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Brain connectivity arises frominteractions across biophysical scales, ranging
frommolecular to cellular to anatomical to network level. To date, there has
beenllittle progress toward integrated analysis across these scales. To bridge
this gap, froma unique cohort of 98 individuals, we collected antemortem
neuroimaging and genetic data, as well as postmortem dendritic spine
morphometric, proteomic and gene expression data from the superior frontal
and inferior temporal gyri. Through the integration of the molecular and
dendritic spine morphology data, we identified hundreds of proteins that
explaininterindividual differences in functional connectivity and structural
covariation. These proteins are enriched for synaptic structures and functions,
energy metabolism and RNA processing. By integrating data at the genetic,
molecular, subcellular and tissue levels, we link specific biochemical changes
at synapses to connectivity between brain regions. These results demonstrate
the feasibility of integrating data from vastly different biophysical scales to
provide amore comprehensive understanding of brain connectivity.

Along-standing goal of neuroscience is to understand how molecules
and cellular structures at the microscale give rise to communication
betweenbrainregions at the macroscale. However, thereisadisconnect
between molecular biology and neuroimaging that hinders progress
toward this goal. A paradigm shift would be to collect postmortem
omics data alongside antemortem neuroimaging data from the same
set of individuals. In this way, molecular levels can be tied to the func-
tional and structural properties of the brain. Establishing such associa-
tionsisimperative for translation from humans to experimental model
systems that could better recapitulate neurologic health and disease.

Both molecular and neuroimaging studies have independently
identified correlates of brain function and cognition, but the search
for the molecular basis of functional connectivity is nascent. Recent
neuroimaging genetics studies are beginning to address the question
of which molecules are most related to functional connectivity' ™.
However, despite thousands of samples, these studies have found
only a dozen independent genetic loci with modest heritability®’.
Most of those genetic variants reside in noncoding regions, making it
difficult to determine theimplicated genes and mechanisms of action.
Another class of studies tests for spatial correspondence between gene
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expression and brain connectivity to infer the implicated genes® ™.

These studies typically combine the Allen Human Brain Atlas (AHBA)",
which contains gene expression profiles in hundreds of brain regions
from six individuals, with functional magnetic resonance imaging
(fMRI) data from an entirely separate cohort. Such data combina-
tions cannot examine the covariation between gene expression and
functional connectivity in a broader population. Representing such
covariation is critical for identifying molecules that explain individ-
ual variation in functional connectivity and the associated cognitive
phenotypes™.

Inthis study, we gathered data types that span multiple biophysical
scalesfromacohortof 98 individuals. Datatypesincluded resting-state
fMRI, structural MRI, genetics, dendritic spine morphometry, proteom-
icsand gene expression measurements from postmortem tissues of the
superior frontal gyrus (SFG) and inferior temporal gyrus (ITG). Based
onthestability of functional connectivity patterns withinindividuals®”,
we hypothesized thatitis possible to combine postmortem molecular
and subcellular data with antemortem neuroimaging data from the
sameindividuals to prioritize molecular mechanisms underlying brain
connectivity. To test this hypothesis, we built models that integrate
protein measurements with dendritic spine morphometry to explain
between-individual variation in functional connectivity. As a form of
replication, we repeated the analysis using gene expression measure-
ments in place of protein abundance and structural covariation as a
surrogate of connectivity.

Results

Multimodal humanbrain data

Tomodel how molecules at the microscale give rise to brain connectiv-
ity at the macroscale, we collected data that span multiple biophysical
scales (Fig. 1) as part of the Religious Orders Study and Rush Memory
and Aging Project (ROSMAP)'. Data types included genetics, gene
expression, protein abundance, dendritic spine morphometry and
neuroimaging measurements. Ninety-eight ROSMAP participants had
all these data types measured. The average age of these participants
atthetime ofthe MRIscanand death was 88 + 6 yearsand 91 + 6 years,
respectively, with anaverage time interval between the MRIscanand the
ageatdeath of 3 + 2 years. The average postmortem interval (PMI) was
8.5+ 4.6 h. Participants were 77% female and had 15 + 3 years of educa-
tion. We performed detailed characterization of each omic, cellular and
neuroimaging datatype and then integrated them as described next.

Neuroimaging phenotypes

Following current best practices, we organized the neuroimaging data
from1,210 ROSMAP participants into the brainimaging data structure
(BIDS)", which we validated using CuBIDS™ (Fig. 2a). For the fMRI data,
we performed standard preprocessing, such as slice-time correction
and spatial normalization, and regressed out motion confounds'. We
made the fMRI data and their derivatives in BIDS as a free resource at
radc.rush.eduto ease datasharing and re-analysis by interested inves-
tigators. To estimate functional connectivity, we first used a functional
atlas comprising 100 parcels generated from resting-state fMRI data
of more than1,000 participants® to divide the braininto functionally
homogeneous regions. We then averaged the time series of voxels within
each parcel (Fig. 2b) and computed Pearson’s correlation between all
pairs of parcels for each participant (Fig. 2b). For the structural MRI
data, we performed nonuniformity correction, skull-stripping, spatial
normalization and tissue segmentation. We then divided the braininto
62 anatomical regions using the Desikan-Killiany-Tourville (DKT)*
atlas (Fig. 2d) and extracted structural attributes™ (Fig. 2e). To estimate
structural covariation as a surrogate of brain connectivity, we adopted
acanonical correlation analysis (CCA) approach (Supplementary Fig.1).
The motivation was based on the observation that multiple structural
attributes (for example, number of vertices, surface areaand curvature
index) are typically cross-correlated between two regions (Fig. 2f).

Molecular measurements

We performed multiplextandem mass tag mass spectrometry (TMT-MS)
on tissue samples from SFG and ITG of 130 ROSMAP participants to
generate proteomic data and applied standard preprocessing® . To
identify the major molecular systems presentin eachbrainregion, we
clustered the measured proteinsinto covarying sets (modules) using a
purely data-driven approach (Fig.3a)*. The modules are enriched for
many brain-relevant structures and functions (Fig. 3b,c)” that are con-
sistent with related datasets***’, Comparing SFG and ITG, we observed
some common molecular systems with high protein overlap between
theirmodules (Fig.3d). In addition to protein abundance, we also col-
lected RNA sequencing (RNA-seq) datafrom SFG and ITG of the same set
of ROSMAP participants. We performed standard preprocessing, such
as TMM normalization and confound regression with voom/limma,
and clustered the measured genes into modules®. These expression
modules are also enriched for brain-relevant structures and functions
(Supplementary Fig. 2), and we again observed common molecular
systems between SFG and ITG with high gene overlap.

Dendritic spine morphometry

Dendritic spines are actin-rich protrusions along neuronal dendrites
that form the majority of excitatory synapses in the brain. Spines can
exhibit remarkable variability in size, shape and density, and synapse
activity is inseparably linked to spine morphology®. Spines can be
dividedintomorphological subclassesbased on their three-dimensional
(3D) structure as thin, mushroom, stubby or filopodia®-**. To measure
spine density and morphology from SFG and ITG, we impregnated
postmortem tissue slices with Golgi stain and imaged at x60 using
awidefield microscope with a high-numerical-aperture condenser
(Fig. 4a). We then reconstructed the Zstacks in 3D using Neurolucida
360 (Fig.4b,c). We sampled between 8 and 12 pyramidal neurons from
either cortical layer Il or Il per individual for analysis and estimated
average spine density, backbone length, head diameter and volume
across the reconstructed dendrites (Fig. 4d,e and Supplementary
Fig.3). We also estimated these spine attributes for each morphologic
subclass—thin, mushroom, stubby and filopodia. Next, we associated
each spine attribute against each measured protein (Supplementary
Table1) and applied geneset enrichment analysis (GSEA)*. Spine den-
sity and morphological attributes were enriched for relevant neuron
structures, such as synapses and the actin cytoskeleton, as well as func-
tions, including synaptic signaling and neurotransmitter release’*>*
(Fig. 4f). Notably, we found the level of enrichment varies across den-
dritic spine subclasses. Comparing the spine density and morphology
between SFG and ITG (Fig. 4g) revealed differences in overall spine
density (P=0.0310), filopodia density (P=0.0038) and mushroom
spine head diameter (P=0.0060).

Protein modules covary with connectivity when
contextualized with dendritic spine morphology

Fundamental to brain connectivity at the macroscale are molecular sub-
processesrelated to synapticcommunication. Accordingly, we focused
ouranalysis on protein modules most enriched for neurons and various
synaptic communication gene ontology (GO) terms (Supplementary
Fig. 4 and see SFG pMod6 and ITG pMod8 in Supplementary Table 2).
Werepresented the synaptic module of each brain region by the average
protein abundance of its members. To avoid association introduced
by spurious correlation, we account for confounding factorsincluding
age atdeath, age of scan, sex, years of education, scanner, postmortem
interval, side of the brain the molecular data were acquired and motion
(Supplementary Fig. 5) using the extra sum of squares in testing if the
synaptic modules of SFG and ITG (their main effects and interaction
inaggregate) are associated with an fMRI estimate of their connectiv-
ity (Fig.1). This initial test did not detect an association between the
synaptic modules and SFG-ITG connectivity (P = 0.6839), and this
observation holds true for other modules (Supplementary Fig. 6)
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that were generated at various module resolutions and by different
algorithms (whether SpeakEasy (SE) or the widely used weighted gene
co-expression network analysis (WGCNA)*). Based on this observation,
we posited that proteinsreside at abiophysical scale that might be too
far removed from region-level functional connectivity. Considering
dendritic spines are tightly coordinated with synaptic function and
evensubtlealterationsin spine morphology caninduce marked effects
on neuronal circuits®**®, we hypothesized that morphologic attributes
of dendritic spines could provide the cellular context to bridge the
difference in biophysical scales between proteins and region-level
connectivity. To test this hypothesis, we estimated the dendritic spine
component of the synaptic modules by fitting the average protein
abundance of their members with dendritic spine attributes (Fig. 5a-c)
andrepeated the analysis. Using the dendritic spine component of the
synaptic modules resulted in an association with SFG-ITG connectivity
(P=0.0174;Fig.5d). We next sought to test whether the association was
specific to the SFG-ITG connection. Such a test would lend credence
and determine the extent to which connectivity across the braincanbe
explained by dendritic spines and proteins gathered from SFG and ITG.
Accordingly, we associated the dendritic spine component of SFG and
ITG synaptic modules with the connectivity of all other region pairs. We
found only 3% of other connections have higher association strength
(Fig. 5e), and these connections generally emanate from either SFG
anditsnearby areasin the frontal cortex or fromITG. This result likely
reflects how spatially proximal areas tend to have similar functional
and molecular architectures®**. Moreover, the interaction between the
synaptic modules of SFG and ITG explains additional variance beyond
their main effects (P=0.0140), with only 1.5% of other connections
showing stronger interaction effects. This result suggests that not only
is the synaptic module of each region individually linked to SFG-ITG
connectivity butalso the collective molecular state of these regions has

arole. Asan exploratory analysis, we further tested the other modules
and found the dendritic spine component of modules predominantly
enriched for RNA processing, mitoribosome and synaptic vesicles are
also associated with functional connectivity (Supplementary Fig. 7).

Replication of module-level results with structural covariation
and gene expression

Due to the interplay between functional connectivity and structural
morphologies®*?, we repeated the above-mentioned analysis with
an MRl estimate of structural covariation between SFG and ITG as the
outcome. Similar to the functional connectivity results, we did not find
anassociation between SFG-ITG structural covariation and the synaptic
proteinmodules (P=0.8815) unless we honed into the dendritic spine
component of the synaptic protein modules (P = 0.0034; Fig. 5f). We
also observed regional specificity, with only 0.4% of other brain region
pairs showing stronger association (Fig.5g). Furthermore, theinterac-
tion effectis significant (P=0.0203), withonly 3% of other brainregion
pairs showing stronger effects. The significant associations with the
same synaptic protein modules suggest that functional connectivity
and structural covariation are likely to share molecular processes. As
an exploratory analysis, we tested the dendritic spine component of
other modules and found no association with structural covariation
(Supplementary Fig. 7).

We furtherrepeated the analysis with synaptic expressionmodules
in place of synaptic protein modules as replication. The synaptic mod-
ules built fromgene expression data (Supplementary Fig. 8 and see SFG
eMod5 and ITG eMod4 in Supplementary Table 3) contain genes that
highly overlap with members of the synaptic protein modules (odds
ratio (OR) =2.92, P=2.71x107* for SFG and OR=2.53, P=5.14 x 107
forITG) and are most enriched for neurons among expression modules
(Supplementary Fig. 8). Similar to the protein module results, we did

Nature Neuroscience | Volume 27 | November 2024 | 2243-2255

2242


http://www.nature.com/natureneuroscience

Resource

https://doi.org/10.1038/s41593-024-01788-z

a b c
Datalad
(reproduciblity wrapper) m
. (A \ ﬂh
£
] BIDS
a : .
S (universal directory structure)
4 SFG connectlons
IS
g | cuBiDS
° (data and parameter
3 completeness check)
c 12}
K] K]
2 o
é fMRIprep 8 &
<] (slice timing correction and e ] w
S | spatial normalization) g K} 10
= 3 5 3
k1ol c Q
o} S c
S = g
XCP 5 Rt AAA A AN At AAA A AMAANNN ks
# (confound regression) _§ =
N
3]
I
ROSMAP neuroimaging
resource (RNR) (Other parcels over time)
d e f
Structural
measures SFG structural properties
Area features 4/(/
s,
GG
Depth features Q.
C) >

Inner layer

T1volumes
(DTK atlas overlaid)

ITG structural properties

Fig.2|Functional and structural neuroimaging phenotypes. a, Preprocessed
functional and structural MRI data organized into a free resource for data
sharing. This process involved curation (BIDS), assessment of aberrant
acquisition parameters (CuBIDS), preprocessing (fMRIprep) and confound
regression (XCP). b, Mean time series of hemodynamic fluctuations within brain
regions from which we also measured proteomics, RNA-seq and dendritic spine

W

Outer cortex layer

Curvature
features

Freesurfer
measures

N
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being of primary interest. d, Structural MRI data were collected during the
same scan sessions in which we acquired fMRI data. e, Freesurfer was applied to
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not find an association between SFG-ITG connectivity and synaptic
expression modules (P =0.0532) unless we focus on the dendritic
spine component of the synaptic expression modules (P=0.0396).
The observed regional specificity with protein abundance modules
is also evident with gene expression modules in line with previous
transcriptomic studies™****, with only 2% of other connections dis-
playing stronger association (Supplementary Fig. 9a). However, we
didnot observe aninteraction effect (P=0.4824). When we associated
SFG-ITG structural covariation with synaptic expression modules, we
again did not find an association (P=0.9705) unless we honed into their
dendritic spine component (P=0.0234). Regional specificity is lower
compared to synaptic protein modules, with 14% of other brain region
pairs showing stronger association (Supplementary Fig. 9b), and we
did not observe an interaction effect (P=0.2538). As an exploratory
analysis, we further tested the other modules and found the dendritic
spine component of modules predominantly enriched forimmune sys-
tems to be also associated with functional connectivity and structural
covariation (Supplementary Fig. 7). Overall, these results show that the

expression datareplicate the associations between the dendritic spine
component of synaptic modules and both functional connectivity and
structural covariation, but with weaker interaction effects compared
to protein data. More broadly, the results mentioned above indicate
the benefits of cellular contextualization by using dendritic spine
morphometry to bridge systems at the molecular level to connectivity
atthebrainregionlevel.

Individual molecules associated with connectivity

The associations presented thus far are at the level of modules, which
comprise hundreds of proteins and genes. To prioritize specific proteins
amongthe 7,788 measuredin eachregion, we modeled SFG-ITG connec-
tivity by the main effect of each proteininagiven region, the main effect
of the synaptic protein module in the other region and the interaction
between the given protein and the synaptic protein module. We used
this strategy to avoid the limitation on statistical power in testing all
pairwise combinations of 7,788 proteins between the two brain regions.
We prioritized proteins in each brain region based on the following
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three effects: the main effect of each protein, its interaction with the
synaptic protein module and these two effects combined. We declared
significance at an a of 0.05 with false discovery rate (FDR) correction
acrossall proteins, regions and effects tested. For result interpretation,
we applied GSEA® to the summary statistics of each effect.
Analogous to the module-level results, we did not find an associa-
tion between SFG-ITG connectivity and the abundance of any proteins

without cellular contextualization (Supplementary Table 4). Therefore,
we fitted each protein with all spine attributes in aggregate to extract
the dendritic spine component. For 99% of the proteins, the dendritic
spine fits have R*> 0.1 (Fig. 6a). Grouping the proteins based on the
partial R? of the spine attributes resulted in clusters that well relate
to processes supporting synaptic transmission (Fig. 6b,d). Notably,
we observed distinct partial R? profiles across the clusters (Fig. 6¢),
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suggesting that the dominant attributesin the dendritic spine fits vary
across proteins. Whenwe repeated the protein-connectivity association
analysis with the dendritic spine component, the association strength
became stronger (Fig. 7a; P <10 for all three effects in both SFG and
ITG), and we detected 87 SFG proteins and 344 ITG proteins (Supple-
mentary Table 4). Overlapping these proteins with proteinmembers of
clusters derived from dendritic spine fits (Fig. 6b-d) shows that both
spine density and morphologies contribute to connectivity-associated
proteins. Applying GSEA to the protein-connectivity association sta-
tistics (based on the dendritic spine component) found SFG proteins
tobe predominantly enriched for GO termsrelated to synapse, energy
metabolism and RNA processing (Supplementary Table 5). Detected
SFG proteins include limbic system-associated membrane protein
(LSAMP)*, NAPB*¢, KCNIP3 (ref. 47) and PANX1 (ref. 48), which are
involved in cell surface channel biology at synapses. Similarly, the
protein-connectivity association statistics for ITG are enriched for
GO terms related to synapse, energy metabolism and RNA process-
ing (Supplementary Table 5). Detected ITG proteins include LYNX1,
NRNI1, Pleckstrin and Sec7 domain containing 2 (PSD2) and RAB11A.
Like LSAMP, LYNX1 and NRN1 are glycosylphosphatidylinositol
(GPI)-anchored proteins that mediate neuronal receptor activity at
excitatory synapses*”*°. Like NAPB, PSD2 and RAB11A are critical for
intracellular signal transduction and protein transport at synapses*~.
These findings indicate that while the enriched GO terms of SFG and
ITG overlap (OR=48.01, P=1.77 x107*; Fig. 7b), their detected proteins
are different (Supplementary Fig. 10).

To further probe the relationship between brain function and
structure, we repeated the analysis with SFG-ITG structural covariation
as the outcome. In contrast to functional connectivity, even without
cellular contextualization, we found 72 SFG proteins and 171ITG pro-
teins associated with SFG-ITG structural covariation (Supplementary
Table 4). Nevertheless, focusing on the dendritic spine component
increased association strength (Fig. 7c; P< 107 for all effects tested
except for the main effect of ITG proteins) and detected 625 SFG pro-
teins and 1204 ITG proteins (Supplementary Table 4). These proteins
overlap with proteins detected without cellular contextualization
(OR=3.61,P=3.94 x10for SFGand OR =4.60, P= 6.75 x 10°for ITG).
The greater number of proteins associated with structural covariation
compared to functional connectivity could be due to how anatomical
structures are more stable over time. Hence, the antemortem T1scans
would better reflect the brain states at time of postmortem omic acqui-
sition. The ranking of GO terms is again similar between SFG and ITG
(OR=215.83, P=9.25x107*; Fig. 7d). Notably, the enriched GO terms
aresimilar to those found with functional connectivity as the outcome
(OR=125.73,P=4.68 x 10> for SFGand OR =231.90, P=2.86 x 10 * for
ITG; Supplementary Table 5), with18 SFG proteins and 32 ITG proteins
incommon (Fig. 7e). These findings provide validity for our detected
protein-connectivity associations and indicate that certain molecular
processes can explain variance in both functional connectivity and
structural covariation.

Next, we repeated the analysis with gene expression data, and
the overall trend was similar to the results obtained with the protein
abundance data. We did not find any genes associated with SFG-ITG
connectivity without cellular contextualization (Supplementary
Table 6). When we focused on the dendritic spine component of gene
expression, the association strength became higher (P <10 for all

tested effects except for the main effect of SFG genes). We identified 1
SFGgene and 324 ITG genes. The enriched GO terms are predominantly
related to synapses, energy metabolism and RNA processing (Sup-
plementary Table 7), similar to those found with protein abundance
(OR=29.67, P=1.58 x 10~* for SFG and OR = 6.61, P=2.56 x 107%° for
ITG). However, the ranking of individual genes by association strength
doesnotalign withthat of individual proteins (Supplementary Fig.11).
Whenwe used structural covariation as the outcome, we found an asso-
ciation with 130 SFG genes and 18 ITG genes without cellular contextu-
alization. Nevertheless, we detected more genes (1,023 SFG genes and
248ITG genes) and observed higher association strength (P<10™*for all
tested effects except for the main effect of SFG genes with P=0.0178)
when we focused on the dendritic spine component of gene expres-
sion. The enriched GO terms for gene expression overlap with those
found for protein abundance (OR = 66.57, P=7.29 x 107 for SFG and
OR=164.97,P=2.66 x 10" for ITG), but the ranking of individual genes
and individual proteins do not align (Supplementary Fig. 12). Func-
tional connectivity and structural covariation share common GO terms
(OR=68.80, P=1.46 x10™* for SFG and OR =13.18, P=6.91x 107" for
ITG), but with little overlap at the gene level (Supplementary Fig. 13).
Overall, our results show consistency between protein abundance
and gene expression at the molecular function level, despite the lack
of overlap betweenindividual proteins and genes. Thisis likely due to
the low correlation between mRNA level and protein abundance of
the same gene®.

Imaging transcriptomic and genetic support for connectivity
molecules

To place our connectivity-associated proteins and genes in context with
otherimaging transcriptomic studies, we compared with genes previ-
ously found by combining the AHBA with fMRI data of other cohorts™.
The 125 AHBA connectivity-related genes do not place highly among
our proteins ranked by their effects on connectivity (Supplementary
Fig.14), possibly due to post-transcriptional regulation, which limits
the correlationbetween mRNA level and protein abundance of the same
gene®, Those genes are only enriched among ITG genes ranked by their
interaction effects (P=0.01, based on GSEA). Thisresult suggests that
the generic set of genes found by correlating spatial patterns of gene
expressionin AHBA with functional connectivity estimated from other
cohorts has only mild overlap with genes found by modeling covari-
ation between gene expression and SFG-ITG connectivity within the
same set of individuals.

Finally, we compared the connectivity-associated proteins and
genes found herein with previous imaging genetics studies. The largest
related GWAS® found four independent loci (EPHA3, DPP4, FBXO11 and
ZNF326) that are associated with SFG-ITG connectivity (rfMRI con-
nectivity ICA100 edge 849). These loci were derived by spatially map-
ping genome-wide significant genetic variants to their closest genes.
Among the four loci, EPHA3 shows the highest heritability in the edge
849 GWAS, and the dendritic spine component of EPHA3 expression
displays nominal association with SFG-ITG connectivity in our data
(P=0.0192for SFG main effect and P = 0.0140 for ITG main effect). We
could not perform the same analysis for protein abundance because
tryptic peptides from EPHA3, DPP4, FBXO11 and ZNF326 were not meas-
ured inour dataset. Instead, we assessed our found proteinsin relation
to the edge 849 GWAS through a functional mapping approach. For

Fig. 4 |Measurement of dendritic spines with protein-based functional
characterization. a, Representative x60 bright-field image of a Golgi-stained
dendrite from ITG of an exemplar participant. Scale bar =10 pm. b, Digital 3D
reconstruction of the dendritic segment performed on the bright-field image.

¢, Digital 3D reconstruction used for estimating spine density and morphometric
attributes, including head diameter, length and volume, and assigning
subclasses. Blue indicates thin spines, green indicates mushroom spines,

red indicates stubby spines and yellow indicates filopodia. d, Representative

zoomed-in bright-field image of a single Golgi-impregnated thin spinein the xy
plane (red box from c). e, Left to right, 3D digital reconstruction of the dendrite
(gray) and spine (green) in the xy plane, clockwise rotation in xyz dimensions and
further rotation inxyz. f, Each spine attribute was associated against all proteins
measured from the same region with enriched GO terms indicated (SFGingreen
andITGinblue).g, Tvalues of contrasts between SFG and ITG for each spine
morphologic attribute are shown, with *indicating nominal differences.
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Fig. 5| Associations between protein modules and brain connectivity.

a, Protein abundance of SFG synaptic module plotted against its dendritic spine
fit. Each dot corresponds to an individual and the red dashed line corresponds
to the linear fit between protein abundance and the dendritic spine fit values of
theindividuals. b, ITG counterpart of a. ¢, Partial contribution of each attribute
toward the dendritic spine fit. d, Functional connectivity (with confounds
regressed out) fitted by the dendritic spine component of SFG and ITG synaptic
protein modules. Each red dot corresponds to the functional connectivity
value of anindividual with the red line visualizing how far it is from the fitted
surface. The large curvature indicates a strong interaction effect of the modules

on functional connectivity. e, SFG-ITG connection and other connections

with stronger association strength between functional connectivity and

the dendritic spine component of synaptic protein modules displayed.
Different color dots correspond to different brain regions. In total, 3% of other
connections showed higher association strength. Connections emanating from
SFGorITG are displayed in red. Other connections are displayed in yellow.

f, Structural covariation counterpart of d. g, Structural covariation counterpart
of e.Intotal, 0.4% of other connections showed higher association strength
between structural covariation and the dendritic spine component of synaptic
protein modules.

eachbrainregion, we built protein prediction models to combine the
effects of genetic variants that are proximal to each protein®’, We then
applied these modelsto the summary statistics of the edge 849 GWAS to
test whether the genetic component of the proteinsis associated with
edge 849.Overall, the genetic component of both SFGand ITG proteins
was not associated with edge 849 after FDR correction (Supplementary

Table 8), likely due to limited heritability in edge 849. Accordingly, we
focused onthe genetic effects of our found proteins. For SFG, 3,339 pro-
teins have adequate heritability for model construction. Among these
3,339 proteins, the dendritic spine component of 33 proteins is associ-
ated with SFG-ITG connectivity in our data (FDR-corrected P< 0.05).
Among those proteins, the genetic component of two proteins, NGB
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Fig. 6 | Characterization of dendritic spine fits of proteins. a, R* of the
dendritic spine fits of all measured proteins. b, SFG proteins clustered by
applying SpeakEasy2 to the partial R? of the spine attributes. Each functional
label was assigned based on the most enriched GO terms of each cluster. The

Pvalues correspond to the overlap between functional connectivity-associated
proteins and protein members of each cluster. ¢, Partial R? of each dendritic spine
attribute averaged over proteins of each cluster. Partial R? profiles of SFG (green)
and ITG (blue) were aligned using Hungarian clustering. d, ITG counterpart of b.

(P=0.0219) and POLR2J (P=0.0423), display nominal associations with
edge 849.For theITGregion, 3,445 proteins have adequate heritability
for model construction. Among these 3,445 proteins, the dendritic
spine component of 147 proteins is associated with SFG-ITG connec-
tivity in our data (FDR-corrected P < 0.05). Among those proteins, the
genetic component of 11 proteins, including NRN1 (P = 0.0456), displays
nominal associations with edge 849. These results provide further
support for some of the protein-connectivity associations found in
our data. The repeated detection of NRNI (ref. 56), or neuritin, at the
DNA and proteinlevel, suggests that this secreted neuropeptide hasa
critical role in synaptic biology in supporting brain connectivity of ITG.

Discussion

A central goal of neuroscience is to develop an understanding of the
brainthat ultimately describes the mechanistic basis of human cogni-
tionand behavior. Independent studies are contributing to an exquisite
‘parts list’ of molecules, cell types and brain structures®>’, but how
these parts cohere into human cognitive function remains obscure. This
research challenge is analogous to assembling ajigsaw puzzle without
seeingtheimage on the box. Research struggles with proto-clusters of
insightful pieces that are difficult to orient with respect to each other,
especially when these pieces reside on different biophysical scales. To
help bridge this gap, we gathered and analyzed brain omics, and cellular
and neuroimaging data from the same set of 98 individuals. Focusing
onthe connection between SFG and ITG from which we acquired omic
and cellular data, we showed that molecular measurements likely cap-
ture many properties beyond brain connectivity. Hence, only when we
restricted to their components related to dendritic spine morphology
were we able to establish associations with SFG-ITG connectivity. With
this approach, we found molecules and molecular modules enriched
for synaptic structures and functions, mitochondria-based energy
metabolismand RNA processing, in line with known biology. Notably,
beyond listing connectivity-related molecules, our study has broader
implications in that it demonstrates the feasibility of detecting syn-
chrony among systems of different scalesin humans, which constitutes
astep toward amore coherent understanding of brain function. Practi-
cally, thisintegration across scales could help address the long-standing
challenge of brain drug discovery, in which promising molecules from
cellular assays fail to influence cognitive traits.

As our study is distinctive and there are no other human data-
sets containing such paired brain omics and imaging data, we used
consistency among data types that span different biophysical scales
as a way to validate any observed synchronization. We showed that
the same synaptic protein modules can explain between-participant
variability in both functional connectivity and structural covariation
andreplicated this finding with synaptic expression modules. We also
found hundreds of proteins associated with functional connectivity,

asubset of which is associated with structural covariation, and again
we showed similar trends with gene expression data. Notably, all found
associationsare enriched for similar cellular structures and molecular
processes. We further showed that the genetic component of adozen
found genes is associated with connectivity, suggesting potential
causal roles of these genes. As acommon consideration with fMRI is
the stability of its detected effects®>*', we accordingly performed all
data preprocessing and normalization in a highly reproducible and
stringent fashion and used the more stable structural neuroimaging
datatoreplicate our findings.

Dendritic spines are tiny protrusions along neuronal dendrites
that participate in most excitatory synapses in the brain. The head of
the spine structurally supports the postsynaptic density, which collects
the essential machinery for postsynaptic neurotransmission’*®2, These
actin-rich structures are plastic and alter their shape in congruence
with synaptic activity and plasticity, including long-term potentia-
tion’. These facets of spine biology were recapitulated in our GSEA
of spine-protein associations (Fig. 4f), which linked actin-related and
postsynaptic elements to spine morphological attributes, matching
known neurobiology. Also, the enrichment for synaptic signaling
and neurotransmitter release is consistent with the hypothesis that
multiple aspects of spine morphology have functional consequences.
The dominant spine attributes contributing to the dendritic spinefits
varied across the connectivity-related proteins (Fig. 6¢). Notably, spine
density, which reflects the capacity for excitatory neurotransmission
and hence presumably links to connectivity, is not the only dominant
attribute, but spine morphological attributes also dominate for certain
proteins. Although our found associations between molecules and
connectivity do not describe or depend on mesoscale mechanisms
betweenspines and fMRIsignals, one major theory of fMRIgeneration
relates to local field potentials (LFP)®*. LFPs are generated from synap-
tic transmission, which uses dendritic spines, so their involvement in
large-scale signal generationis logical and plausible.

Applying GSEA to the protein-connectivity associations found
enrichment for synaptic function, mitochondria-based energy metabo-
lism and RNA biology (Figs. 6b—d and 7e). The enriched processes are
consistent with normal synaptic function, which requires energy and
local RNA translation. For instance, releasing and recycling synaptic
vesicles at the axonal presynapse are energy-demanding mechanisms
that are mediated by Ca** levels. Mitochondrialocalized to presynaptic
terminals are positioned to buffer Ca? through the mitochondrial
matrix and meet metabolic energy needs by producing adenosine
triphosphate®. In contrast, postsynaptic mitochondria are typically
positioned in the dendrite rather than localized inside the dendritic
spine®. While the function of postsynaptic mitochondria is less well
characterized, these organelles are commonly hypothesized to support
the energy needs of multiple spines in proximity to the mitochondrial
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location in the dendrite®®. Furthermore, synaptic plasticity partly
depends on local protein synthesis, in which mRNA-binding proteins
have a large role, especially localization and translation of mRNA fol-
lowing synaptic demand®’.

Our analysis revealed several GPl-anchored proteins that are
functionally similar and localized to the synapse, including LSAMP,
LYNX1and NRN1(Supplementary Table 4). LSAMP is expressed widely
through the adult brain, and human genetics studies as well as work
inrodent models suggest that LSAMP influences emotional behavior,
possibly contributing to mood disorders®®. LSAMP is predicted to
facilitate axon targeting to dendrites®” and is considered a putative
therapeutic target for neuropsychiatricillness®. Similarly, LYNX1local-
izes to synapses throughits GPlanchor and interaction with nicotinic
acetylcholine receptors. LYNX1is hypothesized to maintain abalance
between excitatory and inhibitory circuits in the mouse visual cortex
ofthe adultbrain’. Like the others, NRN1, or candidate plasticity gene
15 (CPG15), is a synaptic activity-regulated gene whose expression is
experience-dependentinthe adult brain. NRN1anchorsto the surface
of synaptic structures, regulating the generation of dendritic spines
and synapse maturation”. Recent findings in older adults indicated a
beneficial role for NRN1in synaptic preservation and maintenance’”.
NRNL1is a neurotrophic factor, and given the small size of its secreted
form (-11 kDa), may be an attractive therapeutic target. Another set
of functionally overlapping proteins between SFG and ITG converge
atintracellular signaling pathways within dendritic spines. NAPB, or
N-ethyl-maleimide-sensitive fusion attachment protein 3, interacts
with a-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)
receptors and functions as a molecular chaperone to facilitate pro-
cessing of AMPA receptors at the postsynapse*®. PSD2, also known as
the exchange factor for ARF6 (EFA6) isoform C, binds phospholipids
and is localized to endo-lysosomal compartments at the postsyn-
apse*. Past studies have identified PSD2 as a candidate risk gene for
age-related memory disorders’™”, While all these proteins areinvolved
in connectivity-relevant processes, additional studies are required to
mechanistically investigate how fluctuations in these protein abun-
dances explaininterindividual differencesin functional connectivity.

Our findings suggest a number of important factors to consider
when trying to draw associations between postmortem microscale
molecular data and macroscale neuroimaging data. First, our results
indicate that the relationships between molecular abundances and
brain connectivity have substantial regional specificity. Henceforth,
measuring molecular levels and spine attributes in additional brain
regions from the same individuals could help define the extent of this
regional specificity in determining if different proteins are indeed
involvedindifferent brain regions. Second, the number of associations
found might be limited by the time interval between the antemortem
scans and postmortem brain collection. From this standpoint, the
molecules we detected herein could be considered aminimum setand
reflective of molecular abundances whose covariation with these brain
regions occurs over a particular time scale. Finally, we face the common
problem of assigning molecules from bulk molecular measurements
to particular types of cells or synapses. For instance, RNA-related or
mitochondrial proteins we discuss in the context of spines may be
from nonsynaptic areas of the neuron or nonneuronal cells. Moreover,
ifthe found proteins areindeed from spines or synapses, they may not
beglobally representative, as recent efforts suggest unique molecular
signaturesindifferent synapses’™. Therefore, inaddition to the need to
explore regional specificity, it could be helpful to assay synapse-type
specificity to investigate whether particular types of synapses are more
relevant to fMRI coupling.

Overall, this study indicates that acquiring data across the major
perspectivesinhuman neuroscience fromthe same set of brainsis foun-
dational for understanding how human brain functionis supported at
multiple biophysical scales. While future researchis necessary for fully
determining the scope and components of multiscale brainsynchrony,

we have established a robustly defined initial set of molecules whose
effects likely resonate across biophysical scales.

Online content
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Methods

Cohort

Ninety-eight participants of the ROSMAP'° have all data types needed
for this work, namely fMRI, structural MRI, genetic, dendritic spine
morphometry, RNA-seqand proteomic data. All enrolled participants
agreed to annual clinical evaluation and brain donation at death. Both
studies were approved by an Institutional Review Board of Rush Uni-
versity Medical Center. Participants signed informed consent, an Ana-
tomical Gift Actand arepository consent to allow their resources to be
shared. The dendritic spine morphometry, RNA-seq and proteomic
data were measured from postmortem tissue samples of the SFG and
ITG. Foreach participant, tissue samples were drawn from either the left
ortheright hemisphere but notbothsides. Intotal, 52% of participants
had tissue samples drawn from the left hemisphere. The average age
of participants at the time of MRI scan and death is 88 + 6 years and
91+ 6 years, respectively, with an average time interval between MRI
scanand age at death of 3 + 2 years. The average postmortem interval
is 8.5+ 4.6 h. In total, 77% of the participants are female, and the par-
ticipants have 15 + 3 years of education. Further demographic details
on the participants were previously described™.

Neuroimaging
Structural scans were acquired using T1-weighted MRI (1.5T General
Electric (GE)—1 mm?® resolution, repetition time (TR) = 6.3 ms, echo
time (TE) = 2.8 ms, flip angle = 8°; 3T Siemens—1 mm? resolution,
TR=2300 ms, TE = 2.98 ms, flip angle = 9°and 3T Philips—1 mm’resolu-
tion, TR=8.0 ms, TE=3.7 ms, flip angle = 8°). Further details on scanner
protocols canbe found at https:/www.radc.rush.edu/docs/var/scan-
nerProtocols.htm (ref. 77). Nonuniformity correction, skull-stripping,
spatial normalization to the MNI152 template and tissue segmentation
were performed using advanced normalization tools. Freesurfer’s
‘recon-all’ function was applied to extract morphometric attributes.
Resting-state fMRI BOLD data were acquired on multiple scan-
ners, which are as follows: 1.5T GE Signa scanner (5 mm? resolution,
TR/TE =2,000/33 ms, flip angle 85°), 3T Siemens Magnetom TrioTim
syngo (3.3 mm°resolution, TR/TE = 3,000/30 ms, flip angle 80°) and 3T
Philips Achieva Quasar TX (3.3 mm®resolution, TR/TE =3,000/30 ms,
flip angle 80°). Further details on scanner protocols can be found at
https://www.radc.rush.edu/docs/var/scannerProtocols.htm (ref. 78).
Raw fMRI data were preprocessed using a well-validated pipeline of
robust and reproducible fMRI processing tools. First, CuBIDS was used
to identify and investigate scans with deviant parameters to reduce
scan heterogeneity’®. fmriprep (v.20.2.3)" was then applied to realign
and slice-time correct the fMRI volumes, with distortion correction
further performed if accompanying fieldmap volumes were available.
The resulting fMRI volumes were coregistered to their correspond-
ing T1 volumes using FLIRT. Finally, the fMRI time series underwent
confound regression using the eXtensible Connectivity Pipeline (XCP;
https://github.com/PennLINC/xcp_d)® (v.0.0.4 ‘xcp-abcd’) with the
36p+Despike model”. In brief, bandpass filtering between 0.01 and
0.08 Hzwas applied, followed by despiking with AFNI** and regression
of 36 parameters from the time series®’. Regressors included six motion
attributes derived during realignment, a global signal and two physi-
ological parameters, as well as their derivatives, squares of derivatives
and quadratic terms. Additionally, mean framewise displacement was
calculated for each participant and used to account for any residual
effect of head motions in subsequent analysis.

Proteomic

Multiplex TMT-MS was used to generate proteomic data (7,788 proteins).
Braintissue homogenization, protein digestion, TMT peptide labeling,
high-pH offline fractionation and liquid chromatography-tandem
mass spectrometry (LC-MS/MS), as well as protein quantification,
batch correction and datapreprocessing, were performed as previously
described® . Briefly, paired human tissue samples from SFG and ITG

were obtained from 98 ROSMAP participants. Approximately 100 mg of
tissue was homogenized in 8 M urea, 10 mM Tris and 100 mM NaH,PO,
(pH 8.5) buffer with Halt protease and phosphatase inhibitor cocktail
(Thermo Fisher Scientific) using a Bullet Blender (Next Advance). Pro-
tein concentration was determined by bicinchoninicacid assay (Pierce),
and 1D SDS-PAGE gels were run with Coomassie blue staining for qual-
ity control before protein digestion. Lysyl endopeptidase (Wako) at
1:100 (wt/wt) was added to each 100 pg sample for digestion overnight.
Trypsin (Promega) was added at 1:50 (wt/wt), and digestion occurred
for another 16 h. The peptide solutions were acidified and desalted.
Thesamples were thenloaded onto the column, washed and eluted. An
equal amount of peptide from each sample was aliquoted and pooled
as the global internal standard (GIS), which was split and labeled in
each TMT batch. The eluates were then dried to completeness using a
SpeedVac. Before TMT labeling, cases were randomized by covariates
(age, sex, PMI, diagnosis, etc.) into 26 total batches. Peptides from each
individual case and the GIS pooled standard or bridging sample (at least
one per batch) were labeled using the TMT 11-plex kit (Thermo Fisher
Scientific, 90406). For each batch, up to two TMT channels were used
tolabel GIS standards, while the remaining TMT channels were used for
samples after randomization. Next, high-pH offline fractionation was
performed, and 96 individual equal-volume fractions were collected
across the gradient and then pooled by concatenation into 24 frac-
tions and finally dried with a SpeedVac. Fractions were resuspended
in an equal volume of loading buffer and analyzed by LC-MS/MS. Pep-
tide eluents were separated on a self-packed C18 (1.9 um; Dr. Maisch)
fused silica column (25 cm x 75 uM internal diameter; New Objective)
by a Dionex UltiMate 3000 RSLCnano liquid chromatography system
(Thermo Fisher Scientific). Peptides were monitored on an Orbitrap
Fusion mass spectrometer (Thermo Fisher Scientific). Full MS scans
were collected ataresolution 0f120,000 (400-1,400 m/zrange, 4 x 105
AGC, 50-ms maximumioninjection time). AIHCD MS/MS spectrawere
acquired at aresolution of 60,000 (1.6 m/z isolation width, 35% colli-
sion energy, 5 x 104 AGC target, 50-ms maximum ion time). Dynamic
exclusion was set to exclude previously sequenced peaks for 20 s within
a10-ppm isolation window. Peptide spectral matches (PSMs) were fil-
tered toan FDR of less than 1% using the Percolator node. For database
searchingand protein quantification, raw MS datafileswere analyzedin
Proteome Discover software suite (v2.3; Thermo Fisher Scientific), and
MS/MS spectrawere searched against the UniProtKB human proteome
database. Following spectral alignment, peptides were assembledinto
proteins and filtered based on the combined probabilities of their con-
stituent peptides to a final FDR of 1%. Reporter ions were quantified
fromMS2 scans using anintegration tolerance of 20 ppmwith the most
confident centroid setting. Only PSMs with less than 50% isolation
interference were used for quantification, and only unique and razor
(that is, parsimonious) peptides were considered for quantification.
Multiconsensus was performed to achieve parsimony acrossindividual
batches. In cases of redundancy, shared peptides were assigned to the
proteinsequenceinadherence with the principles of parsimony. Finally,
batch correction and data preprocessing were performed. A total of
10,426 high confidence, master proteins were identified across the 26
TMT batches, but only proteins quantified in >50% of samples were
included in subsequent analyses. log, abundances were normalized
as aratio divided by the central tendency of pooled standards. Batch
correctionwas performed using a Tunable Approach for Median Polish
of Ratio (https://github.com/edammer/TAMPOR). Multidimensional
scaling plots were used to visualize batch contributions to variation
before and after batch correction. Network connectivity was used to
remove outliers, defined as samples that were greater than 3 s.d. away
from the mean.

Gene expression
RNA was extracted using the Chemagic RNA tissue kit (PerkinElmer,
CMG-1212). RNA was concentrated (Zymo, R1080),and RQN (RIN score)
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was calculated using Fragment Analyzer (Agilent, DNF-471). RNA con-
centration was determined using the Qubit broad-range RNA assay
(Invitrogen, Q10211) according to the manufacturer’s instructions. In
total, 500 ng total RNA was used for RNA-seq library generation, and
rRNA was depleted with RiboGold (Illumina, 20020599). A Zephyr G3
NGS workstation (PerkinElmer) was used to generate TruSeq stranded
sequencing libraries (Illumina, 20020599) with custom unique dual
indexes (IDT) according to the manufacturer’sinstructions with the fol-
lowing modifications. RNA was fragmented for 4 min at 85 °C. Thefirst
strand synthesis was extended to 50 min. Size selection post adapter
ligation was modified to select larger fragments. According to the
manufacturer’s instructions, library size and concentrations were
determined using an NGS fragment assay (Agilent, DNF-473) and Qubit
ds DNA assay (Invitrogen). The modified protocol yielded libraries with
anaverageinsertsize ofaround 330-370 bp. Libraries were normalized
for molarity and sequenced on a NovaSeq 6000 (Illumina) at 80-100
million reads, 2 x 150 bp paired-end. RNA-seq data processing was
implemented using the following three parallel pipelines: an RNA-seq
quality control (QC) pipeline, a gene/transcripts quantification pipe-
lineand a3’-UTR quantification pipeline. Inthe QC pipeline, paired-end
RNA-seq data were first aligned by STAR (v2.6) to a human reference
genome. The primary assembly of the reference genome fasta file and
transcriptome annotation came from Gencode (Release 27 GRCh38).
Picard tools were applied to the aligned BAM files to assess the quality
of RNA-seq data. In the quantification pipeline, transcript raw counts
were calculated by Kallisto (v0.46).

We preprocessed the RNA-seq data following the pipeline pre-
viously described®. In brief, we applied TMM normalization (using
edgeR calcNormFactors) to the raw counts to estimate the effective
library size of each participant. We then applied voom/limmato regress
out confounds and convert the counts into log counts per million
(log,(CPM)). Technical confounds included batch, study (ROS or MAP),
RNA integrity number, postmortem interval, library size, percentages
ofalignedreads, coding and intergenic bases, ribosomal and untrans-
lated region bases, duplicated reads, 3’ bias, 5’ over 3’ bias and coef-
ficient of variation in coverage. Only genes with mean log,(CPM) >2
were kept.

Dendritic spineimaging and processing

Golgi-Cox staining, using the FD Rapid Golgi Stain Kit (FD Neurotech-
nologies, PK401), was used to visualize dendrites and dendritic spinesin
postmortem samples from SFG and ITG. The flowing adjustments were
made from the standard operating procedure in the manual from the
kit. All steps were performed at room temperature. Solutions A (potas-
sium dichromate and mercuric chloride) and B (potassium chromate)
were combined 48 hbefore tissue submersion. Intotal, 2 ml of solution
A +Bwere placed in wells of a 12-well plate (Thermo Fisher Scientific,
08-772-29). Frozentissue blocks, approximately 10 x 10 x 10 mm, were
droppedintothe A + Bsolutionin each well. The chromate solution was
replaced after 24 h, and the tissue blocks remained in the solution for
21 days. Next, the tissue blocks were transferred to a new 12-well dish
containingsolution C. Solution C was replaced after 24 h. After atotal
of72hinsolution C, eachtissue block was sliced into 125 pumsectionsin
solution CusingaLeica Vibratome (VT1000S). Free-floating sections
were placed in a six-well dish (Thermo Fisher Scientific, 353046) that
contained solution C in each well. Tissue sections were sequentially
moved from solution D to solution E and to distilled water, similar to
the manufacturer’sinstructions. Slices were dehydrated with alcohols
(70%,90% and 100% ethanol) and cleared with xylenes (Thermo Fisher
Scientific, X3P).Slices were then placed onglass slides (Thermo Fisher
Scientific, 12-550-15) with a single slide spacer (Electron Microscopy
Sciences, 70327-20S), sealed with Permount (Thermo Fisher Scientific,
SP15-100) and coverslipped with 24 x 50 mm, thickness 0.13-0.17 mm,
glass (Carolina Biological, 633153). Slides were dried in the dark for
7 days before microscopy imaging.

Dendrites were imaged by blinded experimenters using bright-
field microscopy. Each case had multiple slides with multiple slices
available for imaging. From each tissue slice, one to two pyramidal
neurons from layers two or three were randomly selected to image
for analysis. Between 8 and 12 neurons were sampled per individual.
A single dendritic segment was imaged per neuron. While we used
randomsite sampling, dendrite segments were imaged if the following
criteria were met: (1) located centrally within the total tissue depth,
(2) not obscured by staining debris and/or intersecting neighboring
neurons and (3) fully impregnated. Additionally, only dendrites that
were over 30 pm in length and had an approximate diameter of 1 pm
were imaged. Tissue slices were visualized under 10x magnification
to determine tissue quality. Once suitable dendrites were identified,
tissue slices were visualized at 60x magnification using Type Fimmer-
sion oil (Nikon, MXA22168). Z stacks were captured at a step size of
0.1 pmat x60 using aNikon Plan Apo x60/1.40 numerical aperture (NA)
oil-immersion objective in combination with a high-NA oil condenser
(Nikon, MEL59500) on aNikon Eclipse Ti2 inverted microscope witha
Lumencor SOLA light engine and Hamamatsu ORCA-flash 4.0 digital
camera. Allimages were 1,024 x 1,024 pixels.

Reconstructions of dendrites and dendritic spines were conducted
by blinded experimenters using Neurolucida 360 (MBF Biosciences,
v2.70.1). Nikon ND2 files were converted to 16-bit TIFF files using Image)
andthenimportedto Neurolucida360. Dendritic segments were traced
using a user-guided semi-automated directional kernel algorithm.
Initiation and termination points for dendrite reconstruction were
determined with the following criteria: (1) =5 um away from the distal
tip of the dendrite, (2) consistent diameter, (3) level axis with limited
smear in the zplane and (4) 220 pmin length. After the dendritic seg-
mentwas traced, the experimenter verified that the points located on
thedendrite wereaccurateinx,yand zplanes and, if not, made manual
adjustmentstothetrace. The diameter of the dendrite at each point was
also verified to ensure the accuracy of the trace. Dendritic spines were
traced using voxel clustering. The following parameters were used for
spineidentification: outer range, 7 um; minimum height, 0.3 pm; detec-
tor sensitivity, 90-125% and minimum count, 8 voxels. The morphology
of each dendritic spine was examined to verify that the axial smear did
not cause misrepresentation. Merge and slice tools in Neurolucida 360
were used to correctinaccuracies. The position of every spine’s back-
bone point was verified by the blinded experimenter. If the backbone
caused a misrepresentation, the dendritic spine was visualized from
thezplane, andthe experimenter’s re-oriented backbone pointsinthe
x-yplane.Notably, repositioninginthex-zory-zplane was performed
while the spine was being viewed from the lateral angle. Morphometric
analysis was conducted for each spine, and measurements categorized
spines into thin, stubby, mushroom and filopodia classes. The fol-
lowing parameters were used for spine classifications: head-to-neck
ratio, 1.1; length-to-head ratio, 2.5; mushroom head size, 0.35 pm and
filopodium length, 3.0 pm. Spines with a head-to-neck ratio >1.1and
head diameter >0.35 pm were classified as mushroom. Spines were
classified as filopodia or thin if the head-to-neck ratio was <1.1 and
either (1) length-to-head ratio was >2.5 or (2) head size was <0.35 pm.
Moreover, if the total length of the spine was >3.0 um, the spine was
classified as filopodia, and if the total length was <3.0 pm, then the
spine was classified as thin. Dendrite and spine reconstructions were
exported to Neurolucida Explorer (MBF Biosciences, v2.70.1), where
datawere collected for quantitative analysis. The dendritic spine meas-
urements were exported and collected in Microsoft Excel. Spine density
was calculated by determining the quantity of spines per 10 um of
dendrite length. Spine length was defined as the curvilinear backbone
length from the insertion point to the most distal point of the spine
head. Head diameter was defined as the breadth of the spine head at
its widest cross-sectional point.

Dendritic spines display an enormous array of morphologies,
including varying head diameters and neck lengths, which are
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inextricably linked with spine function. For example, spine head diam-
eter canreflect the density of protein receptors at the postsynapse,
which correlates with synapse strength*®. The width and length of
the spine neck influence the diffusion of signaling molecules and the
degree to which individual synapses affect neuronal activity®’. Meas-
urements of spine head diameter and spine length as a ratio form the
basis of classificationinto the common morphologic subclasses. Thin
spines have short necks and small heads, whereas mushroom spines
have longer necks and larger heads. Stubby spines are hypothesized
to be transitional structures with a short neck and wide head. Subtle
alterationsinspine morphology and related biology caninduce marked
effects on connectivity patterns of neuronal circuits at microscale and
downstream cognitive behavior®°,

Our spine morphology and density measurements are consistent
with similar studies assessing spine structure characteristicsinhuman
and nonhuman primates using confocal and light microscopy® . In
a particularly elegant study, ref. 87 assayed fresh human brain tissue
obtained from the neurosurgical operation and used iontophoretic
microinjection of Lucifer yellow and high-resolution confocal micros-
copy. Our dendritic spine density and length measurements are highly
consistent with detailsinref. 87, whichreported an average spine den-
sity of 1per umon layer lll pyramidal neuron dendrites in the cingulate
cortex of an 80-year-old male. The mean spine density in SFGis 1.3 per
pm and 1.2 per um in ITG (Supplementary Fig. 3¢). The details in ref.
87 reported an average spine length of 1.4 pm on layer Il dendrites
in the cingulate cortex. The mean spine lengths are 1.54 pm in SFG
and 1.46 pm in ITG (Supplementary Fig. 3d). However, spine volume
measurements in ref. 87 averaged 0.36 pm?, whereas the mean spine
volumeis 0.26 pm?in SFG and 0.27 um?in ITG (Supplementary Fig. 3e).
This disconnect could be attributed to the lack of resolution using
Golgistainto measure the volume of the spine neck. The fluorescence
microscopy approach by ref. 87 allows greater signal-to-noise ratios
for more precise 3D measurement of the spine neck, which is approxi-
mately 100 nm?* However, bright-field microscopy of Golgi stain relies
onlight absorption, which may not provide sufficient signal-to-noise
to accurately measure the volume of the spine neck.

Genetics

Genotyping was performed using the Infinium Global Screening
Array, Affymetrix Genome-Wide HumanSNP Array 6.0 and lllumina
OmniQuad Express platform®®°, The genotyping data underwent
sample-level exclusions, including removing duplicated samples,
those with a genotyping success rate below 95%, and samples with
discordant gender information. At the probe level, additional filter-
ing was applied based on specific quality-control criteria—a Hardy-
Weinberg equilibrium Pvalue threshold (<1 x 107°), genotype call rate
(<0.9) and misshape test (<1 x 107°). For imputation on the Haplotype
Reference Consortium rl.1, we used the Michigan Imputation Server,
Minimac3 (v1.0.4) and Eagle (v2.3). Before imputation, the input data
were prepared using the HRC-1000G-check-bim_ts.pl script (available
at https://www.well.ox.ac.uk/-wrayner/tools/). Imputed genotypes
with an information score greater than 0.3 were converted to a Plink
binary file format using Plink 1.9 for downstream analysis.

Functional connectivity estimation

To estimate functional connectivity, we first used a functional atlas
comprising100 parcels (Schaefer2018_100Parcels_17Networks_order_
FSLMNI152) generated from resting-state fMRI data of >1,000 par-
ticipants® to divide the brain into functionally homogenous regions.
We then averaged the time series of voxels within each parcel and
computed Pearson’s correlation between all pairs of parcels for each
participant. To select the brain connection (that is, the parcel pair)
most relevant to our molecular data, we examined the spatial overlap
between each functional parcel and the brain areas at which we drew
tissue samples. Parcels 25 (left hemisphere) and 74 (right hemisphere)

have the greatest overlap with our SFG tissue samples, and parcels 14
(left hemisphere) and 65 (right hemisphere) have the greatest overlap
with our ITG tissue samples. For associating with the molecular data,
we only used the SFG-ITG connectivity estimate that matches the side
of the brain from which we drew tissue samples for each participant,
thatis, the connectivity estimate between parcels 25 and 14 if we drew
brain tissue samples from the left hemisphere for a given participant,
and vice versa. We used the connectivity estimates of other parcel pairs
for assessing regional specificity (‘Module-level association analysis’).

Structural covariation estimation

To estimate structural covariation, we used the nine regional morpho-
logical attributes (number of vertices, surface area, gray matter volume,
average cortical thickness, standard deviation of cortical thickness,
mean curvature, Gaussian curvature, fold index and curvature index)
from Freesurfer cortical surface reconstruction with regions defined
anatomically based on the DKT atlas®. Let Z; be the n x 9 morphologi-
cal attribute matrix of region i with n being the number of participants.
Thestandard approach®® estimates the structural covariation between
regionsiand,jby correlatingrow k of Z,withrow kof Z,for k=1ton. The
assumption is that morphological attributes have a one-to-one corre-
spondenceacrossregions, thatis, the foldindexinregionicovaries with
thefoldindexinregionj, the curvatureindexinregionicovaries withthe
curvatureindexinregionj, etc. However, the foldindex of region i might
also covary with, for example, the curvature index of regionj. Therefore,
to mitigate the one-to-one attribute correspondence assumption, we
applied CCA to find combinations of morphological attributes that
maximally covary between region pairs (Supplementary Fig. 1). Spe-
cifically, we applied CCA to Z;and Z; to find 9 x 9 projection matrices
A;and A;that maximize their correlation, that is, max tr(4,/ZZ,A;) sub-
jecttoA'Z'ZA,=1and A'Z'ZA; = I. Adopting arecent approach where
cofluctuationinfMRIlintensity at single time point resolutionis used to
estimate connectivity between tworegions’, weusedS; = (ZA) o (ZA))
as estimates of structural covariation between regions i and j, where
the symbol o denotes element-wise product and each CCA dimension
(thatis, each columnof S;) captures a different mode of shape covaria-
tion. For associating with the molecular data, we split the participants
based on the side of the brain from which we drew tissue samples and
separately applied CCA to those two sets of participants. We focused
our analysis on the structural covariation between ‘superior frontal’
and ‘inferior temporal’ inthe DKT atlas, which best overlaps withwhere
we sampled brain tissues and used other anatomical region pairs for
assessing regional specificity (‘Module-level association analysis’).

Molecular module estimation

To determine the molecular systems of interacting proteins in each
brain region, we clustered the proteins into co-abundance modules
using a fully data-driven approach called SpeakEasy®?, which takes in
a similarity matrix and joins nodes into modules based on both local
connectivity and global network structure. To estimate the degree of
interaction between each pair of proteins, we correlated their abun-
dance levels across participants. We repeated this estimation for all
protein pairs to generate a protein correlation matrix for each region
and applied SpeakEasy, which extracted ten modules for SFG and ten
modules for ITG (Supplementary Table 2). Considering our goal is to
model brain connectivity, which presumably arises from subprocesses
related to synaptic communication, we applied Fisher’s exact test to
annotate each module by GO terms and focused our analysis on mod-
ules (pMod) whose protein members are most enriched for synaptic
communication terms. Using this criterion, we selected pModé6 for
SFG and pModS for ITG, which happen to have the greatest protein
overlap among all protein module pairs (OR =13.16, P=3.99 x 107'%),
We also annotated the modules by brain cell types by applying GSEA™
with cell type-specific mean expression” as scores and proteins within
our modules as genesets. The selected protein modules also happen
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tobe the most enriched for neurons among modules (Supplementary
Table2). Torepresentaproteinmodule, we used the average abundance
levels of its protein members. We applied the same procedures to the
gene expressiondata, which extracted nine modules for SFG and nine
modules for ITG (Supplementary Table 3). Based on synaptic GO term
enrichment, we selected and focused our analysis on eModS5 for SFG
and eMod4 for ITG, which also happen to have the greatest gene overlap
among all expression module pairs (OR =57.25, P=4.94 x107%) and
most enriched for neurons (Supplementary Table 3).

Proteomic characterization of dendritic spine attributes

To provide a simple characterization/quality check of the dendritic
spine data, we associated each dendritic spine attribute with the pro-
tein dataand examined its GO term enrichment to check if the dendritic
spine attributes are enriched for the expected neuronal structures and
functions. Specifically, we applied regression with each measured pro-
teinfromagivenbrainregion asthe response and each spine attribute
fromthe samebrainregion as a covariate of interest, while accounting
forage of death, sex, PMIand year of education as confounding factors.
We then applied GSEA to the set of ¢ values of each dendritic spine
attribute and declared significance at an a of 0.05 with Bonferroni
correction for the number of GO terms (P <5 x107°).

Module-level association analysis

Let Y; be an x1vector corresponding to neuroimaging estimates of
abrain attribute (functional connectivity or structural covariation
between regions i and ) of n participants, X;and X;be n x 1 vectors
corresponding to the average molecular values (protein abundance
or gene expression level) of members within the synaptic modules
of regionsiandjand Cbe a n x d confound matrix. We modeled Y; as
follows: Y;=a, + Ca + X8, + X,B;+ X; 0 X;8; + €, with age at death, age of
scan, sex, years of education, scanner, postmortem interval and side of
brainmolecular dataas acquired and mean framewise displacement as
confounds. Our primary question is whether X8, + X8, + X; o X,8; can
significantly explain variance in Y; across participants for i = SFG and
Jj=ITG. Considering that the biophysical scale at which proteins reside
might be far from region-level attributes, we tested whether cellular
contextualization of these modules can better reveal their association
with our brain attributes of interest. Accordingly, we extracted the
dendritic spine component of the synaptic modules by using regres-
siontofitthe average molecular values of their members as responses
with morphometric attributes of dendritic spines as covariates and
used these components (thatis, the fitted values) as X;and X;. To assess
regional specificity, wefitted the same model with Y set tobrain attrib-
ute values of other region pairs (that is, non-SFG-ITG connections)
and computed the percentage of other region pairs with lower P val-
ues. For associating with structural covariation, which has nine CCA
dimensions, we separately fitted the model to each CCA dimension
and applied the aggregated Cauchy association test (ACAT) to combine
P values across the nine dimensions®. We opted to use ACAT over
other Pvalue combination tests because it provably provides optimal
power in sparse settings’**, which accentuates the CCA dimensions
thathave astronger association with the synaptic modules, in contrast
to, for example, Fisher’s method that weights all dimensions equally.
In addition to the synaptic modules, we also tested the association
between other modules and connectivity as an exploratory analysis.
To aid interpretation as well as reduce the number of statistical tests,
we used Hungarian clustering to first pair up SFG and ITG modules
that represent similar systems based on ORs of their gene overlap. We
then associated each module pair against functional connectivity and
structural covariation.

Molecule-level association analysis
To find the specific molecules (proteins and genes) associated with
our brain attributes of interest, we modeled Y as follows: Y;=a,+C

A+ X3y + XiB; + Xmi © X8, + €, where X,,,;is an x 1vector of molecular
values (abundance level of protein m or expression level of gene min
region i) of n participants. The other variables are as defined in the
module-level association model. We used this model to avoid testing
all pairwise combinations of molecules between SFG and ITG (7,788
protein pairs or ~12,000% gene pairs), which limits statistical power.
We tested for molecules involved in SFG by setting i to SFG andj to
ITG, and vice versa. We focused on testing the following three terms:
XniBmir Ximi © XiBrmgir AN X B + Xps 0 X B, that is, effects that do not
exclusively involve the synaptic modules. We declared significance at
0.05with FDR correction over the combinations of molecules, regions
and effects of interests. We considered a molecule as significant if any
of the three effects is significant with FDR correction. Considering a
molecule could beinvolved in multiple molecular processes, we again
applied cellular contextualization by substituting the molecular values
with their dendritic spine components and repeated the analysis. To
test if cellular contextualization improves association strength, for
each combination of effect and region, for example, the main effect
of SFG, we compared the —log,,(P) of an effect with versus without cel-
lular contextualization using a permutation test. Letdbeag x 1 vector
with elements corresponding to the differences in -log;,(P) between
with and without cellular contextualization for g molecules. For each
permutation, we randomly selected g/2 molecules, flipped the sign of
their —log,,(P) differences and computed the average difference over
molecules. We repeated this procedure 10* times and computed the
proportion of times the nonpermuted average -log,,(P) difference
is smaller than the permuted average -log,,(P) differences, that is,
a permutation-based P value. We further performed GSEA* on GO
terms and a connectivity-related geneset* for result interpretation.
We applied GSEA to the ¢ values of all measured molecules (separately
for proteins and genes) for each of the three effects on functional
connectivity (separately for SFG and ITG) and declared significance
at 0.05 with Bonferroni correction (P <5 x107). Using ¢ values of all
measured molecules control for background genes. We considered
a GO term as significant if any of the three effects is significant. For
XiBmi + X © XiBmy» We only have an Fvalue for each molecule. Therefore,
we approximated a t value for each molecule by taking the square root
ofits Fvalue and multiplying it by the sign of the mean ¢ value of x,,, 8.,
andx,, o X,8,,;, thatis, taking the sign of the more dominant effect. For
structural covariation, we only have P values derived by aggregating
the CCA dimensions. Therefore, for each molecule, we approximated
its effect direction by averagingits ¢ valueson agiven effect across the
CCA dimensions and taking the sign of this average. We used signed
-log,,(P) asinput to GSEA.

MetaXcan analysis

To compare our connectivity-associated proteins against previous
imaging genetics studies, we used a functional mapping approach,
called MetaXcan®, to convert SNP-level GWAS summary statistics to
protein level. For each protein m, We first built a model to extract the
genetic component of its protein abundance: P, =2 ,, W,,S; *+ €.,
where P, is a n x 1 vector containing the abundance levels of protein
m; S,is an x1vector containing the dosage of SNP s; w,,, is the sth
element of a /,, x 1 model weight vector, w,, to be estimated; and S,,
is the set of [,, SNPs within +1 Mb from the transcription start site of
gene m that produces protein m. Following MetaXcan, we estimated
W, using elastic net regression by applying GLMNET with its default
settings, thatis, tenfold cross-validation to set the sparsity parameter.
We regressed out confounds including age of death, sex, postmortem
interval, top three ancestry principal components and top ten protein
principal components from the protein abundance measurements
before fitting the models. Given w,,,, protein level GWAS z score, z,,,
of proteinm can be estimated by the following: z,, = 2, W,,04/0,, X Z,,
where z,is the GWAS zscore of SNP s, and 0,, and o, are the variance of
protein m, and SNP s, respectively. We built models for SFG and ITG
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proteins separately and packaged the models into SQLite databases
(https://doi.org/10.7303/syn52087434) so users can directly use them
with the public MetaXcan software (https://github.com/hakyimlab/
MetaXcan). We applied MetaXcan with our protein models to a GWAS
on functional connectivity between SFG and ITG (rfMRI connectivity
ICA100 edge 849 (ref. 6)) and examined which proteins found associ-
ated with SFG-ITG connectivity in our data show significant genetic
effects based on z,,.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Protein and dendritic spine dataare available through https://adknowl-
edgeportal.synapse.org/.ROSMAP resources, including neuroimaging,
gene expression and genetics, can be requested at https://www.radc.
rush.edu. MS/MS spectrawere searched against the UniProtKB human
proteome database.

Code availability

All analyses described in the Methods used standard MATLAB and R
functions as well as code provided in referenced publications without
modifications. Custom code was not generated in this study.
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Protein and dendritic spine data available through https://adknowledgeportal.synapse.org/. ROSMAP resources, including neuroimaging, gene expression, and
genetics can be requested at https://www.radc.rush.edu. MS/MS spectra were searched against the UniProtkKB human proteome database.
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variables recorded for these individuals is available upon request through radc.rush.edu This sample size of individuals with
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other socially relevant lllinois. The individuals in this substudy were 100% Caucasian. The subset of individuals from both studies in the current
; analysis all resided within driving distance of Chicago, as they were providing brain scans via Rush University.

groupings

Population characteristics Average age of death was 89.1 years old, and total years of education are 16.9. Population characteristics we controlled

include study (ROS or MAP), sex and age of death and age at scan.

Recruitment TThe ROSMAP studies primarily recruited from retirement communities and also from Section 8 and Section 202 housing
subsidized by the Department of Housing and Urban Development, retirement homes, and through local churches and other
social service agencies serving minorities and low-income elderly. There is really nothing more to say on recruitment, and the
level of detail provided here is equal to how the studies are represented in hundreds of other publications. It’s not possible
to fully define self-selection bias, but participants are more highly educated and Caucasian compared to national averages.
Relative to the ROS study, MAP participants may have different life experiences, as they are not members of Religious
Orders, and overall lower levels of education. However the cohort was designed to be otherwise compatible in terms of test
and geography, and years of education is regressed from the data. These aspects of the study are covered in detail in the
cited references.

Ethics oversight The parent studies and sub-studies were all approved by an Institutional Review Board of Rush University Medical Center and
all participants signed an informed consent, Anatomical Gift Act, and a repository consent to share data and biospecimens.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample was all individuals who provided both ante-mortem fMRI and post-mortem brain proteomics. This cohort size is consistent with
that necessary for robust neuroimaging and human brain molecular biology effects from a broad population.

Data exclusions  We only included subjects with RNAseq, proteomics, dendritic spine morphology, and neuroimaging data as well as their corresponding
confounding variables.

Replication As there is no other cohort that has paired fMRI and brain proteomics, we replicated findings by incorporating gene expression, and also
structural neuroimaging in this same cohort which showed related and sometimes stronger effects as the main fMRI-protein tests. We also
utilize genetic effects to provide replication, comparing an external GWAS for functional connectivity between our regions of interest with our
data, which show significant overlap (see text for detailed analysis).The structural MRI scans and gene expression data were collected from
the same subjects from whom we collected fMRI and protein data. The GWAS data was generated from an independent cohort.

Randomization = We compare continuously distributed phenotypes (neuroimaging and omics), with no binarization or binning.

Blinding Neuroimaging was performed prior to any brain omics, and hence intrinsically blinded, while proteomics were assays by investigators with no
access to neuroimaging data, and even prior to the neuroimaging data being processed, so they were also blinded.
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studies involving existing datasets, please describe the dataset and source.
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predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Materials & experimental systems Methods
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.




Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.
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Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health

D National security
D Crops and/or livestock
|:| Ecosystems

XX XX X &

|:| Any other significant area




Experiments of concern

Does the work involve any of these experiments of concern:
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Plants

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Seed stocks

Novel plant genotypes

Authentication

ChlIP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.: - v ‘
Describe-any-authentication-procedures for-eachseed stock used-or-novel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. ~ provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community
repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Cell population abundance

Gating strategy

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

resting state

Subjects were instructed to lie at rest as we performed fMRI scans.

Behavioral performance measures  The subjects were not performing any task, hence we did not measure behavioural performance.

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition
Diffusion MRI [ ] Used

Preprocessing

Preprocessing software

Normalization
Normalization template

Noise and artifact removal

functional; structural
1.5and 3.0T

Resting state fMRI BOLD data were acquired on multiple scanners: 1.5T GE Signa scanner (5 mm3 resolution, TR/
TE=2000/33 ms, flip angle 85°), 3T Siemens Magnetom TrioTim syngo (3.3 mm3 resolution, TR/TE=3000/30 ms, flip
angle 80°) and 3T Philips Achieva Quasar TX (3.3 mm3 resolution, TR/TE=3000/30 ms, flip angle 80°). Further details on
scanner protocols can be found at https://www.radc.rush.edu/docs/var/scannerProtocols.htm.

whole brain

Not used

cuBIDS was used to identify and investigate scans with deviant parameters. fmriprep (v. 20.2.3)5 was then applied to realign
and slice-time correct the fMRI volumes, with distortion correction further performed if accompanying fieldmap volumes
were available.

The fMRI volumes were co-registered to their corresponding T1 volumes using FLIRT.

Al fMRI and T1 volumes were spatially normalized to MNI152 template.

The fMRI timeseries underwent confound regression using the eXtensible Connectivity Pipeline (XCP; https://github.com/
PennLINC/xcp_d)6 (v. 0.0.4 “xcp-abcd”) with the 36p+Despike model. In brief, bandpass filtering between 0.01 and 0.08 Hz

was applied, followed by despiking with AFNI8 and regression of 36 parameters from the timeseries. Regressors included six
motion attributes derived during realignment, global signal, and two physiological parameters, as well as their derivatives,
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squares of derivatives, and quadratic terms. Additionally, mean framewise displacement was calculated for each subject and
used to account for any residual effect of head motions in subsequent analysis.

Volume censoring Scans with excessive motion or distortion were excluded and remaining motion effects regressed out.

Statistical modeling & inference

Model type and settings We used mainly univariate linear regression models. Canonical correlation analysis and elastic net regression were also used.

Effect(s) tested Association between omic data and resting state fMRI-based connectivity estimates (as well as MRI-based structural
covariation as replication). No task or stimulus was involved.

Specify type of analysis: [ | whole brain X ROI-based || Both

Statistic type for inference t-values and p-values from linear regression were used for inferring associations between omic and neuroimaging data.

(See Eklund et al. 2016)
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Correction FDR correction for all effects in the regression models.

Models & analysis

n/a | Involved in the study
|:| |X| Functional and/or effective connectivity

|X| |:| Graph analysis

|X| |:| Multivariate modeling or predictive analysis
Functional and/or effective connectivity Pearson's correlation

Graph analysis We did not perform graph analysis in terms of extracting graph properties, such as node degree,
betweenness centrality,
clustering coefficients etc. for this study.
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