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Neurophysiology has long progressed through exploratory experiments
and chance discoveries. Anecdotes abound of researchers listening to spikes

inreal time and noticing patterns of activity related to ongoing stimuli or
behaviors. With the advent of large-scale recordings, such close observation
of data has become difficult. To find patterns in large-scale neural data, we
developed ‘Rastermap’, a visualization method that displays neurons as a
raster plot after sorting them along a one-dimensional axis based on their
activity patterns. We benchmarked Rastermap on realistic simulations

and then used it to explore recordings of tens of thousands of neurons

from mouse cortex during spontaneous, stimulus-evoked and task-evoked
epochs. We also applied Rastermap to whole-brain zebrafish recordings;

to wide-field imaging data; to electrophysiological recordings in rat
hippocampus, monkey frontal cortex and various cortical and subcortical
regionsin mice; and to artificial neural networks. Finally, we illustrate
high-dimensional scenarios where Rastermap and similar algorithms cannot

be used effectively.

High-density electrodes and two-photon calcium imaging have
generated an explosion of large-scale neural recordings'?. Visualiz-
ing and analyzing such recordings can be done either directly at the
single-celllevel** or at the population level using dimensionality reduc-
tion methods® %, but both methods have caveats. Visualizing neurons
one at a time can be difficult because single neurons are often very
noisy”". Furthermore, single-neuron visualizations cannot show the
population-wide coordination of neural firing patterns, which can vary
across trials, leading to ‘trial-to-trial’ variability" . On the other hand,
dimensionality reduction algorithms can find common patterns of
covariationacross neurons, allowing further analyses to be restricted
tojustthesereliable modes of activity. However, in large-scale record-
ings or in recordings with complex tasks, many components must
be used to capture the high-dimensional structure of the neural
activity patterns™™,

Nonlinear dimensionality reduction methods can overcome some
ofthese limitations. For example, manifold discovery algorithms such
as t-distributed stochastic neighbor embedding (t-SNE) and uniform
manifold approximationand projection (UMAP) embed the firing pat-
terns of neurons into one or two dimensions' %, Such algorithms can

beused, forexample, to place neurons with similar firing patterns close
toeachother. However, these algorithms are typically used to visualize
theembedding space, whichis avisualization of therelations between
neurons rather than a direct visualization of their activity patterns®.
Furthermore, it can be challenging for these algorithms to maintain
bothlocal and global structure on neural data, as their cost functions
are not optimized for such data. Methods such as t-SNE and UMAP
can also suffer from local minima during optimization®, and it can be
difficult to evaluate what constitutes true clustering in the embedding
spaceand what s anartifact of the algorithms*:.

Unlike these existing methods, Rastermap provides a structured
visualization of the activity patterns across different groups of neu-
rons, illustrating how these activity patterns relate to each other. The
Rastermap visualization is inspired by ‘classical’ population raster
plots, where the spike train of each neuronis shown as arow of raster-
ized ticks, often alongside other variables such as behavior®. These
raster plots canillustrate the average population activity; to improve
the plots, one can reorder the neurons across the y axis of the plot so
that nearby neurons have similar activity patterns (Extended Data
Fig.1). Our reordering algorithm, Rastermap, is optimized for neural
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Fig.1|Benchmarking Rastermap on simulated data with multiplexed neural
activity. a-d, These panels illustrate how Rastermap works. a, First, Rastermap
divides neurons into 50-200 clusters based on their activity (left). The cross-
correlations between different clusters are computed at several time lags (right).
b, The cluster correlations at different positive time lags are shown for a subset
of clusters, and the entry-wise maximum of these matrices over a time window
from O to T,,,, defines an ‘asymmetric similarity matrix’. ¢, The asymmetric
similarity matrix is sorted to match the ‘matching matrix’, whichis asumofa
global similarity matrix and alocal similarity matrix. d, The cluster features are
upsampled using alocally linear interpolation method, and then each neuronis

assigned to an upsampled cluster center. e, The simulated neurons were sorted
by Rastermap or t-SNE and then averaged in bins of 30 neurons—the averages

of these neurons are called ‘superneurons’. f, The sorted asymmetric similarity
matrix for the simulation. g, The activity of the superneurons aligned to different
stimulus events. h, The sorting of neurons from various algorithms plotted
against the ground truth sorting. i, For each module of the simulation and each
algorithmin h, the percentage of correctly ordered triplets is shown (n =10
simulations; error bars represent s.e.m.). j, The percentage of contamination
inamodule with neurons from other modules (n =10 simulations; error bars
represents.e.m.). Corr, correlation; stim, stimulus.

data by combining two commonly observed features of neural activ-
ity: (1) a power law scaling of eigenvalue variances and (2) sequential
firing of neurons. We demonstrate here that Rastermap outperforms
t-SNE, UMAP and other nonlinear dimensionality reduction methods
onsimulations of neural data. The algorithmis also fast: it runsinless
than 2 min on datasets with tens of thousands of neurons. Rastermap
isimplementedin Pythonand canberuninajupyter notebook, onthe
command line or in the provided graphical user interface (Extended
DataFig.2).

Results

The goal of Rastermap is to obtain a sorting of all neuronsin arecord-
ing, suchthat nearby neuronsin the sorted list have similar functional
properties, and, overall, the neural pairwise similarity decays smoothly
as a function of pairwise distance in the sorting. Equipped with this

sorting, we can make asingle raster plot of all neurons that visualizes the
most common patterns of activity. We typically use the full recording
session to compute the Rastermap sorting, but we also show exam-
ples of Rastermap on trial-based data below. To start, we cluster the
neural activity profiles by k-means clustering, typically into Ngers =100
distinct clusters (Fig. 1a). We then define an asymmetric similarity
measure between clusters, as the peak cross-correlation between the
cluster activities at non-negative time lags (Fig. 1a,b). The asymmetry
induced by this metric ensures that a well-defined ordering can be
achieved, so that clusters with earlier activity are typically displayed
toward the bottom of the raster plots.

Having obtained an N sers BY Neusters Similarity matrix, the opti-
mization goal of Rastermap is to permute the rows and columns of
this matrix until it matches a predefined matrix as closely as possible.
The predefined matrixis chosen asasumbetween aglobal and alocal
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Fig.2| Applying Rastermap to neural activity from a virtual reality task.

a, Intotal, 66,318 neurons were recorded across mouse visual cortex using two-
photon calciumimaging, colored by position in the Rastermap sorting. b, During
the recording, mice navigated through a one-dimensional virtual reality (VR)
with two different corridors (‘leaves’ and ‘circles’) that were separated by a gray
areaand randomly interleaved. A tone was played in each corridor atarandom
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time, and, in the ‘leaves’ corridor, the tone was followed by a reward. ¢, The sorted
asymmetric similarity matrix from the recording. d, Top: neural activity sorted by
Rastermap; colored backgrounds denote the type of corridor; green lines denote
rewards. Bottom: event times in the task and running speed. e, Superneuron
tuning curves to positions along each corridor. M, medial; A, anterior;

P, posterior; L, lateral.

similarity matrix (Fig. 1c; see also multi-perplexity t-SNE**%’). The global
similarity matrix has a heavy-tailed distribution that decays smoothly
as a function of distance between clusters, with an eigenvalue decay
of 1/n, which is observed in neural recordings and artificial neural
networks (Extended DataFig.3). The local part of the matrix has a ‘trave-
ling salesman’ structure®®, where the similarity is only high between
consecutive nodesinthe sorting to capture sequential activity patterns
observed in neural datasets. The local and global matrices are added
together with a weighting term w, the locality parameter, that can be
adjusted based on the properties of the data.

The resulting matching matrix is the target that must be matched
to the neural similarity matrix by permuting rows and columns, but
the user can also input their own matching matrix, for example if a
smoother representation is desired. At every iteration of the opti-
mization, we exhaustively check if any consecutive sequence of N
clusters can be moved to any other position in the sorting, starting
with sequences of length 1 and then progressively checking longer
sequences, extending beyond 2-length and 3-length sequences, which
are often used”*°. This specialized optimization can be implemented
efficiently on modern CPUs using the numba Python package®, as long
aSNclusters <200.

Afterre-sorting, the neural similarity matrix resembles the match-
ing matrix, as illustrated on an example simulation in Fig. 1f. Having
obtained an ordering for the clusters, we must now obtainan ordering
for the neurons. To do this, we upsampled the sorted cluster activi-
ties by a factor of 10 in the principal component analysis (PCA) fea-
ture space, thus creating N, s X 10 positions that can be matched
to single neurons (Fig. 1d). Single neurons were then assigned to the
position that is most highly correlated to their activity in PCA space.
When the number of neurons is very large (thousands or more), we
cannot visualize them as rows of a Rastermap due to alack of vertical
pixels on most monitors. We, therefore, bin the thousands of neurons
into hundreds of ‘superneurons’. Superneurons are averages across
groups of neurons that were put next to each other in the Rastermap,
which, by definition, have similar firing patterns. An added bonus of

creating superneuronsis that they have less noisy activity compared to
single neurons®.

Benchmarking with known ground truth

Benchmarking visualization methodsis difficult because a good visu-
alization should be evaluated based on its ability to simplify complex
data, and this is difficult to measure for real datasets. The approach
that we take hereis tostart witharealistic simulation of neural activity,
which contains multiple, complex signals with different spatiotemporal
signatures. We then randomly shuffle the neurons and ask different
methods to undo the shuffling. The simulated populations contain
multiple sub-modules with realistic firing patterns: we use two mod-
ules with sequential firing, modeling, for example, place cellswhenan
animal runs throughalinear corridor; we then add amodule of sensory
responses to repeated flashed stimuli where the neurons have wide
tuning curves to these stimuli; we also add a module of neurons with
different response durations and latencies to a single stimulus pre-
sented many times; finally we add a module of neurons with power
law PCA structure and add small amounts of this module to all other
modules, to model the effect of spontaneous, ongoing activity as cor-
related noise across the population’ (Fig. 1e). Note that, if an algorithm
sorts neurons fromamodule according to their power law contribution,
this would be considered incorrect in our benchmark, unless those
neurons are in the power law module.

Rastermap was able to find the natural ordering of this simulation,
whereas other methods, such as t-SNE, failed, typically oversplitting
clusters and positioning the pieces far from each other (Fig. 1e). After
sorting, the asymmetric similarity matrix contained high values closer
tothediagonalin Rastermap comparedto other methods, suchas t-SNE
(Fig. 1f). The superneurons, defined as averages of 50 consecutive
neurons in the Rastermap sorting, have clearly defined tuning proper-
ties, whether as part of asequence orinresponse to the simulated stimuli
(Fig.1g). We also simulated neurons from a power law module only and
found that Rastermap produced amore smoothly decaying correlation
matrix compared to other methods (Extended DataFig.4a,b).
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Fig.3|Sorting of spontaneous activity by Rastermap. a, Intotal, 34,086
neurons were recorded across mouse sensorimotor cortex using two-photon
calciumimaging, colored by position in the Rastermap sorting. b, Neural activity
sorted by Rastermap. ¢, Mouse orofacial behaviors during the recording.
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Rastermap positions represented by the gray lines. Right: behavioral receptive
fields for all superneuronsin the Rastermap. e, Prediction of neural activity
using the behaviors in c. The same Rastermap sorting of neurons as in b was
maintained. Norm. units, normalized units.

Tobenchmarkaset of commonly used embedding algorithms, we
compare theirembedding order with that of the ground truth (Fig. 1h).
Although there are no relations between modules by construction,
within each module we expect a non-interrupted monotonic relation
between the embedding position and ground truth. To quantify the
similarity of these orderings, we use two measures: the number of
correctly ordered triplets and the percent contamination of neuron
groups from the same module. The fraction of correctly ordered tri-
plets was higher for Rastermap across the two sequence modules and
the power law module compared to all other methods. Rastermap,
t-SNE and UMAP performed similarly on the flashed stimulus response
modules (tuning and sustained), we suspect due to the wider tuning of
the single neurons inthese modules resulting in lower dimensionality
(Fig. 1i). Finding correctly ordered triplets is not sufficient to ensure
a good ordering; these triplets also have to be part of a continuous,
unbroken module. To estimate how broken up amodule is, we quanti-
fied the percent contamination with other modules for the neurons
sorted inbetween any two neurons from the same module (Fig. 1j). This
contamination was lowest for Rastermap across all modules except
the sustained module in which all algorithms performed similarly.
Additionally, we showed that Rastermap also performs better on the
k-nearest neighbor metricintroduced by ref. 26 (Extended DataFig. 5).
We also benchmarked Rastermap on simulations with a power law
module only and without power law noise added to each neuron, and
we found that Rastermap also outperformed other methods in these
cases (Extended Data Fig. 4c-g).

Finally, we evaluated the consistency of Rastermap and t-SNE
across multiple runs with different random seeds. The embedding qual-
ityacrossrunsvaried less for Rastermap thanit did for t-SNE (Extended
DataFig. 6). We noticed that the main source of variability in Rastermap
is from the initial clustering procedure, and we evaluated whether
other more stable clustering algorithms perform better. However,

graph-based clustering methods, such as the Leiden algorithm, per-
formed substantially worse (Leiden®; Extended Data Fig. 7). None-
theless, it is possible for users to potentially input other clustering
algorithms to Rastermap**. We also found that the embedding quality
was robust across various Rastermap parameters, suggesting that
the user does not need to be precise when testing parameters for the
visualization (Extended Data Fig. 7).

Rastermap on 50,000 neuron recordings during virtual reality
Toillustrate Rastermap in practice, we apply it to a variety of data-
sets. We start in this section and the next with datasets collected
in our own laboratory, using two-photon calcium imaging of large
neural populations of up to 70,000 simultaneously recorded neu-
rons at sampling frequencies of approximately 3.2 Hz**°, First, we
applied Rastermap to data collected in visual cortex during naviga-
tion and sensory decision-making in virtual reality (Fig. 2a)* . Mice
were trained to run through two corridors with different naturalis-
tic textures on the walls (‘leaves’ and ‘circles’) (Fig. 2b). Reward was
delivered at pseudo-random positions in the leaves corridor, after an
auditory cue, and the mouse had to lick to trigger the reward. After a
few weeks of training, the mouse learned toreliably lick only inresponse
to the cue in the leaves corridor and not in response to the cue in the
circles corridor.

Theneural activity generated in this task followed clear sequential
patterns, which Rastermap was able to group together (Fig. 2c,d). Two
large populations of neurons can be seen encoding the circles and
leaves corridors, with aslightly larger population encoding the reward-
ing corridor (Fig. 2e). To place the sequences for the corridors together
inthe sorting, anon-zerolocality weight was required (Extended Data
Fig.8a)—t-SNE and UMAP did not succeed at this (Extended Data Fig. 9).
We also observed populations that encode the gray space, an area
between corridors without visual stimuli. The encoding of the gray
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Fig. 4| Visualizing neural activity across brain areas and species. a, Left:
Rastermap sorting of neural activity collected from the CAlregion of rat
hippocampus using two multi-shank silicon probes, during which the rat ran
back and forth along a1.6-m linear track**. Neuron identity was defined by spike
waveform shape: FS, fast spiking (putative interneuron); RS, regular spiking
(putative pyramidal cell). Right: tuning curves of each neuron to the position of
theratinthe track. b, Left: Rastermap sorting of neural activity collected from
the whole brain of a paralyzed zebrafish using light-sheet imaging at a rate of
2.1 Hz*. This period of time included two visual stimuli: phototactic stimuli (one
side of the screen is dark) and optomotor response stimuli (moving gratings).
Middle: color bar sectioning Rastermap into 18 groups for visualizing spatial
patterning. Right: neuron positions in each group plotted in color; all neurons

intherecordingarein gray. Positions in each plot were collapsed across the
zdimension. The color bar denotes the position along the embedding. ¢, (i)
Rastermap sorting of cortical activity collected by wide-field imaging in mice
performing a decision-making task*®. The voxels in the brainimage are colored by
Rastermap position. Stimulus events in the task are indicated by colored shaded
regions, and reward times are indicated by green lines. (ii) Linear prediction

of activity from task and behavior variables shown with the same sorting as

in (i). (iii) Same as (ii) with linear prediction from behavior variables only.

(iv) Difference between prediction in (ii) and (iii). Eye pos., eye position; aud,
auditory; vis, visual; var. exp., variance explained; diff. in var. exp., difference in
variance explained.

space was also sequential as a function of position and mostly did not
depend on either the previous or the next corridor. The sequential
activity wasinterruptedintheleaves corridor at times when the mouse
stopsto collect the reward.

There are also multiple reward-related populations of inter-
est visible in just the single plot from Fig. 2. In a separate study, we
found that one of these populations at the top of the Rastermap
was active in the rewarded corridor only before the reward was
delivered, turning off after reward delivery, suggesting that those
neurons encode reward probability*’. We discovered this popula-
tion of neurons using Rastermap, illustrating that hypothesis gen-
eration is possible with this visualization technique. Finally, there
are other populations of neurons that do not seem engaged by any
aspects of the task, which we think is related to the spontaneous oro
facial behaviors.

Rastermap on neural recordings during spontaneous
behaviors

Next, we applied Rastermap to data collected during spontaneous
neural activity, where the animal is head fixed on top of an air-floating
ballin complete darkness, without any explicit task'**. In this prepa-
ration, we used a long ‘D’-shaped coverslip that covers many differ-
ent cortical areas, including the anterior part of visual cortex, the
sensorimotor cortex and the posterior part of motor cortex (Fig. 3a).
Inthis case, we wanted to emphasize the global structure of popula-
tion activity and did not observe sequential activity. Thus, we set
the locality parameter to zero (Extended Data Fig. 8b). In general,
we note that the locality parameter controls the balance between
reproducing more of the global structure and more of the local struc-
turein the data. Neurons across the brain had some degree of spatial
clustering, as can be seen by their average positionin the Rastermap
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Fig. 5| Visualizing monkey DMFC activity during a timing task. a, Top: two
visual cues were flashed, indicating a ‘ready’ and a ‘set’ signal. The monkey
needed to reproduce the time interval between these cues using its own ‘go’
action (saccade or joystick movement). Bottom: short and long trial blocks*.

b, PSTHs for neurons sorted by Rastermap. The PSTHs of each neuron were
z-scored together across conditions for visualization. ¢, The difference in neural

responses between the top and bottom panelsinb corresponding to the same
time intervalin blocks with different priors. Colored vertical dashed lines
denote ready cue time, set cue time and go (action) time that maximizes reward.
The color bar shows the difference in z-scored activity. ¢, sample interval; t,,
productioninterval.

sorting, indicated by the color of the dots. Over a period of 2 min, the
populations of neurons visible in Rastermap engaged in a variety of
activation patterns that lasted from hundreds of milliseconds to tens
of seconds, with many of the patterns repeatable within this time
window (Fig. 3b). Overall, the patterns could be divided into roughly
two classes based on whether they were active during running or dur-
ing sitting*>**, but, within those classes, different subsets of neurons
were active at different times.

We previously showed that many of these spontaneous activity
patterns can be predicted based on the orofacial behaviors of the
mice, which we quantified either with a PCA-based decomposition of
the face motion energy or by tracking keypoints on the mouse face'**..
To help us interpret the spontaneous activity clusters, we computed
the eye area, whisker position and nose position estimates from the
mouse face video using keypoint tracking (Fig. 3c)*. We then used these
behavioral variables to estimate the spatiotemporal linear receptive
fields for each superneuron from Rastermap and also to predict the
superneuron activity across time (Fig. 3d,e). The receptive field is the
spatiotemporal pattern of keypoint movements that would activate
that particular superneuron the most. Across the Rastermap embed-
ding dimension, the receptive fields change gradually and appear to
be organized hierarchically, in which subsets of neurons with the same
global response patterns have differential responses at more local
timescales (Fig. 3d).

The keypoint with the most influence on superneuron responses
was the whisker horizontal location, which separates into negative
deflections for the top clusters in the plot (that is, forward whisker
deflections) and positive deflections for the bottom clusters (that is,
backward whisker deflections). Within the set of clusters with negative
whisker deflections, a subset was activated positively by running, and a
subset was activated negatively. Analyzing the patterns of responses on
the Rastermap plotitself, we observe different groups of neurons that
areactivated atthe beginning and end of running, and those groups typ-
ically were inhibited by running in the model but excited by whisking.

These neurons cannot easily be identified and visualized using the
correlations to behavioral variables alone (Extended Data Fig. 10).

Rastermap on other biological neural networks

We have so far illustrated Rastermap on large-scale calcium imaging
data from mouse cortex. In this section, we show that Rastermap can
be applied more broadly to recordings from other organisms, with
fewer recorded neurons and even on bulk neural activity, such as from
wide-field one-photon imaging. Finally, we show an application of
Rastermap to artifical neural networks that are used to control agents
that play Atari games.

When fewer neurons arerecorded (<200), Rastermap can skip the
k-means clustering step and directly order the neurons according to
their asymmetric cross-correlogram peaks. This also allows us to skip
the upsampling step, thereby simplifying the algorithm substantially.
We applied this simplified version of Rastermap to electrical popula-
tionrecordings fromrat hippocampus during running through alinear
track (Fig. 4a)**. Rastermap found two main groups of neurons encod-
ing forward and backward runs through the track. For each group, a
subset of neurons encoded the stationary periods at the end of each
run. Finally, another group of neurons had dynamics that were driven
only by running and not selective to corridor position. This group
turned out to be composed entirely of fast-spiking interneurons, which
had relatively homogeneous activity.

Another use case for Rastermap is in multi-area or whole-brain
recordings, such as from larval zebrafish using calcium imaging®. In
this case, different groups of neurons may be identified that corre-
spond to combinations of brain areas that performa certain function
together. We used recordings where different visual stimuli were pre-
sented (Fig. 4b)*: phototactic stimuli that elicited movement toward
bright areas and drifting gratings that elicited optomotor responses
toward the direction of the stimulus, primarily when the stimulus
moved left and right. There were also periods in the recording with
no visual stimulation, in which the fish rarely swam. Sorting with
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of average reaction time and reward in the Rastermap sorting across sessions
(error bars ares.e.m.; n = 78 sortings for left/right trialsin 39 sessions). x axis
represent trial index in Rastermap ordering, divided by total number of trials.

e, Behavioral variablesillustrated using the trial order obtained by Rastermap on

the neural activity in an example session (top) and quantified across

all sessions (bottom), inarbitrary units. Error bars ares.e.m. (n=78).

f, Trial number in session versus trial index in Rastermap ordering (top) and for
atime-rolled shuffle of the ordering (bottom). The Rastermap order was flipped
ifthe first 10 trials were on average later than the last 10 trials, and the same
operation was applied to the shuffle. Error bars are s.e.m. (n = 78). g, Fraction of
neurons with differential responses on trials early versus late in the session. Error
barsrepresents.e.m. (n =50, 54,58,56,40,34 and 12 per brain region). norm.,
normalized (normalized by total number of trials); ctx, cortex.

Rastermap, we found that many activity clusters correlated strongly
with swimmingina condition-dependent fashion. Groups of neurons
active during visually evoked swimming typically did not activate
during spontaneous activity. However, the groups of neurons active
during spontaneous activity were also often active during the visual
stimulation conditions, although this activity was not aligned to the
sensory stimulation events'>*®. This resembles results that we previ-
ously found inrodent visual cortex'®. These clusters were of two main
kinds: (1) spread out throughout the fish brain and (2) concentrated
in the anterior, forebrain areas. Another aspect of note was neuron
clusters that were active for directional swimming regardless of
condition (phototactic or drifting), whereas other clusters were
only tuned to swim direction for specific conditions. These clusters
generally aligned to sensory (frontal) and motor (posterior) areas
in the fish brain, but substantial regions of overlap existed as well.
Similarly, brain lateralization was apparent for most motor-related
clusters, but some neuron groups from the other hemisphere were
also sometimes included.

Rastermap canalso be used onbulk signal recordings, such as from
wide-field, one-photon calcium imaging in mice"’. With this method,
signals canbe recorded from across the entire rodent cortex but not at
single-cell resolution. Instead, each pixel may correspond to the aver-
aged population activity at that location. We used wide-field record-
ings collected while the mouse performed adecision-making task and
during which several behavioral variables were monitored (Fig. 4c)*.
Because different cortical areas can engage for different behaviors,
Rastermap can group together brainareas according to the similarity
oftheir dynamics. Asexpected, the grouping had well-defined spatial
relations (Fig. 4c, i). To start, the embedding was symmetric across
hemispheres, with the left and right brain areas embedded at similar
locations. Second, the most anterior pixels corresponded to the olfac-
tory bulb and can be seen to have substantially different patterns of
activity, which may be linked to sniffing bouts. The more posterior
pixels also had different patterns of activity (corresponding to pink
andred hues in the plot), and these may have been grouped together
by visual responsiveness. To test this hypothesis, we predicted the
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pixel activities from task and behavior variables and found that these
variables alone can explain activity across the entire Rastermap, includ-
ingthe anterior pixelsin olfactory areas (Fig. 4c, ii). We compared this
prediction to the prediction using behavior variables alone, which
does not include information about stimuli (Fig. 4c, iii). The main
difference between these two predictions was during visual stimulus
trials, specifically in the visual cortex (Fig. 4c, iv).

Trial-based analyses with Rastermap

So far, we have illustrated Rastermap on continuous-time data.
However, many experiments have a trial-based structure that can
be taken advantage of. In this section, we illustrate Rastermap on
trial-based datafrom two electrophysiology datasets: one from mon-
keys performing a timingtask and one from mice performing a discrimi-
nation task. In the timing task, monkeys had to estimate the duration
of aninterval spanned by two cues. There were short and long prior
blocks, inwhich the intervals were drawn from a distribution with either
shortorlong durations, respectively (Fig. 5a)*’. We applied Rastermap
on a dataset from this study of 54 simultaneously recorded neurons
from the dorsomedial frontal cortex (DMFC), skipping the clustering
step. Rastermap ordered neurons primarily based on their latency and
response durations relative to the visual cues (Fig. 5b). Asinref. 49, we
found neurons with differential activity depending on the block type
(Fig. 5c), especially in the subset of neurons with sustained responses
to the first cue.

Another option for trial-based datais to use Rastermap for sorting
trials according to their similarity. We illustrate this on data from an
experiment in which mice performed a two-alternative task, during
which neural activity was recorded from up to 500-1,000 neurons at
the same time from multiple brain regions® (Fig. 6a). We sorted trials
with the same motor action (that is, all right turns) using Rastermap
and visualized single neurons or principal components (PCs) after

sorting (Fig. 6b,c). The neural activity patterns aligned to the stimulus
suggested that reaction time might be a substantial factor in the
ordering, which we found to be the case, with longer reaction time
trials placed both at the start and end of the Rastermap sorting
(Fig. 6d). These types of trials also resulted in overall smaller rewards.
Next, we wanted to investigate what distinguishes the two types of
long-reaction-time, low-success-rate trials that Rastermap placed at
the start or end of the Rastermap. We did not find a clear difference in
behavioral variables, such as licking, wheel movement, face motion or
pupil speed (Fig. 6e). However, we did find that the start and ending
blocks of Rastermap trials also generally corresponded to the start
and ending of the session (Fig. 6f). With thisinsight, we hypothesized
that the neurons recorded had differential activity between the start
and end of the session, such as from decreasing motivation and satiety.
Wefoundthat,indeed, alarge proportion of neuronsinall brain areas
were modulated in this way, with generally more neurons late-active
inthe session rather than early-active (Fig. 6g).

These initial results obtained with Rastermap provide a possible
bridge between the brain-wide satiety signals reported in ref. 51 and
the brain-wide sensory, decision and motor signals reportedinref. 50,
bothstudies having been conducted with Neuropixels electrodes. Such
exploratory analyses can provide a starting point for more in-depth
exploration of the differences between early and late trials.

Rastermap applied to artificial neural networks

Finally, we also ran Rastermap on artificial neural networks that have
been trained with reinforcement learning techniques to play Atari
games (Fig. 7). We used pre-trained networks from Deep Q-Network
(DQN) agents*™ and clustered all neurons from across all layers of the
DQN, illustrating four example games: Pong, Space Invaders, Enduro
and Seaquest. Inall cases, an episode consisted of asingle playthrough
oftherespective game. Ingames with more repetitive action sequences,
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suchasPong, Rastermap found the repeated neural sequences that cor-
responded to eachrepetitionand separated the forward portion of the
sequence (ball moving right) from the backward portion (ballmoving
left). The details of each volley were encoded in the finer details of the
neural activity. For games with less structured states, such as Space
Invaders and Seaquest, Rastermap still found sequences of neurons that
tend toactivate together, but these sequences were more disorganized.
Inthe case of the Enduro game, neural activation patterns were domi-
nated by the graphical context of the game, which changed from day
tonight and between weather conditions, such as ‘fog’ and ‘ice’. Within
each graphical state, mostly non-overlapping groups of neurons were
active. A small set of neurons was active in more than one context, and
these were generally found in the higher, more ‘abstract’ layers of the
deep neural network. In allgames, the neurons from the value network
were placed all together in the Rastermap and appeared to have very
homogeneous activity that directly corresponded to the value of a
state. This indicates that perhaps the value network did not get suf-
ficient gradientinformation to differentiate the activity of its neurons.

Space-filling curves for higher intrinsic dimensionality
Rastermap is primarily a visualization algorithm, but visualizations
can sometimes be deceptive, especially when the source data are

high dimensional. In this section, we illustrate some use cases where
Rastermap is ineffective at finding structure, and we try to provide an
intuitive understanding of such cases. For example, we investigated
Rastermap applied to neural responses in primary visual cortex
to alarge set of natural images (Fig. 8a). Natural images drive very
high-dimensional response patterns across cortex, as we previously
described", and, thus, such data cannot be well described along
any one-dimensional embedding dimension. Indeed, we observed
that the Rastermap sorting had a high-dimensional, un-clustered
aspect, except for some modulation induced by running (Fig. 8b).
The running-modulated clusters corresponded primarily to neu-
rons in higher-order visual areas that have less sensory tuning
(Fig. 8a,b). By computing the linear receptive fields of superneu-
rons from the Rastermap, we observed that nearby superneurons
do, infact, have similar receptive fields despite their apparently
unorganized responses in the Rastermap (Fig. 8c). However, these
receptive fields cannot be described by a single one-dimensional
parameter, requiring several parameters to be well described: their
retinotopic coordinates, their orientation, their spatial frequency,
etc. Toarrange filters with these properties across a one-dimensional
continuum, Rastermap has tofill up this high-dimensional space with
aso-called ‘space-filling curve’. Similar conclusions can be reached
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when applying Rastermap to the visual responses of an artificial
deep neural network (Fig. 8d).

Tobetterillustrate when ‘space-filling curve’ behavior occurs, we
constructed a simulation where the underlying intrinsic dimension
was 2, and neurons were described with place-field-like responses.
Sorted with one-dimensional Rastermap or t-SNE, the neurons were
arranged across a curve that meandered in a fractal way to fill up the
two-dimensional space (Fig. 8e). We also constructed a version of
Rastermap where the sorting was further broken up iteratively into
sub-segments that were sorted with Rastermap again. After three
consecutive splits, the simulated population was splitinto 800 rather
thanjust100 clusters, and this, inturn, resulted in a higher resolution
oftheunderlying space-filling curve. This higher resolutionresulted in
better metrics of percent neighbors preserved at small neighborhood
sizes, without affecting the number of preserved neighbors at the larger
neighborhood sizes (Fig. 8f). Thus, although this iterative version
of Rastermap can improve on some metrics, it is unlikely to provide
fundamentally better visualizations, because the fractal nature of the
space-filling curve makes the visualizations non-intuitive (Fig. 8g).
Althoughatwo-dimensionalembedding algorithm could be employed,
the results of such an algorithm cannot then be used to make raster
maps of neural activity.

Ourrecommendationinthese casesisto recognize that Rastermap
isfundamentally adimensionality reduction method: clustered activity
canbefoundandillustrated in the Rastermap, but higher-dimensional
structure may be discarded and missed when it exists. We recommend
using other approaches to find and illustrate such high-dimensional
structure, such as constrained matrix decomposition techniques
(NNMF, seqNMF, ICA, TCA, dPCA, sparse coding, GPFA and DataHigh) or
nonlinear dimensionality reduction with multiple dimensions (t-SNE,
UMAP, LFADS, pi-VAE and CEBRA)>**~°,

Discussion

Here we described Rastermap, a visualization method that can be used
tofind new, interesting patternsin large-scale neural data. Rastermap
makes atwo-dimensional plot of neural activity versus time, allowing
the user to observe complex spatiotemporal dynamics in relation to
experimental events. At the core of the method lies asorting algorithm
thatreordersthe (possibly) tens of thousands of neurons so that nearby
neurons in the sorting have similar activity. The sorting algorithm of
Rastermap canalsobe seen as a one-dimensional embedding method
and has several model features that allow it to accurately embed neu-
ral data: (1) modeling the long-tailed decay of pairwise correlations
between neurons; (2) modeling sequential activity patterns that are
oftenseenin neural data; and (3) using a specialized optimization algo-
rithm that can avoid local minima. These features allow Rastermap to
perform better as an embedding algorithm compared to other meth-
ods, such as t-SNE and UMAP, specifically in the case of one-dimensional
embeddings for neural-like datasets.

Using Rastermap, we identified, for example, different groups of
neurons in mouse sensorimotor areas corresponding to whisking at
the onset of running and to whisking at the offset of running. We also
found diverse patterns of activity associated with corridor positions
and reward times in mouse visual areas during a virtual reality task.
Rastermap applied to rat hippocampal activity revealed the structure
of neural firing along a linear track in putative inhibitory and excita-
tory neurons. In zebrafish brain-wide activity, we observed lateralized
and non-lateralized activity patterns associated with different motor
and stimulus events. Rastermap sorting of wide-field neural imaging
provided an unsupervised parcellation of the entire cortex, in part
according to the predictability of different regions from different
task variables. In monkey DMFC, we visualized neurons with specific
tuning for the task block structure in a time-interval reproduction
task. Using Rastermap to sort trials, we found two different types
of long-reaction-time trials in a sensory decision-making task, and

these putatively corresponded to different motivation states at the
beginning and end of a session. We found that Rastermap could also be
used to discover structure in artificial neural networks, such as those
trained to play Atari games. Finally, using an extension of Rastermap,
we explored datasets with higher intrinsic dimensionality, illustrat-
ing the limitations of low-dimensional embedding algorithms when
applied to such datasets.

We hope that Rastermap will be applied to diverse dataset types,
and we include a graphical user interface so that users can easily run
the algorithm and explore their data. We consider Rastermap to be a
good firststepin examining neural population activity, suchaswhena
new dataset s first obtained. Rastermap can help users find patternsin
data, but, to fully demonstrate these patterns, appropriate quantitative
analyses must be set up afterwards.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541593-024-01783-4.
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Methods

All experimental procedures were conducted according to the Insti-
tutional Animal Care and Use Committee (IACUC) at Howard Hughes
Medical Institute (HHMI) Janelia Research Campus.

Data acquisition

Animals. All experimental procedures were conducted according to
the IACUC; ethics approval was received from the IACUC board at HHMI
Janelia Research Campus. We performed three recordings in three
mice bred to express GCaMP6s in excitatory neurons: TetO-GCaMP6s
x Emx1-IRES-Cre mice (available as RRID: IMSR_JAX:024742 and RRID:
IMSR JAX:005628). These mice were male and female and ranged from
2 months to12 months of age. Mice were housed in reverse light cycle
and were pair-housed with their siblings before and after surgery.
Holding rooms were set to a temperature of 70 °F + 2 °F and relative
humidity of 50% + 20%.

Surgical procedures. Surgeries were performed in adult mice
(P35-P125) following procedures outlined in ref. 32. In brief, mice
were anesthetized with isoflurane while a craniotomy was performed.
Marcaine (no more than 8 mg kg™) was injected subcutaneously
beneath the incision area, and warmed fluids + 5% dextrose and
buprenorphine 0.1 mg kg™ (systemic analgesic) were administered
subcutaneously along with dexamethasone 2 mg kg viaintramuscular
route. For the visual cortical windows, measurements were taken to
determine bregma-lambda distance and location of a4-mm circular
window over V1 cortex, as far lateral and caudal as possible without
compromising the stability of theimplant. A4 + 5-mm double window
was placedinto the craniotomy so that the 4-mmwindow replaced the
previously removed bone piece and the S-mmwindow lay over the edge
ofthebone. The sensorimotor window was also adouble window, and
it was placed as medial and frontal as possible. The outer window was
7 mm x 4.5 mm, and the inner window was approximately 1 mm smaller
inalldimensions. After surgery, ketoprofen 5 mg kg™ was administered
subcutaneously, and the animal was allowed to recover on heat. The
mice were monitored for pain or distress, and ketoprofen 5 mg kg™ was
administered for 2 d after surgery.

Imaging acquisition. We used a custom-built two-photon mesoscope™®
torecord neural activity and Scanlmage®* for data acquisition. We used
acustomonline z-correction module (now in Scanlmage) to correct for
zand x-ydrift online during the recording. As described in ref. 32, for
thevisual arearecordings, we used an upgrade of the mesoscope that
allowed us to approximately double the number of recorded neurons
using temporal multiplexing®®.

The mice were free to run on an air-floating ball. Mice were accli-
matized torunning on the ball for several sessions before imaging, and
one mouse was trained on a virtual reality task for 2 weeks before the
recording. The field of view was selected such that large numbers of
neurons could be observed, with clear calcium transients.

Visual stimuli. We showed natural images or virtual reality corridors
to the mice on three perpendicular LED tablet screens surrounding
the mouse (covering 270° of the visual field of view of the mouse). To
present the stimuli, we used PsychToolbox-3in MATLAB®*. The flashed
visual stimuli were presented for 313 ms, alternating withagray screen
inter-stimulus interval lasting 313 ms. Occasionally, the screen was
left blank (gray screen) for afew seconds. The virtual reality corridors
were each 4 mlong, and the mouse moved forward in the virtual real-
ity by running.

Videography. The camera setup was similar to the setup in ref. 16. A
Thorlabs M850L3 (850 nm) infrared LED was pointed at the face of the
mouseto enableinfrared video acquisitionin darkness. The videos were
acquired at 50 Hz using FLIR cameras withazoom lens and aninfrared

filter (850 nm, 50-nm cutoff). The wavelength of 850 nm was chosento
avoid the 970-nmwavelength of the two-photon laser while remaining
outside the visual detection range of the mice®¢.

Processing of calcium imaging data. Calcium imaging data were
processed using the Suite2p toolbox?, available at https://github.
com/MouseLand/suite2p. Suite2p performs motion correction, region
of interest (ROI) detection, cell classification, neuropil correction
and spike deconvolution as described previously'. For non-negative
deconvolution, we used a timescale of decay 0f 1.25 s°5°,

Rastermap algorithm and implementation

TheRastermap algorithmisimplemented in Python 3 using the NumPy,
SciPy, numba and Scikit-learn packages, all of which are easy to install
on Windows, Linux and Mac operating systems®-”°”72, The graphical
user interface is implemented using PyQt5 and PyQtGraph™’. To
perform analyses and create the figuresin this paper, we used Jupyter
notebooks and Matplotlib™’.

Thealgorithminvolves five main steps: dimensionality reduction,
clustering, computing the asymmetric similarity matrix, sorting this
matrix and upsampling the cluster centers. See Fig. 1a-d for a graphi-
calrepresentation of these steps. The inputto the algorithmis aneural
activity matrix of size neurons by timepoints. For electrophysiological
datasets, we converted spike times into timepoints by binning in time.

Data normalization and dimensionality reduction. First, we normal-
ize the neural activity to avoid fitting single-neuron statistics with the
embedding algorithm. We z-score the activity of each neuron so that
the mean activity of each neuronis zero and its standard deviationis 1.
z-scoring can make low-firing neurons appear more active, but we have
not seen issues with this in our applications, in which we use neurons
withaminimum firingrate of 0.1-0.25 Hz. Next, we project out the mean
across neurons ateach timepoint; this is optional butisrecommended
(parametermean_time inthe algorithm). Note that, for some applica-
tions, this step may need to be skipped, for example ifthe grand average
populationactivity is of interest. An optional step, which depends on the
noise level of the data, is binning in time, parameter t ime _bin. These
binned data are then used to compute the singular vectors.

Next, to make the data size more manageable and to speed up
the clustering, we compute the singular value decomposition of this
normalized activity matrix, where the left singular vectors will be of
length number of neurons. We generally keep the top 100 to 400 left
singular vectors; this can be specified by the user with the parameter
n_PCsinthe algorithm. We scale each of these singular vectors by its
singular value, to preserve distances in the original space, and compute
clusters from these scaled singular vectors. Thus, the matrix that we
clusteris of size number of neuronsbyn_pcs, whichisfaster to cluster
than a matrix of size number of neurons by timepoints.

Clustering. We clustered the neural activity PCs, defined as above, to
create groups of co-active neurons. We clustered the neurons using
scaled k-means clustering®. Compared to regular k-means, scaled
k-means fits an additional variable A; for each neuron i such that

X; = Aillg, + noise

where x; is the activity vector of neuron i; g;is the cluster assigned to
neuron i; and ;is the activity of cluster j. Like regular k-means, this
modelis optimized by iteratively assigning each neuron to the cluster
thatbest explainsits activity and then re-estimating cluster means. The
number of clusters Ncomputed is called then clusters parameter
inthe algorithm.

Asymmetric similarity matrix. For each cluster out of N clusters, we
compute the mean cluster activity by averaging all of the neurons
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in a cluster, and then we z-score each cluster activity trace. We then
compute the cross-correlation between all cluster activity traces c;:

(ci*c ]

=7 Z ci(t—1)c (0.

Thisiscomputed for aspecified number of positive 7 time lags 7.y,
calledthetime lag windowparameterinthealgorithm. Then, we use
the maximum value of the cross-correlation for each cluster pair over
these positive rvalues for our asymmetric similarity matrix S:

max (c, *C;)[T]

Si’j = 7€(0,

Matrix Sis of size Nby N, where Nis the number of clusters.

Sorting the similarity matrix. We optimize the sorting of the asym-
metric similarity matrix of the cluster nodes to maximize a matching
score. This score is defined as the dot product between the sorted
version of the asymmetric similarity matrix $°°**“ and a pre-specified
matching matrix M, which is the samessize as S:

Score = 3 > M; ;S
i ’

This matching matrix has two parts: a global similarity and a local
‘traveling salesman’similarity. The global similarity matrix is defined as

Mgloba] Iog(\x,

X j| +0.001)
wherex; = i/N,and the diagonal M%°*'is set to zero. This type of matrix
canbeshowntohavean approxnmately power law decay of eigenvalues
withexponent1(ref.17). We define M®°" to have a heavy-tailed power
law decay to approximate the high-dimensional structure of neural
activity observed in various contexts” ™,

The local similarity matrix s close to1on the first off-diagonal and
very small elsewhere:

Ml = exp(=(x; — x ;) /(20%)

where 0=1/(2N), and the diagonal Mi°<! is set to zero. We define M
to have large values near the dlagonal to force clusters with high cor-
relations to be put next to each other, preservinglocal correlations.

We then set the lower diagonal of each matrix to zero to force all
correlations to be put above the diagonal, which enforces forward
sequences of activity. Each of these matricesis then normalized by its
mean across all entries. Then, the final matching matrix is a weighted
sum of the two matrices:

M=Q1- w)Mgloba] + whlocal

where the weighting w is called the 1ocality parameter in the algo-
rithm.wcanvaryfromOtol.

We initialize the sorting by the first singular vector weights for
eachcluster node. Then, we compute the changeinscore for each clus-
ter moved to each positionin the matrix (n x (n - 1) tested moves). We
first test all movements of groups of a single node, and then we move
the node that increases the score the most. If none of the moves will
increase the score, then we test all moves of two consecutive nodes,
and, similarly, if none of those moves, we test all groups and moves
of three nodes and so on. We repeat each step of searching for moves
of groups of nodes that increase the score for 400 iterations or until
no move of any group of nodes increases the score. During this opti-
mization, we skip every other node if the number of clusters to sort
is 100 (the number of nodes skipped is the floor of the number of
clusters divided by 30). If nodes were skipped, then the optimization

isrun again with all nodes for up to 400 iterations, although it usually
takes fewer than10iterations to converge during this second run, and,
thus, skipping nodes reduces runtime. This optimization canbe made
highly parallel: we can test all moves of groups of nodes of a certain
length simultaneously and then choose the best move. Therefore, we
accelerated this step and other steps in the optimization using the
numballibrary® in Python, which can be easily installed on any standard
desktop or laptop computer.

This optimization takes less than 10 s for 100 clusters, approxi-
mately 20-30 s for 150 clusters and 1-2 min for 200 clusters. Because it
exponentially gets slower for larger numbers of clusters, we find more
positions for neurons by upsampling rather than using more clusters.

Upsampling and superneuron computation. We upsampled
in-between cluster centersin PCA space using weighted, locally linear
regression, to go from N gers t0 10 X N qers NOdes. The regression
approximated linearly the function fromdiscrete clusterindex to PCA
features, insmalllocal neighborhoods around each clusterindex. The
sizes of these neighborhoods were controlled by weighting the regres-
sorsaccording to theirindex separation in the Rastermap sorting. The
weightings were Gaussian as a function of Euclidean distance with
standard deviation o = 1/(v2). Cluster centers beyond the 50 nearest
neighbors of an upsampled point were not used. We performed this
linear approximation at each upsampled position, at a resolution of
10x the original resolution of the data. The upsampled features were
then correlated with each neuron activity, and neurons were assigned
to the position of their best-matching upsampled node.

Clustering and splitting steps. Toincrease the number of clusters, we
also explored astrategy inspired by space-filling curves”. Starting with
100 sorted clusters, we divide the sorting into quartiles of 25 clusters
each and recluster the neurons in each quartile into 50 clusters. We
thensorteach ofthese groups of 50 clusters with the iterative optimi-
zation, including the asymmetric similarity matrix surrounding each
group in the score to avoid discontinuities in the final sorted matrix
across groups of clusters. The splitting and reclustering can be per-
formed as many times as preferred; the parameter in the algorithm is
n_splits.Fortheanalysesin Fig. 8, we split three times, resulting in
800 total clusters.

Simulations
To compare the performance of different embedding algorithms, we
created simulations of large-scale data with noise (Figs.1and 8).

Simulation with different modules. We created a simulation with five
different types of one-dimensional modules: two sequence modules,
one module with tuning curves, one module with sustained stimulus
responses and one module with power law eigenvalues (Fig. 1e). The
first four modules had 1,000 neurons each, and the last module had
2,000 neurons.

Eachneuroninasequence module was assigned toarandom posi-
tion along the sequence at which point it activated. The sequencesin
the sequence modules repeated many times throughout the simula-
tion, with each repetition having a random length between 350 and
700 timepoints and the time between repetitions having arandom
length between 100 and 200 timepoints. A variable velocity for each
sequence repetition was generated by adding to a constant velocity
random Gaussian noise filtered by a Gaussian with standard deviation
30 timepoints. These sequences could break at arandom place for a
short period with a probability of 50% per repetition, simulating the
breaks in sequences that we observed when mice stopped moving
through virtual corridors.

The tuning curve module consisted of neurons with one-
dimensional Gaussian tuning curves at1,500 possible positions along
this axis. We presented, in a random order, 15 stimuli equally spaced
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along this one-dimensional axis. Intotal, there were 500 stimulus pres-
entations spaced 100 timepoints apart. The stimulus responses from
the neurons decayed exponentially from the onset with atimescale of
25 timepoints.

The sustained module consisted of neurons with varying latencies
and response durations to a single stimulus generated using a differ-
ence of exponentials filter with 100 timescales ranging from (25, 5) to
(304, 61). Each neuron in the modules was assigned randomly to one
ofthese 100 timescales. The inter-stimulus interval was drawn froman
exponential with adecay timescale of 750 timepoints, with aminimum
value of 2,000 timepoints used.

The power law module consisted of aneural population with eigen-
values e, = 1/k*>. The right singular vectors of the neural population V,
with length time, consisted of a sparse Boolean matrix filtered by an
exponential filter with a timescale of 25 timepoints. The left singular
vectors Uwere composed of cosine functions withincreasing frequency
as a function of component number k: cos(kx), where x is a random
number for each neuron between 0 and 1. Each neuron in the entire
simulationis assignedarandomxvalue. U, Sand Vwere then multiplied
and clipped atzero to create a positive neural activity matrix. We then
added this activity to every neuron in the simulation with a weight of
0.75; this reproduced the property in the data that most neurons are
driven during spontaneous activity periods, and they continue to be
driven by spontaneousactivity patterns during stimulus presentations.
In total, 2,000 neurons out of 6,000 were driven solely by the power
law module.

Theactivity matrices created ineach modulerepresent thefiring
rate of each neuron at each timepoint. We scaled each firing rate trace
by arandom number drawn from an exponential to create neurons with
different firing rates. We then used the Poisson distribution to gener-
ate spikes fromthese firing rates. We also added independent Poisson
noise to all the neurons with mean 0.03. We sorted the neural activity
with Rastermap using n_clusters =100, n_PCs =200, locality = 0.8 and
time_lag_window =10 in Fig. 1. We changed the random seed, which
controlled the initialization for the scaled k-means clustering, using
20 different values in Extended Data Fig. 6. We varied the number of
clusters, the locality parameter and the time_lag_ window parameterin
Extended DataFig. 7. When using the Leiden algorithm for clustering,
we set the number of neighbors to 100 and the resolution to 3.0, which
produced approximately 100 clusters (Extended Data Fig. 7a)*>’%.

Simulation with power law module only. We created a power law
module asabove, consisting of 6,000 neurons, with eigenvalues e, = 1/k.
The activity matrices created in each module represent the firing rate
of each neuron at each timepoint. We scaled each firing rate trace
by arandom number drawn from an exponential to create neurons
with different firing rates. We then used the Poisson distribution to
generate spikes from these firing rates. We sorted the neural activity
with Rastermap using n_clusters =100, n_PCs =200, locality = 0 and
time_lag_ window = 0.

Simulation with intrinsic dimensionality of 2. We simulated neural
activity with anintrinsic dimensionality of 2by randomly choosing an
xandyvalue for eachneuroninthe range of 0 to1(Fig. 8). We simulated
30,000 neurons in total using basis functions, which depended on x
and y: Uy 4 (x,y) = cos(mk,x) = cos(mk,y) , where k, and k, compose a
two-dimensional grid from 1to 30, for a total of 900 basis functions,
which we used as the left singular vectors for construction of the simu-
lation. The singular values were definedas s, = (K2 + k§)70'5. Theright
singular vectors /' were generated as random Gaussian noise at each
of the 20,000 timepoints. We multiplied U, S and V and then added
random Gaussian noise scaled by 5 x 10 at each timepoint. We sorted
the neural activity with Rastermap using n_clusters =100, n_PCs =400,
locality = 0, time_lag_ window = 0 and n_splits = O or n_splits = 3 (result-
ing in 800 clusters due to splitting). We binned the sorted neural

activity into superneurons of size 60 neurons each (Fig. 8g); the neu-
rons are colored by the sorting in Fig. Se.

Benchmarking embedding algorithms

Each module in the one-dimensional simulation has a ground truth
sorting defined by its one-dimensional axis. We compared the embed-
ding order found by a given algorithm to this ground truth order
using two metrics: the percent of correctly ordered triplets and the
percent contamination of neuron groups from the same module. To
compute the triplet score, we drew many groups of three random
neurons from the same module, and, if these three neurons were in
the same order in the embedding as in the ground truth, then it was
considered a correct triplet. For the percent contamination, we drew
many groups of two random neurons from the same module and
quantified the percentage of neurons between these two neurons,
which were from a different module, and averaged the percentage
over all groups. The results are shown in Fig. 1i,j. For the simulation
with only one module, the power law module, we did not need to
use these more complicated metrics and, instead, simply correlated
the algorithm sorting with the ground truth sorting and took the
absolute value.

Another way to benchmark embedding algorithms is to quan-
tify how well the local neighborhood of a data point in the original
space is preserved in the embedding space?. This is done by com-
puting the percentage of k-nearest neighbors in the original space
are preserved as k-nearest neighbors in the embedding space. In
our case, for the original space, we can use the ground truth posi-
tion of the neuron in the simulation and compute distances between
these positions rather than using noisy estimates of distances
from the data as is required when the ground truth is unknown. We
computed the percentage of neighbors preserved for k from 1 to
500 on a random subset of 2,000 neurons from the full simulation
(to speed up the neighbor computation); the results are shown in
Extended Data Fig. 5.

Wealso defined localand global preservationscores to benchmark
the asymmetric similarity matrices from the data (Extended Data
Fig.8).Thelocalscoreis defined as the fraction of first upper diagonal
entriesinthe sorted asymmetric similarity matrix, which were the larg-
est possible valuesin the matrix (similar to the neighbor preservation
score). The global score is defined using the cost function from the
matching matrix: the dot product between the upper triangular of
the sorted asymmetric similarity matrix and the upper triangular of
the matching matrix, normalized by the mean of the upper triangular
of the matching matrix.

Running other embedding algorithms. We compared Rastermap
to the most commonly used embedding algorithms: t-SNE*, UMAP?°,
ISOMAP”’, Laplacian Eigenmaps®°, hierarchical clustering®-*? and
PCA (Fig. 1h-j and Extended Data Fig. 5a). We ran the openTSNE
implementation of t-SNE due to its efficiency and flexibility®>. We
ran t-SNE and UMAP with the suggested initialization from ref. 26:
the first PC scaled by a small number (we chose 0.0001). We used
the cosine similarity metric for t-SNE, UMAP and ISOMAP, as this
improved performance. We ran the ‘linkage’ and ‘fcluster’ methods
in SciPy to perform hierarchical clustering, with the correlation simi-
larity metric, the ‘single’ method and ¢ = 0.01 as this improved per-
formance”.. Otherwise, the algorithms were run with their default
parameters.

The performance of t-SNE and UMAP can depend on their param-
eters that define their local neighborhoods, perplexity and n_neigh-
bors. Therefore, we also ran t-SNE and UMAP with several different
values of these parameters to determine whether they influenced the
embedding quality (Extended Data Fig. 5b,c). For Extended DataFig. 6,
werant-SNE with 20 different random seeds, keeping the initialization
fixed on each runto the first PC scaled by 0.0001.
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Data analysis

Neural activity from a virtual reality task. We analyzed neural activ-
ity collected from mouse visual cortical areas using two-photon cal-
ciumimaging at a rate of 3.2 Hz while the mouse was free to run on an
air-floating ball in a virtual reality task (Fig. 2a). The task contained
twovirtual corridors, ‘leaves’ and ‘circles’, and the ‘leaves’ corridor was
rewarded at a random position in the corridor after a sound cue (the
sound cue was also played in the ‘circles’ corridor but not rewarded)
(Fig. 2b). We sorted the neural activity with Rastermap using n_clus-
ters =100, n_PCs =200, locality = 0.75 and time_lag_window =10, and
we binned the sorted neural activity into superneurons of size 100
neurons each (Fig.2d); the neurons are colored by the sorting in Fig. 2a,
and the asymmetric similarity matrix for the clusters is shownin Fig. 2c.
The superneuron tuning curves were computed for 100 positions along
each corridor and in the gray space between corridors.

Spontaneous activity in sensorimotor areas. We analyzed neu-
ral activity collected from a large part of mouse dorsal cortex using
two-photon calcium imaging at a rate of 3.2 Hz, centered on sensori-
motor areas, while the mouse was free to run on an air-floating ball in
total darkness (Fig. 3a). We sorted the neural activity with Rastermap
using n_clusters =100, n_PCs =128, locality = 0.0 and time_lag_win-
dow =5, and we binned the sorted neural activity into superneurons
of size 50 neurons each (Fig. 3b); the neurons are colored by the sort-
inginFig.3a.

We used the keypoint tracking network from ref. 41 to track key-
points on the mouse face from the video taken during the recording
(Fig. 3¢). From these keypoints, we computed five interpretable vari-
ables: the eye area, the whisker pad position and the nose position. The
eye areawas computed by taking the difference of the top and bottom
eye keypoints and the difference of the left and right eye keypoints and
then multiplying these two values together. The whisker pad position
was computed by averaging the positions of the three tracked whisker
keypoints. Then, the PCs of the x and y positions were computed and
used to rotate the coordinates such that the new x position corre-
sponded to movements along the major axis of whisker movements.
The nose position was computed by averaging the position of the four
tracked nose keypoints.

Next, we used the neural network from ref. 41 to predict 128 neu-
ral activity PCs from these five variables and the running speed. The
behavioral prediction from this nonlinear neural network was visual-
izedinFig.3e. To estimate the superneuronreceptive fields, we used a
simplified linear version of this neural network. The network consisted
ofthesamefirsttwolayers,aninputlinearlayer and aone-dimensional
convolutional layer, and then these layers were followed by a single
output linear layer, which predicted the 128 PCs (Fig. 3d). The receptive
field for asuperneuronwasestimated by optimizing a small behavioral
snippet of length 8 s to maximally activate the superneuron at the
timepoint at the midpoint of the snippet.

Rat hippocampus data. We analyzed afreely available neural activity
recording collected from the CAlregion of rat hippocampus using two
multi-shank silicon probes, during which the rat ran back and forth
along a 1.6-m linear track (Fig. 4a)****. We binned the spiking in time
bins 0f200 ms, and we used the full time period in which the rat was in
the maze and used all 137 recorded neurons. To estimate the location of
theratand the start and stop of the ratin each corridor, we used code
available fromref. 59.

We sorted the neural activity with Rastermap using n_clus-
ters = None, n_PCs = 64, locality = 0.1 and time_lag_window = 0.
When n_clusters is set to None or to O, then the algorithm sorts
the original datapoints—the single neuron traces—rather than first
clustering the data and then sorting. Tuning curves for leftward
runs and rightward runs along the corridor were computed for 30
positions along the track.

Zebrafish whole-brain data. We analyzed a freely available neu-
ral activity recording collected from the whole brain of a paralyzed
zebrafish using light-sheet imaging at a rate of 2.1 Hz (Fig. 4b)**%.
During the imaging session, the zebrafish was presented many differ-
entvisual stimuli, suchas phototactic stimuli (one side of the screenis
dark) and optomotor response stimuli (moving gratings). The fictive
swimming was recorded with electrodes, and the eye positions were
tracked. We removed neurons that had low signal-to-noise ratiousing a
threshold of 0.008 on the fluorescence standard deviation. Toremove
long timescales from the calcium sensor in the data, we baselined the
fluorescence traces and ran non-negative spike deconvolution with a
timescale of 2 s°5°,

We sorted the neural activity with Rastermap using n_clus-
ters =100, n_PCs =200, locality = 0.1and time_lag_window = 5,and we
binned the sorted neural activity into superneurons of size 50 neurons.
We then divided the plot into 18 bins to color neurons across the fish
brain by position (Fig. 4b, right).

Wide-field imaging data. We analyzed a freely available wide-field
cortical imaging recording collected from mice performing a
decision-making task (Fig. 4c)***¢, We discared voxels on the edges of
the recording area as these voxels were noisy in time, but this step is
optional and datadependent. Intotal, 186,590 voxels remained for anal-
ysis, by 93,177 timepoints—the data were collected at a rate of 30 Hz.
Because wide-field imaging recordings are very large (hundreds of
thousands of voxels by hundreds of thousands of timepoints), they are
often summarized by their singular value decomposition. Rastermap
has the option to run on these singular vectors alone rather than the
full dataset. We sorted the voxel singular vectors with Rastermap using
n_clusters =100, n_PCs =200, locality = 0.5and time_lag_window =10,
and we binned the sorted voxels into supervoxels of size 200 voxels.

Next, we predicted the supervoxel activity from behavior vari-
ables or both behavior and task variables. These were pre-computed
inref. 86 in ‘regData.mat’. The behaviors used were handle-grabbing
movements, licking, whisking, nose movements, filtered pupil area,
face movements, body movements and PCs of the raw video of the
mouse and the video motion energy. The task variables used were
reward times, choice, previous choice, water delivery, piezo, visual
stimuliand auditory stimuli. We z-scored each of these variables across
time. We predicted the voxel activity from these variables using linear
regression with aregularization constant of 1 x 10*. The prediction from
behavior-onlyis showninFig. 4c (ii), and the prediction from behavior
and task variables is shown in Fig. 4c (iii). The difference between the
two predictionsis shown in Fig. 4c (iv).

Time-interval reproduction task data. We analyzed neural activity
recorded in DMFC from a monkey performing a time-interval repro-
duction task (Fig. 5a)**¥, This dataset is provided in the Neural Latents
Benchmark®®. We used all 54 neurons and binned the neural activity
in 20-ms bins. The neural activity across all timepoints was sorted
by Rastermap with no clustering, n_PCs =48, time_lag_window =20
and locality = 0.5. The peristimulus time histogram (PSTH) for each
neuron and for each trial type was computed aligned to the set cue
time. The PSTHs of each neuron were z-scored together across all
trial types for visualization (Fig. 5b). The go (action) time was plot-
ted as the average action time across all trials of a given time. The
800-msintervaltrials were subtracted from each other tocompare the
average responses (Fig. 5¢c).

Visual discrimination task data. We analyzed neural activity collected
from 10 different mice across 39 recording sessions, acquired while
they performed a visual discrimination task in which decisions were
reported by turning a wheel (Fig. 6a)°>*°. We used all neurons with an
average firing rate of atleast 0.1 Hz across all trials, resulting in 25,906
neuronsin total across all sessions. Neural activity was binned inbins of
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size10 ms, and trials were defined as from 500 ms before the stimulus
presentation to 2 s after the presentation (using the formatting from
Neuromatch®). From each session, we computed the top 10 PCs of the
neural activity. We split the trials into right-turn and left-turn trials,
excluding trials in which the mouse did not turn the wheel. We sorted
the PCs of each of these trial types, concatentating the PCs in time,
resulting in a matrix of size number of trials by (10 x number of time-
points). The trial axes of these matrix were sorted by Rastermap with no
clustering, n_PCs = 64 and locality = 0.1, and we set time_lag_window =0
and mean_time = False because we are not sorting neurons over time
here. Thisresulted in 78 sortings (two for each session for right-turnand
left-turn trials). An example neuron and PCs with the right-turn trials
sorted areshowninFig. 6b,c, alongwith the behaviors of the mousein
these trials shownin Fig. 6e, top.

Reaction time (Fig. 6d) was defined as the time when the mouse
first moved the wheel. The averages for all behavioral variables are
shown in black, computed using 10 equally spaced bins (Fig. 6d,e).
For Fig. 6f, top, we plotted the Rastermap sorting versus trial number;
Rastermap sortings were flipped if the average trial number in the ses-
sion for the first 10 sorted trials was greater than for the last 10 sorted
trials. Shuffling was performed by circularly permuting each sorting
byarandom number and then flipping asin the top panel.

We computed the rank-sum difference between single-neuron fir-
ingratesonthe first20 and last 20 trials of the recording, for right-turn
and left-turntrials separately. We used the Wilcoxon two-sided rank-sum
test to define ‘late-active’ and ‘early-active’ neurons, using a significance
threshold of P< 0.05. We computed the percentage of ‘late-active’ and
‘early-active’ neuronsineachbrainregion per sessionand trial type, for
allsessionsin which the brain area was present (Fig. 6g).

Visual stimulus responses. We analyzed neural activity collected from
asubset of mouse visual cortical areas using two-photon calciumimag-
ingatarate of 3.2 Hzwhile the mouse was free to run on an air-floating
ball and grayscale natural images were presented (Fig. 8a). A natural
image was shown on every other neural frame. There were 5,000 dif-
ferent images in total, presented three times in a random order. To
compute linear receptive fields, we downsampled the natural images
tosize 24 x 96 and then computed the top 200 PCs.

We sorted the neural activity with Rastermap using n_clus-
ters =100, n_PCs =400, n_splits = 3, locality = 0.0 and time_lag_win-
dow =0 (resultingin 800 clusters due to splitting), and then we binned
the sorted neural activity into superneurons of size 139 neurons to cre-
ate 500 superneuronsintotal (Fig. 8b). We then averaged the responses
of each superneuronover the threerepeats of the 5,000 images. Using
the averaged responses, we computed the linear receptive fields of
each superneuron with linear regression from the image PCs with a
regularization constant of 1 x 10* (Fig. 8c).

Neural network experiments
DQN playing Atari games. We analyzed the activations of neural net-
works trained to play Atari games, from the Stable-Baselines3 RL Zoo
(Fig.7)°**2. These networks were Quantile Regression DQNs (QR-DQNs),
which consisted of three convolutional layers and a linear layer to
process the images from the game (four frames stacked in time) and
afeedforward network to compute the state values®*>. We used four
different ‘NoFrameskip-v4’ agents each trained on a different envi-
ronment: Pong, Space Invaders, Enduro and Seaquest. We ran the
environments 10 times, each time with a different random seed, and
then we concatenated the activations across the 10 episodes. Each
episode lasted for up to 4,000 timepoints or however long until the
agent won or lost in each run (only for the Enduro environment did
this exceed 4,000 timepoints because the Enduro game can never be
won, and the agent never lost).

We sorted the neural network activations across all 10 episodes
with Rastermap using n_clusters =100, n_PCs =200, locality = 0.75

and time_lag_window =10, and we binned the sorted activations into
superneurons of size 50 units. We showed the activations for one
episode along with four example framesin Fig. 7.

AlexNetinresponse to naturalimages. We trained the AlexNet neural
network to perform image recognition on ImageNet images in gray-
scale (rather than the usual RGB)***°. We then presented the network
the same natural images that we showed to the mice and saved the
activationsin all of the layers. For further analysis, we used 2,560 ran-
dom activations from the first four convolutional layers and all 1,280
activations from the fifth convolutional layer.

We sorted the AlexNet activations with Rastermap using n_clus-
ters =100, n_PCs =400, n_splits =3, locality = 0.0 and time_lag_
window = 0 (resulting in 800 clusters due to splitting), and then we
binned the sorted activations into superneurons of size 24 units
(Fig. 8d, right). We colored each of the activations by their positionin
the Rastermap (Fig. 8d, left).

Statistics and reproducibility

No statisticalmethod was used to predetermine sample size. We found
that the performance of the various algorithms was consistent across
the 10 randomly generated simulations, suggesting that 10 random
simulations were sufficient (error bars represent s.e.m.inFig.1) (many
methods papers use only one randomly generated simulation®*°), We
performed rank-sum tests to determine selective neurons in Fig. 6,
which donot require the datatobe normal. No data were excluded from
the analyses. There were no experimental groups so no randomization
was necessary. Data collection and analysis were not performedblinded
to the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used in this study are publicly available. The large-scale cal-
cium imaging data are available at https://doi.org/10.17605/0SF.10/
XN4CM. Previously shared datasets were also used in this study and
are available at https://doi.org/10.6080/K0862DCS5, https://doi.org/
10.25378/janelia.7272617.v4, https://doi.org/10.14224/1.38599, https://
doi.org/10.48324/dandi.000130/0.220113.0407 and https://doi.org/
10.6084/m9.figshare.9598406.v2 (refs. 84-87,89).

Code availability

Rastermap was used to performall analyses reportedin this paper. The
codeand graphical userinterface are available at https://www.github.
com/mouseland/rastermap (ref. 96).Scripts for runningall the analyses
reportedinthis paperare available at https://github.com/MouselLand/
rastermap/tree/main/paper.
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Extended Data Fig. 2| Rastermap graphical user interface (GUI). 1st row: Full selected clusters shownin color. 3rd row: Mean activity in each of the user-
recording, with selected time period shown in blue. 2nd row left: Superneuron selected clusters. 4th row: Behavioral/task variable plotting area showing the
activity by time in selected time period, with user-selected clusters highlighted mouse’s running speed.

indifferent colors. 2nd row right: All neurons shown in gray, and neurons from
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and fit the best 1/n“line to each spectrum using points from 10 to 500 (black).
We note this estimation procedure uses all timepoints, and is not a measure of
stimulus-driven dimensionality scaling like the cvPCA method fromref. 17.
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Extended Data Fig. 4 | Power-law simulation only (global structure). We
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which we call superneurons. b, The correlation matrices for the superneurons
computed from various algorithms. ¢, The sorting of neurons from various
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algorithms plotted against the ground-truth sorting. d, The absolute correlation
of the algorithm sorting with the ground-truth sorting (n=10 simulations, line
represents mean). e-g, Same as Fig. 1h-j, but we did not add noise from the
power-law module to neurons in the other modules in the simulations (error bars
represent s.e.m., n=10 simulations).
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Extended Data Fig. 6 | Reproducibility of sorting. a, We ran Rastermap and t-SNE with 20 different random seeds to sort the simulation from Fig. 1e-h with five
modules. Percent correct triplets and percent contamination are reported. b, 20 sortings of the power-law module only simulation from Rastermap and t-SNE with
different random seeds.
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Extended Data Fig. 7 | Rastermap embedding quality as a function of
parameters. In Fig. 1, we ran Rastermap with 100 clusters (k-means clustering),
locality parameter of 0.8, and time_lag_window of 10. Here we run Rastermap
with varied parameter values. a, Rastermap was run with different numbers of
clusters (black) for each of the ten simulations from Fig. 1 (error bars represent
s.e.m.). We also ran Rastermap using the Leiden algorithm to perform clustering

with aresolution of 3.0 and 100 neighbors, which produced 100 clusters (gray) -
this clustering method performed worse than k-means. Percent correct triplets,
percent contamination and chance level (dashed line) computed as in Fig. 1i,j.

b, Average percent correct triplets and percent contamination computed from
Rastermap sorting from the ten simulations, using different locality and time_
lag_window values.
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Extended Data Fig. 8 | Rastermap sorting as a function of the locality parameter. a, Asymmetric similarity matrix from neural activity from a virtual reality task, for
different values of the locality parameter (0.75 used in Fig. 2d). b, Same as a for spontaneous activity (locality = O used in Fig. 3b).
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Extended Data Fig.10 | Rastermap sorting in comparison to behavioral-based sorting. a, Rastermap sorting of neural activity shown in Fig. 3b. b, Each neuronin
the recording was correlated to the specified behavioral variable, and the neural activity was sorted by the correlation values.
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Laboratory animals TetO-GCaMP6s x Emx1-IRESCre mice (available as RRID:IMSR JAX:024742 and RRID:IMSR JAX:005628). These mice were male and
female, and ranged from 2 to 12 months of age. Mice were housed in reverse light cycle, and were pair-housed with their siblings
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Wild animals The study did not involve wild animals.
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