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Integration across biophysical scales 
identifies molecular and cellular correlates 
of person-to-person variability in human 
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Brain connectivity arises from interactions across biophysical scales, ranging 
from molecular to cellular to anatomical to network level. To date, there has 
been little progress toward integrated analysis across these scales. To bridge 
this gap, from a unique cohort of 98 individuals, we collected antemortem 
neuroimaging and genetic data, as well as postmortem dendritic spine 
morphometric, proteomic and gene expression data from the superior frontal 
and inferior temporal gyri. Through the integration of the molecular and 
dendritic spine morphology data, we identified hundreds of proteins that 
explain interindividual differences in functional connectivity and structural 
covariation. These proteins are enriched for synaptic structures and functions, 
energy metabolism and RNA processing. By integrating data at the genetic, 
molecular, subcellular and tissue levels, we link specific biochemical changes 
at synapses to connectivity between brain regions. These results demonstrate 
the feasibility of integrating data from vastly different biophysical scales to 
provide a more comprehensive understanding of brain connectivity.

A long-standing goal of neuroscience is to understand how molecules 
and cellular structures at the microscale give rise to communication 
between brain regions at the macroscale. However, there is a disconnect 
between molecular biology and neuroimaging that hinders progress 
toward this goal. A paradigm shift would be to collect postmortem 
omics data alongside antemortem neuroimaging data from the same 
set of individuals. In this way, molecular levels can be tied to the func-
tional and structural properties of the brain. Establishing such associa-
tions is imperative for translation from humans to experimental model 
systems that could better recapitulate neurologic health and disease.

Both molecular and neuroimaging studies have independently 
identified correlates of brain function and cognition, but the search 
for the molecular basis of functional connectivity is nascent. Recent 
neuroimaging genetics studies are beginning to address the question 
of which molecules are most related to functional connectivity1–5. 
However, despite thousands of samples, these studies have found 
only a dozen independent genetic loci with modest heritability6,7. 
Most of those genetic variants reside in noncoding regions, making it 
difficult to determine the implicated genes and mechanisms of action. 
Another class of studies tests for spatial correspondence between gene 
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Molecular measurements
We performed multiplex tandem mass tag mass spectrometry (TMT-MS) 
on tissue samples from SFG and ITG of 130 ROSMAP participants to 
generate proteomic data and applied standard preprocessing23–25. To 
identify the major molecular systems present in each brain region, we 
clustered the measured proteins into covarying sets (modules) using a 
purely data-driven approach (Fig. 3a)26. The modules are enriched for 
many brain-relevant structures and functions (Fig. 3b,c)27 that are con-
sistent with related datasets28,29. Comparing SFG and ITG, we observed 
some common molecular systems with high protein overlap between 
their modules (Fig. 3d). In addition to protein abundance, we also col-
lected RNA sequencing (RNA-seq) data from SFG and ITG of the same set 
of ROSMAP participants. We performed standard preprocessing, such 
as TMM normalization and confound regression with voom/limma, 
and clustered the measured genes into modules26. These expression 
modules are also enriched for brain-relevant structures and functions 
(Supplementary Fig. 2), and we again observed common molecular 
systems between SFG and ITG with high gene overlap.

Dendritic spine morphometry
Dendritic spines are actin-rich protrusions along neuronal dendrites 
that form the majority of excitatory synapses in the brain. Spines can 
exhibit remarkable variability in size, shape and density, and synapse 
activity is inseparably linked to spine morphology30. Spines can be 
divided into morphological subclasses based on their three-dimensional 
(3D) structure as thin, mushroom, stubby or filopodia31,32. To measure 
spine density and morphology from SFG and ITG, we impregnated 
postmortem tissue slices with Golgi stain and imaged at ×60 using 
a widefield microscope with a high-numerical-aperture condenser 
(Fig. 4a). We then reconstructed the Z stacks in 3D using Neurolucida 
360 (Fig. 4b,c). We sampled between 8 and 12 pyramidal neurons from 
either cortical layer II or III per individual for analysis and estimated 
average spine density, backbone length, head diameter and volume 
across the reconstructed dendrites (Fig. 4d,e and Supplementary 
Fig. 3). We also estimated these spine attributes for each morphologic 
subclass—thin, mushroom, stubby and filopodia. Next, we associated 
each spine attribute against each measured protein (Supplementary 
Table 1) and applied geneset enrichment analysis (GSEA)33. Spine den-
sity and morphological attributes were enriched for relevant neuron 
structures, such as synapses and the actin cytoskeleton, as well as func-
tions, including synaptic signaling and neurotransmitter release30,34 
(Fig. 4f). Notably, we found the level of enrichment varies across den-
dritic spine subclasses. Comparing the spine density and morphology 
between SFG and ITG (Fig. 4g) revealed differences in overall spine 
density (P = 0.0310), filopodia density (P = 0.0038) and mushroom 
spine head diameter (P = 0.0060).

Protein modules covary with connectivity when 
contextualized with dendritic spine morphology
Fundamental to brain connectivity at the macroscale are molecular sub-
processes related to synaptic communication. Accordingly, we focused 
our analysis on protein modules most enriched for neurons and various 
synaptic communication gene ontology (GO) terms (Supplementary 
Fig. 4 and see SFG pMod6 and ITG pMod8 in Supplementary Table 2). 
We represented the synaptic module of each brain region by the average 
protein abundance of its members. To avoid association introduced 
by spurious correlation, we account for confounding factors including 
age at death, age of scan, sex, years of education, scanner, postmortem 
interval, side of the brain the molecular data were acquired and motion 
(Supplementary Fig. 5) using the extra sum of squares in testing if the 
synaptic modules of SFG and ITG (their main effects and interaction 
in aggregate) are associated with an fMRI estimate of their connectiv-
ity (Fig. 1). This initial test did not detect an association between the 
synaptic modules and SFG–ITG connectivity (P = 0.6839), and this 
observation holds true for other modules (Supplementary Fig. 6) 

expression and brain connectivity to infer the implicated genes8–12. 
These studies typically combine the Allen Human Brain Atlas (AHBA)13, 
which contains gene expression profiles in hundreds of brain regions 
from six individuals, with functional magnetic resonance imaging 
(fMRI) data from an entirely separate cohort. Such data combina-
tions cannot examine the covariation between gene expression and 
functional connectivity in a broader population. Representing such 
covariation is critical for identifying molecules that explain individ-
ual variation in functional connectivity and the associated cognitive 
phenotypes14.

In this study, we gathered data types that span multiple biophysical 
scales from a cohort of 98 individuals. Data types included resting-state 
fMRI, structural MRI, genetics, dendritic spine morphometry, proteom-
ics and gene expression measurements from postmortem tissues of the 
superior frontal gyrus (SFG) and inferior temporal gyrus (ITG). Based 
on the stability of functional connectivity patterns within individuals15, 
we hypothesized that it is possible to combine postmortem molecular 
and subcellular data with antemortem neuroimaging data from the 
same individuals to prioritize molecular mechanisms underlying brain 
connectivity. To test this hypothesis, we built models that integrate 
protein measurements with dendritic spine morphometry to explain 
between-individual variation in functional connectivity. As a form of 
replication, we repeated the analysis using gene expression measure-
ments in place of protein abundance and structural covariation as a 
surrogate of connectivity.

Results
Multimodal human brain data
To model how molecules at the microscale give rise to brain connectiv-
ity at the macroscale, we collected data that span multiple biophysical 
scales (Fig. 1) as part of the Religious Orders Study and Rush Memory 
and Aging Project (ROSMAP)16. Data types included genetics, gene 
expression, protein abundance, dendritic spine morphometry and 
neuroimaging measurements. Ninety-eight ROSMAP participants had 
all these data types measured. The average age of these participants 
at the time of the MRI scan and death was 88 ± 6 years and 91 ± 6 years, 
respectively, with an average time interval between the MRI scan and the 
age at death of 3 ± 2 years. The average postmortem interval (PMI) was 
8.5 ± 4.6 h. Participants were 77% female and had 15 ± 3 years of educa-
tion. We performed detailed characterization of each omic, cellular and 
neuroimaging data type and then integrated them as described next.

Neuroimaging phenotypes
Following current best practices, we organized the neuroimaging data 
from 1,210 ROSMAP participants into the brain imaging data structure 
(BIDS)17, which we validated using CuBIDS18 (Fig. 2a). For the fMRI data, 
we performed standard preprocessing, such as slice-time correction 
and spatial normalization, and regressed out motion confounds19. We 
made the fMRI data and their derivatives in BIDS as a free resource at 
radc.rush.edu to ease data sharing and re-analysis by interested inves-
tigators. To estimate functional connectivity, we first used a functional 
atlas comprising 100 parcels generated from resting-state fMRI data 
of more than 1,000 participants20 to divide the brain into functionally 
homogeneous regions. We then averaged the time series of voxels within 
each parcel (Fig. 2b) and computed Pearson’s correlation between all 
pairs of parcels for each participant (Fig. 2b). For the structural MRI 
data, we performed nonuniformity correction, skull-stripping, spatial 
normalization and tissue segmentation. We then divided the brain into 
62 anatomical regions using the Desikan–Killiany–Tourville (DKT)21 
atlas (Fig. 2d) and extracted structural attributes22 (Fig. 2e). To estimate 
structural covariation as a surrogate of brain connectivity, we adopted 
a canonical correlation analysis (CCA) approach (Supplementary Fig. 1). 
The motivation was based on the observation that multiple structural 
attributes (for example, number of vertices, surface area and curvature 
index) are typically cross-correlated between two regions (Fig. 2f).
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that were generated at various module resolutions and by different 
algorithms (whether SpeakEasy (SE) or the widely used weighted gene 
co-expression network analysis (WGCNA)35). Based on this observation, 
we posited that proteins reside at a biophysical scale that might be too 
far removed from region-level functional connectivity. Considering 
dendritic spines are tightly coordinated with synaptic function and 
even subtle alterations in spine morphology can induce marked effects 
on neuronal circuits30,36, we hypothesized that morphologic attributes 
of dendritic spines could provide the cellular context to bridge the 
difference in biophysical scales between proteins and region-level 
connectivity. To test this hypothesis, we estimated the dendritic spine 
component of the synaptic modules by fitting the average protein 
abundance of their members with dendritic spine attributes (Fig. 5a–c) 
and repeated the analysis. Using the dendritic spine component of the 
synaptic modules resulted in an association with SFG–ITG connectivity 
(P = 0.0174; Fig. 5d). We next sought to test whether the association was 
specific to the SFG–ITG connection. Such a test would lend credence 
and determine the extent to which connectivity across the brain can be 
explained by dendritic spines and proteins gathered from SFG and ITG. 
Accordingly, we associated the dendritic spine component of SFG and 
ITG synaptic modules with the connectivity of all other region pairs. We 
found only 3% of other connections have higher association strength 
(Fig. 5e), and these connections generally emanate from either SFG 
and its nearby areas in the frontal cortex or from ITG. This result likely 
reflects how spatially proximal areas tend to have similar functional 
and molecular architectures37,38. Moreover, the interaction between the 
synaptic modules of SFG and ITG explains additional variance beyond 
their main effects (P = 0.0140), with only 1.5% of other connections 
showing stronger interaction effects. This result suggests that not only 
is the synaptic module of each region individually linked to SFG–ITG 
connectivity but also the collective molecular state of these regions has 

a role. As an exploratory analysis, we further tested the other modules 
and found the dendritic spine component of modules predominantly 
enriched for RNA processing, mitoribosome and synaptic vesicles are 
also associated with functional connectivity (Supplementary Fig. 7).

Replication of module-level results with structural covariation 
and gene expression
Due to the interplay between functional connectivity and structural 
morphologies39–42, we repeated the above-mentioned analysis with 
an MRI estimate of structural covariation between SFG and ITG as the 
outcome. Similar to the functional connectivity results, we did not find 
an association between SFG–ITG structural covariation and the synaptic 
protein modules (P = 0.8815) unless we honed into the dendritic spine 
component of the synaptic protein modules (P = 0.0034; Fig. 5f). We 
also observed regional specificity, with only 0.4% of other brain region 
pairs showing stronger association (Fig. 5g). Furthermore, the interac-
tion effect is significant (P = 0.0203), with only 3% of other brain region 
pairs showing stronger effects. The significant associations with the 
same synaptic protein modules suggest that functional connectivity 
and structural covariation are likely to share molecular processes. As 
an exploratory analysis, we tested the dendritic spine component of 
other modules and found no association with structural covariation 
(Supplementary Fig. 7).

We further repeated the analysis with synaptic expression modules 
in place of synaptic protein modules as replication. The synaptic mod-
ules built from gene expression data (Supplementary Fig. 8 and see SFG 
eMod5 and ITG eMod4 in Supplementary Table 3) contain genes that 
highly overlap with members of the synaptic protein modules (odds 
ratio (OR) = 2.92, P = 2.71 × 10−32 for SFG and OR = 2.53, P = 5.14 × 10−23 
for ITG) and are most enriched for neurons among expression modules 
(Supplementary Fig. 8). Similar to the protein module results, we did 
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not find an association between SFG–ITG connectivity and synaptic 
expression modules (P = 0.0532) unless we focus on the dendritic 
spine component of the synaptic expression modules (P = 0.0396). 
The observed regional specificity with protein abundance modules 
is also evident with gene expression modules in line with previous 
transcriptomic studies13,43,44, with only 2% of other connections dis-
playing stronger association (Supplementary Fig. 9a). However, we 
did not observe an interaction effect (P = 0.4824). When we associated 
SFG–ITG structural covariation with synaptic expression modules, we 
again did not find an association (P = 0.9705) unless we honed into their 
dendritic spine component (P = 0.0234). Regional specificity is lower 
compared to synaptic protein modules, with 14% of other brain region 
pairs showing stronger association (Supplementary Fig. 9b), and we 
did not observe an interaction effect (P = 0.2538). As an exploratory 
analysis, we further tested the other modules and found the dendritic 
spine component of modules predominantly enriched for immune sys-
tems to be also associated with functional connectivity and structural 
covariation (Supplementary Fig. 7). Overall, these results show that the 

expression data replicate the associations between the dendritic spine 
component of synaptic modules and both functional connectivity and 
structural covariation, but with weaker interaction effects compared 
to protein data. More broadly, the results mentioned above indicate 
the benefits of cellular contextualization by using dendritic spine 
morphometry to bridge systems at the molecular level to connectivity 
at the brain region level.

Individual molecules associated with connectivity
The associations presented thus far are at the level of modules, which 
comprise hundreds of proteins and genes. To prioritize specific proteins 
among the 7,788 measured in each region, we modeled SFG–ITG connec-
tivity by the main effect of each protein in a given region, the main effect 
of the synaptic protein module in the other region and the interaction 
between the given protein and the synaptic protein module. We used 
this strategy to avoid the limitation on statistical power in testing all 
pairwise combinations of 7,788 proteins between the two brain regions. 
We prioritized proteins in each brain region based on the following 
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three effects: the main effect of each protein, its interaction with the 
synaptic protein module and these two effects combined. We declared 
significance at an α of 0.05 with false discovery rate (FDR) correction 
across all proteins, regions and effects tested. For result interpretation, 
we applied GSEA33 to the summary statistics of each effect.

Analogous to the module-level results, we did not find an associa-
tion between SFG–ITG connectivity and the abundance of any proteins 

without cellular contextualization (Supplementary Table 4). Therefore, 
we fitted each protein with all spine attributes in aggregate to extract 
the dendritic spine component. For 99% of the proteins, the dendritic 
spine fits have R2 > 0.1 (Fig. 6a). Grouping the proteins based on the 
partial R2 of the spine attributes resulted in clusters that well relate 
to processes supporting synaptic transmission (Fig. 6b,d). Notably, 
we observed distinct partial R2 profiles across the clusters (Fig. 6c), 
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suggesting that the dominant attributes in the dendritic spine fits vary 
across proteins. When we repeated the protein-connectivity association 
analysis with the dendritic spine component, the association strength 
became stronger (Fig. 7a; P < 10−4 for all three effects in both SFG and 
ITG), and we detected 87 SFG proteins and 344 ITG proteins (Supple-
mentary Table 4). Overlapping these proteins with protein members of 
clusters derived from dendritic spine fits (Fig. 6b–d) shows that both 
spine density and morphologies contribute to connectivity-associated 
proteins. Applying GSEA to the protein-connectivity association sta-
tistics (based on the dendritic spine component) found SFG proteins 
to be predominantly enriched for GO terms related to synapse, energy 
metabolism and RNA processing (Supplementary Table 5). Detected 
SFG proteins include limbic system-associated membrane protein 
(LSAMP)45, NAPB46, KCNIP3 (ref. 47) and PANX1 (ref. 48), which are 
involved in cell surface channel biology at synapses. Similarly, the 
protein-connectivity association statistics for ITG are enriched for 
GO terms related to synapse, energy metabolism and RNA process-
ing (Supplementary Table 5). Detected ITG proteins include LYNX1, 
NRN1, Pleckstrin and Sec7 domain containing 2 (PSD2) and RAB11A. 
Like LSAMP, LYNX1 and NRN1 are glycosylphosphatidylinositol 
(GPI)-anchored proteins that mediate neuronal receptor activity at 
excitatory synapses49,50. Like NAPB, PSD2 and RAB11A are critical for 
intracellular signal transduction and protein transport at synapses51,52. 
These findings indicate that while the enriched GO terms of SFG and 
ITG overlap (OR = 48.01, P = 1.77 × 10−46; Fig. 7b), their detected proteins 
are different (Supplementary Fig. 10).

To further probe the relationship between brain function and 
structure, we repeated the analysis with SFG–ITG structural covariation 
as the outcome. In contrast to functional connectivity, even without 
cellular contextualization, we found 72 SFG proteins and 171 ITG pro-
teins associated with SFG–ITG structural covariation (Supplementary 
Table 4). Nevertheless, focusing on the dendritic spine component 
increased association strength (Fig. 7c; P < 10−4 for all effects tested 
except for the main effect of ITG proteins) and detected 625 SFG pro-
teins and 1204 ITG proteins (Supplementary Table 4). These proteins 
overlap with proteins detected without cellular contextualization 
(OR = 3.61, P = 3.94 × 10−5 for SFG and OR = 4.60, P = 6.75 × 10−20 for ITG). 
The greater number of proteins associated with structural covariation 
compared to functional connectivity could be due to how anatomical 
structures are more stable over time. Hence, the antemortem T1 scans 
would better reflect the brain states at time of postmortem omic acqui-
sition. The ranking of GO terms is again similar between SFG and ITG 
(OR = 215.83, P = 9.25 × 10−31; Fig. 7d). Notably, the enriched GO terms 
are similar to those found with functional connectivity as the outcome 
(OR = 125.73, P = 4.68 × 10−26 for SFG and OR = 231.90, P = 2.86 × 10−98 for 
ITG; Supplementary Table 5), with 18 SFG proteins and 32 ITG proteins 
in common (Fig. 7e). These findings provide validity for our detected 
protein-connectivity associations and indicate that certain molecular 
processes can explain variance in both functional connectivity and 
structural covariation.

Next, we repeated the analysis with gene expression data, and 
the overall trend was similar to the results obtained with the protein 
abundance data. We did not find any genes associated with SFG–ITG 
connectivity without cellular contextualization (Supplementary 
Table 6). When we focused on the dendritic spine component of gene 
expression, the association strength became higher (P < 10−4 for all 

tested effects except for the main effect of SFG genes). We identified 1 
SFG gene and 324 ITG genes. The enriched GO terms are predominantly 
related to synapses, energy metabolism and RNA processing (Sup-
plementary Table 7), similar to those found with protein abundance 
(OR = 29.67, P = 1.58 × 10−42 for SFG and OR = 6.61, P = 2.56 × 10−20 for 
ITG). However, the ranking of individual genes by association strength 
does not align with that of individual proteins (Supplementary Fig. 11). 
When we used structural covariation as the outcome, we found an asso-
ciation with 130 SFG genes and 18 ITG genes without cellular contextu-
alization. Nevertheless, we detected more genes (1,023 SFG genes and 
248 ITG genes) and observed higher association strength (P < 10−4 for all 
tested effects except for the main effect of SFG genes with P = 0.0178) 
when we focused on the dendritic spine component of gene expres-
sion. The enriched GO terms for gene expression overlap with those 
found for protein abundance (OR = 66.57, P = 7.29 × 10−12 for SFG and 
OR = 164.97, P = 2.66 × 10−26 for ITG), but the ranking of individual genes 
and individual proteins do not align (Supplementary Fig. 12). Func-
tional connectivity and structural covariation share common GO terms 
(OR = 68.80, P = 1.46 × 10−45 for SFG and OR = 13.18, P = 6.91 × 10−10 for 
ITG), but with little overlap at the gene level (Supplementary Fig. 13). 
Overall, our results show consistency between protein abundance 
and gene expression at the molecular function level, despite the lack 
of overlap between individual proteins and genes. This is likely due to 
the low correlation between mRNA level and protein abundance of 
the same gene53.

Imaging transcriptomic and genetic support for connectivity 
molecules
To place our connectivity-associated proteins and genes in context with 
other imaging transcriptomic studies, we compared with genes previ-
ously found by combining the AHBA with fMRI data of other cohorts54. 
The 125 AHBA connectivity-related genes do not place highly among 
our proteins ranked by their effects on connectivity (Supplementary 
Fig. 14), possibly due to post-transcriptional regulation, which limits 
the correlation between mRNA level and protein abundance of the same 
gene53. Those genes are only enriched among ITG genes ranked by their 
interaction effects (P = 0.01, based on GSEA). This result suggests that 
the generic set of genes found by correlating spatial patterns of gene 
expression in AHBA with functional connectivity estimated from other 
cohorts has only mild overlap with genes found by modeling covari-
ation between gene expression and SFG–ITG connectivity within the 
same set of individuals.

Finally, we compared the connectivity-associated proteins and 
genes found herein with previous imaging genetics studies. The largest 
related GWAS6 found four independent loci (EPHA3, DPP4, FBXO11 and 
ZNF326) that are associated with SFG–ITG connectivity (rfMRI con-
nectivity ICA100 edge 849). These loci were derived by spatially map-
ping genome-wide significant genetic variants to their closest genes. 
Among the four loci, EPHA3 shows the highest heritability in the edge 
849 GWAS, and the dendritic spine component of EPHA3 expression 
displays nominal association with SFG–ITG connectivity in our data 
(P = 0.0192 for SFG main effect and P = 0.0140 for ITG main effect). We 
could not perform the same analysis for protein abundance because 
tryptic peptides from EPHA3, DPP4, FBXO11 and ZNF326 were not meas-
ured in our dataset. Instead, we assessed our found proteins in relation 
to the edge 849 GWAS through a functional mapping approach. For 

Fig. 4 | Measurement of dendritic spines with protein-based functional 
characterization. a, Representative ×60 bright-field image of a Golgi-stained 
dendrite from ITG of an exemplar participant. Scale bar = 10 µm. b, Digital 3D 
reconstruction of the dendritic segment performed on the bright-field image.  
c, Digital 3D reconstruction used for estimating spine density and morphometric 
attributes, including head diameter, length and volume, and assigning 
subclasses. Blue indicates thin spines, green indicates mushroom spines, 
red indicates stubby spines and yellow indicates filopodia. d, Representative 

zoomed-in bright-field image of a single Golgi-impregnated thin spine in the xy 
plane (red box from c). e, Left to right, 3D digital reconstruction of the dendrite 
(gray) and spine (green) in the xy plane, clockwise rotation in xyz dimensions and 
further rotation in xyz. f, Each spine attribute was associated against all proteins 
measured from the same region with enriched GO terms indicated (SFG in green 
and ITG in blue). g, T values of contrasts between SFG and ITG for each spine 
morphologic attribute are shown, with * indicating nominal differences.
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each brain region, we built protein prediction models to combine the 
effects of genetic variants that are proximal to each protein55. We then 
applied these models to the summary statistics of the edge 849 GWAS to 
test whether the genetic component of the proteins is associated with 
edge 849. Overall, the genetic component of both SFG and ITG proteins 
was not associated with edge 849 after FDR correction (Supplementary 

Table 8), likely due to limited heritability in edge 849. Accordingly, we 
focused on the genetic effects of our found proteins. For SFG, 3,339 pro-
teins have adequate heritability for model construction. Among these 
3,339 proteins, the dendritic spine component of 33 proteins is associ-
ated with SFG–ITG connectivity in our data (FDR-corrected P < 0.05). 
Among those proteins, the genetic component of two proteins, NGB 
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Fig. 5 | Associations between protein modules and brain connectivity.  
a, Protein abundance of SFG synaptic module plotted against its dendritic spine 
fit. Each dot corresponds to an individual and the red dashed line corresponds 
to the linear fit between protein abundance and the dendritic spine fit values of 
the individuals. b, ITG counterpart of a. c, Partial contribution of each attribute 
toward the dendritic spine fit. d, Functional connectivity (with confounds 
regressed out) fitted by the dendritic spine component of SFG and ITG synaptic 
protein modules. Each red dot corresponds to the functional connectivity 
value of an individual with the red line visualizing how far it is from the fitted 
surface. The large curvature indicates a strong interaction effect of the modules 

on functional connectivity. e, SFG–ITG connection and other connections 
with stronger association strength between functional connectivity and 
the dendritic spine component of synaptic protein modules displayed. 
Different color dots correspond to different brain regions. In total, 3% of other 
connections showed higher association strength. Connections emanating from 
SFG or ITG are displayed in red. Other connections are displayed in yellow.  
f, Structural covariation counterpart of d. g, Structural covariation counterpart 
of e. In total, 0.4% of other connections showed higher association strength 
between structural covariation and the dendritic spine component of synaptic 
protein modules.
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(P = 0.0219) and POLR2J (P = 0.0423), display nominal associations with 
edge 849. For the ITG region, 3,445 proteins have adequate heritability 
for model construction. Among these 3,445 proteins, the dendritic 
spine component of 147 proteins is associated with SFG–ITG connec-
tivity in our data (FDR-corrected P < 0.05). Among those proteins, the 
genetic component of 11 proteins, including NRN1 (P = 0.0456), displays 
nominal associations with edge 849. These results provide further 
support for some of the protein-connectivity associations found in 
our data. The repeated detection of NRN1 (ref. 56), or neuritin, at the 
DNA and protein level, suggests that this secreted neuropeptide has a 
critical role in synaptic biology in supporting brain connectivity of ITG.

Discussion
A central goal of neuroscience is to develop an understanding of the 
brain that ultimately describes the mechanistic basis of human cogni-
tion and behavior. Independent studies are contributing to an exquisite 
‘parts list’ of molecules, cell types and brain structures57–59, but how 
these parts cohere into human cognitive function remains obscure. This 
research challenge is analogous to assembling a jigsaw puzzle without 
seeing the image on the box. Research struggles with proto-clusters of 
insightful pieces that are difficult to orient with respect to each other, 
especially when these pieces reside on different biophysical scales. To 
help bridge this gap, we gathered and analyzed brain omics, and cellular 
and neuroimaging data from the same set of 98 individuals. Focusing 
on the connection between SFG and ITG from which we acquired omic 
and cellular data, we showed that molecular measurements likely cap-
ture many properties beyond brain connectivity. Hence, only when we 
restricted to their components related to dendritic spine morphology 
were we able to establish associations with SFG–ITG connectivity. With 
this approach, we found molecules and molecular modules enriched 
for synaptic structures and functions, mitochondria-based energy 
metabolism and RNA processing, in line with known biology. Notably, 
beyond listing connectivity-related molecules, our study has broader 
implications in that it demonstrates the feasibility of detecting syn-
chrony among systems of different scales in humans, which constitutes 
a step toward a more coherent understanding of brain function. Practi-
cally, this integration across scales could help address the long-standing 
challenge of brain drug discovery, in which promising molecules from 
cellular assays fail to influence cognitive traits.

As our study is distinctive and there are no other human data-
sets containing such paired brain omics and imaging data, we used 
consistency among data types that span different biophysical scales 
as a way to validate any observed synchronization. We showed that 
the same synaptic protein modules can explain between-participant 
variability in both functional connectivity and structural covariation 
and replicated this finding with synaptic expression modules. We also 
found hundreds of proteins associated with functional connectivity, 

a subset of which is associated with structural covariation, and again 
we showed similar trends with gene expression data. Notably, all found 
associations are enriched for similar cellular structures and molecular 
processes. We further showed that the genetic component of a dozen 
found genes is associated with connectivity, suggesting potential 
causal roles of these genes. As a common consideration with fMRI is 
the stability of its detected effects60,61, we accordingly performed all 
data preprocessing and normalization in a highly reproducible and 
stringent fashion and used the more stable structural neuroimaging 
data to replicate our findings.

Dendritic spines are tiny protrusions along neuronal dendrites 
that participate in most excitatory synapses in the brain. The head of 
the spine structurally supports the postsynaptic density, which collects 
the essential machinery for postsynaptic neurotransmission36,62. These 
actin-rich structures are plastic and alter their shape in congruence 
with synaptic activity and plasticity, including long-term potentia-
tion30. These facets of spine biology were recapitulated in our GSEA 
of spine-protein associations (Fig. 4f), which linked actin-related and 
postsynaptic elements to spine morphological attributes, matching 
known neurobiology. Also, the enrichment for synaptic signaling 
and neurotransmitter release is consistent with the hypothesis that 
multiple aspects of spine morphology have functional consequences. 
The dominant spine attributes contributing to the dendritic spine fits 
varied across the connectivity-related proteins (Fig. 6c). Notably, spine 
density, which reflects the capacity for excitatory neurotransmission 
and hence presumably links to connectivity, is not the only dominant 
attribute, but spine morphological attributes also dominate for certain 
proteins. Although our found associations between molecules and 
connectivity do not describe or depend on mesoscale mechanisms 
between spines and fMRI signals, one major theory of fMRI generation 
relates to local field potentials (LFP)63. LFPs are generated from synap-
tic transmission, which uses dendritic spines, so their involvement in 
large-scale signal generation is logical and plausible.

Applying GSEA to the protein-connectivity associations found 
enrichment for synaptic function, mitochondria-based energy metabo-
lism and RNA biology (Figs. 6b–d and 7e). The enriched processes are 
consistent with normal synaptic function, which requires energy and 
local RNA translation. For instance, releasing and recycling synaptic 
vesicles at the axonal presynapse are energy-demanding mechanisms 
that are mediated by Ca2+ levels. Mitochondria localized to presynaptic 
terminals are positioned to buffer Ca2+ through the mitochondrial 
matrix and meet metabolic energy needs by producing adenosine 
triphosphate64. In contrast, postsynaptic mitochondria are typically 
positioned in the dendrite rather than localized inside the dendritic 
spine65. While the function of postsynaptic mitochondria is less well 
characterized, these organelles are commonly hypothesized to support 
the energy needs of multiple spines in proximity to the mitochondrial 
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location in the dendrite66. Furthermore, synaptic plasticity partly 
depends on local protein synthesis, in which mRNA-binding proteins 
have a large role, especially localization and translation of mRNA fol-
lowing synaptic demand67.

Our analysis revealed several GPI-anchored proteins that are 
functionally similar and localized to the synapse, including LSAMP, 
LYNX1 and NRN1 (Supplementary Table 4). LSAMP is expressed widely 
through the adult brain, and human genetics studies as well as work 
in rodent models suggest that LSAMP influences emotional behavior, 
possibly contributing to mood disorders68. LSAMP is predicted to 
facilitate axon targeting to dendrites69 and is considered a putative 
therapeutic target for neuropsychiatric illness45. Similarly, LYNX1 local-
izes to synapses through its GPI anchor and interaction with nicotinic 
acetylcholine receptors. LYNX1 is hypothesized to maintain a balance 
between excitatory and inhibitory circuits in the mouse visual cortex 
of the adult brain70. Like the others, NRN1, or candidate plasticity gene 
15 (CPG15), is a synaptic activity-regulated gene whose expression is 
experience-dependent in the adult brain. NRN1 anchors to the surface 
of synaptic structures, regulating the generation of dendritic spines 
and synapse maturation71. Recent findings in older adults indicated a 
beneficial role for NRN1 in synaptic preservation and maintenance72,73. 
NRN1 is a neurotrophic factor, and given the small size of its secreted 
form (~11 kDa), may be an attractive therapeutic target. Another set 
of functionally overlapping proteins between SFG and ITG converge 
at intracellular signaling pathways within dendritic spines. NAPB, or 
N-ethyl-maleimide-sensitive fusion attachment protein β, interacts 
with α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) 
receptors and functions as a molecular chaperone to facilitate pro-
cessing of AMPA receptors at the postsynapse46. PSD2, also known as 
the exchange factor for ARF6 (EFA6) isoform C, binds phospholipids 
and is localized to endo-lysosomal compartments at the postsyn-
apse52. Past studies have identified PSD2 as a candidate risk gene for 
age-related memory disorders74,75. While all these proteins are involved 
in connectivity-relevant processes, additional studies are required to 
mechanistically investigate how fluctuations in these protein abun-
dances explain interindividual differences in functional connectivity.

Our findings suggest a number of important factors to consider 
when trying to draw associations between postmortem microscale 
molecular data and macroscale neuroimaging data. First, our results 
indicate that the relationships between molecular abundances and 
brain connectivity have substantial regional specificity. Henceforth, 
measuring molecular levels and spine attributes in additional brain 
regions from the same individuals could help define the extent of this 
regional specificity in determining if different proteins are indeed 
involved in different brain regions. Second, the number of associations 
found might be limited by the time interval between the antemortem 
scans and postmortem brain collection. From this standpoint, the 
molecules we detected herein could be considered a minimum set and 
reflective of molecular abundances whose covariation with these brain 
regions occurs over a particular time scale. Finally, we face the common 
problem of assigning molecules from bulk molecular measurements 
to particular types of cells or synapses. For instance, RNA-related or 
mitochondrial proteins we discuss in the context of spines may be 
from nonsynaptic areas of the neuron or nonneuronal cells. Moreover, 
if the found proteins are indeed from spines or synapses, they may not 
be globally representative, as recent efforts suggest unique molecular 
signatures in different synapses76. Therefore, in addition to the need to 
explore regional specificity, it could be helpful to assay synapse-type 
specificity to investigate whether particular types of synapses are more 
relevant to fMRI coupling.

Overall, this study indicates that acquiring data across the major 
perspectives in human neuroscience from the same set of brains is foun-
dational for understanding how human brain function is supported at 
multiple biophysical scales. While future research is necessary for fully 
determining the scope and components of multiscale brain synchrony, 

we have established a robustly defined initial set of molecules whose 
effects likely resonate across biophysical scales.
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Methods
Cohort
Ninety-eight participants of the ROSMAP16 have all data types needed 
for this work, namely fMRI, structural MRI, genetic, dendritic spine 
morphometry, RNA-seq and proteomic data. All enrolled participants 
agreed to annual clinical evaluation and brain donation at death. Both 
studies were approved by an Institutional Review Board of Rush Uni-
versity Medical Center. Participants signed informed consent, an Ana-
tomical Gift Act and a repository consent to allow their resources to be 
shared. The dendritic spine morphometry, RNA-seq and proteomic 
data were measured from postmortem tissue samples of the SFG and 
ITG. For each participant, tissue samples were drawn from either the left 
or the right hemisphere but not both sides. In total, 52% of participants 
had tissue samples drawn from the left hemisphere. The average age 
of participants at the time of MRI scan and death is 88 ± 6 years and 
91 ± 6 years, respectively, with an average time interval between MRI 
scan and age at death of 3 ± 2 years. The average postmortem interval 
is 8.5 ± 4.6 h. In total, 77% of the participants are female, and the par-
ticipants have 15 ± 3 years of education. Further demographic details 
on the participants were previously described16.

Neuroimaging
Structural scans were acquired using T1-weighted MRI (1.5T General 
Electric (GE)—1 mm3 resolution, repetition time (TR) = 6.3 ms, echo 
time (TE) = 2.8 ms, flip angle = 8°; 3T Siemens—1 mm3 resolution, 
TR = 2300 ms, TE = 2.98 ms, flip angle = 9° and 3T Philips—1 mm3 resolu-
tion, TR = 8.0 ms, TE = 3.7 ms, flip angle = 8°). Further details on scanner 
protocols can be found at https://www.radc.rush.edu/docs/var/scan-
nerProtocols.htm (ref. 77). Nonuniformity correction, skull-stripping, 
spatial normalization to the MNI152 template and tissue segmentation 
were performed using advanced normalization tools. Freesurfer’s 
‘recon-all’ function was applied to extract morphometric attributes.

Resting-state fMRI BOLD data were acquired on multiple scan-
ners, which are as follows: 1.5T GE Signa scanner (5 mm3 resolution, 
TR/TE = 2,000/33 ms, flip angle 85°), 3T Siemens Magnetom TrioTim 
syngo (3.3 mm3 resolution, TR/TE = 3,000/30 ms, flip angle 80°) and 3T 
Philips Achieva Quasar TX (3.3 mm3 resolution, TR/TE = 3,000/30 ms, 
flip angle 80°). Further details on scanner protocols can be found at 
https://www.radc.rush.edu/docs/var/scannerProtocols.htm (ref. 78). 
Raw fMRI data were preprocessed using a well-validated pipeline of 
robust and reproducible fMRI processing tools. First, CuBIDS was used 
to identify and investigate scans with deviant parameters to reduce 
scan heterogeneity18. fmriprep (v.20.2.3)19 was then applied to realign 
and slice-time correct the fMRI volumes, with distortion correction 
further performed if accompanying fieldmap volumes were available. 
The resulting fMRI volumes were coregistered to their correspond-
ing T1 volumes using FLIRT. Finally, the fMRI time series underwent 
confound regression using the eXtensible Connectivity Pipeline (XCP; 
https://github.com/PennLINC/xcp_d)61 (v.0.0.4 ‘xcp-abcd’) with the 
36p+Despike model79. In brief, bandpass filtering between 0.01 and 
0.08 Hz was applied, followed by despiking with AFNI80 and regression 
of 36 parameters from the time series81. Regressors included six motion 
attributes derived during realignment, a global signal and two physi-
ological parameters, as well as their derivatives, squares of derivatives 
and quadratic terms. Additionally, mean framewise displacement was 
calculated for each participant and used to account for any residual 
effect of head motions in subsequent analysis.

Proteomic
Multiplex TMT-MS was used to generate proteomic data (7,788 proteins). 
Brain tissue homogenization, protein digestion, TMT peptide labeling, 
high-pH offline fractionation and liquid chromatography–tandem 
mass spectrometry (LC–MS/MS), as well as protein quantification, 
batch correction and data preprocessing, were performed as previously 
described23–25. Briefly, paired human tissue samples from SFG and ITG 

were obtained from 98 ROSMAP participants. Approximately 100 mg of 
tissue was homogenized in 8 M urea, 10 mM Tris and 100 mM NaH2PO4 
(pH 8.5) buffer with Halt protease and phosphatase inhibitor cocktail 
(Thermo Fisher Scientific) using a Bullet Blender (Next Advance). Pro-
tein concentration was determined by bicinchoninic acid assay (Pierce), 
and 1D SDS–PAGE gels were run with Coomassie blue staining for qual-
ity control before protein digestion. Lysyl endopeptidase (Wako) at 
1:100 (wt/wt) was added to each 100 μg sample for digestion overnight. 
Trypsin (Promega) was added at 1:50 (wt/wt), and digestion occurred 
for another 16 h. The peptide solutions were acidified and desalted. 
The samples were then loaded onto the column, washed and eluted. An 
equal amount of peptide from each sample was aliquoted and pooled 
as the global internal standard (GIS), which was split and labeled in 
each TMT batch. The eluates were then dried to completeness using a 
SpeedVac. Before TMT labeling, cases were randomized by covariates 
(age, sex, PMI, diagnosis, etc.) into 26 total batches. Peptides from each 
individual case and the GIS pooled standard or bridging sample (at least 
one per batch) were labeled using the TMT 11-plex kit (Thermo Fisher 
Scientific, 90406). For each batch, up to two TMT channels were used 
to label GIS standards, while the remaining TMT channels were used for 
samples after randomization. Next, high-pH offline fractionation was 
performed, and 96 individual equal-volume fractions were collected 
across the gradient and then pooled by concatenation into 24 frac-
tions and finally dried with a SpeedVac. Fractions were resuspended 
in an equal volume of loading buffer and analyzed by LC–MS/MS. Pep-
tide eluents were separated on a self-packed C18 (1.9 μm; Dr. Maisch) 
fused silica column (25 cm × 75 μM internal diameter; New Objective) 
by a Dionex UltiMate 3000 RSLCnano liquid chromatography system 
(Thermo Fisher Scientific). Peptides were monitored on an Orbitrap 
Fusion mass spectrometer (Thermo Fisher Scientific). Full MS scans 
were collected at a resolution of 120,000 (400–1,400 m/z range, 4 × 105 
AGC, 50-ms maximum ion injection time). All HCD MS/MS spectra were 
acquired at a resolution of 60,000 (1.6 m/z isolation width, 35% colli-
sion energy, 5 × 104 AGC target, 50-ms maximum ion time). Dynamic 
exclusion was set to exclude previously sequenced peaks for 20 s within 
a 10-ppm isolation window. Peptide spectral matches (PSMs) were fil-
tered to an FDR of less than 1% using the Percolator node. For database 
searching and protein quantification, raw MS data files were analyzed in 
Proteome Discover software suite (v2.3; Thermo Fisher Scientific), and 
MS/MS spectra were searched against the UniProtKB human proteome 
database. Following spectral alignment, peptides were assembled into 
proteins and filtered based on the combined probabilities of their con-
stituent peptides to a final FDR of 1%. Reporter ions were quantified 
from MS2 scans using an integration tolerance of 20 ppm with the most 
confident centroid setting. Only PSMs with less than 50% isolation 
interference were used for quantification, and only unique and razor 
(that is, parsimonious) peptides were considered for quantification. 
Multiconsensus was performed to achieve parsimony across individual 
batches. In cases of redundancy, shared peptides were assigned to the 
protein sequence in adherence with the principles of parsimony. Finally, 
batch correction and data preprocessing were performed. A total of 
10,426 high confidence, master proteins were identified across the 26 
TMT batches, but only proteins quantified in >50% of samples were 
included in subsequent analyses. log2 abundances were normalized 
as a ratio divided by the central tendency of pooled standards. Batch 
correction was performed using a Tunable Approach for Median Polish 
of Ratio (https://github.com/edammer/TAMPOR). Multidimensional 
scaling plots were used to visualize batch contributions to variation 
before and after batch correction. Network connectivity was used to 
remove outliers, defined as samples that were greater than 3 s.d. away 
from the mean.

Gene expression
RNA was extracted using the Chemagic RNA tissue kit (PerkinElmer, 
CMG-1212). RNA was concentrated (Zymo, R1080), and RQN (RIN score) 
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was calculated using Fragment Analyzer (Agilent, DNF-471). RNA con-
centration was determined using the Qubit broad-range RNA assay 
(Invitrogen, Q10211) according to the manufacturer’s instructions. In 
total, 500 ng total RNA was used for RNA-seq library generation, and 
rRNA was depleted with RiboGold (Illumina, 20020599). A Zephyr G3 
NGS workstation (PerkinElmer) was used to generate TruSeq stranded 
sequencing libraries (Illumina, 20020599) with custom unique dual 
indexes (IDT) according to the manufacturer’s instructions with the fol-
lowing modifications. RNA was fragmented for 4 min at 85 °C. The first 
strand synthesis was extended to 50 min. Size selection post adapter 
ligation was modified to select larger fragments. According to the 
manufacturer’s instructions, library size and concentrations were 
determined using an NGS fragment assay (Agilent, DNF-473) and Qubit 
ds DNA assay (Invitrogen). The modified protocol yielded libraries with 
an average insert size of around 330–370 bp. Libraries were normalized 
for molarity and sequenced on a NovaSeq 6000 (Illumina) at 80–100 
million reads, 2 × 150 bp paired-end. RNA-seq data processing was 
implemented using the following three parallel pipelines: an RNA-seq 
quality control (QC) pipeline, a gene/transcripts quantification pipe-
line and a 3′-UTR quantification pipeline. In the QC pipeline, paired-end 
RNA-seq data were first aligned by STAR (v2.6) to a human reference 
genome. The primary assembly of the reference genome fasta file and 
transcriptome annotation came from Gencode (Release 27 GRCh38). 
Picard tools were applied to the aligned BAM files to assess the quality 
of RNA-seq data. In the quantification pipeline, transcript raw counts 
were calculated by Kallisto (v0.46).

We preprocessed the RNA-seq data following the pipeline pre-
viously described82. In brief, we applied TMM normalization (using 
edgeR calcNormFactors) to the raw counts to estimate the effective 
library size of each participant. We then applied voom/limma to regress 
out confounds and convert the counts into log counts per million 
(log2(CPM)). Technical confounds included batch, study (ROS or MAP), 
RNA integrity number, postmortem interval, library size, percentages 
of aligned reads, coding and intergenic bases, ribosomal and untrans-
lated region bases, duplicated reads, 3′ bias, 5′ over 3′ bias and coef-
ficient of variation in coverage. Only genes with mean log2(CPM) > 2 
were kept.

Dendritic spine imaging and processing
Golgi-Cox staining, using the FD Rapid Golgi Stain Kit (FD Neurotech-
nologies, PK401), was used to visualize dendrites and dendritic spines in 
postmortem samples from SFG and ITG. The flowing adjustments were 
made from the standard operating procedure in the manual from the 
kit. All steps were performed at room temperature. Solutions A (potas-
sium dichromate and mercuric chloride) and B (potassium chromate) 
were combined 48 h before tissue submersion. In total, 2 ml of solution 
A + B were placed in wells of a 12-well plate (Thermo Fisher Scientific, 
08-772-29). Frozen tissue blocks, approximately 10 × 10 × 10 mm, were 
dropped into the A + B solution in each well. The chromate solution was 
replaced after 24 h, and the tissue blocks remained in the solution for 
21 days. Next, the tissue blocks were transferred to a new 12-well dish 
containing solution C. Solution C was replaced after 24 h. After a total 
of 72 h in solution C, each tissue block was sliced into 125 µm sections in 
solution C using a Leica Vibratome (VT1000 S). Free-floating sections 
were placed in a six-well dish (Thermo Fisher Scientific, 353046) that 
contained solution C in each well. Tissue sections were sequentially 
moved from solution D to solution E and to distilled water, similar to 
the manufacturer’s instructions. Slices were dehydrated with alcohols 
(70%, 90% and 100% ethanol) and cleared with xylenes (Thermo Fisher 
Scientific, X3P). Slices were then placed on glass slides (Thermo Fisher 
Scientific, 12-550-15) with a single slide spacer (Electron Microscopy 
Sciences, 70327-20S), sealed with Permount (Thermo Fisher Scientific, 
SP15-100) and coverslipped with 24 × 50 mm, thickness 0.13–0.17 mm, 
glass (Carolina Biological, 633153). Slides were dried in the dark for 
7 days before microscopy imaging.

Dendrites were imaged by blinded experimenters using bright- 
field microscopy. Each case had multiple slides with multiple slices 
available for imaging. From each tissue slice, one to two pyramidal 
neurons from layers two or three were randomly selected to image 
for analysis. Between 8 and 12 neurons were sampled per individual. 
A single dendritic segment was imaged per neuron. While we used 
random site sampling, dendrite segments were imaged if the following 
criteria were met: (1) located centrally within the total tissue depth, 
(2) not obscured by staining debris and/or intersecting neighboring 
neurons and (3) fully impregnated. Additionally, only dendrites that 
were over 30 µm in length and had an approximate diameter of 1 µm 
were imaged. Tissue slices were visualized under 10× magnification 
to determine tissue quality. Once suitable dendrites were identified, 
tissue slices were visualized at 60× magnification using Type F immer-
sion oil (Nikon, MXA22168). Z stacks were captured at a step size of 
0.1 µm at ×60 using a Nikon Plan Apo ×60/1.40 numerical aperture (NA) 
oil-immersion objective in combination with a high-NA oil condenser 
(Nikon, MEL59500) on a Nikon Eclipse Ti2 inverted microscope with a 
Lumencor SOLA light engine and Hamamatsu ORCA-flash 4.0 digital 
camera. All images were 1,024 × 1,024 pixels.

Reconstructions of dendrites and dendritic spines were conducted 
by blinded experimenters using Neurolucida 360 (MBF Biosciences, 
v2.70.1). Nikon ND2 files were converted to 16-bit TIFF files using ImageJ 
and then imported to Neurolucida 360. Dendritic segments were traced 
using a user-guided semi-automated directional kernel algorithm. 
Initiation and termination points for dendrite reconstruction were 
determined with the following criteria: (1) ≥5 µm away from the distal 
tip of the dendrite, (2) consistent diameter, (3) level axis with limited 
smear in the z plane and (4) ≥20 µm in length. After the dendritic seg-
ment was traced, the experimenter verified that the points located on 
the dendrite were accurate in x, y and z planes and, if not, made manual 
adjustments to the trace. The diameter of the dendrite at each point was 
also verified to ensure the accuracy of the trace. Dendritic spines were 
traced using voxel clustering. The following parameters were used for 
spine identification: outer range, 7 µm; minimum height, 0.3 µm; detec-
tor sensitivity, 90–125% and minimum count, 8 voxels. The morphology 
of each dendritic spine was examined to verify that the axial smear did 
not cause misrepresentation. Merge and slice tools in Neurolucida 360 
were used to correct inaccuracies. The position of every spine’s back-
bone point was verified by the blinded experimenter. If the backbone 
caused a misrepresentation, the dendritic spine was visualized from 
the z plane, and the experimenter’s re-oriented backbone points in the 
x–y plane. Notably, repositioning in the x–z or y–z plane was performed 
while the spine was being viewed from the lateral angle. Morphometric 
analysis was conducted for each spine, and measurements categorized 
spines into thin, stubby, mushroom and filopodia classes. The fol-
lowing parameters were used for spine classifications: head-to-neck 
ratio, 1.1; length-to-head ratio, 2.5; mushroom head size, 0.35 µm and 
filopodium length, 3.0 µm. Spines with a head-to-neck ratio >1.1 and 
head diameter >0.35 µm were classified as mushroom. Spines were 
classified as filopodia or thin if the head-to-neck ratio was <1.1 and 
either (1) length-to-head ratio was >2.5 or (2) head size was <0.35 µm. 
Moreover, if the total length of the spine was >3.0 µm, the spine was 
classified as filopodia, and if the total length was <3.0 µm, then the 
spine was classified as thin. Dendrite and spine reconstructions were 
exported to Neurolucida Explorer (MBF Biosciences, v2.70.1), where 
data were collected for quantitative analysis. The dendritic spine meas-
urements were exported and collected in Microsoft Excel. Spine density 
was calculated by determining the quantity of spines per 10 µm of 
dendrite length. Spine length was defined as the curvilinear backbone 
length from the insertion point to the most distal point of the spine 
head. Head diameter was defined as the breadth of the spine head at 
its widest cross-sectional point.

Dendritic spines display an enormous array of morphologies, 
including varying head diameters and neck lengths, which are 
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inextricably linked with spine function. For example, spine head diam-
eter can reflect the density of protein receptors at the postsynapse, 
which correlates with synapse strength36. The width and length of 
the spine neck influence the diffusion of signaling molecules and the 
degree to which individual synapses affect neuronal activity83. Meas-
urements of spine head diameter and spine length as a ratio form the 
basis of classification into the common morphologic subclasses. Thin 
spines have short necks and small heads, whereas mushroom spines 
have longer necks and larger heads. Stubby spines are hypothesized 
to be transitional structures with a short neck and wide head. Subtle 
alterations in spine morphology and related biology can induce marked 
effects on connectivity patterns of neuronal circuits at microscale and 
downstream cognitive behavior30.

Our spine morphology and density measurements are consistent 
with similar studies assessing spine structure characteristics in human 
and nonhuman primates using confocal and light microscopy84–87. In 
a particularly elegant study, ref. 87 assayed fresh human brain tissue 
obtained from the neurosurgical operation and used iontophoretic 
microinjection of Lucifer yellow and high-resolution confocal micros-
copy. Our dendritic spine density and length measurements are highly 
consistent with details in ref. 87, which reported an average spine den-
sity of 1 per μm on layer III pyramidal neuron dendrites in the cingulate 
cortex of an 80-year-old male. The mean spine density in SFG is 1.3 per 
μm and 1.2 per μm in ITG (Supplementary Fig. 3c). The details in ref. 
87 reported an average spine length of 1.4 μm on layer III dendrites 
in the cingulate cortex. The mean spine lengths are 1.54 μm in SFG 
and 1.46 μm in ITG (Supplementary Fig. 3d). However, spine volume 
measurements in ref. 87 averaged 0.36 μm3, whereas the mean spine 
volume is 0.26 μm3 in SFG and 0.27 μm3 in ITG (Supplementary Fig. 3e). 
This disconnect could be attributed to the lack of resolution using 
Golgi stain to measure the volume of the spine neck. The fluorescence 
microscopy approach by ref. 87 allows greater signal-to-noise ratios 
for more precise 3D measurement of the spine neck, which is approxi-
mately 100 nm3. However, bright-field microscopy of Golgi stain relies 
on light absorption, which may not provide sufficient signal-to-noise 
to accurately measure the volume of the spine neck.

Genetics
Genotyping was performed using the Infinium Global Screening 
Array, Affymetrix Genome-Wide HumanSNP Array 6.0 and Illumina 
OmniQuad Express platform88,89. The genotyping data underwent 
sample-level exclusions, including removing duplicated samples, 
those with a genotyping success rate below 95%, and samples with 
discordant gender information. At the probe level, additional filter-
ing was applied based on specific quality-control criteria—a Hardy–
Weinberg equilibrium P value threshold (<1 × 10−50), genotype call rate 
(<0.9) and misshape test (<1 × 10−9). For imputation on the Haplotype 
Reference Consortium r1.1, we used the Michigan Imputation Server, 
Minimac3 (v1.0.4) and Eagle (v2.3). Before imputation, the input data 
were prepared using the HRC-1000G-check-bim_ts.pl script (available 
at https://www.well.ox.ac.uk/~wrayner/tools/). Imputed genotypes 
with an information score greater than 0.3 were converted to a Plink 
binary file format using Plink 1.9 for downstream analysis.

Functional connectivity estimation
To estimate functional connectivity, we first used a functional atlas 
comprising 100 parcels (Schaefer2018_100Parcels_17Networks_order_
FSLMNI152) generated from resting-state fMRI data of >1,000 par-
ticipants20 to divide the brain into functionally homogenous regions. 
We then averaged the time series of voxels within each parcel and 
computed Pearson’s correlation between all pairs of parcels for each 
participant. To select the brain connection (that is, the parcel pair) 
most relevant to our molecular data, we examined the spatial overlap 
between each functional parcel and the brain areas at which we drew 
tissue samples. Parcels 25 (left hemisphere) and 74 (right hemisphere) 

have the greatest overlap with our SFG tissue samples, and parcels 14 
(left hemisphere) and 65 (right hemisphere) have the greatest overlap 
with our ITG tissue samples. For associating with the molecular data, 
we only used the SFG–ITG connectivity estimate that matches the side 
of the brain from which we drew tissue samples for each participant, 
that is, the connectivity estimate between parcels 25 and 14 if we drew 
brain tissue samples from the left hemisphere for a given participant, 
and vice versa. We used the connectivity estimates of other parcel pairs 
for assessing regional specificity (‘Module-level association analysis’).

Structural covariation estimation
To estimate structural covariation, we used the nine regional morpho-
logical attributes (number of vertices, surface area, gray matter volume, 
average cortical thickness, standard deviation of cortical thickness, 
mean curvature, Gaussian curvature, fold index and curvature index) 
from Freesurfer cortical surface reconstruction with regions defined 
anatomically based on the DKT atlas22. Let Zi be the n × 9 morphologi-
cal attribute matrix of region i with n being the number of participants. 
The standard approach90 estimates the structural covariation between 
regions i and j by correlating row k of Zi with row k of Zj for k = 1 to n. The 
assumption is that morphological attributes have a one-to-one corre-
spondence across regions, that is, the fold index in region i covaries with 
the fold index in region j, the curvature index in region i covaries with the 
curvature index in region j, etc. However, the fold index of region i might 
also covary with, for example, the curvature index of region j. Therefore, 
to mitigate the one-to-one attribute correspondence assumption, we 
applied CCA to find combinations of morphological attributes that 
maximally covary between region pairs (Supplementary Fig. 1). Spe-
cifically, we applied CCA to Zi and Zj to find 9 × 9 projection matrices 
Ai and Aj that maximize their correlation, that is, max tr(Ai

TZi
TZjAj) sub-

ject to Ai
TZi

TZiAi = I and Aj
TZj

TZjAj = I. Adopting a recent approach where 
cofluctuation in fMRI intensity at single time point resolution is used to 
estimate connectivity between two regions91, we used Sij = (ZiAi) ◦ (ZjAj) 
as estimates of structural covariation between regions i and j, where 
the symbol ◦ denotes element-wise product and each CCA dimension 
(that is, each column of Sij) captures a different mode of shape covaria-
tion. For associating with the molecular data, we split the participants 
based on the side of the brain from which we drew tissue samples and 
separately applied CCA to those two sets of participants. We focused 
our analysis on the structural covariation between ‘superior frontal’ 
and ‘inferior temporal’ in the DKT atlas, which best overlaps with where 
we sampled brain tissues and used other anatomical region pairs for 
assessing regional specificity (‘Module-level association analysis’).

Molecular module estimation
To determine the molecular systems of interacting proteins in each 
brain region, we clustered the proteins into co-abundance modules 
using a fully data-driven approach called SpeakEasy92, which takes in 
a similarity matrix and joins nodes into modules based on both local 
connectivity and global network structure. To estimate the degree of 
interaction between each pair of proteins, we correlated their abun-
dance levels across participants. We repeated this estimation for all 
protein pairs to generate a protein correlation matrix for each region 
and applied SpeakEasy, which extracted ten modules for SFG and ten 
modules for ITG (Supplementary Table 2). Considering our goal is to 
model brain connectivity, which presumably arises from subprocesses 
related to synaptic communication, we applied Fisher’s exact test to 
annotate each module by GO terms and focused our analysis on mod-
ules (pMod) whose protein members are most enriched for synaptic 
communication terms. Using this criterion, we selected pMod6 for 
SFG and pMod8 for ITG, which happen to have the greatest protein 
overlap among all protein module pairs (OR = 13.16, P = 3.99 × 10−186). 
We also annotated the modules by brain cell types by applying GSEA33 
with cell type-specific mean expression93 as scores and proteins within 
our modules as genesets. The selected protein modules also happen 
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to be the most enriched for neurons among modules (Supplementary 
Table 2). To represent a protein module, we used the average abundance 
levels of its protein members. We applied the same procedures to the 
gene expression data, which extracted nine modules for SFG and nine 
modules for ITG (Supplementary Table 3). Based on synaptic GO term 
enrichment, we selected and focused our analysis on eMod5 for SFG 
and eMod4 for ITG, which also happen to have the greatest gene overlap 
among all expression module pairs (OR = 57.25, P = 4.94 × 10−323) and 
most enriched for neurons (Supplementary Table 3).

Proteomic characterization of dendritic spine attributes
To provide a simple characterization/quality check of the dendritic 
spine data, we associated each dendritic spine attribute with the pro-
tein data and examined its GO term enrichment to check if the dendritic 
spine attributes are enriched for the expected neuronal structures and 
functions. Specifically, we applied regression with each measured pro-
tein from a given brain region as the response and each spine attribute 
from the same brain region as a covariate of interest, while accounting 
for age of death, sex, PMI and year of education as confounding factors. 
We then applied GSEA to the set of t values of each dendritic spine 
attribute and declared significance at an α of 0.05 with Bonferroni 
correction for the number of GO terms (P < 5 × 10−6).

Module-level association analysis
Let Yij be a n × 1 vector corresponding to neuroimaging estimates of 
a brain attribute (functional connectivity or structural covariation 
between regions i and j) of n participants, Xi and Xj be n × 1 vectors 
corresponding to the average molecular values (protein abundance 
or gene expression level) of members within the synaptic modules 
of regions i and j and C be a n × d confound matrix. We modeled Yij as 
follows: Yij = α0 + Cα + Xiβi + Xjβj + Xi ◦ Xjβij + ϵ, with age at death, age of 
scan, sex, years of education, scanner, postmortem interval and side of 
brain molecular data as acquired and mean framewise displacement as 
confounds. Our primary question is whether Xiβi + Xjβj + Xi ◦ Xjβij can 
significantly explain variance in Yij across participants for i = SFG and 
j = ITG. Considering that the biophysical scale at which proteins reside 
might be far from region-level attributes, we tested whether cellular 
contextualization of these modules can better reveal their association 
with our brain attributes of interest. Accordingly, we extracted the 
dendritic spine component of the synaptic modules by using regres-
sion to fit the average molecular values of their members as responses 
with morphometric attributes of dendritic spines as covariates and 
used these components (that is, the fitted values) as Xi and Xj. To assess 
regional specificity, we fitted the same model with Yij set to brain attrib-
ute values of other region pairs (that is, non-SFG–ITG connections) 
and computed the percentage of other region pairs with lower P val-
ues. For associating with structural covariation, which has nine CCA 
dimensions, we separately fitted the model to each CCA dimension 
and applied the aggregated Cauchy association test (ACAT) to combine  
P values across the nine dimensions94. We opted to use ACAT over 
other P value combination tests because it provably provides optimal 
power in sparse settings94,95, which accentuates the CCA dimensions 
that have a stronger association with the synaptic modules, in contrast 
to, for example, Fisher’s method that weights all dimensions equally. 
In addition to the synaptic modules, we also tested the association 
between other modules and connectivity as an exploratory analysis. 
To aid interpretation as well as reduce the number of statistical tests, 
we used Hungarian clustering to first pair up SFG and ITG modules 
that represent similar systems based on ORs of their gene overlap. We 
then associated each module pair against functional connectivity and 
structural covariation.

Molecule-level association analysis
To find the specific molecules (proteins and genes) associated with 
our brain attributes of interest, we modeled Yij as follows: Yij = α0 + C

α + xmiβmi + Xjβj + xmi ◦ Xjβmij + ϵ, where xmi is a n × 1 vector of molecular 
values (abundance level of protein m or expression level of gene m in 
region i) of n participants. The other variables are as defined in the 
module-level association model. We used this model to avoid testing 
all pairwise combinations of molecules between SFG and ITG (7,7882 
protein pairs or ~12,0002 gene pairs), which limits statistical power. 
We tested for molecules involved in SFG by setting i to SFG and j to 
ITG, and vice versa. We focused on testing the following three terms: 
xmiβmi, xmi ◦ Xjβmij, and xmiβmi + xmi ◦ Xjβmij, that is, effects that do not 
exclusively involve the synaptic modules. We declared significance at 
0.05 with FDR correction over the combinations of molecules, regions 
and effects of interests. We considered a molecule as significant if any 
of the three effects is significant with FDR correction. Considering a 
molecule could be involved in multiple molecular processes, we again 
applied cellular contextualization by substituting the molecular values 
with their dendritic spine components and repeated the analysis. To 
test if cellular contextualization improves association strength, for 
each combination of effect and region, for example, the main effect 
of SFG, we compared the −log10(P) of an effect with versus without cel-
lular contextualization using a permutation test. Let d be a q × 1 vector 
with elements corresponding to the differences in −log10(P) between 
with and without cellular contextualization for q molecules. For each 
permutation, we randomly selected q/2 molecules, flipped the sign of 
their −log10(P) differences and computed the average difference over 
molecules. We repeated this procedure 104 times and computed the 
proportion of times the nonpermuted average −log10(P) difference 
is smaller than the permuted average −log10(P) differences, that is, 
a permutation-based P value. We further performed GSEA33 on GO 
terms and a connectivity-related geneset54 for result interpretation. 
We applied GSEA to the t values of all measured molecules (separately 
for proteins and genes) for each of the three effects on functional 
connectivity (separately for SFG and ITG) and declared significance 
at 0.05 with Bonferroni correction (P < 5 × 10−6). Using t values of all 
measured molecules control for background genes. We considered 
a GO term as significant if any of the three effects is significant. For 
xmiβmi + xmi ◦ Xjβmij, we only have an F value for each molecule. Therefore, 
we approximated a t value for each molecule by taking the square root 
of its F value and multiplying it by the sign of the mean t value of xmiβmi 
and xmi ◦ Xjβmij, that is, taking the sign of the more dominant effect. For 
structural covariation, we only have P values derived by aggregating 
the CCA dimensions. Therefore, for each molecule, we approximated 
its effect direction by averaging its t values on a given effect across the 
CCA dimensions and taking the sign of this average. We used signed 
−log10(P) as input to GSEA.

MetaXcan analysis
To compare our connectivity-associated proteins against previous 
imaging genetics studies, we used a functional mapping approach, 
called MetaXcan55, to convert SNP-level GWAS summary statistics to 
protein level. For each protein m, We first built a model to extract the 
genetic component of its protein abundance: Pm = ΣsϵSm wmsSs + εm, 
where Pm is a n × 1 vector containing the abundance levels of protein 
m; Ss is a n × 1 vector containing the dosage of SNP s; wms is the sth 
element of a lm × 1 model weight vector, wm, to be estimated; and Sm 
is the set of lm SNPs within ±1 Mb from the transcription start site of 
gene m that produces protein m. Following MetaXcan, we estimated 
wms using elastic net regression by applying GLMNET with its default 
settings, that is, tenfold cross-validation to set the sparsity parameter. 
We regressed out confounds including age of death, sex, postmortem 
interval, top three ancestry principal components and top ten protein 
principal components from the protein abundance measurements 
before fitting the models. Given wms, protein level GWAS z score, zm, 
of protein m can be estimated by the following: zm = ΣsϵSm wmsσs/σm × zs, 
where zs is the GWAS z score of SNP s, and σm and σs are the variance of 
protein m, and SNP s, respectively. We built models for SFG and ITG 
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proteins separately and packaged the models into SQLite databases  
(https://doi.org/10.7303/syn52087434) so users can directly use them 
with the public MetaXcan software (https://github.com/hakyimlab/
MetaXcan). We applied MetaXcan with our protein models to a GWAS 
on functional connectivity between SFG and ITG (rfMRI connectivity 
ICA100 edge 849 (ref. 6)) and examined which proteins found associ-
ated with SFG–ITG connectivity in our data show significant genetic 
effects based on zm.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Protein and dendritic spine data are available through https://adknowl-
edgeportal.synapse.org/. ROSMAP resources, including neuroimaging, 
gene expression and genetics, can be requested at https://www.radc.
rush.edu. MS/MS spectra were searched against the UniProtKB human 
proteome database.

Code availability
All analyses described in the Methods used standard MATLAB and R 
functions as well as code provided in referenced publications without 
modifications. Custom code was not generated in this study.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The following software was used for data collection: Proteome Discover software suite (version 2.3), fmriprep (v. 20.2.3), eXtensible 

Connectivity Pipeline (v. 0.0.4 “xcp-abcd”),

Data analysis Data analysis and normalization was performed in: STAR v2.6, Kallisto (v0.46), edgeR 3.42.4, voom/limma 3.56.2, Neurolucida 360 (version 

2.70.1), Minimac3 version 1.0.4, Eagle version 2.3, PLINK 1.9, SpeakEasy 2.0, MATLAB 2023b, Python 3.8.5, R 4.3.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Protein and dendritic spine data available through https://adknowledgeportal.synapse.org/. ROSMAP resources, including neuroimaging, gene expression, and 

genetics can be requested at https://www.radc.rush.edu. MS/MS spectra were searched against the UniProtKB human proteome database.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The individuals who provided data for this study were drawn from the Religious Orders and Memory and Aging Project 

(ROSMAP) studies, which are community-based longitudinal studies of health and aging.  All individuals were 55 year of age 

and extensive testing on entry assures they were cognitively healthy.  See Bennett et al 2018 for more details.  The cohort is 

majority female and in the subset we analyzed 75/98 individuals were female.  Information of subject sex and all other 

variables recorded for these individuals is available upon request through radc.rush.edu  This sample size of individuals with 

neuroimaging and brain omics analysed here was insufficient for division by sex.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

The ROS study enrolls nuns, priests and brothers from across the United States. MAP enrolls lay persons from northeastern 

Illinois.  The individuals in this substudy were 100% Caucasian.  The subset of individuals from both studies in the current 

analysis all resided within driving distance of Chicago, as they were providing brain scans via Rush University.

Population characteristics Average age of death was 89.1 years old, and total years of education are 16.9.    Population characteristics we controlled 

include study (ROS or MAP), sex and age of death and age at scan. 

Recruitment TThe ROSMAP studies primarily recruited from retirement communities and also from Section 8 and Section 202 housing 

subsidized by the Department of Housing and Urban Development, retirement homes, and through local churches and other 

social service agencies serving minorities and low-income elderly. There is really nothing more to say on recruitment, and the 

level of detail provided here is equal to how the studies are represented in hundreds of other publications. It’s not possible 

to fully define self-selection bias, but participants are more highly educated and Caucasian compared to national averages. 

Relative to the ROS study, MAP participants may have different life experiences, as they are not members of Religious 

Orders, and overall lower levels of education. However the cohort was designed to be otherwise compatible in terms of test 

and geography, and years of education is regressed from the data. These aspects of the study are covered in detail in the 

cited references.

Ethics oversight The parent studies and sub-studies were all approved by an Institutional Review Board of Rush University Medical Center and 

all participants signed an informed consent, Anatomical Gift Act, and a repository consent to share data and biospecimens.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample was all individuals who provided both ante-mortem fMRI and post-mortem brain proteomics.  This cohort size is consistent with 

that necessary for robust neuroimaging and human brain molecular biology effects from a broad population. 

Data exclusions We only included subjects with RNAseq, proteomics, dendritic spine morphology, and neuroimaging data as well as their corresponding 

confounding variables.

Replication As there is no other cohort that has paired fMRI and brain proteomics, we replicated findings by incorporating gene expression, and also 

structural neuroimaging in this same cohort which showed related and sometimes stronger effects as the main fMRI-protein tests. We also 

utilize genetic effects to provide replication, comparing an external GWAS for functional connectivity between our regions of interest with our 

data, which show significant overlap (see text for detailed analysis).The structural MRI scans and gene expression data were collected from 

the same subjects from whom we collected fMRI and protein data. The GWAS data was generated from an independent cohort.

Randomization We compare continuously distributed phenotypes (neuroimaging and omics), with no binarization or binning.

Blinding Neuroimaging was performed prior to any brain omics, and hence intrinsically blinded, while proteomics were assays by investigators with no 

access to neuroimaging data, and even prior to the neuroimaging data being processed, so they were also blinded.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 

quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 

information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 

studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 

predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 

rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 

what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 

computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 

whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 

cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 

participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 

allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 

hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 

these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 

indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 

blinding was not relevant to your study.

Did the study involve field work? Yes No
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 

compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 

vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.
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Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 

provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 

caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 

say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 

Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 

numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 

performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 

photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 

was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 

in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 

provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 

enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and 

lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 

used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 

repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 

samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type resting state

Design specifications Subjects were instructed to lie at rest as we performed fMRI scans.

Behavioral performance measures The subjects were not performing any task, hence we did not measure behavioural performance.

Acquisition

Imaging type(s) functional; structural

Field strength 1.5 and 3.0T

Sequence & imaging parameters Resting state fMRI BOLD data were acquired on multiple scanners: 1.5T GE Signa scanner (5 mm3 resolution, TR/

TE=2000/33 ms, flip angle 85°), 3T Siemens Magnetom TrioTim syngo (3.3 mm3 resolution, TR/TE=3000/30 ms, flip 

angle 80°) and 3T Philips Achieva Quasar TX (3.3 mm3 resolution, TR/TE=3000/30 ms, flip angle 80°). Further details on 

scanner protocols can be found at https://www.radc.rush.edu/docs/var/scannerProtocols.htm.

Area of acquisition whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software cuBIDS was used to identify and investigate scans with deviant parameters. fmriprep (v. 20.2.3)5 was then applied to realign 

and slice-time correct the fMRI volumes, with distortion correction further performed if accompanying fieldmap volumes 

were available.

Normalization The fMRI volumes were co-registered to their corresponding T1 volumes using FLIRT.

Normalization template All fMRI and T1 volumes were spatially normalized to MNI152 template. 

Noise and artifact removal The fMRI timeseries underwent confound regression using the eXtensible Connectivity Pipeline (XCP; https://github.com/

PennLINC/xcp_d)6 (v. 0.0.4 “xcp-abcd”) with the 36p+Despike model. In brief, bandpass filtering between 0.01 and 0.08 Hz 

was applied, followed by despiking with AFNI8 and regression of 36 parameters from the timeseries. Regressors included six 

motion attributes derived during realignment, global signal, and two physiological parameters, as well as their derivatives, 
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squares of derivatives, and quadratic terms. Additionally, mean framewise displacement was calculated for each subject and 

used to account for any residual effect of head motions in subsequent analysis.

Volume censoring Scans with excessive motion or distortion were excluded and remaining motion effects regressed out.

Statistical modeling & inference

Model type and settings We used mainly univariate linear regression models. Canonical correlation analysis and elastic net regression were also used.

Effect(s) tested Association between omic data and resting state fMRI-based connectivity estimates (as well as MRI-based structural 

covariation as replication). No task or stimulus was involved.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

t-values and p-values from linear regression were used for inferring associations between omic and neuroimaging data.

Correction FDR correction for all effects in the regression models.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson's correlation

Graph analysis We did not perform graph analysis in terms of extracting graph properties, such as node degree, 

betweenness centrality, 

clustering coefficients etc. for this study.
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