-sheet imaging at a rate of 2.1 Hz (Fig. 4b)22,85. 
During the imaging session, the zebrafish was presented many differ-
ent visual stimuli, such as phototactic stimuli (one side of the screen is 
dark) and optomotor response stimuli (moving gratings). The fictive 
swimming was recorded with electrodes, and the eye positions were 
tracked. We removed neurons that had low signal-to-noise ratio using a 
threshold of 0.008 on the fluorescence standard deviation. To remove 
long timescales from the calcium sensor in the data, we baselined the 
fluorescence traces and ran non-negative spike deconvolution with a 
timescale of 2 s68,69.

We sorted the neural activity with Rastermap using n_clus-
ters = 100, n_PCs = 200, locality = 0.1 and time_lag_window = 5, and we 
binned the sorted neural activity into superneurons of size 50 neurons. 
We then divided the plot into 18 bins to color neurons across the fish 
brain by position (Fig. 4b, right).

Wide-field imaging data. We analyzed a freely available wide-field 
cortical imaging recording collected from mice performing a 
decision-making task (Fig. 4c)48,86. We discared voxels on the edges of 
the recording area as these voxels were noisy in time, but this step is 
optional and data dependent. In total, 186,590 voxels remained for anal-
ysis, by 93,177 timepoints—the data were collected at a rate of 30 Hz. 
Because wide-field imaging recordings are very large (hundreds of 
thousands of voxels by hundreds of thousands of timepoints), they are 
often summarized by their singular value decomposition. Rastermap 
has the option to run on these singular vectors alone rather than the 
full dataset. We sorted the voxel singular vectors with Rastermap using 
n_clusters = 100, n_PCs = 200, locality = 0.5 and time_lag_window = 10, 
and we binned the sorted voxels into supervoxels of size 200 voxels.

Next, we predicted the supervoxel activity from behavior vari-
ables or both behavior and task variables. These were pre-computed 
in ref. 86 in ‘regData.mat’. The behaviors used were handle-grabbing 
movements, licking, whisking, nose movements, filtered pupil area, 
face movements, body movements and PCs of the raw video of the 
mouse and the video motion energy. The task variables used were 
reward times, choice, previous choice, water delivery, piezo, visual 
stimuli and auditory stimuli. We z-scored each of these variables across 
time. We predicted the voxel activity from these variables using linear 
regression with a regularization constant of 1 × 104. The prediction from 
behavior-only is shown in Fig. 4c (ii), and the prediction from behavior 
and task variables is shown in Fig. 4c (iii). The difference between the 
two predictions is shown in Fig. 4c (iv).

Time-interval reproduction task data. We analyzed neural activity 
recorded in DMFC from a monkey performing a time-interval repro-
duction task (Fig. 5a)49,87. This dataset is provided in the Neural Latents 
Benchmark88. We used all 54 neurons and binned the neural activity 
in 20-ms bins. The neural activity across all timepoints was sorted 
by Rastermap with no clustering, n_PCs = 48, time_lag_window = 20 
and locality = 0.5. The peristimulus time histogram (PSTH) for each 
neuron and for each trial type was computed aligned to the set cue 
time. The PSTHs of each neuron were z-scored together across all 
trial types for visualization (Fig. 5b). The go (action) time was plot-
ted as the average action time across all trials of a given time. The 
800-ms interval trials were subtracted from each other to compare the  
average responses (Fig. 5c).

Visual discrimination task data. We analyzed neural activity collected 
from 10 different mice across 39 recording sessions, acquired while 
they performed a visual discrimination task in which decisions were 
reported by turning a wheel (Fig. 6a)50,89. We used all neurons with an 
average firing rate of at least 0.1 Hz across all trials, resulting in 25,906 
neurons in total across all sessions. Neural activity was binned in bins of 
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size 10 ms, and trials were defined as from 500 ms before the stimulus 
presentation to 2 s after the presentation (using the formatting from 
Neuromatch90). From each session, we computed the top 10 PCs of the 
neural activity. We split the trials into right-turn and left-turn trials, 
excluding trials in which the mouse did not turn the wheel. We sorted 
the PCs of each of these trial types, concatentating the PCs in time, 
resulting in a matrix of size number of trials by (10 × number of time-
points). The trial axes of these matrix were sorted by Rastermap with no 
clustering, n_PCs = 64 and locality = 0.1, and we set time_lag_window = 0 
and mean_time = False because we are not sorting neurons over time 
here. This resulted in 78 sortings (two for each session for right-turn and 
left-turn trials). An example neuron and PCs with the right-turn trials 
sorted are shown in Fig. 6b,c, along with the behaviors of the mouse in 
these trials shown in Fig. 6e, top.

Reaction time (Fig. 6d) was defined as the time when the mouse 
first moved the wheel. The averages for all behavioral variables are 
shown in black, computed using 10 equally spaced bins (Fig. 6d,e). 
For Fig. 6f, top, we plotted the Rastermap sorting versus trial number; 
Rastermap sortings were flipped if the average trial number in the ses-
sion for the first 10 sorted trials was greater than for the last 10 sorted 
trials. Shuffling was performed by circularly permuting each sorting 
by a random number and then flipping as in the top panel.

We computed the rank-sum difference between single-neuron fir-
ing rates on the first 20 and last 20 trials of the recording, for right-turn 
and left-turn trials separately. We used the Wilcoxon two-sided rank-sum 
test to define ‘late-active’ and ‘early-active’ neurons, using a significance 
threshold of P < 0.05. We computed the percentage of ‘late-active’ and 
‘early-active’ neurons in each brain region per session and trial type, for 
all sessions in which the brain area was present (Fig. 6g).

Visual stimulus responses. We analyzed neural activity collected from 
a subset of mouse visual cortical areas using two-photon calcium imag-
ing at a rate of 3.2 Hz while the mouse was free to run on an air-floating 
ball and grayscale natural images were presented (Fig. 8a). A natural 
image was shown on every other neural frame. There were 5,000 dif-
ferent images in total, presented three times in a random order. To 
compute linear receptive fields, we downsampled the natural images 
to size 24 × 96 and then computed the top 200 PCs.

We sorted the neural activity with Rastermap using n_clus-
ters = 100, n_PCs = 400, n_splits = 3, locality = 0.0 and time_lag_win-
dow = 0 (resulting in 800 clusters due to splitting), and then we binned 
the sorted neural activity into superneurons of size 139 neurons to cre-
ate 500 superneurons in total (Fig. 8b). We then averaged the responses 
of each superneuron over the three repeats of the 5,000 images. Using 
the averaged responses, we computed the linear receptive fields of 
each superneuron with linear regression from the image PCs with a 
regularization constant of 1 × 104 (Fig. 8c).

Neural network experiments
DQN playing Atari games. We analyzed the activations of neural net-
works trained to play Atari games, from the Stable-Baselines3 RL Zoo 
(Fig. 7)91,92. These networks were Quantile Regression DQNs (QR-DQNs), 
which consisted of three convolutional layers and a linear layer to 
process the images from the game (four frames stacked in time) and 
a feedforward network to compute the state values52,93. We used four 
different ‘NoFrameskip-v4’ agents each trained on a different envi-
ronment: Pong, Space Invaders, Enduro and Seaquest. We ran the 
environments 10 times, each time with a different random seed, and 
then we concatenated the activations across the 10 episodes. Each 
episode lasted for up to 4,000 timepoints or however long until the 
agent won or lost in each run (only for the Enduro environment did 
this exceed 4,000 timepoints because the Enduro game can never be 
won, and the agent never lost).

We sorted the neural network activations across all 10 episodes 
with Rastermap using n_clusters = 100, n_PCs = 200, locality = 0.75 

and time_lag_window = 10, and we binned the sorted activations into 
superneurons of size 50 units. We showed the activations for one  
episode along with four example frames in Fig. 7.

AlexNet in response to natural images. We trained the AlexNet neural 
network to perform image recognition on ImageNet images in gray-
scale (rather than the usual RGB)94,95. We then presented the network 
the same natural images that we showed to the mice and saved the 
activations in all of the layers. For further analysis, we used 2,560 ran-
dom activations from the first four convolutional layers and all 1,280 
activations from the fifth convolutional layer.

We sorted the AlexNet activations with Rastermap using n_clus-
ters = 100, n_PCs = 400, n_splits = 3, locality = 0.0 and time_lag_ 
window = 0 (resulting in 800 clusters due to splitting), and then we 
binned the sorted activations into superneurons of size 24 units 
(Fig. 8d, right). We colored each of the activations by their position in 
the Rastermap (Fig. 8d, left).

Statistics and reproducibility
No statistical method was used to predetermine sample size. We found 
that the performance of the various algorithms was consistent across 
the 10 randomly generated simulations, suggesting that 10 random 
simulations were sufficient (error bars represent s.e.m. in Fig. 1) (many 
methods papers use only one randomly generated simulation58–60). We 
performed rank-sum tests to determine selective neurons in Fig. 6, 
which do not require the data to be normal. No data were excluded from 
the analyses. There were no experimental groups so no randomization 
was necessary. Data collection and analysis were not performed blinded 
to the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. The large-scale cal-
cium imaging data are available at https://doi.org/10.17605/OSF.IO/
XN4CM. Previously shared datasets were also used in this study and 
are available at https://doi.org/10.6080/K0862DC5, https://doi.org/ 
10.25378/janelia.7272617.v4, https://doi.org/10.14224/1.38599, https://
doi.org/10.48324/dandi.000130/0.220113.0407 and https://doi.org/ 
10.6084/m9.figshare.9598406.v2 (refs. 84–87,89).

Code availability
Rastermap was used to perform all analyses reported in this paper. The 
code and graphical user interface are available at https://www.github.
com/mouseland/rastermap (ref. 96). Scripts for running all the analyses 
reported in this paper are available at https://github.com/MouseLand/
rastermap/tree/main/paper.
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Extended Data Fig. 1 | Spontaneous neural activity in random order and sorted by Rastermap. a, Same neural activity as Fig. 3, with random sorting. b, Fig. 3b 
reproduced for comparison.
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Extended Data Fig. 2 | Rastermap graphical user interface (GUI). 1st row: Full 
recording, with selected time period shown in blue. 2nd row left: Superneuron 
activity by time in selected time period, with user-selected clusters highlighted 
in different colors. 2nd row right: All neurons shown in gray, and neurons from 

selected clusters shown in color. 3rd row: Mean activity in each of the user-
selected clusters. 4th row: Behavioral/task variable plotting area showing the 
mouse’s running speed.
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Extended Data Fig. 3 | Power-law of shared variance of neural activity. We ran 
SVCA (shared variance components analysis, ref. 16) on the large-scale neural 
recordings and artificial neural network activity analyzed in this study (blue line), 

and fit the best 1/nα line to each spectrum using points from 10 to 500 (black). 
We note this estimation procedure uses all timepoints, and is not a measure of 
stimulus-driven dimensionality scaling like the cvPCA method from ref. 17.
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Extended Data Fig. 4 | Power-law simulation only (global structure). We 
simulated a power-law module with 6,000 neurons. a, The simulated neurons 
were sorted by Rastermap or t-SNE, then averaged in bins of 30 neurons, 
which we call superneurons. b, The correlation matrices for the superneurons 
computed from various algorithms. c, The sorting of neurons from various 

algorithms plotted against the ground-truth sorting. d, The absolute correlation 
of the algorithm sorting with the ground-truth sorting (n=10 simulations, line 
represents mean). e-g, Same as Fig. 1h–j, but we did not add noise from the 
power-law module to neurons in the other modules in the simulations (error bars 
represent s.e.m., n=10 simulations).
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Extended Data Fig. 5 | Benchmarking embedding algorithms. a, The KNN 
score for benchmarking embedding algorithms from ref. 26: the percentage 
of k-nearest neighbors in the original space that are preserved as k-nearest 
neighbors in the embedding space (error bars represent s.e.m., n=10 simulations, 
for all panels). b, Top: Same as a for t-SNE embeddings computed with various 

perplexities, including multiple perplexities27. Bottom: Like in Fig. 1i,j, 
percentage of correct triplets and percentage contamination for the different 
t-SNE embeddings. c, Same as b for UMAP embeddings computed with various 
values of n_neighbors (called nn in the legend).
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Extended Data Fig. 6 | Reproducibility of sorting. a, We ran Rastermap and t-SNE with 20 different random seeds to sort the simulation from Fig. 1e–h with five 
modules. Percent correct triplets and percent contamination are reported. b, 20 sortings of the power-law module only simulation from Rastermap and t-SNE with 
different random seeds.
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Extended Data Fig. 7 | Rastermap embedding quality as a function of 
parameters. In Fig. 1, we ran Rastermap with 100 clusters (k-means clustering), 
locality parameter of 0.8, and time_lag_window of 10. Here we run Rastermap 
with varied parameter values. a, Rastermap was run with different numbers of 
clusters (black) for each of the ten simulations from Fig. 1 (error bars represent 
s.e.m.). We also ran Rastermap using the Leiden algorithm to perform clustering 

with a resolution of 3.0 and 100 neighbors, which produced 100 clusters (gray) – 
this clustering method performed worse than k-means. Percent correct triplets, 
percent contamination and chance level (dashed line) computed as in Fig. 1i,j. 
b, Average percent correct triplets and percent contamination computed from 
Rastermap sorting from the ten simulations, using different locality and time_
lag_window values.
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Extended Data Fig. 8 | Rastermap sorting as a function of the locality parameter. a, Asymmetric similarity matrix from neural activity from a virtual reality task, for 
different values of the locality parameter (0.75 used in Fig. 2d). b, Same as a for spontaneous activity (locality = 0 used in Fig. 3b).
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Extended Data Fig. 9 | Neural activity from a virtual reality task sorted by t-SNE and UMAP. a-b, Same as Fig. 2d–e using sorting from the t-SNE algorithm. c-d, 
Same as Fig. 2d–e using sorting from the UMAP algorithm.
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Extended Data Fig. 10 | Rastermap sorting in comparison to behavioral-based sorting. a, Rastermap sorting of neural activity shown in Fig. 3b. b, Each neuron in 
the recording was correlated to the specified behavioral variable, and the neural activity was sorted by the correlation values.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Scanimage software v2022.1.0 (open source) was used to collect calcium imaging data from awake mice using a two-photon mesoscope 

(Thorlabs 2PRAM microscope). PsychToolbox v3.0 was used to present visual stimuli during the experiments. Custom code was used to collect 

mouse face videos.

Data analysis All data analysis was performed in Python. We processed all of the raw calcium imaging data using our suite2p package https://github.com/

mouseland/suite2p (version 0.9.4). We processed the mouse face videos using our Facemap software package (v1.0), available at https://

github.com/mouseland/facemap. The rastermap software package is available at https://github.com/mouseland/rastermap. All the code to 

reproduce the figures is available at https://github.com/MouseLand/rastermap/tree/main/paper. We ran the code with python=3.8.13, 

pytorch=1.11.0, numpy=1.23.3, scipy=1.9.1, pyqt5=5.15.7, pyqtgraph=0.12.0, numba=0.56.2, tqdm=4.64.1 , and matplotlib=3.6.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All the data used in this study is publicly available. The large-scale calcium imaging data is available at https://doi.org/10.17605/OSF.IO/XN4CM. Previously shared 

datasets were also used in the study, available at http://dx.doi.org/10.6080/K0862DC5, https://doi.org/10.25378/janelia.7272617.v4, https://

dx.doi.org/10.14224/1.38599,  https://doi.org/10.48324/dandi.000130/0.220113.0407, and https://doi.org/10.6084/m9.figshare.9598406.v2.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. We found that the performance of the various algorithms were consistent 

across the ten randomly generated simulations, suggesting ten random simulations were sufficient (error bars represent s.e.m. in Figure 1).

Data exclusions No data was excluded from the study.

Replication We have used standard mouse-lines available from JAX and processed the data with an automated algorithm to avoid any personal biases. We 

used a standard commercial microscope (Thorlabs 2P-RAM microscope). We have also made all of the code available for analysis by others, 

and data is publicly available.

Randomization No experimental groups so no randomization required.

Blinding No experimental groups so no blinding required.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals TetO-GCaMP6s x Emx1-IRESCre mice (available as RRID:IMSR JAX:024742 and RRID:IMSR JAX:005628). These mice were male and 

female, and ranged from 2 to 12 months of age. Mice were housed in reverse light cycle, and were pair-housed with their siblings 

before and after surgery. Holding rooms are set to a temperature of 70°F +/- 2°F, and humidity of 50%rH +/- 20%. 

Wild animals The study did not involve wild animals.

Reporting on sex All data was aggregated across sex. We did not perform sex-based analyses because our questions were not related to sex-based 

differences in behavior or neural activity.

Field-collected samples The study did not involve field samples.

Ethics oversight All experimental procedures were conducted according to IACUC, ethics approval received from the IACUC board at HHMI Janelia 

Research Campus.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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